R. Chandra and R. Rustgi, Biodegradable polymers, Progress in Polymer Science, vol.23, issue.7, pp.1273-335, 1998.
DOI : 10.1016/S0079-6700(97)00039-7

L. S. Nair and C. T. Laurencin, Biodegradable polymers as biomaterials, Progress in Polymer Science, vol.32, issue.8-9, pp.8-9, 2007.
DOI : 10.1016/j.progpolymsci.2007.05.017

A. Keller, E. Wintermantel, and L. Riffieux, Matériaux composites biodégradables Utilisation de fibres végétales. Chanvre Info, Rapports FAT n° 503, 2003.

L. Avérous, Biodegradable Multiphase Systems Based on Plasticized Starch: A Review, Journal of Macromolecular Science, Part C: Polymer Reviews, vol.3, issue.3, pp.231-74, 2004.
DOI : 10.1016/0141-8130(96)81838-1

S. Doumène, Les emballages biodégradables. Fiche technique emballage, 2004.

F. Stauder, Biopolymères et bioplastiques, Fiche technique Agro-Industrie, 2006.

L. Shen, J. Haufe, and M. K. Patel, Product overview and market projection of emerging bio-based plastics -PRO-BIP, Group Science, 2009.

L. Avérous, Biodegradable polymers (Biopolymers), 2007. www.biodeg.net [12] Stanojlovic-Davidovic A., Matériaux biodégradables à base d'amidon expansé renforcé de fibres naturelles -Application à l'emballage alimentaire, Thèse Université du Sud, 2006.

K. G. Satyanarayana, G. G. Arizaga, and F. Wypych, Biodegradable composites based on lignocellulosic fibers???An overview, Progress in Polymer Science, vol.34, issue.9, pp.982-1021, 2009.
DOI : 10.1016/j.progpolymsci.2008.12.002

H. Bewa, Biodégradabilité et matériaux polymères biodégradables -Note de synthèse I, ADEME, 2005.

M. Australia and N. Ltd, Biological degradation of plastics: A comprehensive review, Biotechnology Advances, vol.26, issue.3, pp.246-65, 2002.

C. Chien-chung, C. Ju-yu, T. How, H. Haw-ming, and L. Sheng-yang, Preparation and characterization of biodegradable PLA polymeric blends, Biomaterials, vol.17, issue.247, pp.1167-73, 2003.

G. H. Yew, M. Yusof, A. M. , M. Ishak, Z. A. Ishiaku et al., Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites, Polymer Degradation and Stability, vol.90, issue.3, pp.488-500, 2005.
DOI : 10.1016/j.polymdegradstab.2005.04.006

N. Graupner, A. S. Herrmann, and J. Müssig, Natural and man-made cellulose fibrereinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas, Composites Part A: Applied Science and Manufacturing, vol.40, pp.6-7, 2009.

H. Bewa, Matériaux polymères biodégradables et applications Note de synthèse II, ADEME, 2006.

M. Vert and L. S. , Des polymères biodégradables mieux contrôlés pour des applications plus ciblées, 1997.

O. Martin and L. Avérous, Poly(lactic acid): plasticization and properties of biodegradable multiphase systems, Polymer, vol.42, issue.14, pp.6209-6228, 2001.
DOI : 10.1016/S0032-3861(01)00086-6

P. Nugroho, H. Mitomo, F. Yoshii, and T. Kume, Degradation of poly(l-lactic acid) by ??-irradiation, Polymer Degradation and Stability, vol.72, issue.2, pp.337-380, 2001.
DOI : 10.1016/S0141-3910(01)00030-1

S. Pilla, A. Kramschuster, L. Yang, J. Lee, S. Gong et al., Microcellular injection-molding of polylactide with chain-extender, Materials Science and Engineering: C, vol.29, issue.4, pp.1258-65, 2009.
DOI : 10.1016/j.msec.2008.10.027

R. M. Rasal, A. V. Janorkar, and D. E. Hirt, Poly(lactic acid) modifications, Progress in Polymer Science, vol.35, issue.3
DOI : 10.1016/j.progpolymsci.2009.12.003

M. Okada, Chemical syntheses of biodegradable polymers, Progress in Polymer Science, vol.27, issue.1, pp.87-133, 2002.
DOI : 10.1016/S0079-6700(01)00039-9

L. M. Matuana, Solid state microcellular foamed poly(lactic acid): Morphology and property characterization, Bioresource Technology, vol.99, issue.9, pp.3643-50, 2008.
DOI : 10.1016/j.biortech.2007.07.062

C. Bastioli, Handbook of Biodegradable Polymers, Edited by: Bastioli Catia edn, 2005.

N. C. Bleach, S. N. Nazhat, K. E. Tanner, M. Kellomäki, and P. Törmälä, Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate???polylactide composites, Biomaterials, vol.23, issue.7, pp.1579-85, 2002.
DOI : 10.1016/S0142-9612(01)00283-6

K. Gaurav, A. Rafael, S. Paul, and S. , Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions, Packaging Technology and Science, vol.20, issue.1, pp.49-70, 2007.

K. Gaurav, A. Rafael, S. Paul, S. Ramani, and N. , Biodegradability of polylactide bottles in real and simulated composting conditions, Polymer Testing, vol.26, issue.8, pp.1049-61, 2007.

D. Wyart, Les polymères biodégradables. Techniques de l'ingénieur, octobre, 2007.

J. Quentin, Polycondensation des polyesters saturés. Techniques de l'ingénieur juin, p.5850, 2004.

L. Avérous, Polylactic Acid: Synthesis, Properties and Applications. Monomers, Polymers and Composites from Renewable Resources, pp.433-50, 2008.

