Role des histone variants dans la dynamique de la chromatine
Cécile M. Doyen

To cite this version:

HAL Id: tel-00727677
https://tel.archives-ouvertes.fr/tel-00727677
Submitted on 4 Sep 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Thèse
Présentée par

Cécile M. Doyen

Pour obtenir le titre de
Docteur de l’université Joseph Fourier-Grenoble 1
Discipline : Biologie moléculaire – Biochimie

Rôle des variants d’histones dans la dynamique de la chromatine

Date de soutenance prévue : le 27 octobre 2006

Sous la direction de M. Stefan Dimitrov et M. Philippe Bouvet

Membres du Jury
M. Christian MUCHARDT
M. Stefan NONCHEV
Mme Francesca PALLADINO
M. Didier TROUCHE

Rapporteur
Examineur
Examineur
Rapporteur
Tables des matières
I. Table des matières

TABLE DES MATIERES
I. TABLE DES MATIERES 2
II. INDEX DES FIGURES 5
III. INDEX DES TABLEAUX 6
IV. LISTE DES ABBREVIATIONS 7
RESUME 9

INTRODUCTION 11

I. STRUCTURE DU NUCLEOSOME
1. Le nucléosome est l’unité de base de la chromatine 12
2. Le cœur histone 13
3. L’ADN nucléosomal 13
4. Les interactions ADN-histones 14
5. La stabilité du nucléosome et la transcription 15

II. STRUCTURE DE LA CHROMATINE
1. De la particule cœur du nucléosome à la chromatine 17
2. Territoires de la chromatine (eu et hétéro-chromatine) 19

III. MODIFICATIONS POST-TRADUCTIONNELLES DES HISTONES
1. L’acétylation 22
2. La méthylation 24
3. Les autres modifications covalentes des histones 26
4. Le « code histone » 26

IV. LE REMODELAGES DU NUCLEOSOME ATP-DEPENDANT
1. La famille Swi/Snf 31
 a. Les différents complexes chez les différentes espèces 31
 b. Le cancer et Swi/Snf 34
2. La famille ISWI 35
3. La famille CHD/Mi-2 38
4. La famille INO80 39
5. Le mécanisme d’action des facteurs de remodelage 40

V. LES VARIANTS D’HISTONES
1. Les variants de l’histone H2A 46
 a. macroH2A 46
 b. H2A-Bbd 53
 c. H2AZ 55
 d. H2AX 58
2. Les variants de l’histone H2B 59
3. CenpA, H3.1, H3.3 : variants de l’histone H3 60
4. Le cas de l’histone H4 61
5. Les variants et l’expression des gènes 61
6. Les variants dans la réparation 63
7. Les variants dans l’hétérochromatisation 65
OBJECTIFS

RESULTATS

PUBLICATION N°1

PUBLICATION N°2

PUBLICATION N°3

DISCUSSION

1. Généralités et hypothèses
2. Préparation de mononucléosomes positionnés
3. Dynamique des nucléosomes
4. Transcription et nucléosomes variants
5. Chaperonne de variant d'histone
6. Modifications post-traductionnelles des variants d'histones
7. Localisation sur des zones chromosomiques spécifiques

PERSPECTIVES

BIBLIOGRAPHIE

ANNEXES

I. MATERIELS

II. METHODES

1. ADN
2. Protéines
3. Préparation de mononucléosomes positionnés
4. Essais fonctionnels des mononucléosomes obtenus
5. La chromatine

1. Plasmides
2. Bactéries, cellules
3. Histones recombinantes
4. Facteurs de remodelage
5. La chromatine par digestion à la nucléase micrococcale
6. Modifications post-traductionnelles des variants d'histones
7. Localisation sur des zones chromosomiques spécifiques

1. ADN
2. Bactéries, cellules
3. Histones recombinantes
4. Facteurs de remodelage
5. La chromatine

1. Plasmides
2. Bactéries, cellules
3. Histones recombinantes
4. Facteurs de remodelage
5. La chromatine

1. ADN
2. Bactéries, cellules
3. Histones recombinantes
4. Facteurs de remodelage
5. La chromatine
II. Index des figures

Figure 1 : Structure atomique du nucléosome de *Xenopus laevis* ... 12
Figure 2 : Structure du cœur d'histones .. 13
Figure 3 : Structure d'une demi-particule nucléosomale ... 14
Figure 4 : Le nucléosome dynamique ... 16
Figure 5 : De la double hélice d’ADN à la chromatine... 19
Figure 6 : Différents types de modifications post-traductionnelles des histones 20
Figure 7 : Modifications post-traductionnelles des histones .. 21
Figure 8 : Exemples de méthylases d’histones .. 24
Figure 9 : Exemple d’activation de la transcription par le code histone chez la *S. cerevisiae*. 28
Figure 10 : Famille Snf2 d'ATPases .. 30
Figure 11 : Famille Swi/Snf de complexes de remodelage de la chromatine 32
Figure 12 : Famille ISWI de complexes de remodelage de la chromatine 36
Figure 13 : Déplacement de l’octamère d’histone par un complexe de remodelage 40
Figure 14 : Modèle de diffusion par torsion ... 41
Figure 15 : Modèle de recapture de boucle ... 41
Figure 16 : Modèle pour le remodelage du nucléosome dépendant de l’ACF 42
Figure 17 : Modèle de propagation de la boucle d’ADN nucléosomai 43
Figure 18 : Comparaison de séquences des gènes appartenant à la famille de l’histone H2A 45
Figure 19 : Distribution nucléaire de l’histone variant macroH2A ... 47
Figure 20 : Exclusion de l’histone variant H2A-Bbd du corps de Barr 53
Figure 21 : Exemple d’inter-relation entre la réparation, les facteurs de remodelage, de modifications, les histones variants et les chaperonnes d’histones chez la Drosophile 64
Figure 22 : Chimères de H2A-Bbd et H2A ... 111
Figure 23 : Constructions chimériques de macroH2A et H2A ... 112
Figure 24 : Exemple de protéines recombinantes purifiées .. 116
Figure 25 : Schéma des sondes utilisées .. 118
Figure 26 : Nucléosomes reconstitués par bain de dialyse ... 119
Figure 27 : Vérification de l’incorporation des histones dans un nucléosome 120
Figure 28 : Glissement de nucléosomes canoniques par le facteur de remodelage SWI/SNF 121
Figure 29 : Schéma de l’insert contenu dans l’ADN plasmidique utilisé pour la reconstitution de la chromatine .. 124
III. Index des tableaux

Tableau 1 : Proposition d’une classification d’une hiérarchie de la structure de la chromatine ... 17
Tableau 2 : Différentes classes d’histones acétyltransférase (HAT) .. 22
Tableau 3 : Différents groupes d’histones déacétylases (HDAC) ... 23
Tableau 4 : Groupes d’histones méthyltransférase .. 25
Tableau 5 : Les variants de l’histone H2A chez l’Homme ... 46
Tableau 6 : Vecteurs d’expression contenant les séquences codant pour les histones canoniques .. 110
Tableau 7 : Vecteurs d’expression contenant les séquences codant pour les variants d’histones .. 110
Tableau 8 : Vecteurs d’expression contenant les séquences codant pour les chimères de H2A-Bbd .. 111
Tableau 9 : Vecteurs d’expression contenant les séquences codant pour les chimères de macroH2A ... 112
IV. Liste des abréviations

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>Acide Aminé</td>
</tr>
<tr>
<td>ACF</td>
<td>Facteur de remodelage et d’Assemblage de la Chromatine utilisant de l’ATP</td>
</tr>
<tr>
<td>ADN</td>
<td>Acide désoxyribonucléique</td>
</tr>
<tr>
<td>ARN</td>
<td>Acide ribonucléique</td>
</tr>
<tr>
<td>ATP</td>
<td>Adénosine-5’-TriPhosphate</td>
</tr>
<tr>
<td>BAZ</td>
<td>Bromodomaine adjacent à un domaine en doigt de zinc</td>
</tr>
<tr>
<td>BL21 C+</td>
<td>Bactéries compétentes de souche E.Coli codon start plus permettant la production de protéines recombinantes</td>
</tr>
<tr>
<td>BRG1</td>
<td>Produit du Gène lié à Brahma</td>
</tr>
<tr>
<td>BRM</td>
<td>Protéine Brahma</td>
</tr>
<tr>
<td>BSA</td>
<td>Sérum albumine bovine</td>
</tr>
<tr>
<td>CHD</td>
<td>Chromodomaine</td>
</tr>
<tr>
<td>CHRAC</td>
<td>Complexe d’accessibilité à la chromatine</td>
</tr>
<tr>
<td>C-terminal</td>
<td>Carboxy-terminal</td>
</tr>
<tr>
<td>DNase I</td>
<td>Désoxyribonucléosidase I</td>
</tr>
<tr>
<td>DNMT</td>
<td>ADN méthyltransférase</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonucléoside triphosphate</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiotréitol</td>
</tr>
<tr>
<td>E.Coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Acide éthylène diamine tétra acétique</td>
</tr>
<tr>
<td>EMSA</td>
<td>Essai de mobilité électrophorétique</td>
</tr>
<tr>
<td>G</td>
<td>Force centrifuge relative</td>
</tr>
<tr>
<td>H1, H2A, H3, H4</td>
<td>Protéines histones</td>
</tr>
<tr>
<td>HAT</td>
<td>Histone acétyltransférase</td>
</tr>
<tr>
<td>HDAC</td>
<td>Histone déacétylase</td>
</tr>
<tr>
<td>HMT</td>
<td>Histone méthyltransférase</td>
</tr>
<tr>
<td>HMG</td>
<td>Groupe de grande mobilité</td>
</tr>
<tr>
<td>h</td>
<td>Heure</td>
</tr>
<tr>
<td>ISWI</td>
<td>Imitation de switch</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Daltons</td>
</tr>
<tr>
<td>M</td>
<td>Molaire</td>
</tr>
<tr>
<td>Min</td>
<td>Minute</td>
</tr>
<tr>
<td>NoRC</td>
<td>Complexe de remodelage nucléolaire</td>
</tr>
<tr>
<td>NP-40</td>
<td>Nonidet P-40</td>
</tr>
<tr>
<td>N-terminal</td>
<td>Amino-terminal</td>
</tr>
<tr>
<td>NURF</td>
<td>Facteur de remodelage des nucléosomes</td>
</tr>
<tr>
<td>PAGE</td>
<td>Electrophère sur gel de polyacrylamide</td>
</tr>
<tr>
<td>Pb</td>
<td>Paire de base</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymérase chaîne réaction</td>
</tr>
<tr>
<td>Pol I, II, III</td>
<td>ARN polymérase I, II, III</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodécy sulfate</td>
</tr>
<tr>
<td>s</td>
<td>Seconde</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Snf</td>
<td>Sucrose non fermenter</td>
</tr>
<tr>
<td>Snf2h</td>
<td>protéine homologue de Snf2</td>
</tr>
<tr>
<td>SWI</td>
<td>Conjugaison de type switch</td>
</tr>
<tr>
<td>TAF</td>
<td>Facteur associé à TBP</td>
</tr>
<tr>
<td>TBE</td>
<td>Tampon tris borate EDTA</td>
</tr>
<tr>
<td>TBP</td>
<td>Protéine de liaison à TATA</td>
</tr>
<tr>
<td>Tps</td>
<td>Temps</td>
</tr>
<tr>
<td>UV</td>
<td>Rayon ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>WSTF</td>
<td>Facteur de transcription</td>
</tr>
<tr>
<td>XL1 blue</td>
<td>Bactéries compétentes de souche E. Coli permettant l’amplification de plasmides</td>
</tr>
</tbody>
</table>
Résumé
Dans le noyau de la cellule, l’ADN est empaqueté sous forme de chromatine dont l’unité est le nucléosome. Celui-ci empêche l’accès des facteurs de transcription et des complexes enzymatiques à l’ADN. Pour dépasser cette barrière, la cellule utilise différentes stratégies dont l’incorporation de variants d’histones au sein de la particule nucléosomale.

Ces propriétés mettent en évidence la régulation de l’expression des gènes par les variants.
Introduction
I. Structure du nucléosome

Figure 1 : Structure atomique du nucléosome de *Xenopus laevis*
Chaque brin d’ADN est représenté par une teinte de bleu. L’ADN s’enroule autour de l’octamère d’histones et l’ensemble forme une particule dont la structure ressemble à un disque. Le code couleur des histones est le suivant : H3 en vert, H4 en jaune, H2A en rouge et H2B en rose \{Khorasanizadeh, 2004\}.
2. Le cœur histone

Le domaine de repliement des histones se compose de trois hélices intercalées de deux boucles, le tout est noté : α1 - L1 - α2 - L2 – α3. Il permet la formation des hétérodimères d’histones et des liaisons avec l’ADN {Luger, 1997}.

Les motifs de repliement des histones se placent de manière anti-parallèle sur huit tours de l’hélice α2 dans un même hétérodimère. La boucle L1 de l’une se juxtapose avec la boucle L2 de l’autre (figure 2). La juxtaposition forme un motif liaison à l’ADN à chaque extrémité du dimère. Les deux hélices α1 forment un autre domaine de liaison à l’ADN tandis qu’à l’opposé du dimère les hélices α3 ne font aucun contact avec l’ADN {Luger, 1997}.

Figure 2 : Structure du cœur d’histones
A. Le domaine de repliement de toutes les histones est construit selon l’enchaînement suivant : α1-L1-α2-L2-α3.
B. L’hétérodimère forme trois nouveaux points de contact avec l’ADN nucléosomal.
C. Le tétramère forme des points de contact avec l’ADN nucléosomal.
D’après {Harp, 2000}

3. L’ADN nucléosomal

L’ADN nucléosomal est divisé en deux régions de 72 pb et 73 pb avec une base centrale appelée la dyade. Une orientation de la double hélice d’ADN a été définie à partir de la paire de base centrale SHL 0 (Superhelix Location Zero), où le sillon mineur fait face à l’octamère {Luger, 1997}(figure 3). On définit ensuite des SHL+1 à +7 et SHL-1 à -7 {Luger, 1997}. L’ADN nucléosomal génère une courbure non uniforme de 140°C autour de l’octamère d’histones {Richmond, 2003}.
4. Les interactions ADN-histones

Il existe au total 14 zones d’interaction entre l’ADN et les protéines. Elles correspondent aux SHL définis précédemment. Douze de ces sites recouvrent une partie centrale de l’ADN nucléosomal qui correspond à 121 pb (de SHL 0,5 à SHL 5,5) {Luger, 1997} {Davey, 2002}. Ces régions sont construites à partir des zones décrites comme L1L2 et α1α1 (figure 3). Les deux derniers sites de liaison avec l’ADN nucléosomal sont ensuite réalisés par les extrémités NH₂ des histones H3 et H2B. Elles assurent une sorte de symétrie dans la molécule nucléosomale {Luger, 1997}.

Figure 3 : Structure d’une demi-particule nucléosomale
Cette structure illustre l’organisation des histones et de l’ADN au sein d’un demi nucléosome. Les sites de contacts avec l’ADN sont indiqués de SHL 0,5 à 6,5 avec la paire de base centrale à SHL 0. Les sous-structures et les extrémités des histones sont indiquées. Le code couleur est le suivant : les brins d’ADN sont en brun et cyan ; les domaines globulaires de H3 en bleu, H4 en vert, H2A en jaune, H2B en rouge ; les extrémités des histones sont en blanc {Davey, 2002}.
15. La stabilité du nucléosome et la transcription

Par condensation, 2 m d’ADN sont compactés dans un noyau eucaryotique de 5 µm. Il est donc nécessaire d’ouvrir cette chromatine compacte pour initier la transcription. Pour dépasser l’obstacle que représente le nucléosome, les cellules ont développé une série de systèmes enzymatiques. Ils remodèlent la chromatine et régulent les processus biologiques essentiels, incluant la transcription.

L’ouverture de la chromatine lors de la transcription s’effectue en trois étapes : un facteur initial cible le site de liaison à l’ADN nucléosomal, la chromatine s’ouvre localement sur des éléments spéciaux puis la transcription s’initie au niveau de cette chromatine étendue {Li, 2004}. In vitro, les nucléosomes répriment la transcription par l’ARN polymérase II. In vivo, la structure locale des fibres de chromatine est modulée par une balance dynamique des protéines qui se lient aux nucléosomes. Ainsi la compétition pour les sites de liaison sur l’ADN entre les groupes polycomb/trithorax et HAT/HDAC aboutit à un lien dynamique entre hétérochromatine et euchromatine.

Le nucléosome est un médiateur important de l’accessibilité de l’ADN dans la cellule eucaryote. La stabilité, la structure et l’état d’association du nucléosome jouent un rôle important dans la régulation de la transcription.

Ainsi, des nucléosomes immobilisés empêchent la transcription. Ils possèdent une activité dynamique spontanée dépendante de la séquence ADN. Le taux de changements spontanés du nucléosome a pu être mesuré par deux techniques différentes dans un même laboratoire {Li, 2005B}. Ces mesures prennent en compte l’enroulement et le désenroulement spontané de l’ADN nucléosomal autour du cœur d’histones (figure 4).
Figure 4 : Le nucléosome dynamique
Les points de contacts entre l’ADN (bleu) et le cœur histone (gris) sont symbolisés par de petits cercles rouges. La flèche rouge montre les points d’entrée et de sortie de l’ADN nucléosomal. Pour plus de simplicité un seul brin d’ADN est représenté sur le schéma [Mellor 2005].

