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Résumé Court

Dans les bases de données spatiales actuellement mises en oeuvre, les phénomenes naturels
sont généralement représentés par des géométries ayant des frontieres bien délimitées. Une
telle description de la réalité ignore le vague qui caractérise la forme de certains objets
spatiaux (zones d’inondation, lacs, peuplements forestiers, etc.). La qualité des données

enregistrées est donc dégradée du fait de ce décalage entre la réalité et sa description.

Cette these s’attaque a ce probleme en proposant une nouvelle approche pour représenter
des objets spatiaux ayant des formes vagues et caractériser leurs relations topologiques. Le
modéle proposé, appel@VIM model(acronyme de Qualitative Min-Max model), utilise les
notions d’extensions minimale et maximale pour représenter la partie incertaine d’'un objet.
Un ensemble d’adverbes permet d’exprimer la forme vague d’'un objet (ex : a region with a
partially broad boundary), ainsi que I'incertitude des relations topologiques entre deux objets
(ex : weakly Contains,fairly Contains, etc.). Cette approche est moins fine que d'autres
approches concurrentes (modélisation par sous-ensembles flous ou modélisation probabiliste).
Mais elle ne nécessite pas un processus d’acquisition complexe des données. De plus elle est
relativement simple a mettre en ceuvre avec les systemes existants de gestion de bases de

données.

Cette approche est ensuite utilisée pour contréler la qualité des données dans les bases de
données spatiales et les entrepdts de données spatiales en spécifiant des contraintes d’intégrité
par I'intermédiaire des concepts du modele QMM. Une extension du langage de contraintes
OCL (Object Constraint Language) a été étudiée pour spécifier des contraintes topologiques
impliquant des objets ayant des formes vagues. Un logiciel existant (outii OCLtoSQL
développé a I'Université de Dresden) a été étendu pour permettre la génération automatique
du code SQL d’'une contrainte lorsque la base de données est gérée par un systeme relationnel.
Une expérimentation de cet outil a été réalisée avec une base de données utilisée pour la
gestion des épandages agricoles. Pour cette application, I'approche et I'outil sont apparus trés

efficients.

Cette these comprend aussi une étude de l'intégration de bases de données spatiales
hétérogenes lorsque les objets sont représentés avec le modele QMM. Des résultats nouveaux

ont été produits et des exemples d’application ont été explicités.






Résumé long

Les bases de données spatiales et les systémes d’information géographique (SIG) sont de plus
en plus utilisés pour répondre a des besoins transactionnels liés a la gestion des phénomeénes
du monde réel. De méme, les cubes de données géo-décisionnelles sont devenus des outils
incontournables qui permettent au preneur de décisions d’analyser I'extension spatiale d’'un
phénomene donné. Cette analyse est facilitée par la possibilité d'une navigation
cartographique au niveau de la dimension spatiale du phénomeéne. Un point commun entre ces
outils transactionnels et décisionnels consiste a représenter les phénoménes spatiaux en
utilisant des géométries bien définies ou considérées comme telles. Une telle description
simplifiée de la réalitéignore le vague de forme de certains objets comme des zones
d’'inondation ou des peuplements forestiers. Par exemple, une réggm (ayant des
frontieres bien définies) ne peut étre une représentation correcte d'un lac physiquement
entouré par des frontiergsrtiellementou complétemenlarges; les berges du lac dépendent

du niveau des précipitations). Il s’agit donc d’un probleme de qualité puisque la fiabilité des

données est dégradée par ce décalage entre la réalité et sa description.

Cette these propose une approche permettant de représenter des objets spatiaux ayant des
formes vagues et de caractériser leurs relations topologiques. Plus spécifiquement, nous
définissons un modeéle qualitatif appedIM model (acronyme de Qualitative Min-Max
model) qui utilise les notions d’extensions minimale et maximale pour représenter la partie
incertaine d’'un objet. Un ensemble d’adverbes permet alors d’exprimer le vague de forme des
objets (ex : a region with partially broad boundary, a line with@mpletelybroad interior)
ainsi que lincertitude des relations topologiquegedkly Contains,fairly Contains,strongly
Covers, etc.). Cette approche fournit une évaluation de l'incertitude moins fine que d’autres
approches concurrentes (modélisation par sous-ensembles flous ou modélisation probabiliste)
mais elle ne nécessite pas un processus d’acquisition complexe des données. De plus elle est
relativement simple a mettre en ceuvre avec les systemes existants de gestion de bases de

données.

Cette approche est ensuite utilisée pour contréler la qualité des données dans les bases de
données spatiales et les entrepdts de données spatiales en spécifiant des contraintes d’intégrité
par I'intermédiaire des concepts du modele QMM. Une extension du langage de contraintes
OCL (Object Constraint Language) a été étudiée pour spécifier des contraintes topologiques

impliquant des objets ayant des formes vagues. Plus précisément les expressions de



contraintes s’appuient sur une forme adverbiale d'ou I'acronyme AQCAdverbial OCL

for Objects with Vague Shapgsour caractériser cette extension d’'OCIn logiciel existant

(outil OCLtoSQL développé a I'Université de Dresde) a été étendu pour permettre la
génération automatique du code SQL d’'une contrainte lorsque la base de données est gérée
par un systeme relationnel. Une expérimentation de cet outil a été réalisée avec une base de
données utilisée pour la gestion des épandages agricoles. Pour cette application, I'approche et

I'outil sont apparus tres efficients.

Cette these comprend aussi une étude de l'intégration de bases de données spatiales
hétérogenes lorsque les objets sont représentés avec le modéle QMM. Des résultats nouveaux
ont été produits et des exemples d’application ont été explicités.
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Chapter 1: Introduction

1.1 Research context

Over the last two decades, Geographical Information Systems (GIS) and spatial databases
have been increasingly used to meet some transactional and decisional needs in various areas.
The rise of GIS and spatial databases has been stimulated by the technological advances and
an increasing relevance of multi-source integrated spatial information in the management of
phenomena such as forestry, geology, agriculture, disaster control and emergency
management, land cover/land use planning, national defence and security, etc. The increasing
use of GIS leads to increasing requirements about presenting a reliable description of
geographic information. Such a description should always consider the imperfection that is an
endemic feature of the geographic information (Goodchild 1995a, Duckham2€01). The
imperfection can be present, in the description of a spatial object, in different forms including
vagueness (e.g. Erwig and Schneider 1997), error (e.g. Heuvelink 1998), imprecision (e.g.

Worboys 1998(b)), inconsistency (e.g. Rodriguez 2005), etc.

Dealing with imperfection is generally based on general taxonomies that propose
definitions of its different types and causes (Bédard 1987, Smithson 1989, Parsons 1996,
Smets 1996, Goodchild and Jeansoulin 1998, Fisher 1999a, Worboys 1998a, Hazarika and
Cohn 2001, Devillers and Jeansoulin 200%he first aim of such taxonomies is in
distinguishing the nuances between the imperfection types, rather than accurately
characterising the nature of imperfection (Parsons and Hunter 1998). According to Dilo

(2006), these taxonomies has led to the development of different formalisms, each intended to
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capture a particular nuance of imperfection. The definitions of imperfection types and the
nuances between them are explained in details in the literature review (Chapter 2).

The inherent imperfection of geographic information leads to deficiencies in spatial data
quality (Guptill and Morrison 1995, Goodchild and Jeansoulin 1998, Aalders 2002, Devillers
2004, Devillers and Jeansoulin 2005, Van Oort 2006). oality can be defined as “the
totality of featuresandcharacteristicsof a producor service thabearon its ability to satisfy
stated or implied needs” (ISO 2002, originally in ISO standard 8402). Spatial data quality is
generally described by a set of elements such as the positional accuracy and genealogy called
the elements of spatial data qualif¢uptill and Morrison 1995). The description of such
elements is made by the data producer and helps the users to determine if the available data
meet their needs. Moreover, the information about spatial data quality is increasingly required
by users of transactional spatial databases and spatial data warehouses (Devillers 2004). In the
latter case, it became the first criterion needed because the relevance of a decision depends
strongly on the quality of data loaded in the data warehouse (Knightbridge Solutions 2006).

Spatial data quality may also be degraded when inappropriate spatial models are used to
describe the geographic reality (Dilo 2006). For instancetrétuitional (this term is used in
the remainder of the thesis to refer crisp spatial models) spatial models assume that the
geographic reality is certain, crisp, unambiguous and independent of context. (Ducldlam et
2001). Then, natural phenomena such as an earthquake or an inundation are represented using
crisp spatial objects; although they include inherent shape vagueness (e.g., broad boundaries
separate the different disaster areas). This simplification of geographic reality decreases the
reliability of its description because a relevant property of spatial objects is lost (Tang 2004)
(i.e. their inherent shape vagueness). According to Clementini and Di Felice (1997), this
mismatch between the geographic modeling and the complex geographic reality presents a big
limitation of traditional spatial models. It entails a gap between the spatial reality and its
description in spatial databases and GIS. Consequently, the users cannot have knowledge
about the uncertainty of the spatial objects and of their relationships. They may miss-interpret

the available data and make wrong decisions.

Furthermore, the traditional spatial models do not always meet the modeling needs in a
spatial integration process especially when crisp source geometries are used to represent
vague concepts in the source databases. The spatial data integration aims to make
heterogeneous geometries compatible with each other in a final database, so that they can be

displayed on the same map and their relationships can be analysed (Shepherd 1992, Devogel
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1997). Spatial data integration is a complex problem that can be defined, addressed and
resolved differently according to different needs. In this context, we are interested in a
vertical integration (Poulliot 2005) where the same objects are represented by heterogeneous
and redundant crisp geometries in different sources with different specifications. Then, the
final geometries resulting from the latter integration process (ex. displacement, rubber
sheeting, size modification, distortion) may be plagued by increased vagueness and then the
traditional spatial models are not able to reliably represent them. For example, a forest stand
is a vague concept that may be falsely represented by heterogeneous and redundant crisp
geometries in different data sources with different specifications, each intended to represent a
different interpretation of an aerial photo that represents the object (De Graav@@Q0).

When such crisp source geometries have similar qualities, a better final geometry is obtained
by considering all of them (Devogel 1997). In the example of forest stands, a region with a
broad boundary is then generated from the integration. The broad boundary refers to the
difference between the union and intersection of crisp source polygons and reflects the
disaccord between the experts in the interpretation of aerial photos. If considered in the same
context, the final geometry should then more reliable than those representing the same object
in the data sources because the shape vagueness is now explicitly represented. Figure 1.1
shows a spatial objeét represented by three crisp heterogeneous and redundant pdigons

P, andPs in three different source databa&esS, andSs. The final geometry of\ is a region

with a broad boundary obtained by mergihgP, andPs. The intersection dP;, P, andPs is

the kernel or the certain pathé black sub-regiom Figure 1.1) of the final geometR: The

broad boundarytlie grey part of Rn Figure 1.1) ofR corresponds to the difference between

the intersection and union of AP, and B.

) Kerne
Geometry ofA in §;

Geometry ofAin S, >
Geometry ofA in S /

Figure 1.1 Example of a region with a broad boundary resulting from the integration of redundant and
heterogeneous source polygons

Final geometry oA

Broad boundat

In spatial modeling, the importance of topological relationships sucwaslap or
Containsis widely recognised (Clementini and Di Felice 1997). These relationships are

preserved under continuous geometric transformations (e.g. rotation, scaling, translation).
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Several spatial models studied the topological relationships between objects with crisp shapes
(Egenhofer and Herring 1990, Egenhofer and Franzosa 1991, Mark and Egenhofer 1994,
Cohn etal. 1997). In GIS applications, these models (called traditional in the remainder of the
thesis) provide the theoretical bases for the spatial reasoning and computation of topological
relationships involved in the spatial queries and in topological integrity constraints
(Clementini and Di Felice 1997). Nonetheless, the traditional spatial models do not describe
the shape vagueness of spatial objects that exist in the geographic reality as well as that
resulted from a vertical integration (see above). Existing approaches such as Burrough (1996),
Erwig and Schneider (1997), Zhan (1997), Clementini and Di Felice (1997), Worboys
(1998b), Roy and Stell (2001), Schneider (2001), Morris (2003), Tang (2004), Pfoser and
Tryfona (2005), Pfoser etl. 2005, Dilo (2006) and Reis at. (2006) proposed methods to
represent spatial objects with vague shapes and to compute their topological relationships. In
these proposals, the problem of shape vagueness is generally addressed without studying the
possibilities of expressing the topological integrity constraints involving spatial objects with
vague shaped.he specification of such topological integrity constraints cannot be based on
traditional spatial models and remains unexplored. For example, an integrity constraint
controlling a topological relationship between two regions with broad boundaries such as
geopolitical conflict zones should consider the case where the relationsipirtially
respected (e.gweakly overlap,fairly inside). Such a specification is not available in
traditional approaches. To overcome this limitation, one can suggest reusing existing
approaches that deal with objects with vague shapes. However, these approaches have some
limits (presented in the next section) that make difficult their use to specify topological

constrains involving objects with vague shapes.

1.2 Problem statement

Shape vagueness is a type of imperfection arising when there is an uncertainty to sharply
distinguish an object shape from its neighbourhood. This imperfection concerns the presence
of broad boundaries for regions (Burrough and Frank 1996), broad endpoints and/or interiors
for lines (Clementini 2005) and broad interiors for points (Santos and Moreira 2007). For
instance, some spatial objects such daska or aforest stand are delimited in real life by
broad boundaries rather than crisp ones. Likewise, when mapping the vegetation, the

transition from one class to another may be gradual. It may be difficult to decide whether a
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location belongs to one vegetation class or another (Dilo 2006). Dealing with spatial objects
with vague shapes is also recurrent in decisional applications such as the evaluation of the risk
of fire in the Sydney Olympic Park (Zengat 2003) or the management of data about the
environmental phenomena ihe forests of central Africa (FAO 2001). In this same context,
Groeve etal. (2000) proposed a method to represent a forest stand as a region with a broad
boundary by merging its different representations. The shape vagueness of a spatial object can
also be caused by the ignorance. For example, one might have a vague idea about the spatial
extent of an oil deposit; i.e. additional information could reduce this vagueness (Cohn and
Gotts 1996a) but is not available. Thus, the shape vagueness concerns the spatial extents of
spatial objects in various geographic applications.

