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Résumé en francais

Dans son article original [Tur38] de 1937, A. Turing formalise les notions de calculabilité
et complexité en définissant ce qu’on nomme aujourd’hui machine de Turing. Apres ce
travail de Turing, des généralisations de la machine de Turing ont été données si bien
que l'on peut distinguer quatre types de machines de Turing : les machines déterministes,
non déterministes, probabilistes et quantiques (voir les définitions de la section 1.1). En
terme de complexité temporelle, on peut montrer qu'une machine de Turing probabiliste
calcule au moins autant de fonctions partielles qu'une machine de Turing déterministes (i.e.
P C BPP) alors que la relation avec les machines non déterministes n’est pas claire. D'un
point de vue mathématique, une machine de Turing probabiliste est une marche aléatoire
sur un graphe dirigé localement fini (section 1.3).

0.1 Marches aléatoires et graphes dirigés

N

Un graphe dirigé est la donnée d’un quadruplet G = (G°, G', r, s) ot
e G est un ensemble dénombrable qui représente les points ou noeuds du graphe;
e G! est un ensemble dénombrable représentant les arétes du graphe:
o 1,5: G = G sont deux applications, appelées respectivement cible et source.

En général, nous nous restreindrons aux graphes dits simples, c’est a dire les graphes
dirigés sans arétes multiples — si a, 8 € G' sont telles que s(a) = s(3) et r(a) = r(B)
alors a = (. L’absence d’arétes multiples implique en particulier que I'application (r,s) :
G!' - G x GY: a — (r(a), s(a)) est injective de sorte que l’ensemble des arétes G' peut
étre vu comme un sous-ensemble de G° x G. Dans ce contexte les applications r et s sont
superflues — 7 et s sont alors respectivement les projections canoniques sur la seconde et
premiere coordonnées. Les boucles — i.e. les arétes « telles que s(a) = r(a) — seront en
général proscrites.

Il sera également supposé que les graphes considérés sont localement finis, i.e. pour
x € G, le degré sortant et entrant

deg™ (z) = card {a € G' : 5(a) = 2} < 0o et deg™ (z) < oo.
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Un graphe simple est non dirigé si et seulement si 'ensemble G est symétrique — i.e.
(z,y) € G' < (y,z) € G'. Dans ce cas, le degré sortant et le degré entrant sont égaux
et on note alors

deg(v) = deg™ (x) = deg* ()

le degré de x.

Dans ce contexte, une marche aléatoire sur un graphe G est une chaine de Markov
adaptée a la structure de graphe, c¢’est a dire une suite de variables aléatoires (M,,),>0 a
valeurs dans G telles que pour n > 1

P(M, = y|M,_, = z) = P(M, = y|My = x) > 0 si et seulement si (z,y) € G'.

En particulier, la marche aléatoire simple sur G satisfait

_
deg=(z)

D’une maniere tres générale, I’étude des marches aléatoires sur des graphes consiste a
établir des connexions entre des propriétés de nature combinatoire ou algébrique et des
propriétés stochastiques.

Si I' est un groupe de type fini et S un ensemble de générateurs symétrique (c’est a
dire, s € § <= st € S), le graphe de Cayley de T par rapport a S, noté Cayley(T', S) est
le graphe non dirigé simple G dont 1’ensemble des points G° = I' et I’ensemble des arétes
G! est défini par

P(M, =y|M,_1=1) =

G'={(z,y) € G*x G’ : 27 'y € S}.

Etudier une marche aléatoire sur un graphe de Cayley d’un groupe revient a se donner une
probabilité u de support S et d’étudier la chaine de Markov (M,,),>0 & valeurs dans I" de
transition

P(M, = y|My—1 = 7) = p(z™"y).

On parle alors de marches aléatoires sur un groupe'. La littérature regorge de résultats
établissant des connexions entre propriétés purement algébriques et propriétés stochas-
tiques.

L’un des premiers exemples illustrant ce type de liens est di a Pdlya qui a considéré
des marches aléatoires sur le groupe Z" ([P6121]). Ce résultat établit en particulier que la
marche aléatoire est récurrente ou transiente selon que N < 2 ou N > 3. Plus surprenant,
il existe une sorte de réciproque a ce théoreme qui a été montré dans [Var86] en s’appuyant
sur des résultats plus anciens tels [Bas72, Gui73, Gui70].

Théoréme 0.1.1 ([Woe00]). Soient T' un groupe infini de type fini. Alors, il existe une
mesure de probabilité p sur I' telle que la marche aléatoire associée est récurrente si et
seulement si I' contient un sous-groupe d’indice fini isomorphe a Z ou Z2.

1On adopte ici sans le dire la convention de marche aléatoire & droite. Une marche aléatoire & gauche
satisfait la propriété P(M,, .1 = y|M,, = x) = u(yz~1).
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Malheureusement, si les groupes de type fini donnent de nombreux exemples de graphes
non dirigés, il serait appréciable d’établir de tels résultats de rigidité pour des graphes
plus généraux. L'un des angles d’attaque consiste a remarquer qu’on peut associer a un
graphe dirigé — resp. non dirigé — une structure de semi-groupoide — resp. groupoide —
qui généralise la notion de groupe de sorte qu'une marche aléatoire sur de tels graphes se
traduit en une marche aléatoire sur un semi-groupoide ou un groupoide. Cette identification
est développée dans le chapitre 4.

0.2 Graphes contraints

Si le cadre théorique est assez bien établi, il existe assez peu de résultats sur les marches
aléatoires sur des groupoides ou des semi-groupoides. C’est pourquoi, il était naturel de
s'intéresser a des exemples. L'une des notions centrales dans les pages suivantes est celle
de graphe contraint.

Considérons a nouveau un groupe de type fini I' et donnons nous un ensemble de
générateurs S que 'on suppose symétrique. Une contrainte est une fonction f : I' x § —
{0,1}. A cette contrainte, il est possible d’associer un graphe contraint (qui n’est pas
nécessairement canonique). Soit gy € I' un germe, on note G = {go}, puis on définit G}
par

= (J{(9,95) : g € G}, f(g,5) =1},

seES

et GY par

Gy =Gyu || J{gs:9 €GP, flg.5) = 1}] .

seS

On peut alors définir, bien que ce ne soit essentiel puisque 1'on est en train de construire un
graphe intrinsequement simple, les applications cible et source partlelles r(l s Gl —
GY : pour un élément (g,h) € Gi, Papplication source est deﬁnle par s ((g, h)) = g et
la cible par 7™M ((g,h)) = h. Ainsi, le quadruplet (GY,G1,r() s()) est le graphe partiel
contraint d’ordre 1. Pour les graphes partiels contraints d’ ordre supérieur, on procede par
induction. Soit n > 1, on définit G;_, by

Ghyy = J{(9.95) 19 € G, flg.5) = 1},

seS

et G2, par
G, =GO U | J{gs:g € B flg.s) = 1}
s€S

Enfin, les fonctions ™+ s("+1) + GL. . — G2, sont données pour (g,h) € G}, par
P (g, 1)) = B ot 504D (g, b)) =
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Par conséquent, cette procédure définit une famille de graphes contraints partiels
{(GY,GL,r(™ st} 5,
qui dépend du germe choisi. On définit alors le graphe contraint complet par
o G =lim, o G) = U, G),
o G' =lim, 00 G}, = U,>, Gy, et

e les applications 7, s : G' — G sont définies de sorte que leurs restrictions a chaque
ensemble G} coincident avec les applications r™ et s respectivement.

Remarquons que le graphe de Cayley, Cayley(I", S), est le graphe contraint de contrainte
f constante égale a 1. D’autre part, si la procédure ci-dessus assure la connexité du graphe
contraint, il se peut que celui-ci soit fini. Quoiqu’il en soit, cette procédure fournit un
grand nombre d’exemples et ’objectif sera de comprendre comment les propriétés stochas-
tiques des marches aléatoires sur le groupe I' s’étendent ou ne s’étendent pas aux marches
aléatoires sur le graphe contraint.

0.2.1 Sous-graphe contraint du graphe de Cayley de Z?

Le premier exemple considéré est donné par un sous-graphe contraint du graphe de Cayley
de Z? — par rapport aux générateurs standards. Autrement dit, avec les notations de la
précédente section, I' = Z?2, Uensemble des générateurs S = {+¢; : i = 1,2} les générateurs
standard de Z? et la contrainte f : Z* x & — {0, 1} est donnée pour (z,s) € Z* x S par

1 sis=dey, ous=ceyet(z,6) >0, ous=—e1et(z,e)<0

f(z,8) =

0 sinon,

ott (+,-) est le produit scalaire usuel de R? dans la base canonique {&;,&5}. Ce graphe est
représenté sur la figure 1.

Comme tout graphe dirigé, I'ensemble des chemins de longueur finie peut-étre muni
d’une structure de semi-groupoide. D’autre part, cet exemple de graphe est moins artificiel
qu’il ne parait de prime abord puisqu’un graphe similaire a été étudié dans [MDMS80] pour
modéliser des diffusions en milieu poreux.

La marche aléatoire simple sur cet exemple de graphe est transiente (voir [CP03]). Une
question naturelle est de se demander si il existe des fonctions harmoniques — positives ou
bornées — non constantes. Cela amene a étudier ce qu’on appelle les frontiéres de Martin
et de Poisson.

La notion de frontiere de Martin trouve son origine dans un article de Martin [Mar41]
et est étroitement liée a la notion de fonction harmonique positive du fait de D'exis-
tence d’un isomorphisme entre I'espace des fonctions harmoniques positives et la frontiere
de Martin (voir chapitre 2, paragraphe 2.1). Considérant le noyau de Green défini par
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(0,0)

FI1GURE 1: Le graphe contraint avec deux demi-plans orientés.

G(x,y) = >, P(M, = y|My = ), on peut remarquer que la fonction z — G(x,y) est
surharmonique et méme harmonique sauf au point y. Intuitivement, si on fait tendre y vers
un point ¢ a l'infini, en un sens a définir, la fonction de Green devient harmonique. Dans
ce contexte, on travaille généralement avec une renormalisation de la fonction de Green
appelée noyau de Martin et défini par

K(z,y) =

pour 7,y € G et o1 0 € G est un point base fixé une fois pour toute. La compactification
de Martin consiste & étendre I’espace d’états G° en un espace compact G°, dont G° est un
sous-ensemble discret et dense, de sorte que chaque fonction G° > y — K(z,y) € R s’étende
par continuité en une unique fonction, encore notée K (z,-) et définie pour £ € GO \ G° par

K(w.) = lim K (r. ),

ou y — & est relative a la topologie de GO. De plus cette compactification est maximale,
en ce sens que si & # n, alors les fonctions K (-, &) et K(-,n) sont distinctes. La frontiere
de Martin est l'espace topologique 0G° = GO \ G. Enfin, au moins dans le cas localement
fini, les fonctions r — K (x,&) sont harmoniques positives pour tout £ € dG°.

La frontiere de Poisson, quant a elle, a été historiquement définie comme sous espace me-
surable de la frontiere de Martin et caractérise ’espace des fonctions harmoniques bornées.
En effet, la compactification de Martin, en définissant une topologie, permet d’établir un
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théoreme de convergence presque stre de la marche aléatoire vers une variable aléatoire a
valeurs dans la frontiere de Martin OG°. Tres grossierement, le support de cette variable
aléatoire limite est la frontiere de Poisson.

Cependant, la frontiere de Poisson peut-étre également définie, de maniere indépendante,
comme un objet de la catégorie des espaces mesurés (voir [Kai92]). Dans 'annexe B, on
montre que la frontiere de Poisson est un quotient de la frontiere queue qui, elle-méme,
est une limite inductive dans la catégorie des espaces mesurés. Aussi, la frontiere queue
peut-étre vue, en un certain sens, comme l’espace dual a I'espace des trajectoires qui, dans
le langage des catégories, est la limite projective d’un systeme projectif d’espaces mesurés.

Dans le contexte des marches aléatoires sur des groupes — ou sur des espaces homogenes
— il existe un certain nombre de criteres pour décider de la trivialité de la frontiere de
Poisson (voir par exemple [Aze70, Bab06, KV83, KW02, Kai00, Mar66]). La description
de la frontiere de Martin est souvent un probléeme délicat. D’une maniere générale, cela
demande d’estimer finement la fonction de Green. Ces estimés peuvent provenir de la
géométrie du graphe sous-jacent (pour les arbres homogenes, une frontiere géométrique
naturelle existe, voir [Woe95]), ou de théoreémes limites locaux (c’est la méthode employée
pour la détermination de la frontiere de Martin des marches aléatoires sur Z, voir [NS66,
Uch98]), ou encore d’une action de groupe laissant invariant le noyau de Martin (voir par
exemple [Ras10, KR11] ou sont considérées des marches aléatoires sur un quart de plan),
et méme de principe de grandes déviations (voir [IMS94, TR08]).

Dans la suite, on note (M,,),>o la marche aléatoire simple sur le graphe G, en particulier
c’est une chaine de Markov & valeurs dans G°. On définit alors par récurrence la suite de
temps d’arréts (7,)n>0 par 7o = 0 et pour n > 0

Tpy1 = inf{t > 7, +1: Mff) =0}

ou M, = (Mél), Méz)). Il est alors facile de voir que P(7, < oo|My = z) = 1 pour tout
n > 0 et x € G° La suite de variables aléatoires (M, ),>o est elleméme une chaine de
Markov. Celle-ci reste confinée dans 'équateur — i.e. 'ensemble Z x {0} € G° — sauf
peut-étre au temps 0. Il est aussi assez clair, du fait des s%/métries de G, que les variables
aléatoires (Z,),>1 a valeurs entieres définies par Z,, = MT(i = MT(i) sont indépendantes et
sur Z. Par ailleurs, pour les mémes raisons de symétrie du graphe G, les variables aléatoires
Z, sont symétriques, c’est a dire, Z, et —Z, sont de méme loi. Ainsi, (Mr(i))nzl est une
marche aléatoire symétrique. En fait, il est montré dans [CP03] que c’est une marche
aléatoire a sauts non-bornés. Ensuite, la transformée de Fourier de la loi de saut est calculée
et il est déduit par un argument standard la transience de cette marche aléatoire. De fait, la
marche initiale est également transiente. La marche aléatoire (M, ),> sera appelée marche
initiale et la marche (M., ),>0, marche induite.

Dans ce manuscrit, il est montré que la frontiere de Martin de la marche aléatoire sur
le graphe contraint avec deux demi-plans orienté (cf. figure 1) est triviale. Ce résultat a
fait 'objet d’une note aux Comptes Rendus de ’académie des sciences — cf. [dL11] — et
les détails sa démonstration sont présentés dans 'annexe A. On rappelle ici 'énoncé du

résultat.

identiquement distribuées, autrement dit le processus (MT(l))nzl est une marche aléatoire
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Théoreme 0.2.1. Les frontiéres de Martin de la marche induite et de la marche originale
sont triviales, en particulier, toutes les fonctions harmoniques positives sont constantes.

Ce théoreme repose sur des estimations fines du noyau de Green. Plus précisément, si
on note 7, (y) le temps local de (M,,),>0 en y € G°, i.e.

t—1

ns,t(y) = Z 1y(Mn)7

n=s
avec la convention ), = 0, on montre que le noyau de Martin se décompose comme suit :

G(x, .
#ﬂy; siz,yeZx{0}

K(l‘,y) =

E(no,r (y)|[Mo=2) .
% + Zzer{o} v (2)K(z,y) sinon,

ou v, (z) = P(M,, = z|My = x).
Le théoreme central dans la preuve de la trivialité de la frontiere de Martin est le
suivant.

Théoréme 0.2.2. Soient z = (21,0) € Z x {0} et y = (y1,vy2) € G°. Alors la fonction de
Green est donnée par

T r(t))lvel
G(z,y) _ (271_)—1/ 6115(2,11—21)%61157

r(t) = 5 gl0) = 02 et g(t) = Re r(t) g(r(t)).

De plus, pour tout A € RU {£o0}, il existe une constante s(\) > 0 telle que
1. G(z,y) ~ s(£oo)lyr — 21|72, lorsque y1y3* — o0,
2. G(z,y) ~ s(\)lye| ™", lorsque y1y3° — A,

L’une des conséquences de la trivialité de la frontiere de Martin est qu’il n’est pas
possible de discriminer le comportement asymptotique des trajectoires de la marche. En
réalité, par un argument de type Borel-Cantelli, on peut montrer que la marche induite est
infiniment souvent a droite et a gauche de 0, aussi, il n’y a pas de directions priviligiées.
Dans le cadre des marches aléatoires sur Z" on peut montrer que la trivialité de la frontiere
de Martin dépend du drift?. En effet, si celui-ci est nul, alors la frontiere est triviale.
Cependant, si le drift n’est pas nul, la frontiere de Martin est homéomorphe a la sphere
de dimension N — 1. Il est fort probable que ce changement régime ait aussi lieu lorsqu’on
considere des marches aléatoires sur G plus générales, cependant, il est difficile d’avoir une
idée de la forme de la frontiere de Martin (est-ce un cercle 7). Ces marches plus générales
n’ont pas été considérées du point de vue difficile de la frontiere de Martin. Il est cependant
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FIGURE 2: Le graphe contraint avec deux demi-plans orientés et un drift non constant.

souvent plus facile d’étudier la frontiere de Poisson. Dans le cas de la marche aléatoire
simple sur G la trivialité de la frontiere de Poisson peut-étre montrée de maniere directe
(cf. paragraphe 2.2.2 du chapitre 2).

Plus précisément, si on se donne (p,),ez une suite de réels de [0, 1) et (g,)yez une autre
suite de réels strictement positifs tels que ¢, < 1 —p, pour tout y € Z; alors, sur le graphe
G on peut considérer la marche aléatoire dont la probabilité, partant du point (z,y) € G°,
de se déplacer vers le haut est g, vers le bas est r, = 1 —p, — g, et horizontalement est p,
— ¢f. la figure 2.

Proposition 0.2.3. La frontiére de Poisson de la marche aléatoire sur G dont les transi-
tions sont définies au paragraphe précédant est isomorphe (en tant qu’espace mesuré) a la
frontiere de Poisson de la marche aléatoire sur Z. dont les probabilitées de transition sont
données pour u,v € Z par

Pu StU =1,
Qu stv=1u-+1,
P = :
(u,v) 1—pu—qu stv=u—1,
0 Sinomn.

211 faut ajouter, en toute rigueur, une condition sur les moments de la loi de saut, cf. 2.1.3
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FIGURE 3: Le troisieme pavage de Penrose avec deux prototuiles, figure tirée de [Wik12].

0.2.2 Sous-graphes contraints du graphe de Cayley de Z" par la
méthode de coupe et projection

Dans un second temps, nous considérons une famille d’exemples de graphes non dirigés
et apériodiques obtenus grace a la méthode de coupe et projection — voir par exemple
[ODKS88, KD86]. Le célebre troisieme pavage de Penrose (cf. la figure 3), défini au début
des années 70, est un des premiers exemples de telles structures apériodiques. Depuis
les années 1980 et la découverte des quasi-crystaux, les structures apériodiques ont été
largement étudiées dans la littérature.

Les graphes considérés ici sont obtenus en pavant I’espace vectoriel réel R? & 'aide
de la méthode de coupe et projection. Plus précisément, on considere £ un sous-espace
vectoriel de RY de dimension d appelé espace réel, puis on note Ei,; = E+ le supplémentaire
orthogonal de E, appelé espace interne. Soit K le cube unité de Z¥ c RY. Une aréte du
graphe de Cayley de Z" — selon I'ensemble des générateurs usuels S — est acceptée et
projetée orthogonalement sur E' si elle peut étre translatée par un vecteur de E dans le
cube K +t,t € Ejy fixé. Sous certaines hypotheses que ’on ne précise pas ici (mais qui sont
toutefois génériques), cette méthode permet de construire un pavage 7; de 'espace E dont
les tuiles sont les projections des faces d-dimensionelles du cube unité N-dimensionel. De
plus, en fonction des espaces E et Ej., ces pavages sont périodiques, quasi-périodiques ou
apériodiques — le groupe de translation du pavage est donné par £ NZ". De tels pavages
définissent naturellement des graphes que I'on appellera graphes de coupe et projection dont
les points et les arétes sont respectivement les sommets et les cotés des tuiles définissant
le pavage. Ce type de graphe est ainsi un sous-graphe contraint du graphe de Cayley
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de ZN — par rapport aux générateurs usuels. La contrainte dans ce cas est la fonction
fi: ZN x § — {0,1} donnée par

fi(2,8) = Lygum(z,2+s) for (z,8) € ZN x S,

ou #; est I'ensemble K 4+ E + t appelé, pour des raisons évidentes, bande de sélection.
Enfin, par construction, le graphe induit par un pavage est connexe, localement fini, non
dirigé, simple et sans boucles.

Le troisieme pavage de Penrose a été initialement défini a l'aide de regles d’assem-
blages des tuiles (voir le paragraphe 3.1.1 du chapitre 3). Ces regles d’assemblages assurent
Iexistence et la quasi-périodicité du pavage. Cependant, ce pavage peut étre également
construit par la méthode de coupe et projection (cf. [ODKS88]) en considérant l'espace
E C R® engendré par les vecteurs v; et vy suivants

v; = (1, cos(27m/5), — cos(mw/5), — cos(m/5), cos(2m/5)),

et,
vg = (0,sin(27/5), sin(xw/5), — sin(7/5), — sin(27/5)).

Le pavage icosahédral de R? est un autre exemple intéressant de pavages apériodiques
du fait de son lien étroit avec les quasi-crystaux. Les quasi-crystaux ont été découverts
expérimentalement par Shechtman en 1982 en étudiant les motifs de diffraction d’un alliage
de Al-Mn. Ces motifs présentaient en effet une symétrie d’ordre 10 qui va a ’encontre de la
théorie de la crystallographie. La description théorique de ce phénomene a été précisée dans
l'article original [SBGC84] de D. Shechtman, I. Blech et J.W. Cahn. En outre, Shechtman
s’est vu récompensé de ce travail par le prix Nobel de Chimie en 2011. En ce qui nous
concerne, il se trouve que le pavage icosahédral de R? modélise parfaitement cet alliage (cf.
aussi [KD86)).

Le pavage icosahédral de R? est obtenu a l'aide de la méthode de coupe et projection
en considérant 'espace vectoriel £ C R® de dimension 3 défini comme étant I'image de la
projection m donnée par sa matrice dans la base canonique de R® par

Vi o1 -1 -1 1 1
1 v5 1 -1 -1 1
oL 1 v5 1 -1 1
o5 -1 -1 1 45 1 1|’
-1 -1 =1 1 5 1
1 1 1 1 15

Sous certaines conditions techniques génériques qui seront précisées en temps voulu, on
montre le théoreme suivant (cf. le théoreme 3.1.4 du paragraphe 3.1.4 au chapitre 3) :

Théoreme 0.2.4. Génériquement, la marche aléatoire simple sur le graphe de coupe et
projection est récurrent si dim E < 2 et transiente st dim E > 3.
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Ce résultat est tres similaire au théoreme de Pdlya, cependant, contrairement aux
marches aléatoires sur Z, le calcul des probabilités de retour a l'origine n’est plus expli-
cite. Ainsi, la preuve de la transience requiert I’établissement d’inégalités isopérimétriques
d-dimensionelles (établies, cependant, non pas sur le graphe initial, mais sur une puissance
assez grande de celui-ci), alors que la récurrence est obtenue a 1’aide d’estimées sur la borne
inférieure de la probabilité de retour a l'origine. Cependant, 1’établissement d’inégalités
isopérimétriques est plus fort que I'application d’un critere de type Nash-Williams puis-
qu’on obtient en plus des estimées de la décroissance du noyau de la chaleur. Enfin, notons
que ce théoreme ne se limite pas aux marches aléatoires simples et peut étre généralisé a
des marches réversibles plus générales par des arguments standards — voir [Anc90] par
exemple.

0.2.3 Groupoides et semi-groupoides

Comme cela a déja été évoqué, une marche aléatoire sur un graphe dirigé — respective-
ment non dirigé — peut-étre vue comme une marche aléatoire sur un semi-groupoide —
respectivement un groupoide — de la méme facon qu’une marche aléatoire sur le graphe
de Cayley d’un groupe est vue comme une marche aléatoire sur un groupe. Les marches
aléatoires sur les groupoides et semi-groupoides sont cependant assez peu considérées dans
la littérature — cf. [Kai05, Ren80] pour les quelques références dont on dispose.

A la lumitre des exemples considérés, on peut espérer qu’'un certain nombre de pro-
priétés valables dans le contexte des groupes se transférent dans le contexte des groupoides
alors que dans le cas des semi-groupoides 'étude des marches aléatoires semblent plutot
difficile. L'une des raisons a cette différence est que dans le cadre des marches aléatoires
sur un groupoide, on peut souvent espérer que celles-ci soient réversibles — en particulier,
une marche aléatoire simple sur un graphe non dirigé, simple et localement fini est tou-
jours réversible. Nous avons alors a disposition toutes les techniques de ’analyse fonction-
nelle dans les espaces de Hilbert. C’est en particulier ce qui est employé dans le théoreme
énoncé dans le paragraphe précédant. Dans le cadre des graphes intrinsequement dirigés,
les marches aléatoires ne sont plus des chaines de Markov réversibles.

Dans le chapitre 4, outre 'introduction des notions de groupoide et de semi-groupoide,
il est aussi introduit cette notion de chaine de Markov réversible. En particulier, la preuve
du théoreme 1 de [Var85] est reproduite ce qui permet de mettre en exergue le lien étroit
entre 'opérateur de Laplace-Beltrami et l'opérateur de Markov ainsi que les propriétés
puissantes qui en découlent.
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Chapter 1

Turing machines, Markov chains,
directed graphs

In this chapter, we start with the introduction of the notion of Turing machines. Then,
before connecting random walks on directed graphs and Turing machines, we give notation
and definitions related to Markov chains and directed graphs.

1.1 Definition of Turing machine

In this section, we define the notion of Turing machines. Turing machines were introduced
in [Tur38] in 1937 by Alan Turing. Generally speaking, Turing machines provide with
a theoretical model of computations so that we can define notions of decidability and
computability — Does there exist an algorithm which solves a given problem in finite time
or in finitely many computations ? — or as complexity — how many computations are
needed to solve a given problem 7

We can distinguish four classes of Turing machines :

o deterministic Turing machines (DTM),

e non deterministic Turing machines (NTM),
e probabilistic Turing machines (PTM),

e quantum Turing machines (QTM).

We could not omit the latter class of quantum Turing machines in this introductive
chapter since they have a priviliged place in the literature during the last decades. However,
quantum Turing machines will not be discussed in details in the following work. For a
description of QTM in terms of notions introduced here see [Pé11].
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1.1.1 Deterministic Turing machine and the P class

There are several variants of deterministic Turing machines; all of them are equivalent in
the sense that a problem is solvable by one variant if and only if it is solvable by any other
variant within essentially the same amount of time. We suggest the following.

Definition 1.1.1. A deterministic Turing machine is a quadruple (A, S, u, so) where

1. Ais a finite, non empty set of symbols, called alphabet, containing a particular symbol
called the blank symbol and denoted by £ ; we set A, = A\ {t},

2. S is a finite non empty set of states ; we assume that S is partitioned into two non
empty sets S; and Sy called respectively internal states and final states,

3. D={L,R} = {-1,1} is the displacement set,
4. u: Ax S+— A xS x D is the transition function, and
5. s € S; the initial state of the machine.

Let My = (A, S,u, s9) be a deterministic Turing machine with A = {0, 1,4}, S = S;USy
where S; = {go}, Sy = {halt}, and transition function u(a,s) = (a/,s’,d) defined by the
following table :

al s ||a | s |d
O|go| O] go | L
1|go||1| go | L
flgo|l & |halt| R

If the program, described by this Turing machine, starts with the head over any non-blank
symbol of the input string, it ends with the head over the leftmost non-blank symbol while
the string of symbols remains unchanged.

If W is a finite set, we denote by W* = |, W" the set of words of finite length on the
alphabet W — W° = {¢} and the element ¢ € W9 is called the empty word. If w € W*,
then by definition there exists n > 0 such that w € W™. We denote by |w| the length of w
and |w| = n.

