. Résine-az125nxt-accélération, 5000 rpm/s, vitesse : 4000 rpm, durée : 30 s Recuit : rampe vers 140°C, durée : 10 min Insolation : 1000 mJ, pp.365-726

N. Yazdi, F. Ayazi, and K. Najafi, Micromachined inertial sensors, Proc. IEEE
DOI : 10.1109/5.704269

M. Schuler, Die Störung von Pendel und Kreiselapparaten durch die Beschleunigung des Fahrzeuges, Physikalische Zeitschrift, vol.24, p.16, 1923.

L. Foucault, Sur les phénomènes d'orientation des corps tournants entraînés par un axe fixe à la surface de la terre -Nouveaux signes sensibles du mouvement diurne, C. R. de l'Académie des Sciences de Paris, vol.35, pp.424-1852

. Yokogawa, Gyrocompass CMZ900 ; data sheet, 2007.

S. Bennett, R. Dyott, D. Allen, J. Brunner, R. Kidwell et al., Fiber optic rate gyros as replacements for mechanical gyros, p.10, 1998.

. Kearfott, conex mod i-s ; data sheet k130a124-06, 2008.

M. Sagnac and C. , Acad ; L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interféromètre en rotation uniforme

W. Macek and D. Davis, ROTATION RATE SENSING WITH TRAVELING???WAVE RING LASERS, Applied Physics Letters, vol.2, issue.3, p.67, 1963.
DOI : 10.1063/1.1753778

. Kearfott, KI-4902S ; data sheet, 2011.

G. Coriolis, Mémoire sur les équations du mouvement relatif des systèmes de corps

G. Bryan, On the beats in the vibration of a revolving cylinder or bell, pp.101-1890

N. Grumman, Scalable Siru ; data sheet, 2011.

I. Edu, R. Obreja, and T. Grigorie, Current technologies and trends in the development of gyros used in navigation applications -a review, Proc. of WSEAS int. conf. on Communications and information technology, p.63, 2011.

S. Fujishima, T. Nakamura, and K. Fujimoto, Piezoelectric vibratory gyroscope using flexural vibration of a triangular bar, Proceedings of the 45th Annual Symposium on Frequency Control 1991, p.261, 1991.
DOI : 10.1109/FREQ.1991.145911

. Murata, Gyrostar ENV Series ; data sheet Designers'Choise n°2, 2003.

H. Abe, T. Yoshida, and K. Turuga, Piezoelectric-Ceramic Cylinder Vibratory Gyroscope, Japanese Journal of Applied Physics, vol.31, issue.Part 1, No. 9B
DOI : 10.1143/JJAP.31.3061

/. Nec and . Tokin, CG-L53 ; data sheet, Nec Tokin Sensors vol, vol.1, 2004.

D. Janiaud, O. Le-traon, B. Le-corre, and S. Muller, Monolithic vibrating rate gyro structure, Patent n° PCT/FR00/00211 Patent Application Publication US, 2000.

M. Descharles, Microcapteurs résonants et électroniques associées : modélisation conjointe et optimisation ; thèse de l'université Pierre et Marie Curie, 2011.

G. Baker, Quartz rate sensor from innovation to application ; Symp, Gyro Technology p, vol.1, 1992.

P. Léger, Gyroscopes mécaniques vibrants ; Techniques de l'Ingénieur, Traité Mesures et Contrôle R-1942 p. 1, 1999.

M. Putty and K. Najafi, A micromachined vibrating ring gyroscope ; Tech. Dig. Solid-State Sensor and Actuator Workshop Proc, p.213, 1994.

G. He and K. Najafi, High-frequency capacitive disk gyroscopes in (100) and (111) silicon

J. Cho, J. Gregory, and K. Najafi, Single-crystal-silicon vibratory cylindrical rate integrating gyroscope (CING) ; Transducers Proc, p.2813, 2011.
DOI : 10.1109/transducers.2011.5969224

P. Greiff, B. Boxenhom, T. King, and L. Niles, Silicon monolithic micromechanical gyroscope, TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, p.966, 1991.
DOI : 10.1109/SENSOR.1991.149051

P. Greiff, B. Antkowiak, and J. Campbell, A. Petrovich ; Vibrating Wheel Micromechanical Gyro, IEEE Position Location & Navigation Symp, Proc. p, p.31, 1996.

K. Tanaka, Y. Mochida, M. Sugimoto, K. Moriya, T. Hasegawa et al., A micromachined vibrating gyroscope ; Sensors and Actuators A: Physical vol, p.111, 1995.

W. Tang, T. Nguyen, and R. Howe, Laterally Driven Polysilicon Resonant Microstructures, Sensors and Actuators, vol.20, issue.1-2, pp.1-2, 1989.
DOI : 10.1016/0250-6874(89)87098-2

M. Kranz and G. Fedder, Micromechanical vibratory rate gyroscopes fabricated in conventional CMOS ; Symp, Gyro Tech, vol.3, 1997.