Several approaches investigated the importance and possibility to handle the spatial objects
with vague shapes (Burrough 1996, Erwig and Schneider 1997, Zhan 1997, Clementini and
Di Felice 1997, Worboys 1998b, Roy and Stell 2001, Schneider 2001, Morris 2003, Tang
2004, Pfoser and Tryfona 2005, Pfoserakt2005, Dilo 2006, Reis edl. 2006). These
approaches can be categorized in two main groups: (2) the models based on mathematical
theories such as Fuzzy Logic (Zadeh 1965) and (1) the qualitative or exact models. The
principles of each model category and their differences are explained in details in chapters 2
and 3. In this section, we just introduce the different categories and enumerate some of their

limits in order to justify the problems addressed in the thesis.

For the first category of models, fuzzy logic is the most often used theory (Dilo 2006). The
fuzzy approaches such as (Robinson and Thongs (1986) Altman 1987, Burrough 1989, Brown
1998, Schneider 2001, Tang 2004, Hwang and Thill 2005, Dilo 2006) allow a finite
quantification of the vagueness of spatial objects and of their topological relationships. The
fuzzy approaches are better adapted to raster data where the vagueness levels are shown by
computing the membership degree of each pixel to the object class involved, i.e. these
approaches support a field-oriented view of the geographic reality. However, the hardest
problem of fuzzy approaches is to define the membership functions intended to compute the
shape vagueness inside the geometry of a given object. The definition of such functions is
based on quantitative hypotheses that are also difficult to be set (Clementini 2005). It is also
problematic to combine different membership functions to compute the shape vagueness
inside a same object, where different factors entail the vagueness (Godfjegasdloreover,
the current computational technology does not allow efficient processing to define and

manage probabilistic and fuzzy models (other limits of this category of models are presented
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in the literature review (Chapter 2)). According to Erwig and Schneider (1997), the qualitative
approaches refer to a pertinent alternative to represent shape vagueness.

The qualitative or exat@pproaches such as (Cohn and Gotts 1996, Erwig and Schneider
1997, Clementini and Di Felice 1997, Clementini 2005) represent the spatial objects with
vague shapes by extending the traditional spatial models. The advantage of these approaches
Is that existing definitions, techniques, data structures, algorithms, etc., do not need to be
redeveloped but only modified and extended, or simply used (Erwig and Schneider 1997). For
example, Cohn and Gotts (1996) proposed the Egg-Yolk model that extends the RCC model
(Randell and Cohn 1989). In the Egg-Yolk model, a region is composed by a core (the yolk)
that is surrounded by a broad boundary that partially belongs to the region. With regards to
fuzzy approaches, Egg-Yolk model does not allow computing of the membership degree of a
given point inside the broad boundary. However, such a model provides a representation of
vagueness notion while retaining the simplicity of using traditional spatial models.
Furthermore, gquantitative hypotheses are not required to represent shape vagueness using a
qualitative approach. Nevertheless, exiting qualitative approaches do not consider the case of
spatial objects witlpartial vague shapes. For example, a region with a partial broad boundary
(e.g. a lake with swamp banks on one side and rocky banks on the other side) cannot be
represented using existing approaches since a broad boundary is defined as a connected and
closed area that surrounds the region’s core (this definition is not respected if the lake’s
boundary is linear in some locations and broad in some others). In the same way, a line can be
partially vague when only one endpoint is broad or when the interior is partially broad. Also
the latter cases are not supported by existing approaches. Other limits of existing qualitative

models are discussed in the literature review.

Based on the limits of existing approaches dealing with shape vagueness, a new qualitative
spatial is required to cover the different cases of spatial objects with different levels of shape
vagueness. Such a model is necessary to control the topological consistency of spatial
databases supporting this type of objects. According to Frank (2001), the consistency of
vague data should be controlled through specific constraints wibiehate a partial
satisfactionof the defined rules. Nonetheless, the principal approaches dealing with the
specification of topological integrity constraints are based on traditional spatial models such
as the 9-intersection model (Egenhofer and Herring 1991), the CBM approach (Clementini
and Di Felice 1995) and the RCC theory (Randell and Cohn 1989, Cainl&97) that

! The terms qualitative and exact are used interchangeably along the thesis
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ignore the shape vagueness. These approaches (Cockcroft 1997, Normand 1999, Servigne et
al. 2000, Duboisset 2007) are also based on a binary logic to evaluate whether a topological
relationship is respected or not. They do not consider the case where a topological
relationship igartially (e.g.weakly fairly, strongly, etc.) verified. Such a case is recurrent in

the relationships involving objects with vague shapes. For example, let the topological
integrity constrain@ C1:“a pollution zone shouldveakly overlap an urban zone”Figure 1.2

shows two representations of the spatial objects involved in the condt€&intin the first

case (Figure 1.2(a)), the pollution zone is represented as a crisp polygon. The spatial objects
are disjoint and therefore the first representation does not satisfy the topological integrity
constraint presented above. In the second case (Figure 1.2(b)), the pollution zone is
represented as a region with a broad boundary that partly overlaps the urban zone. Since the
broad boundary is an uncertain part of the pollution zone, it is possible to associate the adverb
weaklyto the overlap relation. IFC1 is specified using a traditional approach, the expression
‘weakly overlap’ should be replaced bgisjoint or meétin order to accept therisp
configurations. The first configuration is then accepted while it is not reliable (the broad
boundary of the pollution zone is ignored). However, the second configuration is not valid
because the vague shapes are not supported by the approach used to define the integrity
constraint. More specifically, the partial satisfaction of the overlap relation cannot be tested
since the termweakly is not supported. The termveakly requires the representation of the

broad boundary of the pollution zone (i.e. the existence of such a boundary can be used to

justify that the overlap relation is weakherwise the relation is true falsg.

)

Pollution zone | urban zone Pollution zone urban zone

(a) crisp representation of the pollution zone (b) vague representation of the pollution zone

Figure 1.2 Two different representations of a pollution zone and of the resulting differences regarding
its topological relationship with an urban zon
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The general problem addressed in this thesis is:

Insufficiencies of existing approaches regarding the specification of topologica

integrity constraints involving spatial objects with vague shapes and their topologicg

relationships, both in transactional spatial databases and in spatial data warehouses |

]

for objects with vague shapes in a spatial database envirohnagigt a decisional one
(topological relationships between geometries with vague shape in a spatial dimension of a
spatial data warehou3eThese axes are related since the geometries stored in transactional
databases may be integrated and loaded into a spatial data warehouse through what is known
as an ETL process (Extract-Transform-Load). In this case, shape vagueness may result from
spatial data integration when heterogeneous crisp geometries (representing the same object in
different data sources) are merged in order to produce a final geometry (with its vagueness)
that represents a given spatial object in the data warehouse (see the example in Section 1.1).
Existing exact spatial models generally study shape vagueness as an imperfection that
characterises some natural objects. In this work, we show that shape vagueness can also result
from integration and causes some difficulties in the final databases. Among these difficulties,
we only concerned with the specification of topological relationships between geometries

with vague shape in the final databases (see the second specific problem).
The general problem presented above is decomposed into three specific ones:

 Insufficiencies of existing exact models regarding the representation of spatial
objects with different levels of shape vagueness (i.e. partial shape vagueness,
complete shape vagueness) and the specification of their topological

relationships

The literature review presented in section 2.3 shows that most of existing exact
models do not model spatial objects with partially vaghapes such as a region

with a partially broad boundary (i.e. a boundary that is crisp in certain areas and
broad in other areas) or a line with one broad endpoint and one crisp endpoint. For
example, a lake may be surrounded by crisp rocky banks on one side and swamp
banks on the other side. Likewise, the itinerary of éh)(:‘entury explorer can be
sharply known in some locations and only broadly known in some others. Most of
existing works evaluate the shape vagueness through a binary logic that considers
an object ayvagueor not vague(crisp). However, the geographic reality is more
complex and an object may be partially vague, i.e. it may include vagueness and
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crispness at the same time in different parts of the boundary. Accordingly, there is
today no exact approach to evaluate the vagueness of topological relationships that

occur between objects with different levels of shape vagueness.

Problem of topological relationships vagueness for geometries with vague
shapes resulting from the integration of heterogeneous and redundant crisp

geometries of a same object

A spatial data warehouse is generally loaded from several data sources that are
heterogeneous on several levels. In this work, we are interested in considering the
geometrical heterogeneities between geometries representing the same object at
the same epoch in different sources in order to better know this object and its
vagueness. Accordingly, these geometries should be merged before being loaded
in the spatial data warehouse as they represent a same object in the reality. The
final geometry may be vague if it is generated from heterogeneous crisp
geometries that have a similar quality level. In this case, the integration process
requires a method to identify the appropriate topological relationships between the
final geometries. These topological relationships should consider the shape
vagueness because they cannot be identified to those defined in the data sources.
Consequently, there is a problemtopological relationships vaguenesizat we

define as the uncertainty about the valid topological relationships for geometries
with vague shapes loaded into the final database. In Figure 1.3, an example of a
vertical integration of redundant crisp geometries is presented to illustrate the
problem of topological relationships vagueness. In this example, two spatial
objectsO; and O, are represented using heterogeneous crisp geometries in two
different data sourceS, andS,. Regions with broad boundaries are then resulted
from the integration of available geometriesfandO,. The broad boundaries

refer to the difference between the intersection and union of source geometries of
the object involved. In this context, the topological relationship defined in the
sources (i.eDisjoint in our example) between geometrieOafandO, can be just
partially respected by final geometries with vague shapes. Even though one
chooses to ignore the shape vagueness by crisping (e.g. choose the unions,
intersections, union/intersection or intersection/union as crisp geometri@g of
andO; in the final database) the final geometries, the problem remains since other

relationships are also possible (e.g. Mee&tllso possible in our example).
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1
Representations of two ! Final geometries with
objects in sources and B I vague shapes resulting
1 from integration

Possible topological relationships between
possible crisping of final geometries

@ Disjoint

Meet

Source A
\\
Source B o, o Disjoint
@ Disjoint

Figure 1.3. Example of topological relationships vagueness in a vertical integration of redundant crisp
geometries

The topological relationships vaguenessoncerns the relationships between
geometries representing the members of one hierarchy level of a spatial dimension
as well as those between the geometries belonging to its different hierarchy levels.
For example, let the spatial dimension of a spatial data warehouse (intended to
analyze the distribution of taxes) defined by the following hierartwiding,

county, state, region, nation). If the geographic union of points representing the
buildings (commercial, residential and industrial) is not within the spatial extent of
their county, every individual building should be analyzed to determine how the
required taxes should be distributed between two or more cdurtighis thesis,

we deal only with thentra-level topological relationships vagueness. We are
conscious thainter-levelstopological relationships are also very important since

the shape vagueness should be considered to correctly compute the aggregations of
fact measures. This latter aspect exceeds the objectives of this thesis and requires

additional investigations that will be made in future researches.

* Inadequacy of existing approaches regarding the formal specification of

integrity constraints involving objects with vague shapes

Several approaches (see section 2.4) handle the specification of integrity
constraints in spatial databases. Generally, the shape vagueness is not considered,
neither in the geometric representations of some spatial objects nor during the

specification of their topological integrity constraints (see example in figure 1.2).

% This example is adapted from another one presented in (Malinowski and Zimanyi 2005).
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The problem of formally expressing the integrity constraints involving spatial
objects with vague shapes remains, to our knowledge, always unexplored. There
exists an extension of tl@bject Constraint Languag@CL for short) that allows

the modeling of topological integrity constraints involving spatial objects
represented by crisp shapes (Pinetlet2007). This method allows generating
SQL code from spatial OCL constraints in order to check the consistency of a
given spatial database. Nonetheless, it cannot express topological integrity
constraints involving spatial objects with vague shapes. Additional syntax
elements are required to express the possible partial satisféatierabove) of
topological relations between the objects with vague shape involved.

1.3 Objectives and hypotheses of the research

1.3.1 Objectives

The general objective of this research consists of proposing an approach to specify

topological integrity constraints in both transactional spatial databases and data

warehouses that supportspatial objects with vague shapes and their topological

relationships. Three specific objectives are set:

To propose a spatial model in order to represent spatial objects having different

levels of shape vagueness and to identify their topological relationships

To develop an approach in order to reduce the topological relationships
vagueness for geometries with vague shapes resulting from the integration of
heterogeneous crisp geometries of a same object. This approach reuses the spatial

model proposed in the first objective.

» Toadd required syntax to the Object Constraint Language (OCL):

- To formally express the topological integrity constraints involving spatial objects

with vague shapes and their topological relationships

- To generate SQL scripts from OCL constraints in order to check the consistency

of a given spatial database

29



1.3.2 Hypotheses

The general hypothesis of this research can be presented as fdliswmssible to provide
an approach that supports the specification of topological integrity constraints involving
spatial objects with vague shapes and of their topological relationships, both in

transactional spatial databases and in spatial data warehouses
Three specific hypotheses have been established for this research:

> It is possible to propose a new qualitative model that supports the description of
spatial objects with different levels of shape vagueness. Such a model may be
integrated in a general approach intended to express topological integrity constraints
for spatial object with vague shapes and their relationships.

> ltis possible to deal with topological relationships vagueness in the spatial dimension
of a data warehouse using a qualitative spatial model able to describe the shape
vagueness. In other words, we assume that it is possible to study the shape vagueness
using the same approach independently of the factors causing this vagueness.