For a € A}, we denote by & € A the completion of the work « by blanks, namely

O_é:(ala"' 705|a\7]j7jj7”')'

Deterministic Turing machine as a dynamical system

Considering the example of Turing machine M, we can, without loss of generality, always
assume that the machine starts at the first symbol of the input string o € Aj. Starting
from (a, sg, hg = 1), successive applications of the transition function u induce a dynamical
system on X := A* x § x Z. A configuration is an instantaneous description of the word
written on the tape, the internal state of the machine and the position of the head, i.e. an
element of X.
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Let 7, = inf{n > 1 : s, € Sf}. The program starting from initial configuration
(v, S0, hg = 1) stops running if 7, < oo, it never halts when 7, = co. While 1 < n < 7,,
the sequence (o™, s,,, hy)n<r, is defined by updates of single characters; if, for 0 < n < 7,
we have u(oz,(:?, sn) = (a',8',d), then (a™* 5,1 h,,1) is defined by

/

Sp+1 = S
hn+1 = hn + d
amt) = (@l ... ,oz,(lz)_l,a’,aézla e 704|(§<)n)\)

If the machine halts at some finite instant, the output is obtained by reading the tape from
the leftmost non blank character to right until the first blank character. The sequence of
words (a™),, is termed a computational path or computational history starting from a.

Computable functions and decidable predicates

Every deterministic Turing machine M computes a specific partial function ¢, : A7 — AJ.
Since the value of ¢/(«) remains undetermined when the machine M does not halt, the
function ¢, is termed partial, in general the domain Dom(¢y;) of ¢y is a strict subset of
Af.

b

Definition 1.1.2 (Computable function). A partial function f : Af — A is called com-
putable if there exists a deterministic Turing machine M such that ¢,; = f. In such a
case, the function f is said to be computed by the machine M.

An application of the Cantor’s diagonalisation yields the existence of non-computable
functions.

Definition 1.1.3 (Predicate, Language). A predicate & is a function taking Boolean
values 0 or 1. A language £ over an alphabet A is a subset of AJ.

Thus, for predicates &2 with Dom(Z?) = Af, theset {a € Af : Z?(«) = 1} is a language.
Hence, predicates are in bijection with languages.

Definition 1.1.4 (Decidability). A predicate &2 : A¥ — {0,1} is decidable if the function
2 is computable.

Let & be a predicate and . the corresponding language. The predicate is decidable if
there exists a deterministic Turing machine such that for every word «, the machine halts
after a finite number of steps and

o if o € £, then the machine halts returning 1, and

o if o ¢ £, then the machine halts returning 0.
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Complexity classes of a DTM

Definition 1.1.5 (Space and time complexity). Let M be a deterministic Turing machine
and sy, ta 0 N — Ry be given functions. If for every o € AJ, the machine stops after
visiting at most s(|al) cells, we say that it works in computational space sp;. We say it
works in computational time tyr if 7, < tyr(|a|).

Computability of a function does not mean effective computability since the computing
algorithm can require too much time or space. We say that » : N — R, is of polynomial
growth if there exist constants C,x > 0 such that r(n) < Cn”, for large n. We write
symbolically r(n) = poly(n).

Definition 1.1.6 (P class). The complezity class P consists of all languages £ whose
predicates & are decidable in polynomial time, i.e. for every £ in the class, there exist a
deterministic Turing machine A such that ¢, = & and ty(|oo|) = poly(|e]) for all o € A}

Similarly, we can define the class PSPACE of languages whose predicates are decidable
i polynomial space.

Remark 1.1.7. We choose to define P and PSPACE as classes of complexity of languages,
but it is obvious that the same can be done for partial functions although it can be shown

that the obtained classes do not define a new notion of complexity. That is why, they will
be still denoted by P and PSPACE.

It is obvious that P € PSPACE because in a polynomial time, we can only visit a
polynomial number of cells. Note that it is conjectured that P # PSPACE which shows
that this theory is far from being completely understood.

1.1.2 Non-deterministic Turing machine and the NP class

Definition 1.1.8. A non-deterministic Turing machine is a quadruple (A, S, u, so) where
A, S, and sy are defined as in definition 1.1.1 and u is now a multivalued function, i.e.
there are r different branches u; fort =1,--- ;7 and u; : A x S+ A x S x D. For every
pair (a,s) € A x S there are different possible outputs (a;, s;, d;)i—1.... » and the choice of a
particular branch can be done in a non-deterministic way.

The NP class

A computational path for a non deterministic Turing machine is determined by a choice of
one legal transition at every step. Different steps are possible for the same input. Notice
that NTM do not serve as models of practical devices but rather as logical tools for the
formulation of problems. As we have done for the deterministic Turing machines, we give
the class of languages which are computed by NTMs.

Definition 1.1.9 (NP class). A language .Z (or its predicate &) belongs to the NP class
if there exists a non deterministic Turing machine such that
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o if o € Z for some o € A7, then there exists a computational path with 7, < poly(|«a|)
returning 1,

o if v ¢ & for some o € Af, then there exists no computational path with this property.

Remark 1.1.10. The definition of the NPSPACE class is obvious.

Remark 1.1.11. Note the specificity of non deterministic machine; with this kind of ma-
chine, we can not decide if a given word s not in the language. In terms of formal language
theory, such a language is said to be recursive. A language £ € NP such that .#* € NP
is termed recursively enumerable.

Remark 1.1.12 (which can not be avoided). We see immediately that P C NP, but a
famous problem consists in deciding whether P = NP or P £ NP.

1.1.3 Probabilistic Turing machine and the BPP class

We denote by R the set of real numbers computable by a deterministic Turing machine
within accuracy 27" in poly(n) time.

Definition 1.1.13. A probabilistic Turing machine is a quintuple (A, S, u,p, sg) where
A, S,u, and sy are as in definition 1.1.8 while p = (py,--- ,p,) € Ry, with Yoiypi=1is
a probability vector on the set of branches of u. All branches correspond to legal actions ;
at each step, the branch 7 is chosen with probability p;, independently of previous choices.

The BPP class

Each a € A generates a family of computational paths. The local probability structure
on the transition functions induces a natural probability structure on the computational
path space. The evolution of the machine is a Markov process (see section 1.3) with the
state space A x S x Z and stochastic evolution kernel determined by the local probability
structure p. Hence any input gives a set of possible outputs each of them being assigned
a probability of occurrence.

Definition 1.1.14 (BPP class). Let € € (0,1/2). A predicate & (hence a language &)
belongs to the BPP class if there exists a probabilistic Turing machine M such that for
any a € A}, 7, < poly(Ja|) and

o if o € &, then P(Z(a) =1) > 1—¢, and
o ifa ¢ Z, then P(#X(a)=1) <e

Remark 1.1.15. Repeating the computation of the machine M on the same input «, it can
be shown that the definition of the class BPP does not depend on the specific chosen e.



6 CHAPTER 1. TURING MACHINES, MARKOV CHAINS, DIRECTED GRAPHS

1.2 Directed graphs and random walks

In the next section we will show how a probabilistic Turing machine can be connected
to a random walk on a directed graph. The main purpose of this section is to introduce
notation and definitions related to directed graphs and Markov chains.

1.2.1 Directed graphs

A directed graph (or di-graph for short) G = (G°, G*, r, s) is the quadruple of a denumerable
set GO of vertices, a denumerable set G' of directed edges and a pair of range and source
functions, denoted respectively r and s, i.e. mappings r, s : G — G°. In the sequel, we only
consider graphs without loops (i.e. not containing edges o € G' such that r(a) = s(a))
and without multiple edges (i.e if @ and  are edges verifying simultaneously s(«) = s(5)
and r(a) = r(B) then a = 3, in other words, the compound map (s,7) : G' = G° x G is
injective). With these restrictions in force, G! can be identified with a particular subset
of GY x G® and the functions r and s become superfluous because they are trivial i.e
s((z,y)) = x and r((z,y)) = y. The corresponding directed graph is then termed simple.

Remark 1.2.1. Although often used interchangeably in common language, directedness and
ortentation denote distinct notions in graph theory : directedness is a property encoded
into the set G! of allowed edges; orientation is an assignment of plus or minus sign to every
edge (viewed as the set — not the ordered pair — of its endpoints). On defining a map
L:G' - G x G by G!' 3 a = (z,y) — t(a) = (y,7) € G x G° (this map reverts the
orientation of an edge), we observe that for an oriented but undirected graph, the range of
1 is G'; for a directed graph, the range of ¢ can contain elements in G° x G°\ G!. In both
cases, the map ¢ is involutive. An undirected graph can be viewed as a directed one such
that if  := (x,y) € G' then (o) = (y,z) € G', i.e. the set of edges G' is a symmetric
subset of the Cartesian product G° x G°.

We also define, for each vertex y € G, its inwards degree by
deg”(y) = card{a € G' : r(a) = y},
and its outwards degree by
deg™ (y) = card{a € G' : 5(a) = y}.

If the graph is undirected, then deg® (y) = deg™ (y) = deg(y) and we simply say the degree
of y.

The graph G is said to be connected — or transitive — if for any vertices x, y € G° there
exists a finite sequence o = (aq, - -+ , ag) of composable edges a; € G, fori=1,--- |k, k €
N, with s(ay) = x and 7(ay) = ¥y, such that r(o;) = s(a;;1) € G forall i =1,--- [k — 1.
The above sequence « is called a path of length k = || from x to y, the set of all paths of
length k is denoted by G*.

Remark 1.2.2. Notice that G* is the set of paths composed from k composable edges, in
general strictly contained into the Cartesian product xF_ G*.
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We will always suppose the graphs to be connected. A graph will be said to be genuinely
directed if there exist vertices z,y € G° such that (z,y) € G' but (y,z) ¢ G

A directed graph is said to be locally finite if for all y € G° the inwards and outwards
degree are finite :

deg™(y) < oo and deg™ (y) < oo for all y € G°.
It is said to have bounded geometry if it is uniformly locally finite, namely

sup deg® (y) < oo and sup deg™ (y) < oo.
yeGO yeGO

From a combinatorial point of view, a directed graph with unbounded geometry can be
considered as a pathological object in the sense that it does not describe the dynamics of
any Turing machine.

In chapter 4, we explain in details how a directed graph (resp. undirected) is naturally
endowed with a semi-groupoid (resp. groupoid) structure.

1.2.2 Markov chain : notation and definitions
Markov operator, transition matrix and canonical path space
Let X be a denumerable set. We denote by £>°(X) the space of real bounded functions on
X.
Definition 1.2.3. A linear operator P : (*(X) — (>(X) is called Markov if
e Pf >0 whenever f >0, and

e P1 =1 where 1 is the constant function equal to 1.

We denote by P™ the n'® power of operator P with the convention P° = id. We can
also denote for alln > 0 and z,y € X

P (z,y) = Pl (x).

Formally, P = (P(x,y))syex is also called a transition matriz. Obviously, we have

Pf(x) = ZP(x,y)f(y) for all x € X.

yeX

A non-negative operator P which satisfies the condition P1 = 1 is termed stochastic. Some
authors consider sub-stochastic transition matrices, .e. those satisfying ZyeX P(z,y) <1,
but such a transition matrix can be easily extended (by extending the space X) to a
stochastic one. If not explicitly specified, the transition matrices will always be assumed
to be stochastic.

If i is a probability measure on X we will use the standard notation uP for the prob-
ability measure on X defined by the relation

pP(y) = ) P(z,y).

zeX
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Definition 1.2.4 (Markov chain). A triple (X, P, ), where P is a Markov operator acting
on (*(X), and € a probability measure on X, is called a Markov chain on the state space
X with transition operator P and initial distribution 6.

In the sequel, we will often choose a specific point 0 € X and set 6 = d, where ¢, denote
the Dirac mass at point 0. Then, the notation (X, P, ) is often abbreviated as (X, P).
Denoting by

o X the path space, i.e. the set defined as X := {(y,)n>0 : yn € X}, and
e X the o-algebra generated by cylinders,

we endow the pair (X°°, X*°) with the canonical probability measure P? induced by the
Markov operator P and the initial distribution 6. If § = 6, we write P? instead of P%.
We will denote by (M,,)n>o the X-valued sequence of random variables of law P?.

Basic assumptions on Markov chains

A Markov chain (X, P,0) is irreducible if for all z,y € X there exists n > 0 such that
P™(x,y) > 0. Without loss of generality, we will always assume that the Markov chain is
irreducible.

We denote by cy(X) the subspace of ¢>°(X) of functions that are finitely supported.
A Markov operator is said to have finite range if Pf € co(X) whenever f € ¢y(X). This
assumption will be usually satisfied, however, sometimes it can be a restriction so that it
will be specified when needed.

General properties of a Markov chain

Suppose that (X, P,#) is irreducible, then (X, P, ) is said to be recurrent if and only if
for some — hence for all —x € X, P*(3n > 0: M,, = x) = 1. A Markov chain is said to
be transient if and only if for some — hence for all —xz € X, P*(3n >0: M, =z) < L.
By definition, an irreducible Markov chain is either recurrent or transient. The property
of being recurrent or transient is termed the type of the Markov chain.

We denote by G the Green function defined for z,y € X by

Gla,y) =Y P"(z,y).

n>0

A well known criterion related to the type of an irreducible Markov chain in terms of
Green function is given by

1. G(x,y) = oo for all (for some) z,y € X <= (X, P,0) recurrent,

2. G(z,y) < oo for all (for some) z,y € X <= (X, P, ) transient.
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1.2.3 Markov chain adapted to a graph structure

In this section, we aim at describing the relationship between the combinatorial notion of
graph and the stochastic notion of Markov chain.

Let G = (G° G',r,s) be a connected locally finite directed graph. A simple way to
define a Markov chain (X, P) adapted to G is to set X = G° and define

1 1
P(z,y) =q o€ v #(@,y) € G
0 otherwise.
This Markov chain is called the simple random walk on the graph G. The graph being
locally finite and connected, such a Markov operator is irreducible and has finite range.
More generally, we can consider a Markov operator P such that for each z € G°

P(z,y) € (0,1] if (z,y) € G',
P(z,y) = 0 otherwise,

with the additional property > .co P(z,y) = 1. Such a Markov chain is then called a
random walk on the graph G. The properties of irreducibility and having finite range are
still satisfied.

Conversely, if we are given a Markov chain on a denumerable set X, we can construct
a directed graph for which the Markov chain is adapted. More specifically, we set G° = X
and G' is the subset of G° x G° such that G' 5 a := (z,y) if and only if P(z,y) > 0. If
the Markov operator P is irreducible and has finite range, then the corresponding graph,
denoted by G(P), is connected and locally finite.

1.3 Random walks on di-graphs induced by a PTM

Contrary to the traditional questions arising from the computation theory, we are merely
interested in the dynamics of a Turing machine and the amount of the specific information
produced by them. Therefore, we suppose that the set of final states is empty so that such
a Turing machine never halt.

We only show how, with a probabilistic Turing machine, we associate a random walk
on a directed graph (the dynamical system induced by a deterministic Turing machine is
a slight adaption of the one introduced in section 1.1.1).

Let G” = A} x S X Z be the set of vertices. The set of edges G' is defined as a subset of
G° x G by the condition (z,y) € G!, where G° 3 z := («, s,d) and G° 5 y := (/, 8, d'),

is an edge if and only if there exists i € {1,--- ,r} such that u;(ay, s) = (@, $,d) and
s =3
d = d+d
o = (0417 T, g1, &7 i1, 7a\a|)-

We can define the range and source functions 7, s : G — G° by r((z,y)) = y and s((x,y)) =
x for all (z,y) € G'. Finally, the directed graph, denoted by G(M) = (G° G!,r,s), is
termed the directed graph induced by the probabilistic Turing machine.
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The graph G(M) is connected if r > 1, i.e. the transition function consists of at least
one branch, and is locally finite because the transition function has a finite number of
branches.

The local probability structure on the transition functions gives rise to a Markov oper-
ator. More precisely, P(x,y) = p; if the branch i can be chosen with probability p;.

As a conclusion, we can study probabilistic Turing machines from the point of view of
random walks on directed graphs.



Chapter 2

Martin boundary of a directed graph

The following chapter is devoted to the determination of the boundaries associated with
random walks on an example of directed graph. This directed graph can be regarded as
a constrained subgraph of the Cayley graph of Z2. In a first part, we define the Martin
and the Poisson boundaries and recall some well known examples for which the boundaries
are completely described. In a second part, the main result of this chapter is presented
without the details of computations which are postponed to appendix A.

2.1 Boundaries of a Markov operator

The Poisson and Martin boundaries are intimately related. The first can be defined as
a pure measure theoretical object, many criteria exist to decide of its triviality (see for
example [KV83, KW02] in the case of random walks on groups or homogeneous spaces and
[Kai92] for more general criteria).

The Martin boundary is defined with the help of a compactification (see for instance
[Saw97]), and that is why the latter is a more geometric construction. Alternatively, the
Poisson boundary can be seen as a measure subspace of the Martin boundary. Thus, in case
the Poisson boundary is not trivial, the Martin boundary gives an interesting geometric
insight (see [Saw97]).

2.1.1 Martin boundary
Geometry of the space of surperharmonic functions

In this section we always do the usual assumption of irreducibility of the Markov chain
(X, P).

A function f € (*(X) is superharmonic if Pf < f and harmonic if Pf = f. We
denote by S* the set of non-negative superharmonic functions and by H™ the subset of
non-negative harmonic functions. It is well known that ST is a convex cone with vertex
0, i.e. it is convex and if u € ST\ {0}, then the whole half-line {au : a > 0} is contained
in S*.

11
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A base of a cone with vertex v is a subset B such that each element of the cone different
from © can be uniquely written as v + a(u — v) with @ > 0 and u € B. Let us fix a base
point o € X, then the set

B={ueS":ulo) =1}

is a base of the cone S*.
Finally, the set St can be endowed with the topology of pointwise convergence as a
subset of the space of all real functions.

Theorem 2.1.1. Let (X, P) be an irreducible Markov chain. Then,
1. 8" is closed and B is compact in the topology of pointwise convergence.
2. If P has finite range, then H* is closed.

The hypothesis of finite range is sufficient but not necessary. Nevertheless, note that
the subset H3° of bounded positive harmonic functions is always closed in S* by dominated
convergence.

Since B is a base of the cone ST, a description of the base yields a description of
the cone. Moreover, the base considered is convex and compact so that we only need to
describe the set ext(B) of extremal points of B. Recall that extremal points are elements
of B which cannot be written as a convex combination au; + (1 — a)up with 0 < a < 1 of
distinct elements u; and uy of B.

It is easy to check that the function x — G(z,y) is positive superharmonic for all y
and strictly superharmonic at the point y

Y Ple,2)Glzy) =) Y Plr,2)P"(zy)

zeX n>0 zeX

= P (z,y)

n>0

= G(x,y) — 0. (y) < G(x,y)

However, there is no reason for the function = — G(z,y) to belong to B. Hence, we
normalize it.

Definition 2.1.2. 1. The Martin kernel is defined by
K(r,y) = =—=

for z,y € X.
2. A function h € HT is called minimal if

e h(o) =1, and

e if hy € H" and h > h; in each point, then % is constant.
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Theorem 2.1.3. If (X, P) is transient, then the extremal elements of B are the Martin
kernels and the minimal harmonic functions :

ext(B) = {K(-,y):y€ X} U{h € H' : h is minimal }

Let us give two criteria to better understand the notion of minimal harmonic function.
Let h be a positive, non-zero superharmonic function. We can define the so-called Doob’s
h-process (see [Doo59)), it is the Markov chain with transition operator P, defined by

Pia.) = FE0)

The following simple properties can be easily checked.
1. The operator P, is stochastic if and only if h is a positive, non-zero harmonic function;

2. a function u is superharmonic — resp. harmonic — with respect to P if and only if
@ = u/h is superharmonic — resp. harmonic — with respect to P,.

We recall that H>* = H>(X, P) denote the space of bounded harmonic functions.

Lemma 2.1.4. The space H*™ is trivial — contains only constant functions — if and only
if the constant harmonic function 1 is minimal.

The following corollary provides with a characterization of minimal harmonic functions
in terms of bounded harmonic functions of the Doob’s h-process.

Corollary 2.1.5. A function h € Bt is minimal if and only if the space of bounded
harmonic functions with respect to Py, is trivial.

According to Choquet representation theory, if x € K, where K is a metrizable compact
convex subset of a topological locally convex vector space, then there exists a probability
measure v on the set ext(K) of extremal points such that

T = / cv(dc).
ext(K)

Nevertheless, the measure v is not unique in general if K is not a simplex — see for example
[Phe66]. Therefore, we would need to prove that a certain subset of the base B is a simplex
and we would obtain an integral representation of non negative superharmonic functions.
However, in this approach, the stochastic meaning of the Martin boundary is missed. That
is why many authors usually prefer to prove the integral representation theorem in terms
of Martin compactification which yields an extra result related to the convergence of the
Markov chain to the boundary.
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The Martin compactification

Given the countably infinite set X, by a compactification of X we mean a compact topo-
logical Haussdorff space X containing X such that

e the set X is dense in X, and
e the induced topology on X is discrete in X.

The set X = X \ X is called the boundary. The set X can be compactified in many
equivalent ways. Let us give one of them.

Theorem 2.1.6. Let F be a denumerable family of real bounded functions on X. Then
there exists a unique, up to homeomorphism, compactification X = X of X such that

1. every function f € F extends to a continuous function on X, and

2. the family F separates the boundary points : if £,m € X \ X are distinct, then there
exists a function f € F with f(&) # f(n).

The proof of this well known theorem is of general interest, that is why we will give its
main steps.

Proof. First, let us prove the existence of such a compactification. For x € X, we write 1,
for the indicator function of the point . We add all those indicator functions to F, setting

Fr=FU{l,:z€ X}

For each f € F*, there is a constant C such that |f(z)| < C for all z € X. Consider the
topological product space

Or = [ [-Cr.Cil ={¢: F* = R:¢(f) € [-C},Cy] for all f € F*}

ferF*

The natural topology is the one of pointwise convergence. A neighborhood base at ¢ € I1x
is given by finite intersections of sets of the form {¢ € IIx : [(f) — &(f)| < e}, as f € F*
and £ > 0 vary.

We can embed X into Il via the map

X sz i(x) = ¢, € I, where ¢,.(f) = f(z) for f € F.

If ,y are two distinct points of X, then ¢,(1,) = 1 # 0 = ¢,(1,). Therefore, i is injective.
Moreover, the neighborhood {¢ € TIx : [t)(1,) — ¢.(1.)] < 1} of i(z) = ¢, contains none
of the functions ¢, for y # x. This means that i(X'), endowed with the induced topology,
is a discrete subset of IIz. Thus we may identify X with i(X).

Now we define X = Xz as the closure of X in the compact topological space Ilx.
Hence, X is a dense discrete subset of X which is the type of compactification we were
looking for.
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Each £ € X \ X = 09X is a function F* — R with |[¢(f)] < Cf. By the construction
of X , there must be a sequence (z,) of distinct points in X that converges to &, that is,
f(zn) = @2, (f) = &(f) for every f € F*. Let us define f(§) = £(f). Observe that since
¢z, (1,) = 0 when z,, # z, then we have 1,(§) = £(1,) = 0 for every x.

If (x,) is an arbitrary sequence in X which converges to £ in the topology of X , then
for each f € F one has

fan) = ¢2,(f) = () = (£)

thus, f becomes a continuous function on X. Finally, F separates the points of 0.X : if
&,m € 0X, then they are also distinct in their original definition as functions on F*. Hence

there is f € F* such that £(f) # n(f). Since £(1,) = n(1,) = 0 for every x, we must have
f e F. Thus, f(§) # f(n).

The uniqueness part of the proof is classical and can be found in [Woe(09]. The identity
7 : X — X extends continuously to a map from X — X, and we have to check that 7 is
actually an homeomorphism. ]

A different usual construction of the Martin compactification is given by the completion
with respect to a certain metric which depends on the family F* — see [Saw97] or again
[Woe09].

Definition 2.1.7 (Martin compactification). Let (X, P) be an irreducible Markov chain.
The Martin compactification of X with respect to P is defined as X (P) = Xz, where F is
the family of functions

F={K(,):z€X}

The Martin boundary OX = X(P)\ X is the boundary of the compactification.

Lemma 2.1.8. If (X, P) is transient and § € 0X, then K(-,§) is a positive superharmonic
function. Moreover, if P has finite range, then the function K(-,&) is harmonic.

Proof. We say that a sequence (y,) tends to infinity if for all finite subset A C X, there
exists an integer N > 0 such that for all n > N, y, ¢ A. By construction, there ex-
ists a sequence (y,) in X, tending to oo such that K(-,y,) — K(-,§) pointwise in X.
Thus, K(-,€) is the pointwise limit of superharmonic functions K(-,y,) and consequently
a superharmonic function.

Now, in the case where P is of finite range

0z (Yn)

PK(z.yn) = ), Pl.9)K(y.y.) = K(x,y) - K(0,yn)

y:P(z,y)>0

If the summation is finite, it can be exchanged with the limit as n — oco. Since, y,, # x for
all but finitely many n, we get that PK(z,&) = K(z,£). O
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Convergence to the boundary

The interesting meaning of the Martin boundary is contained in the following theorem.
As a compact metric space, X (P) carries a natural o-algebra, namely the Borel o-algebra.
Speaking of a X (P)-valued random variable, we mean a measurable function from the path
space (X x> P?) to X(P).

Theorem 2.1.9 (Convergence to boundary). If (Z,)n>0 s a X-valued transient Markov
chain, with Markov operator P, then there exists a random variable Z., taking its values
in 0X such that for each x € X,

P*(lim Z, = Z) = 1,

n—o0

where the limit has to be understood as a limit in the topology of X(P)

The Poisson-Martin integral representation theorem

From the convergence theorem, we can construct a probability measure on the boundary
0X. For all measurable subsets B of X we define

v.(B) = P*(Z, € B).

Thus, by definition, if f: X — R is a v,-integrable function, then

B (f(Zs0)) = /X F(E)valde).

Actually, we have the following finer result.

Theorem 2.1.10. The measure v, is absolutely continuous with respect to v, and ( a ver-
sion of ) its Radon-Nikodym derivative is given by i%z = K(z,-). Namely, if B C X is a
Borel set then,

v (B) = /B K (2, €)wo(dE).

We have now arrived at the point where we can give the second main theorem of the
Martin boundary theory, after the one dealing with the convergence to the boundary.

Theorem 2.1.11 (Poisson-Martin representation formula). Let (X, P) be irreducible and
transient, with Martin compactification X and Martin boundary 0X. Then for all h €
ST(X, P) there exists a Borel measure v" on X such that

h(z) = /X K (z,6)v"(d€) for every x € X.

If h is harmonic then supp(v") C 0X.
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We refer the reader to [Woe09] for a proof of this fact. Nonetheless, let us say that in
the proof of this theorem a natural choice for the measure v" in the integral representation
appears : for a Borel set B C X

V"(B) = h(0)P%(Z € B) (2.1)
where P9 is the probability measure on the path space induced by the h-process.

Theorem 2.1.12. Let h be a minimal harmonic function. Then there is a point § € 0X
such that the unique measure v on X which gives rise to an integral representation h =
Jx K(-,n)v(dn) is the Dirac mass v = 0.

We define the minimal Martin boundary 0Xmin as the set of all £ € 90X such that
K(+,¢) is a minimal harmonic function. From theorem 2.1.12, we know that every minimal
harmonic function arises in this way. It can be shown that the minimal Martin boundary is
a Borel set of X. By now, we can give an integral representation theorem with uniqueness
of the representative measure.

Theorem 2.1.13. If h € ST, then the unique measure v on X such that
V((?X \ aXm;n) =0

and

h(z) = /)A{K(I,g)v(df) forallz e X

is given by v = v" defined by equation (2.1).

2.1.2 Poisson boundary

We give in this section the definition of the Poisson boundary regarded as a measurable
subspace of the Martin boundary. The Poisson boundary is a theoretical measure ob-
ject and it can be constructed without the help of the Martin boundary (see [Kai92] for
example). In appendix B, the Poisson boundary will be defined as the space of ergodic
components of a dynamical system on a measure space arising as an inductive limit of
measure spaces.

Poisson transform

If v is a Borel measure on 90X, then

h= [ K(,§v(dE)

0X

defines a non-negative harmonic function. This relies on the monotone convergence theorem
and the fact that K (-, ) is harmonic. Moreover, by theorem 2.1.11, if u € ST, then we
have

u(x) =Y K(z,y)v"(y) + K (2, )v"(d€)

yeX 8erin
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Set g(x) = Y ,ey K(z,y)v*(y) and h(z) = faxmi" K(z,&)r*(d§). Then as we have just
observed, h is harmonic, and " = Vigx by theorem 2.1.13.

It can be shown that ¢ = Gf with f = u — Pu so that we obtain the so-called Riesz
decomposition of superharmonic function v = Gf + h with extra informations on the
harmonic part.

In the definition we gave of a Markov operator, it is said that P1 = 1. Hence, the
constant function 1 is harmonic. Setting B = X in theorem 2.1.10, we see that the
measure on X which gives rise to the integral representation of 1 in theorem 2.1.13, is the
measure v,.

We consider the space L'(0X, v,) of v,-integrable functions on 90X . Let ¢ € L1(0X,,),
then the Poisson integral of ¢ is the function

hz) = [ K(xz,§)o(&)vo(dS) = - P(E)va(dS) = E*(¢(Z)), v € X.