R. A. Gross and B. Kalra, Biodegradable Polymers for the Environment, Science, vol.297, issue.5582, pp.803-810, 2002.
DOI : 10.1126/science.297.5582.803

A. P. Gupta and V. Kumar, New emerging trends in synthetic biodegradable polymers

A. Södergård and M. Stolt, Properties of lactic acid based polymers and their correlation with composition, Progress in Polymer Science, vol.27, issue.6, pp.1123-63, 2002.
DOI : 10.1016/S0079-6700(02)00012-6

K. Stridsberg, M. Ryner, and A. Albertsson, Controlled Ring-Opening Polymerization: Polymers with designed Macromolecular Architecture Advances in Polymer Science, PLACE conference, vol.44, issue.15, 2006.

S. Jacobsen, H. Fritz, P. Degée, P. Dubois, and R. Jérôme, New developments on the ring opening polymerisation of polylactide, Industrial Crops and Products, vol.11, issue.2-3, pp.265-75, 2000.
DOI : 10.1016/S0926-6690(99)00053-9

G. Angerer, Techno-economic feasibility of large-scale production of bio-based polymers in europe, European Commission -Joint Research Centre (DG JRC) -Institute for Prospective Technological Studies, 2005.

J. Puiggali, Y. Ikada, H. Tsuji, L. Cartier, T. Okihara et al., The frustrated structure of poly(l-lactide), Polymer, vol.41, issue.25, pp.8921-8951, 2000.
DOI : 10.1016/S0032-3861(00)00235-4

L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali et al., Epitaxial crystallization and crystalline polymorphism of polylactides, Polymer, vol.41, issue.25, pp.8909-8928, 2000.
DOI : 10.1016/S0032-3861(00)00234-2

T. Hideto and I. Yoshito, Crystallization from the melt of poly(lactide)s with different optical purities and their blends, Macromolecular Chemistry and Physics, vol.197, issue.10, pp.3483-99, 1996.

J. R. Dorgan, J. Janzen, M. P. Clayton, S. B. Hait, and D. M. Knauss, -content poly(lactic acid), Journal of Rheology, vol.49, issue.3, pp.607-626, 2005.
DOI : 10.1122/1.1896957

URL : https://hal.archives-ouvertes.fr/hal-00338148

C. Hua, D. Vipul, A. G. Richard, and P. M. Stephen, Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid), Journal of Polymer Science Part B: Polymer Physics, vol.34, issue.16, pp.2701-2709, 1996.

H. Tsuji and Y. Ikada, Properties and morphologies of poly(?-lactide): 1. Annealing condition effects on properties and morphologies of poly(?-lactide), Polymer, vol.36, issue.14, pp.2709-2725, 1995.
DOI : 10.1016/0032-3861(95)93647-5

H. Hartmann and D. L. Kaplan, High molecular weight polylactic acid polymers, in Biopolymers from Renewable Resources, pp.367-411, 1998.

S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong, Biomedical applications of polymer-composite materials: a review, Composites Science and Technology, vol.61, issue.9, pp.1189-224, 2001.
DOI : 10.1016/S0266-3538(00)00241-4

J. R. Dorgan, H. Lehermeier, and M. Mang, Thermal and Rheological Properties of Commercial-Grade Poly(Lactic Acid)s, Journal of Polymers and the Environment, vol.56

P. Gabriele, G. Domenico, C. Catia, and B. , Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties, Journal of Applied Polymer Science, vol.59, issue.1, pp.37-43, 1996.

J. Justin and E. M. Michael, Rheological properties of poly(lactides) Effect of molecular weight and temperature on the viscoelasticity of poly(L-lactic acid), Journal of Polymer Science Part B: Polymer Physics, vol.37, issue.15, pp.1803-1817, 1999.

Q. Fang and M. A. Hanna, Rheological properties of amorphous and semicrystalline polylactic acid polymers, Industrial Crops and Products, vol.10, issue.1, pp.47-53, 1999.
DOI : 10.1016/S0926-6690(99)00009-6

L. V. Labrecque, R. A. Kumar, V. Davé, R. A. Gross, and S. P. Mccarthy, Citrate esters as plasticizers for poly(lactic acid), Journal of Applied Polymer Science, vol.66, issue.8, pp.1507-1520, 1997.
DOI : 10.1002/(SICI)1097-4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0

S. Jacobsen and H. G. Fritz, Plasticizing polylactide?the effect of different plasticizers on the mechanical properties, Polymer Engineering & Science, vol.23, issue.7, pp.1303-1313, 1999.
DOI : 10.1002/pen.11517

J. Fengzhe, H. Suong-hyu, I. Hiroo, and T. Sadami, Crosslinking of Poly(L-lactide) by gamma-Irradiation, Macromolecular Rapid Communications, vol.23, issue.15, pp.909-921, 2002.

A. J. Nijenhuis, D. W. Grijpma, and A. J. Pennings, Crosslinked poly(l-lactide) and poly(??-caprolactone), Polymer, vol.37, issue.13, pp.2783-91, 1996.
DOI : 10.1016/0032-3861(96)87642-7

N. Nagasawa, A. Kaneda, S. Kanazawa, T. Yagi, H. Mitomo et al., Application of poly(lactic acid) modified by radiation crosslinking. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, vol.236, pp.1-4, 2005.