In vitro, les nucléosomes sont dans un état d’équilibre dynamique. Il existe une alternance entre un état complètement enroulé et plusieurs états de désenroulement plus ou moins partiels. L’interconversion entre ces états est rapide et spontanée. Dans ces états, l’ADN nucléosomal n’est transitoirement plus en contact avec la surface histone. L’ADN nucléosomal reste en contact avec les histones pendant 250 ms avant d’être spontanément désenroulé pendant 10 à 50 ms et de réatteindre un état enroulé (figure 4) [Li, 2005B]. Ces transitions se déroulent à des concentrations physiologiques en sels. In vivo ces différents états sont donc accessibles à des protéines régulatrices qui vont interagir avec l’ADN déroulé. A ceci doivent s’ajouter les modifications des histones, la présence d’histones de liaison ou encore le remplacement des histones canoniques par des histones variants. Tout ceci va pouvoir venir modifier cet état d’équilibre.
II. Structure de la chromatine

L’histoire de la chromatine commence avec W. Flemming en 1880 qui propose le nom de « chromatin ». Depuis 1880, la compréhension des niveaux d’organisation de la chromatine n’a cessé d’augmenter et ainsi les histones, la structure de la double hélice, le nucléosome et le code histone ont été découverts {Olins, 2003}.

1. De la particule cœur du nucléosome à la chromatine

La compaction de l’ADN en chromatine peut être découpée en une hiérarchie à trois niveaux d’organisation (tableau 1) {Adkins, 2004} {Horn, 2002} {Woodcock, 2001}.

<table>
<thead>
<tr>
<th>Niveaux de structure</th>
<th>Exemples de structures globales</th>
<th>Exemples de structures locales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primaire :</td>
<td>Arrangement linéaire des nucléosomes sur l’ADN</td>
<td>Chapelet de nucléosomes</td>
</tr>
<tr>
<td>Secondaire :</td>
<td>Structure formée par interactions entre nucléosomes</td>
<td>Fibre chromatinienne de 30 nm</td>
</tr>
<tr>
<td>Tertiaire :</td>
<td>Structure formée par interactions entre les structures secondaires</td>
<td>Fibres compactes visibles dans les noyaux et pouvant être composées de fibres de 30 nm</td>
</tr>
</tbody>
</table>

Dans la structure la plus simple, les particules nucléosomales sont connectées les unes avec les autres par de courts segments d’ADN de liaison (15 à 80 paires de bases de longueur). L’ensemble forme un chapelet de nucléosomes {Olins, 1974}.
Le second niveau d’organisation correspond à une compaction des chapelets de nucléosomes. Dans des conditions ioniques physiologiques on obtient une fibre chromatinienne de 30 nm. Il existe deux concepts architecturaux différents qui expliquent l’arrangement des nucléosomes au sein de la chromatine : le modèle d’un solénoïde régulier {Finch, 1976} et le modèle de compaction en zigzag {Bednar, 1998}. En accord avec le modèle en zigzag, les nucléosomes consécutifs semblent être compactés en alternance en une fibre compacte de 30 nm {Woodcock, 2001}.

La compaction de la chromatine est un phénomène dynamique facilité et stabilisé par de multiples protéines associées à la chromatine, comme les histones de liaison {Adkins, 2004}. Ces histones, telles que H1 et H5, stabilisent les interactions intramoléculaires de repliement et les interactions fibre-fibre {Carruthers, 1998}. Le repliement stable en chromatine est également stabilisé par des interactions entre les extrémités des histones et d’autres facteurs {Hansen, 2002} {Zheng, 2003}. Ces interactions intermoléculaires sont importantes pour le maintien de la stabilité fibre-fibre.

Il n’existe que peu d’informations sur la compaction tertiaire de ces fibres. Mais une hypothèse propose que les fibres de chromatine seraient organisées en domaines plus larges qui interagiraient avec la matrice nucléaire {Fisher, 2002} {Hancock, 2000}. Au cours de la mitose et de la méiose, il existe transitoirement un niveau extrême de compaction, les chromosomes. Ils sont tellement condensés qu’on peut étudier leur morphologie au microscope optique.
La figure 5 schématisse les niveaux d’organisation évoqués précédemment.

2. Territoires de la chromatine (eu et hétéro-chromatine)

III. Modifications post-traductionnelles des histones

Les modifications post-traductionnelles des histones sont covalentes. Elles altèrent les charges électrostatiques des histones et elles changent leurs propriétés structurales et/ou modifient les interactions de leurs extrémités.

![Figure 6 : Différents types de modifications post-traductionnelles des histones](image)

Les modifications sont représentées par des cercles de couleurs différentes : le rouge pour la phosphorylation, le violet pour l’acétylation, le vert pour l’ubiquitination, le jaune pour la sumoylation et le bleu pour la méthylolation.
Figure 7 : Modifications post-traductionnelles des histones.
Ce modèle représente l’octamère d’histones d’un nucléosome. Les modifications des histones sont représentées sur chaque histone. Le code couleur est le suivant : H3 en vert, H4 en jaune, H2A en rouge, H2B en rose. Les différentes modifications covalentes des acides aminés des histones sont décrites dans le tableau de la figure {Khorasanizadeh, 2004}.
1. L’acétylation

Les histones acétyl-transférases (HAT) sont des enzymes qui catalysent le transfert d’un groupement acétyle à partir d’un acétyl-coA vers le groupement amino-terminal des résidus lysines des histones (figure 7). Les histones déacétylases (HDAC) enlèvent ce résidu acétyle.

Les HATs sont présentes chez la plupart des espèces et le plus souvent sous forme de complexes multi-protéiques. Elles peuvent être divisées en plusieurs familles sur la base de leurs homologies (tableau 2). La première histone acétyltransférase identifiée et clairement liée à l’acétylation des histones est la protéine Gcn5 {Brownell, 1996}. Elle est également la sous-unité catalytique du complexe co-activateur transcriptionnel SAGA, elle peut donc réguler la transcription {Grant, 1997}.

Tableau 2 : Différentes classes d’histones acétyltransférases (HAT)
{Vaquero, 2003}

<table>
<thead>
<tr>
<th>Famille HAT</th>
<th>Enzyme HAT</th>
<th>Organismes connus</th>
<th>Complexe</th>
<th>Spécificité</th>
<th>Fonctions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gcn5</td>
<td>Levure à l’Homme</td>
<td>ADA2</td>
<td>H3, H2B</td>
<td>co-activateur</td>
<td></td>
</tr>
<tr>
<td>PCAF</td>
<td>Homme, souris,</td>
<td>PCAF</td>
<td>H3, H4</td>
<td>co-activateur</td>
<td></td>
</tr>
<tr>
<td>Hat1</td>
<td>Levure</td>
<td>HatB</td>
<td>H4 (K5, K12), H2B</td>
<td>Dépôt d’histones, répression</td>
<td></td>
</tr>
<tr>
<td>Elp3</td>
<td>Levure à l’Homme</td>
<td>Elongateur</td>
<td>H3, H4</td>
<td>Élongation transcriptionnelle</td>
<td></td>
</tr>
<tr>
<td>Hpa2</td>
<td>Levure</td>
<td>H3, H4</td>
<td>Inconnue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATF-2</td>
<td>Homme, souris</td>
<td>H2B, H4</td>
<td>Facteur de transcription séquence spécifique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sas2</td>
<td>Levure</td>
<td>H4 (K16)</td>
<td>répression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sas3</td>
<td>Levure</td>
<td>NuA3</td>
<td>H3, H4, H2A</td>
<td>répression</td>
<td></td>
</tr>
<tr>
<td>MORF</td>
<td>Homme</td>
<td>H4–H3</td>
<td>Inconnue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tip60</td>
<td>Homme</td>
<td>Tip60</td>
<td>H4→H5, H2A</td>
<td>Interaction avec Yaf5, réparation de l’ADN, apoptose</td>
<td></td>
</tr>
<tr>
<td>Era1</td>
<td>Homme</td>
<td>NuA4</td>
<td>H4, H2A</td>
<td>Progression du cycle cellulaire</td>
<td></td>
</tr>
<tr>
<td>MOI</td>
<td>Drosophile</td>
<td>MSL</td>
<td>H4(K16)</td>
<td>Compensation de dosage</td>
<td></td>
</tr>
<tr>
<td>HBO1</td>
<td>Homme</td>
<td>HBO1</td>
<td>H3, H4</td>
<td>Réplication de l’ADN</td>
<td></td>
</tr>
<tr>
<td>MOZ</td>
<td>Homme</td>
<td>AML1</td>
<td>H3, H4>H2A</td>
<td>Activation de transcription, autres ?</td>
<td></td>
</tr>
<tr>
<td>p300/CHP</td>
<td>ORG</td>
<td>p300, ORG multicellulaires</td>
<td>H2A, H2B, H3, H4</td>
<td>co-activateur</td>
<td></td>
</tr>
<tr>
<td>CHP</td>
<td>ORG multicellulaires</td>
<td>CHF, H2B, H3, H4</td>
<td>co-activateur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-activateurs de récepteurs d’hormones</td>
<td>ACTR</td>
<td>Homme, souris</td>
<td>H3=H4</td>
<td>Co-activateurs de récepteurs d’hormones</td>
<td></td>
</tr>
<tr>
<td>SRC-1</td>
<td>Homme, souris</td>
<td>H3=H4</td>
<td>Co-activateurs de récepteurs d’hormones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIF2</td>
<td>Homme, souris</td>
<td>TIF2</td>
<td>H3=H4</td>
<td>Co-activateurs de récepteurs d’hormones</td>
<td></td>
</tr>
<tr>
<td>TAFII250</td>
<td>TAFII250</td>
<td>Levure à l’Homme</td>
<td>TFIIID</td>
<td>H3=H4, H2A</td>
<td>Facteur associé à TBP, progression du cycle cellulaire</td>
</tr>
<tr>
<td>TFIIIC</td>
<td>Homme</td>
<td>TFIIIC</td>
<td>H3, H4>H2A</td>
<td>Transcription par l’ARN polymérase III</td>
<td></td>
</tr>
<tr>
<td>Nut1</td>
<td>Homme</td>
<td>Nut1</td>
<td>H3->H4</td>
<td>Transcription par l’ARN polymérase II</td>
<td></td>
</tr>
</tbody>
</table>
Les HDACs jouent un rôle important dans la répression transcriptionnelle. De la même façon que pour les HATs, des classes de HDACs ont pu être définies selon leur profil d’expression, leur homologie et leur sensibilité aux inhibiteurs (tableau 3). Les HDACs appartiennent fréquemment à des complexes multi-protéiques. La première enzyme dé-acytéylase identifiée, HDAC1, est un homologue du régulateur transcriptionnel de levure, Rpd3p {Taunton, 1996}. Certains répresseurs transcriptionnels sont associés à des histones dé-acytéylases. Cette activité est nécessaire pour réprimer certains gènes {Peterson, 2002} {Vaquero, 2003}.

Tableau 3 : Différents groupes d’histones déacétylases (HDAC) {Vaquero, 2003}

<table>
<thead>
<tr>
<th>Groupe HDAC</th>
<th>Membres du groupe</th>
<th>Sensibilité à la TSA</th>
<th>Dépendance NAD+</th>
<th>Localisation</th>
<th>Fonctions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe I</td>
<td>HDAC1, HDAC2, HDAC3, HDAC8</td>
<td>Oui</td>
<td>Non</td>
<td>Nucléaire et ubiquitaire</td>
<td>Implication dans de nombreuses fonctions comme la répression transcriptionnelle et la différenciation cellulaire</td>
</tr>
<tr>
<td>Classe II</td>
<td>HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, HDAC10</td>
<td>Oui</td>
<td>Non</td>
<td>Expression spécifique selon les tissus</td>
<td>Répression transcriptionnelle, régulation des microtubules</td>
</tr>
<tr>
<td>Classe III</td>
<td>Sir2, HST1-4, Homologues dans différentes espèces (Arabidopsis, C.elegans, D.melanogaster, etc) Homme : Sirt1-7</td>
<td>Non</td>
<td>Oui</td>
<td>Nucléaire cytoplasmique ou mitochondrial</td>
<td>Implication dans la répression, lien avec le vieillissement. Fonctions dans le développement et la réparation de l’ADN</td>
</tr>
</tbody>
</table>

Ces complexes HATs et HDACs peuvent être recrutés par des facteurs de transcription pour agir comme des co-activateurs ou des co-répresseurs de la transcription. Ils seraient ciblés sur des promoteurs spécifiques. Une fois recrutés sur la chromatine, les complexes HATS et HDACs pourraient modifier spécifiquement les histones. Ceci entraînerait alors soit une répression, soit une activation des gènes cibles. L’acytélation des histones joue également un rôle dans plusieurs processus nucléaires comme l’assemblage de la chromatine, la
réparation de l’ADN, l’apoptose, la recombinaison VDJ {Iizuka, 2003}. Certaines histones acétyl-transférase peuvent également acétyler des protéines non histones (ex : la protéine suppresseur de tumeur p53 ou le facteur de transcription UBF) et ainsi influencer leurs fonctions {Gu, 1997} {Pelletier, 2000}.

2. La méthylation

La méthylation des histones se produit à différents niveaux sur les résidus lysine et arginine (figure 8). La méthylation des histones H3 et H4 est la mieux décrite {Fischle, 2003}.

Figure 8 : Exemples de méthylases d’histones.
Sont présentées ici les enzymes de méthylation qui interviennent sur les histones humaines. Il existe des enzymes redondantes pour la méthylation des lysines 4 et 9 de l’histone H3 {Margueron, 2005}.

24
Les histones méthyl-transférases (HMT) catalysent le transfert de groupements méthyles à partir de méthionine S-adénosyl vers un groupement ε amino-terminal de résidus lysine ou arginine. In vivo, les lysines peuvent être mono-, di- ou triméthylées alors que les arginines n’existent que sous les formes mono- et diméthylées. Les arginines méthyl-transférases (PRMT) spécifiques vont agir soit symétriquement, soit asymétriquement, par transfert de groupements méthyles vers un groupement guanidine {Kouzarides, 2002}.

Tableau 4 : Groupes d’histones méthyltransférases.
D’après {Vaquero, 2003}

<table>
<thead>
<tr>
<th>Groupe HMT</th>
<th>HMT</th>
<th>Spécificité</th>
<th>Fonctions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginine</td>
<td>PRMT1</td>
<td>H4-R3 (protéines non histones)</td>
<td>Activation transcriptionnelle (signal de transduction, etc)</td>
</tr>
<tr>
<td></td>
<td>PRMT2</td>
<td>Inconnue</td>
<td>Co-activateur de récepteur œstrogène</td>
</tr>
<tr>
<td></td>
<td>PRMT3</td>
<td>Inconnue</td>
<td>Cytoplasmique (mitose)</td>
</tr>
<tr>
<td></td>
<td>PRMT4/CARM1</td>
<td>H3-R2, R17, R26</td>
<td>Activateur transcriptionnel</td>
</tr>
<tr>
<td></td>
<td>PRMT5</td>
<td>H2A, H4 (protéines non histones)</td>
<td>Répresser transcriptionnel</td>
</tr>
<tr>
<td>Lysine Domaine SET</td>
<td>Suv39H1</td>
<td>H3-K9</td>
<td>Formation de l’hétérochromatine, répression</td>
</tr>
<tr>
<td></td>
<td>Suv39H2</td>
<td>Inconnue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G9a</td>
<td>H3-K9, H3-K27</td>
<td>Rôle dans l’embryogenèse précoce, répression transcriptionnelle</td>
</tr>
<tr>
<td></td>
<td>ASH1</td>
<td>H3-K4, K9, H4-K20</td>
<td>Etablissement d’un profil actif en transcription</td>
</tr>
<tr>
<td>SET1</td>
<td>H3-K4</td>
<td>Répression</td>
<td></td>
</tr>
<tr>
<td>SET2</td>
<td>H3-K16</td>
<td>Répression, transcription</td>
<td></td>
</tr>
<tr>
<td>SET7</td>
<td>H4-K20</td>
<td>Développement, répression de la chromatine, implication dans le vieillissement</td>
<td></td>
</tr>
<tr>
<td>SET9</td>
<td>H3-K4</td>
<td>Activation transcriptionnelle</td>
<td></td>
</tr>
<tr>
<td>ESC-E(Z)</td>
<td>H3-K27</td>
<td>Répression médie par Polycomb</td>
<td></td>
</tr>
<tr>
<td>SETDB1</td>
<td>H3-K9</td>
<td>Répression médie par le co-répresseur KAP-1</td>
<td></td>
</tr>
<tr>
<td>Dot</td>
<td>DOT1</td>
<td>H3-K79</td>
<td>Répression</td>
</tr>
</tbody>
</table>
3. Les autres modifications covalentes des histones

Il existe d’autres types de modifications post-traductionnelles des histones {Vaquero, 2003}.

Les histones peuvent être phosphorylées. Cet état de phosphorylation est régulé par des plusieurs couples kinases/phosphatases, par exemple Ipl1/aurora kinase et Glc7/PP1 phosphatase {Hsu, 2000}. La phosphorylation des histones H1 et H3 est connue pour jouer un rôle important dans la régulation transcriptionnelle et dans la mitose. La phosphorylation a également un rôle dans la réparation de l’ADN. Ainsi, la forme phosphorylée du variant H2AX serait impliquée dans le recrutement de facteurs de réparation lors du processus de réparation de l’ADN {Rogakou, 1998}.