0X

It is easy to see that h is a bounded harmonic function if ¢ is supposed to be bounded.
Conversely, the following holds.

Theorem 2.1.14. Fvery bounded harmonic function is the Poisson integral of a bounded
measurable function on 0X, in symbols

H® = L>(0X, 1v,).

Convergence to the Poisson boundary

We finish this section with a convergence theorem which gives the stochastic meaning of
the Poisson boundary. This theorem has a more general version in terms of asymptotic
o-algebra.

Theorem 2.1.15 (Probabilistic Fatou theorem). Let ¢ € L>(0X,v,) and h be its Poisson
integral, then
lim h(Z,) = ¢(Z), Vo-almost surely.

n—oo

2.1.3 Examples : the cases of Z" and free groups

An important part of the results related to boundaries has been given for random walks
on groups of finite type.

Random walks on the lattice Z"

One of the first example of computation of the Martin boundary concerns random walks
on the lattice Z". In [NS66], Ney and Spitzer describe the Martin boundary in the case of
a Markov operator with a finite first moment condition. Also, they assume that the drift
is non zero.
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Let 1 be a probability measure on Z”, we can define for all z,y € Z" the transition
operator by P(z,y) = p(y —x). In the sequel we assume that P is irreducible. If u satisfies

D lzlulz) = [«[P(0,x) < oo,

zeZN zeZN
where |z| denotes the Euclidean distance of x from the origin, we can define the drift by

v = Z ru(r) € ZV.
zeZN
Finally, we define on Z" a real function ¢ by
du) = Y P(0,z)el",
zeZN

where (-, -) denotes the usual scalar product. We define the two following sets
D={uecZ":¢u)<1}and 0D = {u € Z" : ¢(u) = 1}.

For their proof, Ney and Spitzer need the additional assumption (&); every point of 0D
has a neighborhood in which ¢ is finite. Under this assumption, it can be shown that the
set D is compact and convex, the gradient

Vo(u) = Z 2 P(0, )
zeZN

exists everywhere on D and does not vanish on its boundary dD. Furthermore, the map
Vo(u)
[V(u)l

determines a homeomorphism between 0D and 0S, where S is the (N — 1)-dimensional
unit sphere. More precisely, the mapping

u —

xZ

x —
1+ |z

maps Z¥ on a countable subset S of the N-dimensional unit ball, moreover Z~ and S are
homeomorphic — for the discrete topology. We complete the set S with respect to the
Euclidean metric, and the lattice Z" with respect to the metric

x Yy
L+]z| 1+ y||

p(r,y) =

Then, the completion ZV = Z~ U 9Z" is homeomorphic to S, and 9Z" is homeomorphic
to 0S. The main theorem of [NS66] is given below under the conditions of irreducibility,
non zero drift and (é).
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Theorem 2.1.16. For x € ZV, define f, : ZV — R by

fa(y) = % fory e ZN, and

fz(&) = el&2) for & € OZN,

where o : OZY — 0D is the homeomorphism defined as the composition of the two homeo-
morphisms OZN <+ S and S + 0D defined in the above discussion. Then the function
f is continuous on ZN.

Moreover, the family of function {f, : x € Z"} obviously separates the points of the
boundary 0Z". In other words, the Martin boundary of such a random walk is homeomor-
phic to a (N — 1)-dimensional Euclidean sphere. Furthermore, every point £ € 9Z" are
clearly minimal, consequently, the minimal Martin boundary is equal to the whole Martin
boundary (and hence homeomorphic to the (N — 1)-dimensional spheres). In the proof
of this theorem, Ney and Spitzer establish a local limit theorem which gives rise to fine
estimates of the Green function.

For N = 3 and p a probability measure with a finite second moment, the case of zero
drift is solved in [Spi76], part 26.1. In this case, the Martin boundary is trivial. The
generalisation for N > 4 is immediate under the condition of a probability measure with
finite moment of even order 2m > N — 2. For N = 1 or N = 2, the Martin boundary is
obvious because the random walk is recurrent.

In [Uch98], precise estimates of the Green function are given. Those estimates depend
on the dimension and moment conditions.

Finally, the Poisson boundary is trivial in all cases, see for instance [CDG60)].

The free group

In the sequel, we denote by F; the free group on d generators. In the context of free
groups the description of the Martin boundary is obvious. The more general situation of
homogeneous trees is studied in [Woe95]. The description of the Martin boundary of a
homogeneous tree T" involves a transitive action of a closed subgroup I', namely the group
of all automorphisms (self-isometries) AUT(T") of the metric space (T',d) with d the usual
graph metric on 7. In this context, a random walk on 7' can be seen as the realisation of a
random walk on I'. The description of the Martin boundary in the context of free groups
has the advantage to reveal the essential ideas without involving tedious details.

Let Fy = <aic1, cee ailﬂ> be the free group with d generators. For every vertex z,y € Fy,
there is a unique geodesic segment Ty. We denote by d the usual graph metric. A ray is
an infinite reduced sequence R = (z;);>0 of successive neighbours. Two rays R and R’ are
said to be equivalent if they differ only by finitely many vertices. An end of the tree Fy
is an equivalent class of rays. We denote by £ the set of ends, and we write Fy = F,U €.
For every e € £ and x € F, there exists a unique ray ze starting at x which represents e.

Let us fix a reference vertex o € Fy. If £, € Fy, then the confluent ¢ = ¢(§,n) is the
last common vertex on of and o7, unless & =7 € £, in which case we set c(&,n) =& We
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set
d(o,c), if c € Fy, and
oo, otherwise.

el = {

Noting that (£]n) > min{(£[(), (¢|n)} for all &, (,n € f‘d, we define the metric p on F, by

_ e*(ﬁ\n)y if 5 7£ U

Thus f‘d becomes a totally disconnected compact space with F; open, dense and discrete.

Let o be a probability measure with a finite support generating F; as a semigroup.
We can define the transition operator P by P(x,y) = u(z'y) for z,y € Fz. We set
1, = inf{n > 0: M, = y} and define II(x,y) = P*(1, < 00), for x,y € Fy, the probability
to hit y, starting from z, in finite time. For a group, the Martin kernel is given by

K(z,y) = =

This equality is also available in the case of a transitive action of a group on a metric space
preserving the Markov operator.
Moreover, in the particular case of free groups, we observe that for any £ € £

(z,y,) Iz, &) 11, yn)

H<0a yn) H<07 f) H(f,yn)'

This property comes from the O-hyperbolicity of the free group F,. As a consequence of
this formula, we have the following theorem.

Theorem 2.1.17. For allx € ¥4 the function K(z,-) extends continuously to a function on
F,. Moreover, for £ #n € &, i.e. such that p(&,m) > 0. there exists two points x1,xs € Fy
such that K(xz1,€) # K(x2,m). In other word, the Martin boundary is homeomorphic to &.

In this example, we have seen how the group structure and the hyperbolicity simplify
the description of the Martin boundary. In the context of free groups, the Poisson boundary
is isomorphic to the Martin boundary. We refer the reader to [Kai00] for a general study
of the Poisson boundary in the case of the hyperbolic groups.

2.2 Boundaries of the simple random walk on a di-
graph
In [CPO3], transience and recurrence are studied for the simple random walk on various

types of partially horizontally oriented regular lattices. In this paragraph we aim at going
further in the transient case by determining the Martin boundary of such a random walk.
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2.2.1 Definition of the graph H

We consider two dimensional lattices, i.e G = Z? and G!' is a subset of nearest neighbor-
hoods in Z2 We decompose G° = GY x GY into horizontal and vertical directions. More
precisely, if v.€ G° = Z?, then v = (v1,v2) with v; € G? the usual coordinates in Z?. Let
€ = (€y)yecq be a {—1,0, 1}-valued sequence of variables.

Definition 2.2.1. We call e-horizontally oriented lattice G = (G, €), the directed graph
with vertex set G = Z? and edge set G' with the condition o = (u,v) € G' if and only if
one of the following holds

1. either v1 = uy and vy = uy =1
2. or vy = uy and v = Uy + €,

Note that G is connected if and only if 1 and —1 are both in the range of e.

Let € be the sequence defined by ¢y = 0 and ¢, = sgn(y) where sgn is the sign function,
then, we denote by H the e-graph induced.

This definition is due to [CP03], nevertheless we should replace this example in the
context of constrained subgraphs of the Cayley graph of Z%. Let S = {#4e;,+e} be the
canonical set of generators of Z2. Let f be a constraint of the Cayley graph of Z2, that is
a function f : Z* x S — {0,1}. In the example considered here, the constraint f is defined
for (z,5) € Z* x S as follows

1 if s = :]:527
B or s =¢7 and (z,&9) >0
f(Z,S)— or s = —¢&4 and <Z,€2> <O

0 otherwise,

where (-, -) denotes the standard scalar product in R? with respect to the canonical basis
(¢1,2). The constrained subgraph is the directed graph (G° G',r, s) where

° G0222’
e G'={(2,2)eG" xG": f(z,2/ — 2) =1},

e the source and range functions s,r : G! — G are defined such that s((z,2')) = 2
and r((z,2')) = 2/ for all (z,2') € G

As a directed graph, the set of paths of finite lenght can be endowed with a semi-groupoid
structure (see chapter 4).

2.2.2 Poisson boundary
The case of the simple random walk

The proof of the following proposition is an adaptation of ideas involved in the proof of
the triviality of the Poisson boundary of random walks on Abelian group due to Choquet
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(0,0)

=
|

Figure 2.1: The half plane one-way lattice H

and Deny (see [CD60]) or more specifically we will adapt the proof of theorem T1, chapter
VI, in [Spi76].

Proposition 2.2.2. The Poisson boundary of the simple random walk on H is trivial, i.e
all bounded harmonic functions are constant.

FElementary proof. Let h be a bounded harmonic function and a = (a,0) a vector of H.
We set g(x) = h(x) — h(x — a), then g is obviously harmonic

Pg(x) = h(z) = > P(z,y)h(y — a).

Thus, setting z = y — a, substituting in the sum, and noting that P(z,z+a) = P(z —a, z)
because P is invariant by horizontal translations, we get

Pg(x) = h(z) — Z P(x —a,2)h(z) = h(z) — h(x — a) = g(x).

zeH

Now let sup, ey g(z) = M < oo, choose a sequence z,, of points in H such that

lim g(x,) = M,

n—0o0

and let
gn(z) = g(x + x,).
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. . 1
Since ¢ is bounded, one can select a subsequence 2 from the sequence x,, such that, for
a certain r = 1,

lim g(z; + (V) exists.
n—oo

However, we can do better since the vertex set of H is an Abelian discrete group. We can
take a subsequence 22 of the sequence 2 such that g(z+ mg)) has a limit at x = 7 and
also at x = x5. This process can be continued. By the Cantor’s diagonalisation principle,
H being countable, there exists a subsequence n; of positive integers and a real function g*
on H such that

lim g, (2) = g"(2)
— 00
for every x € Z. Moreover, it is obvious that

g"(0) = M, and ¢g*(x) < M for all x € H.

Furthermore, the function g* is harmonic by dominated convergence.

Recall that the simple random walk on H is irreducible because the graph is connected.
Thus, applying the maximum principle to the harmonic function implies that ¢g* = ¢*(0) =
M.

Let r be any positive integer and € > 0, we can find an integer n large enough such
that

gn(a) > M —€; g,(2a) > M —€; -+ ; go(ra) > M —e.

Going back to the definition of g, and adding those r inequalities, we obtain
h(ra+ x,) — h(z,) > r(M —€)

for n large enough. We can show that M can not be strictly positive. Indeed, if it was,
the integer r could have been chosen so large that r(M — €) exceeds the least upper bound
of h. Therefore, it follows g(z) < M < 0 and h(z) < h(x — a). Obviously, we can do the
same reasoning for —h and we would have h(z) > h(z — a).

Setting B(y) = h(xg,y) for some g, we show that the bounded harmonic function his

constant by the maximum principle.
O

Reducible random walk

In this paragraph, we give an example of reducible random walk for which the Poisson
boundary is not trivial. In this example, the state space is the upper half plane X = ZxZ,,
and we denote by (e, ep) the canonical basis of Z?, i.e. e; = (1,0) and e; = (0,1). In
addition, we set X_ =7 x {0}. Let = ¢ X_, the Markov operator is given for y € X by

qif y=2x+ ey,
pify=ux+ey,
rify=x— ey, and
0, otherwise,

P(a:,y) =
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(0,0)
¢ O U O U O U

Figure 2.2: A reducible example with a non trivial Poisson boundary.

where p,q,r € (0,1) are such that p+ ¢+ r = 1. If x € X_ then we set P(z,z) = 1 and
P(z,y) = 0 for y # x. This is summarized in the figure 2.2.

Let o : X — R be of the form h(z) = e where a € R? and (-,-) is the usual scalar
product induced by R2. We will show that we can find a € R? such that h is a bounded
harmonic function. Assuming x ¢ X_, we compute

Ph(z) = e (ge® + pe™ 4 re”®2)

if we set a = (ay,as) € R?. Notice that Ph(z) = h(x) for all function h and all x € X _.
Consequently, A is harmonic if and only if ge®* + pe® +re~* = 1. Moreover, h is supposed
to be bounded so that a; is zero and as is non positive. Solving ge?*2 + (p — 1)e® +r = 0,
we find two solutions as = 0 or ay = log g. As a consequence, we have exhibited a family

T

of harmonic functions h(x) = <a)x2 which are bounded if ¢ > r and unbounded if ¢ < 7.

The case of random walk on H with a drift

Looking at the proof of proposition 2.2.2, we observe that the crucial property is the
translation invariance of the operator which allow to consider the simpler problem of the
determination of the bounded harmonic functions associated with a specific random walk
on Z.

Let (py)yez be a sequence of real numbers in [0,1) and let (g,),ez be a sequence of
positive real numbers such that ¢, < 1 —p, for all y € Z. We suppose that, for (z,y) € H,
the random walk can move horizontally with probability p,, move up with probability g,
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and move down with probability 1 — p, — ¢, (figure 2.3). Bearing in mind what we have
noticed, the following theorem does not require a proof.

q; D

07

(0,0)

4j

Figure 2.3: The half plane one-way lattice H with a non constant drift.

Theorem 2.2.3. The Poisson boundary of the random walk with transition probabilities
defined as above is isomorphic to the Poisson boundary of the random walk whose transition
operator is defined for x,y € Z by

) @ if y=a+1,
Plz,y) = L—pe—Ge=r12 if y=a-1,
0 otherwise.

Consider the lattice H with the sequences of probabilities (p,)yez and (g, )yen such that
po=0,p, =pforalyeZ q=1/2 q,=¢q > %fory>0, and ¢y = 1—p—gq
for y < 0. A simple computation shows that the Poisson boundary of the corresponding
random walk on 7Z is trivial, hence, the Poisson boundary of the original Markov chain is
also trivial. Consequently, the non triviality in the half-plane example is essentially due to
the reducibility which artificially adds boundary points.

In our context, the orientation € has been fixed once for all. However, it can be chosen
randomly. If € = (¢,),ez is a sequence of independent random variables it is shown in
[CP03] that the corresponding simple random walk on (G,e€) is transient for almost all
€. This result has been generalized in [GPLNO8] for a random sequence e for which e, is
equal to 1 with probability f, and -1 with probability 1 — f, where (f,),ez is a sequence
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of stationary random variables satisfying E(fy(1 — fo))™*/2 < co. Finally, the case of a
stationary sequence € with decorrelation conditions is considered in [Pén09] and, also, the
corresponding simple random walk is shown to be transient. In those situations, the Poisson
boundary remains obviously trivial (for all orientations) since, for all y € Z, ¢, = p, = %
so that it defines a Markov operator on Z invariant by the natural Z action.

2.2.3 Triviality of the Martin boundary of H

This section is devoted to the study of the Martin boundary. In the case of the simple
random walk on H it is shown to be trivial.

Denote by (M,,),>0 the simple random walk on the directed graph G. Let (7,),>0 be a
sequence of stopping times defined inductively by 79 = 0 and

Tpy1 = inf{t > 7, +1: Mt(z) =0}

where M,, = (M,Sl), M), and we have for all z € H, P*(r, < co) = 1.
The sequence of random variables (M, ),>1 is itself a Markov chain which can be seen

as a random walk on Z with an infinite range Markov operator. It will be referred to as
the induced Markov chain or the embedded Markov chain.

Theorem 2.2.4. The Martin boundary of the embedded and original Markov chain (My,)n>0
are trivial.

The details of the proofs of these theorems are postponed to the appendix A. However,
we give here their skeleton.
We denote by 7,+(y), for s,t > 0 and y € H, the local time of (M,,),>o in y, i.e.

t—1
Nsa(y) = D Latu=y,

with the convention ), = 0. Then, the Martin kernel can be rewritten in

G(x, ) '
Ggojg if z,y € Z x {0};
K(x,y) = ) 22)
g?(ﬂ/)y + ZZEZX{O} V:c(Z)K(Z, y) otherwise
where v,(2) = P*(M,, = 2).

Proposition 2.2.5. Let z = (21,0) € Z x {0} and y = (y1,y2) € H. Then the Green
function is given by the integral

T r ly2]
G(z,y) = (27r)_1/_ e’t(yl—n)gl(—_(t;)(t) dt

where
r(t) = 55, gla) = 2222 and (1) = Re r(t)1g(r(t)).

Moreover, if we suppose that 11y, 2 converges to A € RU {£o0}, then, for all X, there
exists a constant s(\) such that
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i) G(z,y) ~ s(o0)|y; — 21|72 when y1y; 2 goes to +oo ;
2
(i) G(z,y) ~ s(A\)|ya|™" when y1y5 > converges to a real .

The first term of the second equation in 2.2 is shown to vanish whenever y € H goes to
infinity and we can prove that we can take the limit under the sum. Hence, the proposition
2.2.5 also implies the theorem 2.2.4.



Chapter 3

Cut-and-project scheme

At the begining considered as a mathematical game, the Penrose tilings have proven to
be a very rich subject of study with many applications in different areas of mathematics
and physics. Our point of view is different, since, for us, the third Penrose tiling and more
generally those tilings obtained with the help of the cut-and-project sheme, provide with
examples of constrained subgraph of the Cayley graph of Z%.

3.1 Quasi-periodic tilings and random walks

In this section, we introduce concisely the Penrose tilings of the Euclidean plane. The
second part of the section consists of the reproduction of a submitted paper. In this paper,
the Penrose and icosahedral tilings are constructed with the help of the cut-and-project
scheme. Finally, it follows the statement related to the type of the simple random walk on
the cut-and-project graph with its proof.

3.1.1 The Penrose approach
A first example of aperiodic tiling

Historically, the first quasi-periodic tiling constructed by Penrose in 1974 consisted of six
prototiles

e 3 pentagons,
e 1 star,

e 1 boat, and
e 1 rhomb.

and a set of matching rules. These matching rules insure that the tiling is quasi-periodic
and distinguish the 3 pentagons (see figure 3.1).

29
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Figure 3.1: The first Penrose tiling with six prototiles : 3 pentagons, 1 star, 1 boat and 1
rhomb, figure from [Wik12].

The kite and dart tiling

Penrose’s second tiling uses two quadrilaterals called “kite” and “dart” which can be com-
bined to form a rhomb. However, the matching rules prohibit such a combination (see
figures 3.2a and 3.2b).

The tiling with rhombs

The most interesting Penrose tiling is the one consisting of two prototiles — a thin and a
thick rhombs — with matching rules given in figure 3.3. The thin rhombs has four corners
with two type of angles : the close one of measure 27 /5 and the wide one of measure 37 /5.
For the thick rhombs, the closer angle measures /5 whereas the wider one is equal to
47 /5. This gives rise to a family of tilings whose one is given in figure 3.4. The Penrose’s
third tiling is fundamental because of its simplicity — only two prototiles — and can be
constructed with the help of the cut-and-project scheme we define in the next paragraph.

The end of this section is devoted to the cut-and-project scheme, the construction of
the third Penrose and icosahedral tilings with the help of this scheme and the statement
related to the type of the simple random walk on the cut-and-project graph induced by a
tiling. This part is the reproduction of a submitted paper.
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b CF
2

(a) The kite and the dart with matching rules. (b) The seven patterns defined by matching rules.

Figure 3.2: The kite and dart tiling, figures from [Wik12]

Figure 3.3: The two rhombs involved in the Penrose’s third tiling with their matching
rules, figure from [Wik12]
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Figure 3.4: The third Penrose tiling consists of only 2 types of rhombs, figure from [Wik12].

3.1.2 Introduction and motivations

Starting with the theorem of Pdlya stating that the simple random walk on the integer
lattice Z¢ is recurrent if and only if d < 2 — and transient otherwise — the case of random
walks on finitely generated groups has been intensively studied in the literature. However,
many questions are still open concerning random walks on weaker algebraic structures like
groupoids or semi-groupoids. Being less rigid than groups, there is no reason a priori
that those structures carry the same theory of random walks. For instance, in [CP03], the
simple random walk on an example of sub-semigroupoid on vertices of Z? is shown to be
transient.

Roughly speaking, it is obvious that undirected graphs (resp. directed graphs) naturally
carry a groupoid structure (resp. a semi-groupoid structure). As important results on
the relationship between combinatorial (or algebraic) and stochastic properties, we might
probably cite a statement due to [Dod84] on triangulation of surfaces and another theorem
on circle packing which can be found in [Woe00]. The first one asserts that if, for the
triangulation of a surface, the degree deg(z) of each vertex is such that 7 < deg(z) < M <
oo for some integer M, then the simple random walk is transient. Actually, such a property
on the coordination of the vertices implies that, as a metric space, the considered graph
has negative curvature. Besides, for a circle packing of the plane, the dual graph — which
is a triangulation — carries a recurrent simple random walk if the coordination of each
vertex is lower than 6. The class of examples presented in this paper extend those results
in at least two ways. First, in the 2-dimensional case, a tiling is no longer a triangulation
but merely a quadrangulation. Secondly, it will be obvious in the next few lines that the
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coordination of vertices can be made arbitrarily large by increasing the dimension of the
internal space without observing a transition in the type of the random walk.

The class of graphs (or groupoids) considered in this paper are obtained by tiling the
standard real vector space R? with the help of the cut-and-project scheme. More precisely,
let £ be a d-dimensional vector subspace of R, named the real space, and set Fipy = E+ the
orthogonal complement of F, called the internal space. Let K be the unit cube in ZV. An
edge in the Cayley graph of Z" is accepted and projected on E (orthogonally) if it can be
translated by a vector of ' in the unit cube K +t, t € Ej,;. Under suitable assumptions this
method gives rise to a family of tilings 7; of the space F whose prototiles are the projections
of the d-dimensional facets of the N-dimensional unit cube K. Moreover, depending on
the configurations of the space E and FE,; those tilings will be periodic, quasi-periodic
or aperiodic — the group of translations is given by E N Z". Such a tiling naturally
defines a connected graph embedded in the space R?, called the cut-and-project graph —
the vertex and edge sets are respectively the sets of vertices and sides defining the tiles.
An important example which can be constructed using the cut-and-project scheme (see
section 3.1.3 for the details or [ODKS8] for the original statement) is the Penrose’s third
tiling of R? with two type of rhombs — thin and thick — which has been initially defined
by Penrose using matching rules forcing the tiling to be aperiodic. Another interesting
example is the icosahedral tiling of R? (see section 3.1.3 for its definition) because of its
connection with quasi-crystals. The quasi-crystals have been discovered by Shechtman in
1982 observing that the diffraction patterns of an alloy of Al-Mn has a 10-fold symmetry
which contradicts the classic theory of crystallography. The theoretical description of this
discovery can be found in the seminal paper [SBGC84] of D. Shechtman, 1. Blech and J.
W. Cahn for which Shechtman has been awarded the Nobel prize in Chemistry in 2011.
The icosahedral tiling appears to be the mathematical description of this alloy (see also
[KD86)).

Avoiding technical assumptions, which are generic, the main theorem of this paper can
be written as follows (see theorem 3.1.4 in section 3.1.4 for further details).

Theorem 3.1.1. Generically, the simple random walk on the cut-and-project graph is
recurrent if dim E < 2 and transient if dim E > 3.

Given a tiling, we could also consider the dual graph; each tile is represented by a vertex
and there is an edge between two tiles if they share a side. This approach is developed
in [Tell0] for the Penrose tiling. In this example, the dual graph is shown to be quasi-
isometric to Z2?. However, the quasi-isometry is only established for the specific Penrose
tiling and the result is not surprising since the vertex degree is constant (= 4). Actually,
the main result of Telcs is the establishment of an invariance principle for the so-called
Penrose lattice. The latter is almost the same as the dual graph except that vertices are
centers of rhombs of the Penrose tiling and the metric considered inherits the Euclidean
metric of R?. Starting with the results of Telcs, we can provide with an elementary proof
of recurrence on the dual graph of the Penrose tiling and the Penrose lattice. Instead, we
concentrate on direct lattices.
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The first section is devoted to the basic notation and definitions related to tilings and
the description of the cut-and-project method. In the second section, we state the main
result of this paper precising the assumptions hidden behind the term “generically”. In
the fourth section, we present the theorem of Schlottmann and comment on its application
to prove our main result. The main result of this paper and the proof are given in section
3.1.4 and 3.1.6 respectively.

3.1.3 Tilings and cut-and-project scheme

We start with the description of the cut-and-project scheme to tile the real line. We
consider the standard integer lattice Z? of R?. Let E be an irrational line in R2, i.e.
satisfying E NZY = {0} and Ej, be the line orthogonal to E. We denote by K the unit
square in R%. Thus, the translation of K along E defines a strip (see figure 3.5).

Eint :

Figure 3.5: Quasi-periodic tiling of the real line within the cut-and-project scheme.

Consequently, we obtain a tiling of the space E with two types of segments (short and
long). The short and long segments correspond to the projections of vertical and horizontal
sides of the unit square which are entirely contained in the strip. Actually, it can be noticed
that there is an ambiguity in the example of the figure 3.5 since two opposite sides of a the
same unit square are completely contained in the strip so that we have to choose which
one we project. However, the strip (or the square K') can be translated by a vector t € Fi
in such a way that there is no ambiguity. And since the projection of the lattice Z? on
the internal space is countable, there is no ambiguity for all but countably many t € Ej:.
Such a non-ambiguous t € Ej,; will be called generic for obvious reasons.

Finally, in a non-ambiguous case, we observe that there is a unique broken line which
is completely contained in the strip. This is the theorem of [ODKS8S], recalled at the end
of this section, for the case of dimension 1.

Definition 3.1.2. A subset F' of R? is termed reqular — for the usual topology of RY
— if it is bounded, has a non-empty interior Int(F’), and is such that its closure Clos(F')
coincides with Clos(Int(F')) and its interior Int(F') equals Int(Clos(F)).
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Two regular subsets F} and Fy are termed congruent if Iy = F, up to a translation. The
property of congruence induces an equivalence relation on the set of tiles; an equivalence
class is termed a prototile.

Let 7 be a set of regular subsets of R?, we denote by P the corresponding set of
prototiles, i.e. the factor set of 7 with respect the equivalence relation of congruence.

Definition 3.1.3. A denumerable set T = {F}};c; of regular subsets is a tiling of R? if
e the corresponding set P of prototiles is finite,
o R =J,; Fi, and
e interior(F;) Ninterior(F;) if i # j € 1.

If 7 is a tiling, then a regular set ' € T is called a tile.

Let E be a d-dimensional subspace of RY, and Ei. be its orthogonal supplement in
RY. The spaces E and Ej, are termed respectively real space and internal space. We will
denote by 7 and i the canonical projections from RY = E® Ei, to E and from E @ Ein
to Ein. Thus we have the following

E T E® By —™ Bt -

We denote by K the unit cube in Z", namely

N
K:{Zazfil()SO{iSl},

i=1

where (g1, ,ex) is the canonical basis of RY.
Let p be an integer 0 < p < N and M, = {I = (i1,--- ,ip) C {1,--- ,N}} be the set of
index sets with p elements. The p-facets of the unit cube are indexed by M, as follows :

K; = {ZO@&:O&@' € [0,1]} for all I € M, and p > 0,

el

and Ky = {0}. Obviously, the unit cube K admits the decomposition K = K; + K.

We assume that the configuration RY = E @ E+ is non degenerated, i.e. for any
I={iy, - ,iq} € My, the system {r(g;),i € I} is of rank d and the system {mn(c;),7 € I°}
is of rank N — d. Actually, the two systems of vectors are simultaneously maximal or not
maximal since Fi,, = E*. Moreover, maximality is a generic property and under this
condition the d-facets of the unit cube are isomorphic to their projections on F by m, and
also, the (N — d)-facets are isomorphic to their projections on mj,.. We will denote by D;
the projection m(K7) of the d-facet related to I € M,. According to [ODKS88] the set

Ti={x+Dr:z=7(&), min(§) € TMim(Kpc +1),I € My}
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is a tiling for almost every ¢ € Ei,. whose group of translations is given by ENZ". Moreover,
T; is the projection of the unique d-dimensional faceted manifold entirely contained in the
strip K + E +t — for almost every t € Ei,;.