H. Mitomo, A. Kaneda, T. M. Quynh, N. Nagasawa, and F. Yoshii, Improvement of heat stability of poly(l-lactic acid) by radiation-induced crosslinking, Polymer, vol.46, issue.13, pp.4695-703, 2005.
DOI : 10.1016/j.polymer.2005.03.088

P. Rytlewski, R. Malinowski, K. Moraczewski, and M. Zenkiewicz, Influence of some crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide, Radiation Physics and Chemistry, vol.79, issue.10, pp.1052-1059, 2010.
DOI : 10.1016/j.radphyschem.2010.04.013

Y. Di, S. Iannace, D. Maio, E. Nicolais, and L. , Reactively Modified Poly(lactic acid): Properties and Foam Processing, Macromolecular Materials and Engineering, vol.41, issue.11, pp.1083-90, 2005.
DOI : 10.1002/mame.200500115

L. Bo-hsin and Y. Ming-chien, Improvement of thermal and mechanical properties of poly(L-lactic acid) with 4,4-methylene diphenyl diisocyanate, Polymers for Advanced Technologies, vol.68, issue.176, pp.439-482, 2006.

S. Yang, Z. Wu, W. Yang, and M. Yang, Thermal and mechanical properties of chemical crosslinked polylactide (PLA), Polymer Testing, vol.27, issue.8, pp.957-63, 2008.
DOI : 10.1016/j.polymertesting.2008.08.009

V. Karayan and M. Villalobos, Cesa-extend a User Friendly Technology to Enhance Reprocessing and Recycling of Condensation Plastics, 2004.

C. Baley, Fibres naturelles de renfort pour matériaux composites. Techniques de l'ingénieur, 2005.

A. K. Bledzki and J. Gassan, Composites reinforced with cellulose based fibres, Progress in Polymer Science, vol.24, issue.2, pp.221-74, 1999.
DOI : 10.1016/S0079-6700(98)00018-5

F. Stauder, Le chanvre dans les matières plastiques. Fiche Technique Soustraitance

F. Stauder, Des composites renforcés de fibres végétales. Fiche Technique Soustraitance, 2007.

K. Oksman, M. Skrifvars, and J. F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites, Composites Science and Technology, vol.63, issue.9, pp.1317-1341, 2003.
DOI : 10.1016/S0266-3538(03)00103-9

E. Bodros, I. Pillin, N. Montrelay, and C. Baley, Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications?, Composites Science and Technology, vol.67, issue.3-4, pp.3-4, 2007.
DOI : 10.1016/j.compscitech.2006.08.024

URL : https://hal.archives-ouvertes.fr/hal-00399338

T. Nishino, K. Hirao, M. Kotera, K. Nakamae, and H. Inagaki, Kenaf reinforced biodegradable composite, Composites Science and Technology, vol.63, issue.9, pp.1281-86, 2003.
DOI : 10.1016/S0266-3538(03)00099-X

S. Ochi, Mechanical properties of kenaf fibers and kenaf/PLA composites, Mechanics of Materials, vol.40, issue.4-5, pp.4-5, 2008.
DOI : 10.1016/j.mechmat.2007.10.006

M. K. Kompella and J. Lambros, Micromechanical characterization of cellulose fibers, Polymer Testing, vol.21, issue.5, pp.523-553, 2002.
DOI : 10.1016/S0142-9418(01)00119-2

D. N. Saheb and J. P. Jog, Natural fiber polymer composites: A review, Advances in Polymer Technology, vol.Jan, issue.2, pp.351-63, 1999.
DOI : 10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X

A. B. Thomsen, A. Thygesen, V. Bohn, K. V. Nielsen, B. Pallesen et al., Effects of chemical???physical pre-treatment processes on hemp fibres for reinforcement of composites and for textiles, Industrial Crops and Products, vol.24, issue.2, pp.113-121, 2006.
DOI : 10.1016/j.indcrop.2005.10.003

G. Ramakrishna and T. Sundararajan, Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar, Cement and Concrete Composites, vol.27, issue.5, pp.575-82, 2005.
DOI : 10.1016/j.cemconcomp.2004.09.008

P. Wambua, J. Ivens, and I. Verpoest, Natural fibres: can they replace glass in fibre reinforced plastics?, Composites Science and Technology, vol.63, issue.9, pp.1259-64, 2003.
DOI : 10.1016/S0266-3538(03)00096-4

M. Rinaudo, Initiation à la Science des Polymères -Les Polymères Naturels: Structure, Modification, Applications. Groupe Française d'Etude et d'Application des Polymères gfp, p.484, 2006.

L. Goetz, A. Mathew, K. Oksman, P. Gatenholm, and A. J. Ragauskas, A novel nanocomposite film prepared from crosslinked cellulosic whiskers, Carbohydrate Polymers, vol.75, issue.1, pp.85-94, 2009.
DOI : 10.1016/j.carbpol.2008.06.017

J. De-menezes, A. Siqueira, G. Curvelo, A. A. Dufresne, and A. , Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites, Polymer, vol.50, issue.19, pp.4552-63, 2009.
DOI : 10.1016/j.polymer.2009.07.038

L. Petersson, I. Kvien, and K. Oksman, Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials, Composites Science and Technology, vol.67, issue.11-12, pp.11-12, 2007.
DOI : 10.1016/j.compscitech.2006.12.012

K. Oksman, A. P. Mathew, D. Bondeson, and I. Kvien, Manufacturing process of cellulose whiskers/polylactic acid nanocomposites, Composites Science and Technology, vol.66, issue.15, pp.2776-84, 2006.
DOI : 10.1016/j.compscitech.2006.03.002

E. H. Ly, Nouveaux matériaux composites thermoformables à base de fibres de cellulose. Thèse, Institut National Polytechnique de Grenoble janvier, p.925, 2008.