H. Luo, G. Fedder, and L. Carley, An elastically gimbaled Z-axis CMOS-MEMS

M. Zaman, A. Sharma, Z. Hao, and F. Ayazi, A Mode-Matched Silicon-Yaw Tuning-Fork Gyroscope With Subdegree-Per-Hour Allan Deviation Bias Instability, Journal of Microelectromechanical Systems, vol.17, issue.6, pp.6-1526, 2008.
DOI : 10.1109/JMEMS.2008.2004794

B. Chaumet, B. Leverrier, C. Rougeot, and S. Bouyat, A New Silicon Tuning Fork for Aerospace Applications ; Gyro Tech, 2009.

B. Johnson, E. Cabuz, H. French, and R. Supino, Development of a MEMS gyroscope for northfinding applications, IEEE/ION Position, Location and Navigation Symposium, 2010.
DOI : 10.1109/PLANS.2010.5507133

B. Blixhavn, D. Lapadatu, R. Holm, and T. Kvisterøy, SAR500 ? A novel high-precision gyroscope ; Gyro Tech, 2010.

M. Traechtler, T. Link, J. Dehnert, J. Auber, P. Nommensen et al., Novel 3-Axis Gyroscope on a Single Chip using SOI-Technology, 2007 IEEE Sensors, p.124, 2007.
DOI : 10.1109/ICSENS.2007.4388351

J. John and T. Vinay, Novel concept of a single-mass adaptively controlled triaxial angular rate sensor, IEEE Sensors Journal, vol.6, issue.3, 2006.
DOI : 10.1109/JSEN.2006.874458

C. Charcosset, A. Stepanski, R. Bourquin, and G. Marianneau, Gyromètre résonateur mécanique ; Brevet d'invention n°9607670, 1996.

J. Maisonnet, Optimisation et réalisation d'un micro?gyromètre deux axes à poutres vibrantes en silicium ; thèse de l'université de Franche-Comté, 2009.

T. Juneau, A. Pisano, and J. Smith, Dual axis operation of a micromachined rate gyroscope, Solid-State Sensors and Actuators Tech, p.883, 1997.

D. Tsai and W. , Fang ; Design and simulation of a dual-axis sensing decoupled vibratory wheel gyroscope ; Sensors and Actuators A vol, p.33, 2006.

N. Tsai and C. Sue, Experimental analysis and characterization of electrostatic-drive tri-axis micro-gyroscope ; Sensors and Actuators A 158, p.231, 2010.

W. Sung, M. Dalal, and F. Ayazi, A mode-matched 0.9 MHz single proff-mass dual-axis gyroscope ; Transducers proc, p.2821, 2011.

B. Gallacher, J. Burdess, and A. Harris, Principles of a three-axis vibrating gyroscope, IEEE Transactions on Aerospace and Electronic Systems, vol.37, issue.4
DOI : 10.1109/7.976969

B. Gallacher, J. Neasham, J. Burdess, and A. Harris, Initial Test Results from a 3-axis Vibrating Ring Gyroscope, Journal of Physics: Conference Series, vol.34, p.662, 2006.
DOI : 10.1088/1742-6596/34/1/109

D. Wood, G. Cooper, J. Burdess, A. Harris, and J. Cruickshank, A monolithic silicon gyroscope capable of sensing about three axes simultaneously ; Silicon Fabricated Inertial Instruments Digest p, p.227, 1996.

A. Chatterjee, An introduction to the proper orthogonal decomposition, 2000.

C. Haye, Conception et realisation d'un micro-gyromètre sur substrat silicium ; thèse de l'université de Franche-Comté, 2004.

S. Timoshenko, Theory of elasticity, 1934.

I. Roland, S. Masson, O. Ducloux, O. Letraon, and A. Bosseboeuf, GaAs-based tuning fork microresonators : A first step towards a GaAs-based coriolis 3-axis Micro-Vibrating Rate

I. Roland, S. Masson, and O. Ducloux, Structure planaire pour Gyromètre tri-axe ; Brevet INPI n° 10.04967, 2010.

F. Laermer and A. Schilp, Method of anisotropically etching silicon, 1996.

S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, <title>Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization</title>, Microsystems Engineering: Metrology and Inspection
DOI : 10.1117/12.445605

S. Petitgrand and . Bosseboeuf, Simultaneous mapping of phase and amplitude of MEMS vibrations by microscopic interferometry with stroboscopic illumination, Microsystems Engineering: Metrology and Inspection III, p.33, 2003.
DOI : 10.1117/12.500138

A. Hafiane, S. Petigrand, O. Gigan, S. Bouchafa, and A. Bosseboeuf, Study of sub-pixel image processing algorithms for MEMS in-plane vibration measurements by stroboscopic microscopy ; Microsystem Engineering : Metrology and Inspection, Proc. SPIE 5145, p.169, 2003.

F. Parrain, A. Bosseboeuf, J. P. Gilles, S. Megherbi, and X. , Le Roux ; Dynamic characterization of microresonators by stroboscopic optical microscopy, European congress on computational methods in Applied Sciences and Engineering, 2008.