The Penrose’s third tiling is obtained by the cut-and-project method if we consider the
real space E in R® spanned by the two following vectors (see [ODKS88])

v1 = (1,cos(2m/5), — cos(m/5), — cos(m/5), cos(2m/5)),
and,
vg = (0, sin(27/5), sin(7/5), — sin(7/5), — sin(27/5)).

For the icosahedral tiling of R* — see [KD86] —, the vector subspaces E and E,; of R®
are defined with the help of projectors (which are both given here for the sake of simplicity)

Vi 1 -1 -1 1 1
1 v5 1 -1 -1 1
oL 1 Vs 1 -1 1
o5 -1 —1 1 45 1
-1 -1 -1 1 1
1 1 1 1 15

and

1 I -1 V6 -1 1 -1
2/5 1 1 -1 v56 -1 -1
-1 1 1 -1 5 -1
-1 -1 -1 -1 -1 5

Consider a situation for which the set 7; is a tiling of some d-dimensional vector space
E. We can define the cut-and-project graph as the projection on E along Ej. of a certain
constrained subgraph of the Cayley graph of the integer lattice Z". Let us denote by
H; = K + E + t the strip parametrized by a vector t € Ej,. Also, we denote by § =
{#e; : 1 < i < N} the canonical set of generators of Z¥. A constraint is a function
f:ZN xS — {0,1}. In our context, we consider the constraint f defined for (v, s) € Z¥ xS
by f(v,5) = Lgxm(v,v+s). i

Let & € #; and denote by GJ = {&}. We define the set G| by

N
Gi=J U {€c+ae): G, f(&qe) =1},

i=1g;e{-1,1}

and the set GY by

N
GI=Giu [l U {&+as €eGy f(€ qe) =1}

1=1g;e{-1,1}
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One can easily define the range and source functions 7,51 : G! — GY: for an element
(€,1) € Gl, the source function is defined by s((£,7)) = & whereas the range function is
given by 7((€,7)) = 1. Thus, the quadruple (G9, G}, 71 51) is the partial constrained
subgraph of order 1. For higher order partial constrained subgraphs, we proceed by induc-

tion. Let n > 1, we define @}ZH by

N
Gry1 = U U {(&, 6+ qei) : £ € GY, (€, qiei) = 13,

1=1¢,e{-1,1}

and GY,, by

N
Gy =Gru|lJ U {¢+ae:€eG f(&as) =1}

i=1 Qie{_Ll}

Finally, the functions #"+1) 50+D : G1 | — G2, are given for (&, 7) € G}, by 7"V ((&,n)) =
n and 5" V(€ ) = €.

_As a consequence, this procedure defines a family of partial constrained subgraphs
{(G°, G}, 7™ 5}, ~;. Thus, the complete constrained subgraph is naturally defined as
follows

. G limy o G — U, 6,
o G!' =lim, o G} =, G}, and

e the functions 7,5 : G' — G° are defined such that their restrictions to the set G! are
equal to the maps 7™, 5 respectively.

Denoting by G* the set of paths of length k, that is the set of sequences (g, ,q1) €
(GY)¥ satisfying 7(g;) = $(gip1) fori =1, k—1, we set G* = U0 G*. The undirected-
ness of G implies that (1, &) € G' if and only if (£,7) € G so that we can define the inverse
of an edge (&,71) € G', denoted by (£,7)7!, and defined by (¢,7)~" = (1, €). Moreover, the
path ((£,7), (&,17)71) can be reduced to a path of length 0, and more precisely it is defined
to be equal to & € GY. More generally, a reducible path of arbitrary length has at least two
consecutive edges  and 8 such that o = 8~ — or, of course, f = a~!. A path is said to
be irreducible if we can not find such two consecutive edges. We will say that two paths
are equivalent if after all possible reductions they are equal. This equivalence relation will
be denoted by the symbol .

The factor set G = G* / F is naturally endowed with a groupoid structure. Indeed, the
range and source functions naturally extend to the set G since 7((gg, -+ ,91)) = r(gx) and
s((gr,- -+, 1)) = s(g1). Thus, we can define the set of composable pairs G? by

G?>={(g,h) € G x G :r(h) =5(9)}
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and endow the set G with a product map G? — G which maps (g, h) on gh where gh is
the composition! of g with h — with possible reductions. The inverse map G — G maps
a path (gg, -+, g1) to the reversed path (g;', -+, g;"). It is easy to check that the space
of units G, and the domain and co-domain functions of the groupoid coincide with the
set G°, the source and range functions 7, § of the graph.

The cut-and-project graph is given by the quadruple G = (G°, G!,r, s) where

o G =7(GY),
o G'=7(GY),

e the functions r,s : G' — G" are defined such that the relations r(w(g)) = 7(7(g))
and s(m(g)) = 7(5(g)) hold for all ¢ € G'. Such functions r and s are well defined
because 7; is a tiling of the space E.

Obviously, by projecting the complete subgraph, we do not alter the groupoid structure
— actually, being linear, the map 7 is a groupoid homomorphism.

3.1.4 Main result

The simple random walk on the graph G is the Markov chain (M, ),>o whose state space
is the set GY and the transition operator is defined for all z,y € G° by

P(l’,y) = degl(x) lf (l',y) € Gl?

0 otherwise,

P(z,y) = {

where deg(z) denotes the degree of point x € G, i.e deg(x) = card{g € G' : s(g) = x}.

Theorem 3.1.4. Assume that RN = E® By, = E® EY, A = ZY, and that the non-
degeneracy hypothesis is fulfilled. Consider the simple random walk (M, )n>o on the cut-
and-project graph G induced by the tiling T; for a generict € Ein. If Eine NZYN = {0}, then
the following dichotomy holds,

o ifdim E <2 then (M,),>0 is recurrent,
o ifdim E > 3 then (M,),>0 is transient.

Even though the theorem is stated for simple random walk, it can be trivially extended
to strongly reversible random walks, uniformly irreducible, and with bounded range (see
[Anc90] for instance).

In the example of the icosahedral tiling, it is easy to check that Fi,NZ% = {0} and that
the non-degeneracy hypothesis is fulfilled. Thus, the theorem applies and for all generic
t € Eiy the simple random walk is transient. Unfortunately, it is obvious that the vector

IThe elements g and h are seen here as morphisms and the product is the composition of g with A.
Alternatively, we may see g and h as letters and the product would be the concatenation of the two letters.
In this case, the set of composable pairs should be defined by G2 = {(g,h) € G : r(g) = s(h)}.
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(1,1,1,1,1) belongs to Ej, in the configuration considered for the Penrose’s third tiling so
that we might ask for weaker hypothesis.

Note that the approach, involving Fourier transforms, usually used on Z? to show that
the simple random walk is recurrent or transient is no longer available in our context.
Indeed, let S = {#&; : i = 1,---, N} be the usual set of generators of Z". If s =
(s1, -+, 8,) € 8™ we denote by x(s, zg) the trajectory (zg,xo+ 51, ,Zo+ 51+ -+ Sp).
Then, the characteristic function of the simple random walk (M,,),>0 is given by

E™ (e it Mn Z p(x(s, 20)) 1yt (x(s, xo))€i<t’w(10)+2?=1 7T(Sz‘)>7
seSn

where p(x(s, zg)) is the weight of the trajectory x(s, xy) which is given by

SZL‘O =

- deg(xg + Zz L S1)

In the case of the projection of points of Z? on an irrational line E, the tiling 7; is the
projection of the only broken line entirely contained in the strip J#;. Consequently, the
degree of each point is 2 and the weight p of a trajectory of lenght n is simply given by
27", Thus, by inverse Fourier transform, we can compute the return probability

22%1 sesn Lgnt1 (x(s, xo)), if Zl ,7(si) = 0.
PQn(l’o,iIfo) =

0, otherwise.

Therefore, it is easy to conclude that P*"(zg, 29) = 55 (*') ~ Cn~/2 for some C' > 0.

In higher dimension, the degree of each point is no longer constant and the number of
trajectories returning to xg is no longer so easy to compute. That is why in the sequel
we use other technics to estimate the return probability. These estimates are essentially
a consequence of a theorem of Schlottman (see [Sch98]) and isoperimetric inequalities
([Var85, Ger88|) for the statement related to transience and lower bounds on the operator
P (see [LP95]) for the statement involving recurrence.

In the next section, we introduce the notion of model sets and the theorem of Schlottmann
which describes the distribution of the points of such a model set.

3.1.5 Model sets and uniform distribution

The notion of model sets involved in the theorem of Schlottmann appears in a slightly
different context. We still denote by E a d-dimensional vector subspace of the real standard
vector space RY, and by FEj, the orthogonal complement of £. We also denote by 7 and
Tint the canonical projections on E and Fi,; respectively. However, we need not to restrict
ourself to the integer lattice Z".

Definition 3.1.5. A subset A C F @ Ej. is called a lattice if A is a discrete Abelian
subgroup of E @ Ej,; such that there exists a compact K C E @ Ej,; satisfying A + K =
E @ Eine (A is said relatively dense).
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In the context of model sets, it is usually assumed that 7, (A) is dense in Eji,., and that
7 restricted to A is bijective on its image m(A). Under such assumptions, we will say that
the spaces F and Ei,; are in a standard configuration.

We denote by p and pin: the Lebesgue measure on F and Ej,; respectively. A window is
a bounded subset W of Ej,; which is the closure of its interior with zero measure boundary
(with respect to the Lebesgue measure pin). The set L = {m(z) : x € A, mine(z) € W}
is termed a regular cut-and-project set (or a regular model set). If the real space E and
the internal space Ei, are in a standard configuration, it can be shown that a regular
cut-and-project set is a Delone set (see [Moo00] for instance).

Definition 3.1.6. A subset A of RY is a Delone (Delaunay) set if the following holds

1. Ais relatively dense : there exists a non empty open set O such that, for any v € F,
v 4+ O contains a point of A ;

2. A is uniformly discrete : there exists a non empty open set O’ such that, for any
v € E, v+ O contains at most one point of A.

Fixing a basis of E, we denote by || - ||, the standard p-norm on E, namely for x € E,

d 1/p
lll, = (Z Ixilp> :
i=1

In addition, the p-metric induced by the p-norm is denoted by d,. We denote by B,(x,)
the ball of radius r > 0 centered at z € R, and by 0B, (x,r) the corresponding sphere. We
simply write B and dB, without subscripts, if the choice of a specific metric is irrelevant
in the involved result.

The version given here can be found in [Sch98], but a similar statement is shown in
[Hof98].

Theorem 3.1.7. Let E = R¢, By @ RW=9 . Let A be a lattice in E @ Eiy. Assume that
the space E and Ei are in a standard configuration. Then, uniformly int € E @ Fi.,

- card(AN(t+ BO,7) +W))  prime(W)
A u(B(0,7)) 1 ® pine(A)

where A is a fundamental domain of A.

Combining arguments of [Hof98], we can deduce that when A is supposed to be the
standard integer lattice Z", the density of mi,:(ZY) in Ei, can be substituted by the simpler
condition ZY N Ei,x = {0}, which is itself equivalent to the injectivity of 7 restricted
to the integer lattice Z". Moreover, the window we consider in the sequel is given by
W =W, = mnu(K +t), for t € Eip.
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3.1.6 Isoperimetric inequalities, reversible random walks

A Markov chain (M, ),>o on an undirected graph G = (G° G',r,s) is reversible if there
exists a measure — the total conductance — m : G° — (0, 00) such that

m(x)P(z,y) = m(y) Py, x) (3.1)

for all z,4 € G°. Since the graph is undirected, the degree (deg(z)),cgo is a measure
satisfying (3.1) for the simple random walk. We view m indiscernably as a measure or as
a combinatorial object.

Let us denote by dg the usual graph metric on the cut-and-project graph G and by
Bg(z,n) the ball of radius n centered at x, i.e.

Bg(z,n) = {y € G : dg(x,y) < n}.
For a finite subset A C G° we will denote by OA the boundary of A defined as
0A ={x € A:3Jy ¢ A with dg(z,y) = 1}.

The boundary of a ball Bg(z,n) will be denoted by dBg(z,n). The growth function of
(G, P) at the point z is given by Vp(z,n) = m(Bg(z,n)). We set

Vp(n) = ziégo Vp(z,n).
We omit the index P when the operator P defines the simple random walk.

To prove the statement on recurrence of theorem 3.1.4 we will use the following which
can be found in [Woe00], but see [LP95] for the original result.

Theorem 3.1.8. Suppose that Vp(z,n) < m(x)o(n) where v : N — [2,00) is increasing
2

and such that the function n — loggw 1$ 1ncreasing and unbounded. Then

P (x,x) S 1
m(z) — 3V(x,m(6n))

where m(n) = min{k : n < logI;Q(k)2}'

Note that the graph metric of the Cayley graph of A = Z" is nothing but the metric dj
induced by the 1-norm on RY in the canonical basis which is denoted in the sequel || - ||4.
This allows us to compare the graph metrics dg and dy.

Lemma 3.1.9. For all z,y € G°,

dA(gv 77) = d((;(l’, y)7

where (£,n) € A? is the unique pair in the strip #; = K + E +1t, for t € Eyy, such that
7(€) = @ and 7(n) = y.



42 CHAPTER 3. CUT-AND-PROJECT SCHEME

This lemma states that a geodesic path in the graph can not be the projection of a non
geodesic path of the lattice A.

Proof. This lemma is a direct consequence of the fact, due to [ODKS8S], that the tiling 7;
is the projection of a unique d-dimensional faceted manifold entirely contained in the strip
K+ FE+t. O

Consequently, the theorem of Schlottmann, [Sch98], with lemma 3.1.9 yields the fol-
lowing ball growth estimates.

Proposition 3.1.10. Under the assumptions of theorem 35.1.4, the following estimate is
satisfied for all x € G°
K™% < cardBg(z,1) < K1*

for a constant K > 1 independent of v € G°.

Proof. Let z,y € G° and let (£,7)? € (AN )% be the unique pair of points such that
7m(€) = x and 7(n) = y. On one hand, we obtain

da(z,y) < || 7lldal€,m)

where ||7]| is the matrix norm defined by

T™\Y)ll2
T i 11
YyEE® Eing:||ylla<1 ||?/||A

On the other hand, there exist u,v € W C Ej such that £ = x+uw and n =y + u
(and obviously these u,v are uniquely determined). Thus, we get the following obvious
inequality :

da(&,m) = 1€ = nlla < llz = ylla + [lu = vlla < collz = yll2 + diam(W).
Consequently, by lemma 3.1.9, we get
7l da(z,y) < de(2,y) < coda(@, y) + diam(W).
Applying theorem 3.1.7 and remarking that
Bsy(z, ¢yt (n — diam(W))) C Beg(x,n) C By(x,n||7|),
we get the inequality of the proposition. ]

Denote by a the conductance defined by a(z,y) = m(z)P(x,y). For every f € co(G°)
— the space of functions with compact support on G° — we define

171 =5 3 ale.)lf)  F)P

z,yeGO

the Dirichlet norm of f. Recall the following.
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Theorem 3.1.11 (Theorem 1 of [Var85]). Let a > 2, if for every f € co(G)

2a
-9’

Ifllr < Cllfllp where r = (3.2)
(0%

C > 0 is independent of f, and || - || is the standard norm in £"(G°,m). Then we have,

PTL
sup (z,y)

= O(n=/?).
z,yeGO m<y) ( )

The isoperimetric inequality does not imply, in full generality, the inequality of theorem
3.1.11. However, for a function f € ¢o(G°), the Sobolev norm is defined by

Iflls = > alzy)lf@) - fW)l.

z,yeGO
and according to proprosition of section 3 of [Var85], we have the following.

Proposition 3.1.12. Let a > 2 and assume that there exists C' > 0 such that for all
f € co(G) the Sobolev inequality holds

1 fllaja=1) < ClIflls-

Then, there exists C' > 0 such that for all f € co(G°) the following holds

1fll20/a-2) < C[| flIp-

It is a matter of fact that d-dimensional isoperimetric inequality is equivalent to a
Sobolev inequality with a = d (see [Woe00], proposition (4.3), p. 40). Because of technical
difficulties, we will not be able to prove a d-dimensional isoperimetric inequality for the
initial graph but only for its k-fuzz. Nonetheless, the k-fuzz construction leaving the type
of the simple random walk invariant, the conclusion will be immediate.

If G is a graph, the k-fuzz of G, denoted by Fuzz,(G), has the same set of vertices as
G and (z,y) is an edge in Fuzz,(G) if and only if 1 < dg(x,y) < k. We note p the graph
metric on Fuzz,(G). It is well known that the balls in the two graphs can be compared as
well as the spheres, namely

kn
B,(z,n) = Bg(x,kn) and 0B,(z,n) = U 0Bg(x,1).

l=kn—k+1

Proposition 3.1.13. Let d = dim E. The k-fuzz Fuzzi(G) satisfies a d-dimensional
isoperimetric inequality for k large enough, i.e.

cardB,(z,n) < KcarddB,(z, n)d/(d’l)

for some K > 0.
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Proof. According to proposition 3.1.10 there exist C_, C'y > 0 such that for all n > 1
C_(kn)* < cardB,(z,n) < C, (kn)".
Hence, we need a lower bound of card0B,(x, n), namely, we have to show that
carddB,(z,n) > k(kn)?".
By lemma 3.1.9, and from the proof of 3.1.10, we get

Il o, ) < ds(2,y) < coda(,y) + diam(W).
Consequently, a point y € 0B, (z,n) satisfies

ey (kn —k+1 —diam(W)) < do(,y) < ||7||kn,
and in terms of balls we get

Bs(z, ||x||kn) \ Ba(z,cg' (kn — k + 1 — diam(W))) C 9B,(x, n).
Since ¢o||7|| > 1, it is obvious that for any k£ > 1
Ba(z, ¢y kn) \ Ba(z, ey kn — ¢yt (k — 1 + diam(W))) C 9B, (z,n).

In the sequel, we need to adapt the proof of proposition 2.1 in [Sch98]. Setting r = ¢y kn
and w = w(k) = ¢y '(k — 1 + diam(W)), and defining

_card(AN (By(x,7) \ By, —w)) +W))
N, W) = == e\ ol —w))

we want to show that the inequality
apine(W) < N(ryw,z, W) < (1 — a) it (W) (3.3)
holds for some a > 0. Obviously, we have,

card(A N (By(z,7) + W))
p(Ba(z, 7))
card(A N (By(z,r —w) + W))
T e )

N(r,w,z, W) = 3,

u(Bz(z,r))
(B2 (z,r)\Ba(z,r—w)

where 3, = 7 Consequently, we can majorize

card(AN (By(z,r) + W))
ey )

card(A N (By(z, 7 — w) + W))
p(Ba(z,r — w))

|N(T,U},l‘, W) - ,U/int(W)l S BT

+(ﬁ7“_1)

7).
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It follows from relations (3.20) and (3.23) in [Sch98] that

u{Ba(z,7+6+¢€)\ Ba(x,r — 9 —¢€)}
ILL(BQ('Z‘7 T))
p{Ba(z,7r —w+ 6 +€)\ Ba(x,r —w—0—¢€)}
(B, — w)) ’
where > 0 depends on the window W and € > 0 only depends on the lattice A. Obviously,
for r large enough, there exists kg > 0 such that 3, < Ko and ki > 0 such that
p{Ba(x,r+0+¢€)\ Ba(x,r — 0 —¢)} d+e
S K1 .
p(Ba(z, 7)) w(k)
Since w can be made arbitrarily large with k£ > 1, the quantity /ﬁ% can be made strictly
smaller than 1, and we conclude that

|N(T7 w, T, W) - Mint(W)| S (1 - a)ﬂint(W)v

|N(T7 w, T, W>_/4L|nt(W)| S ,uint(W) 67,

+(/B’F - 1)

Br

for some a = a(w) = a(k) > 0. Consequently, the following holds for large enough &
carddB,(z,n) > card(A N (By(z,7) \ Ba(z,r — w)) + W)) > k(kn)*,
and the k-fuzz Fuzz,(G) satisfies a d-dimensional isoperimetric inequality. O

Proof of theorem 3.1.4. Assume that dim £ = 2. Then the proposition 3.1.10 together
with the theorem 3.1.8 applied for v(n) = n?, and remarking that 1 < deg(z) < 2N for all
x € G, imply that

Co Co

P > > :
(z,2) 2 m(6n)2 ~ n(logn)(loglogn)

Recurrence obviously follows.

Let d = dim E and suppose that d > 3, then the k-fuzz graph G* satisfies a d-
dimensional isoperimetric inequality by proposition 3.1.13. Then, according to theorem
of [Var85], it satisfies a Dirichlet inequality with parameter o = d, thus theorem 3.1.11
implies the transience of the simple random walk on the k-fuzz Fuzz,(G), so, on G as well
(see [Woe00]). O

3.1.7 Some open problems

An interesting problem would be to study the average degree of vertices which would
explain why the simple random walk is recurrent for the 2-dimensional case.

Another problem concerns the estimate of the return probability. In the case of Pdlya’s
random walks, up to a multiplicative constant, the return probability is equivalent to n~%/?2
where d is the dimension of the lattice Z¢. As long as we are interested in the type of the
random walk the rough estimates of this paper are sufficient. However, a first step in
the computation of the Martin boundary — for d > 3 — should be to get an asymptotic
equivalent of this return probability instead of the mere qualitative behavior “as &'(n=%2)”
we got here.
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3.2 Circle packing and triangulations

In the previous section, we proved that simple random walks on a class of quasi-periodic
graphs in the Euclidean plane are recurrent. By now, we want to discuss two theorems
concerning simple random walks on planar graphs. The first one states that the simple
random walk on the adjacency graph of a circle packing such that the degree deg(z) of
each vertex satisfying deg(x) < 6 is recurrent. The second one tells that the simple random
walk on a triangulation of a surface such that 7 < deg(z) < d < oo is transient.

In the example of random walks on quasi-periodic graphs, the condition on the degree
is not fulfilled (for some vertex deg(z) < 6 and for other deg(x) > 7) but is still uniformly
bounded.

A circle packing in the plane is a collection {C, } of closed topological disks with pairwise
disjoint interiors. With a circle packing, we can associate a graph, termed the adjacency
graph of the packing; the vertex set consists of the center of the disks and there is an edge
between z and y if C,, N Cy, # 0.

A surface is triangulated if it can be covered by a countable collection {7} of triangles
— 1.e. 3-simplices — with pairwise disjoint interiors. A graph is naturally induced by a
triangulation; its set of vertices is composed of the corners of the triangles and the edges
are their sides. Such a graph is termed a triangulation. It is obvious that the adjacency
graph of a packing of the plane is a triangulation.

Proposition 3.2.1. If the degree of any vertices is lower than 6, then the simple random
walk on the adjacency graph of a circle packing of the plane is recurrent.

Proof. Let Ay = {zo} for some xy € G°. We define inductively an increasing sequence
of subgraphs: A,,1 = A, U B, where B, = {z € A, : d(z,A,) = 1}. We decompose
B, = C, U D, where C),, consists of those vertices having precisely one neighbour in A,,
D,, is the set of the remaining vertices.

Let x € B, be a vertex having some neighbour in G°\ A,,;,. By definition, this vertex
x has also a neighbour in A,,. We denote by vo, ..., Ym—_1, Ym = Yo the m < 6 neighbours of
x in cyclic order with the convention that yy € A,. Let j(1) and j(2) be the minimal and
maximal index such that y; ¢ A,.;. Since G is the adjacency graph of a circle packing,
hence a triangulation, the vertices y;1)—1 and y;2)41 are in B, (figure 3.6a). Those vertices
are obviously different from gy so that 2 < j(1) < j(2) <m —2. Also, y;) and y;() lie in
D, 1. Then, we need to consider two cases :

(i) z € D,,. If j(1) < j(2) then z has two neighbours in A,,, two neighbours in B,, and
two in D, (figure 3.6a). If j(1) = j(2) then y;n) is the only neighbour of x outside
of A,11, and it lies in D, (figure 3.6b).

(ii) = € C,,. Similarly, we conclude that  has three neighbours in G \ A,,11, two of them
are in D, 1 and one of them is in C),;1, two neighbours in B, each of then are in
D,,, and one in A,, (figure 3.7).
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|
:
|
N
An Bn Bn+1 ATL Bn Bn+1
(a) z € D, and j(1) < j(2). (b) € Dy, and j(1) = j(2).

Figure 3.6: Case 1 : the vertex x has many neighbours in A,,.

Figure 3.7: Case 2 : the vertex x has only one neighbour in A,, i.e. x € C,.

47
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Yj(2)+k : ‘:yj @)
v | *Yi()+k
" ;yj(1>
Yi-2 Yim-1
An By

Figure 3.8: In a triangulation, a vertex x has exactly two neighbours in B,,.

Combining the two cases, we infer that the number of edges between A,,; and B,
satisfies 0A,, .1 < 2cardD,, + 3cardC,, and that

cardC,, 1 < cardC),, and 2cardD,,,y < 2cardD,, + 3cardC,,.

Thus, we obtain A, ; < 2cardDy + 3ncardCy. Also, it is obvious that cardA, = &'(n?) so
that we can apply the theorem 3.1.8 of [LP95] and the recurrence follows. O

Actually, in the proof given in [Woe00], he concludes by shortening each finite sets Ag
and B, for n > 0 to a single point and applies the criterion of Nash-Williams.

According to [Dod84], if, for a triangulation, there exists an integer d such that for
each vertex z, 7 < deg(x) < d, then the graph satisfies an isoperimetric inequality, hence
the simple random walk is transient. We provide with a purely combinatorial proof of the
result of Dodziuk, partially inspired by the proof above.

Proposition 3.2.2. Let G = (G, G',r,s) be a triangulation. Assume that 7 < deg(z) <
d < oo for all z € G, then the graph G satisfies a strong isoperimetric inequality. In
addition, the simple random walk on G s transient.

Proof. We define inductively an increasing sequence of subsets A, of G° by Ay = {z¢} for
some g € G® and A, = B, U A,, where B, = {y € G°: d(y, A,) = 1}.

Fix n > 1 and let z € B,. Obviously, z has at least one neighbour in A,. Denote
by Yo, -, Yi—1, Y1 = Yo the I neighbours of = (I < d). Without loss of generality, we can
assume that yy € A,,. Suppose for a while that x has at least one neighbour in B,, 1, then
we claim that = has exactly two neighbours in B,,. Indeed, let us denote by j(1) and j(2)
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Yj2)+1

Vi) s ‘?Jj 2)

yof Yi)+k | dy —1—2

Yr s "Yj)

Bn+1

Figure 3.9: Distribution of the neighbours of z in A, and B,, .

the minimal and maximal index such that y; ¢ A,,,. By definition, y;1)—1 and ;)41
are in A,; and if they were in A, it would imply that a point of A, and a point of Aj_,
have a common neighbour (namely, the vertex x) in B,, without being neighbours which
is impossible because the graph G is a triangulation. We can see also that = has no other
neighbour in B,,. Indeed, suppose for example that y;1)—; and y;(1)—2 are in B,,, then since
Yj(1)—2 is a neighbour of x and z has a neighbour in B, i, the first has a neighbour in
B,,+1 — once again because G is a triangulation. Moreover, by construction y;)—2 has a
neighbour in A,.. This situation is impossible in a triangulation (see figure 3.8). Obviously,
the same contradiction arises if we suppose y;2)+1 and y;2)+2 both in B,. Consequently,
the vertex x has k neighbours in A4, (1 < k <1—3) and [ — k — 2 neighbours in G\ 4,1,
this is summarized in figure 3.9.

We say that x is of type T;, ¢« = 1,...,1, if it has ¢ neighbours in B,_;. Obviously, if
x is of type T;, then = has | — ¢ — 2 neighbours in B,,.;. Similarly, we say that a vertex
z € B,11 is of type T; if it has ¢ neighbours in B,. We can compute that if y is of type T;
then [ — i — 4 of its neighbours in B, 4, are of type T, one is of type T},, and the last is of
type T;,. This gives rise to a finite graph whose the adjacency matrix R; = (7 ;)1<i j<i by

r,;, = l—73—4A0forj=1,...,1
Tip = 1

Tiq — 1

= 0 otherwise,

where a A b is the minimum of a and b. Let RT and R~ be (d x d)-dimensional matrices
defined by
d—5 d—6 -+ 1 -+ 1

ot 1 1 U R |
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and,
21 0 - 0
0 00 0
R =10 00 0
000 --- 0

h

Setting S,, = (S};)i:l?__,d the column vector whose i coordinate is the number of points of

type T; in B,,, we obviously have
RiSn S SnJrl S R+Sn7

Indeed, for ¢ # 1, we need to count only one of the T; neighbours z of y since z has itself
as a neighbour the point y;1)—1 or y;2)4+1-

Analysing the spectra of R™ and R™, we conclude that the spheres are increasing expo-
nentially fast and hence the balls are increasing exponentially fast as well. Consequently,
the graph satisfies a strong isoperimetric inequality and the simple random walk is tran-
sient.