4. Le « code histone »

Les modifications des histones peuvent agir les unes sur les autres et servir de signaux à d’autres protéines, on parle de « code histone » {Strahl, 2000} {Jenuwein, 2001}. Il pourrait agir à différents niveaux : chaque modification d’histone pourrait être lue par des protéines qui vont interagir avec la chromatine dans le but de réguler l’expression génique {Turner, 2002} {Margueron, 2005} ; la combinaison de certaines de ces modifications pourrait induire une qualité spécifique de la chromatine, euchromatine ou hétérochromatine {Jenuwein, 2001} ; une modification donnée sur un résidu spécifique d’une histone pourrait influer sur
les modifications suivantes sur la même histone ou sur une autre histone {Margueron, 2005} {Turner, 2002}.

Ce langage requiert des protéines qui mettent en place et maintiennent ces modifications et des facteurs capables de lire ces combinaisons et de le répercuter sur l’état de transcription de la cellule {Turner, 2002} {Margueron, 2005}.

A l’inverse, une méthylase peut venir modifier la lysine 9 de l’histone H3. Cette lysine méthylée va empêcher l’acétylation des lysines des histones H3 et H4 et donc avoir une action inhibitrice sur l’expression des gènes {Margueron, 2005}.

Plus généralement il existerait deux rôles majeurs des modifications :

- elles auraient un rôle plus structural. Elles entraîneraient un changement de la densité de charge des extrémités. Elles auraient ainsi un impact sur les interactions avec l’ADN.

- les modifications des histones affecteraient la transcription en servant de signal de reconnaissance pour le recrutement spécifique de complexes.

Il est fortement probable que ces deux mécanismes soient indissociables l’un de l’autre et régulent de concert la structure de la chromatine et l’expression des gènes.
Figure 9 : Exemple d’activation de la transcription par le code histone chez la *S. cerevisiae*

IV. Le remodelage de nucléosome ATP-dépendant

Les facteurs de remodelage de la chromatine sont présents chez tous les eucaryotes. Ils sont impliqués dans de nombreux mécanismes cellulaires comme la régulation de la transcription, la réparation de l’ADN, la recombinaison homologue et l’assemblage de la chromatine {Lusser, 2003} {Tsukiyama, 2002}. Tous les facteurs identifiés sont des complexes multiprotéiques. Ils contiennent 2 à 12 sous-unités et une protéine moteur appartenant à la famille Snf2 des ATPses {Eisen, 1995}.

La famille Snf2 appartient à la superfamille DEAD/H des ATPases stimulées par des acides nucléiques {Eisen, 1995}. Elle peut être divisée en sous-famille (figure 10) ; la présence d’un domaine protéique caractéristique autre que la région ATPase permet d’établir une hiérarchie supplémentaire.

On définit quatre classes principales en fonction des sous-unités catalytiques: la famille Swi/Snf, la classe ISWI, la famille Mi-2/CHD et le groupe INO80. Toutefois il existe des protéines semblables à Snf2. Elles semblent également posséder une activité de
remodelage de la chromatine ATP-dépendante, citons Rad54, ATRX, CSB (protéine B du syndrome de Cockayne) ou la protéine végétale DDM1 {Becker, 2002} {Lusser, 2003}.

Les facteurs de remodelage diffèrent les uns des autres non seulement par la sous-unité catalytique mais également par les co-facteurs qui leur sont associés et qui influencent leurs fonctions. Cette variété de sous-unités participe et précise le rôle de chacun sur les nucléosomes et sur la chromatine en fonction du cycle cellulaire {Lusser, 2003} {Tsukiyama, 2002}.

Figure 10 : Famille Snf2 d’ATPases.
A. La famille Snf2 appartient à la superfamille DEAD/H d’ATPases {Lusser, 2003}.
B. Classes majeures des ATPases des complexes de remodelage de la chromatine {Tsukiyama, 2002}.
1. La famille Swi/Snf

a. Les différents complexes chez les différentes espèces

Les membres de cette famille sont présents de la levure à l’Homme (figure 11). Ils régulent l’expression des gènes en altérant la structure de la chromatine par glissement des nucléosomes sur l’ADN ou par transfert d’un octamère sur une particule tétramérique {Martens, 2003} {Sudarsanam, 2000}.

La famille Swi/Snf est caractérisée par des ATPases de type Snf2 (Swi2/Snf2). Elles contiennent un bromodomaine en plus de leur région catalytique (figure 10) {Horn, 2001} {Tamkun, 1992}. Le bromodomaine est un motif impliqué dans la régulation transcriptionnelle et les interactions protéines-protéines. Il se lie spécifiquement aux extrémités acétylées des histones H3 et H4 {Hassan, 2002}.

Le complexe Swi/Snf de levure est le membre fondateur de cette famille. À l’origine, les sous-unités du complexe Swi/Snf ont été impliquées dans la régulation du gène HO endonucléase ou SUC2, qui code pour une invertase (une enzyme hydrolysant le sucre). HO est requise pour la permutation dans la conjugaison (mating type switching), on parle de Swi. Les mutants de SUC2 sont classés comme non fermenteurs de sucre (sucrose non fermenters), on parle de Snf {Sudarsanam, 2000} {Winston, 1992}.

La purification biochimique a conduit à la caractérisation d’un complexe multi-protéique de 11 sous-unités, incluant la sous-unité ATPase Snf2 {Cairns, 1994} {Cote, 1994} {Peterson, 1994}. In vitro, le complexe de levure Swi/Snf purifié se lie à l’ADN et aux nucléosomes avec une forte affinité. Il altère la structure du nucléosome de manière ATP dépendante {Vignali, 2000}. S’il catalyse le glissement du nucléosome le long de l’ADN, on
parle de déplacement en \textit{cis} \cite{Whitehouse, 1999}. Si le complexe Swi/Snf catalyse le transfert d’un octamère sur un autre brin d’ADN, on parle de déplacement en \textit{trans}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure11.png}
\caption{Famille Swi/Snf de complexes de remodelage de la chromatine.}
Ce schéma présente les différents membres du groupe Swi/Snf de facteurs de remodelage chez la levure, la drosophile et l’homme \cite{Eberharter, 2004}. Le code couleur est indiqué dans l’encadré.

\textit{In vivo}, le complexe Swi/Snf2 entraîne des changements dans la structure de la chromatine qui permettent l’activation transcriptionnelle \cite{Hirschhorn, 1992}. Cette activation peut se faire grâce à l’interaction de certaines des sous-unités avec des facteurs de transcription \cite{Kadam, 2000}. Le complexe SWI/SNF peut ainsi être ciblé sur des séquences spécifiques et activer la transcription. Le complexe Swi/Snf joue donc un rôle dans la régulation transcriptionnelle de nombreux gènes \cite{Martens, 2003, Sudarsanam, 2000}. Ainsi, certains gènes non dépendants du complexe Swi/Snf le deviennent durant la mitose.
{Krebs, 2000}. Mais l’ATPase Snf2 peut également être requise pour la répression directe de
gènes {Martens, 2002}.

Chez la *S. cerevisiae* on trouve un autre complexe de remodelage, RSC (remodels
structure of chromatin) (figure 11). Il existe sous deux formes au sein de la cellule et il est très
abondant contrairement au facteur de remodelage Swi/Snf. Ce complexe de remodelage est
essentiel pour la viabilité de la cellule {Cairns, 1996}. Deux formes distinctes du complexe
RSC ont été identifiées mais elles possèdent les mêmes fonctions {Cairns, 1999}. Ce facteur
intervient à la fois sur l’activation et la répression de la transcription {Martens, 2003}.

Chez la Drosophile on connaît un homologue de la sous-unité ATPase Swi2/Snf2,
Brahma (Brm). Elle appartient à un grand complexe multi-protéique Brahma (BRM/BAP)
{Dingwall, 1995} {Papoulas, 1998} {Tamkun, 1992}. Ce complexe contient huit sous-unités
majeures (figure 11). Le complexe Brahma est généralement associé avec tous les sites actifs
en transcription. L’expression d’un mutant dominant négatif de BRM empêche l’association
de l’ARN polymérase II avec la chromatine. Le complexe BRM pourrait donc faciliter la
transcription {Armstrong, 2002}. Il fonctionne également comme un co-activateur
transcriptionnel dans la régulation des gènes homéotiques {Tamkun, 1992} {Elfring, 1998}.

Récemment un autre complexe de remodelage a pu être isolé à partir de la Drosophile.
Il se distingue par la présence des sous-unités Polycomb et BAP170 et sa distribution est
différente de celle du complexe Brahma sur les chromosomes {Mohrmann, 2004}.

Les cellules mammifères ont deux sous-unités ATPases semblables à Snf2, Brm
(Brahma) et Brg1 (Brahma related gene product 1) {Tsukiyama, 2002}. Elles diffèrent dans
leur capacité à remodeler une particule mononucléosomale {Sif, 2001}. De nombreux
complexes ont pu être purifiés à partir des cellules humaines et murines. Ils contiennent une

Les complexes mammifères Swi/Snf peuvent également être impliqués dans des processus de différenciation cellulaire tels que la différenciation des muscles médiane par MyoD {de la Serna, 2001} ou la régulation transcriptionnelle de certains tissus spécifiques {Armstrong, 1998}.

b. Le cancer et Swi/Snf

Le complexe Swi/Snf est impliqué dans le développement de cancers. Son impact sur la biologie du cancer peut être illustré par les trois observations suivantes : les complexes de remodelages interagissent directement avec les suppresseurs de tumeurs et les oncogènes, comme Rb, BRCA1, c-MYC and MLL {Roberts, 2004}; les mutations et/ou perte de fonction de protéines appartenant à des complexes de remodelage de la chromatine sont la cause de cancers {Roberts, 2004}; certains suppresseurs de tumeurs dépendent fonctionnellement du recrutement de l’activité des complexes de remodelage {Harbour, 2000}.

La protéine Rb est le premier suppresseur de tumeur à avoir été cloné {Classon, 2002}. Cette protéine s’associe in vivo directement avec les deux protéines Brg1 et Brm du complexe de remodelage humain Swi/Snf {Dunaief, 1994} {Harbour, 2000} {Roberts, 2004}. La surexpression de Brg1/Brm peut faciliter l’inhibition de l’activité transcriptionnelle mediée
par la protéine Rb {Harbour, 2000}. Au contraire, les formes de dominants négatifs de BRM et BRG1, qui contiennent un domaine ATPase muté, empêchent la suppression de croissance par Rb {Strobeck, 2000}. Il existe d’autres exemples d’interactions entre le complexe SWI/SNF et des ongènes : BRCA1 {Bochar, 2000}, c-MYC {Cheng, 1999} {Amati, 2001} et MLL {Adler, 1999} {Nie, 2003}.

Les mutations du gène hSWF5/INI1 conduisent à des protéines mutées dont les formes sont présentes dans différentes sortes de cancer, tumeurs rhabdoïdes touchant les reins, l’abdomen, le foie…, cas de medulloblastomes, de tumeurs du plexus choroi dés, tumeurs neuroectodermal primitive du système nerveux central {Sevenet, 1999}.

2. La famille ISWI

L’analyse de l’activité de remodelage d’extraits embryonnaires de Drosophile a permis la découverte de trois complexes de remodelage de nucléosomes contenant ISWI: NURF (Nucleosome remodeling factor), ACF (ATP-utilizing chromatin assembly and remodeling factor) et CHRAC (chromatin accessibility complex) {Ito, 1997} {Tsukiyama, 1995A} {Varga-Weisz, 1997}. Des homologues ont ensuite été identifiés chez différentes espèces.

Les complexes contenant ISWI sont généralement plus petits et contiennent moins de sous-unités que les autres complexes de remodelage de la chromatine (figure 12) {Corona, 2004} {Langst, 2001}. En dehors de cette sous-unité ATPase, la plupart des complexes
contient une sous-unité de la famille des protéines WAL/BAZ (WSTF, Acf1 like et Bromodomain adjacent zinc finger) \cite{Jones, 2000} \cite{Poot, 2000}. Les membres de cette famille WAL/BAZ contiennent le motif WAKZ suivi d’une ou deux structures en doigt PHD et d’un bromodomaine.

Les fonctions de ces facteurs de remodelage ont été décrites dans un nombre varié de processus nucléaires tels que la régulation de la transcription, l’organisation du chromosome et la réplication de l’ADN \cite{Corona, 2004} \cite{Tsukiyama, 2002}. Et les études génétiques réalisées sur la drosophile montrent que la protéine ISWI est essentielle pour le développement et la viabilité des cellules de mouches \cite{Deuring, 2000}.

Figure 12 : Famille ISWI de complexes de remodelage de la chromatine.
Ce schéma présente les différents membres de la famille ISWI de facteurs de remodelage chez la levure, la drosophile et l’homme/souris \cite{Eberharter, 2004}. Le code couleur est indiqué dans l’encadré.
Le complexe de remodelage NURF est composé de 4 sous-unités : la sous-unité catalytique, une protéine NURF301 de 301kDa, une pyrophosphatase de 38kDa et une protéine NURF55 identique à la sous-unité de 55kDa du complexe dCAF-1 d’assemblage de la chromatine chez la Drosophile {Martinez-Balbas, 1998} {Tsukiyama, 1995A} {Tsukiyama, 1995B} (figure 12). La protéine NURF301 possède une double fonction au sein du complexe {Xiao, 2001}. Elle agit comme un organisateur entre les sous-unités et elle est nécessaire pour l’efficacité de glissement des nucléosomes. Cette protéine NURF301 interagit avec des facteurs de transcription spécifiques de certaines séquences. On peut donc en déduire que le recrutement du complexe NURF pourrait être ciblé sur des gènes spécifiques. Le complexe NURF agit avec le facteur de transcription GAGAet facilite la transcription. In vitro le facteur de transcription GAL4 peut moduler la direction du glissement du nucléosome par le complexe NURF {Kang, 2002}. In vivo, ce facteur est requis pour l’activation transcriptionnelle de plusieurs gènes {Badenhorst, 2002} {Mizuguchi, 1997}.

Le complexe ACF ne possède qu’une sous-unité Acf1 en plus de l’ATPase ISWI {Ito, 1999}. In vitro, ce complexe est requis pour l’assemblage de nucléosomes régulièrement espacés et il est impliqué dans l’activation de la transcription in vitro {Ito, 1997}. In vivo, le complexe est également important pour la formation de la chromatine {Fyodorov, 2004}. Il a pu être montré que les deux sous-unités Acf1 et ISWI participaient de manière synergétique au dépôt des histones sur un chapelet de nucléosomes {Ito, 1999}.

Le complexe CHRAC est fortement lié à au complexe de remodelage ACF. Comme lui il est composé de l’ATPase ISWI et de la grande sous-unité Acf1 {Eberharter, 2001} mais on trouve en plus deux petites protéines CHRAC-14 et CHRAC-16 {Corona, 2000}. Tout comme le complexe ACF, le complexe CHRAC augmente l’accessibilité de l’ADN dans la
La présence des deux petites sous-unités dans le complexe CHRAC augmente le glissement et l’assemblage des nucléosomes {Kukimoto, 2004}.

Chez les mammifères, il existe deux homologues de l’ATPase ISWI de Drosophile, Snf2l et Snf2h : Snf2h, majoritairement présente dans les cellules en prolifération et Snf2l, dans les cellules différenciées {Aihara, 1998}. En plus de cette différence d’expression, Snf2h est requise pour le développement précoce de la souris {Lazzaro, 2001} {Stopka, 2003}.

Le complexe humain NURF contient quant à lui la sous-unité ATPase Snf2l {Barak, 2003} (figure 12). Ce complexe pourrait jouer un rôle dans le développement neuronal.

3. La famille CHD/Mi-2

Les complexes de remodelage de la famille CHD/Mi-2 sont caractérisés par la présence de chromodomaines (« chromatin organization modifier ») dans leur sous-unité ATPase {Paro, 1991} (figure 10). Ce chromodomaine permet l’interaction avec des lysines méthylées. L’analyse fonctionnelle des différents chromodomaines révèle une multitude de cibles d’interactions possibles, incluant les histones, l’ADN, l’ARN {Brehm, 2004}. Il existe de nombreux facteurs appartenant à cette famille mais leur action est encore mal connue {Woodage, 1997}.

L’ATPase Chd1 a été identifiée chez plusieurs organismes. Elle possède une activité de liaison à l’ADN et elle pourrait avoir un rôle dans l’activation transcriptionnelle {Kelley, 1999}. En effet, le complexe Chd1 de Drosophile se localise sur les chromosomes aux sites de forte activité transcriptionnelle {Stokes, 1996}.
La protéine Mi-2 (Chd3/4) a été identifiée comme la sous-unité catalytique ATPase du complexe humain NuRD (NUcleosome Remodeling and histone Deacetylase) {Tong, 1998} {Wade, 1998} {Xue, 1998} {Zhang, 1998}.

Le complexe MeCP1 est composé du complexe NURD associé à la protéine MBD2 de liaison à l’ADN méthylé. Ce complexe réprime la transcription en connectant la méthylation de l’ADN, la déacétylation des histones et le remodelage ATP-dépendant {Becker, 2002} {Tsukiyama, 2002}. En accord avec ce résultat, il a été montré que les répresseurs transcriptionnels, comme Ikarus, hunchback ou Tramtrack, interagissaient avec la sous-unité Mi-2 {Kehle, 1998} {Kim, 1999} {Koipally, 1999} {Murawsky, 2001}.