O. Tufte and E. Stelzer, Piezoresistive Properties of Silicon Diffused Layers, Journal of Applied Physics, vol.34, issue.2, p.313, 1963.
DOI : 10.1063/1.1702605

Q. Huang and N. Lee, Analysis and design of polysilicon thermal flexure actuator, Journal of Micromechanics and Microengineering, vol.9, issue.1, p.64, 1999.
DOI : 10.1088/0960-1317/9/1/308

B. Ilic, S. Krylov-;-k, R. Aubin, . Reichenbach-;-h, and . Craighead, Optical excitation of nanoelectromechanical oscillators, Applied Physics Letters, vol.86, issue.19, 2005.
DOI : 10.1063/1.1919395

H. Fujita and A. Omodaka, Electrostatic actuators for micromechatronics, 1987.

R. Puers, Capacitive sensors: when and how to use them ; Sensors and Actuators A: Physical vol, p.93, 1993.

D. Royer and E. Dieulesaint, Ondes élastiques dans les solides, p.136, 1996.

A. Parent, Apport des nouveaux matériaux piézoélectriques dans le domaine des microgyromètres vibrants ; thèse de l'université Paris-Sud, 2008.

Y. Morikawa, T. Koidesawa, T. Hayashi, and K. Suu, A novel deep etching technology for Si and quartz materials, Thin Solid Films, vol.515, issue.12, pp.12-4918, 2007.
DOI : 10.1016/j.tsf.2006.10.100

S. Adachi, Properties of Semiconductor Alloys: Group IV, III-V and II-VI Semiconductors p, Wiley Series in Materials for Electronic & Optoelectronic Applications, p.97, 2005.
DOI : 10.1002/9780470744383

J. Soderkvist and K. Hjort, The piezoelectric effect of GaAs used for resonators and resonant sensors, Journal of Micromechanics and Microengineering, vol.4, issue.1, p.28, 1994.
DOI : 10.1088/0960-1317/4/1/004

K. Hjort, J. Söderkvist, and J. A. Scweitz, Gallium arsenide as a mechanical material, Journal of Micromechanics and Microengineering, vol.4, issue.1, 1994.
DOI : 10.1088/0960-1317/4/1/001

R. Shul, A. Baca, R. Briggs, G. Mcclellan, S. Pearton et al., ICP etching of GaAs via hole contacts, 1996.

S. Adachi and K. Oe, Chemical Etching Characteristics of (001)GaAs, Journal of The Electrochemical Society, vol.130, issue.12, p.2427, 1983.
DOI : 10.1149/1.2119608

D. Shaw, Localized GaAs Etching with Acidic Hydrogen Peroxide Solutions, Journal of The Electrochemical Society, vol.128, issue.4
DOI : 10.1149/1.2127524

C. Li, B. Guan, D. Chuai, X. Guo, and G. Shen, Removing GaAs substrate by nitric acid solution, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol.28, issue.3, p.635, 2010.
DOI : 10.1116/1.3431082

J. Gannon and C. Nuese, A Chemical Etchant for the Selective Removal of GaAs Through SiO[sub 2] Masks, Journal of The Electrochemical Society, vol.121, issue.9, p.1215, 1974.
DOI : 10.1149/1.2402016

S. Paik, J. Kim, S. Park, S. Kim, C. Koo et al., A Novel Micromachining Technique to Fabricate Released GaAs Microstructures with a Rectangular Cross Section, Japanese Journal of Applied Physics, vol.42, issue.Part 1, No. 1, p.326, 2003.
DOI : 10.1143/JJAP.42.326

J. Harris, D. Awschalom, K. Maranowski, and A. Gossard, Fabrication and characterization of 100???nm???thick GaAs cantilevers, Review of Scientific Instruments, vol.67, issue.10, pp.10-3591, 1996.
DOI : 10.1063/1.1147250

S. Hasc?k, T. Lalinsky, Z. Mozolova, and J. Kuzm?k, Patterning of cantilevers for power sensor microsystem, Vacuum, vol.51, issue.2, p.307, 1998.
DOI : 10.1016/S0042-207X(98)00181-X

C. Constantine, D. Johnson, C. Barrat, R. Shul, B. Clellan et al., Parametric study of compound semiconductor etching utilizing inductively coupled plasma source source, Mater. Res. Soc. Symp. Proc. p, p.421, 1996.

R. Shul, G. Mcclellan, R. Briggs, D. Rieger, S. Pearton et al., High-density plasma etching of compound semiconductors, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.15, issue.3
DOI : 10.1116/1.580696

J. B. Johnson, Thermal Agitation of Electricity in Conductors, Physical Review, vol.32, issue.1, 1928.
DOI : 10.1103/PhysRev.32.97

C. Zener, Internal Friction in Solids II. General Theory of Thermoelastic Internal Friction, Physical Review, vol.53, issue.1, p.90, 1938.
DOI : 10.1103/PhysRev.53.90

F. Blom, S. Bouwstra, M. Elwenspoek, and J. Fluitman, Dependance of the quality factor of micromachined silicon beam resonators on pressure and geometry, J. Vac. Sci. B, vol.10, issue.1, 1992.

B. and L. Foulgoc, Evaluation du potentiel de performance de micro-accéléromètres inertiels vibrant en silicium ; thèse de l'université Paris-Est, 2008.