Returning to the hypothesis telling that = has at least one neighbour in B, 1, it suffices
to remark that if such points existed in a triangulation then an unbounded connected part
of the plane would not be covered by the triangulation. ]

The local curvature at point x € G° of an undirected graph is given by the integer
6—deg(z). Let (K,)n>0 be an increasing sequence of subsets of G” such that |J,-, K, = G°.
We define the mean curvature as the limit

Rewriting the proposition 3.2.1, we see that positive local curvature, i.e. 6—deg(x) > 0,
for all vertices, hence the mean curvature is positive. On the contrary the proposition
3.2.2, the local curvature at each vertex is supposed to be negative, hence globally the
mean curvature of the graph is negative as well.



Chapter 4

Groupoids and semi-groupoids

With a di-graph we can associate a semi-groupoid on the set of finite paths, as well as with
an undirected graph we associate a groupoid. The purpose of this chapter is to explain
this connection. This chapter aims at defining, furthermore, the notion of random walks
on a groupoid and a semi-groupoid and make explicit the link with the “adapted” Markov
chain evoked in the first chapter.

4.1 Groupoids and graphs

4.1.1 Groupoids

The notion of groupoids is an extension of the notion of groups in the sense that a groupoid
is a set endowed with a binary operation which is not defined for all pairs of elements. Let
us give the definition of [Ren80].

Definition 4.1.1 (Groupoid). A groupoid is a set G endowed with a product map G? >
(z,y) = 2y € G where G? is a subset of G X G called the set of composable pairs, and an
inverse map G > x — 2~ ! € G such that the following relations are satisfied :

L (=)~

2. (2,9), (y,2) € G* = (2y,2), (v,y2) € G* and (zy)z = x(yz),
3. (7Y z) € G? and if (z,y) € G? then 2 (zy) = v,

4. (z,x7') € G* and if (z,z) € G? then (zz)z™! = 2.

For x € G, the source of z is s(z) = v 'z and its range is r(z) = zz~. We denote G°
the space of units defined by G = r(G) = s(G).

The following proposition links the notion of groupoid to the theory of categories. This
could seem anecdotal, however, with this proposition, the connection with the undirected
graphs become obvious and furthermore it highlights the essential ingredients we will need
for semi-groupoids.

o1
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Proposition 4.1.2. A groupoid is a small category in which homomorphisms are isomor-
phisms.

A small category comes with an identification of the set of objects as a subset of
morphisms by associating with any object A the identity morphism from A to A. This
gives rise to a map € : G® 3 u — ¢, € G which associate with the unit u the identity €, of
uw — u seen as an object. This map satisfies the relation s(e,) = r(e,) = u for all u € G°.

4.1.2 Measure groupoids

We refer the reader to [Kai05] for the definition of a measurable groupoid and a Haar
system. The point of view of [Ren80] is slightly different since the notion of topological
groupoids is introduced and a continuity condition is required for the left Haar system.

Definition 4.1.3 (measurable groupoid). A measurable groupoid consists of a groupoid
G and a measurable g-algebra on G such that

1. G322 — 27! € G is measurable, and

2. G? 5 (z,y) — zy € G is measurable where G? is a measurable set for the product
o-algebra on G x G.

In the following definition, we denote by M™(G) the space of non-negative measurable
functions and by G* and G, the fibers r~!(z) and s7!(x) respectively. In this context, we
can define the notion of left Haar system of a measurable groupoid.

Definition 4.1.4 (Haar system). A left Haar measure system consists of a collection of
measures {\" : u € G°} such that

1. the support supp A“ of the measure \“ is contained in the fiber G* for all u € G,
2. for all f € M*(G), the map u — [ f(y)\*(dy) is measurable, and

3. for all z € G and all f € MT(QG), the following holds

/ F(ay) A (dy) = / )N (dy).
G G

A Haar measure system need not exist in full generality. However, if G is a denumerable
set we can check that the counting measures on the fibers G* of r define a left Haar measure
system. Indeed, define for u € G° the measure \* by
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and let f € M*(G). Noting that the map G*¢ > h — gh € G"9 is a bijection for all
g € G, we obtain

/fgyks(gdy > flgh) = /f )A"O (dy).
heGs(9) hec;r(g>

Let v be a measure on the space of units G°. We denote by A x v the measure on G

defined by
Axv = / Nv(dx).
GO

The measure A x v is said to be quasi-invariant if it is quasi-invariant by the map G 3 g —
g ! € G. A groupoid G endowed with a quasi-invariant measure \ x v is called a measure
groupoid.

For a locally compact group G, setting G = G and G? = G x G, it follows immediately
that G is a groupoid for which the maps r and s are trivial — r(x) = s(z) = e for all
x € G where e is the neutral element of the group G — and consequently, the space units
is reduced to {e}. Thus, a left Haar measure system in the case of locally compact groups
consists of a collection {A°} containing exactly one measure supported by the unique fiber
carried by the neutral element which is precisely the group GG. Moreover, the relation 3 in
the definition corresponds to the fact that the measure A¢ is invariant by left translation,
that is, it is a Haar measure, or more precisely, the Haar measure on G is the measure Axv
with v = §,. the only probability measure on the singleton G° = {¢e}.

Definition 4.1.5. A system of transition probabilities consists of a collection {79} ,cq of
probability measures on G. We say that such a system is invariant if

1. supp 9 C G*9 for all g € G, and

2. for all (¢/,g) € G2, the following relation holds
799 — g’

where ¢'m9 is the measure on G defined by

/ F(y)g'¥(dy) = / F(g'y)m(dy)

for all f € MT(G).

Proposition 4.1.6. Every system {u® : x € G} of probability measures on the fibers G®,
x € G, can be extended to a system of transition probabilities invariant on G.

Proof. Let {u® : © € G°} be a system of probability measures on the fibers G®. We define
the system of transition probabilities by

79— gMS(g) 7
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for all g € G. Thus, the measure 79 is defined for all f € M™(G) by the formula

/ £ (g (dy) = / F(9)gu® (dy) = / F gy (dy).

The support of the measure 79 is, by definition, a subset of the fiber G* for all ¢ € G.
We need to check that the system {79 : ¢ € G} is invariant. Let f € MT(G), and compute
for (¢', g) € G?

/ fly)m?'9(dy) = / ) g g9 (dy) = / F(g'y)dg9 (dy) = / f(y)g'm(dy)

since, s(g'g) = s(g). O

Coming back to the example of groups, a system of probability measures {u* : u € G°}
actually consists of exactly one measure p whose support is contained in the unique fiber
of the neutral element e, i.e. p is a probability measure on GG. Thus, we can define the
transition probability 7¢ = gu and we have for all h € G

79 (h) = u(g~"h),

and the latter defines a Markov operator invariant under the left action of the group on
itself, that is a right random walk on G.

Let G be groupoid with a left Haar measure system {\* : x € G°} and v a measure on
G. With a system pu = {u® : x € G} of probability measures concentrated on the fibers,
we associate the system of transition probabilities {79 : ¢ € G} invariant with respect to
the groupoid. In this context, a Markov operator is the operator ¢, : L*(G,\ x v) —
L>*(G, A x ) defined by

bu(f)(R) = / f(g)n"(dg) = / F(g)hys™ (dg) = / £ (hg) ™ (dg)

forall h € G and f € L*(G, A % v).

4.1.3 The groupoid of an undirected graph

Let (G°, G, r, s) be an undirected graph and recall the notation G* for the set of paths of
length k, for & > 0. Denote by G the set of all finite paths up to reductions (see section
3.1.3 of chapter 3), namely G = |J,-,G*/ F. The range and source maps initially defined
on G' can be extended to the whole set G. Indeed, let g = (gx,--- , g1) be a path of length
k > 2, then we can set r(g) = r(gx) and s(g) = s(g1). Thus, we can define the set of
composable pairs G? by

G’ ={(g.h) € G:r(h) =s(g)}

and the product map G? > (g, h) — gh where gh is the concatenation of the path h with
g. More precisely, if h = (hg, -+ ,hy) and g = (g;,--- ,¢1) for some [,k > 0, then gh is
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the path gh = (g1, -+ , 91, h&, -+, h1). We adopt here the convention of left concatenation
because of the closed connection of groupoids with categories turning the finite paths of
the graph in morphisms so that the left concatenation corresponds to the composition
of morphisms. Furthermore, we can check that domain and co-domain functions of the
groupoid G coincide with the range and source function, also the space of units G coincides
with the set of vertices G°.

Consider a discrete group G and a probability measure p on G. It is well-known that
the right random walk with respect to p is the Markov chain whose Markov operator
(P(g,h))g.nec is given by

P(g,h) = u(g~"h).
This Markov operator is obviously invariant under the left action of G on itself, that is for
all g, h, k the relation P(gh, gk) = P(h, k) holds.

Analogously, we may define the left random walk with respect to pu, that is the Markov
chain whose Markov operator is given by p(g, h) = u(hg™), for all g, h € G, and this time
such a Markov operator is invariant under the right action of G on itself.

Of course, considering the left or the right random walks is not essential since we can
map the first one to the second one. Dealing with groupoids, we have a notion of left and
right random walk, but we have also the notion of product as composition or product as
concatenation. The two point of views are equivalent but the definition will be different
— the system of probability measures (p,).eqo may be supported by the fiber of r or the
fiber of s depending on the case we are considering, for instance.

The definitions given in the last section are valid for a groupoid with a product as a
composition of morphisms, and a right random walk — and, consequently, an invariance
property for a “left action”.

Definition 4.1.7. Let G be a groupoid, a G-space is a set X endowed with a projection
map p: X — G and an action :

{(9,7) € G x X :5(9) = p()} > (9,7) = gv € X,
satisfying, when defined, the following relations:
L. p(gz) =r(9),

2. €pz)r = x, and

3. g(hz) = (gh)z.

As a matter of fact, there is a natural action of a groupoid G on G with its range
function r : G — GO as projection map and action given by the left product. Nevertheless,
there is also a natural action of the groupoid G on the space of units G°. The projection
map is simply the identity map and the action is given for (¢g,z) € G x G° such that
s(g) = p(z) =z by (g,2) = gz =r(g).

Recalling that the space of units G coincide with the set of vertices G° in the context
of the groupoids of undirected graphs, we conclude that a random walk on the groupoid
G can be carried on a random walk on the initial graph G.
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4.2 Semi-groupoids and directed graphs

In the first section of this chapter, we have seen how, with an undirected graph, a groupoid
can be associated. However, this does not cover the more general case of directed graph.
The semi-groupoid appears as the modelling of such di-graph. Actually, the universe of
directed graphs is a little smaller than that one of semi-groupoids.

4.2.1 Semi-groupoids

Let us give the definition of a semi-groupoid as in [Exell]

Definition 4.2.1. A semigroupoid is a triple (G, G?,-) where G is a set, G? is a subset
of G X G, and
G2 G

is a binary operation which is associative in the following sense : if f,g,h € G are such
that either

(i) (f,9) € G* and (g,h) € G?, or
(ii) (f,9) € G? and (fg,h) € G?, or
(iii) (g,h) € G* and (f,gh) € G?,
then all of (£, g), (g, ), (fg, k) and (f, gh) lie in G2, and

(fg)h = f(gh).

The semi-groupoid structure is closely related to the theory of categories as in the case
of groupoids even though the class of semi-groupoids can not be exhaustively described
with categories (see [Exell] for an example). However, since we are interested in the semi-
groupoid structure of a directed graph, we are, actually, studying semi-groupoids induced
by a small category.

Proposition 4.2.2. To a small category corresponds a semi-groupoid with G the set of all
morphisms, G2 the subset of G x G of composable morphisms, and the product map given
by the composition of morphisms.

If the semi-groupoid G is a category, then a morphism f € G naturally comes with two
objects A and B such that f is a morphism from A to B. Thus, the definitions of the range
and source functions became obvious and will still be denoted by r and s respectively. In
addition, we will denote by G the union of images of G by r and s, and the set G° will
be named the space of units of the semi-groupoid. In the sequel, we restrict ourselves to
semi-groupoids which are small categories.

Note that, the notion of reduction in the set of paths of finite length were introduced in
the case of undirected graphs to suit the definition of groupoids : all elements are invertible
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and there is a notion of cancelation on the right and the left (see properties 3 and 4 of
definition 4.1.1). In the case of directed graphs, we can also define a partially defined
inverse map, however, this is useless regarding the definition of a semi-groupoid (roughly
speacking, in the context of semi-groupoids, there is only a notion of associativity).

4.2.2 Measurable semi-groupoid

Definition 4.2.3 (measurable semi-groupoid). A measurable semi-groupoid consists of a
semi-groupoid G and a measurable o-algebra on G such that

(i) G?* 5 (x,y) — zy € G is measurable where G? is endowed with the o-algebra
induced by the product measurable o-algebra on G x G, and

(ii) the space of units G is endowed with a o-algebra such the maps r, s : G — G are
measurable.

The notion of left Haar measure system can be defined the same way as in the groupoid
context. However, since the map G*9 3 h — gh € G"9 is no longer a bijection, we can
not insure the existence of such a measure system even in the case of a denumerable set
G.

Nevertheless, the definition 4.1.5 of transition probability systems and the proposition
4.1.6 are still valid in the context of semi-groupoids. Analgously to undirected graphs,
the set of paths of finite length of a directed graph can be endowed with a semi-groupoid
structure. Also, we can define the notion of G-spaces and a semi-groupoid naturally acts
on its space of units G in such a way that the random walk on G induces a random walk
on the initial directed graph.

4.3 Reversible random walks

4.3.1 Definitions and notations

We consider in the sequel an undirected graph G = (G° G',r,s) which is supposed to be
simple. Let a : G' — R, be a o-finite symmetric measure on the set of edges G' that is
for all & € G' we have that a(a) = a(a™!). This measure a gives rise to a o-finite measure
m on the set of nodes G, called the total conductance. More precisely, we define m by the
formula

a:s(a)=z

Since the graph G is assumed to be simple, we can identify the set of edges G' to a
symmetric subset of G x G°. As a consequence, each edge « is uniquely determined
by a pair of nodes (z,y). Thus, we can rewrite a(a) = a(z,y) = a(y,x) = a(a™!) and
m(z) = ZyGGO a(x,y).
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We denote by (M,),>0 the GYvalued Markov chains whose transition probabilities
(P(2,9))syeco are given for all 2,y € G by

Such a Markov chain is said to be reversible.
In the sequel, we will need to consider the notion of vertex and edge boundaries. Let
A be a subset of G?, its vertex boundary is the set

A = {y € A% : a(x,y) > 0 for some = € A},
and its edge boundary the set
A ={aecG"': either r(a) € A,s(a) ¢ Aorr(a) ¢ A, s(a) € A}

For a function f : G — R we denote by Vf : G! — R the gradient of f, defined for
all « € G', by

Vf(a) = fr(a)) — f(s(a)).
We denote by Af : G — R the operator defined for all z € G° by

Af(@) = s 3 ale.r(a)) V(o).

We define the Laplacian .Z of f as the opposite of A, namely . = —A.

Now, it is easy to see that Af(x) = Pf(z) — f(x) = (P —id) f(z) where Pf is the real
function defined for all 2 € G® by Pf(x) = 3_, cco P2, 9) f(y).

We denote by ¢*(G° m,R) the space of m-squared summable real functions. This
space turns into a Hilbert space if endowed with the inner product (-,-), defined for all

f.g9 € (G°,m,R), by

a:s(a)=z

(f.9) = f@)glz)m(z).
z€GO
The main goal of these considerations is to show a theorem appearing in [Var85] and
to highlight the role played by the reversibility of the Markov chain.
First, we denote by co(G®) the space of compactly supported real functions on G°. For

a function f € G°, we consider the quasi-norm of Dirichlet of f denoted by | f||p and
defined by

17lp =5 3 a@)]f(r(a) — f(s(a))]
aeGl

Also, we denote by || - ||, the standard norm on the space £"(G", m,R) defined for all
f € (7(G, m, R) by

1/r
£l = (Z |f(rc)|Tm(x)> .

€GO
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Finally, we introduce on the space £*(G',a,R) the inner product (-,-) defined for all
¢,¢ € £(G', a,R) by
1
(0.9) =5 D sla)i(aa(a).

acG!

We can remark that the Dirichlet quasi-norm is nothing but the norm of V f for the norm
induced by the inner product (-, -).

Theorem 4.3.1. Let P be a reversible Markov operator and let n > 2. We suppose that

1£ll- < Cllfllp for all f € co(G®) where r =

n—2’

and C > 0 is independent of f. Then we have,

Pl
sup (z,y)

= 0o(™?).
z,yeGO m(y) ( )

Actually the converse is also true — for n > 2 nevertheless — and we refer to [Var85]
for further details. We can also recall the following theorem which can be found in [Woe00].
A pair (G, a), where G is an undirected graph and a a symmetric o-finite measure on G!,
is named a weighted graph. A Markov operator is canonically associated with a weighted
graph by formula (4.1). Recall that a weighted graph satisfies a strong isoperimetric
inequality if there exists a constant £ > 0 such that m(A) < ka(9;A) for all finite subsets
A C G°. Finally, we denote by p = p(P) the spectral radius of P defined by

p(P) = limsup P"(z,y)"™ € (0,1].

n—oo

The latter does not depend on z,y € G in the irreducible case.

Theorem 4.3.2. Let (G, a) be a weighted graph. Then the following statements are equiv-
alent.

1. (G, a) satisfies a strong isoperimetric inequality.
2. (Dirichlet inequality) There is & > 0 such that

I£12 < Ellfllp for every | € eo(G).

3. The spectral radius p(P) is strictly smaller than 1.

4. The Green kernel defines a bounded linear operator on (*(G° m,R) by Gf(x) =
> yeeo G(@,9) f(y).
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4.3.2 Preliminary results

We begin this paragraph by proving the Green’s formula, that is the following theorem.

Theorem 4.3.3 (Green’s formula). Let G be a locally finite graph without isolated points.
Consider a finite subset ' C G°. Then, we have

S m()g(@)Af @) = =3 3 ale )9S (e,0)Vole,)

€A z,yeA

+ Y ale,y) Vi),

zeA,ycAl

Proof. Let us compute the left hand side,

> mielow)A () = 3 mio ( %

> (fy) = fl@))alx, y)) 9(x)

€A z€A yee®
=33 awn) () - f@)g(a)
z€EA yeGO
=YD alzy)(f(y) — f(x))g(x)
€A yeA
+) 0 a(z,y)Vf(x,y)g(x).
€A y¢A

By symmetry of a and exchanging the variables x and y, we get for the first term

> ale,y)(fly) = f@)g(x) = D aly,2)(f(z) = f(1)g(y)

=" alz,y) f(x))g(y)
z,y€A
=—- ) f(@))(g(y) — g())
and the theorem follows. -

Definition 4.3.4 (Rayleigh quotient). Let f € (2(G° m,R), we define the Rayleigh quo-
tient by

(Zf, f)  —(Aff)
rhH (L)
1 yee al@ y) (VI (2, 9))
2 1713

R(f) =
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Let F be a finite subset of G° and denote by C the set of functions with support in
F'. Then, we can define the Laplacian restricted to Cr by

Lrf@)=f(z)— Y Plx,y)fQy).

z,yeGO
Notice that Zr is not the Laplacian of the subgraph of G° having as vertex set F.

Lemma 4.3.5. Let f,g € Cp. Then, the following holds

(Zelg)=5 Y ale.n)Vi@ o)),

z,yeUr(F)
where U, (F) = U,cp B(z,7).

Proof. By the Green’s theorem, we compute

(ZLef9)= Y Zf(x)g(x)m(x)

z€UL(F)

1

=3 > ale,y)VI(z,y)Vy(a,y)

xz,yels (F)

- Y Vi@ yeyalz,y)

zeA,ycAl

and it suffices to remark that g € C'r so that the second term vanishes. ]

Obviously, the operator — actually the matrix since CF is finite dimensional — ZF is
symmetric on Cr hence its spectrum is real and finite. The spectrum of £ is denoted by

spec L = {1, -, A\ }-

Moreover, it is easy to see that

. . . . 1 Zm,yeGO a(x, y) (Vf([t, y)>2
(F) = feéfwl{{t)} R = feéfwl{{t)} 2 Sccom@)f(@)?

Theorem 4.3.6. Let F be a non empty finite subset of G°. Then, we have
1. 0 < M (F) <1,
2. M+ Np(F) <2, also spec Lp C [M(F),2 — M\ (F)] C(0,2),

3. M(F) decreases when F increases.



62 CHAPTER 4. GROUPOIDS AND SEMI-GROUPOIDS

Proof. We start with the first assertion. Since \(F) = R(f) > 0, it suffices to show
that A\;(F) # 0. In order to prove this, we suppose that A\;(F) = 0 and consider an
eigenfunction f associated with A;. Then we must have Vf(x,y) = 0 for all z,y € U;(F)
with a(z,y) > 0. Thus for such vertices we have f(x) = f(y).

Fix x € F. Since F is finite, there exists a path (z¢,---,z,) — i.e. a sequence of
points satisfying a(x;, z;41) > 0 for 0 <i <n — 1 — such that

T =20, ,Tp1 € Fx, & F.
Consequently, we conclude that
f(xo) == f(zn1) = flza) =0

since x,, ¢ F and f € Cr. Thus, f(z) = 0, but x was chosen arbitrarily in F so that f =0
on F.

As a conclusion, f can not be an eigenfunction, which implies that \;(F') > 0.

In order to show that A;(F) < 1, we observe that

trace(Lp) = M(F) + -+ A\p|(F) = Z(ek,ZFek)a

where (ey) is an arbitrary basis of £2(G%, m, R)NCr. We can choose, for instance e, = 1y,
and compute

trace(Lr) = Z(ezm Zre,)

zeF

=3 e)(id— P)(y, 2)es(2)
z€F y,2€GO

= 1-P(x,z) <|F|.

zeF

Furthermore, we have the following obvious minoration
trace(Lr) = M(F) + -+ \p|(F) > |F|A(F),

and consequently, A;(F) < 1.
For the second assertion, we consider now that f is an eigenfunction corresponding to
the eigenvalue Ap|(F). We still have Ay |(F) = R(f), and obviously

! Buagpe o 1.0
ZxGGO m(x)f(x)2 .

M(EF) < R(|f]) =

Now, we can use the following estimate

(Vf(z,9)* + (VIfl(z,y)* =
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e et S yeco 0 0)(F(2) + 7))
wyeco U y)(f ()" + fy
M(F) + Ajpy(F) < =2 . -
> weco M) f ()
The last assertion is obvious since F' is increasing, then CF is increasing so that the
infimum inf rec,0 joy R(f) is decreasing so is the eigenvalue A (F). O

4.3.3 Cheeger’s inequality, isoperimetric inequalities and esti-
mate of the Laplacian’s first eigenvalue

The Laplacian’s first eigenvalue can be estimated with the help of the Cheeger’s constant.
Recall that for a subset I of G°, we denote by 0, F the edge boundary, namely

OF ={aeG':s(a) € F,r(a) ¢ F}.
Moreover, for a set of edges E, we write a(E) = ) . pa(a).

Definition 4.3.7 (Cheeger’s constant). Let F be a finite subset of G°, the Cheeger’s
constant is defined by

ME) = dnf %)
ym

i.e h is the largest constant such that a(0,5) > h(F
.

(S) for all non empty subsets S of

The Laplacian’s first eigenvalue is connected with the Cheeger’s constant with the help
of the Cheeger’s inequality.

Theorem 4.3.8 (Cheeger’s inequality). All finite subsets F' of G° satisfy the following
inequality

M(F) > Sh(F)*.
Before we prove this theorem, we need to show the following lemma.

Lemma 4.3.9. Let f € Cr be non negative. Then,

Za IV f(a)] > h(F Zm

acGl zeGY

Proof. Let t € R, and set for f € Cp
S;={reG’: f(x) >t} ={x € F: f(z) >t}

For a = (z,y), we set I, = [f(z), f(y)) C R assuming f(z) < f(y), else we exchange x
and y.
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Thus, the set 0;5; contains the edges a = (z,y) such that f(x) <t < f(y), that is
t € I,. We can compute

a(@1S) = Y ale) =Y a(e)1, (1),

a€01St acG!

and,

/R @80t = Y a()leb(l,) = 3 a(a)|Vf(a)].

acG! acG!

Hence the left hand side in the inequality of the lemma is nothing but fR (01S;)dt
Since S; C F, and by definition of the Cheeger’s constant, we obtain for all t>0

a(015¢) > h(F)m(Sy),

so that it follows

/t>0a(615t)dt2 h(F) / m(S,)dt.

t>0

Now, let us compute the righ hand side integral,

[ - [ o

xESt
= [ 3 mla)o s 01
zeGO
= m(z)f(x)
z€GO
and the lemma is proved. ]

Proof. Proof of theorem 4.3.8
Let f be an eigenfunction of £ corresponding to A;(F'). Then, A\ (F') can be written

Yaccr |VF(@)a(a)

M) =S )

It suffices to prove that Y . |V f(a)?a(a) > h(§)2 Yo f(@)?m(z).
Replacing f by f? in lemma 4.3.9, we get

S a(@)|[ VAP > h(F) Y mx)f(x)?.

acGl! zeGo
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At this step, we have to estimate the left hand side using Cauchy-Schwarz inequality

S a@I V@) =5 3 alw i)~ @)

aeGl myG(GO
= Z alz,y)|f(y) — f@)|[f(x) + f(y)]
zyEGO
) 1/2
=3 > alzy)(fly) — f(2)?
z,yeGO
1/2
> alz,y)(fy) + f(x))?
z,yeGO
. 1/2 1/2
=3 (2 > a(@)|Vf(a > (4 > m<:c>f<:c>2>
aeG! z€GO
1/2
= (2 > a(@)Vi@P ) m(ﬂ?)f(ﬂf)Q) :
acG! z€GO
Hence,
1/2
REIZ < 1 £1l2 (2 > a(Oé)HVf(Oé)HQ) :
acGl
and we get
h(F)?

3" ()i = M e

acGl
and the Cheeger’s inequality follows. ]

Definition 4.3.10 (Isoperimetric inequality). A graph (G, a) satisfies ISg if for all non
empty finite subsets I of G°, we have

a(OnF) = ®(m(F)),
where ® is a non negative function well defined for all s > inf cgo m(x).
The Cheeger’s inequality can be improved with the following theorem.

Theorem 4.3.11. Assume (G, a) satisfies IS¢ with a function ® such that 25 s decreasing
with s > 0. Then, for all non empty finite subsets F' of G* we have

M (F) > A(m(F))
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This theorem states that the isoperimetric inequality implies the Faber-Krahn inequal-

2
ity — see definition below — with function A = % (@) .

Definition 4.3.12 (Faber-Krahn inequality). A graph (G, a) satisfies a Faber-Krahn in-
equality with A, (FK,), if for all non empty finite subsets F' of G° we have \(F) >
A(m(F)).

Proof. Proof of theorem 4.3.11
The isoperimetric inequality 1Sg implies that for all non empty subsets S of F' we have

«(018) 2 o(m(5) = T () > T Lns),
since @ is assumed to be decreasing. Consequently, we deduce
h(F) > %:E;f;”

4.3.4 Upper bound for the heat kernels

We assume now that the measure a satisfies 1 < a(a) < M for some M > 1 and all o € G*.
We assume also that the graph has bounded geometry, that is deg(z) < D for some D.

Lemma 4.3.13. Let F be a finite subset of G°. Then, there exists a constant co > 0 such
that m(Uy(F)) < com(F).

We recall that U,(F) = {y € G : d(z, F) < r}.

Proof. We start with the equality m(z) = 3~ _co a(z,y), and remark that 1 < m(z) < D
so that |F| < m(F) < MD|F| where M is the constant appearing in the assumptions
above.

Furthermore, we have that |B(z,1)| < D + 1 and it follows that

(U () <) IB(a 1) < (D + )| F.

zeF

Finally, we obtain m(Uy(F)) < MD(D + 1)m(F') = com(F). O
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The following theorem is equivalent to the theorem of Varopoulos introduced at the
begining of this section. Recall that p,(-,-) denotes the heat kernel defined for z,y € G°
by
P (z,y)

m(y)
Theorem 4.3.14. Assume (G,a) satisfies the conditions recalled above and FK, with
A(s) = cs7Y? for some constant ¢ > 0. Then,

po(T,y) =

pn(% y) < en™’.