4. La famille INO80

A l’origine, INO80 a été découvert comme un gène requis pour l’activation transcriptionnelle du gène INO1, gène induit en absence d’inositol. Le complexe contenant Ino80 de la levure Saccharomyces cerevisiae contient douze autres polypeptides parmi ceux-ci, on cite : l’ATPase Ino80, deux protéines liées à l’hélicase ADN bactérienne RuvB, de l’actine et trois protéines liées à l’actine {Shen, 2000}. Ce complexe possède une activité dépendante de l’ATP pour altérer la chromatine et une activité hélicase due à la présence des sous-unités Rvb1 et Rvb2. Les mutants de l’ATPase Ino80 montrent un défaut de transcription et une sensibilité plus importante aux agents qui endommagent l’ADN {Shen, 2000}. Le complexe de remodelage contenant Ino80 pourrait stimuler la transcription et prendre part à la réparation de l’ADN.

Récemment un second membre de cette classe, le complexe Swr1 a été identifié {Kobor, 2004} {Krogan, 2004} {Mizuguchi, 2004}. Ce nouveau complexe multi-protéique contient l’ATPase Swr1 (Swi2/Snf2-related 1), le variant d’histone H2AZ et une protéine contenant deux bromodomains, Bdf1. Il est capable d’effectuer le remplacement de l’histone
H2A par H2AZ et il est requis *in vivo* pour le dépôt de l’histone H2AZ {Kobor, 2004} {Krogan, 2004} {Mizuguchi, 2004}. Ces résultats récents suggèrent l’existence de nouveaux rôles pour les facteurs de remodelage de la chromatine.

5. Le mécanisme d’action des facteurs de remodelage

Les changements de structure de la chromatine induits par les complexes de remodelage modulent l’accès de protéines régulatrices à l’ADN compacté. Les facteurs de remodelage peuvent déplacer l’octamère par transfert ou par glissement (Figure 13).

![Figure 13 : Déplacement de l’octamère d’histone par un complexe de remodelage](image)

Figure 13 : Déplacement de l’octamère d’histone par un complexe de remodelage
L’octamère d’histone peut être déplacé par glissement sur l’ADN, on parle de déplacement en *cis* ou par transfert sur un autre fragment ADN, déplacement en *trans* {Perche, 2003}.

Le déplacement en *cis* ou en *trans* implique des changements de structures internes, il doit donc exister des mécanismes particuliers. Ces derniers sont très étudiés mais peu connus encore. Il existe deux hypothèses principales. Le premier modèle est appelé « modèle de diffusion par torsion », le second, « modèle de recapture de boucle » (figure 14).

La figure 15 illustre le « modèle de recapture de boucle ». La boucle d’ADN se propage sur l’octamère d’histone changeant ainsi la position translationnelle du nucléosome suivant une longueur qui lui correspond {Widom, 1998}.
Des travaux récents essaient de démontrer la validité des deux modèles précédents.

En 2003, il est montré que la présence de coupures dans l’ADN, de sites abasiques {Lorch, 2005}, l’ajout de molécules encombrantes {Aoyagi, 2003} n’inhibent pas le mécanisme de remodelage. Ces résultats invalident le modèle de torsion.

En 2005, il a été montré que de larges fragments d’ADN placés sur les extrémités du nucléosome sont transitoirement détachés de la surface des histones durant le remodelage par le facteur ACF {Strohner, 2005}. Le facteur ACF posséderait plusieurs sites de liaison à l’ADN permettant la formation d’un domaine topologique (figure 16). Un changement de cet arrangement au moment de la liaison à l’ADN pourrait induire la formation d’une boucle migrant sur la surface de l’octamère (figure 16). Ces résultats invalident également le modèle de torsion n’est pas juste.

Figure 16 : Modèle pour le remodelage du nucléosome dépendant de l’ACF
La liaison du facteur de remodelage ACF à son substrat se fait grâce à quatre domaines. Le changement de conformation par liaison entraîne une déformation de l’ADN et la création d’une boucle qui va se propager le long du nucléosome {Strohner, 2005}.
En 2005, on suppose une activité translocase pour la sous-unité ATPase Sth1 du complexe RSC et de nouvelles hypothèses aboutissent à un nouveau modèle (figure 17) {Saha, 2005}.

Figure 17 : Modèle de propagation de la boucle d’ADN nucléosomal
Le demi-nucléosome est en bleu, les 7 contacts ADN-histones sont symbolisés par les cercles numérotés, orange s’ils sont intacts, jaune si le contact est interrompu. Les flèches jaunes symbolisent la cassure séquentielle des contacts. Le complexe de remodelage RSC est réduit à sa sous-unité ATPase Sth1 en vert avec deux domaines principaux, un domaine de torsion et un domaine de traction. L’ADN est en rouge et le fragment près de la translocase en noir illustre la translocation de l’ADN sur l’octamère d’histones {Saha, 2005}.

L’ATPase Sth1 du complexe RSC se déplace le long d’un brin d’ADN sur la surface du nucléosome. Contrairement aux autres translocases, l’ATPase ne se détacherait pas de la surface du nucléosome. La translocation de l’ADN avec l’ancrage de l’ATPase conduit à une relocalisation des interactions ADN-histones. Le facteur RSC se lie au nucléosome, l’ADN est tordu, puis glisse et de nouveaux contacts ADN-histones s’établissent. Enfin, la boucle d’ADN se propage vers l’ADN de liaison.

De nombreuses recherches sont menées afin de découvrir le mécanisme de remodelage mais à l’heure actuelle on ne le connaît pas.
V. Les variants d’histones

Au sein de la cellule nous avons vu que l’expression des gènes peut être contrôlée par les complexes de modifications post-traductionnelles des histones et les facteurs de remodelage. Le remplacement des histones canoniques par des variants d’histones constitue la troisième possibilité de modifications. Les variants d’histones sont présents chez tous les organismes eucaryotes. Ce sont des isoformes non alléliques des histones conventionnelles. Les variants possèdent un domaine de repliement du même type que les histones canoniques avec trois hélices α et deux boucles.

Il existe deux classifications différentes pour les variants d’histones :

- la première est basée sur la structure. Elle distingue les variants homéomorphes (qui diffèrent de leurs homologues conventionnels par quelques substitutions d’acides aminés ne modifiant pas la mobilité électrophorétique) des variants hétéromorphes (qui peuvent présenter des extrémités et une séquence variables au point d’en modifier la mobilité électrophorétique) {Franklin, 1977} {West, 1980}.

- La seconde classification est basée sur des caractéristiques fonctionnelles telles que la dépendance ou l’indépendance par rapport à la réplication ou l’expression spécifique d’un tissu.

Figure 18 : Comparaison de séquences des gènes appartenant à la famille de l’histone H2A.
1. Les variants de l’histone H2A

Tableau 5 : Les variants de l’histone H2A chez l’Homme
D’après {Perche, 2003}

<table>
<thead>
<tr>
<th>Variant de H2A</th>
<th>Nombre de gènes</th>
<th>Quantité relative dans la famille H2A (%)</th>
<th>Fonctions spécifiques associées</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2A-Bbd</td>
<td>1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>H2AX</td>
<td>1</td>
<td>< 5</td>
<td>Réparation de l’ADN, recombinaison</td>
</tr>
<tr>
<td>H2AZ</td>
<td>1</td>
<td>< 5</td>
<td>Régulation de la transcription</td>
</tr>
<tr>
<td>macroH2A1</td>
<td>1</td>
<td>< 5</td>
<td>Répression de la transcription</td>
</tr>
<tr>
<td>macroH2A2</td>
<td>1</td>
<td>< 5</td>
<td>Répression de la transcription</td>
</tr>
</tbody>
</table>

a. macroH2A

Découverte en 1992, son nom macroH2A vient de sa taille inhabituelle de 372 acides aminés soit à peu près trois fois la taille de son homologue conventionnel H2A {Pehrson, 1992}. Ce variant peut être divisé en deux domaines : un domaine appelé H2A-like qui possèdent 64% d’homologie avec H2A et une région non histone (NHR), qui représente les deux tiers de la protéine et ne possède aucune homologie avec H2A {Pehrson, 1992} (figure 18). Deux sous-types de macroH2A ont pu être identifiés, macroH2A1 {Pehrson, 1992} {Pehrson, 1997} et macroH2A2 {Chadwick, 2001A} {Costanzi, 2001}. Ils sont codés chacun par un gène qui leur est propre et qui est constitué de huit exons codants.
Inactivation de chromosome X

Les premières études ont montré que macroH2A se localisait au niveau de la région nucléaire occupée par le chromosome X inactif chez les cellules femelles, le corps de Barr {Costanzi, 1998} {Mermoud, 1999} (figure 19).

Figure 19 : Distribution nucléaire de l'histone variant macroH2A
Cette analyse a lieu à l’interphase de fibroblastes primaires femelles et mâles. Les images qui correspondent au DAPI (bleu) des noyaux à partir de lignées cellulaires 46 XY, 46XX, 47 XXX, 49 XXXXY et 49 XXXXX révèlent la localisation du chromosome X inactif, c’est-à-dire le corps de Barr. La distribution nucléaire du variant macroH2A (vert, FITC) coïncide avec la position du corps de Barr dans toutes ces lignées cellulaires {Chadwick, 2001A}.

Cette présence liée au chromosome X inactif fait du variant macroH2A un candidat pour les mécanismes moléculaires liés à l’inactivation du chromosome X {Costanzi, 1998} {Csankovszki, 1999} {Hoyer-Fender, 2000}. L’inactivation du chromosome X chez les mammifères femelles se met en place très tôt et conduit à une inactivation quasi totale des gènes portés par celui-ci {Boumil, 2001}.

Le phénomène d’inactivation se déroule en trois étapes : l’initiation, la propagation et le maintien de l’inactivation dans les cellules somatiques. La localisation de l’histone macroH2A varie selon l’étape.
Dans les cellules ES qui ne sont pas encore différenciées ou dont le chromosome X n’est pas encore inactivé, un corps dense de macroH2A1.2 est présent à la fois dans les noyaux XX et XY {Mermoud, 1999}. MacroH2A1.2 ne co-localise pas encore avec le chromosome X mais avec les centrosomes {Rasmussen, 2000} {Mermoud, 2001}. Cette région centrosomale pourrait servir de site de stockage pour l’histone macroH2A1.2 avant son utilisation {Mermoud, 1999}. Dans les cellules XX macroH2A se relocalise au chromosome X inactif à 7 jours de différenciation {Mermoud, 1999} {Rasmussen, 2000}. Dans le cas des cellules XY différenciées, le corps dense composé de maroH2A1.2 disparaît et devient diffus dans le noyau.

Toutefois l’implication des formes de macroH2A dans le maintien de l’inactivation du chromosome X inactif reste controversée. En effet il semble que de nombreuses histones aient un marquage plus intense sur le chromosome X inactif en raison de son fort degré de compaction {Perche, 2000}. Le chromosome est intensément marqué non seulement par l’histone macroH2A1.2 mais également par les histones canoniques H2A, H2B et H3 {Perche, 2000}. L’impression d’enrichissement de l’histone macroH2A1.2 au niveau du chromosome X inactif serait donc due au fort niveau de compaction et à une plus forte densité des nucléosomes. Si tel est le cas, alors, la protéine n’aurait peut-être pas plus d’influence sur
l’inactivation du chromosome X qu’une autre histone. Des résultats inverses montrent quant à eux que, contrairement à macroH2A, les histones H2A et H2B n’ont pas marquage plus intense sur le chromosome X inactif {Chadwick, 2001A}.

Interactions avec les HDAC

Le variant macroH2A1.2 est généralement associée à un état répressif de la transcription. Le variant macroH2A pourrait donc interagir avec des protéines non histones susceptibles de maintenir cet état inactif. Ainsi HDAC1 et HDAC2, interagissent avec une partie de l’extrémité non histone région {Chakravarthy, 2005}. De plus, l’immunoprécipitation de chromatine contenant macroH2A met en évidence que la présence du variant coïncide avec un état hypoacétylé de H3 {Chakravarthy, 2005}. La partie non histone de macroH2A pourrait jouer un rôle vital dans la formation d’hétérochromatine par recrutement des HDAC de classe I. Ce phénomène est compatible avec les résultats suivants : l’histone macroH2A est localisée sur des régions chromatiniennes hypoacétylées, sur le chromosome X inactif et sur l’hétérochromatine péricentrique. Tout ceci conduit à la mise en évidence de l’implication de macroH2A dans une inhibition probable de la transcription tant par le biais de la structure nucléosomale que par les interactions existantes avec des protéines réprimant la transcription.

Transcription

La présence de la région non histone de macroH2A à proximité d’un promoteur conduit à une répression efficace de la transcription {Perche, 2000}. In vitro cette région empêche la liaison du facteur de transcription NF-κB quand la séquence cible est à proximité de la dyade du nucléosome {Angelov, 2003}. Le variant macroH2A pourrait ainsi participer directement au blocage de la transcription {Angelov, 2003}. Ces études montrent également
que l’incorporation de ce variant d’histone dans un nucléosome altère les interactions de l’octamère avec l’ADN nucléosomal.

La présence de macroH2A dans le nucléosome inhibe le glissement du nucléosome par les facteurs de remodelage Swi/Snf et ACF. Elle inhibe également le remodelage par ces mêmes facteurs bien que ni la liaison de Swi/Snf au nucléosome ni son activité ATPase ne soient modifiées {Angelov, 2003}. L’incorporation de macroH2A en remplacement de H2A crée un nucléosome qui présente des propriétés nouvelles.

Le variant macroH2A pourrait réprimer la transcription pour trois raisons majeures :

- la particule qui contient le variant ne peut pas être remodelé efficacement, l’ADN nucléosomal n’est pas accessible {Angelov, 2003}.
- les facteurs de transcription seraient incapable de se lier à un nucléosome macroH2A {Angelov, 2003}.
- Le domaine macro pourrait agir comme un signal pour le recrutement et l’assemblage de complexes spécifiques qui entraîneraient la création de régions transcriptionnellement inactives {Perche, 2000}.

ADP-ribosylation

Le sous-type le plus étudié est macroH2A1. Son gène code pour deux isoformes, 1.1 ou 1.2, issues d’un épissage alternatif et qui ne s’expriment pas dans le même tissu. La forme 1.1 est présente dans les tissus adultes riches en cellules quiescentes, la forme 1.2 dans les tissus à forte prolifération cellulaire (foie, fœtal, thymus adulte, testicule) {Pehrson, 1997} {Rasmussen, 1999}. La région concernée par l’épissage alternatif appartient à ce que l’on appelle une poche de liaison à un ligand et se situe dans la région non histone {Pehrson, 1997}. Les structures de ces deux isoformes sont similaires mais il existe des changements spécifiques. Trois résidus sont insérés au niveau du site de liaison du ligand dans
macroH2A1.1 : une phénylalanine qui s’empile sur une adénine, et deux glycines (223 et 224) qui sont remplacées par des résidus plus grand dans la forme macroH2A1.2 (lysine et acide aspartique) {Kustatscher, 2005}. Ces changements mineurs abolissent toute fixation de nucléotide ou de dérivés sur la forme macroH2A1.2 {Kustatscher, 2005} alors que le domaine macro appartenant à la protéine histone macroH2A1.1 reconnaît un nucléotide monomérique relié à l’ADP-ribose.

Des protéines possédant le domaine macro existent chez tous les organismes. Ce domaine est constitué de 135 résidus principaux et peut être répété jusqu’à trois fois dans une même protéine {Ladurner, 2003}. En 2003 des études cristallographiques suggèrent que ce domaine macro pourrait posséder une activité catalytique sur des dérivés ADP ribose {Allen, 2003}. La structure 3D montre une forte similarité entre le domaine macro et le domaine amino-terminal des leucines aminopeptidases qui se lie à l’ADN.

En 2005, les recherches continuent et aboutissent à un nouveau résultat. Le domaine macro se lie avec une forte affinité et une forte spécificité à des ADP-riboses {Karras, 2005}. Des mutagenèses dirigées révèlent l’existence d’une poche dans le domaine macro. Cette cavité permettrait de lier un ligand et de réaliser des contacts avec l’ADP-ribose. La même équipe montre la capacité du domaine macro à catalyser une réaction de phosphohydrolase in vitro {Karras, 2005}.

L’épissage alternatif produit donc deux isoformes de macroH2A1 qui diffèrent dans leur capacité de liaison avec un métabolite NAD. La liaison du métabolite NAD par macroH2A1.1 représente un nouveau mécanisme pouvant affecter la plasticité de la chromatine. L’épissage alternatif produit une isoforme macroH2A1.2 qui ne peut pas lier les nucléotides monomériques ou le poly-ADP-ribose et qui diffère dans sa distribution au niveau des tissus {Kustatscher, 2005}. Les domaines macro pourraient ainsi avoir des fonctions différentes en fonction de la fixation du ligand.
Ubiquitination

b. H2A-Bbd

![Figure 20 : Exclusion de l’histone variant H2A-Bbd du corps de Barr](image)

Des cellules femelles transfectées montrent une distribution nucléaire de H2A-Bbd (rouge, rhodamine). La région déficiente en H2A-Bbd correspond au corps de Barr (bleu) \{Chadwick, 2001B\}.