I. Gabrielii, P. Gatenholm, W. G. Glasser, R. K. Jain, and L. Kenne, Separation, characterization and hydrogel-formation of hemicellulose from aspen wood, Carbohydrate Polymers, vol.43, issue.4, pp.367-74, 2000.
DOI : 10.1016/S0144-8617(00)00181-8

G. Pilate, Peupliers ?? lignines modifi??es : du g??nie g??n??tique ?? l???industrie papeti??re, m??decine/sciences, vol.19, issue.1
DOI : 10.1051/medsci/200319118

D. Lorient, Modifications biochimiques des constituants alimentaires. Techniques de l'ingénieur, pp.3400-3421, 1998.

R. Heijenrath and T. Peijs, Natural fibre mat reinforced thermoplastic composites based on flax fibres and polypropylene, Advanced Composites Letters, vol.5, issue.3, pp.81-86, 1996.

K. Oksman, Mechanical properties of natural fibre mat reinforced thermoplastic, Applied Composite Materials, vol.7, pp.5-6, 2000.

C. Baley and E. , Biocomposites ?? matrice PLLA renforc??s par des mats de lin, Revue des composites et des mat??riaux avanc??s, vol.16, issue.1
DOI : 10.3166/rcma.16.129-139

D. Fengel and G. Wegener, Wood -chemistry, ultrastructure, reactions, 1984.

A. N. Netravali and S. Chabba, Composites get greener, Materials Today, vol.6, issue.4, pp.22-31, 2003.
DOI : 10.1016/S1369-7021(03)00427-9

URL : http://doi.org/10.1016/s1369-7021(03)00427-9

J. S. Prieto and A. , Natural fiber composites of high-temperature thermoplastic polymers: Effects of coupling agents, Journal of Applied Polymer Science, vol.86, issue.9, pp.2168-73, 2002.

R. Joffe, J. Andersons, and L. Wallström, Strength and adhesion characteristics of elementary flax fibres with different surface treatments, Composites Part A: Applied Science and Manufacturing, vol.34, issue.7, pp.603-615, 2003.
DOI : 10.1016/S1359-835X(03)00099-X

S. Taj, M. A. Munawar, and S. Khan, Natural fiber-reinforced polymer composites, Proceedings of the Pakistan Academy of Sciences, vol.44, issue.2, pp.129-173, 2007.

A. Dufresne, D. Dupeyre, and M. Paillet, Lignocellulosic flour-reinforced poly(hydroxybutyrate-co-valerate) composites, Journal of Applied Polymer Science, vol.87, issue.8, pp.1302-1317, 2003.
DOI : 10.1002/app.11546

A. P. Mathew, K. Oksman, and M. Sain, Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC), Journal of Applied Polymer Science, vol.2, issue.5, pp.2014-2039, 2005.
DOI : 10.1002/app.21779

M. Nardin, Interfaces fibre-matrice dans les mat??riaux composites. Applications aux fibres v??g??tales, Revue des composites et des mat??riaux avanc??s, vol.16, issue.1, 2006.
DOI : 10.3166/rcma.16.49-62

H. Kim, B. Lee, S. Choi, S. Kim, and H. Kim, The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites, Composites Part A: Applied Science and Manufacturing, vol.38, issue.6, pp.1473-82, 2007.
DOI : 10.1016/j.compositesa.2007.01.004

G. Sèbe, Fonctionnalisation chimique des fibres pour le contrôle de l'interface fibre/matrice des composites à renforts naturels, Exploration de nouvelles méthodes à base de composés organosiliciés, pp.89-100, 2006.

Y. Xie, C. A. Hill, Z. Xiao, H. Militz, and C. Mai, Silane coupling agents used for natural fiber/polymer composites: A review, Composites Part A: Applied Science and Manufacturing, vol.41, issue.7, pp.806-825, 2010.
DOI : 10.1016/j.compositesa.2010.03.005

D. Maldas, B. V. Kokta, and C. Daneault, Influence of coupling agents and treatments on the mechanical properties of cellulose fiber???polystyrene composites, Journal of Applied Polymer Science, vol.37, issue.3, pp.751-75, 1989.
DOI : 10.1002/app.1989.070370313

J. D. Miller, H. Ishida, and F. H. Maurer, Controlling and monitoring interfacial reactions in composites of azidosilane modified glass filled polyethylene, Polymer Composites, vol.78, issue.1, pp.12-21, 1988.
DOI : 10.1002/pc.750090103

M. Salon, G. Gerbaud, M. Abdelmouleh, C. Bruzzese, S. Boufi et al., Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR, Magnetic Resonance in Chemistry, vol.18, issue.6, pp.473-83, 2007.
DOI : 10.1002/mrc.1994

URL : https://hal.archives-ouvertes.fr/hal-00292107

B. Arkles, J. R. Steinmetz, J. Zazyczny, and P. Mehta, Factors contributing to the stability of alkoxysilanes in aqueous solution, Journal of Adhesion Science and Technology, vol.6, issue.1, pp.193-206, 1992.
DOI : 10.1163/156856192X00133

L. M. Matuana, J. J. Balatinecz, C. B. Park, and R. N. Sodhi, X-ray photoelectron spectroscopy study of silane-treated newsprint-fibers, Wood Science and Technology, vol.33, issue.4, pp.259-70, 1999.
DOI : 10.1007/s002260050114

H. Kang, W. Meesiri, and F. D. Blum, Nuclear magnetic resonance studies of the hydrolysis and molecular motion of aminopropylsilane, Materials Science and Engineering: A, vol.126, issue.1-2, pp.265-70, 1990.
DOI : 10.1016/0921-5093(90)90132-M

K. L. Pickering, A. Abdalla, C. Ji, A. G. Mcdonald, and R. A. Franich, The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites, Composites Part A: Applied Science and Manufacturing, vol.34, issue.10, pp.915-941, 2003.
DOI : 10.1016/S1359-835X(03)00234-3