Proof. The proof will be split in several steps. If f € co(G®), then £ f and Pf are also in
co(GY) since supp(Pf) C U;(supp(f)). Moreover, the inner product (f,g) is well defined
when f, g € ¢o(G?).

Fix z € G® and set f,(z) = pu(z, 2). Tt is easy to see that f,.1(z) = Pf,(z). Also, if
we set b, = (fn, fn), we can compute

be= 3 pul, 2)palz, 2)m(z) = pan(z, 2).
z€GO
The strategy of the proof is to show that b, is decreasing and estimate the differences
b, — by+1 so that we can obtain an upper bound of b, and deduce an estimate of p,(z,y).

Note that b, — byi1 = (fn, fn) — (Pfu, Pfrn)-

Step 1: We start by proving that (Pf,1) = (f,1) for f € ¢(G°).

We observe that (f,1) =3, co f(z)m(z), and from Green’s theorem 4.3.3 applied on
F = U (supp(f)), we compute

(f,1) = (Pf1) = (ZLf1) =) ZLf(x)

zeF

:% Z Vf(z,y)V1(z,y)a(z,y)

- szf(xay)a(‘ray>

zeF y¢F

The first sum vanishes because the gradient V1(z,y) = 0, whereas the second one vanishes
too because x € Uy (supp(f)) and y ¢ Uy (supp(f)) for y such that a(z,y) > 0. This implies
that if = ¢ supp(f) then Vf(z,y) = 0.

Step 2: Consider the functional Q(f,g) = (f,g9) — (Pf, Pg) which is well defined for
f,9 € co(GY). We write simply Q(f) = Q(f, f) for the diagonal.

Let F' be a finite subset and f a function with U;(supp(f)) C F', then it can be shown
that Q(f) > M(F)(f, f). Indeed, we clearly have that supp(f) C F so that Pf = Pgpf
where Pp = id — %r. We set u; = 1 — A\(F). Thus, we obtain spec Pr C [—u1, p1] and
| Pr|| < p1. In addition, we compute

> [IA15 = w15 = (1= p) (L + p) 1 £1I2
> MllfI3
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and the assertion is proved.

Step 3: Let g,h € ¢p(G°) and ¢ a real constant such that

e g>0onG°,

e h = con supp g,

e h < con (supp g)°.
Then, we can show that Q(h,g) > 0. In fact, we compute

Q(h.g) = (h,g) = (P*h,g) = (h— P*h,g).

Moreover, P? is a Markov kernel reversible with respect to m and P? induces weights
a.(2,y) = m(x)P*(z,y) and a measure m.(z) = >  co a.(2,y) = m(z). We also denote
Z. = id — P? the corresponding Laplacian on (G, a.). Then, set F' = supp g and compute
with the help of the Green’s theorem

(ZLh,9) Z ZLh(x m(z)
zeGO
= %I;F Vh(z,y)Vg(z,y)a.(z,y)
_ Z Z Vh(z,y)g(z)a.z,y).
zeF ¢ F

Then, the first sum is zero because h = ¢ on F' so that Vh = 0 whereas the second one is
non positive since Vh(z,y) = h(y) — h(x), y ¢ F — thus, h(y) < ¢ — and & € F' — thus,
h(z) = c. We conclude

(Zkh7g) = (h - P2hvg) = Q(hag) Z 0.

Step 4: Let f € ¢(G°) and ¢ > 0. Then we obtain that Q((f — ¢)+) < Q(f) where
(f — ¢)+ denotes the non negative part of (f — ¢). Actually, it suffices to set g = (f —¢),
h = f—g, and the bilinearity of @ implies that Q(f) = Q(h+g) = Q(9)+Q(h) +2Q(h, g).
By definition, ¢ is a non negative function, thus it remains to check that the function h
satisfies the conditions of step 3 :

o if z € supp g, g(x) = f(x) — ¢ > 0 and h(z) = ¢ by definition of h;
e if x ¢ supp g, g(z) =0 and f(x) < ¢, thus, h(z) = f(z) — g(x) < c.

By step 3, we get Q(h,g) > 0 and by step 2, Q(h) > 0 and it follows that Q(f) > Q(g).

Step 5: Let f € ¢y(G°) non negative. For all s > 0, define F, = U, (supp (f — s)4).
Then, Q(f) > M (Fs)((f, f) —2s(f,1)). Indeed, setting g = (f — s), we deduce by step 4
and step 2 that

Q(f) > Q(g9) = M(Fy)(g,9).
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In addition, g2 > f2 — 2sf because if f > s, g = f — s and if follows ¢? = f2 — 2sf + 5% >
f? —2sf. In the other case, f < s, g = 0 and it follows f% — 2sf = (f —2s)f < 0 = ¢°
Finally, integrating the inequality with respect to the measure m, the following holds

Note that for s = 0, the statement of step 5 is equivalent to the statement of step 2.

Furthermore, for s = }1%7 we obtain the following estimate

QU = S EIFIE

Step 6: Let (f,)n>0 be a sequence of non negative and compactly supported real
functions such that (fo,1) = 1 and f,+1 = Pf,. Setting b, = (fn, fn), we will show by
induction that b,, — b, > c’b,lfl/’g for some 8 > 0 and ¢ = %c(4cg)_1/5.

Since fo € ¢o(G°) and (fy,1) = 1, one has f, € ¢(G°) and (f,,1) = 1. In fact, we
compute

(for 1) =Y m(x)P" fo(w) = > m(z) fo(w) = (fo, 1):
z€GO z€GO

(frnofn)

1 — bn &5
11 = 4 gives us

The estimate of step 5 for s =

Q(fn) = bn - bn+1 2 %Al(Fs)bna

where Fy, = Uy (supp(f, — $)+). Additionally, we can estimate by the Markov inequality
the measure of F as follows

mlsupp(fu — 5)4) <+ 3 m(@)fule) = ~(fu1) = -

By lemma 4.3.13, we get m(F,) < @ = %. From the FK, inequality with A(s) = cs™/58
assumed in the theorem we are proving, we can write

M(E) > em(F) ™Y > c(4ey)~YPbY5.
As a conclusion, we get that
Q(fn) = by — by = C/b£+1/5'

where ¢ is the real constant in the theorem.
Step 7: If (b,)n>0 is a sequence of positive real numbers satisfying b,, — b, 11 > b

then b, < kn=? with k = (ﬂ)ﬁ.

C,

For 6 > 0, z > y > 0, the mean value theorem implies that

1+1/B
n )

o(z —y)
-5 -5
yoort 2 e
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Thus, applying to 6 = 1/, we obtain

_ b, — b
bn 1/8 b 1/5 n n+1
" o

c b}fl/ﬂ c
2P T

Summing the left and side, we obtain

3
—

bl/ﬁ_b 1/8 bl/ﬁ b1/5>c_
(D41 )= >3

e
Il

0

Hence, we easily check that b, < kn=".
Now we can finish the proof of the theorem. Fix a vertex z € G° and set fy = m(z) 1., €
co(GY). Obviously, one has (fy, 1) = 1. Defining inductively (f,,)n>0 by fos1 = Pf, we can

show that f,(z) = p,(z, 2). Indeed, we have

@) = Ph@) = 3 P foly) = L) — (o 2),

yeGo ( )

hence, the assertion is true for n = 1. Assume that the assertion is true for n > 1 and
compute

Juri(@) = Pfa(@) = 3 Pla,y) fuly
yeGO

= pi(@,y)pa(y. 2)m(y) = pas (2, 2).
yeGO

I follows from step 6 that

bn = (fna fn) == p2n(273) S C/n_ﬂv

for all z € GY.
Furthermore, by the lemma 4.3.15 below, we can show for z,y € G° that

pkH(x,y) < (pzk(%x)pzl(%y))lm < Cl<kl>7ﬁ/2-

For any integer n > 2 we decompose n = k + [ with [ = k if n is even and | = k + 1
otherwise. In both cases, the integers [ and k satisfy [ > k > ”T_l > 7 and consequently
pu(z,y) < ean™P. Forn = 1, pi(z,y) = (f;;) is bounded since m is supposed to be

bounded from below.

]
Lemma 4.3.15. For all z,y € G, the heat kernel satisfies the following inequality

pn+m(x7 y) S (an(xa I)me(y7 y))l/Q :
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Proof. Using Cauchy-Schwartz and the reversibility, we get

Prm(T,y) = Y Pal, 2)pm(z, y)m(2) " *m(z)?

z;inGO
= > (=) Ppalz, 2ym(2)puly, 2)
2€GO
1/2 1/2
< (Z m(Z)pn($,2)2> (Z m(2)pm (Y, Z)2>
2€GO 2€GY
= an(l‘, x)l/ngm(y, y)1/2'

4.3.5 Conclusions

In the last section, we reproduce the proof of the theorem [Var85] to highlight the crucial
property of reversibility — we should also cite [GT01]. One of the main reasons there
are strong results in the context of reversible Markov chains is that the Laplace-Beltrami
operator is closely related to the Markov operator and the Green function — . = id —
P. Moreover, as an operator of the Hilbert space £*(G° m,R), the Laplacian is self-
adjoint so that its spectral theory is quite well known. More precisely, one can estimate
the first eigenvalue with the help of the Faber-Krahn inequality which is an extension of
isoperimetric inequality. In the case of non reversible random walks, very few result are
known, nevertheless let us state a comparaison theorem for non-reversible Markov chain

— see [Woe00)].

Theorem 4.3.16. Let P be an irreducible Markov operator with excessive measure v and
let Q) be reversible with conductance a and total conductance m. Assume that

(z)

(1) SUD,eqo iy < 00, and
(ii) there is eg > 0 such that P > €oQ elementwise.
Then the recurrence P implies the recurrence of Q.

This result only deals with weak non reversible pertubations of reversible Markov chains.
This theorem is useless, for instance, for genuinely directed graph like those studied in
chapter 2. Furthermore, it does not give any informations in the case of transience of P or
recurrence of ().

In the case of genuinely directed graphs — or semi-groupoids — the Markov operator
is no longer expressible in terms of Laplace operator and the previous theorem can never
be applied so that the situation is even worse.
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Appendix A

Di-graph H : triviality of the Martin
boundary

In this appendix, we give the details of the computations of the Martin kernel and conclude
with the triviality of the Martin boundary of the simple random walk (M,),>¢ on the
directed graph H.

In first section, the characteristic function of the induced random walk (M, ),>¢ is
given and sharp estimates of the Green function are obtained from a fine analysis of the
singularity of the characteristic function.

In second section, the Martin kernel of the original chain is shown to be related to the
Martin kernel of the induced chain. The symmetries of the graph H give rise to a closed
formula of the Martin kernel. A fine analysis of this closed formula furnishes a sufficiently
good estimate to deduce the triviality of the boundary.

A.1 Martin boundary of the induced Markov chain

A.1.1 Characteristic function of the embedded chain (M, ),>¢

We start this paragraph by computing the characteristic function of the chain (M,).
Provided that M,, = My € Z x {0} — we denote in the sequel the latter set Hy, this
Markov chain can be regarded as a random walk on Z, that is a sum of independent
and identically distributed random variables. The triviality of its Martin boundary is not
obvious because the jumps are not integrable.

Crucial ideas to compute the law of the chain (M, ) are essentially those presented in
[CP03]. Let us recall the notation.

Definition A.1.1. Let (¢,).>0 be a sequence of independent, identically distributed,
{—1, 1}-valued symmetric Bernoulli’s variables and

Yo=Yo+ >
k=1

73
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for all n > 1 with Y = Mé2). Denote by

M) = Livi=y)
k=0

Definition A.1.2. Let (0,),>0 be a sequence of stopping times defined by induction by
oo = 0 and
Opy1 = inf{n >0, +1:Y, =0}, forn > 0.

More precisely, o, is the n'" return time to the origin of a simple symmetric random walk
on Z.

Definition A.1.3. Let (££Ly))n217yev2 be a doubly infinite sequence of independent iden-
tically distributed N-valued geometric random variables of parameters p and ¢ = 1 — p.
Let

Mn—1(y)
Xo=> ¢ > & neN
y€EVy =1

Moreover, we denote | X,| the quantity > v, |6, Z?l{l(y) ffy), n € N which represent the
total horizontal displacement.

Denote by T,, the time
Li=nt > &

with the convention that the sum ), vanishes whenever 7,_1(y) = 0. Then
MTn = (Xna Yn)

Recall that 7, denote the n'* return to 0 of the vertical projection of the M,’s. One
has the following.

Proposition A.1.4. The law of M,, is uniquely determined by the law of X,,, i.e. its
characteristic function is given by

B0 (e (tMm)) = EO (e Xer)n,
We denote by ¢ the characteristic function of Xy, with starting point 0. It is given by
(t) = E’[exp(itX,,)] = Re r(t) " g(r(t))
where the functions g and r are defined by the formulae

1—+v1— a2 D
g(x) T an 7"( ) 1 _ qezt
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Proof. It is a matter of fact that 7,, = o,, + > | | Xo,| = T,,.. Then,

EO(ei(t,Mﬁ)) — EO(Bz'th(Il )
We compute the law of X,,. Denote by b the vector (0,1) and factorize by the first step
of the random walk, thus

B0 (cXe) — % (B (exp(it Xy 1)) + B~ (exp(it Xor1))]

1 . )
=3 [E’ (exp(it Xy, 1)) + Eb(exp(—tial_l))}
As a consequence, we only need to compute the following characteristic function

E’[exp(itX,,_1)] = B'E’[exp(itX,,_1)|Y]
Nop—1

=E [ TI Elexp(ite™)]

yeZ =1

= B

where r is the characteristic function of the fz-(y)’s which are i.i.d, geometric random vari-
ables, so that r is given by

p
r(t) = g

Therefore, we get a closed formula for the characteristic function of X,, 1

. _g(r(t)
E’[exp(itX,,_1)] = Wa

where g is given by g(z) = E’[z7] and satisfies the quadratic relation
x
= T+ (o)

so that g(z) = I=vi=22, O

x

g9(z)

Remark A.1.5. In the example of di-graph Hl, p = % = 1—¢. Undoubtedly, all the following
computations are still valid if p is chosen differently as soon as the drift vector remains
parallel to the horizontal axis (if not, the stopping time 7 is no longer finite almost surely).

A.1.2 Estimation of the Green function

By inverse Fourier transform, we find a closed formula for the Green function of the induced

random walk, namely
G = [ =,
o 1=9(t)
and we want to get an asymptotic equivalent as y — oo. It appears that the function
[1 — ¢]! has an integrable singularity for ¢ = 0. The fruitful idea is to separate this
singularity from the regular part of the function.
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Proposition A.1.6. There exists two analytic functions a,b in a neighborhood of 0 such

that
1

o = \/m+\/ma(t)+b(t)

The proof of this proposition is postponed to section A.3. Having this decomposition
in mind, a simple computation yields a precise estimate of the integral involved in the
formula of the Green function.

Proposition A.1.7. Denote by v the function defined by

[T cos(wt)
7(1‘)—/0 1—¢(t)dt'

Then, the limit of \/xy(x) as © — oo exists and is non zero.

Proof. Denote by R, and R; the convergence radii of @ and b and choose ¢ > 0 such that
€ < Ry N Ry, then

™ cos(xt) “ cos(xt) ™ cos(xt)
vx:/ —dt:/ dt + dt
S A R R A ()R A )
The second terms behaves like & (1) at infinity because on (e,7) the function ﬁ is
infinitely continuously differentiable.

Because of the proposition A.1.6, the first integral term can be split in three parts
Yo, V15 V2- Then7

€ cos(xt)

(@) = [ g,
’ 0 Vi

and setting u = xt we get
c [ —cos(u)
= ——=du.
i) = & [ e

The latter is a convergent integral so that, when x — oo, vo(z) ~ % with

, * cos(u)
c=c du
I

Secondly, 72(x) behaves like & (%) at infinity. Indeed,

Ya(x) = /06 cos(xt)b(t)dt

and b is infinitely continuously differentiable.
Finally, it remains to estimate the last term which is

1(x) = /6 cos(zt)Vta(t)dt.

0
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We may integrate by part,

n(z) = [\/Za(t) Si“ffx)I - i /0 6 B(—\% + \/fa’(t)} sin(tz)dt

and it follows that v, behaves like & (%) and the proposition is proved. O
Finally, we give the proof of the first part of theorem 2.2.4.

Proof of the first part of theorem 2.2.4. If we denote by G the Green kernel of the Markov
chain (M., ),>o then we get for all z,y € Z x {0}

Go(z,y) =y — =)
so that the Martin kernel is given by

Ko(y) = Go(z,y) _ (y— )

D
o
—
=
<
S~—
2
~
<
S~—

By proposition A.1.7, we have y(y) ~ ﬁ, consequently, for all unbounded sequences
y

(yr)k>0 of points of Z, the limit of K (z,yy) is equal to 1 as k goes to infinity. Therefore,
the Martin compactification is the one point compactification. O

A.2 Martin boundary of the original Markov chain

In this section, we will prove the triviality of the Martin boundary of the original Markov
chain (Mn)nZO
Denote by v, the probability, supported by Hy = Z x {0}, defined by

ve(2) = P*(M,, = z).

Then, strong Markov property implies the following,

K(e) = 2 3 () ) (A1)

for z,y € H.

In section A.2.1, we show — corollary A.2.7 — that the second term in equation A.1l
goes to 1 as |y| goes to infinity for all z € H, whereas in section A.2.2 the first term will
be shown to vanish as |y| goes to infinity.
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A.2.1 Martin kernel conditioned by the first return time to H,
Martin kernel centered on H, and Fourier transform
We first express the Martin kernel K (z,y) in terms of Fourier transform for z € H.
Proposition A.2.1. Let z € Hy and y € H, then the Martin kernel is given by

fﬂ eityl—itzw dt

K(oy) = o0
’ s i r(t))lv2l
[RTE

where g s given by
1—v1—2a?
x

and r 18 given by
1

t) = —.
r) = 3 50

Proof. If y = (y1,y2) € H then we will denote by y the vector § = (y;, —y2). Using the
geometry of the lattice H, it is easy to see that

Glz,y) = G(7,2) = Y vy(w)Go(w,2)

weHp

and

G(0,9) = G(5.0) = Y vy(w)Go(w,0),

weHp

for z € Hy and y € H.
Consequently, using the translation invariance of Gy and applying the substitution
v = w — z in the first sum, we get

2 vetiy Vi—=(0)Go(v, 0)
2 vet, Va(v)Go(v,0)

Recall that v,(v) = PY(M,, = v) = P(O,y2)(]\4T1 = v — 1), thus we can assume that
y = (0,92) and compute,

K(z,y) =

1 4 N
vy(v) = —/ eI Y2 (1)t

2 ) .

where ¢¥? is given by ‘

0"(1) = BP(e) = g(r(t)) !
and this comes from a simple modification of the computations of the proof of the propo-
sition A.1.4. Then, let us compute the sum

1 4 A , ,
> vi-:Go(0,0) = / g (H)e™ Ty T G (0, v)dt

vEH)p veHo



A.2. MARTIN BOUNDARY OF THE ORIGINAL MARKOV CHAIN 79

and the summation is the Fourier series of the function [1—¢(t)]™* computed in the section
Al
As a consequence, we have to estimate the rate of convergence of the integral

T . v2 (¢
/ eztylfltz ¢ ( ) dt (A2)
—m 1- ¢(t)
when y = (y1, y2) goes to infinity, that is when |y;| or |ys| goes to infinity. O

Sharp estimates of the Martin kernel centered on H

In the spirit of section A.1.2, we first compute — see section A.3 — an analytic decompo-
sition of the characteristic function of the Green function (centered on Hy).

Proposition A.2.2. The function gor can be decomposed in a neighborhood of 0 as follows

g(r(t)) =1 —=2/[t]e®" % — \/Jt|a(t) - B(1),
where a and [ are analytic functions in a neighborhood of 0, satisfying a(0) = f(0) = 0.

We will estimate the rate of convergence of the integral (A.2). This rate depends on
the relative rate of escape to infinity of y; with respect to ys. It is straightforward to show

that there are two cases depending on the ratio z—é :
2

olim%:)\ER

2

o lim¥%4 =400
Y2

The first case will be proved in proposition A.2.3 whereas the last one will be handled
in proposition A.2.5.

Proposition A.2.3. Assume that (y1, 1) goes to infinity in such a way that limy,y; > =

A € R. Then the sequence
(’y2| /ﬂ— eitylfitz gbyQ <t> dt)
- ]‘ - ¢(t) (yl’yz)GZQ

converges to a non zero constant.

Proof. Let n be a positive integer and set m = y; — 2z, we begin to estimate the difference

)
PO = 0= g7y

— Q(1)

where () is given by

cexp{—2e" i /|t|}

ld

Q(t) =
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where sgn is the function sign and c is the constant involved in the proposition A.1.6.
Let € > 0 be sufficiently small so that the decompositions in propositions A.2.2 and in
A.1.6 are satisfied. Then for |tn™?| < € we have

n<1¢i(;?;n)2>>_Q()‘exp{”l‘)g — 260 i~
/[t la(tn™) - B(tn %)) |

% [ﬁ ++/[tn2|a(tn™?) + b(tn_Q)] —Q(1)

Since [tn™?| < € and the quantity x, (), defined by

2, (t) = 2e8" DL /1t =2 + /|tn2|a(tn™?) + b(tn?),
goes to 0 as [tn™?| goes to 0, developing the log yields
D(t) = exp {—Qesg"(t)z% VIt }exp{ VI[tla(tn™) —npB tn_Q)}
tla(tn? tb(tn =2
" Ct| [1 | lta(n™) V] rcgl n >] _ o

cn?

Now, we can factorize by @

D(t) = {exp( Vtla(tn™?) — nB(tn~2) + nxn(t)e(xn(t))) -1

[t )

2]
exp (—/la(tn~?) — nf(tn~) 4 na(e(a (1) }
and take modulus,

|ID(t)| < |Q ’exp{ Vtla(tn™?) — nB(tn~2) + n:z:n(t)e(a:n(t))} - 1)
[t|a(tn™2) \/_b tn™2)

cn?

+1Q(1)]

’exp{ V]tla(tn=?) = nB(tn"?) + nxn(t)e(xn(t))}‘ :

As a consequence, we have that

[tla(tn=2) \/_b

cn?

1t]
2

t| a(tn=2) n2 b(tn=?)
= —

n n c lt| ¢
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because the function p(x) : x — @a(m) + bixf) goes to 0 as x goes to 0. The dependence

to € of N, is not so strong, we actually have uniformity — due to the continuity of the

function p in the neighborhood of 0 — in the sense that there exists an ¢y > 0 such that

for all 0 < € < ¢y we have N, < N,,. This uniformity will be interesting in the sequel.
Using the following estimate,

e — 1] < e®|b] + |e® — 1|
we have, for any a € R,

>

n>1

| = 1] = |a|

|a’n—1
< |al ZT' (A.3)

n>1

Denoting by Y (tn=2) the quantity
T(tn 2) (aniz) + W ( ) + Wxn(t)e(:cn(t))

The function z — a(z) + 22 is continuous at = = 0 and

N

%ﬁ(tn”) |e(zn(t))]

but the function j: x ~ 2e8"®T 4 o(22) + 5) i bounded so that

N
|na, (t)e(x \<M\/_K

where K, comes from the fact that €(z,,(t)) goes to 0 as |[tn™2| goes to 0, so that |e(z,(¢))| <

K.. Summarising, Y(tn"?) can be made arbitrarily small as [tn~?| goes to zero, namely
T (tn~?)| < L. Thus,

Ina, (t)e(za ()] < V/]t] (262" DT + a(tn™2) +

e VI | < em VIR 1 /I (8072)| e VIR

then, the first quantity is obviously majorized by

AR (n2) | /T TIm Y (tn2)| SeL“/m\/mLe (A.4)

whereas for the second quantity, we use the estimate (A.3) and we get

L
2

k>1

‘e—\/mReT(tn_Q) . 1| < \/HLE
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Finally, it is obvious that |e*| < e/l for any complex number z, so that the following

estimate holds
}. (A6)

|D<t>|§|@(t)|{ MV, [HLW\/_L + LVt

Coming back to the proof of the proposition, we consider the first case, that is we sup-
pose that mn =2 converges to a real number, and we fix a § > 0 such that the decomposition
in A.2.2 and A.1.6 are satisfied. Then we can split

" itm ¢n() ° itm ¢n(t> itm (bn(t)
o i =n ] e 1—¢<t>dt+”/.t|>f —o”
= I1(m,n,d) + Ir(m,n, ).

Z _1|75|

k>1

Let us consider first, the term I;(m,n,d), then setting ¢ = un~? and decomposing as
follows, we get

’ itm ¢n(t) . nh jumn =2 qbn(uan)
n/_5 - o(t) "= /—n26 ‘ n(l— ¢(U”_2))du
= /nQé piumn =2 [ ¢"(un”?) eXp{ 2c%" ﬂzzm}] du

n(1 — ¢(un=2)) V]l
[ S
" Vi
sumn-2 D=2 % lul}
— N

IS(mv n, 5) + ]4(ma ’I'L) + 15(ma n, 5)

—n2§

It is easy to see that the term I5(m,n,d) converges to 0 as n goes to infinity at the rate

0 (e_\/gn) as the tail of the integral of an integrable function.
Applying the dominated convergence theorem to the term I4(m,n) implies that it con-
verges to

© {2y
/- T o)

which is a non zero constant for all A.
Finally, it remains to show that the term I3(m,n,d) goes to 0. Using the estimate

(A.6), we get
L ¢"(un?) no M\/|TK |t|
iumn d €]\7
Lo = atamty ] < L, 00

LVt /Jt|L. +L\/_Z |t| }dt.

k>1
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At this step, we have to choose € > 0 such that the decompositions A.2.2 and A.1.6 hold
and such that MK, < \/Ti and L, < \/75 so that the left hand-side integral is majorized by

TLQE t
/ ENEOG \/l?‘i‘CL e 2 \/F‘}‘CL 6_\[2\/'?Z4k—1|k!|dt
—n2e k>1
- ]6(n7 6) + ]7(n7 6) + I8(n7 6)‘

Then, the quantity Is(n, €) goes to 0 as n goes to infinity, the quantity I7(n, €) can be made
arbitrarily small, namely it behaves like a &'(L,), and setting t = “—22, Is(n, €) becomes

nv/2¢ 2k_1 k
or, [ ey i
0 k>1 '
Then, exchanging sum and integral, we get the majoration
Uy k
o1, 4 [
k>1

But the latter integral is nothing but (k + 1)! thus the quantity Is(n, €) behaves like &(L)
and as consequence it can be made arbitrarily small.

Finally, the term I5(m,n,d) goes to zero geometrically, and the proposition is proved.
O

The following lemma is a refinement of a well known result on Fourier series.

Lemma A.2.4. Let (f,) be a sequence of 2m-periodic a-Holder real functions with Hélder
constant Kn and 0 < o« < 1. Then for any € > 0, we have the estimate

€ . Ln
(eltmat| < ———
‘/e“) ‘— 5 e

for all n,m € Z.

Proof. 1t is well known that

[ [ 25 [ () ()

Thus, we get that [©_f,(y)e™™dt is given by

[ (52 (2 (2 (2

where A, = [1 — ;7 + €.
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Then, the regularity of f,, gives us that for any x,y

[fa(e)La(z) = fu(u)La()] < |fu(@) = fa(@)] + [fa(@)l[Ta(z) = 1a(y)]
< Knle —y|* + M[1a(z) — 1a(y)|-

Consequently,

o m : t | 2kr t 2%k 2% 2% 4
m m m m m

-1

k=0
-1

27r1
+/O EZM

t 2k 2k
1 (420 ) -1 (2 ‘ i
—~ m m m

= Jl(m, E) + JQ(’ITL, 6).

It is obvious that the quantity .J;(m, €) is majorized by

/%12}@

For the quantity Jo(m, €), we only have to observe that the difference of indicator function
is non zero for only two integers k, and, in that case, the difference is obviously bounded

so that
2T
m m

Therefore the lemma is proved. O

dt < K-
[m |«

Proposition A.2.5. The sequence

it ztz 2 ) )
/ y1— L 7
( ’y / - (b(t) ! (y1,y2)EZ2

converges to a non zero constant as Z% goes to infinity.
2
Proof. Like in the previous proposition, set n = y, and m = y; — 2z for short. Thus, we
want to estimate the integral
T r(t))"
/ eztmg< ()) dt
-7 1- ¢<t)

Choose 6 > 0 so that the decompositions in propositions A.2.2 and A.1.6 are satisfied and
split the integral,

O [ O g
/f 1—¢<t>dt‘/5 <t>d”/t|>5 o™
= I1(m,n,0) + Iy(m,n,J).
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The function ¢ — g(r(¢))"[1 —&(t)] " being continuously differentiable on the set {|t| > §},
1

7)

integrating by parts, we see that Iy(m,n,d) goes to 0 like O(2) i.e. like o

n
m

Let us deal with the quantity I;(m,n,d), then we can write,

g(r®)" _g(r(t))" — (1 — 2e=" %%\ /lt] —at)"

1— (1) 1—¢(t)
(1 — 2ese"®ig m—ﬁw—1+ 1
1—o(t) 1 —¢(t)

= Ri(n,t) + Ra(n,t) + Rs(n,t).