L’histone H2A-Bbd possède une extrémité COOH-terminale tronquée. Le domaine NH₂-terminal du variant H2A-Bbd est extrêmement basique mais ne possède pas de résidus lysines, sites communs de modification \{Chadwick, 2001B\}. Les sites d’acétylation et d’ubiquitination correspondant à ceux de H2A ne sont pas conservés. Le variant pourrait être régulé d’une manière différente de celle de H2A.

La localisation cellulaire de l’histone H2A-Bbd est exclusivement nucléaire. Dans les cellules mâles, la distribution est uniforme dans le noyau. Dans les cellules femelles, il existe une zone d’exclusion qui coïncide avec le corps de Barr. Il existe de surcroît une corrélation entre le nombre de zones d’exclusion et le nombre de chromosomes X inactif-1 dans des lignée cellulaires 47, XY ; 46, XX ; 47, XXX, ce qui est en accord avec le manque d’association de H2A-Bbd avec le chromosome X inactif \{Chadwick, 2001B\}.

Le nucléosome H2A-Bbd peut effectuer un transfert spontané du dimère H2A-Bbd/H2B vers une particule tétramérique (H3-H4). La présence du variant perturbe donc bien les interactions au sein du nucléosome {Angelov, 2004}. Toutes ces données suggèrent que le nucléosome ayant incorporé le variant est moins stable que le nucléosome canonique.

Comment l’effet stimulateur du variant peut-il être expliqué ? Plusieurs hypothèses peuvent être envisagées :

- les extraits nucléaires utilisés pour la transcription pourraient contenir un facteur possédant une activité de remodelage spécifique pour le variant H2A-Bbd.
- le variant pourrait simplement permettre une meilleure accessibilité de la protéine p300 aux extrémités des histones. Ainsi l’augmentation d’acétylation augmente l’efficacité de transcription {Angelov, 2004}.

Le variant H2A-Bbd pourrait être associé avec l’activation des gènes.
En 2004, l’équipe de K. Luger montre que seulement 118±2 pb d’ADN nucléosomals sont enroulés autour de la particule nucléosomale H2A-Bbd {Bao, 2004}. Ces résultats sont accord avec l’hypothèse d’une structure plus ouverte du nucléosome variant {Angelov, 2004}. Cette équipe démontre également que le domaine de repliement de l’histone H2A-Bbd est responsable de cette perte d’organisation de l’ADN dans les nucléosomes variants {Bao, 2004}. C’est peut-être par ce biais que l’histone variant, en contrôlant la structure de la chromatine et donc l’accessibilité de l’ADN, agirait sur la régulation de la transcription.

Les expériences réalisées sur des lignées cellulaires stables contenant des histones fusionnées à la protéine fluorescente GFP montrent que les histones de fusion sont incorporées dans les nucléosomes. Des expériences de FRAP montrent que la protéine GFP-H2A-Bbd s’échange plus rapidement que l’histone conventionnelle GFP-H2A. Dans le cas du variant H2A-Bbd, le temps de recouvrement total de la fluorescence est de 15 minutes alors que pour l’histone canonique il est de plus de 30 minutes {Gautier, 2004}.

Tous ces résultats montrent que la présence de H2ABbd déstabilise le nucléosome et la chromatine.

c. H2AZ

Le gène codant pour le variant H2AZ a été découvert chez la Drosophile {van Daal, 1988}. Le variant H2AZ possède 60% d’homologie avec la séquence de l’histone H2A. Le variant H2AZ peut être nommé de façon différente suivant les organismes auxquels il appartient ; HTZ1 pour la S. cerevisiae, PHT1 pour la S. pombe, hv1 pour T. thermophila et enfin H2AvD pour la D. melanogaster. Essentiel chez les ciliées et les mouches, il est requis pour la croissance normale des levures {Liu, 1996} {Carr, 1994}.

Un gène codant pour une histone canonique H2A des ciliées peut restaurer la fonction de l’histone canonique H2A des levures. Elle ne peut pas restaurer les fonctions de l’histone
variant H2AZ (Jackson, 2000). Le gène codant pour le variant de H2AZ de *Tetrahymena* peut restaurer les fonctions du variant H2AZ de la levure mais pas les fonctions de l’histone canonique H2A (Jackson, 2000). Le variant H2AZ possède donc une fonction distincte de l’histone conventionnelle H2A. Cela indique que les deux histones auraient divergé précocement au cours de l’évolution eucaryotique.

Son expression est régulée au cours du cycle cellulaire. Cette régulation n’était pas couplée à la synthèse de l’ADN (Hatch, 1990). Le mécanisme par lequel le variant H2AZ est déposé dans la chromatine a été découvert récemment (Kobor, 2004) (Mizuguchi, 2004). Un complexe SWR1-Com a été identifié. Il est requis pour le dépôt de H2AZ chez la *S. cerevisiae* et il contient un paralogue de Swi2/Snf2 (Kobor, 2004). Ce complexe contient 13 sous-unités, 4 sont communes avec le complexe NuA4 et 4 autres avec le complexe Ino80. Le complexe SWR1-Com n’a que très peu d’affinité avec l’histone H2A laissant supposer une véritable spécificité pour le variant H2AZ (Kobor, 2004). Le remplacement de H2A par le variant H2AZ pourrait être le résultat d’un remodelage de la chromatine induit par la transcription après le passage d’ARN polymérase II. On suppose à l’heure actuelle que l’élongation de transcription est couplée à l’expulsion du dimère (Studitsky, 2004). Le remplacement du dimère canonique par un dimère variant est alors envisageable par le biais de ce nouveau facteur (Studitsky, 2004).

En 2000 la structure cristalline d’une particule nucléosomale contenant H2AZ a pu être établie à une résolution de 2,6 Å (Suto, 2000). La structure globale du nucléosome contenant le variant H2AZ est similaire à celle du nucléosome canonique. Toutefois des acides aminés spécifiques du variant H2AZ créent de subtiles désstabilisations à l’interface entre les dimères (H2AZ-H2B) et le tétramère (H3-H4), ainsi que des changements des
caractéristiques de la surface du nucléosome. Cette différence pourrait servir au recrutement de facteurs spécifiques impliqués dans le remodelage ou l’assemblage des nucléosomes variants {Suto, 2000}. Dans cette structure, il existe par ailleurs un site de fixation pour un ion métallique zinc ou du cuivre. Certaines molécules impliquées dans le remodelage de la chromatine contiennent des motifs en doigt de zinc (le domaine PHD) l’existence de ce site de fixation est donc particulièrement intéressante {Suto, 2000}.

La sédimentation de nucléosomes reconstitués in vitro montre que les nucléosomes contenant H2AZ ont une stabilité réduite {Abbott, 2001}. Cette instabilité peut être liée au rôle physiologique attribué à ce variant. Il participe à la régulation de la transcription à travers son enrichissement sur des régions promotrices {Farris, 2005}. Il a un rôle redondant par rapport à celui des facteurs de remodelage {Santisteiban, 2000} et il pourrait recruter l’ARN polymérase II {Dhillon, 2000}.

Les études réalisées sur Tetrahymena et S.cerevisiae indiquent une fonction pour l’histone variant H2AZ dans l’activation génique {Santisteban, 2000} {Kobor, 2004}. Mais les analyses d’immunofluorescence de la chromatine dans les embryons de souris et les chromosomes de Drosophile révèlent un enrichissement du variant dans l’hétérochromatine péricentrique non transcrite {Rangasamy, 2004} {Leach, 2000}. In vitro, les études structurales de chapelets de nucléosomes implique le variant dans la formation de fibres compactes de 30 nm. Le variant H2AZ entre dans de multiples fonctions à la fois dans la transcription et le maintien de la stabilité génomique {Farris, 2005}.

En conclusion, il semble que le variant H2AZ puisse jouer un rôle à la fois positif et négatif sur l’expression des gènes.
d. H2AX

Le gène de l’histone variant H2AX code pour deux ARN. Le premier ARN est polyadénylé, de grande taille et son expression est indépendante de la réplication. Le second ARN n’est pas polyadénylé, il est trois fois plus court, tronqué dans sa région 3’ non traduite et son expression est couplée à la réplication {Redon, 2002}.

Chez le Xénope, un phénomène de phosphorylation transitoire du variant se produit au cours de la reconstitution in vitro de nucléosomes et pendant la phase précoce de la réaction d’association de H2AX à l’ADN. Cette modification transitoire ne dure que quelques heures. Elle participe à la structuration de la fibre chromatinienne. Une inhibition sélective de la phosphorylation de l’histone variant perturbe l’espacement régulier de l’enchaînement des nucléosomes {Kleinschmidt, 1991}.

Chez les mammifères, 2 à 25% des nucléosomes contiennent l’histone variant H2AX. Chez l’homme ce variant est présent dans tous les types cellulaires. Il peut subir plusieurs types de modifications post-traductionnelles.

Fortement conservé chez les eucaryotes, il contient un motif consensus SQ(E/D)(I/L/F/Y) sur son domaine COOH-terminal {Redon, 2002}. Ce motif est reconnu et phosphorylé par trois membres de la famille des protéines kinases ATM (ataxia telangiectasia mutated), ATR (Rad3-related) et DNA-PK (DNA-dependent protein kinase) {Pilch, 2003} {Lowndes, 2005}. A l’intérieur du motif, la sérine 139 peut être modifiée par ces trois kinases. La forme phosphorylée de H2AX est notée γ-H2AX. Un niveau basal de γ-H2AX existe normalement au sein d’une cellule mammifère. Ce taux peut augmenter de manière importante dans les cas de cassures double brin {Rogakou, 1998}. Les dommages à l’ADN peuvent induire la formation de molécules γ-H2AX. Elles vont s’accumuler en foyers nucléaires observables en microscopie confocale {Paull, 2000}. Une fois formés, ces foyers de γ-H2AX pourraient recruter les autres protéines impliquées dans la réparation de l’ADN...
comme les protéines du MRN (Mre11/Rad50/Nbs1), Rad51, BRCA1, p53BP1 et MDC1. Les données in vitro montrent une interaction directe de Nbs1, p53BP1 et MDC1 avec γ-H2AX {Kang, 2005} {Cheng, 2005} {Paull, 2000} {Fernandez-Capetillo, 2004}.

Bien que les trois kinases soient capables de phosphoryler H2AX, elles pourraient intervenir dans des réponses cellulaires différentes. La kinase ATM serait responsable de la phosphorylation de H2AX en réponse aux cassures doubles brins causées par des radiations ionisantes {Burma, 2001}. La kinase ATR serait requise pour la phosphorylation de H2AX lors de la mise en place de la fourche de réplication en réponse à de l’hydroxyurée ou à de faible irradiation UV {Ward, 2001}.

La forme phosphorylée de H2A apparaît également en dehors du phénomène de réparation de l’ADN au sein de la cellule. Au cours de l’apoptose, la quantité de γ-H2AX augmente dès la fragmentation de l’ADN et la seule introduction d’une endonucléase à activité apoptotique suffit à induire la forme phosphorylée du variant H2AX {Rogakou, 2000}.

Des études récentes montrent que la forme phosphorylée du variant pourrait jouer un rôle essentiel dans le phénomène de recombinaison V(D)J {Petersen, 2001}. En effet chez les souris H2AX−/−, cette réaction de recombinaison est altérée suggérant un rôle essentiel de la forme γ-H2AX {Petersen, 2001}.

2. Les variants de l’histone H2B

Chez les vertébrés, les principaux composants chromosomaux des spermatozoïdes matures sont des protamines. Au cours de la spermatogenèse, les histones somatiques originales sont remplacées par différents variants d’histones spécifiques du testicule. En fin de spermatogenèse, les protamines sont mises en place {Li, 2005A}.

59

Un autre variant d’histone spécifique de testicule a pu être identifié chez l’homme, H2BFWT {Churikov, 2004}. Le gène, constitué de trois exons, est localisé sur le chromosome X et il code pour une protéine de 175 aminoacides {Churikov, 2004}. Cette histone pourrait avoir un rôle spécialisé dans la réorganisation de la chromatine pendant les étapes tardives de la spermatogenèse {Boulard, 2006}.

Le premier variant majeur de l’histone canonique H3 est CenpA. Il est conservé de la *S. cerevisiae* à l’homme. Le variant CenpA possède 50% d’homologie avec le domaine de repliement de H3 {Yoda, 2000}. Il n’a aucune similarité de séquence avec le domaine NH$_2$-terminal de l’histone canonique H3. Le variant CenpA est un marqueur conservé de la chromatine centromérique {Yoda, 2000}. Ce variant est spécialisé dans l’assemblage de la chromatine au niveau des centromères eucaryotiques Chez les vertébrés et les invertébrés, l’histone CenpA est requise pour le recrutement des protéines du kinétochore, la progression mitotique et la ségrégation des chromosomes, il pourrait également initier l’assemblage du kinétochore {Sullivan, 2001} {Mellone, 2003}. Le variant pourrait être une des bases de la structure tridimensionnelle du kinétochore. Il a été montré que la chromatine centromérique humaine et de drosophile contenait des blocs espacés de nucléosomes H3 et CenpA proches les uns des autres sur un plan dimensionnel d’une fibre chromatinnienne linéaire. Par contre,
sur les chromosomes mitotiques, les sous-domaines contenant CenpA forment une structure cylindrique dont les nucléosomes contenant H3 sont largement exclus {Blower, 2002}.

Le variant H3.3 est codé par un gène orphelin. Il diffère de l’histone H3 par quatre acides aminés. Il ne subit pas les contrôles transcriptionnels et post-transcriptionnels stricts auxquels sont soumises les histones canoniques. Le variant H3.3 participe à l’assemblage des nucléosomes de façon indépendante de la réplication {Tagami, 2004}. Il est ciblé sur des séquences actives en transcription pendant le cycle cellulaire {McKittrick, 2004}. Le dépôt de l’histone H3.3 couplé à la transcription pourrait être un mécanisme général pour un remplacement rapide et permanent des nucléosomes {Ahmad, 2002}.

Chez les mammifères il existe deux autres variants de l’histone H3 : H3.1 et un variant spécifique du testicule, H3.1t {Witt, 1996}. Le variant H3.1 est incorporé de façon dépendante à la réplication {Tagami, 2004}. Le variant H3.1t diffère de quatre acides aminés par rapport à H3.1.

4. Le cas de l’histone H4

L’histone H4 est une protéine qui a évolué très lentement et il n’y a que très peu d’acides aminés qui varient des champignons aux plantes. Aujourd’hui, aucun variant de l’histone H4 n’a encore été découvert.

5. Les variants et l’expression des gènes

Les variants d’histones interviennent sur les mécanismes d’activation ou de répression de l’expression des gènes. Le processus de transcription demande une certaine souplesse à la chromatine. Cette souplesse ne peut être donnée par les histones nouvellement déposées sur le nucléosome qui maintiennent la structure de la chromatine car l’interaction de ces protéines
avec l’ADN nucléosomal est très forte. Par contre il est possible que le remplacement des histones canoniques par les variants apporte une certaine souplesse de par leur modification ou leur affinité de liaison à l’ADN et aux autres histones.

Le variant H3.3 représente 25% de la quantité de l’histone H3 dans une lignée cellulaire de Drosophile, nombre suffisant pour n’être présent que dans les zones ADN transcrites {McKittrick, 2004}. Le dépôt de l’histone H3.3 est directement lié à la transcription active sur le locus du gène hsp70 et cesse après extinction du gène induit {Schwartz, 2005}

Le variant H3.3 est plus riche en modifications que l’histone H3 {McKittrick, 2004}. Il est probable que les complexes de modifications agissent de concert avec les complexes de dépôt des histones et d’assemblage des nucléosomes. L’histone chaperonne HIRA agit comme un facteur d’assemblage des nucléosomes et il dépose H3.3 indépendamment de la réplication alors que CAF-1 dépose l’histone variant H3.1 {Ahmad, 2002}. Il est possible que les histones H3 méthylées soient rapidement remplacées par le variant afin d’activer la transcription.

A l’exemple de H2AZ qui s’échange avec H2A lors de la transcription {Farris, 2005} pourquoi ne pas imaginer que H3 soit remplacé par H3.3 par le biais de la chaperonne HIRA et que cet échange serait facilité par le départ d’un dimère (H2A-H2B) pendant la transcription. Ce mécanisme irait donc dans le sens d’une activation de la transcription en favorisant l’ouverture de la chromatine.

Le nucléosome qui contient H2AZ possède un site d’interaction avec un ion métallique. Cette surface peut donc participer au recrutement de facteurs de transcription, de remodelage ou bien encore de complexes de modifications des histones {Ren, 2001}. Lorsque le niveau d’acétylation devient élevé sur la chromatine, des protéines porteuses de
bromodomaines peuvent venir interagir spécifiquement avec les histones. Le complexe Swr1 qui contient de telles protéines peut alors être recruté. Il contient également un facteur de transcription (TFIID), et il existe une interaction génétique entre Swr1 et NuA4 qui acétyle l’histone H4 {Swaminathan, 2005}. Toutes ces informations laissent entrevoir un ingénieux système dans lequel le complexe Swr1 servirait de chaperonne en remplaçant H2A par H2AZ, maintiendrait la structure ouverte de la chromatine par recrutement d’un complexe d’acétylation et enfin activerait la transcription par le biais de facteur de transcription {Adam, 2001} {Farris, 2005}.