> It is possible to enrich the constraints language OCL in order to formally express the
integrity constraints involving spatial objects with vague shapes and their topological

relationships.

1.4 Methodology

This thesis has been realized in the context of a global research project dealing with the
integrity constraints in transactional spatial databases and in data cubes. Two other PhD
students participated in this project: Magali Duboisset, a PhD student at Blaise Pascal
University in France, and Mehrdad Salehi, a PhD student at Laval University. The research of
Magali Duboisset has been supported @gmagref(Institut de recherche Francais pour
I'ingénierie de l'agriculture et de I'environnemgrhe proposed extensions of OCL in order

to express integrity constraints involving topological relationships between spatial objects
with well-defined shapes. A part of her work consisted in studying the expressivesk of
(Duboisset etl. 2005) An extension called OGly has been implemented into an existing
OCL editor calledOCL2SQL and developed by the Dresden University (Demuth and
Hussmann 1999, Demudt al. 2001). OCL2SQL allows the translation of OCL constraints in
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SQL queries or triggers. Then, she implemented a second extension callgg&telse
where she used a set of adverbs (ggrtially, entirely, etc) to describe the topological
relationships. She compared the two extensions and proved that they have the same

expressiveness

Mehrdad Salehi proposes a formal model for spatial datacubes where he distinguishes
different types of components of a datacube structure with regards to the spatial component of
data. Such a formal model is required before proposing a framework for identifying different
types of integrity constraints in spatial datacubes. Based on this model, he identifies different
types of integrity constraints in spatial datacubes. Examples of these integrity constrains are:
summarizability integrity constraints, hyper-cellability integrity constraints, fact integrity
constraints and traditional integrity constraints in spatial datacubes. Each one of these
categories of integrity constraints are further categorized into several sub-categories. Using
these results as well as a formal classification of integrity constraints in spatiotemporal
databases, he finally develops a formal integrity constraints specification language (ICSL) for
defining various types of integrity constraints in spatial datacubes. This ICSL is developed

based on a controlled natural language and a natural hybrid language with pictograms.

In practice, the research projects of Mehrdad Salehi and Magali Duboisset have started one
year before the present thesis. Then, the results of these research projects have been reused in
this thesis and they accelerated the realization of my objectives. The general objective of our
research group is to study different problems related to the specification of spatio-temporal
integrity constraints for different types of spatial objectsjécts with well-defined shapas
well asobjects with vague shapeas the context of spatial transactional databases and spatial

data cubes.
In this thesis, the methodology followed is composed of four phases:
e Phase1: literature review and formulation of the research problem

This step began with an in-depth literature review in the following domains: (1) modeling of
spatial objects with vague shapes in spatial databases and GIS, (2) the formal specification of
integrity constraints for spatial objects and their topological relationships. The literature
review is justified by the complexity of spatial vagueness problem which has three
dimensions at least: a philosophical dimension in addition to the modeling and technological
ones. In this research, we principally contribute in the modeling and implementation of spatial
objects with vague shapes. We reviewed several research works such as Smithson (1989),
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Smets (1996), Worboys (1998a), Fisher (1999a), Hazarika and Cohn (2001) and Smith (2001)
that proposed different categorizations of spatial imperfection types and defingpatiz
vaguenessind its different uses. Then, we studied some works on the formal specification of
integrity constraints for spatial objects and their topological relationships (Cockcroft 1997,
Normand 1999, Elmasri and Navathe 2000, Servigra. @000, Borges edl. 2002, Pinet et

al. 2004). We concluded that these approaches do not consider the shape vagueness of spatial
objects because they are based on traditional spatial models. For that, we explored some
research works such as Robinson and Thongs (1986), Altman (1987), Burrough (1989), Cohn
and Gotts (1996a), Clementini and Di Felice (1997), Erwig and Schneider (1997), Tang
(2004), Reiset al. (2006), Verstraete at. (2007) that proposed different spatial models to
represent spatial objects with vague shapes. These approaches are generally categorized into
two types of models: the exact models in addition to the models based on quantitative
mathematical theories. Finally, we studied the advantages and limitations of existing exact
models in order to justify the research questions and the objectives of this thesis.

* Phase 2: proposing a spatial model for spatial objects with vague shapes and their

topological relationships

According to the literature review, the existing exact models cannot present spatial objects
with partially vague shapes such as a lake with rocky borders on one side and swamp borders
on the other side. These models consider this type of objects with vague shapes as invalid. We
used the principles of the point-set topology (Egenhofer and Herring 1990) to propose a nhew
exact model. We defined three types of spatial objects with vague sheges:pointslines

with vague shapeandregions with broad boundariefdditionally, we propose a general
framework to identify the topological relationships between objects with vague shapes. The
vagueness of a topological relationship can be qualitatively evaluated using a set of
adverbs such aweakly or strongly. Then, this model is reused to deal withttpological
relationships vaguenedsr geometries with vague shapes resulting from the integration of
heterogeneous and redundant source geometries loaded in a spatial data warehouse. We
studied the topological relationships that are possible between final geometries according to
those which can occur between source geometries. We intended to reduce the topological
relationships vagueness by preventing the impossible relationships between final geometries

loaded in the data warehouse.
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* Phase 3. Extending Spatial OCL in order to express the integrity constraints

involving spatial objects with vague shapes and their topological relationships

There are different approaches to express the integrity constraints in spatial databases
(Cockcroft 1997, Elmasri and Navathe 2000, Servigra. 000, Borges etl. 2002, Bédard

etal. 2004, Pinet eal. 2004, Rodriguez 2005). Th&bject Constraint Languagie based on

the object-oriented development principles (Pinetalet2004). This Language has been
extended by Duboisset (2007) in order to formally express the integrity constraints involving
topological relationships between objects with crisp shapesn, two reasons motivated the
selection of Spatial OCL to express topological integrity constraints involving spatial objects
with vague shapes. First, Spatial OCL is based on the standard constraint language OCL
associated to the UML formalism. It allows a declarative specification of constraints; it has a
pertinent expressiveness and has been implemented into an existing constraint editor called
OCL2SQL(Duboisset 2007). Second, Spatial OCL is an element of context of this research;
the motivated choice of this language was mainly initiated during the thesis of Magali

Duboisset (2007). Extending the language Spatial OCL includes two stages:

1. Extending the meta—model of Spatial OGhree new objects types have been
introduced into the meta-model of OCL. These objects types refem@d point line

with a vague shapand region with a broad boundary

2. Enriching the syntax of Spatial OCL to support integrity constraints involving spatial
objects with vague shapesve introduced a method to identify the topological
relationships between spatial objects with vague shapes. We enriched Spatial OCL by
a set of topological operators where their vagueness may be expressed using a set of
specific adverbs (e.gveakly containsfairly contains strongly disjoint etc). These
topological operators have been defined in the proposed spatial model and can be

introduced in the expression of a spatial query or an integrity constraint.
* Phase4: Validation of the research results

In this phase, we tested the validity of the results obtained in the first three phases. This

validation phase is composed by four principal stages:

1. Implementing an architecture to store the objects with vague shapes and their
topological relationshipsin Oracle Spatial geometric attributes are managed through
a generic type calle@DO_Geometryln this research, we reused this data type to

define the geometries of objects with vague shapes.
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2. Extending Spatial OCL2SQL editor by introducing topological operators adapted to
objects with vague shape©CL2SQL has been extended in order to express
topological integrity constraints involving objects with vague shapes. This extension is
based on the spatial model proposed in the phase 2 and the extension of Spatial OCL
made in phase 3. The topological operators for objects with vague shapes have been
implemented as Oracle functions that reuse the me&@bgd Relatef Oracle Spatial
Each defined function refers to a Java method which realizes necessary controls before

executing the operator on the database and displaying a final result.

3. Testing the application on a real spatial database storing objects with vague shapes:
In this step, we tested our approach using the extensiddCh2SQLin order to
express some integrity constraints in an agricultural database. This database stores
vector data describing the parcels that received organic fertilizers produced by
wastewater plants and the agro-food industry in France. In the database, these parcels
generally have vague shapes because they have been drawn approximately by users
with a GIS-based interface; there is usually a difference between the drawn parcel and
the real parcel. We define the agricultural parcels as regions with broad boundaries
using an extension dracle Spatial Then, we define the integrity constraints using
OCL2SQLbefore generating a SQL script that can be executed in the database. The
objective of this step is to prove that the extension of Spatial OCL is operational.
However, we did not aim at testing the execution performances of the implementation

of proposed topological operators.
* Phaseb5: Analyzing the results obtained in the different phases
This phase is composed by three main steps:

1. Reviewing the contributions of the thedise results obtained in the phases 2-4 are
reviewed according to the objectives set in the beginning of the thesis. This revision

aims at showing the validity of hypotheses presented above.

2. Comparing the results obtained in the thesis to those of existing appro#ulsestep
aims at showing the similarities and differences between the results of this thesis and
those of existing approaches. It also discusses the advantages and limits of our

contributions with regards to other approaches.
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3. Drawing the possible perspectives of this wdsased on the limits discussed in the
previous step, some future researches are proposed. The future researches aims at

achieving the objectives that cannot be reached in this thesis.

The next activity diagram describes the methodology followed in this thesis:
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1.5 Structure of the thesis

The results of this research are presented in seven chapters. Chapter 2 presents a literature
review which sets the background of this research and justifies the research questions. This
chapter reviews: (1) taxonomies of spatial data imperfections, (2) modeling of spatial objects
with vague shapes and of their topological relationships, and (3) the specification of integrity
constraints in spatial databases. Chapters 3, 4, 5 and 6 present the contributions of this
research and refer to four papers realized during the thesis. These papers have not been
substantially modified after being integrated in the thesis. Therefore, the content of some
chapters may look redundant. This redundancy is generally required to set the context of our

research and to help the journals reviewers to understand the background of our contributions.

Chapter 3 explains the terminology used in this thesis. It also presents a qualitative (or
exact) model to represent spatial objects with vague shapes and to identify their topological
relationships. We call this approach tBealitative Min-Max(QMM for shor}® model In
Chapter 3, we mainly focus on the identification of topological relationships involving
regions with broad boundaries. In Chapter 4, we are interested in the identification of
topological relationships involving lines with vague shapes. Chapter 5 reuses the principles of
the QMM model to deal with the topological relationships vagueness for final geometries with
vague shapes resulted from the spatial data integration. Chapter 6 presents the extension of
Spatial OCL to express the topological integrity constraints involving regions with broad
boundaries and their topological relationships. Chapter 7 draws the conclusions and
perspectives of this research.

% This term has introduced in our second paper (Chapter 4) in order to reference our spatial model. Nonetheless,
it is important to denote that we speak about the same spatial model in the remainder of the thesis.
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CHAPTER 2: Literature Review

2.1 Introduction

This chapter describes the researches related to the present thesis work. The discussion is
organized in three parts. Section 2.2 presents some categorizations of spatial data
imperfections as well as the definitions of principal terms used to express its different types.
This section is also interested in: (1) the management of the spatial imperfection in spatial
databases and spatial data warehouses, and (2) the relationships between the spatial data
guality and spatial data imperfections. Sections 2.3 and 2.4 respectively review related works
in two domains: (1) the modeling of spatial objects with vague shapes, and (2) the formal

specification of spatial integrity constraints.

2.2 Spatial data Imperfections

Two types of data are generally used to describe a spatial phenomenon: (1) qualitative data
and (2) quantitative data. These data maydmpie imprecise incompletecontradictory, etc.

(Dutta 1991). Works such as Smithson (1989), Fisher (1999a) and Mowrer (1999) proposed
categorizations of the spatial objects as well as definitions and taxonomies of the spatial
imperfection types. Other works such as Burrough (1996), Cohn and Gotts (1996a),
Clementini and Di Felice (1997), Erwig and Schneider (1997), Tang (2004), Dilo (2006) and

Reis etal. (2006) studied the possibilities of modeling the spatial objects with vague shapes
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and of computing their topological relationships. Finally, some researches such as Pfoser and
Jensen (1999), Pfoser and Tryfona (2001) and Pfoser et al. (2005) were interested in modeling

the imperfection types in spatio-temporal phenomena.

Section 2.2.1 presents the principal taxonomies of spatial imperfection types. Section 2.2.2
focuses on the definition of principal terms used in the literature to express the various types
of spatial data imperfections. Sections 2.2.3 and 2.2.4 present the levels of spatial data
imperfections and principal strategies to manage it, respectively. Section 2.2.5 relates the
spatial data imperfection questions to the transactional spatial databases. In the same way,
Section 2.2.6 studied the forms of imperfections in spatial data warehouses. Section 2.2.7 is
interested in the relation between the spatial data quality and spatial data imperfections.

2.2.1 Taxonomies of spatial imperfections

The definition of spatial imperfection types is a very complex question where different
disciplines such as philosophy, sciences and technology can overlap each other. The objective
of this section is to show the divergence of taxonomies of spatial data imperfections proposed
in GIS and the spatial databases domain. These taxonomies refer to the background of any
framework aiming at modeling a spatial imperfection type (Dilo 2006). Generally, the
taxonomies organize spatial imperfection types by usyemeralization/specialization
relationships. Devillers (2005) reviewed the principal taxonomies in this domain (Smithson
1989, Smets 1996, Worboys 1998a, Fisher 1999a, Hazarika and Cohn 2001, Smith 2001).

Smithson (1989) considers tignoranceconcept as the origin of any other type of spatial
data imperfection (figure 2.1). Such a philosophical point of view finds its roots in the works
of Socratewho limited the perfect knowledge to only one certaititg: ignoranceUsing the
reflexivity property, he considers the ignorance of this basic knowledge dsulale
ignorance This idea was also reused by (Bédard 1987) who introduced the notioret-“

uncertainty: the uncertainty about uncertainty (cf. Section 2.2.3).