M. N. Belgacem, A. Gandini, and G. Alessandro, Surface Modification of Cellulose Fibres, Monomers, Polymers and Composites from Renewable Resources, pp.385-400, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00014419

M. Bengtsson and K. Oksman, Silane crosslinked wood plastic composites: Processing and properties, Composites Science and Technology, vol.66, issue.13, pp.2177-86, 2006.
DOI : 10.1016/j.compscitech.2005.12.009

S. M. Nachtigall, G. S. Cerveira, and S. M. Rosa, New polymeric-coupling agent for polypropylene/wood-flour composites, Polymer Testing, vol.26, issue.5, pp.619-647, 2007.
DOI : 10.1016/j.polymertesting.2007.03.007

S. Donath, H. Militz, and C. Mai, Creating water-repellent effects on wood by treatment with silanes, Holzforschung, vol.60, issue.1, pp.40-46, 2006.
DOI : 10.1515/HF.2006.008

C. A. Hill, M. R. Farahani, and M. D. Hale, The use of organo alkoxysilane coupling agents for wood preservation, Holzforschung, vol.58, issue.3, pp.316-341, 2004.
DOI : 10.1515/HF.2004.049

P. Pan, B. Zhu, W. Kai, S. Serizawa, M. Iji et al., Crystallization behavior and mechanical properties of bio-based green composites based on poly(L-lactide) and kenaf fiber, Journal of Applied Polymer Science, vol.38, issue.3, pp.1511-1531, 2007.
DOI : 10.1002/app.26407

M. S. Huda, A. K. Mohanty, L. T. Drzal, E. Schut, and M. Misra, ???Green??? composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation, Journal of Materials Science, vol.23, issue.1, pp.4221-4230, 2005.
DOI : 10.1007/s10853-005-1998-4

R. Masirek, Z. Kulinski, D. Chionna, E. Piorkowska, and M. Pracella, Composites of poly(L-lactide) with hemp fibers: Morphology and thermal and mechanical properties, Journal of Applied Polymer Science, vol.337, issue.1, pp.255-68, 2007.
DOI : 10.1002/app.26090

W. Qiu, F. Zhang, T. Endo, and T. Hirotsu, Preparation and characteristics of composites of high-crystalline cellulose with polypropylene: Effects of maleated polypropylene and cellulose content, Journal of Applied Polymer Science, vol.61, issue.2, pp.337-382, 2003.
DOI : 10.1002/app.11446

A. P. Mathew, K. Oksman, and M. Sain, The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid, Journal of Applied Polymer Science, vol.1, issue.1, pp.300-310, 2006.
DOI : 10.1002/app.23346

M. S. Huda, L. T. Drzal, M. Misra, and A. K. Mohanty, Wood-fiber-reinforced poly(lactic acid) composites: Evaluation of the physicomechanical and morphological properties, Journal of Applied Polymer Science, vol.337, issue.5, pp.4856-69, 2006.
DOI : 10.1002/app.24829

M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study, Composites Science and Technology, vol.66, issue.11-12, pp.11-12, 2006.
DOI : 10.1016/j.compscitech.2005.10.015

M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers, Composites Science and Technology, vol.68, issue.2, pp.424-456, 2008.
DOI : 10.1016/j.compscitech.2007.06.022

A. M. Dupraz, J. R. De-wijn, S. A. Meer, and K. De-groot, Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites, Journal of Biomedical Materials Research, vol.24, issue.2, pp.231-239, 1996.
DOI : 10.1002/(SICI)1097-4636(199602)30:2<231::AID-JBM13>3.0.CO;2-P

K. Zhang, Y. Wang, M. A. Hillmyer, and L. F. Francis, Processing and properties of porous poly(l-lactide)/bioactive glass composites, Biomaterials, vol.25, issue.13, pp.2489-500, 2004.
DOI : 10.1016/j.biomaterials.2003.09.033

Y. Shih, C. Huang, and P. Chen, Biodegradable green composites reinforced by the fiber recycling from disposable chopsticks, Materials Science and Engineering: A, vol.527, issue.6, pp.1516-1537, 2010.
DOI : 10.1016/j.msea.2009.10.024

M. Botev, H. Betchev, D. Bikiaris, and C. Panayiotou, Mechanical properties and viscoelastic behavior of basalt fiber-reinforced polypropylene, Journal of Applied Polymer Science, vol.63, issue.3
DOI : 10.1002/(SICI)1097-4628(19991017)74:3<523::AID-APP7>3.0.CO;2-R

T. Yu, J. Ren, S. Li, H. Yuan, and Y. Li, Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites, Composites Part A: Applied Science and Manufacturing, vol.41, issue.4, pp.499-505, 2010.
DOI : 10.1016/j.compositesa.2009.12.006

S. Lee and S. Wang, Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent, Composites Part A: Applied Science and Manufacturing, vol.37, issue.1, pp.80-91, 2006.
DOI : 10.1016/j.compositesa.2005.04.015

R. Iovino, R. Zullo, M. A. Rao, L. Cassar, and L. Gianfreda, Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions, Polymer Degradation and Stability, vol.93, issue.1, pp.147-57, 2008.
DOI : 10.1016/j.polymdegradstab.2007.10.011

M. Avella, G. Bogoeva-gaceva, A. Buzarovska, M. E. Enrrico, G. Gentile et al., Poly(lactic acid)-based biocomposites reinforced with kenaf fibers, Journal of Applied Polymer Science, vol.39, issue.6, pp.3542-51, 2008.
DOI : 10.1002/app.28004

D. Plackett, Maleated Polylactide as an Interfacial Compatibilizer in Biocomposites, Journal of Polymers and the Environment, vol.12, issue.3, pp.131-139, 2004.
DOI : 10.1023/B:JOOE.0000038544.75554.0e

S. Mitsuhiro, O. Koichi, T. Naozumi, Y. Ryutoku, and T. Hiroyuku, Biocomposites Made from Short Abaca Fiber and Biodegradable Polyesters, Macromolecular Materials and Engineering, vol.288, issue.1, pp.35-43, 2003.