6. Les variants dans la réparation

Lors de cassures double brin et de dommage à l’ADN par radiation, on trouve la présence du variant H2AX sous sa forme phosphorylée, il va participer au recrutement des facteurs de réparation de l’ADN. Il intervient dans la propagation et la stabilisation des facteurs de réparation {Thiriet, 2005}. Un tel mécanisme permet de limiter la présence des complexes de réparation aux sites de recrutement par l’histone variant H2AX. La sous-unité du complexe INO80 interagit avec la forme phosphorylée de H2AX. Ceci entraîne le recrutement du complexe INO80 sur les sites de dommages ADN {Thiriet, 2005}. Le complexe de remodelage en aidant à la décondensation de la chromatine faciliterait le travail des complexes de réparation de l’ADN.

Chez la Drosophile, la protéine Arp4 est une sous-unité des deux complexes Swr1 (responsable du dépôt de H2AZ) et INO80 (facteur de remodelage). La présence Arp4 est indispensable au recrutement de NuA4 (acétylant H4) sur les cassures double brin de l’ADN. Et en même temps que ce recrutement, l’histone H2Av est phosphorylée. Chez la Drosophile, le variant H2Av est l’homologue fonctionnel de H2AX et H2AZ {Swaminathan, 2005}. Les
deux remodeleurs Swr1 et INO80 sont ensuite recrutés. On peut imaginer un modèle combinant ces informations (figure 21).

Figure 21 : Exemple d’inter-relation entre la réparation, les facteurs de remodelage, de modifications, les histones variants et les chaperonnes d’histones chez la Drosophile
Les variants dans l’hétérochromatisation

L’ADN des cellules eucaryotiques peut être organisé sous deux formes: l’euchromatine, constituée d’une chromatine décondensée et active en transcription, l’hétérochromatine constituée d’une chromatine fortement condensée et inactive en transcription. L’hétérochromatisation peut se faire par la méthylation de la lysine 9 de l’histone H3, par le recrutement de la protéine HP1 ou par méthylation de l’ADN mais les variant peuvent venir agir sur la condensation de la chromatine.

Chez la Drosophile, H2Av marque la chromatine pour activer l’acétylation de la lysine 12 de l’histone H4 et la méthylation de la lysine 9 de l’histone H3, l’ensemble s’achève avec le recrutement de HP1 {Swaminathan, 2005}.

L’absence de l’histone variant H2AX chez les souris résulte en une stérilité des mâles mais pas des femelles. Son absence empêche la condensation des corps sexuels et l’assemblage méiotiques des chromosomes X et Y. Le variant H2AX pourrait donc être plus important pour l’hétérochromatisation chez les mâles que chez les femelles {Fernandez-Capetillo, 2003}.

La présence du variant H2AZ dans un nucléosome augmente les interactions du variant avec les autres histones, le repliement intramoléculaire est donc bien plus important. Ceci va donc pouvoir moduler le degré de compaction de la chromatine et par conséquent son hétérochromatisation. Grâce à la zone acide qu’il crée à la surface des nucléosomes, le variant H2AZ favorise également la liaison de la protéine HP1 sur de la chromatine déjà condensée {Fan, 2004}. Ceci va donc dans le sens d’une hétérochromatisation.

MacroH2A est impliqué dans l’inactivation du chromosome X Cette région est composée de chromatine dense et compactée, inactive en transcription. De plus, le variant macroH2A peut interagir avec la protéine hétérochromatique M31 {Turner, 2001}.
Objectifs
Objectifs

Les variants d’histones n’ont été découverts que très récemment. C’est une voie de modification que la cellule utilise pour moduler la structure chromatinienne et l’expression des gènes.

Ma thèse s’est axée sur deux variants de l’histone H2A : macroH2A et H2ABbd. MacroH2A est une histone atypique qui possède une extrémité COOH-terminale constituant les deux tiers de la protéine totale. Elle est associée au chromosome X inactif et pourrait participer à l’inactivation de la transcription {Costanzi, 1998}. H2ABbd a été découvert en 2001 et son exclusion du corps de Barr en fait un bon candidat dans le contrôle de l’activation de la transcription {Chadwick, 2001B}. Le but de cette thèse est de déterminer certaines propriétés structurales et fonctionnelles de particules nucléosomales ayant incorporé macroH2A ou H2ABbd.

Dans un premier temps, il faut vérifier l’incorporation des variants dans les nucléosomes et en observer les perturbations structurales. Nous pourrons également observer les différences de stabilité et de structure entre les nucléosomes canoniques ou variants grâce à des techniques de biologie moléculaire et de physiques.

Dans le but d’en observer les actions, nous ferons ensuite agir deux complexes de remodelage appartenant à deux familles différentes : SWI/SNF (famille Swi/Snf) et ACF (famille ISWI). Et, afin de valider les hypothèses selon lesquelles macroH2A serait lié à une inhibition de la transcription et H2ABbd à une activation, nous réaliserons des essais de transcription et d’acétylation *in vitro*.
Résultats
Le variant macroH2A est une histone atypique constitué d’un domaine H2A-like fusionné à une longue région non histone. Le variant macroH2A est préférentiellement localisé sur le chromosome X inactif {Costanzi, 1998}. Les nucléosomes macroH2A montrent une altération de structure à la proximité de l’axe de la dyade {Angelov, 2003}. Ce phénomène empêche la liaison de facteurs de transcription sur leur séquence de reconnaissance lorsque celle-ci est située au niveau de la dyade. De plus, la présence du variant empêche le remodelage et le glissement des octamères sur l’ADN nucléosomal {Angelov, 2003}. Ces données laissent supposer que le variant macroH2A pourrait être impliqué dans la répression de la transcription.

Afin de vérifier cette hypothèse, nous avons réalisé des essais de transcription et d’acétylation in vitro en collaboration avec les laboratoires de Robert Roeder (Université de Rockefeller) et Vassily Studitsky (Université du New Jersey). Nous nous sommes ensuite concentrés sur le rôle de l’extrémité non histone afin d’en déterminer l’influence sur l’action des facteurs de remodelage et la transcription.
Dans cette publication, j’ai vérifié que la présence du variant macroH2A dans les nucléosomes n’affectait pas la liaison de Gal4-VP16 (figure 2). J’ai réalisé le clonage et la production des chimères de macroH2A (figures 3A, 3B). J’ai vérifié les altérations de la structure d’un nucléosome ayant incorporé la chimère H2A-NHR (figure 5). Afin d’étudier le rôle de l’extrémité non histone dans l’inhibition des mécanismes de remodelage, j’ai réalisé des expériences de glissement d’octamères d’histones (figure 6) et de remodelage de nucléosomes (figure 7).
La présence de l’histone variant dans la particule nucléosomale réprime la transcription par l’ARN polymérase II dépendante de p300 et Gal4-VP16. L’effet répressif de macroH2A est observable lors de l’étape d’initiation mais pas lors de l’élongation de la transcription.

La présence du domaine macro dans les nucléosomes peut bloquer le remodelage de nucléosomes et le glissement d’octamères d’histones sur des segments voisins d’ADN nucléosomal par les facteurs de remodelage ACF et SWI/SNF.

Ces données réunies montrent de manière non ambiguë que le variant macroH2A est un répresseur transcriptionnel. Il agit sur deux phénomènes d’activation de la transcription : l’acétylation des histones et le remodelage des nucléosomes.
Publication n°2

SWI/ SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucléosomal arrays

Le variant d’histone H2ABbd a été récemment identifié mais ces fonctions ne sont pas connues. Il se localise dans le noyau et il est exclu du corps de Barr {Chadwick, 2001}. Il existe un recouvrement entre la distribution nucléaire de H2ABbd et les zones comportant l’histone H4 acétylée. Ces données en font un bon candidat pour une activation de transcription.

Dans cette publication nous présentons les résultats obtenus pour l’étude des propriétés structurales et fonctionnelles d’un nucléosome et d’un chapelet de nucléosomes contenant le variant H2ABbd. Afin de découvrir le rôle du variant H2ABbd dans l’expression des gènes nous avons essayé de faire agir les facteurs de remodelage SWI/SNF et ACF. Sachant que le variant pourrait être associé à une activation de la transcription nous avons ensuite réalisé des essais de transcription avec les laboratoires de Robert Roeder (université de Rockfeller) et Vassily Studitsky (université du New Jersey).

Dans ce travail, mon rôle a été de participer à la production de nucléosomes variants et d’étudier l’incorporation du variant (figure 1). J’ai également réalisé les essais de glissement et de remodelage par le facteur de remodelage SWI/ SNF (figures 3D, 4B).
Publication n°3

Dissection of the unusual structural and functional properties of the variant

H2A.Bbd nucleosome

EMBO J (2006)

Dans la publication n°2, nous montrons que le variant H2ABbd peut être incorporé dans des nucléosomes par le biais d’une reconstitution in vitro. La présence du variant induit des perturbations de structure dans la particule nucléosomale. Elle augmente également l’accès du facteur NF-κB à l’ADN nucléosomal. Le variant pourrait donc induire une structure plus ouverte permettant l’accès de tels facteurs à l’ADN.

Le variant interfère avec les mécanismes de remodelage et de glissement des octamères. Le facteurs de remodelage SWI/SNF sont incapable de remodeler le nucléosome contenant le variant ou de faire glisser l’octamère. Par contre la présence du facteur de remodelage SWI/SNF induit une augmentation du transfert d’un dimère variant sur un tétramère. Ceci pourrait être dû au fait que le facteur SWI/SNF a un effet déstabilisant sur le nucléosome H2ABbd puisqu’il en augmente l’accessibilité aux enzymes de restriction.

La présence du variant H2ABbd dans le nucléosome stimule la transcription mais également l’acétylation des histones.
Le variant semble donc être associé avec la chromatine active mais on ne sait pas comment il agit. La particule nucléosomale ayant incorporé le variant H2ABbd semble posséder une plus faible stabilité que le nucléosome canonique, à quoi cela est-il dû ? Nous savons que la séquence de H2ABbd ne possède que 48% d’homologie avec celle de l’histone H2A. Nous avons donc disséqué le rôle des différents domaines du variant dans la structure et les fonctions des nucléosomes variants en utilisant une combinaison de méthodes de physique et de biologie moléculaire.

Les nucléosomes contenant le variant H2ABbd sont moins stables que des nucléosomes canoniques. In vivo, la présence de H2ABbd pourrait jouer le rôle de marqueur de la chromatine active. On peut supposer que la présence du variant crée une structure plus ouverte de la chromatine facilitant l’accès à l’ADN nucléosomal des facteurs de transcription, des complexes enzymatiques ou de la polymérase. Ceci étant en accord avec les données précédentes (Angelov, 2004).
Discussion
Discussion

La fibre chromatiniennne est une structure dynamique qui peut être modulée par trois mécanismes principaux. Les deux premiers mécanismes font intervenir les complexes de remodelage et des modifications post-traductionnelles des histones. La troisième voie basée sur l’incorporation des variants d’histones dans la chromatine est encore mal connue.

1. Généralités et hypothèses

La différence majeure de macroH2A avec H2A est son extrémité COOH terminale (le domaine macro) qui constitue les deux tiers de sa taille totale. Ce variant pourrait être associé à l’inactivation du chromosome X du fait de sa localisation cellulaire (Costanzi, 1998). Au départ de ce travail, nous supposions qu’il était impliqué dans une inactivation de la transcription, mais de quelle façon ? Son domaine macro était un point essentiel dont nous voulions éclaircir le rôle au sein de la protéine. Il pourrait engendrer un encombrement stérique, modifier la structure chromatiniennne ou des interactions protéines-nucléosomes.

H2ABbd ne possède que 48% d’identité avec H2A et son extrémité COOH terminale est tronquée. Il n’a aucun site de modifications post-traductionnelles semblables à ceux de l’histone H2A. Nous supposons son implication dans l’activation de la transcription.

L’objectif de ce travail de thèse a été de comprendre l’influence de ces variants sur la structure des nucléosomes et d’en observer les conséquences sur leur dynamique et la transcription.

Comment [C1]: Il faut refaire cette partie, essaie de reformuler tes hypothèses. L’objectif général c’est de comprendre l’influence des ces variants sur la structure des nucléosome et la conséquence de cette nouvelles structure sur leur ynamique et finalement la transcription.
2. Structure des nucléosomes variants.

Des nucléosomes ont été reconstitués avec le variant H2AZ. Les résultats obtenus suggèrent que les perturbations de structure dues à H2AZ déstabilise la particule nucléosomale {Abbott, 2001}. Cette instabilité pourrait entraîner la perte progressive des dimères H2AZ-H2A facilitant ainsi le passage de la polymérase lors de la transcription. Quels sont les conséquences de l’incorporation des variants H2ABbd et macroH2A dans les nucléosomes ?

En 2003, notre équipe a montré par une technique d’empreinte à la DNase I que l’incorporation du variant macroH2A altère la structure du nucléosome {Angelov, 2003}. Les perturbations, qui en résultent, modifient la structure de la particule à proximité de la dyade. La présence du variant macroH2A empêche la liaison du facteur de transcription NF-κB sur son site de reconnaissance lorsqu’il est placé près de la dyade du nucléosome. En 2004, en réalisant les mêmes expériences sur le variant H2ABbd, nous montrons que sa présence de ce variant favorise la fixation du facteur de transcription NF-κB sur son site de reconnaissance {Angelov, 2004}.

Afin de déterminer quels étaient les domaines de ces deux variants d’histones impliqués dans ces perturbations nous avons créé des protéines chimériques {publications n°1 et 3}. Comme supposé, l’extrémité non histone du variant macroH2A organise la structure du nucléosome variant {publication n°1}. Dans le cas de H2ABbd, c’est le domaine de repliement qui est responsable de la structure et des propriétés nouvelles du nucléosome {publication n°3}. En 2004, des expériences menées dans le laboratoire de Karolin Lüger montraient que le variant H2ABbd organisait seulement 118 paires de base d’ADN nucléosomal {Bao, 2004}. Ces résultats allaient alors dans le sens de notre hypothèse :
H2ABbd pourrait conférer au nucléosome une structure plus lâche et de fait plus accessible aux facteurs de transcription, à l’image de NF-κB.

Grâce à différentes techniques alliant physique et biologie nous avons pu effectivement valider cette hypothèse mais nous avons trouvé que le nucléosome contenant le variant H2ABbd organisait environ 130 paires de base d’ADN nucléosomal {publication n°3}. Par la technique de cryo-microscopie électronique nous montrons que les nucléosomes canoniques ont une structure en forme de V alors que les nucléosomes contenant H2ABbd forment un angle de 180°C {publication n°3}. Les sortie et entrée de l’ADN nucléosomal n’interagissent pas bien avec l’octamère contenant H2ABbd, la structure du nucléosome ayant incorporé le variant est plus relâchée que la particule canonique. Ces deux particularités des nucléosomes H2ABbd pourraient entraîner la formation d’une chromatine plus lâche que la chromatine canonique et donc plus accessible aux facteurs de transcription. De plus nous pouvons supposer que cette barrière nucléosomale variante sera moins difficile à traverser pour la polymérase que des nucléosomes canoniques. Ceci serait en accord avec l’implication du variant dans l’activation de la transcription.

Lors des expériences de dilution nous montrons que les nucléosomes variants H2ABbd sont moins stables que des nucléosomes canoniques. En effet, le dimère variant est plus facilement perdu. Ce phénomène pourrait aussi être important puisque l’instabilité de la particule pourrait entraîner l’éjection d’un dimère lors de la transcription. C’est une hypothèse qui a déjà été formulée dans le cas de l’histone H2A {Kireeva, 2002}.

L’ADN compacté par les nucléosomes contenant H2ABbd est donc plus relâché et plus accessible. A contrario le nucléosome macroH2A pourrait être plus condensé et plus refermé. La plus faible accessibilité de NF-κB au nucléosome macroH2A ne serait pas seulement causée par l’encombrement (ou la protection) de la partie COOH-terminale de macroH2A mais par une structure du nucléosome macroH2A plus compacte.
La dynamique de la chromatine est assurée par différents facteurs enzymatiques comme les complexes de remodelage. Nous avons donc étudié l’influence de ces nucléosomes variants sur deux facteurs de remodelages SWI/SNF et ACF. Nous supposions en effet que la nouvelle structure de ces nucléosomes pourrait affecter l’action de ces complexes de remodelages.

Les facteurs de remodelage peuvent avoir deux effets sur le nucléosome. Ils peuvent faire glisser l’octamère le long de l’ADN nucléosomal ou bien transférer le dimère d’un nucléosome sur un tétramère accepteur. Il existe différentes familles de facteurs de remodelage et nous avons choisi de travailler avec deux facteurs de deux familles différentes : SWI/SNF (famille Swi/Snf) et ACF (famille ISWI). Les deux remodeleurs peuvent faire glisser l’octamère le long de l’ADN mais seul le complexe SWI/SNF peut induire un transfert (Bruno, 2003).

L’incorporation de H2ABbd augmente la capacité de transfert du dimère vers un tétramère accepteur, dans des conditions de transfert passif, elle est deux à trois fois supérieure à celle de H2A (Angelov, 2004). Le facteur de remodelage SWI/SNF stimule ce transfert en augmentant la déstabilisation de la particule nucléosomale. La présence de
H2ABbd dans le nucléosome permet de dissocier les deux mécanismes d’action du facteur de remodelage SWI/SNF, on peut obtenir un transfert sans pour autant avoir un glissement.

A l’aide de différentes chimères nous avons cherché à connaître l’influence des extrémités NH2 et COOH terminales sur l’action du facteur de remodelage SWI/SNF. Nous avons trouvé que les extrémités de H2ABbd n’inhibent pas l’action du facteur SWI/SNF. Dans le cas de macroH2A, les deux parties du variant H2A-like et l’extrémité non histone de macroH2A inhibent le glissement et le remodelage des nucléosomes {publications n°1 et 2}. Le domaine central du variant H2ABbd est donc suffisant pour générer des propriétés structurales particulières qui inhibent l’action du facteur SWI/SNF.