Fisher (1999a) focuses, in his taxonomy, on the notion of uncertainty that appears
differently for the well-defined objects and ill-defined ones. Two types of objects have been
also distinguished by Smith (2001)ona fide (well-defined) objects andfiat (ill-defined)
objects (see section 2.3.1). For the well-defined objects, the uncertainty is often modeled
through the probabilities theory such as a confusion matrix which determines whether an
object is ill-classified or not (Fisher 1999b). For the ill-defined objects, uncertainty refers to
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the ambiguity of the object definition as well as of thematic and/or spatial attributes. The

latter case relates to a qualitative imperfection which occurs at the conceptual level.

Well-defined Ill-defined

Objects Objects

I
[ Probability ] [ Vaauenes ]

I |
Fuzzy Loaic Discord [ Non-Specificity ]

Figure 2.1 Taxonomy of spatial data imperfections (Fisher 1999(b))

According to Worboys (1998b), the spatial data imperfections refer to the factors causing a
deficiency in the spatial data quality. These factors relates &rtbiecomponent (a deviation
of the data from one value considered as tinepmpletenes& lack of relevant information
to describe a spatial phenomenangonsistencyconflicts between data stored in the same
structure),jnaccuracy(a coarse level of granularity or resolution at which the measurement is
made or the data is represented), eagluenesslefined as a lack of precision in the definition

of the concepts used to describe the geographic information.

Smets (1996) distinguishes three types of imperfectioracuracy inconsistencyand
uncertainty The inaccuracy and inconsistency are two imperfections that can characterise the
data whereas the uncertainty relates to the knowledge state about the world (the relationship

or distancebetween the available information and the geographic reality).

Couclelis (1996) proposed a first attempt to consider the spatial vagueness in the
classification of spatial objects. She proposed to examine the spatial vagueness according to
three aspects: (1) the empirical nature of the objects, (2) the observation mode of spatial
objects and (3) the user’s needs. Hazarika and Cohn (2001) are also interested in the notion of
spatial vaguenessThis notion is considered as the root of their spatial imperfection
taxonomy. In (Hazarika and Cohn 2001), the spatial vagueness notion exceeds the simple
difficulty of drawing a linear boundary around a given region. It can also occur for objects

with well-defined boundaries where there is an uncertainty about their locations.

41



2.2.2 Terminology related to spatial data imperfections

In the literature, several terms have been used to express the different types of spatial data

imperfection. In this section, we review the definitions of these terms.

» Uncertainty: it can characterize the knowledge state about a given assertion (Smets 1996).

It refers to the difficulty to determine whether a data is true or false. Uncertainty is considered
as a root of different categorizations of spatial data imperfections (Smets 1996, Worboys
1998b, Fisher 1999a). It is presented as a generic imperfection that can be specialized into
different forms such as thmprecisionfor quantitative data and tiazzinesdor qualitative

data (Bédard 1987, Erwig and Schneider 1997). According to Bédard (1987), the uncertainty
can result from the intrinsic limitations of the modeling processigsion of details, omission

of compatibility between cognitive and physical level, ettt.)can also result from the gap
between the geographic reality and its description. For example, this gap occurs when fiat
spatial objects such as air pollution zones (i.e., regions with broad boundaries in the reality)
are presented using crisp polygons. Uncertainty can appear at various levels and in different
forms during the development process of a spatial database (see section 2.3.1). Then, the
terms imperfection’ and uncertainty can be used interchangeably since the uncertainty
includes different types of spatial imperfections. In section 2.3.1, we use the term
‘uncertainty’ in order to respect the contributions of Bédard (1987). However, in the

remainder of this thesis, the terimperfection’ is generally preferred.

» Error : it refers to the difference between the available value and another one considered as

true (Goodchild 1995a, David and Fasquel 1997). The error can result from an inadequate

calibration of the measurement device, an inadequate use of this device or an erroneous
application of the procedures using these measurements as input data. Then, erroneous
measurements of the spatial phenomena are introduced as true values to be stored in the
database. The error is also related to the concegliability. The reliability expresses the

closeness of collected data to the reality observed (Azouzi 1999).

 Imprecision: it refers to limitations on the granularity or resolution at which the observation
is made, or the information is represented (Worboys 1998b). A data value is imprecise when
it corresponds to amterval (e.g.,the age of a person is between 35 and 48jsjanction of

values(e.g. the age of Jean can be is 35 or 36) or a negation of a given agsaytidohn do
not have 35 years old) (Motro 1995). In the context of spatial datgrédugsioncan be
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statisticalwhen it refers to the dispersion around an average value (Mowrer 1999). It can be
also numerical when it corresponds to the number of significant decimals given by a
measurement device (Goodchild 1995a, Mowrer 1999). Statistical predssiganerally
computed through a probabilistic method using available measurements. It can also be given
by computing an ellipse of error (Chrisman 1991). The error and imprecision are orthogonal
concepts since the level of the first does not affect that of the second (Mowrer 1999,
Duckham etal. 2001). For example, the observatidQuebec is in the north of America” is

more accurate and, at the same time, less precise than the stat@oeec is in the United

States». The second statement is simply inaccurate.

* Vagueness according to Fisher (1999a), the vagueness is an inherent imperfection that

characterizes the definitions of some concepts cabedie(e.g.young person, bald person,

large surface, North, South, etc.). The membership degree to a given vague concept cannot be
computed using a binary logic (i.e., 0 or 1) because its definition is partially respected by
elements involved in most cases. The vague concepts can be modeled using Fuzzy Logic
(Zadeh 1965). Then, a membership degree is expressed as a value (i.e., belonging to the
interval [0,1]) computed using a membership function that defines the vague concept. In the
spatial domain, the vagueness is an inherent property of geometries of fiat spatial objects such
asvalleys or oceans It relates to the difficulty of distinguishing an object shape from its
neighborhood. For example, an air pollution zone is a region with a vague shape because it is
surrounded by a broad boundary rather the sharp one. Navratil and Frank (2006) consider that
the vagueness of concepts entail ambiguous classification of spatial objects. Spatial vagueness
can also characterise bona fide objects when there is an uncertainty about their locations. In
this case, Hazarika and Cohn (2001) speak almedtion vaguenessNonetheless, an object

with a vague shape can be also vaguely located.

Hazarika and Cohn (2001) do not correlateshape vagueneds the difficulty of drawing a

linear boundary for a given region (e.gla#te). They consider the temporal data dimension

that may affect certainty about the shapes of spatial objects. Accordingly, it is important to
denote thashape vagueness a more general notion th&mzzinessFuzzinesss generally
associated to the problem of drawing linear boundaries for regions (Hazarika and Cohn 2001).
However, the shape vagueness can also refer to the broadness of a line interior and/or
boundary (Reis eal. 2006). In the same way, shape vagueness may occur for composed
geometries that may contain uncertain parts in addition to certain ones (Schneider 1999). In
this work, we are interested only in the shape vagueness for simple fiat objects without
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considering the temporal dimension. We use the tesimagevaguenessbecause it is more
exhaustive tharfuzzinessto describe the shape imperfection of some geographic objects.
Moreover,fuzzinesss often correlated to the use of Fuzzy Logic (Zadeh 1965) to model the
boundary broadness. Using this term can be falsely interpreted by assuming that we use Fuzzy
Logic to realize the objectives of this thesis (which is not the case as explained later).

Figure 2.2(a) shows an example of a region with a broad boundary. Figure 2.2(b) presents an
example of a line where the interior is broad whereas its endpoints remain well-defined.
Figure 2.2(c) shows an example of a composed vague region (white polygons for uncertain

sub-regions and grey polygons for certain ones).

Broad bounda Certain sub-regio Uncertain sub-regions

Kerne P P

(a) Region with a broad boundary (b)Line with a vague shape (c) Vague composed region
Figure 2.2 Examples of spatial objects with vague shapes

« Ambiguity: it appears when different results are obtained using different classification

methods for the same set of elements. In this context, broad boundaries can be considered as
the result of an ambiguity to affect a set of spatial points to different object classes.
Nonetheless, it is important to denote that ambiguity results from the classification process
and not from an inherent property of the classes. It corresponds to an imperfection type
occurred at the conceptual level defined in (Bédard 1987). Ambiguity can affect the
identification peing or not being such an entity?) or the categorizat@®ing an entity of

type A or type BJ?of a given object.

* Discord: it appears when different conceptual schemas are proposed by different designers

of a same geographic phenomenon. According to Van Oort (2006), each designer uses his
proper terminology to define the spatial concepts in the database dictionary. He defines his
specific ‘product ontology The existence of different product ontologies is a first discord
type. In the same way, the database users have their specific terminologies and definitions
(i.e. their own problem ontologig¢s Then, the heterogeneitidsetween the product and
problem ontologies present a second type of discord.

 Indeterminacy: it occurs when a spatial object is ill-classified because its definition is

ambiguous or coarsely described (Roy and Stell 2001). Indeterminacy is a reflexive,
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symmetric and transitive relation and is generally modeled through the theory of Rough Sets
(Pawlak 1994).

* Incompleteness it refers to a lack of some relevant values and/or occurrences of spatial

objects involved. It is generally defined as a partial description of a spatial phenomenon.

* Inconsistency: it relates to the existence of logical contradictions in the same database

(Worboys and Duckham 2004). For example, an implicit inconsistency can be deduced from
the following premises:

Dijon contains 300000 inhabitants

A city of less 500000 inhabitants is not a big city

Dijon is a big city

Inconsistencies are generally managed through integrity constraints (Kainz 1995, Motro

1995, Cockcroft 1997, Normand 1999, Servigne et al. 2000, Pinet et al. 2004). Inconsistencies
arise when integrity constraints are violated. According to Rodriguez (2005), inconsistency is
related to what are callggrimary or secondaryforms of error. The primary form of error
corresponds to a wrong description of location or characteristics/qualities of spatial objects.
For example, if an integrity constraint that states that a given object have only one location,
there is an inconsistency derived from a primary type of error if there is more than one
location for the involved object. This type of inconsistency occurs because there are
differences in data accuracy or precision, but also because many observations of spatial
phenomena are essentially vague. For example, the boundaries of forests, mountains, lakes,
and oceans cannot be determined with precision; i.e. two observers may draw two different

shapes/locations for the same object.

A spatial inconsistency related to a secondary error refers to a contradiction between stored
data and constraints associated with definitions of geometric primitives. For example, a
polygon must be bounded by closed and non self-intersecting polylines that represents its
boundary. Inconsistency may also be related to semantic contradictions, such as when a road
overlaps a building. These types of inconsistency depend on the spatial domain, and they are

captured by rules that should be expressed within the data model.
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2.2.3 Levels of uncertainty

Bédard (1987) considers four levels of uncertainty:
- Conceptual levelthe uncertainty refers to the fuzziness in the identification of an
observed reality. For example, a house can be defineal sigface greater than 100°m
intended for a residential exploitation The definition of theHouseé concept presented
above is fuzzy. It brings to raise the following questions: When is-it possible to consider
that a building is principally used for residential exploitation? Moreover, the conceptual
imperfection may also refer to the categorization fuzziness. For example, it is possible to
have uncertainty to consider a given buildagyahouseor acommercgassuming they
are two different classes of objects with different sets of properties) if it is exploited
simultaneously for these two finalities (commercial at ground level, residential at first

level).

- Descriptive level:it concerns the uncertainty in the attribute values of an observed
reality. At this level, the uncertainty can relate to the fuzziness in the qualitative values
and the imprecision in the quantitative values. For example a thematic attribute
describing thevulnerability of a forest stand can have the following fuzzy values:
“weak”, “fair” or “strong”.

- Spatio-temporal levela spatial object is generally described by a geometry and a
temporality. These data are managed in the database likewise the thematic attributes.
For an object geometry, the uncertainty refers to the shape vagueness where there is an
inherent difficulty to distinguish the object partially or completely from its
neighborhood (e.ga zone of pollution). In the same way, it relates to inaccuracy or
imprecision of an object location or other spatial data such as its area or perimeter. For
temporal data, the uncertainty relates to the vagueness when there is an inherent
difficulty to distinguish an event extension on the time axis (e.g., the birthday of one
historic person). It can also correspond to the imprecision or inaccuracy about an event
location on the time axis.

- Meta-uncertainty levelit refers to the uncertainty about the uncertainties occurred in
the first three levels (e5% certainty of a point to fit within its error ellipse in geodetic
adjustment; a population survey about voting preferences that claims a precision of +
3% 19 times out of 20). Bédard (1987) spoke aboutthegttainty of uncertainty”
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2.2.4 Management of uncertainty

Bédard (1987) distinguishes two approaches to manage the uncertainty in spatial databases:

* Reduction: uncertainty reduction refers to a rigorous definition of modeling rules (i.e.
defining thecontents of a model, what to observe and hamg communication rules

(i.e. defining the model form, the modeling language tg.Us@m a technical point of

view, the uncertainty reduction is realized by using specific tools: mathematical
procedures to improve the data precision (e.g. statistics with overabundant
measurements), Fuzzy Logic to reduce the qualitative uncertainty, inclusion of lineage
in digital maps, the use standard specifications and symbols (e.g. ISO standards), etc.
(Bédard 1987, Hunter 1998).

» Absorption: uncertainty absorption refers to the risk related to the uncertainty that
remains after all reduction means have been used. For example, it may refer to the
guarantees made by a database producer in order to compensate the users damaged by
poor data. In the same way, the useraasorbthe imperfection when he accepts to use
non-guaranteed databases. Absorption can also take place when a professional
guarantees data (then his professional liability insurances absorb the risk). Bédard
(1987) defined the uncertainty absorption as the level of monetary risk in providing or
using of a given database. When damages occur, the uncertainty is absorbed by the ones
who pay for these damages. This solution is often perceived as a protection against the
potential liability claims whether the database entail damages for the users (Hunter
1998).