We already know that the integral of the function R3(n,t)

6 .
/ (1 — () e

)

is equivalent to the sequence (c'|m|~%/2),, as |m| goes to infinity. Consider the function
Ri(n,t), then we can show it is Lipschitz with Lipschitz constant depending linearly on n.
Let us denote by ¢ the function,

q(t) =1 — 2e8" O\ /|t — it.
Then, we split

g(r@®)" —q®)" _ g(r(t)" —q(®)"
1—¢(t) IRE

+[g(r(t)" = q(t)") [t]'*a(t)
+[g(r(t)" — q()"]b(t).
Actually, if the first quantity is continuously differentiable, the two other quantities are

also continuously differentiable because they are obviously smoother. Let us compute the
derivative of the first function.

d g(r()" —qt)*  d B(t) ) = .

dt t[1/2 T (a(t) m) 2 (t)*q(t)" "
o Bl B e -
_ (a 0+ - W/Q) > o)t
n a<t>+% S [kg' (g (r(t) gty
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The sums are estimated as follows,

S (e (0) oty <
and o
D kg (r()g(r®))F ()" F + glr()* (n — k) (q(t)" | < %

where M is a upper bound of |y/[t[¢'(r(¢))| and |/[t[¢'(t)| in a neighborhood of 0.

Since, a(0) = 3(0) = #/(0) = 0, the function t + (o/(t) + B'(t)[t| /2 — B(#)27|t|~>/?)
is continuous, therefore bounded. Moreover, the function ¢ — (a(t) + B(t)[t|~"/?) is a
o (\/m ). Finally, we have the following estimate of the derivative,

dg(r(t)" —q@)"
STV

and this implies that the function R;(n,t) is Lipschitz with Lipschitz constant Mn.
By lemma A.2.4, there exists a constant K such that

> g(r®)" —a®)" s Kn
Vil /_5 1—9¢(1) ‘ dt‘ = |m|

so that the integral goes to 0 when *~— ) goes to infinity.
It remains to estimate the 1ntegra1 of the function Ry(n,t), namely

5 n_ 1
/ q(t> 1eztmdt
—s 1=09()
which can be split into

/ C—Q(TEP/Q 1e”mdt —1—/_ (q(t)™ = D)|t]V2a(t)e™dt —i—/ (q(t)™ — 1)b(t)e"™dt

-6 1 -6
= I3<m7 n, 6) + I4(m7 n, 6) + [5<m7 n, 5)

< Mn

Considering the integral I3(m,n,d), factorizing the quantity ¢(¢)" — 1, and integrating
by parts, we get

\/_/ ‘t|1/§ ztmdt
:_n\/_/ 2€sgn(t —|—Z\/_%

n—

1
. 2€sgn i —f-l\/_k itm 1y
k’ZO

n—1 €
(2¢ sen(t)if 4 Z\/_ 26 sgn(t)if 4 Z\/_ ztm]
i |[ e )

1
[%sgn T i/ i)~
n

sgn(t itm
Z\/_ @ (—1)"(2e 4+z\/—] dt.
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The first quantity in the bracket is obviously bounded, so that the first term goes to 0 as

—lem‘ goes to infinity. Consequently, it only remains to show that the derivative involved
in the integral is integrable. Let us compute it,

n—1
ccli (2205 13\ /]t]) %Z k(2% 4 i /|t])*
k=0
i1 e
— 1 2 sgn(t)i
n !t|nkzzo< ) e iq —1—2\/—

esen(t)ig

VIt

n—1
‘n 1
+ (2e#8" Wi /]t~ E k(—1)%( +1)(2e%8" O i/t
n
k=0

The Cesaro sum

—Zk Qesg” )ig +@\/_

converges to 0 as n goes to infinity (hence is bounded). Thus, we get the estimate

d n—1
sgn(t)s sgn(t
dt[2e 4+z\/_ kzg *(2e 4—1—2\/_ ]

esen t)ig

— +K‘2€sg" DT i/t ‘

and the latter is integrable.
Quantities I,(m,n,d) and Is(m,n,d) can be estimated in the same way and the propo-
sition is proved.
]

Asymptotics of the Martin kernel conditioned by first return time in Hj

From proposition A.2.1, A.2.3 and A.2.5, we get the following corollaries.

Corollary A.2.6. Let z € Hy, then we have

lim K(z,y) = 1.

ly|—o0
Corollary A.2.6 implies the following.

Corollary A.2.7. Let x € H, then

lim Z ve(2)K(z,y) =1

— 00
|yl o,
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Proof. From Corollary A.2.6 we have that, for any z € Hp,

lim K(z,y)=1.

ly|—o0
The sum } -, 5 cp, Va(2)K (2, y) is given by

f:r eityl ¢y2 (t)(l _ ¢(t))_1 Z Vx(z)e—itzdt
f:r eity1¢y2(1 — ¢(t))’1dt :

S v (2,y) =

(2,0)€Ho

Noting that the probability v,(z) = v_.(—z), the following equality holds

Z vp(2)e™ ™ = Z v_g(2)e".

(Z,O)GHO (Z,O)GHQ

The latter is the characteristic function of v_, which is given (see the proof of theorem
A.2.1) by

e—it:vl ¢x2 (t) )

Replacing in the integral, we obtain

fir ez‘t(y1—m1)¢|y2\+\$2‘(t)(l - ¢<t))_1dt

Z ve(2)K(2,y) = == f;eityl(byz(l_(ﬁ(t))*ldt

(2,0)€Ho

and using the estimates of proposition A.2.3 and A.2.5, one has the announced convergence.

[

A.2.2 Behavior before first return time

Recall the equation (A.1) holding for z,y € H,

K(ea) = = 57 b () )

It remains to show that the first term in this equation tends to zero.
Assume that x5, 75 > 0 and y; > z; and let us fix our notation. We will define by szi
for i = 1,2 the following stopping time,

si =inf{n >b: MY = y;, Yk <n: M # 0}, with,> € {0,1}.
Then, we will denote by ¢,(y) the probability
guly) = PU(sy, < oo MY > yn).
Finally, the quantity h, will denote the probability

hy = PU(s, < oo MY > yy).
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Proposition A.2.8. The quantity E””(ngﬁ1 (y)) is given by

Ex (770,7'1 (y)) Z ,Ua: gu y2

y2 u>0

where (i, is defined by
,u:c(u) = PgC(Msgl = u, ngll) > yl)'

Proof. As a matter of fact, we have that

"(Mom (y) =Y kP (0., = k).

k>0

.. . . . 1
On conditioning by the event {s) < oo}, which is equal to the event {MT(I) > y1}, we get

E* (107, () = PY(MY 2 41) Y kP (o7, (y) = kIM > ).

k>0

By strong Markov property and observing that 321 is finite on the event <[]\4T(11 ) >y}, we
get

P* (0. (y) = KM > ) =Y PU(MG) = u| M) > )

u>0
P (g 1, (y) = kML > yy).
Then, it is easy to see that
PU) (0.7, (y) = kMY > y1) = gulya)hy,

Finally, we get

7)071 Zkzlux gu yQ hk2_1

k>0 u>0
and grouping all terms, we obtain
E* (10 () = h > () gu(v2),
u>0
proving thus the proposition. O

It is easy to get an upper bound for the probability h,, because at the site (y1,y2) it is
possible to never come back with probability at least 1/3 so that the quantity (1 — hy,) 2
does not play any role in the asymptotics of the mean E*(ng -, (v)).

Proposition A.2.9. For any u > 0, the quantity g,(y) decreases exponentially fast to 0
as y goes to 0o.
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Proof. Recall that
guly2) = PU)(s), < oo M) > yy).

Actually we can majorize g, by
gu(y2) PO (En > 0: M = | MY > 1) = puly).

Then, we can identify this probability with the probability to reach ys from u in the model
of a simple random walk on Z with a cemetery attached to each site, where the random
walk can die with probability 1/3.

If we replace the cemetery by binary trees, then the probability p, satisfies

Pu(y2) < Fu,y2)

where F'(u, 1) is the probability to hit ys from u in a homogeneous tree of degree 3. By
the lemma (1.24), found on p.9 of [Woe09], we get F(u,ys) = 274%“¥2) where d is the usual
graph metric in the tree. Thus, g,(y2) decreases exponentially fast to 0.

O

Proposition A.2.10. The quantity Y.~ pz(w)gu(y2) behaves like o(|ys| ™) whenever z—é
- 2

converges to a finite limit and like 0(|y1|_%) in other cases, namely when Z—é goes to +o0.
2

Before giving the proof of this fact, let us introduce some notation. We will denote by
(Sn)n>0 the simple symmetric random walk on Z. Recall that the characteristic function
of (S,) starting from z is given by

Ez(eitS”) _ eitz(ez‘t(&—So))n _ eitZ(COS(t»n

On the set N we define the following Markov chain (Z,),>0 by its Markov operator
q:Nx N~ [0,1] by

% y=z2>1

_) 3 y=x—1l,z>1
q(z,y) | 2—y=0
0 otherwise

On introducing the stopping time
T =inf{n>0:2, =0},
it is easy to compute its generating function.

Lemma A.2.11. The generation function of T is given for any h > 0 by

B (") = (3 —xzx>h'

We can now prove the proposition A.2.10.
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Proof. We can show that

po(u) = PP (ME = u, MO > ) = 3 P2(S, = u: S # 0,k < m)

m>0
PYT =m+ (y1 — x1)).

Then, by the mirroring principle, we have that

Px2(Sm =U: Sk 7& ()7]{ < m) _ PxQ(Sm _ U) _P—:c2<Sm :u)

Thus,
=Y P"(S, = )P (T =m+ (y — 11))
m>0
=) P WPHT =m+ (y; — 21))
m>0

- El(a:,y,U) + ZQ(CE,Q,U)-

Then, let us compute the sum > (z,y, u),

Yi(z,y,u =5 / e Z cos(t))"PH(T = m + (y1 — x1))e” ""dt
L m=0 (A7)
=5 B F(cos(t))¥—1ettra—itugy

where F(z) = E'(z7) is the generating function of 7. Whereas the sum Xy(z,y;,u) is

given by
1 i ; .
Yo(x,y,u) = 2—/ F(cos(t))r—*re 2=y, (A.8)
™ —T
As a consequence,

1

o (u) = 2—/ F(cos(t))¥~"12i sin(txy)e "dt.
™ —T

Now, from proposition A.2.9, we get that
> ta(w)gy, (w) < pa(u)2 v
u>0 u>0

Split the sum

y2—1

ZM 2|112U|_Z:,u Q(yzu

u>0
_1_2”36 )2~ (u—y2)

u=y2

= 23($ay) + 24($ay)7
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and, injecting (A.7) and (A.8), sums Y3(z,y) and ¥4(z,y) become

21

- u=0

1" =
Ya(x,y) = —/ F(cos(t))¥*~"12isin(txs) Z e UVt (A.9)
The geometric sum can be simplified by observing that

y2—1 —i
22: e—ituQu—yg — 9 W (26 t)yQ —1

—~ 2e~ —1
hence, the sum (A.9) becomes

1 (7 . o (2e7)y2

L(z.y) = 5 /_WF<cos<t>>Mzz sin(ta,)2 %dﬁ (A.10)

Similarly,

I =~

Yulz,y) = —/ F(cos(t))”* " 2isin(tzs) Z e~ tug=(u=w2) gt (A.11)
27 ) o o

so that simplifying the geometric sum

Z e—itu2—(u—y2) _ e—ityg(l . 62 )—1

U=y2

integral (A.11) becomes

1 [" ’ 2
Lz, y) = %/ F(cos(t))¥*~"12i sin(txg)e”t”z_—e_itdt. (A.12)

At this step, it remains to study the rate of convergence of I;(x,y) and Ir(x,y). We
have to distinguish two cases depending on the way that (y;,y2) goes to infinity :

e y; remains bounded ;

e lim Y _ A for A € RU {£o0} and y; is unbounded.

yi
Let us handle the first case, and assume that y; is bounded. The function F' has a

unique singularity for x = % so that F(cos(-)) is infinitely continuously differentiable for

|t| < m. As a consequence of lemma A.2.4, the quantity I»(x,y) decreases like & (Z—i) for

2

arbitrary k > 0, i.e. like & <yik> because ¥, is supposed to be bounded. For the quantity
I (z,y), we have the following

" o o (2e7)2 —1
F )12 tag)2 2 —————dt
/_7r (cos(t)) isin(txs) =

i . 2isin(tzy)
= [ F(cos(t)) " ——te "2t
/ (cos(t)) ot 1 ¢

—T

_ T . 2isin(txs)
—omw [ F(eos(t)) o2 gy
| Fleospyr 3 m

-7
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Then, on one hand, the first term goes to 0 as ﬁ’(yik) by lemma A.2.4 — by virtue of the
2

same arguments as for the quantity I5(z,y) — and on the other hand, the second term
goes obviously exponentially fast to 0. Summarising, if y; remains bounded we have that

B ) = 0 ()

ys

where k is non negative and can be arbitrarily large.

Let us deal with the second case, and suppose that y; is unbounded. Rewriting the
quantity Io(z,y) by setting t = —*—=, we get

N

7 e Y1 2 —it
—2 F t))rT = t —e "2t
m z/_7r (cos(t)) . sin(xs )2 — €

-z _ity2 A.13
Ty (VI O\ Vil . Tot 2e Vvl ( )
= —2 F | cos —— sin dt.

I N Vil T2

Therefore,

y1—a1
t 3y — — t?
F' | cos = exp {——yl $1t2 + h $1t26 (—) }
Vin 2 n n Y1

t2
as — — 0,
1]

342
—> e 2

implying the following pointwise convergence,

Yyi1—x1

t \/ t 2

F | cos —— 1 sin | -2 — — e~2t
Vvl X2 Vvl ) 9 = 7

2

1

t2

as ;—21 — 0. Let ¢y > 0 such that € <y1>‘ < %. Then we get the domination

< €g, t.e.

Yy1—o1
¢
F | cos—— —
< v!y1|> T2 Vil Y
< oMe 32t 5P
< 2Me st

Vv ( Lot > 2
S1n
2—¢
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Consequently, we can split the integral (A.13) as follows

.ty

-z i ty2
za, . [V t " Vil wat | 2e Vi
—2 F | cos —— sin — dt
R N Vy1l T2 Vil ) 9 — oV

—x ity
To . €0/ |1l t i /|y1| ) ot 2¢e \/I;T
=2 F | cos—— sin — dt
Y1 Jecoy/Inl Vil T2 V0wl ) o = o im
—x 77:@72
L2, t T Vil Tot 2e Vvl
+ —=2 F | cos—— sin ——dt
Y1 Ji>y/wleo Vyil T2 Vil ) o = oV

= I3(z,y) + LIy(x,y).

The integral I3(z,y) converges by Lebesgue convergence to the integral

/ e_%tgte_it)‘dt

with A = lim —2=. And this integral can be easily computed,

N

- =342, —itA ix [ _342 _in A 21 a2
e = = 5 dt = 2 e

—00 —00

Then substituting A by the ratio Z—% the quantity (12) becomes

(V]V}

229 2T yo —i

___Z _ e y
Sy Vo3 /ly

=

We conclude that,

o if z_% goes to 0, then I3(z,y) behaves like o ( Lyﬂ) ;

o if & goes to 00, I3(x,y) behaves like o ( = ) ;
Y1 [y2]

e finally, if Z—% converges to A non zero real, then I3(z,y) behaves again like o(@).

Integrating by parts gives us the following estimate of I4(x,y),

. tyg

To . t e \/m ) ot %¢ Vil
— F | cos —— sin ——dt
h [t1>+/1y1leo Vil Z2 V| 2 _ ¢ "Vinl
< My,

Yo

Lylfxl
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because,

sup iF(cos(t))‘ <L

[t|>e0

As a consequence, the quantity I4(x,y) behaves like

0 (@) if Z—é converges to a finite limit with y; unbounded.
2

0 <\/|1y_1|) if % goes to sgn(t)oo.

Turning to the quantity I;(z,y), we note that

" Y1—T19, i —Y2 (Ze_it)yQ -1
Li(z,y) = | F(cos(t)) 2i sin(txy)2 26—“——1dt

—T

4 e~ My2 1
= / F(COS(t))yl_leZ' Sln(t$2)ﬁdt
e~ it

—T

™ 1
_ 9w / F(cos(t))¥~*12i Sin(tl’z)ﬁdt
e (A

—T

= Is(x,y) + Is(x,y).

The quantity I5(z,y) can be estimated along the same lines as the quantity Is(z,y) is

whereas the quantity Is(z,y) behaves like o <‘y—12|) in the case where 2’—5 converges to finite
2

limit. It remains to show that Ig(z,y) behaves like 0( 1 ) in the case % goes to
2

N

infinity. We can estimate the integral Ig(z,y) in the same manner as it has been done for
the quantity I>(x,y) in the case of y; unbounded and y, fixed. O

Obviously, by symmetry, all these estimations can be made in the case xs,y, < 0 and
y1 < z1. And as soon as, zoys < 0 then the mean E*(n -, (y)) is zero, therefore we get the
following.

Corollary A.2.12. The quantity
E* (o, (y))
G(0,y)

in equation (A.1) goes to 0 when |y| goes to infinity.

Proof. By propositions A.2.3, A.2.5 and A.2.10, we have that

e G(o,y) is equivalent to ( : ) if ;’—; goes to infinity ;
2

Vil

e (GG(0,y) is equivalent to <‘;—;|> if z—é converges to a finite limit.
2
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In the first case, the quantity

E%mmw»=o<;%ﬁ>

and in the second case,

- 1
B ) =0 (1 ).
2]
Then, obviously, the ratio involved in the corollary converges to 0 in any direction as |y
goes to infinity. ]

Proof of the second part of theorem 2.2.4. Since for all z € H, K (z,y,) has no other limit
point than 1 for all unbounded sequence (y;) then, the Martin boundary is trivial. ]
A.3 Proofs of analytic decompositions

Lemma A.3.1. The function ¢ is given by

o(t) = ]%(1 — 2q cos(t) + ¢° cos(2t))

_ [\/1 —2qcos(t) + ¢? <(p1 -1)* - %(Fl — 1) cos(t) + q_z> Z

p
Cos |arctan Lﬂ(t)
1 — gcos(t)
1 — sin(?) 1 —qsin(t)
~arctan | ——— | + = arct .
+2 arctant (1 - cos(t)> * p ATl (1 +p — qcos(t)
Furthermore, in the case of the simple random walk we have p =1/3 =1 — q, so that

o(t) = (9 — 12 cos(t) + 4 cos(2t))

B [\/WSW‘ (1 cos(t))i 4% (5 — 4 cos(t))

N

—1 o 29, 4 ¢
((p +1)°— ?( + 1) cos(t) + Z?)

=

3

o () S ()

e (250 |

Proof. Denote by z the complex number z = 1 — ge®, then we get
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A simple computation gives us that Re;—; = #(1 — 2qcos(t) + ¢*cos(2t)). Tt remains to
make explicit the term with the square root. Start by expanding in polar form,

2
22 P P
p\yp pyp p

then, we have for the modulus of z,

12| =1 — 2qcos(t) + ¢,

For the modulus and argument of fg -1

and for its argument

2 2

- 29, _ q
=(p ' =1 —==(p ' —1)cos(t) + =,
) p( ) cos(t) p

S

p

-—1—-e
p p

e (5 1) - e (210

Finally, we have for 129 +1

2
‘1 qd i

and

2
_ 2q, _ ¢
=(p 1—1—1)2—;( 1+1)cos(t)—|—ﬁ,

2

1 .

:'_+1_gezt
p p

z —qsin(t)
Arg | — + 1] = arctan .
g<p ) <1+p—q008(t))

Proof of proposition A.1.6. 1t is easy to show that

Z41
p

and

—sin(t) 2
1 —cos(t) _Z(l +A4(0)

and that the power series of arctan in the neighborhood of —oo and 400 and is given by

1
(2n + 1)v2n+t

arctan(v) = ig - Z(—l)"

n>0

and the + depends on the fact that v is in the neighborhood of £00. Consequently, it gives

arctan (Ln(t)> — Sg“@)g _

1 — cos(t) (1=4(")

DO | o+
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with A; analytic such that A;(0) = 0.

—2sin(t) —sin(t)
3_25008(t)) and t — arctan <2_scos(t)

borhood of 0 and vanish for t = 0. Thus, the expansion in a power series of the cosine in
equation A.14 is given by ‘/75(1 + As(t)) where Ay is analytic and Ay (0) = 0.

The only remaining problematic term is (1 —cos(t))/* which can rewritten as +/[t[A3(t)
with A3z a power series around 0.

Summarizing, there exists two analytic functions A4(t) and As(¢) with A4(0) # 0 and
A5(0) = 0 such that

The functions ¢ — arctan < ) are analytic in a neigh-

(1) =1 — V[t Au(t) — As()

and the proposition A.1.6 easily follows. [
Proof of proposition A.2.2. We already know that g(r(t)) is given by

1—/T—7r(®)? 1 1
g(r(t)) = 0 = T@P—L

The first term is very easy to decompose

1 it ity
Hazg_%z_1+2ﬂ—e)—1—5@

where 3 is given by 8(t) =23, (Z;#
The second term with the square root requires a finer analysis. First we have to express
the argument of the square in polar form.

1

1= B2 —1=4@ - - )

Then, we compute the square of the modulus,

2

1 = 32(5 — 4 cos(t))(1 — cos(t))

r(t)?

-1

Thus, the square root of the modulus is given by

1
RB;_4_2¢HQ+AJW

where Ay(t) is an analytic function satisfying Ay(0) = 0.
Let us now decompose the argument of the complex function r(#)~2 — 1,

1 . oy sin(t) + arctan — sin(t)
ar — 1| = arctan ——— + arctan —————..
& r(t)? 2 — cos(t) 1 — cos(t)

zisciéls((t t)) is analytic as the composition of two analytic functions.

The first term arctan
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For the second term, we compute as in the proof of the proposition A.1.6

arctan (Lﬂ(t)> — sgn(t)g _

1 — cos(t) (1=A4()

DN | o+

with A; analytic such that A;(0) = 0.
Finally we get the following decomposition,

with A(0) = 0 and A5(0) = 1 and letting a(t) = Ag(t)As(t)ee" T the proposition is
proved. O



100



Appendix B

Poisson boundary : the category
point of view

B.1 Measurable partitions in Lebesgue spaces

Let (X, X, 1) be a measure space. A collection oo = (4;);er of pairwise disjoint measurable
subsets of X is a partition if their union covers X. Subsets which are unions of elements
of the partition a are called a-sets.

Let a be a partition of X, and denote by X/« the factor set and by 7 : X — X/« the
canonical map which sends every point € X on its equivalence class. Endow the set X/a
with the o-algebra &, generated by 7, i.e the smallest one for which the map becomes
measurable. We may define the measure p, on this o-algebra as the image of the measure
p by the map 7, namely p, = o m L. Thus, the space (X/a, X,, j1,) is a measure space
and the map 7 is measurable and measure preserving. Note that a subset A C X/« is
X,-measurable if and only if

Uy

yeEA

is X-measurable and 7!y is an element of the partition a.

Suppose we are given a countable family S = (S,,) of measurable sets S,, € X. For
every sequence w = (wy,) € {0,1}*, let S,(w,) = S, if w, = 1 and S, (w,) = X \ S, if
wy, = 0. Let us consider the set ()~ S, (w). It is clear that the obtained sets (we take into
account only nonempty ones) form a partition, which is denoted by «a(5).

A partition « is called measurable if it has the form a = «(S) for some at most
countable family S of X'-measurable sets.

We shall say that the measure space (X, X, i) has a countable basis { B, } if

1. the sets B, € X separate the points in X, that is, for two distinct points x and y
there exists B, such that either = € B,, and y ¢ B,, or = ¢ B, and y € B,,

2. the completion of o(B,,n > 0) with respect to u coincides with the completion of X
with respect to p, i.e 0(B,,n >0), = &),.

101
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As above, consider a sequence w = (w,) € {0,1}*°, and define

E, = () Bulwn).

n>0

The basis {B,,} separate the points so that each E,, contains at most one point. The space
X is said to be complete if each FE,, is non-empty.

Definition B.1.1. The measure space (X, X, u) is called Lebesgue if it is isomorphic mod
0 to a measure space (X', X’ i/) with a countable basis with respect to which it is complete.

Countable Cartesian products of Lebesgue spaces are Lebesgue, and the factor space of
a Lebesgue space with respect to a measurable partition is a Lebesgue space. More details
about Lebesgue space are given in section 9.4 of [Bog07]. As examples of Lebesgue space,
there are Polish spaces with a Radon measure and countable spaces as shown below.

Consider the measure space (N, P(N), ). For each integer n we denote by w = (wy) its

binary expansion
o
n = E kak
k=0

and define the set Cy, = {w : wy = 1}. Then, (Cy) is a countable basis which separates the
integers. This basis is furthermore complete, indeed

() Crlwr) = {w}.

k>0

Thus, (N, P(N), 1) is a Lebesgue space. Since every countable measure space (X, P(X), i)
is isomorphic to the integers it is a Lebesgue space.

Let « be an arbitrary partition of the Lebesgue space (X, X, u). Let us suppose that
by introducing certain measures p4, the elements A of this partition themselves are turned
into measure spaces. We say that the system {4} is a system of regular conditional
measures with respect to « if

1. p4 is a Lebesgue measure for u,-a.e point A € X/a,
2. for every measurable set B C X,

(a) the set BN A is measurable in its space A for pu,-a.e A € X/a,
(b) na(B N A)is a measurable function of the point A € X/a,
(c) and,

um) - [ | eldA)a(B 1 4)
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A partition a of a Lebesgue space is measurable if and only if there exists a system
of regular conditional measures, and in such a case, it is essentially unique (see [Roh49)).
A partition in a countable space is at most countable, consequently such partitions are
measurable.

Finally, denote by Z the set of partitions of a set X, and let o, f € Z then « is said to
be finer than f if and only if for every element A € « there exists an element B € 3 such
that A C B. This fact is denoted by § < a. Thus, (Z, <) becomes a partially ordered set.
For this partial order, there exists a coarsest partition given by the partition consisting of
one element, the set X itself, and a finest partition, the partition into individual points
of X. For any subfamily Y of partitions, it is well known that its greatest lower bound,
denoted by A,y @, and its least upper bound, denoted by \/ .y o, exist. Thus, the set Z
is endowed with a complete lattice structure.

Denote by Zx the collection of measurable partitions of the Lebesgue space (X, X, ).
For sure, Zx is a subset of Z and we can define a partial order as previously. However,
generally speaking, Zx is not a substructure of the structure Z. More precisely, the least
upper bound of an at most countable subfamily of partitions always exists, but the greatest
lower bound of even two partitions is not always measurable. That is why we have to
introduce the notion of identical mod 0 partition. Two measurable partitions o and 3 are
said identical mod 0 if we can find a subset X’ of full measure such that restricted to this
set, a and 3 are equal. Denote by Zy the set of classes of measurable partition identical
mod 0, then endowed with the partial order < (which is naturally extended to Zx), the
partially ordered set (Zx, <) is a complete lattice (see [Roh49]).

From now, we will consider only measurable partitions mod 0.

B.2 Tail boundary of Markov chains

B.2.1 Tail boundary in the category of measure spaces

Let (X, X, m) be a measure space. A linear operator P : L>(X,m) — L*>°(X,m) is called
Markov if P1 =1 and Pf > 0 as soon as f > 0. Let 8 be a probability measure on X
supposed absolutely continuous with respect to m.

Suppose that the path space (X>°, XN P?) is a Lebesgue space and denote by oy the
time k-coordinate partition so that two paths y and 3’ belong to the same element of the
partition ay iff yx = yj, ; denote by af = \/;_, a; the supremum of the «; (for <). Here, n
is allowed to be co. Partitions ay, are not always measurable, even in a Lebesgue space. In
the sequel we will always assume that the partition a4, is measurable for each k > 0. Note
that this property is satisfied in the case of a countable set X with the counting measure
m.

Denote by (X*/ag®, Xy, flase ), the factor space of X*° with respect to a;° and by pr,
the factor map. Note that the measure pi, depends on the initial distribution 6 and thus
we should write va?ﬁ‘ However, for the construction of the tail boundary, the distribution 6
is fixed once for all. For the Poisson boundary, we will consider different initial distributions
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so that the notation will make it explicit.