Le variant H2AZ possède une séquence proche de celle de H2A, les divergences observées le sont au niveau du domaine d’interaction entre le dimère et le tétramère. La structure cristalline d’un nucléosome variant H2AZ a pu être étudiée {Suto, 2000}. Elle met en évidence que le remplacement de H2A par H2AZ conduit à des distorsions majeures dans la structure du nucléosome. Les différences les plus importantes ont été observées au niveau de cette zone d’interaction.

De même, la principale différence de séquence entre H2ABbd et H2A se situe au niveau du domaine de liaison du dimère avec le tétramère. Un nucléosome contenant une chimère H2ABbd qui possède le domaine de liaison de H2A est plus stable qu’un nucléosome H2ABbd {publication n°3}. Les techniques d’AFM et de cryo-microscopie électronique montrent que le nucléosome prend une forme de V et organise 143 ± 2,2 paires de base d’ADN. La présence du domaine de liaison de H2A restaure l’orientation spécifique de l’ADN autour de l’octamère {publication n°3}. Il restaure partiellement la capacité de glissement et de remodelage par le facteur SWI/SNF. Ce domaine de liaison de H2A confère à la particule des propriétés similaires au nucléosome H2A mais pas identiques. En effet,
l’essai d’empreinte à la DNase montre que le nucléosome chimérique possède les caractéristiques du nucléosome variant {publication 3}.

Il semble que le domaine de liaison du dimère avec le tétramère soit responsable de la stabilité et de l’organisation de l’ADN nucléosomal autour de l’octamère tandis que le domaine de repliement donnerait au nucléosome ses propriétés fonctionnelles et structurales.

4. Transcription et nucléosomes variants

Les nucléosomes variants H2ABbd et macroH2A inhibent l’action des facteurs de remodelage. Le variant H2ABbd est exclu du corps de Barr et devrait donc participer à l’activation de la transcription, au contraire, macroH2A est lié à une inactivation de la transcription. Les essais que nous avons réalisés confirment ces hypothèses {publication n°1} {Angelov, 2004}.

Le nucléosome macroH2A inhibe la transcription et l’acétylation des histones {publication n°1}. La présence du variant n’influe pas sur l’élongation de la transcription, il pourrait agir sur l’initiation de la transcription. Nous montrons que le domaine H2A-like n’interfère pas sur la transcription et l’acétylation des histones, c’est le domaine non histone qui est responsable de ces inhibitions {publication n°1}. Cette région pourrait empêcher l’acétylation en gênant le complexe de modification et elle pourrait recruter des complexes HDAC. Il a été effectivement montré que le domaine non histone pourrait interagir avec HDAC1 et 2 {Chakravarthy, 2005}. On peut supposer que c’est le domaine non histone qui inhibe la fixation des facteurs de transcription.

Au contraire, le nucléosome H2ABbd stimule la transcription et l’acétylation. Il n’agit pas non plus sur l’élongation de la transcription mais pourrait participer à son initiation {publication n°3}. En effet, nous savons que la présence de H2ABbd stimule la liaison du
facteur de transcription NF-κB sur son site {Angelov, 2004}. Le nucléosome H2ABbd a une structure moins stable, plus accessible que le nucléosome canonique {Angelov, 2004} {publications n°2 et 3}. Les facteurs d’initiation de transcription, les complexes de modification des histones ont plus facilement accès à l’ADN nucléosomal que dans le cas du nucléosome macroH2A. Alors que H2ABbd ouvrirait la structure nucléosomale, macroH2A au contraire la fermerait. L’un permettrait la fixation de la polymérase l’autre l’empêcherait.

5. Chaperonne de variant d’histone ?

Une molécule chaperonne est une protéine qui s’associe avec une protéine cible et qui empêche son mauvais repliement pour éviter la production de formes inactives ou agrégées. Par extension, les chaperonnes d’histones sont des protéines qui s’associent avec les histones notamment pour faciliter leur dépôt sur la chromatine. Les chaperonnes pourraient également jouer un rôle plus actif dans la dynamique de la chromatine et la régulation des gènes {Loyola, 2004}. L’incorporation des variants d’histones dans la chromatine a lieu indépendamment de la réplication contrairement à l’assemblage des histones canoniques et les facteurs impliqués commencent à être découverts. Il semble que les mécanismes d’action des facteurs de remodelage et des chaperonnes d’histones soient liés {Henikoff, 2005}. Pour certains variants, on connaît des protéines chaperonnes.

L’histone variant H2AZ est assemblé par le complexe SWR1 {Kobor, 2004} {Krogan, 2003} {Mizuguchi, 2004}. In vitro, le complexe SWR1 remplace le dimère H2A/H2B par un dimère H2AZ/H2B dans un nucléosome {Mizuguchi, 2004}. Le complexe SWR1 appartient à la famille Swi/Snf des facteurs de remodelage.
Par un mécanisme similaire, le complexe de remodelage INO 80 peut se fixer sur H2AX lorsqu’il est phosphorylé et le remplacer par un variant H2AX non phosphorylé {Kusch, 2004}.

La chaperonne HIRA semble être impliquée dans le dépôt du variant H3.3 indépendamment de la réplication alors que le complexe CAF-1 dépose l’histone H3 sur la chromatine pendant la réplication {Tagami, 2004}.

Nous avons également découvert une nouvelle chaperonne d’histone, la nucléoline {Angelov, 2006}. En plus de son activité de déposition, elle augmente de manière importante l’efficacité des facteurs de remodelage SWI/SNF et ACF. Mise en présence de nucléosomes macroH2A, elle rend le glissement et le remodelage des nucléosomes macroH2A efficaces. Par contre, les nucléosomes H2ABbd restent réfractaires {Angelov, 2006}.

Ces exemples montrent qu’il pourrait exister des chaperonnes spécifiques à chacun des variants. Elles pourraient prendre en charge les variants pour les déposer sur la chromatine. Le cas de H2ABbd est intéressant car il montre la spécificité de ces chaperonnes pour un variant donné.

6. Modifications post-traductionnelles des variants d’histones

Les modifications post-traductionnelles des histones affectent de nombreux processus qui impliquent la chromatine, comme la transcription, la réplication, la réparation de l’ADN, la ségrégation de l’ADN. Les variants d’histones possèdent des sites de modifications différents de ceux des histones canoniques. Les variants subissent des modifications post-traductionnelles tout comme les histones canoniques et cela participe au « code histone ». Jusque là peu connues, certaines modifications sont aujourd’hui découvertes.

Le variant macroH2A1.2 peut être monoubiquitiné sur la lysine 115. Il peut aussi être méthylé sur trois lysines : 17, 122, 238 et phosphorylé sur la thréonine 128 {Chu, 2006}. La
lysine 122 et la thréonine 128 résident dans une région de macroH2A1.2 qui se lie à la protéine SPOP qui semble jouer un rôle dans la localisation du variant, elles pourraient participer à cette liaison {Hernandez-Munoz, 2005} {Chu, 2006}.

Le variant H2AX est phosphorylable sur la sérine 1, acétylé sur la lysine 5 et ubiquitiné sur la lysine 119. La phosphorylation de la sérine 139 est une étape critique de la réparation de l’ADN {Fernandez-Capetillo, 2004}.

Le variant H2AZ est acétylé sur les lysines 3, 8, 10 et 14 {Millar 2006}. La lysine 14 acétylée est enrichie au niveau de promoteurs de gènes actifs. Il pourrait exister un processus actif dynamique par lequel le réassemblage de H2AZ serait régulé par son acétylation pendant la transcription.

Le variant H3.1 est méthylé sur la lysine 64, diméthylé sur la lysine 9 et acétylé sur la lysine 14 {Hake, 2006}. Ces modifications pourraient être liées à une répression de l’expression des gènes. Le variant H3.3 est acétylé sur les lysines 9, 14, 18, 23, 27, méthylé sur les lysines 36 et 79 {Hake, 2006}. La phosphorylation de la sérine 31 est la marque des régions chromosomiques adjacentes aux centromères {Hake, 2005}. Chaque variant de H3 pourrait participer à une fonction biologique précise.

H2ABbd n’a aucun des sites de modifications correspondant à l’histone H2A.

Les modifications post-traductionnelles des histones sont importantes pour l’établissement et le maintien des différents événements qui conduisent à l’activation ou à l’inactivation des gènes. Toutes ces modifications sur les variants montrent qu’il doit exister un mécanisme de contrôle spécifique.
7. Localisation sur des zones chromosomiques spécifiques

Les histones variants peuvent activer ou inhiber la transcription, elles peuvent être déposées sur la chromatine par des chaperonnes. Existe-t-il des séquences, des zones particulières pour la déposition des histones ? Un seul nucléosome variant est-il suffisant pour influer sur le reste de la chromatine, et inhiber/activer le remodelage, la transcription, le transfert… ? Peu d’études ont pour l’instant été réalisées mais nous avons un début de réponse avec les résultats obtenus pour le variant H2AZ.

Chez la levure, le variant H2AZ est associé préférentiellement et spécifiquement à de petites zones (un ou deux nucléosomes) {Guillemette, 2005}. La méthode employée a permis d’identifier 4862 loci enrichis en H2AZ, on parle de loci Z. Ils sont distribués généralement sur l’ensemble des chromosomes et ils mesurent moins de 400 paires de base ce qui suggère que le variant occupe une région correspondant à un ou deux nucléosomes {Guillemette, 2005}. Ces loci Z sont prédominants sur des régions promotrices. Toutefois 37% des promoteurs ne sont pas associés avec des loci Z. En réalité, il semble que H2AZ s’associe avec des séquences promotrices de gènes inactifs et qu’il est généralement absent des promoteurs de gènes actifs {Guillemette, 2005}. Le variant H2AZ marque les extrémités 5’ des gènes inactifs et actifs. Il semble que ces loci Z flanquent les sites d’initiation de la transcription {Raisner, 2005}.

Ces premières données pourraient nous démontrer que les variants seraient présents au sein de séquences spécifiques ici dans des séquences promotrices et non pas sur l’ensemble d’un gène. De même il semble qu’un seul nucléosome variant puisse influer sur l’expression du gène puisque les loci Z seraient composés d’un à deux nucléosomes.

En ce cas nous pouvons supposer que macroH2A ne serait présent que sur des promoteurs de gènes inactifs et H2ABbd sur des promoteurs de gènes actifs. On peut supposer également que c’est la présence du variant qui va déterminer de l’activité/ inactivité d’un gène.
Conclusion

Nous le voyons, les variants d'histones interviennent dans la dynamique de la chromatine à de nombreux niveaux. Les travaux réalisés pendant cette thèse ont permis de montrer que deux variants de H2A pouvaient à la fois avoir la même inhibition sur l’action des facteurs de remodelage et pourtant réagir différemment face à la transcription. Chacun d'entre eux apporte des caractéristiques particulières à la chromatine et peut ainsi moduler l’expression des gènes.

Perspectives
Les variants d’histones ne sont pas encore bien caractérisés, il reste de nombreuses questions et les progrès effectués ne constituent qu’une petite partie de ce qu’il reste à découvrir. Nous n’avons qu’un début de réponse à toutes ces questions :

Le futur répondra sans doute à toutes ces questions et peut-être les réponses obtenues nous étonneront-elles !
Bibliographie

Annexes
I. Matériels

1. Plasmides

a. Histones canoniques

Les vecteurs d’expression contenant les séquences codant pour les histones canoniques ont tous été donnés par T. Richmond. Ils vont servir de base à la construction de séquences codant pour des protéines tronquées ou chimères.

Tableau 6: Vecteurs d’expression contenant les séquences codant pour les histones canoniques

<table>
<thead>
<tr>
<th>Histones</th>
<th>Vecteurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2A (Xenope)</td>
<td>pET3a</td>
</tr>
<tr>
<td>H2B (Xenope)</td>
<td>pET3a</td>
</tr>
<tr>
<td>H3 (Xenope)</td>
<td>pET3d</td>
</tr>
<tr>
<td>H4 (Xenope)</td>
<td>pET3a</td>
</tr>
</tbody>
</table>

b. Variant d’histones

Les vecteurs d’expression contiennent les séquences qui codent pour les deux variants étudiés. Ces vecteurs vont être utilisés pour servir de matrices lors de la construction de protéines ou de chimères de variants.

Tableau 7: Vecteurs d’expression contenant les séquences codant pour les variants d’histones

<table>
<thead>
<tr>
<th>Variants d’histones</th>
<th>Vecteurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2A-Bbd (Homme)</td>
<td>pET3a</td>
</tr>
<tr>
<td>macroH2A1.2 (Homme)</td>
<td>pET30c</td>
</tr>
</tbody>
</table>
c. Constructions des chimères du variant H2A-Bbd

Ces constructions plasmidiques ont été réalisées par l’utilisation de séries d’oligonucléotides puis amplification PCR avant clonage dans le vecteur d’expression pET3a (Ndel- BamHI). Les protéines chimères sont ensuite exprimées, purifiées et incorporées au sein d’un nucléosome.

Tableau 8: Vecteurs d’expression contenant les séquences codant pour les chimères de H2A-Bbd

<table>
<thead>
<tr>
<th>Protéines chimères</th>
<th>Vecteurs d’expression</th>
<th>Origine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bbd-CtH2A</td>
<td>pET3a</td>
<td>H2A-Bbd (M1-D115) + C-terminal H2A (T121-K130)</td>
</tr>
<tr>
<td>NtBbd-H2A</td>
<td>pET3a</td>
<td>N-terminal H2A-Bbd (M1-S21) + H2A (R18-K130)</td>
</tr>
<tr>
<td>NtH2A-Bbd</td>
<td>pET3a</td>
<td>N-terminal H2A (M1-T17) + H2A-Bbd (R22-D115)</td>
</tr>
<tr>
<td>NtH2A-Bbd-CtH2A</td>
<td>pET3a</td>
<td>N-terminal H2A (M1-T17) + H2A-Bbd (R22-D115) + C-terminal H2A (T121-K130)</td>
</tr>
<tr>
<td>Bbd-ddH2A</td>
<td>pET3a</td>
<td>H2A-Bbd (M1-I83) + docking domain et C-terminal de H2A (P81-K130)</td>
</tr>
</tbody>
</table>

Figure 22 : Chimères de H2A-Bbd et H2A
c. Constructions des chimères du variant maroH2A1.2

Ces constructions plasmidiques ont été réalisées par l’utilisation de séries d’oligonucléotides puis amplification PCR avant clonage dans le vecteur d’expression pET3a (NdeI- BamHI) ou pET30 (NdeI- XhoI). Les protéines chimères de H2A et macroH2A sont ensuite exprimées, purifiées et incorporées au sein d’un nucléosome.

Tableau 9: Vecteurs d’expression contenant les séquences codant pour les chimères de macroH2A

<table>
<thead>
<tr>
<th>Protéines Chimères</th>
<th>Vecteurs d’expression</th>
<th>Origine</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2AΔC</td>
<td>pET3a</td>
<td>H2A (M1-T121)</td>
</tr>
<tr>
<td>H2AΔC-Cctmacro</td>
<td>pET3a</td>
<td>H2A (M1-T121) + C-terminal de macroH2A (R118-P132)</td>
</tr>
<tr>
<td>H2AΔC-NHR</td>
<td>pET30</td>
<td>H2A (M1-T121) + C-terminal et Région Non Histone de macroH2A (R118-N361)</td>
</tr>
</tbody>
</table>

Figure 23 : Constructions chimériques de macroH2A et H2A
d. Plasmides utilisés pour la production des sondes radioactives

2. Bactéries, cellules

La souche d’E.coli XL1-Blue a été utilisée dans tous les cas d’amplification d’ADN et de clonages (Stratagene).
La souche BL21 CS+ a été utilisée pour produire les protéines histones recombinantes canoniques et chimères (Stratagene).
Des cellules humaines A431 ont été utilisées dans les expériences de FRAP.

3. Histones recombinantes

Toutes les histones recombinantes canoniques et chimères sont produites au sein du laboratoire. Nous utilisons les bactéries transformées avec les plasmides correspondants. Les corps d’inclusion produits sont préparées et les protéines purifiées par chromatographie échangeuse d’ions.

4. Facteurs de remodelage

Les complexes de remodelage ACF et Swi/Snf sont produits par A. Hamiche à l’institut A. Lwoff (Villejuif) dans le cadre d’une collaboration.
II. Méthodes

1. ADN

a. Marquage radioactif de l’ADN

Le marquage radioactif de l’ADN destiné à devenir la sonde servant à la construction d’un mononucléosome peut être obtenu de plusieurs manières.

- Amorces PCR radioactives
Les oligonucléotides peuvent être marqués avec du γP32-ATP en utilisant la T4 polynucléotide kinase (Promega) selon le protocole du fabricant. Les nucléotides non incorporés sont ensuite séparés de l’ADN marqué par une colonne de Séphadex G50 (Sigma). Les oligonucléotides sont ensuite utilisés comme amorces dans un mélange PCR classique. Les sondes ADN radiomarquées sont amplifiées. La sonde est ensuite précipitée et purifiée sur gel natif.