Finally, the reduction and absorption are substantially different. ddhectionis ensured
through technical tools and methods whereas the absorption is guaranteed through
institutional and legal tools. In practice, the imperfection is managed by combining these two

approaches.

2.2.5 Spatial imperfections in spatial databases

2.2.5.1 Introduction

A spatial database is a data collection describing the thematic and spatial properties of real
world phenomena (temporal properties are also possible) (Bédard 1999). According to Kemp

(2008), spatial databases can be implemented using various technologies, the most common
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being the relational technology. They can have various structure architectures according to
their intended purpose. There are two categories of spatial databases: transactional and
analytical. Transactional spatial databases are the most frequent ones; they are often used to
facilitate collection, storage, integrity checking, manipulation and display of the
characteristics of spatial phenomena. For example, data about precipitations or temperature
variations can be stored in a transactional spatial database. The geometry of a spatial object
refers to a geometrical primitive (i.e,point a line or a polygon) or a collection of these
primitives. Analytical spatial databases are more recent and they are very useful in business
intelligence applications. This type of databases includes data warehouses and data marts used
to meet strategic analytical needs. They can comprise multidimensional structures termed
datacubes or hypercubes. When spatial data are involved, the datacubes become spatial

datacubes.

The spatial databases are managed through specific software tools called Spatial Database
Management Systems (Spatial DBMSA Spatial DBMS is a DBMS whose the meta-model
allows the definition and implementation of spatial data types, proposes a query language for
spatial data and provides definitions of spatial indexes and algorithms for spatial joins”
(Guting 1994). According to Vauglin (1997), a spatial DBMS supports the management of
geometries and the execution of spatial queries (&ngling rivers crossing a forestin
addition to the functionalities available faon-spatialdatabases. Several DBMS such as
Oracle Spatialcontains specific libraries to store and manage geographical data (Gregan
2004). The spatial DBMS provide additional functionalities in@aga Definition Language
(DDL) and theData Manipulation LanguagéDML). For exampleQracle Spatialproposes a
specific data structure call&@DO_Geometrin order to store geometries of spatial objects. In
the same way, the functi®DO _Relat@xecutes spatial queries where the conditions concern
topological relationships between spatial objects (fieding spatial objects that meet a

river). A spatial indexing method is also integrated into Oracle Spatial

2.2.5.2 Imperfection aspects in spatial databases modeling

Bédard (1999) proposed a pictogram-based language in order to help the database designer to
describe the geometry properties of a given spatial object. Temporal pictograms are also
provided to represent the tempoeaistenceand geometrievolutionof a given spatial object.

These pictograms are available through a design editor for spatial databaseRerakgtory

(Bédard etal. 2004). In (Miralles 2006)Perceptory has been extended to support the
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description of the spatial extensions of spatial objects with vague shapes. In this same way,
Parent etal. (1997) provided syntactic tools to build class diagrams of spatio-temporal
applications. This approach has been extended to modelrahdom imperfections
(measurement problemand thevaguenes®f spatial conceptéShu etal. 2003). Likewise,

several works (Duckham at. 2001, Yazici etal. 2001, Fonseca ai. 2003, Shu eal. 2003)

enriched the meta-models of some design methods in order to support the spatial vagueness.
For example, Yazici etl. (2001) proposed an extension of UMUnified Modeling
Languagé by adding two constructorsl used to represemaccuracy and imprecision (that

can characterize an object locatiomnd F used to describe the shape vagueness. They
applied this extension to describe an environmental information system for a pollution

phenomenon.

2.2.5.3 Management of imperfections in spatial databases

A spatial database is a formdescription of the geographic reality where two types of
operations can be dontransformationsand modifications(Motro 1995). Adescription of
database refers to its structure and its contents. However, the operations of transformation and
modification consist in the update of the contents and the structure of the database,
respectively. In this thesis, we are interested indiscriptioncomponent because we are
focused on the modeling of spatial databa8esordingly, a modeling process generally aims
at producing a database description that respects two principles propertssirideessnd
completenessOn the one hand, a descriptionssund, if it includes only necessary data to
describe the reality. On the other hand, a descriptiocongpletef it includes all of data that
describe the reality. At the conceptual level of a database description, the vagueness results
from a simplification of the complex reality and/or an ambiguous definition of the spatial
objects (Yazici etal. 2001). At the physical level, several solutions can be implemented to
deal with different aspects of imperfections in relational databases (Motro 1995):

1. “Null” values: a “null” value denotes that no information is available. It can be also

used to denote the inapplicability; i.e., that a specific attribute is inapplicable to a given

object.

2. Disjunctive value:it is a set of values that necessarily include the true one (but we

don’t know precisely which one is true). A disjunctive value occurs when there is an

uncertainty to assign one value to a given attribute. Then, a set of values (sepa@ied by

operator) are assigned to the attribute.
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3. Confidence factors: they denote theconfidencesthat one can have about the
description elements (Motro 1995). For example, confidence factors have been used into
retrieval systems to indicate the confidence that a specific word describes in a given
document.

4. Probabilistic databases:in these databases, data are represented through variables
where each is related to a probability distribution function. The data are stored in the
database with a probability that present their truth degrees. Exarpbeg (Jean) = 32)

=0,6; P (age (Jean) = 33) =0,4.

5. Possibilistic or fuzzy databasesin these databases, concepts are modeled as fuzzy
subsets (Zadeh 1965). These concepts are managed by the DBMS through a fuzzy
inference system that computes a membership degree for each instance according to a
membership function associated to the concept involved.

In the context of spatial databases, a geometry with a vague shape can be represented
though a fuzzy membership function defined in raster data where the shape vagueness is
shown using a color degradation (figure 2.3(a)). This method has high implementation and
managementosts It is only possible for a limited surface and consists in computing the
membership degree of each pixel to a given class. However, the vector format allows a
less expensive representation of geometries with vague shapes (Cohn and Gotts 1996(a),
Clementini 2005). Morris (2003) proposes a model to store geometries with vague shapes
in a vector format using fuzzy subsets. In this approach, a region is represented as a set of
sub-regions. For each one, a membership degree is computed through a membership
function defining the globaluzzyregion (figure 2.3(b)). A membership degree refers to

the projection of a sub-region on the membership function.

Region with a vague shape

| ) d :A/Projection

L |
||; \ Membership function

(a) Raster representation (b) Vector represen?ation

Figure 2.3 Representation of a region with a vague shape

The databases were initially invented to meet transactional needs that consist in managing
one or several daily activities of an organization. However, the economic competition

encouraged the rise of decisional needs where it is required to analyze time-variant data in
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order to make the best decisions. Decisional needs are met using specific structures called
data warehouses (Malinowskind Zimanyi 2007). The management of data warehouses
requires large storage capacities in order to store a large amount of data loaded from different
source databases. The data warehouses are used to load data cubes intended to meet the needs
in analysis and decision-making processes. In the next section, we focus on some spatial

imperfections (those related to spatial data integration) in spatial data warehouses.

2.2.6 Spatial imperfections in spatial data warehouses

A data warehouse issaibject-orientedintegrated time-variantandnon-volatilecollection of

data in order to support a decision-making pro¢ksaon 1992). It can be also defined as a
time-variant data collection that is extracted from different transactional databases and files,
organised by subject, and stored into one final data structure in order to support a decision-
making process (Kimball 1996). The data warehouses are generally represented using a
multidimensional model such as the star schema. A star schema is composed by a single fact
table connected to a set of dimensions tables. The dimensions refer to the analysis
perspectives such as tliene or space A dimension contains one or sevelaérarchies
typically composed by several granulafigyelssuch as theountry, region, andcountyfor a

spatial dimension. According to Malinows&nd Zimanyi (2005), #vel refers to a set of
instances callethemberghat have common characteristics. For example, the lesgion’

of the spatial dimension contains the following membEest West North, andSouth. Two
consecutive levels of a hierarchy are cal@ild and parent depending on whether they
include more detailed or more general data, respectiVey members of a parent level are
obtained by aggregating its child members of the immediately lower level. The fact table
stores one or several attributes that represent the analysis such as the sales amount or the
number of accident victims. They are generally numerical attributes that are summarized
before being analyzed according to the set of dimensions (Raferall2€03). According to

Rivest etal. (2003), a fact refers to a combination of dimension members, with the measures
value for a particular aggregation level. For example, a fact can correspond tartisalés

in Quebec city at the first half of 2008”; i.e. the sum of car sales for the m&uieeecof

the dimensionSpaceand for the membefirst half of 2008 of the dimensiomime The
combination of all facts and dimensions refers tdata cube Different data cubes can be
obtained from the same data warehouse.
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Franklin (1992) estimates that 80% of transactional data have a spatial component. This
fact justifies the rise of spatial data warehouses that support the management of significant
amounts of time-variant data including a spatial component. The spatial data are captured by
their geometries and can be managed in the dimension tables as well as in the fact table. In
spatial dimensions, the members of different levels can be related by classical relationships or
topological relationships. In this second case, each member of a hierarchy level has a
geometry that is normallwithin the geometry of its parent member belonging to the
immediately higher level. However, other topological relationships suClvedap orCovers
are possible but require the use of specific operations to compute measure aggregations.
These relationships occur when the hierarchy levels are loaded from heterogeneous source
databases. In practice, it is generally difficult to geometrically deduce the topological
relationships between objects belonging to different hierarchy levels. These relationships can
be managed through semantic links between the geometries involved stored in the data
warehouse. In a fact table, the spatial measures can correspond to geometries or quantitative

spatial data such as the area or distance.

A spatial data warehouse is generally loaded from different data sources. These data
sources are involved in an integration process in order to be adapted to the structural and
semantic requirements of the data warehouse. In the spatial data integration, the data sources
are generally heterogeneous at different levels such as the database structures heterogeneities,
the geometric heterogeneities, etc (Devogel 1997). Then, different forms of imperfections can
be observed in a spatial data warehouse. On the one hand, each source database includes its
own imperfections that can be propagated in the data warehouse. For example, the
hierarchical levels of a spatial dimension are typically extracted from different sources. Then,
inconsistencies can be shown during the navigation from one level to another: the navigation
from a county level to municipalitylevel can be inconsistent whether data are extracted from
different data sources; some municipalities are not completely inside their parent county.
Moreover, the imperfection in spatial data warehouses can be related to the data aggregations.
For example, the aggregated values may be different to the sum (when the aggregation
function is SUM) of values stored at the lower level. For example, the inhabitants living in the
broad boundary of an urban zone may not be computed in the sum of urban inhabitants the
region involved. In some cases, the inconsistencies between the different aggregation levels
are managed througtvarnings that inform the users about the possible incoherencies

(Levesque et al. 2007).
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The geometric heterogeneities between source geometries can also entail the shape
vagueness. The geometry of each member of a spatial hierarchy level can refer to the final
geometry obtained by merging heterogeneous geometries available in the source databases.
The principal tool to merge source geometries is Owerlay method (Frank 1987,
Demirkesen and Schaffrin 1996, Harvey and Vauglin 1996). This method compute the
intersection of the different source geometries usitmgeaance valuearound the nodes of a
source geometric representation taken as a reference in order to merge the others. A source
geometry is excluded from the integration process whether it is not inside the tolerance zone.
When the quality of source geometries cannot be evaluated, the shape of a final geometry
becomes vague if there is a non-empty difference between the union and intersection of
source geometries (Shepherd 1992). The topological relationships, between the members of
the same spatial hierarchy level as well as those between the child and parent members
belonging to different levels, should then consider the shape vagueness of the geometries
involved.

Dealing with the spatial data imperfections leads to investigate how they entail deficiencies
in the spatial data quality. Moreover, the advances in the information technologies domain
gave place to increasingly powerful material solutions at the level of storage capacities and
personal use of spatial data. From this perspective, the spatial data quality is increasingly

described by the spatial databases producers and required by the users.

2.2.7 Spatial data quality and management of imperfections

2.2.7.1 Notion of spatial data quality

+ Definitions

In the standard 1ISO 19113 (ISO/TC211 2002), the general definition of qualiheisdtality

of features and characteristiad a productor service thabearon its ability to satisfy stated

or implied needs According to Devillers (2004), various definitions have been associated to
the concept of quality in the domain of geographical information systems. Two main groups
of definitions can be then identified. The first group associates the quality of a product or a
service to the standards and specifications, allowing to reduce the errors in the product. The

second group associates quality with the satisfaction of the users’ needs, i.e. a product with a
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good quality level should meet or exceed the users’ needs. These two groups of definitions are
commonly identified by “internal quality” and “external quality” (Aalders, 2002, Dassonville
etal. 2002). In GIS, the first group is generally placed from the point of view of the producers
of data, compared to the second group which is placed from the point of view of the users
(Kahn and Strong, 1998).