. Les, Conseil national de recherches canada CBD-166-F, 2005.

M. Biron, Polymères alvéolaires?présentation et propriétés, 2003.

L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 1999.
DOI : 10.1017/CBO9781139878326

Y. X. Gan, C. Chen, and Y. P. Shen, Three-dimensional modeling of the mechanical property of linearly elastic open cell foams, International Journal of Solids and Structures, vol.42, issue.26, pp.6628-6670, 2005.
DOI : 10.1016/j.ijsolstr.2005.03.002

W. E. Warren and A. M. Kraynik, Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials, Mechanics of Materials, vol.6, issue.1, pp.27-37, 1987.
DOI : 10.1016/0167-6636(87)90020-2

W. E. Warren and A. M. Kraynik, Linear Elastic Behavior of a Low-Density Kelvin Foam With Open Cells, Journal of Applied Mechanics, vol.64, issue.4, pp.787-94, 1997.
DOI : 10.1115/1.2788983

H. X. Zhu, N. J. Mills, and J. F. Knott, Analysis of the high strain compression of opencell foams, Journal of the Mechanics and Physics of Solids, vol.45, pp.11-12, 1997.

H. X. Zhu, J. R. Hobdell, and A. H. Windle, Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs, Journal of the Mechanics and Physics of Solids, vol.49, issue.4, pp.857-70, 2001.
DOI : 10.1016/S0022-5096(00)00046-6

H. X. Zhu, J. R. Hobdell, and A. H. Windle, Effects of cell irregularity on the elastic properties of open-cell foams, Acta Materialia, vol.48, issue.20, pp.4893-900, 2000.
DOI : 10.1016/S1359-6454(00)00282-2

H. X. Zhu and A. H. Windle, Effects of cell irregularity on the high strain compression of open-cell foams, Acta Materialia, vol.50, issue.5, pp.1041-52, 2002.
DOI : 10.1016/S1359-6454(01)00402-5

D. Wyart, Polystyrène expansé ou PSE. Technique de l'ingénieur, pp.3341-3363, 2008.

M. F. Ashby and D. R. Jones, Matériaux 2. microstructure et mise en oeuvre, 1991.

J. Bruchon, Etude de la formation d'une structure de mousse par simulation directe de l'expansion de bulles dans une matrice liquide polymère, Thèse, Ecole Nationale, 2004.

H. Lin, The structure and property relationships of commercial foamed plastics, Polymer Testing, vol.16, issue.5, pp.429-472, 1997.
DOI : 10.1016/S0142-9418(97)00003-2

D. Klempner and V. Sendijarevic, Handbook of Polymeric Foams and Foam Technology, Hanser Gardner publications, vol.584, 2004.

A. M. Trater, S. Alavi, and S. S. Rizvi, Use of non-invasive X-ray microtomography for characterizing microstructure of extruded biopolymer foams, Food Research International, vol.38, issue.6, pp.709-728, 2005.
DOI : 10.1016/j.foodres.2005.01.006

S. T. Lee, Thermoplastic Foam Processing Principles and Development, 2004.

S. T. Lee, Foam Extrusion : Principles and Practice, 2000.
DOI : 10.1201/9781420014129

S. Quinn, Chemical blowing agents: providing production, economic and physical improvements to a wide range of polymers, Plastics, Additives and Compounding, vol.3, issue.5, pp.16-21, 2001.
DOI : 10.1016/S1464-391X(01)80162-8

N. Whelan, A. Witte, and T. Holzberg, HYDROCEROL -The right chemical foaming agents for your application

J. Markarian, Cost saving opportunities push foaming agents forward, Plastics, Additives and Compounding, vol.8, issue.5, pp.22-27, 2006.
DOI : 10.1016/S1464-391X(06)70636-5

. Semicarbazide, Les dossier d'actualité en sécurité sanitaire. Direction générale de la santé, rencontre presse 2003

M. Reedy, New chemical foaming agents expand wood/plastic composite market, Plastics, Additives and Compounding, vol.4, issue.5, pp.24-30, 2002.
DOI : 10.1016/S1464-391X(02)80114-3

D. Job and J. Mayeres, Ultraflexible polyolefin foam containing CPE, 2004.

R. Gosselin, Injection de mousses composites bois/plastiques d'origine postconsommation . Mémoire, Faculté des Sciences et de Génie, 2005.

M. Sauceau, C. Nikitine, S. Puissant, D. Richon, and J. Fages, Fabrication de mousses de polystyrène par couplage extrusion CO 2 supercritique : influence du refroidissement et de la température, Récents Progrès en Génie des Procédés, 2005.