The sequence of partitions (a2°),>¢ is decreasing, thus, for all m > n, if two trajectories
x,y € X are a’-equivalent, then they are a/°-equivalent. Consequently, we can define
amap m : X®/af® — X /a2 verifying the relation 7" o pr, = pr,,. Moreover, this
map is unique, if not, there exists a map 77" (which verifies the previous relation) and a
point yo € X /at® such that 7™ (yy) # 7™ (yo). But, this implies that pr'(7™yg) and
pr, 1 (m™y,) are two distinct elements of the partition a2, which is a contradiction.

The map 7" is measurable, indeed for each measurable subset A C X /af°,

pr,, () A) = (w0 pr,,) T A = pr, [ A

and we conclude by noting that the two o-algebras X, and &, are respectively generated
by the maps pr,, and pr,,.

Remark that the map 7" is well defined. If £ is a partition identical to a;° mod 0 then
the corresponding map ¢ is equal almost surely to 7.

We may check that (X>°/a2®, Xyee, T )n<m is an inductive system in the category Meas
of measurable spaces with measurable mappings as morphisms.

Denote by a® the infimum of the ag® : a™ = A o, a2, and denote by (X*°/a*, Xy, 1)
the factor space of X with respect to a* and by pr__ the factor map.

In the same way we have defined the map 7", we can define a map m, : X*°/a2°® —
X /a verifying m,opr,, = pr,, indeed, again two trajectories x, y which are af°-equivalent
are a>-equivalent because o™ =< a;°.

Lemma B.2.1. For m > n, we have m,, = m,, o m".

Proof. The relation is obvious because two a;°-equivalent trajectories are a/°-equivalent
and two ajy-equivalent trajectories are a*-equivalent. O

Lemma B.2.2. The map m, is measurable.

Proof. 1t is the same proof as for the measurability of 7" replacing m by oo. ]
As a consequence,

Lemma B.2.3. The o-algebra Xy and o(m,,n > 0) are equal.

Proof. The measurability of ,, for all n implies that X, is a sub-c-algebra of o(m,,n > 0).
Conversely, let A € o(m,,n > 0), then for each n, m,'A € Xy, that is pr, (7, 'A) =
prolA € XN, Therefore, A is X,-measurable. ]

Consider the subset S C [],+, X /as® of admissible sequences, i.e such that 7" (a>,) =
a>m- By definition, each point as, corresponds to an element of the partition A, € a2,
namely pr,'as,. To an admissible sequence (asy),>0 corresponds a sequence of subsets
(Ap)n>o with A,, € o, furthermore, this sequence A,, is increasing because partitions a°
are decreasing. We will say that an admissible sequence (a>,),>0 converges to a point
a € X*/a™ if the corresponding increasing sequence of subsets (A,),>0 is such that
A =J,>q Ay where A € a® corresponds to the point a.
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Lemma B.2.4. Let A be an element of a®™. Then there exists an increasing sequence
(An)nzo of subsets of X°° verifying A, € ap? and A =J,5¢ An-

Proof. The infimum o verifies by definition that for all decompositions § such that o> <
[ there exists an integer n such that o> < a2 < 3. Let A be an element of o™, then for
all subsets B C A, one defines the decomposition

fp=a*VaB)={CNB:Cca*}Uu{CN(A\B):C ca>}.

Obviously, g is finer than o™, so that there exist an integer n and an element D,, of a)°
such that B C D,, C A. Moreover, we may inductively define a sequence D, .1, Dy o, ...
with Dy € af° : D,y is the unique element of a;°, containing D), and so on. Conse-
quently, we obtain
Bc|JDica
k>n

O

Thus, for each point a € X*/a™, there exist an admissible sequence (a>y),>0 € S
which converges to a. The following lemma says that if two admissible sequences converge
to the same point a € X°°/a™ then they are eventually equal.

Lemma B.2.5. Assume that (a>n)n>0, (b>n)n>0 € S converge to the same point a €
X>/a>, then there exists an integer ng such that asn, = bsn,.

Proof. Let (a>pn)n>0 and (b>n)n>0 be two admissible sequences converging to the same point
a € X*/a*®. Denote by (A,)n>0 and (By,),>0 the corresponding increasing sequences of

subsets such that
A=|JA, =B,

n>0 n>0

where A € a® corresponds to the point a. We claim that there exists an integer n, such
that A,, = B,,.
By contradiction, suppose that for all n, A, # B,,, then

JA.nB,) =90
n>0

because A,, and B,, are distinct elements of the same partition.
Now, we have obviously that

Lﬂ&mB@c(UAJH(UBO

n>0 n>0 n20

and the converse inclusion holds as well. Indeed, let v € (UnZO Xn) N (UnZO Yn) then,
there exists ny and n; such that v € A,,, and u € B,,. If ny < n; then A,, C A,, so that
u€ A, NB,.SouéeE Unzo(Xn NY,). Clearly, if n; < ng, we can do the converse.
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Consequently, we get a contradiction
n>0 n>0

We shall say that two admissible sequences are equivalent if and only if they are even-
tually equal. Denote by ~ this relation, and by S/ ~ the factor set of S with respect to
~. Then, lemma B.2.4 and B.2.5 tell us that S/ ~ and X°°/a* are in bijection.

[

Theorem B.2.6. Let (Y,)) be a measurable space, and for n >0, ¢, : X>®°/a2 =Y be
a sequence of measurable maps verifying ¢, o' = ¢, for all m > n. Then, there exists a
unique measurable map ¢ : X>°/a® —'Y such that ¢, = ¢ o m,.

Proof. Define the map ¢ : S — Y by ¥((a>n)n>0) = ¢o(a>o) where (a>p)n>0 is an admissi-
ble sequence. We claim that the map ¢ can be factorized in a map ¢ : S/ ~— Y. Indeed,
let a,b be two ~-equivalent admissible sequences, then there exist an integer ny such that
A>py = bZno' Thus,

(bno (aZm) = ¢n0 (me))
Do (T5°a>0) = Py (75 b20)
Po(azo) = ¢o(b>0).

Since the sets S/ ~ and X*°/a™ are in bijection, the map v naturally defines a map
¢: X®/a® =Y.

Let aso be a point of X*/af°, then the sequence (mJasg)n>o is of course admissible
and

¢ 0 mo(ax0) = V((MGaz0)nz0) = Po(axo).

Now, let a>, € X*/ag® and choose a>g € X*/ag® such that mja>g = as,. Then,

¢ o mp(asn) = ¢ o mo(ax0) = ¢o(az0) = Pn(Tgaz0) = Pnl(azn),

thus, ¢ o, = ¢,.

Actually, what we have just showed is that the inductive limit in the category Set of
sets with maps as morphisms of the inductive system (X>°/as®, 7)<, is identified with
(X°¢/a (Tn)n>0)-

By the surjectivity of m,, the map ¢ is unique, and its measurability is a consequence
of the lemma B.2.3. n

n? 'I’L

All those results imply that (X*°/a™, Xyeo, (7, )n>0) is the inductive limit in the cate-
gory Meas of the system (X /a2, aoo,'ﬂ- )mZnu in symbols

(X>/a™, Koo, (Tn)nz0) = Meas — im (X /oy, Xoge, 7).

nGN
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Let fiqec be the measure on X*°/a° defined as above. For a measurable set A of
X /a2, we have the relation piae(A) = g o (71")"H(A). Indeed,
ftase o (M) 'A =Pgpopr, o (a) A =Pgopr, A = i A

For all measurable subsets A of X*/a™, the sequence (paee 0, ' A),>0 is obviously constant
and equal to p(A), indeed

ftase 0T 'A =Poopr,tom tA =Pyopr)A = p(A).
Endowed with p, X*°/a® is a measure space, and we only have to check that
(Xoo/aoo’ Xa‘x’a L, (T‘-n)nzo)

is the inductive limit of the inductive system (X*°/a2®, Xyeo, ftace, T )m>n in the category
of measure spaces with measurable and measure preserving maps as morphisms, denoted
by M. Regarding what has been already done, we have to check that m,, = m,, o 7" and
show a similar version of theorem B.2.6.

Clearly, the following equality holds for all measurable subsets A of X /a>

—1 . m\—1 —1 o —1
Paze © T N = pigee o (') " 0 A = figee 0T, AL
Thus, 7, = T, o).

Theorem B.2.7. Let (Y,),v) be a measure space, and forn >0, ¢, : X*/al® =Y be a
sequence of measurable and measure preserving maps verifying ¢, om) = ¢, for allm > n.

Then there exists a unique measurable and measure preserving map ¢ : X°/a™ — Y such
that ¢, = ¢ o m,.

Proof. From theorem B.2.6, we have the existence of a unique map ¢, so that we only have
to show that ¢ is measure preserving, that is

pog¢~t=w.

It is a matter of fact that fiae o ¢;' = v, thus it follows that piae o m,' 0 ¢~ = v. By
definition, the left hand side of this equality is nothing else than o ¢! [
X< faze = X< fazs
bn X ‘/ o b
|

31
\
\
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B.2.2 The tail boundary in the category of Banach spaces

In some sense, we can get the same results by “duality” for random variables. Let
LP(X> /o, aoo,,uaoo) p € [1,4+00], be the space of integrable real random variables.
Defining pm(gm) = gy o m,', we check that this map is well defined because it does not
depend on the choice of the representative g,,, and that

<LP<XOO/a Oz°°7:u04°°) an)ngm

is a projective system in the category Ban of Banach spaces with linear isometries as
morphisms.

Our goal is to describe the projective limit of this system in terms of the inductive limit
we studied in the last section.

Consider the Banach space LP(X*°/a*, Xy, 1), and define

pr t LP(X%/a™, Ayoo, 1) — LP(X™ [y’ Xoeoo, flace)

by pn(X) = gom,. The map p, is a linear isometry of Banach spaces verifying p, o pl", = p,,
for all n < m. Our aim is to show that the space LP(X>/a™, X, 1) is in fact the
projective limit of the above projective system.

In a general setup, let (B, hl).<m be a projective system in the category Ban; of
Banach spaces with linear contractions as morphisms. It is well known (see [CLMT79] for
more details) that this projective system always admits a projective limit. Furthermore,
it is identified with the closed subset of I1,>¢B,, (for the sup norm ||z| = sup,~¢ ||zsll5,)
consisting of all sequences & = (2,)n>0 such that h” (z,,) = x,. Denoting this subset by
L, and defining h,, by h,(x) = x,, we get

(L, hy) = Bany — im(B,, h") .

ny lom
neN

Note that L is effectively a closed subset, because it may be written in the form

L= () Ker(hy — h2 o hy,).

n<m

Furthermore, the relation A, o h,, = h, holds by definition.

For a given family {, : Z — B, of linear contractions satistying h} o[, = [, for all
n < m, we consider the map Il/, : Z — IIB,. It is clear that its image belongs to L, so
that it can be uniquely factored over L with the stated properties.

If we consider, now, that (B, hll,)n<m is a projective system in the category of Banach
spaces with linear isometries as morphisms, then (L, h,) is again the projective limit of
this system. Indeed, it is obvious that the h,, are linear isometries. Moreover, if the [,, are
assumed to be linear isometries, it is also the case for 11[,.

From now, we assume that B, = LP(X*°/ay°, Xoeo, flace), phy = hiy, Z = LP(X>® /o™
Xooo, 1), and I, = p,. Then there exists a linear isometry

p: LP(X™/a™, Xyeo, 1) = L
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such that p, = h,op. We aim to show that the linear isometry p is in fact an isomorphism,
that is, a linear bijective map such that the inverse map p~! is itself a linear isometry. But
in fact, if p is bijective, then p~! is a linear isometry. On another hand, p is injective as a
linear isometry, so that we only have to show the surjectivity.

Let (gn)n>0 € L and let g, € LP(X*/a;°, Ay, plase) be a version of g,. The lemma
3.1 of [Mac89] — see also the lemma 4.1 of [Mac95] — says that there exists an element
g € LP(X>/a> A, ) such that §gom, = g, and ||g]] = sup,;>¢ ||gn|l. Let g, be another
version of g,, then § = § p-a.e. Indeed, denote by N the set

N ={zeX>/a™:g(x) # §(x)}

by N, the set
={z € X™/or" : gu(x) # 71}
and let x € N, thus gw) # g ( ) and for all integer n and all points y € 7, 'z we have

Ggomu(y) # § om,(y), that is g,(y) # §'(y). Consequently, the set 7, 'z is a subset of N,
and it follows for all integers n that 7, (V) C N,,. Thus, we get for all n

o (13" N) = (V) < prage (N,) = 0

We conclude that for all sequences (g, )n>0 € L there exists an element g € LP(X>/a™, A, i)
such that p(g) = (gn)n>0 because p,(g) = g, for all n.
Thus, we have the following result,

Theorem B.2.8.
Let (X™/a50, Xyoe, fhaze, Tn' Jn<m e an inductive system and (X /o™, Xyee, b, (Tn)n>0) its
inductive lzmzt defined in the last section. Then

(LP(X2/ a2, Xooo, 1), (pn)nz0) = U (LP (X /al®, Xoge, page ) P )nsm-

neN

LP(X/ar?, Xage, fage) o LP(X*/agy, Xage, Hags)

(Xoo/a a"o’p“)

We can remark that the range of p? is isometrically isomorphic to the subspace E, =
{f e LP(X*>/ag®, Xoge, page) + f 18 o(my) — measurable}.
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(Xoo/a a"oyﬂa‘x’) En - Lp<Xoo/a807Xa8°7Ma8°)

PZ+1T lE(-IWS“)

LP(XOO/OKZOJA, XQZOJA y ,Uzafﬁrl) 7:1 n+1 C Lp(Xoo/aSO, Xa8°7 ,uoz8°)
Indeed, for all g € LP(X° /a1, Xace, s Haze,, ), the following equality holds by o(m ot)-
measurability of p . (g) :

E(p) o pry1(9)me ™) = E(pp 1 (9) 76 ™) = o)1 (9)-

Consider a function g € LP(X>/ag®, Xyee, flage ), then the sequence (E(g|ng))n>0 is a back-
ward martingale. It converges almost surely to the integrable function E(g|75°).

Let f: X*°/asS ; — R be a bounded measurable function, and g : X*°/ag® — R. Since
the state space X is Lebesgue and the partitions are assumed to be measurable, there
exists a system of regular conditional probabilities ,ug%o and

O7'rn+1 T T () = . too X
/Xoo/a%of n (@)g(x)dptag (7) /Xoo/a2o+1 f(t)\/Xoo/a%o 9(@)dptoo () dptage, (1)

J/

Qng(t)
which gives rise to an operator
Qn  LP(X/a?, Koo, flase) — LP(X®/aply, Koo n+1’/‘az?+1)

defined for g € LP(X > /a5, Xyeo, flase ) by

Q)= [ ol

In the next section we will show that this operator can be approximated.

B.2.3 Approximation of the operator (),

If we consider a function g € LP(X*°/ag®, piage) the function

Qr - Qog

belongs to the space LP(X*/a®, tia ). Note that, if g € LP(X>/a®, fiax ), it is obvious
that
Qng(t) =E, oo(g|7T"Jrl =t) for faze,, — almost all ¢ € X>/ar .

In the next paragraph, we present some results (which can be found in [Rao05]) which
allow approximations of such conditional expectation.
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Differentiation, conditioning and computation

Let us recall the general definition of conditional expectation. Let (2,3, ) be measure
space. For us, p will be a probability, but the following results can be generalized to any
o-finite measure.

Suppose that f : Q2 +— R is an integrable function on 2 and consider any sub-o-algebra
B C 3. Then the mapping (A € B)

Vf:Ar—>/Afd,u

is a signed measure on B which vanishes on p-null sets of B, so that vy is absolutely
continuous with respect to up, the restriction of the measure p on the o-algebra B. Hence by
the Radon-Nikodym theorem, there exists a ug-unique integrable function fon (Q, B, us)
such that for all A € B

Vf(A):/AJEd,UB

The function f is called the conditional expectation of f with respect to B, often denoted
by E(f|B). Thus, the conditional expectation E(f|B) is nothing but the Radon-Nikodym’s
derivative of the measure v; with respect to pz, namely

dv

E(f|B) = WZ g — a.e

Definition B.2.9. Let (2, %, 1) be a measure space and A C  be a subset.

1. For each w € A, let {B¥,i € I} C X be a (not necessarily countable) family with
a directed index set I, such that BY — w in the Moore-Smith sense (i.e, it is a
converging net, or p*(BY \ {w}) — 0) and that for each co-final sequence J of I,
B¥ — w also. (Here co-final means for each ¢ € I, there is a j € J such that j > i.)
Let D be the collection of all {BY : 0 < u(By) < o0,i € I,w € A}. Then D is called
a differentiation or a derivation basis on A.

2. A converging net {B¥,i € I} is called contracting to w, if there is an iy € I such that
w € BY for all i > 4.

Let v be a signed measure on ¥ and {BY,i € I} an w-converging sequence for w € A C
), then we define the upper and the lower derivatives of v relative to u at w € A by

(D*v)(w) = sup{lim sup v(BY)

. all nets B — w
i u(BY) }

and

e . v(BY)

(Dyv)(w) = inf{lim inf ——==

i pu(By)

Note that sup and inf can be dropped when the B{-sequences are subsequences of a
universal sequence.

. all nets BY — w}
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Definition B.2.10. Let D be a differentiation basis of a subset A C €2. Then

1. afamily F C D is a fine covering of A if for each w € A there is some {B¥,i € J} C F
converging to w.

2. If D is a differentiation basis in (2,3, u) for A C Q of finite outer measure, then
D is said to satisfy the Vitali property relative to u, provided for any fine covering
F C D of Aand e > 0 and a measurable cover A of A, there is at most a countable
collection C C F such that the following two conditions hold

(a) W(AAV) =0 where V =y, B
(b) if ¢c(w) is the number of sets of C to which w belongs, then

[}%—1MM@<x (B.1)

If the members of C are disjoint (or their pairwise intersection is p-null so that B.1
is true for any € > 0) the corresponding D is said to have the strong Vitali property
(modulo p-null sets).

To have an alternative view of the above property, we state the following result due to
R. de Possel.

Theorem B.2.11. Let (Q,%, u) be a measure space and D C 3 be a derivative basis.
Then D has a Vitali property iff for any A € ¥ and w € A there exists an w-converging
net {By,i € I} C D such that

BYN A
lim 1 F; )
v #(Bi)

The following theorem gives us an approximation result of the Radon-Nikodym deriva-
tive.

— W), aaw

Theorem B.2.12. Let (Q2,%) be measurable space. Let pu,v be two finite measures on
the o-algebra X, and suppose v absolutely continuous with respect to p. If D C X is a
derivation basis on () satisfying the Vitali property relative to both v and p, then

(Dv)(w) = Z—: , L — a.e

Approximation of the operator (), for Markov chains on a denumerable state
spaces

In the following, we assume that X is a countable set and the Markov operator P has a
finite range.
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As we have seen above, the following relation holds fi,e|,(n+1)-a.€

dv

E(g|ﬂ'n+1) _ g

Uhtoge oz )

where v, is defined for all A € o(7) by

() = | g
A
Fix x € X*° /oy, and denote by B} the subset

Bf ={y € X 1 Yns1 = Tny1, * , Ynti = Tnyi)

Then, it is clear that . (Bf \ {z}) — 0 as i — oo and for all subsequences also. We will
define the derivation basis D for some A C X /aS° by

D ={B:0 < fiaxe(Bf) < 00,i>1,x € A}

We have to show that D has the Vitali property. Let F C D be a fine covering of A.
Then, for each x € A, there exists {B},j € J} C JF converging to z. Denote by A; the set

Aj ={z:inf{j: Bf € F} =i}

then the collection of sets A; is a partition of A. Since, for each ¢ there is at most a finite
number of distinct B, A; is a union of finite members of F, namely

with B;; € F. Thus we can set for C the collection of B; ;. Then C is a countable partition,
so that D has the strong Vitali property.

Note that, in our case, the Vitali property is easily checked because the support of
measures P(z,.) is a finite set for all z.

Thus, by the theorem of the previous section, we get Moo o (rpt1)=8-€

E(g|m,*") = Dy,
and moreover for [, mn+1y-a.e t € X>®/ae,

E(g|mit =t) = Qug(t) = Duy,(t)

Fix an x € X*/a;5 | and consider the linear form L, on L°(X*/ar°, tiae) defined by

I 1i fBg gdrua%"
zg = 111 z
¢ Ma?ﬂa(ﬂ'ﬁJrl) (Bz )
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The linear form L, is continuous and its operator norm is ||L,|| = 1.

For each function g € L>®(X*/as, jtaee) we can find a sequence of functions g; €
LX), ptace) depending only on the first j + 1 coordinates and converging almost
surely and in L™ to g. Since the linear form L, is continuous we can exchange the order
of taking limits, namely

e gidier [ gidpag
limlim ————— = limlim ————
P e B e (BY)

Now, recalling that

Bf = {y € X Ynt1 = Tpg1, 0 s Yng1 = $n+i}a

we can compute for ¢ > j

.[Bf i piazy B Y owex 95U Tagr, o By )P (W) P(u, Tng1) - oo P(Trgio1, Tnga)

Hage (BY) OP " (2py1) . P(Tpyio1, Tpgi)

OP" (u)P(u, z,
= Zgj(uaanrla"' >xn+j) 0](3”11((33 )+1)

ueX

Therefore, the latter expression is independent of i, and we get

epn (w)P(u, tpsr)
Qng(1) gg AP (1)

for pacs, -almost all t € X*°/ag? ;.

Theorem B.2.13. Let (X, P,0) be a Markov chain on a denumerable state space X whose
Markov operator has finite range. Then for paes -almost allt € X*/afs, (n > 0), the
operator @y, is given for g € L>°(X>/ar?, ftace) by

o - S et

B.3 Poisson boundary

In the section B.2.1, we defined the tail boundary (X°°/a®, X, i, (7,)n>0) of a Markov
chain (X, P,0) as the inductive limit in the category Meas of measure spaces of the sys-
tem (X /ap®, Koz, foeo, (T )m>n). The tail boundary depends obviously on the Markov
operator P but also on the initial distribution #. The tail boundary distinguishes the
asymptotic behavior of the trajectories. However, this boundary is not time invariant, i.e.
it distinguishes shifted trajectories. In order to obtain time independent informations on
the asymptotic behavior of the Markov chain (X, P, 6), we need to introduce the notion of
Poisson boundary.
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Let us recall the notation. We consider a X-valued Markov chain of Markov operator
P and initial distribution 8 on X. We can endow the path space X*° with the product
o-algebra X. Thus we can define the probability measure P? on the o-algebra X associated
with the Markov operator P and the probability measure 6.

The path space (X, X) comes with the natural measurable action of the time shift
S X — X defined for x € X by (Sm)l = x;,.1 for i > 0. The point is that the
time shift on the path space can not be extended directly to the tail boundary. The main
difficulty comes from the fact that the partition o is defined modulo P?-null sets so that
the map S induces a map

S (XOO/QOO7XO<°°7M0) — (XOO/Q/OOJX()("O7M0P)7

and from the measure theoretic point of view the two spaces are not isomorphic in general.
This difficulty will be dropped by considering a larger measure space — namely the space
E, see below — containing each tail boundary for each probability measure 6.

We write u < v if p is absolutly continuous with respect to v. Indeed, if 8; < 6, < m
are two probability measures on the state space X, then P < P? so that there is a
natural embedding

(X% u™) > (X0, ™)

in such a way that u% < .

Let us denote by p,, the measure on the tail boundary of the Markov chain with an
initial distribution ¥ < P™. Such measures are called harmonic measures. Because of
the natural embedding above, we can assume that all harmonic measures p,,,, with v < m
are defined on a universal space (E,£) — the o-alebgra £ is generated by the family of o-
algebras of tail boundaries corresponding to each v < m. We denote by [u,,] the class (two
measures are equivalent if they are mutually absolutely continuous) of harmonic measures
o for v ~ m, and by [fi,] the minimal measure class dominating all harmonic measures
Uyn, ¥ <m and n > 0. The measure space (E, &, [fi,]) is named the tail boundary of the
Markov operator P (the initial distribution is no longer taken in consideration).

Thus, the time shift S naturally induces a invertible action on the tail boundary of the
Markov operator P (the inverse image of a tail set — measurable subset of E — is itself a
tail set) denoted by S. Furthermore, we obviously have

—1
Hun © S = Hvn—1 = HvPn-

In particular, [fi,,]oS™! = [,] so that the measure [f1,] is quasi-invariant. In this context,
the theorem of ergodic decomposition holds and we can define the Poisson boundary.

Theorem B.3.1. There exists a Lebesque space (Y, &) and a family of probability measures
{N}yey on E such that

o for&-a.e. y €Y, N(:) is a probability on E,

e for all measurable subsets B C E, the map y — \*(B) is measurable,
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e for all measurable subsets B C E, the following decomposition holds
NB) = [ N(B)(a)
Y

o for-a.e. y €Y, N\ is a quasi-invariant ergodic measure under the time shift.

Definition B.3.2. The measure space (Y, ¢) is called the Poisson boundary of the Markov
operator P. For an initial distribution # < m the measure space (Y,&%), where &7 is the
image measure on Y of ;?, is named the Poisson boundary of the chain (X, P, 6)

We refer the reader to [Kai92] for further results on the Poisson boundary. In particular,
it is shown in this paper that the Poisson boundary is isometrically isomorphic to the space
of bounded harmonic functions, i.e. real bounded functions f : X — R such that Pf = f.
This theorem is actually the time independent version of a more general theorem etablishing
an isometric isomorphism between the tail boundary and the space of bounded harmonic
sequences, that is the space of sequences of functions f = (f,)n>0, fn € L>(X, 0P") satis-
fying the conditions f, = Pf,41 for all n > 0 with the norm || f|| = sup, g || fallL=(x,0Pm)-
This theorem is the consequence of the convergence of a certain bounded backward mar-
tingale which is, in our context, the back the bounded backward martingale (E?(f|7°°)),>0
defined in section B.2.2. This theorem also has as a consequence the so-called Poisson
formula which is undoubtly better known in the context of harmonic analysis and groups.
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RESUME : L’étude des marches aléatoires fait apparaitre des connexions entre leurs pro-
priétés algébriques, géométriques ou encore combinatoires et leurs propriétés stochastiques.
Le premier exemple de telles connexions est donné par le théoreme de Pdlya concernant
les marches aléatoires aux plus proches voisins sur le groupe Z". Si les marches aléatoires
sur les groupes — ou sur des espaces homogenes — fournissent beaucoup d’exemples, il
serait apréciable d’obtenir de tels résultats de rigidité sur des structures algébriques plus
faibles telles celles de semi-groupoide ou de groupoide. Dans cette these il est considéré
un exemple de semi-groupoide et un exemple de groupoide, tous les deux sont définis a
partir de sous-graphes contraints du graphe de Cayley d'un groupe — le premier graphe
est dirigé alors que le second ne l'est pas. Pour ce premier exemple, on précise un résultat
de Campanino et Petritis — ils ont montré que la marche aléatoire simple était tran-
siente pour cet exemple de graphe dirigé — en déterminant la frontiere de Martin associée
a cette marche et établissant sa trivialité. Dans le second exemple apparaissant dans ce
manuscrit, on considere des pavages quasi-périodiques de I'espace euclidien obtenus a ’aide
de la méthode de coupe et projection. Nous considérons la marche aléatoire simple le long
des arétes des polytopes constituant le pavage, et nous répondons a la question du type de
celle-ci, c’est-a-dire nous déterminons si elle est récurrente ou transiente. Nous montrons
ce résultat en établissant des inégalités isopérimétriques. Cette stratégie permet d’obtenir
des estimées de la vitesse de décroissance du noyau de la chaleur, ce que n’aurait pas permis
'utilisation d’un critere de type Nash-Williams.

ABSTRACT: The study of random walks demonstrates connections between their al-
gebraic, combinatorial, geometric and stochastic properties. The first example of such a
connection was given in a theorem of Pdlya dealing with nearest neighbourhood random
walks on the group Z”". Random walks on groups provide with many examples, however
it should be interesting to have such rigid results in the case of weaker algebraic structures
such that semigroupoids and groupoids. In this thesis, one example of semigroupoid and
one example of groupoid are considered; they are both defined as constrained subgraphs
of the Cayley graph of a group — the first one is genuinely directed contrary to the second
one which is undirected. For this first example, it has been shown by Campanino and
Petritis that the simple random walk is transient. Here, we refine this statement by deter-
mining the Martin boundary of this process and show its triviality. In the second example,
we consider quasi-periodic tilings of the Euclidean spaces obtained with the help of the
cut-and-project scheme. We have considered the simple random walk along the sides of the
polytopes constituting the tiling and answered the question of its type, 7.e. we determined
whether the random walk is recurrent or transient. This result is a consequence of isoperi-
metric inequalities. This strategy allow us to obtain estimates of the rate of convergence
of the heat kernel which could not have been done with the help of the Nash-Williams
criterion.