The internal qualityrelates to the meeting by the data producer of the requirements defined
by the user or by himself. These requirements represent the theoretical specifications or the
nominal ground (David and Fasquel 1997) that is used to evaluate the internal quality.
Generally, the data producer describes the internal quality of its product using the following
elements: (1)actuality of data,(2) geometric and thematic accurac{d) genealogy (5)
logical consistencynd (6)completenesgMostafavi etal. 2004). This description generally
appears as a quality report associated to the database (Boin and Hunter 200&griale
guality can be evaluated by making the comparison with theoretic specifications of the reality
description called thenbminal ground” (David and Fasquel 1997). On the other hand, the
external qualitycorresponds to the concept adequacy to the user’'s neeals “fithess for
uses$ (Juran etal. 1979). Bédard and Valliere (1995) defittiee external qualityas the set of
characteristics which make spatial data ready to meet user’s needs in a given application”
The external quality cannot be objectively described by the data producer because a same
database can be intended for different uses. Accordingly, Devillers (2004) proposes a fast and
intuitive approach to communicate the information about the spatial data quality and to

improve the evaluation of the external quality

» Elementsof spatial data quality
In (Guptill and Morrison 1995, Azouzi 2000, Aalders 2002, Van Oort 2006), the spatial data
quality is described through the following elements:
> Genealogy (or lineage)it refers to the history of a geographic dataset. It
describes the source of data as well as the acquisition and derivation methods
including all transformations involved in the data production process (Van
Oort 2006).
> Completenesst measures the exhaustiveness of the data in terms of the spatial
and thematic properties (Brassehefi995). In the case of absence of data, one
speaks about datanission.In the case of excess data, one speaks about a data
commission (Guptill and Morrison 1995, Van Oort 2006).
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> Logical consistencyit relates to the fidelity of relationships encoded in the
data structure of the digital spatial data (Guptill and Morrison 1995, Van Oort
2006). The consistency is composed by: (1) the conceptual consistency (i.e.,
the validity of data according to the conceptual schema), the thematic
consistency (i.e.the validity of data according to the value domainthe
structural consistency (i.ethe validity of data according to the physical
structure of data in the DBMS) and the topological consistency the.,
validity of geometrical properties of the spatial objects and of their topological
relationships.

> Positional accuracyit relates to the positions exactness of geographic objects.
A distinction is generally made between tletative accuracyand absolute
accuracy (Guptill and Morrison 1995). Thabsolute accuracyefers to the
relationship between a geographic position on a map (a street corner, for
instance) and its real-world position measured on the surface of the earth. The
relative accuracys the difference in the distance measured between two points
on a map and the true distance between these same two points, which is
measured using conventional surveying methods.

> Attribute accuracy it provides an assessment of the accuracy of the
identification of entities and assignment of attribute values in a data set. It
measures the accuracy of quantitative and quaktatalues assigned to the
thematic attributestife population of an urban area, the city name, etc.) of the
spatial objects involved. The thematic attributes can be measured according to
different measurement scalesardinal, ordinal and nominal Each type of
values requires specific procedures to measure the attribute accuracy (Azouzi
2000).

> Temporal accuracyit refers to the accuracy of the temporal information
describing geographic entities and their temporal relationships. It is also called
the ‘temporal quality (Van Oort 2006). It can be subdivided in: (1) the
accuracy of temporal measurements, (2) the consistency of temporal topology
(i.e., the relationships between the temporal evertsd (3) the temporal
validity (i.e., the actuality of data and theialidity according to the time

The elements of spatial data quality can be used to evaluate the spatial data imperfections

in a spatial database. These elements cover principally the problemsaanuracy
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incompletenessinconsistency imprecision and vagueness. Then, improving the internal
spatial data quality leads to the reduction of spatial data imperfections. However, reducing
spatial data imperfections is not a solution for the spatial objects with vague shapes. This
strategy would decrease the reliability of spatial databases because the geographic reality
would beexcessivelpsimplified. The spatial objects with vague shapes and their topological
relationships are not always properly represented using the traditional spatial models. In the
next section, we review existing approaches that proposed different models to represent

objects with vague shapes and to identify their topological relationships.

2.3 Spatial objects with vague shapes and their topological

relationships

Section 2.3.1 presents a categorization of spatial objects. Section 2.3.2 is interested in the
modeling of spatial objects with vague shapes. Section 2.3.3 is focused on the identification
of their topological relationships. Section 2.3.4 reviews the classifications of integrity

constraints and existing tools to formally express them.

2.3.1 Fiat objects vs bona fide objects

Two categories of spatial objects are distinguished:fit)objects andoona fide objects
(Smith 1994, Smith and Varzi 2000, Brodeuakt2003). This categorization is based on the
distinction betweenffat boundary and “bona fide boundary” A fiat boundary cannot be
directly observed in the reality (Bitther 2000). For example, the boundaries between the hills
of a mountain chain ar@at. Forest standsand lakes are two examples dfiat objects.
However, abona fide boundargstablishes a discontinuity in the spateefers to asharp

line or a physical demarcation between two objects having qualitative and physical
differences (Smith 1994)Buildings and roads are examples of bona fide objects
Nonetheless, the notion bat andbona fideclassification cannot be applied independently to
the users’ needs and specificities of the studied phenomenon. In other words, a given object
cannot be inherently classified as fiat or bona fide. In practice, any object can be in the first or
in the second class according to the definition given to this object. For example, it is generally
difficult to determine the start and final points of a road. In the latter case, it is more
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appropriate to consider a road as a fiat object than a bona fide one. Then, it is possible to
conclude that the boundary between the fiat class and bona fide class is broad.

The fiat objects refer to spatial objects with vague shapes (in our terminology) such as
regions with broad boundaries or broad lines. For this type of objects, several researches
(Guarino and Wetly 2000, Hwang and Thill 2005) made the distinction betwedatetitiy
vaguenessand unit vaguenessThis distinction reminds the first uncertainty level (i&.,

conceptual uncertainjydefined in (Bédard 1987).

Generally, the traditional geometrical models do not allow the representation of vague
shapes. They reduce the spatial extensions of the spatial objects to their certain parts (Yazici
et al. 2001). For example, a lake with a broad boundary is represented as a region with a sharp
boundary despite the non-reliability of this representation (in the best cases, metadata are
stored in the databases to describe the data imperfection). This approach can be motivated by
two reasons: (1) a tendency to eliminate the shape vagueness in the geometric representations
and (2) the absence of a technology that allows the storing and management of spatial objects
with vague shapes. This modeling approach reduces the reliability of spatial databases. For
example, let a database intended for the storage of spatio-temporal data describing some
phenomena related to climatic changes. In this example, the climatic zones should be
represented as regions with broad boundaries because they have fiat boundaries that cannot be
reliably represented as linear demarcations. These zones are modeled dih@ifigein
order to allow their management using existing technologies. Consequently, an inherent
property of these objects is lost. Let a second example of a spatial database that stores data
about the moving traffic in a navigation system. In this database, a vehicle coordinates
represent only an estimation of its real position at a moimémbreover, there are generally
no data that inform the user about the truth degree of such estimation. For that reasons, there
IS a necessity to meet new needs by managing spatial objects with vague shapes and

computing their topological relationships using a new modeling approach.

In general, we distinguish between at least two categories of models used to represent the
spatial vagueness. In the first category, crisp spatial concepts are transferred and extended to
formally express the spatial vagueness; we speak aboek#we modelsuch as Cohn and
Gotts (1996b), Clementini and Di Felice (1997), Erwig and Schneider (1997). In the second
category, three principal mathematical theories are generally used: (1) the models based on
the Fuzzy Logic (Zadeh 1965) (e.g., Altman 1987, Burrough 1989, Brown 1998, Schneider
2001, Tang 2004, Hwang and Thill 2005, Dilo 2006), which can be used to represent
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continuous phenomena such as temperature, (2) the models based on the Rough Sets theory
(e.g., Ahlgvistet al. 1998, Worboys 1998b), which represents the objects with vague shapes
as a pair of approximationghé upper approximation and lower approximation), and (3) the
models based on the probability theory (e.g., Burrough and Frank 1996, &fake2005),

which is principally used to evaluate the errors in positions and attributes. In the next section,
we review the principal approaches belonging to these categories of models.

2.3.2 Modeling of spatial objects with vague shapes

2.3.2.1 Definitions based on exact models

The exact or qualitative models reuse the existing definitions in traditional spatial models to
represent the spatial objects with vague shapes. The Egg-Yolk theory (Cohn and Gotts 1996a)
is an extension of the RC®¢gion Connection Calculusnodel (Randell and Cohn 1989,
Cohn etal. 1997). This theory has been the first that introduced the conceggiohs with

broad boundaries(Hazarika and Cohn 2001). In this approach, a region with a broad
boundary is made up of two crisp sub-regions (surrounded by crisp boundaries). The internal
sub-region is calledYolK (i.e., the certain part of the geometry) which is surrounded by an
external sub-region calledwhite€' (i.e., the broad boundary or the uncertain part of the
geometry). The union of ther6IK’ and “Whité refers to the Egg” (i.e., an Egg-Yolk region

is made up of two sub-regions with crisp boundaries). Cohn and Gotts (1996b) consider the
“YolK as a region vaguely localised inside a container sub-region (i.e.E4T®)" Since the

points and lines are not considered in@C model, theEgg-Yolktheory does not model the
shape vagueness of these two types of objects. In addition, regions with broad boundaries
with empty ‘yolk’ or empty ‘egg” are not admitted. The crisp regions cannot be represented

using the Egg-Yoltheory.

Likewise, Clementini and Di Felice (1997) proposed a definition of regions with broad
boundaries based on the principles of the general point-set topology (Egenhofer and Herring
1990). A region with a broad boundary is defined as a composition of two sub-regions with

crisp boundariedy andA,, with A; [ Ay. The broad boundamyf A refers to the closure of the
difference betweemA; and A;, AA= A - A,. In this approachA; and A, should be

topologically valid; i.e. they should be closed, regular and connected (Clementini and Di
Felice 1997). For the linear geometries, Clementini and Di Felice (1997) distinguish two

types of lines with vague shapesmpletely broad lineandlines with broad boundarieg.e.
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the line endpoints are broad). Tang (2004) proposed an extension of the approach defined in
Clementini and Di Felice (1997) by giving a more detailed formal definition for regions with
broad boundaries. He distinguishes four mutually disjoint topological invarianistesior,

an interior of the boundary boundary of the boundary, andetterior (figure 2.4).

Region with a broad boundary@

(a) Interior (b) boundary of the boundary  (c) Interior of the boundary
Figure 2.4 Topological invariants of a simple region with a broad boundary (Tang 2004)

The conditionA; [ Az in Clementini and Di Felice (1997) does not exist in Erwig and
Schneider (1997). Erwig and Schneider (1997) are interested in another kind of vagueness,
where aregion with a vague shapé a composed geometry. The geometry components
belong to a pair of subsets. First, tkernel subset contains the sub-regions tdetfinitely
belong to the region with a vague shape. Secondpdlmdary subset contains the sub-
regions thapossiblybelong to the region with a vague shape. Likewisepthets with vague
shapesandlines with vague shapese respectively defined as a pair of subsets of points and
lines. Crisp spatial objects can be expressed through this model wheoutidarysubset is
empty. Figure 2.5 gives an example of a region with a vague ghapevhich thewhite sub-
regions compose to the boundawybset and gragnes compose the kerrslbset.

Boundan

Kerne

Figure 2.5 Representation of a region with a vague shape according to (Erwig and Schneider 1997)

2.3.2.2 Models based on mathematical approaches

+» Probabilistic approaches

» Principles
The probabilities theory is a branch of mathematics concerned with random phenomena
(Wikipédia 2008). This theory evaluates the uncertainty by computing a value that belongs to

an interval bounded by €@r impossible eventand 1for certain eventsTwo types of
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probabilities are generally distinguished. On the one handatidom probabilityrefers to

the realization chance of a future event which depends on some unpredictable physical
phenomena (e.ggbtaining a certain number while turning a chance whe@h the other

hand, theepistemic probabilityelates to the uncertainty of the assertions when there is a lack
of knowledge about the circumstances and causalities. This type of probabilities has got to do
with our possession of knowledge, or information (Berglund 1993).

More formally, if X indicates the universe of probable events, it is possible to define a
probability distributionP: X — [0, 1]. The value given b¥ (X) specifies the probability that

an eventoccurs. A probability distribution should satisfy the following axioms:

PlX)=LPE)=0
PiAUB)=PA)+ P(B); if AnB=&

» Modeling spatial imperfection by using probabilistic approach

In the case of spatial data, probabilistic methods are quantitative approaches mainly used to
deal with the positional inaccuracy and precision by upnafpability distributions(Worboys

and Duckham 2004). For example, Shalet(2003) use this theory to represent the random
positions of spatial objects. Accordinglthe probability distributionsare intended to two
principal uses. A spatial probability distribution can model the random position of a spatial
object (Fisher 1999(b), Shu at. 2003, Worboys and Duckham 2004). Other approaches
(Bordoloi etal. 2004, Pbesma et. 2006) use the same concept to visualize the uncertainty

by using raster data. In the latter case, a probability distribution allows to assejghafor

each pixel belonging to the spatial extension of an object visualized. In geodesy, the least
squares compensation method has been related to the probability theory and is taught in every
basic geodesy class as a fundamental approach to model imperfection in position and
measurements. This method allows to estimate the non-systematic errors (due to independent
factors non-related to a failure in the measurement device) in a dataset when there is a

superabundance of measurements.

The probability theory is a quantitative approach which has two principal advantages: (1)
an advanced mathematical background (Yao 1998), and (2) a simplicity of application.
However, in the spatial domain, it is rarely used for other types of imperfections than the
inaccuracy or imprecision. These imperfections can result from the difficulty of observations,
the linguistic vagueness, the inherent shape vagueness of some objects, the complexity of

human spatial reasoning, etc.
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¢ Fuzzy approaches

» Basic elements of Fuzzy Logic

Fuzzy Logic (Zadeh 1965) is based on the notion of Fuzzy Subsets that are generally used to
model vague concepts such geung person”, Small’, etc. This theory is aaxtension of the

binary logic (i.e., the use of only two values {0, 1} to evaluate the truth of an assertion). The
works of Zadeh (1965) represent the beginning of the proposals of modeling approaches
based on fuzzy inference systems. His first contributions were the use of the fuzzy logic to

represent the natural language.