- PCR radioactive
Dans le cas de la PCR radioactive, l’un des dNTP est radioactif. On utilise plus fréquemment l’αP32-CTP. Pour 100ng de matrice, on utilise 500 ng de chaque amorce et 150 nmol de dATP, dGTP, dTTP, 30 nmol de dCTP et 20 pmol de l’αP32-CTP. A la fin de la PCR on obtient de la sonde radioactive. Elle est précipitée et purifiée sur gel natif afin d’éliminer toute contamination par des nucléotides radioactifs non incorporés.

- Marquage à l’ADN polymérase I (Klenow)
L’ADN obtenu après PCR est précipité puis digéré par des enzymes de restriction. Les sites obtenus permettent de faire agir une ADN polymérase I (Klenow) (Promega) selon le protocole du fabricant et d’insérer l’α P32-NTP correspondant au site de digestion. On élimine ensuite les nucléotides radioactifs non incorporés par un passage sur un Séphadex G50. La sonde obtenue est ensuite précipitée et purifiée sur gel natif.
b. Précipitation et purification des fragments d’ADN radio-marqués

Les fragments d’ADN radiomarqués sont précipités pendant une heure à -80°C ou sur
la nuit à -20°C dans 3 volumes d’éthanol 100% froid et 20µg de glycogène (Roche). Après
incubation, l’ADN est centrifugé à 4°C et 13 000 rpm pendant 30 minutes. Les culots obtenus
sont lavés dans 50µL d’éthanol 75% froid et dissous dans du tampon TE 1X (10 mM Tris-
HCl pH 7,4 ; 1mM EDTA). Pour la purification sur gel, l’ADN est mis à migrer sur un gel
d’électrophorèse polyacrylamide (Sigma) natif (EMSA) à 6% dans un tampon à 0,3X TBE
(1X : 90 mM Tris ; 90 mM Acide Borique ; 2mM EDTA). Le gel humide et radioactif est mis
da exposer. L’image obtenue permet d’exciser l’ADN du gel. L’ADN est ensuite élué du gel
par incubation dans du TE 1X à 42°C pendant deux heures. L’ADN élué est ensuite passé sur
un Séphadex G50 afin d’éliminer les derniers morceaux de gel polyacrylamiide. La sonde
ADN est prête pour être utilisée pour la reconstitution de mononucléosomes in vitro.

2. Protéines

a. Production des protéines histones

Les protéines histones recombinantes canoniques et chimères ont été purifiées dans
des conditions dénaturantes selon le protocole suivant. Les bactéries BL21 CS+ sont
transformées avec le plasmide pET qui code pour la protéine à produire. Elles sont cultivées à
37°C puis on ajoute l’IPTG et on laisse trois heures à 37°C. Les bactéries sont ensuite
centrifugées pendant 20 minutes à 4000 rpm. Le culot bactérien est resuspendu dans un
tampon de lavage WB (1X : 50mM Tris-HCl pH 7,4 ; 100mM NaCl; 1mM EDTA; 1mM
Benzamidine; 5mM β-mercaptoéthanol). Le tout est ensuite soumis à une sonication pendant
10 minutes et les corps d’inclusion sont isolés par centrifugation 12 minutes à 9500 rpm. Les
corps d’inclusion sont ensuite lavés à deux reprises dans du tampon WB 1X contenant du
TritonX100 puis deux nouvelles fois dans du tampon WB 1X sans TritonX100. La protéine d’intérêt est extraite des corps d’inclusion dans un tampon SAU à 100mM NaCl (7M urée ; 20mM Acétate de sodium pH 5,2 ; 5mM β-mercaptoéthanol; 1mM Benzamidine; 1mM EDTA pH 8 ; 100mM NaCl) et 7M urée (Sigma). La protéine solubilisée est séparée des corps d’inclusion restants par centrifugation puis elle est ensuite mise en contact avec une résine échangeuse d’ions SP-Sépharose (Biorad/ Amersham). Finalement, la protéine sera éluee par un gradient de 100mM NaCl à 1M NaCl. Les fractions obtenues en sortie de colonne sont analysées. La protéine purifiée est concentrée sur un Centricon (Amicon). La figure 24 montre un exemple de protéines histones purifiées et concentrées comme indiqué précédemment.

Figure 24: Exemple de protéines recombinantes purifiées
Ces protéines ont été exprimées en bactéries E.Coli, purifiées sur colonne d’affinité, concentrées et analysées sur gel SDS-PAGE. Les protéines sont visualisables après coloration au Bleu de Coomassie

b. Electrophorèse SDS-polyacrylamide (SDS-PAGE)

Les histones sont mises à migrer sur des gels SDS 18% acrylamide-bisacrylamide. (29 :1). Elles sont reprises dans un bleu de charge (350mM Tris-HCl pH 6,8 ; 10% SDS ; 30% glycérol ; 5% β-mercaptoéthanol ; 0,2% Bleu de bromophénol) chauffées à 100°C pendant 5 minutes puis chargées directement sur le gel (tampon de migration : 192 mM glycine ; 25mM Tris ; 0,1% (w/v) SDS. Les protéines sont séparées à 16mA jusqu’à ce que l’échantillon soit
sorti du gel de concentration puis la migration se fait à 20mA dans le gel de séparation. Une fois que le bleu de charge est sorti du gel, on laisse la migration se poursuivre pendant encore 20 min. Ceci nous permet d’obtenir une séparation optimale des histones. Dans tous les autres cas, on peut arrêter la migration dès la sortie du bleu puis révéler le gel au Bleu de Coomassie.

c. Coloration des gels d’histones au Bleu de Coomassie

Le gel est rincé à l’eau distillée pour enlever l’excédent de SDS qui pourrait gêner la coloration des protéines par la suite. Le gel est ensuite mis dans une solution de fixation et de coloration (10% acide acétique ; 20% méthanol ; 0,025 % Bleu de Coomassie) pendant 30 minutes. La visualisation des protéines se fait après décoloration du gel dans une solution décolorante (10% acide acétique ; 20% méthanol). Les gels peuvent ensuite être séchés à 80°C sur papier Whatman ou bien photographiés.

3. Préparation de mononucléosomes positionnés

a. Fragments d’ADN utilisés

Les mononucléosomes sont reconstitués sur trois sondes d’ADN radiomarquées, la sonde 5S et les sondes 601 et 199 (figure 25).
Le fragment 5S de 152 pb, dérivé du vecteur pXP10 et clivé EcoRI-RsaI (Promega), contient le gène 5S de *Xenopus borealis* {Lee, 1998}. Ce fragment est amplifié par PCR. Après digestion est radiomarqué en 3’ sur le site EcoRI en utilisant de l’α P³²-ATP et la Klenow polymérase (Promega).
La sonde 601 de 255 pb contient une séquence positionnant le nucléosome au centre de la sonde ADN {Lowary, 1998}. Cette sonde est produite à partir du vecteur pGEM3Z-601. Le
fragment est amplifié par PCR avec des oligonucléotides radiomarqués en 5’ par l’ajout de γ P³²-ATP grâce à la T4 polynucléotide kinase (Promega).

La séquence de la sonde 199 de 241 pb positionne le nucléosome à 8 pb de l’extrémité 3’ de la sonde ADN {Lowary, 1998}. Elle possède une forte affinité pour l’octamère d’histone et est dérivée du vecteur p199-1. Le fragment est amplifié par PCR avec des oligonucléotides radiomarqués en 5’ par utilisation de γ P³²-ATP et de T4 polynucléotide kinase.

Figure 25: Schéma des sondes utilisées
Le nucléosome est représenté en vert, l’ADN en noir et la séquence positionnante en rouge.
(a) La sonde 5S est utilisée pour les expériences de remodelage avec les facteurs de remodelage.
(b) La sonde 601 contient une séquence positionnante au centre de l’ADN pour les nucléosomes et est utilisée dans les expériences de glissement du nucléosome par le facteur de remodelage SWI/SNF.
(c) La sonde 199 contient une séquence positionnante à l’extrémité de l’ADN pour les nucléosomes et est utilisée dans les expériences de glissement du nucléosome par le facteur de remodelage ACF.

b. Reconstitution de mononucléosomes

Les quantités stoechiométriques des quatre histones qui vont constituer l’octamère sont dialysées toute la nuit à 4°C contre le tampon HFB à 2M NaCl (20mM Tris pH 7,4 ; 2M NaCl ; 1mM EDTA ; 5mM β-mercaptoéthanol). Le lendemain matin, les histones sont mélangées dans un ratio de 0,8 :1 w/w avec 100 ng de fragment d’ADN radiomarqué au P³² et 2 µg d’ADN non marqué de séquence aléatoire et de la longueur adéquate pour la reconstitution d’un nucléosome. Le mélange est placé dans un volume final de 120µL contenant du tampon HFB à 2M NaCl et 100 µg/mL de BSA (Sigma). La reconstitution est réalisée par dialyse contre des bains contenant des concentrations de sel décroissant suivant le protocole décrit précédemment {Mutskov, 1998}(20mM Tris pH 7,4 ; 1mM EDTA ; 5mM β-}
mercaptoéthanol ; 1,2 à 0,1M NaCl). Les nucléosomes reconstitués sont ensuite analysés sur un gel EMSA.

c. Essai de mobilité électrophorétique EMSA de nucléosomes

Les nucléosomes reconstitués sont ensuite analysés sur un gel natif de polyacrylamide 5% (acrylamide/ bisacrylamide, 29 :1) dans un tampon TBE 0,3 X. Dans des conditions optimales, 90 à 95 % des fragments radiomarqués sont présents dans les nucléosomes reconstitués.

Les échantillons nucléosomaux sont migrés à température ambiante de 3V/cm à 6V/cm. À la fin de l’électrophorèse, les gels sont séchés à 80°C et exposés sur un écran de Phosphor-Imager (figure 26).

![Nucléosomes reconstitués par bain de dialyse](image)

Figure 26: Nucléosomes reconstitués par bain de dialyse

Les nucléosomes radiomarqués sont mis à migrer sur un gel natif de polyacrylamide à 5% dans un tampon TBE 0,3 X. L’ADN libre migre plus rapidement que le nucléosome.
d. Vérification de l’incorporation des histones dans les mononucléosomes

Les nucléosomes sont reconstitués selon le protocole précédent avec une quantité d’ADN équivalente à 10 µg. Ces nucléosomes sont concentrés sur un microcon Y10 (Amicon) pendant 1h à 4°C et 12000g. Les nucléosomes et l’ADN libre sont séparés par électrophorèse sur gel d’électrophorèse à 6% acrylamide-bisacrylamide (29 :1) dans un tampon TBE 0,3X. Les bandes de gel contenant les nucléosomes reconstitués sont découpées à l’aide d’une lame de scalpel. Les nucléosomes sont élués pendant une nuit à 4°C dans un tampon contenant 10 mM Tris pH 7,4 et 0,05 mg/mL de BSA. Les protéines extraites sont précipitées au TCA 100% au cours d’une incubation de 20 min sur glace, et centrifugées 30 min à 4°C et 13000rpm. Le culot de protéines est ensuite lavé par deux fois à l’acétone et repris dans du Bleu de charge SDS-protéine. Les protéines sont soumises à une électrophorèse SDS-PAGE ave un gel de polyacrylamide à 18%. Le gel une fois migré, selon les conditions citées précédemment, est révélé au Bleu de Coomassie (figure 27).

Figure 27: Vérification de l’incorporation des histones dans un nucléosome
4. Essais fonctionnels des mononucléosomes obtenus

4.a. Glissement des nucléosomes par le facteur de remodelage SWI/SNF

Les essais de glissement des nucléosomes sous l'action de SWI/SNF sont réalisés dans des aliquots de 10µL dans un tampon particulier (2,8 mM MgCl₂, 1 mM rATP, 20 mM NaCl, tampon de liaison 10X : 100mM Tris pH 7,4 ; 50% glycerol; 10mM DTT; 750µg/mL BSA). Des quantités croissantes de complexe SWI/SNF purifié (25-50 fmole/µL) ou un volume de tampon équivalent pour les échantillons témoins sont ajoutées à ces mélanges de réaction. Après une incubation d'une heure à 30 °C, les réactions sont stoppées avec 1µg d'ADN plasmidique et 1 U d'apyrase (Sigma) puis déposées avec du bleu de charge sur gel EMSA (figure 28). Les essais de mobilité sont réalisés avec des nucléosomes reconstitués sur la séquence ADN positionnante 601.

Figure 28: Glissement de nucléosomes canoniques par le facteur de remodelage SWI/SNF
b. Empreinte à la DNase I

Pour les expériences d’empreinte à la DNase, 10-15 fmol de nucléosomes radiomarqués reconstitués sont digérés dans 10 µL avec 0,07-0,15 U de DNase I (Promega) pendant 2 min 30 sec à température ambiante dans un tampon à 10 mM Tris-HCl, pH7.6 ; 2,5 mM MgCl₂. La réaction est stoppée par l’ajout d’une solution Stop (25 mM EDTA, 0,1% SDS, 1 µL protéinase K (Roche)). Le tout est incubé à 50 °C pendant 30 min. Les échantillons sont ensuite soumis à une extraction au phénol puis au chloroforme pour être finalement précipités dans de l’éthanol 100% en présence de glycogène. Les échantillons sont ensuite séparés par migration sur un gel de séquence dénaturant (8% polyacrylamide et 8M urée). La migration s’effectue à puissance constante de 70 W dans un tampon TBE 1X. Les gels séchés sont ensuite exposés sur un écran de Phosphoimager.

c. Remodelage des nucléosomes par le facteur de remodelage SWI/SNF

Les réactions de remodelage par le facteur de remodelage SWI/SNF sont réalisées dans des aliquote de 10 µL dans le tampon de décrit précédemment (cf. 4(a) Essai de glissement du nucléosome), on y ajoute 1 mM ATP. Des quantités croissantes de complexe de remodelage SWI/SNF (25-50 fmol/µL) ou de tampon sont additionnées. Après incubation pendant 1 heure à 30 °C, 1 µg d’ADN plasmidique et 1 U d’apyrase sont ajoutés pour stopper la réaction. On réalise ensuite une empreinte à la DNase suivant le protocole décrit ci-dessus (cf. 4(a) Empreinte à la DNase).
d. Digestion à l’exonucléase III

Les nucléosomes sont traités comme pour une expérience de glissement après action des facteurs de remodelage (cf. 4(a) Glissement des nucléosomes). Après incubation 1 heure à 30°C avec des quantités croissantes de facteur de remodelage SWI/SNF, la réaction est stoppée par l’ajout d’1 µg d’ADN plasmidique et 1 U d’apyrase. Les échantillons sont digérés par 3-5 U/mL d’exonucléase III (Promega) et incubés 1 heure à 30 °C. La réaction est arrêtée avec 100 µL de solution Stop (25 mM EDTA, 0,1% SDS, 1 µL protéinase K). Le tout est ensuite incubé à 50 °C pendant 30 min. Les échantillons sont soumis à une extraction au phénol puis au chloroforme pour être finalement précipités dans de l’éthanol 100% en présence de glycogène. Les échantillons sont séparés par migration sur un gel de séquence dénaturant (8% polyacrylamide et 8M urée). La migration s’effectue à puissance constante de 20 W dans un tampon TBE 1X. Les gels séchés sont exposés sur un écran de Phosphoimager.
5. La chromatine

a. Reconstitution de la chromatine

L’assemblage de la chromatine se fait par utilisation d’un ADN plasmidique circulaire qui a été précédemment désenroulé avec de la topoisomérase I purifiée de *Drosophila* {Kundu, 2000}. Ce plasmide est le pG5E4, il est décrit sur la figure 29 ci-dessous.

![Diagramme de l’insert contenu dans l’ADN plasmidique utilisé pour la reconstitution de la chromatine](image)

Figure 29 : Schéma de l’insert contenu dans l’ADN plasmidique utilisé pour la reconstitution de la chromatine
L’insert contient une région centrale de 690 pb avec 5 sites de liaison GAL4 en amont du promoteur MLV et d’une cassette dépourvue de résidus G. De chaque côté de cet ensemble, on trouve deux séquences positionnantes de 208 pb correspondant à l’ADN 5S. Cet insert est ensuite placé dans le plasmide p2085S G5E4 {Kundu, 2000}

Les histones purifiées, la protéine NAP-1 sont incubées dans un tampon d’assemblage (10 mM Tris-HCl pH8.0 ; 1 mM EDTA, 150 mM NaCl, 100 µg/mL BSA) à 37°C pendant 15 min après cela on ajoute l’ADN plasmidique précédemment relaxé par la Topoisomérase I et purifié. L’incubation se poursuit pendant 45 min à 37°C. La chromatine assemblée est ensuite refroidie sur glace pendant 30 min avant d’être caractérisée par l’étude du surenroulement de l’ADN et par digestion partielle à la nucléase micrococcale {Kundu, 2000}.

b. Vérification de la chromatine par étude du surenroulement de l’ADN

Les échantillons sont mis à migrer sur des gels d’agarose 1% et colorés au bromure d’éthidium. La mise en contact de la topoisomérase I et de la chromatine va permettre de mettre en évidence la nature surenroulée de l’ADN et donc de savoir si la chromatine s’est reconstituée {Kundu, 2000}.
c. Vérification de la chromatine par digestion à la nucléase micrococcale

Les échantillons de chromatine sont digérés avec 0,2 à 0,5mU de nucléase pendant 10 min à 22°C. Les échantillons sont déprotéinisés et l’ADN est analysé sur un gel d’agarose 1,2% puis coloré par le bromure d’éthidium {Kundu, 2000}.