I. Tsivintzelis, A. G. Angelopoulou, and C. Panayiotou, Foaming of polymers with supercritical CO2: An experimental and theoretical study, Polymer, vol.48, issue.20, pp.5928-5967, 2007.
DOI : 10.1016/j.polymer.2007.08.004

I. Tsivintzelis, E. Pavlidou, and C. Panayiotou, Biodegradable polymer foams prepared with supercritical CO2???ethanol mixtures as blowing agents, The Journal of Supercritical Fluids, vol.42, issue.2, pp.265-72, 2007.
DOI : 10.1016/j.supflu.2007.02.009

G. Chen, T. Ushida, and T. Tateishi, Preparation of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams by use of ice microparticulates, Biomaterials, vol.22, issue.18, pp.2563-2570, 2001.
DOI : 10.1016/S0142-9612(00)00447-6

M. Biron, Polymères alvéolaires ? Monographie et transformation, p.3551, 2003.

S. Puissant and P. Bonvin, Ligne d'extrusion en câblerie -Etapes de fabrication. Techniques de l'ingénieur, p.3641, 2006.

M. Sauceau, C. Nikitine, E. Rodier, and J. Fages, Effect of supercritical carbon dioxide on polystyrene extrusion, The Journal of Supercritical Fluids, vol.43, issue.2, pp.367-73, 2007.
DOI : 10.1016/j.supflu.2007.05.014

A. Greco, A. Maffezzoli, and O. Manni, Development of polymeric foams from recycled polyethylene and recycled gypsum, Polymer Degradation and Stability, vol.90, issue.2, pp.256-63, 2005.
DOI : 10.1016/j.polymdegradstab.2005.01.026

N. Antheunis, Methode for preparing biodegradable polyester foams, polyester foams obtained thereby, and the use thereof, 2004.

J. Markarian, Foaming agents reduce weight and save energy costs, Plastics, Additives and Compounding, vol.11, issue.1, pp.28-30, 2009.
DOI : 10.1016/S1464-391X(09)70032-7

D. Darmawan, N. Kenji, M. Hiroshi, and Y. Fumio, Improvement of processability of poly(e-caprolactone) by radiation techniques, Journal of Applied Polymer Science, vol.74, issue.7, pp.1815-1835, 1999.

K. Bahari, H. Mitomo, T. Enjoji, F. Yoshii, and K. Makuuchi, Radiation crosslinked poly(butylene succinate) foam and its biodegradation, Polymer Degradation and Stability, vol.62, issue.3, pp.551-558, 1998.
DOI : 10.1016/S0141-3910(98)00041-X

L. M. Matuana, O. Faruk, and C. A. Diaz, Cell morphology of extrusion foamed poly(lactic acid) using endothermic chemical foaming agent, Bioresource Technology, vol.100, issue.23, pp.5947-54, 2009.
DOI : 10.1016/j.biortech.2009.06.063

S. T. Lee, L. Kareko, and J. Jun, Study of Thermoplastic PLA Foam Extrusion, Journal of Cellular Plastics, vol.44, issue.4, pp.293-305, 2008.
DOI : 10.1177/0021955X08088859

L. M. Matuana and C. A. Diaz, through a Continuous-Extrusion Process, Industrial & Engineering Chemistry Research, vol.49, issue.5, pp.2186-93, 2010.
DOI : 10.1021/ie9011694

J. Wang, W. L. Zhu, C. B. Park, and J. Randall, Impact of Molecular Branching on the Microcellular Foaming of Polylactic Acid in Extrusion, 2009.

X. Liao, A. V. Nawaby, and M. Day, Effect of crystallinity on the foam morphology of poly(L-lactic acid), Polymeric Materials: science & Engineering, vol.51, pp.613-617, 2006.

W. L. Zhu, C. B. Park, R. Pop-iliev, and J. Randall, Relationship of Crystallinity with Cell morphology for Semicrystaline Polylactide Foamed with Supercritical CO 2, 2009.

L. Nadia and W. Bengt, The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid), Journal of Applied Polymer Science, vol.86, issue.5, pp.1227-1261, 2002.

M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips et al., Thermal and mechanical properties of plasticized poly(L-lactic acid), Journal of Applied Polymer Science, vol.11, issue.7, pp.1731-1739, 2003.
DOI : 10.1002/app.12549

P. Petra, K. Beate, S. Jens, and M. Helmut, Elongational Viscosity and Foaming Behavior of PP Modified by Electron Irradiation or Nanotube Addition, Macromolecular Symposia, vol.254, issue.1, pp.400-408, 2007.

Q. Li and L. M. Matuana, Foam extrusion of high density polyethylene/wood-flour composites using chemical foaming agents, Journal of Applied Polymer Science, vol.26, issue.14
DOI : 10.1002/app.12003

A. K. Bledzki and O. Faruk, Injection moulded microcellular wood fibre???polypropylene composites, Composites Part A: Applied Science and Manufacturing, vol.37, issue.9, pp.1358-67, 2006.
DOI : 10.1016/j.compositesa.2005.08.010

M. Mihaela, A. H. Michel, D. F. Basil, and L. Hongbo, Extrusion Foaming of Semi- Crystalline PLA and PLA/Thermoplastic Starch Blends, Macromolecular Bioscience, vol.7, issue.7, pp.907-927, 2007.

D. Preechawong, M. Peesan, P. Supaphol, and R. Rujiravanit, Preparation and characterization of starch/poly(l-lactic acid) hybrid foams, Carbohydrate Polymers, vol.59, issue.3, pp.329-366, 2005.
DOI : 10.1016/j.carbpol.2004.10.003

J. L. Willett and R. L. Shogren, Processing and properties of extruded starch/polymer foams, Polymer, vol.43, issue.22, pp.5935-5982, 2002.
DOI : 10.1016/S0032-3861(02)00497-4

L. M. Matuana and O. Faruk, Solid State Microcellular Foamed PLA and PLA/Wood- Flour Composites: Morphology and Property Characterization, 4e Symposium International sur les Composites Bois-Polymeres, 2009.