The binary logic distinguishesrmly between the members (i.elementshavingl as a
membership degree to the univgrseand non-members (i.eelements having 0 as a
membership degree to the univgrega given univers&. The fuzzy logic is a generalization
of the binary logic since it establishes the correspondence between the members of the
universe Xwith all values belonging to the interval [0, 1]. Then, the elementsdof Xot have
a strict membership (i.€0, or 1) but rather amembership degrdeelonging to the interval [0,

1] and computed by using membership function. Godjjevac (1999) defines the notion of
membership degree as the compatibility of a given element with the concept represented by
the fuzzy subset involved. A membership function can take different forms according to the
application: it can benonotonoustriangular, trapezoidaj bell-shaped.etc. A membership

function is generally expressed as follows:
Mz X - [0]]

According to this function, the non-members of a given suBshave a membership
degree equal to 0. However, the members whiclcentainlyin A have a membership degree
equal to 1. Other elements whiphrtially belong toA have a membership degree between 0
and 1.

» Fuzzy modeling of spatial objects with vague shapes

In the context of spatial databases, several approaches such as (Robinson and Thongs 1986,
Altman 1987, Burrough 1989, Zhan 199%chneider 1999, Tang 2004, Dilo &t 2005,

Hwang and Thill 2005, Verstraete &t 2007 used the theory of fuzzy subsets to model the
spatial objects with vague shapes and their topological relationships (Dutta 1991). In these

approaches, the spatial objects with vague shapes are tadisdspatial objectsThe term
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'fuzzy does not express a type of spatial imperfections but rather an indication about the
mathematical approach used to model shape vagueness. Figure 2.3 shows examples using

fuzzy approaches to represent the spatial objects with vague shapes.

Zhan (1997) and Dilo (2006) interpret a spatial object with a vague shape as a fuzzy
subset. In (Zhan 1997), the membership function of a spatial object with a vague shape is
made up o a —cuts (ana —cut is a crisp set containing the elements having membership
degrees higher or equal to a vamedelonging to the interval [0, 1] (Godjjevac 1999)) in
order to facilitate its interpretation. In the same way, Somodevilla and Petry (2003)
represented a region with a vague shape by a set-afuts organized inside a minimum
rectangle including the region. Schmitz and Morris (2006) proposed a fuzzy model (in the
sense of Fuzzy Logic) also based on the concept-a@iuts to represent fuzzy regions. They
use this concept to describe the internal structure of the broad boundary that surrounds the
interior of the region. The use af —cuts allows to deal with principal limitations of fuzzy
approaches related to the interpretation and use of the membership functions defining the
fuzzy subsets. Figure 2.6 shows a region where the broad boundary is decomposed into
na —cuts. a = 0 in the exteriorg = 1 in the interior and: belongs to the interval ]0,1[ inside

the broad boundarfwith o;>0,>a3).

as

Broad a=0

pOU / .
A Exterior

Figure 2.6 A region with multipler —cuts (Schmitz and Morris 2006)

According to Schmitz and Morris (2006), the definition of fuzzy regems®imes that the
boundary is broad everywhere and @rcut should uniformly surround the interior of the
region. This assumption is not realistic because a region can have a partially vague shape; i.e.,
broad boundaries in some locations and sharp boundaries in some others (e.gwith lake
rocky bankson one sideand swamp banksn the other side). In this casey acut should

have more than one definition in order to be always inside the broad boundary. However,
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an a —cutcannot have more than one definition inside the same fuzzy subset. Consequently,

regions with partiallyproad boundaries cannot be represented by using this approach.

In (Tang etal. 2003, Tang 2004), a spatial object with a vague shape is defined in two
different ways. The first definition is based on the properties afisp topological space
(Tang 2004). In a crisp topological space, the membership of a given point is evaluated by
using a binary logic (1 if the point belongs to the object, O else). The second definition
respects the topological properties offumzy topological space. The concept fakzzy
topological spacds a generalization of crisp topological space, in which the spatial objects
are defined as fuzzy subsets (i.e. the membership degree of a pojniviered< a <1).

Bjarke (2004) and Schneider (2001) proposed a method to identify the broad boundary of a

region by computing the membership of each point to the interior and boundary, respectively.

« Rough Sets

Rough sets theory (Pawlak 1994) is a formal approach to deal with the difficulty to
distinguish between the elements belonging to a firsAsatd those contained by a second
setB. For example, let two data sourcesindB involved in an integration process.andB

store the same set of forest stands where the geometries are defined with different resolutions
and precisions. To distinguish similar forest stands, Rough sets theory can be used to define
two approximations for each stand: a minimal approximation and a maximal one. They
correspond to the geometric representation having the smallest resolution and that having the

highest resolution, respectively (figure 2.7).

Upper approximation

Lower approximation

Figure 2.7 Example of an integration of two geometries based on the rough sets (Worboys 1998b)

In the case of spatial data, Rough sets theory has been also used to model spatial objects
with vague shapes and their topological relationships (Beaubouef and Petry 2001). Worboys
(1998b) used this theory in a context of multi-resolution representations. Ahlgvist et

(1998) introduced the concept approximate classificatiomhich corresponds to the set of
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rough setsassociated to the data. In this approach, the membership to the maximum
approximation reflects the uncertainty of the concerned element.

Roy and Stell (2001) deal witindeterminacydefined as a knowledge imperfection that
prevents a bivalent evaluation of a given assertion (true or false). They define an
indeterminate region by using approximate sets (Pawlak 1994). An indeterminate region is
composed of a lower approximation and an upper one. The difference between these
approximations refers to the broad boundairya region. When this difference is empty, the

region is crisp because the two approximations are equal (Roy and Stell 2001).

2.3.3 Topological relationships between spatial objects with vague shapes

In the context of objects with crisp shapes, several models (Egenhofer and Herring 1990,
Egenhofer and Franzosa 1991, Mark and Egenhofer 1994, Caohin 2197) studied the
specification of topological relationships in GIS and spatial databases. These models are
based on two principal approaches: (1) ploet-settopology (Egenhofer and Herring 1990)

and (2)mereolog§. The principles of mereology have been reminded in (Varzi 2004). First,
we review these models used for characterising the topological relationships between crisp
objects. Then, we present the extensions of ttrasidional models to deal with topological

relationships between vague objects.

« RCC model and 9-intersection model for characterising the topological relationships

between crisp objects

The RCC (Region Connection Calculusnodel is based on theereology The RCC model

has been presented in different papers as a tool to identify the spatial and temporal
relationships (Randell and Cohn 1989, Cohalet997, Stell 2000). In the RCC model, the
“region” is the only geometric primitive used to represent spatial objects; i.poithis and

lines are not considered. Moreover, a primitive relationship call@@dnhection” notedC is

used to express a general relationship between two simple regions with crisp Gh@peB)

(A “is connected” to B

“ Region is the only geometric primitive defined (i.e. the points and lignes are not considered). The region is the
elementary component of the space
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Two versions of RCC model have been proposed:

» RCC-5: this model proposes five relationships between two simple regions:
DR (Disjoint), PO (Partial Overlap),PP (Proper Par), PPi (Proper Part
inversg andEQ (Equal).

» RCC-8: the relationships proposed in this model can be derived from those
defined the RCC-5 model (figure 2.8).

RCC8 (POiB)  (TPP(AB)] (NTPP(AB] (TPPi(AB) (NTPPIAB) (EQisB)

0, 0% g &00@

Figure 2.8 Topological relationships according to RCC-5 and RCC-8 models (Dilo 2006)

The 9-Intersection model allows an identification of topological relationships based on the
principles of the point-set topology (Egenhofer and Franzosa 1991). This model is typically
referenced when one speaks about the topological relationships and it has been integrated in
different frameworks to specify these relationships (Chen and Li 1997). In this model, the
topological relationships are identified by using 9-Intersection matrices that denote the
intersections between thmundariesinteriors andexteriorsof the objects involved. The 9-
Intersection model distinguishes 8 topological relationships between two simple crisp regions
(Disjoins, Equal Overlap, Contains, Inside Covers, Covered by, Megt 36 relationships
between two simple crisp lines, 19 relationships between a simple crisp region and a simple
crisp line, 2 relationships between two crisp points, 3 relationships between a crisp point and
a simple crisp line, and 3 relationships between a crisp point and a simple crisp region. This
model is an extension of the 4-Intersection model (Egenhofer 1989) where only the interior
and boundaries of objects are considered to identify the topological relationships. The 9-

Intersection model also includes the intersections with exteriors.
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Figure 2.9 Topological relationships between two simple regions with well-defined shapes according
to the 9-Intersection model (Egenhofer and Herring 1990)

« Extensions of traditional models to deal with topological relationships between
objects with vague shapes

In the context of spatial objects with vague shapes, the topological relationships can be
specified by extending the RCC and 9-Intersection models (Cohn and Gotts 1996a,
Clementini and Di Felice 1997, Erwig and Schneider 1997, Roy and Stell 2001, Tang 2004).
Erwig and Schneider (1997) used a three-valued logic to compute the topological
relationships involving objects with vague shapes. Then, an intersection between two
topological invariants can bt&ue, false, ormay be(i.e. when an uncertain part of the

geometry is involved in the intersection).

In Cohn and Gotts (1996b), a topological relationship between two Egg-Yolk refions
and B is identified using a 4-Intersection matrix which enumerates four sub-relations:
Ri(Egg(®) - Egg@B)). R(Egg@) - YolkB)), Rs(YolKA) - Egg@B)), andR4(YolKA) - YolkB))

(figure 2.10). These four sub-relations are those defined in RCC-5 niRatéhlly Overlap

(PO), Proper part(PP), Equal (E), Proper Part inverséPPi), and Distinct{D). In (Cohn and

Gotts 1996b), only 46 matrices are consistent and refer to 46 topological relationships that can
be drawn between two regions with broad boundaries. Figure 2.10 presents the relationship
number 15 identified in Cohn and Gotts (1996b). The principal advantage of this approach

relates to its simplicity to identify the topological relationships. However, it does not provide
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a framework to specify topological relationships involvpants lines or regionswith crisp

shapes.

s PO (Eggf), EggB))  PPI(Eggh), Yolk(B))
' ' PO (Yolk@®), EggB)) PO (Yolk@), Yolk(B))

Figure 2.10 Identification of topological relationships in (Cohn and Gotts 1996(b))

Clementini and Di Felice (1997) introduced the conceptapproximate topological
relationshipsdefined as relationships between regions with broad boundaries. They used a
formalism based on a 3*3-Intersection matrix where the crisp boundary is replaced by a broad
one. This approach considers the rules defined in Clementini and Di Felice (1997) to check
the consistency of a matrix (12 rules to eliminate each matrix that cannot be drawn). Then,
only 44 matrices are consistent and refer to 44 relationships which can be drawn between two
regions with vague shapes. These relationships are grouped into 17 clusters that are organized
in a conceptual neighborhood graph. This approach may be very useful when the topological
relationships are coarsely described by the user. However, it is not sufficiently expressive
when the needs are more specific and the user has a clear idea about the required relationship
between regions with broad boundaries involved. For example, figure 2.11 shows an example

of two different relationships which belong to the same cluster and identified by the same

@ 0 1
Mee 0 1 1
@@t 1]

Figure 2.11 Identification of the topological relationships in (Clementini and Di Felice 1997)

matrix.

In the same way, Reis al. (2006) reused the model proposed in (Clementini and Di
Felice 1997) in order to identify the topological relationships between lines with vague
shapes. In this approach, 2 conditions defined in (Clementini and Di Felice 1997) are used to
reduce the number of topological relationships. Then, 5 topological relationships are
distinguished between twoompletely broad linesand 77 between twénes with broad

boundaries (or endpoints)

Tang (2004) proposed an extension of the 9-Intersection model where he identifies more
topological relationships than (Clementini and Di Felice 1997) by using a 4*4-Intersection

matrix. Indeed, this approach distinguishes 152 topological relationships described by 152
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matrices (see the example in figure 2.12). In practice, the absence of a classification of these
topological relationships reduced the utility of the model because it is very difficult to make
an easy and intuitive distinction between them. Moreover, Tang (2004) does not make the
distinction between the internal boundary and external one for a region with a broad
boundary. Consequently, several topological relationships cannot be identified by a 4*4-

Intersection matrix.

B° 1B IB° 1B~ ] ]
A° : the interior of £

A 0 o0 1 At boud
A B A°: the boudary 's interia
IA 1o 1 0o 1| wi Y
@@ o lIA : the boundary'boundar
A 0 0 0 1 )
- A~ : the exterio
A 1 1 1 1

Figure 2.12 Identification of the topological relationships in (Tang 2004)

% Using Fuzzy Set theory to deal with topological relationships between objects with

vague shapes

Fuzzy Set theory is also used to identify the topological relationships between objects with
vague shapes (Zhan 1997, Schneider 280@inodevilla and Petry 2003, Bjgrke 2004, Du et
al. 2005,Dilo 2006). According to Zhan (1997), a topological relationship is c&l¢de. a
parameter used to replace the eight relationships identified in the 4-Intersection model
(Egenhofer 1989)). For each pair @f —cuts of regions involved, a sub-relation is
identified. Then, theossibility of the global relatiorR is deduced from the number of sub-
relations arising between the different cuts. This approach is easy to use in practice, but it
presents some complexity when the cuts are non-uniformly distributed between 0 and 1.
In the same way, Dilo (2006) identifies six possible topological relationshipD{sgint,
Touches Crosses Overlaps Within, andEqua) between two spatial objects with vague
shapes. A topological relationship is defined by using fuzzy operators (aign,
intersection,absolute difference, andounded differengeapplied to the fuzzy subsets that
define the objects involved. According to Dilo (2006), many topological relationships may
exist at the same time with differehtuth degrees(e.g.Overlap@, B) with theTruth degree
= 0,2;Mee(A,B) with theTruth degree= 0,3;Disjoint(A, B) with theTruth degree= 0,5). Du
et al. (2005) proposed an extension of the 9-Intersection model in order to describe the

fuzziness of topological relationships. Shi and Liu (2007) consider two stages to model the
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topological relationships: (1) giving a qualitative definition for each relationship and (2)
computing each instance of this relationship by using Fuzzy Logic. In the same way, Bjarke
(2004) uses a linguistic variable which gives an association to a crisp relation and a quantifier
which indicates the strength of the topological relationship computed by using fuzzy

operators.