L. M. Matuana, C. B. Park, and J. Balatinecz, Processing and cell morphology relationships for microcellular foamed PVC/wood-fiber composites, Polymer Engineering & Science, vol.38, issue.7, pp.1137-1184, 1997.
DOI : 10.1002/pen.11758

F. Mengeloglu and L. M. Matuana, Foaming of rigid PVC/wood-flour composites through a continuous extrusion process, Journal of Vinyl and Additive Technology, vol.20, issue.160, pp.142-150, 2001.
DOI : 10.1002/vnl.10282

L. M. Matuana and F. Mengeloglu, Manufacture of rigid PVC/wood-flour composite foams using moisture contained in wood as foaming agent, Journal of Vinyl and Additive Technology, vol.51, issue.160, pp.264-70, 2002.
DOI : 10.1002/vnl.10373

R. Gosselin and D. Rodrigue, Injection Molding of Postconsumer Wood-Plastic Composites I: Morphology, Journal of Thermoplastic Composite Materials, vol.19, issue.6, pp.639-57, 2006.
DOI : 10.1177/0892705706067484

Y. Ema, M. Ikeya, and M. Okamoto, Foam processing and cellular structure of polylactide-based nanocomposites, Polymer, vol.47, issue.15, pp.5350-5359, 2006.
DOI : 10.1016/j.polymer.2006.05.050

Y. Di, S. Iannace, D. Maio, E. Nicolais, and L. , Poly(lactic acid)/organoclay nanocomposites: Thermal, rheological properties and foam processing, Journal of Polymer Science Part B: Polymer Physics, vol.27, issue.6, pp.689-98, 2005.
DOI : 10.1002/polb.20366

S. S. Ray and M. Okamoto, Biodegradable Polylactide and Its Nanocomposites: Opening a New Dimension for Plastics and Composites, Macromolecular Rapid Communications, vol.24, issue.14, pp.815-855, 2003.
DOI : 10.1002/marc.200300008

V. Berthé, Développement de mélanges à base de polylactide à durabilité contrôlée - Etude des relations microstructure / propriétés / mise en oeuvre

S. H. Alavi, B. K. Gogoi, M. Khan, B. J. Bowman, and S. S. Rizvi, Structural properties of protein-stabilized starch-based supercritical fluid extrudates, Food Research International, vol.32, issue.2, pp.107-125, 1999.
DOI : 10.1016/S0963-9969(99)00063-0

R. Gosselin and D. Rodrigue, Cell morphology analysis of high density polymer foams, Polymer Testing, vol.24, issue.8, pp.1027-1062, 2005.
DOI : 10.1016/j.polymertesting.2005.07.005

C. Z. Sahagun and R. Gonzalez-nunez, Morphology of Extruded PP/HDPE Foam Blends, Journal of Cellular Plastics, vol.42, issue.6, pp.469-85, 2006.
DOI : 10.1177/0021955X06063521

M. F. Ashby, Materials selection in mechanical design, Le Journal de Physique IV, vol.03, issue.C7, 1999.
DOI : 10.1051/jp4:1993701

URL : https://hal.archives-ouvertes.fr/jpa-00251707

T. M. Quynh, H. Mitomo, L. Zhao, and S. Asai, The radiation crosslinked films based on PLLA/PDLA stereocomplex after TAIC absorption in supercritical carbon dioxide, Carbohydrate Polymers, vol.72, issue.4, pp.673-81, 2008.
DOI : 10.1016/j.carbpol.2007.10.010

S. Pilla, S. G. Kim, G. K. Auer, S. Gong, and C. B. Park, Microcellular extrusion-foaming of polylactide with chain-extender, Polymer Engineering & Science, vol.91, issue.19, pp.1653-60, 2009.
DOI : 10.1002/pen.21385

M. Villalobos, A. Awojulu, T. Greeley, G. Turco, and G. Deeter, Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics, Energy, vol.31, issue.15
DOI : 10.1016/j.energy.2006.03.026

C. B. Park, A. H. Behravesh, and R. D. Venter, Low density microcellular foam processing in extrusion using CO2, Polymer Engineering & Science, vol.42, issue.11, pp.1812-1835, 1998.
DOI : 10.1002/pen.10351

C. H. Lee, K. Lee, H. G. Jeong, and S. W. Kim, Growth of gas bubbles in the foam extrusion process, Advances in Polymer Technology, vol.31, issue.2, pp.97-112, 2000.
DOI : 10.1002/(SICI)1098-2329(200022)19:2<97::AID-ADV3>3.0.CO;2-B

D. F. Baldwin, C. B. Park, and N. P. Suh, A microcellular processing study of poly(ethylene terephthalate) in the amorphous and semicrystalline states. Part II: Cell growth and process design, Polymer Engineering & Science, vol.31, issue.11, pp.1446-53, 1996.
DOI : 10.1002/pen.10539

Z. Xing, G. Wu, S. Huang, S. Chen, and H. Zeng, Preparation of microcellular crosslinked polyethylene foams by a radiation and supercritical carbon dioxide approach

M. E. Kabir, M. C. Saha, and S. Jeelani, Tensile and fracture behavior of polymer foams, Materials Science and Engineering: A, vol.429, issue.1-2, pp.225-260, 2006.
DOI : 10.1016/j.msea.2006.05.133

F. Trotta, M. Zanetti, and G. Camino, Thermal degradation of cyclodextrins, Polymer Degradation and Stability, vol.69, issue.3, pp.373-382, 2000.
DOI : 10.1016/S0141-3910(00)00084-7

L. M. Matuana, C. B. Park, and J. J. Balatinecz, Processing and cell morphology relationships for microcellular foamed PVC/wood-fiber composites, Polymer Engineering & Science, vol.38, issue.7
DOI : 10.1002/pen.11758