The fuzzy models allow a description of the internal structure of broad parts of an object
with a vague shape. However, some quantitative hypotheses are generally required in order to
define the membership functions either for the computation of spatial objects or the
evaluation of their topological relationships. This requirement can be considered as a
limitation of the fuzzy approaches because the definition of these hypotheses is generally
arbitrary; i.e. they are neither based on perception studies nor application evaluations (Bjgrke
2004). Additionally, the fuzzy approaches are expensive in the implementation and more
adapted to the raster data than to the vector data. In the raster data, the gradual transition of
the interior or boundary of a given fuzzy object can be shown through the membership degree

computed for each pixel (Clementini 2005).

In this section, we made a bibliographical study on the modeling of topological
relationships between spatial objects with vague shapes. These topological relationships
present relevant data that should be consistent and reliable in spatial databases. The
consistency of topological relationships is generally controlled through a set of rules called
the topological integrity constraints. In the next section, we review these constraints in the

context of spatial databases.

2.4 Consistency of spatial databases and integrity constraints

2.4.1 Introduction

The specification of integrity constraints is an important design step in a development process
of spatial databases (Borgesakt2002). The integrity constraints should be respected when
the database is updated in order to preserve its logical consistency (Elmasri and Navathe
2000). The logical consistency requires the specification of different types of constraints
which can relate to the spatial object attributes as well as the relationships between spatial
entities fopological metric, order, tempora). According to Bédard (1987), a spatial object
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hasa definition,a thematic descriptiothematic attributels a spatial extensio(a geometry
anda temporal descriptionefistence and geometric evolution). All of these aspects can be

concerned by integrity constraints.

2.4.2 Classification of integrity constraints

In spatial databases, the termstégrity’ and “consistency are used to remind that the data
should beexact correct valid and consistent(Kainz 1995). Accordingly, the integrity
constraints are used to define the characteristics of valid data that can be accepted in a given
database. Integrity constraints can relate to the properties of relational databases such as the
uniqueness of some keys. They can also relate to semantic propertiash(ge is build on

1,1 ground), to spatial properties and relationships (a.dpuilding should not overlap a

road), or to temporal properties and relationships. The integrity constraints can be defined at

the conceptual level through specific tools (Bédaral.€2004).

According to Hendrik eal. (1997), the integrity constraints canib&a-objectwhen they
are defined on the attributes of only one object. In the same way, they caerbebjects
when they control the validity of a spatial relationshigpélogical metric, directional and

order relationshipsbetween two objects.

Mehrdad Salehi (2005) proposes a formal classification of integrity constraints based on
the distinctive components of spatio-temporal databases that refer to space, time, themes, and
their combinations. This classification of integrity constraints is based on a classification of
objects in spatio-temporal databases that has been widely used and considered as a base in
developing spatio-temporal schema modeling languages such as Perceptory Béaard
2004) and MADS (Parerdt al 2006). In spatio-temporal databases, objects are classified
based on their spatial, temporal, and thematic (i.e. non-spatial and non-temporal) properties
and on the combinations of these properties. Objects that hold geometric attributes are usually
called “spatial”. Objects for which the existence is managed (e.g., their birth and death dates)
and their non-spatial attribute values that evolve through time are called “temporal”. “Spatio-
temporal” objects are those having a geometry evolving in time. Objects that are not in these
previous categories are usually called “thematic”. Accordingly, Mehrdad Salehi assumes that
an IC is an assertion carrying a number of concepts that are related to space, time, themes, and
their combinations. These concepts are in fact used to build an integrity constraint language
for spatio-temporal databases called “ICLS concepts”. Based on the nature of ICSL concepts
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appearing in the IC assertion, an integrity constraint is then classified. Following to this,
spatial-only integrity constraints and spatial integrity constraints are specialized to primary,
topological, metric, ordering, and hybrid integrity constraints. Sub-classes of temporal-only
and temporal integrity constraints are primary, topological, and metric integrity constraints.
He distinguishes two types of spatio-temporal-only integrity constraints as inherent and
hybrid. Finally, three types of spatio-temporal integrity constraints, i.e., inherent, composite,
and hybrid are distinguished.

Elmasri and Navathe (2000) distinguish three categories of integrity constraints. Firstly,
the inherentconstraints refer to the rules related to the data model and not to the application.
For example, the uniqueness of primary keys is an inherent constraint of the relational
databases. Secondly, thmplicit constraints are defined on the physical schema of the
database by using the Data Definition Language (DDL for short). For example, the integrity
constraints on the domain values arelicit. Thirdly, the explicit constraintsare defined
using application languages at the level of class methods. The business rules can be

considered as examples of explicit constraints.

Fahrner etal. (1995) proposed a classification based on ithpact of an integrity
constraint on the database states. Then, an integrity constraint sttid&hen it should be
checked according to a single state of the database. For exarni@esurface of an
administrative region should be higher than each of its municipalitiéskewise, the
transitional constraintsaare used to restrict the number of possible transitions from one state of
the database to another. For example, the constrawterf’ the data describing an
administrative region araupdated, its budget should never be reduc¢ed’ transitional.
Moreover, dynamic constraints allow restricting sequences of transitions between possible

states of a given database.

Cockcroft (1997) distinguishes three principal categories of integrity constraints in spatial
databases:

» Topological integrity constraintsthey refer to the topological relationships

between spatial objects belonging to the same data collection. They can also refer to
the geometrical properties of the objects without considering the meaning of
geographical features involved. These constraints relate mainly torthectedness

and adjacencybetween geometries involved. For example,golygon should be

closed” or ‘bbjects belonging to the same collection should form a connected
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graph” (isolated objects are not admitted). In (Cockcroft 1997), these constraints are
inherent to the data model itself and do not need to be specified in the conceptual

schema of the database.

« Semantic integrity constraintghese constraints are defined according to the

meaning of geographical entities (Cockcroft 1997). The semantic constraints result
from the combination of the geometric information, spatial relationships, and
meaning of spatial objects involved. Then, the semantic constraints may contain
topological conditions. For examplea foad network should be connectedhis
integrity constraint is semantic because the definition of a road network should be
considered. Moreover, the netwocknnectedness a topological condition that

should be respected by this type of objects.

 User-defined integrity constraintaccording to Cockcroft (1997), the user-defined

constraints express esoteric rules defined by the domain experts. They can express
legislative rules, environmental constraints, etc. For examtble,distance between
a military zone and the closest urban area should be greater thar.3 km

The classification of Cockcroft (1997) has its specific limitations. Firstly, metric
constraints cannot be classified into one of the three categories proposed by Cockcroft (1997).
In these constraints, the topological conditions are replaced by metric ones. For example,
“The distance between two polygons or two lines is defined as the minimal distance between
all nodes of the objects involvedSecondly, the semantic constraints can contain metric
conditions (e.gthe maximum distance between a house and a fire hydrant is lower or equal
to 20 m). Likewise, they can be purely semantic (e.g., a house has only one .olimetly, it
is difficult to distinguish between the semardanstraintsfrom user-defined onesMoreover,

a semantic component may exist in a topological constraint especially when it verifies a

topological relationship between two spatial objects.

In the data warehouses, it is also necessary to control the logical consistency of
aggregations. This consistency is managed through specific constraints defined on the
aggregation functions such amsin, max, sum, counand average(Ross etal. 1998).
Aggregative integrity constraints can be integrated into an optimization process which
prevents the execution of an expensive computing process whether a set of data cannot be
aggregated (Levy and Mumick 1996).
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Some simple integrity constraints can be represented in the conceptual schema of a given
data warehouse. For example, an aggregation association between two hierarchical levels of a
spatial dimension means that the members of an intermediate level has orparente
member at the immediately higher level (e.g.,“ Montpellier belongs only to the South_France
category”). In this contextPerceptoryis a design tool which provides a set of pictograms
extending theJnified Modeling Languag@JML) in order to establish the conceptual schema

of a spatial data warehouse (Bédard 2006).

Salehi (2005) aims also at specifying complex integrity constraints in a spatial data
warehouse. In this context, intra-level topological relationstipsMeen spatial objects of the
same hierarchical spatial dimension levedr inter-level ones between spatial objects
belonging to different hierarchical levels of the same spatial dimension) should be controlled
through specific integrity constraints. These constraints are often difficult to be managed
since the geometrical data stored in the different levels result from an integration process
involving several heterogeneous data sources. More specifically, topological constraints
should consider the uncertainty about the appropriate intra-level and inter-level topological
relationships between the integrated geometries that can be vague. Accordingly, Frank (2001)
and Rodriguez (2005) proposed the implementatiotolefant constraints that considers the
shape vagueness of data resulting from an integration process. Figure 2.13 shows the
integration of different geometric representations (of two spatial objemtsB) loaded from
two different data sources. According to Rodriguez (2005), the integration result is partially
consistent because final geometries have vague shapes. Then, the ncaxisistencyof
these geometries is obtained by the intersection. Howevemithienal consistencys that

obtained by the unions of source geometries ahé B

Figure 2.13 Integration of two heterogeneous source geometries (Rodriguez 2005)

The implementation of integrity constraints in a database is preceded by a formal
specification done through specific languages or representations that we review in the next

section.
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2.4.3 Formal specification of spatial integrity constraints

2.4.3.1 First-order logic based languages

A formula of first-order logic can be made up of symbols representngbles constants
predicates functions quantifiersandlogical connectordDehornoy 2006)First-order logic

has been used to specify integrity constraints as in languages used to model the knowledge in
artificial intelligence (Reiter 1987). For example, the constraint T&@®erson gender should

correspond to one of the following values: male or fefrialexpressed as follows:
(O ) xpersénx] male xC femaléx)

In spatial domain, Hadzilacos and Tryfona (1992) used the first-order logic and the 4-
intersection model to specify spatial integrity constraints. For example, the con€tBaint

“parcels should not intersect buildingss expressed as follows:

DEFINE CONSTRAINT CONSTRAINT
CONSTRAINT_IN_BUILDING_BLOCK
AMONG (LANDPARCEL, BUILDING_BLOCK)
AS r¢ (LANDPARCEL, BUILDING_BLOCK) OR
r-(LANDPARCEL, BUILDING_BLOCK)

With rg andr refer to the following topological relationshig€ontains” and“Covered by”

defined in the 4-Intersection model, respectively.

However,thefirst-order logic based languages are generally difficult to be used to express
the integrity constraints. Long formulas are required to specify the integrity constraints
because their syntaxes are often limited. Benzaken and Doucet (1993) used the object-
oriented concepts through a specific programming language CaH&dMIS The integrity

constraints are implemented as methods written using this language.

2.4.3.2 Visual specification of spatial integrity constraints

According to Proulx etl. (1995), a visual language requires the use of visual expressions
(e.g. icons, diagrams) to formally express a topological integrity constraint. The main
advantage of a visual language relates to its facility of use. These languages can be useful to
help novice users to express simple topological integrity constraints. For example, CIGALES
is a visual language proposed by Calcinelli and Mainguenaud (1994) in order to express

simple spatial queries.

Servigne etal. (2000) proposed a visual interface to define the topological integrity
constraints. In this approach, a topological integrity constraint is defined in three phases using
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a visual interface. The first phase is to choose the objects involved, before specifying a spatial
relationship and setting a specification related to the validity of this relationship. Then, the

general form of a spatial integrity constraint is presented as follows:
Constraint = (Class Object 1, Relation, Class Object 2, Specification)

The argumentspecification” can refer to grohibition, anauthorization, the maximum
number of occurrences, et€he main advantage of this approach lies in its simplicity and
intuitive use. For example, the constraii#: “a parcel should not be crossed by a rbadn

be expressed as follows:
(Parcel, crossed by, Road, forbidden)

In the same way, Erwig and Schneider (2003) proposed a visual language to specify valid
topological relationships between spatio-temporal objects. The logical consistency of such
relationships is verified through a set of graphs that describe their valid evolutions (Erwig and
Schneider 2003).

According to Proulx etal. (1995), visual languages have various limitations related
principally to a lack of normalization symbols and pictograms used in the interfaces depend
on cultural aspects (e.g. some symbols change from one country to another). Moreover, it is
generally difficult to specify in the same integrity constraint two topological constraints

involving the same objects.

2.4.3.3 Tabular specification

Normand (1999) proposed a tabular approach based on the formalism defined in (Government
of Canada 1996) in order to express the spatial integrity constraints. This approach consists in
exploring the constraint description given by the expert in order to represent its necessary
elements in the cells of a related table. Table 1 shows the tabular specification of the

following spatial constraint:& stream may be adjacent to a river whether its endpoints are

on the boundary of this river. In the other cases, it should be adjacent to two other %treams

Table 2.1 Tabular specification of integrity constraints

Operator Relations Cardinalities Objets Dimensions of objects involved
Equality 0-0 River 1
Disjunction - Stream 1

Or Adjacency 1-2
Disjunction -

Or Adjacency 1-2
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2.4.3.4 Spatial Extension of Object Constraint LanguagedCL)

OCL (Waremer and Kleppe 1998) is a formal language mainly used for the specification of
integrity constraints; this language has been integrated in UML. In OCL, the integrity
constraints are expressed through the notion in¥atiants”. An invariant refers to a
condition which should be always satisfied by each instance of a given class. The constraint
contextrefers to the element of the conceptual schema on which the constraint is defined:
class an interfaceor a typedefined in the UML class diagram. OCL is based on the principle

of “navigation”. This principle relates to the possibility of defining constraints involving

different classes related to the contelats.

For spatial integrity constraints, Duboissetlet(2005) and Pinet ell. (2004) proposed an
extension of the meta-model of OCL. A new generic type callasicGeoTypéhas been
proposed in order to integrate geographical data types in OCL. Moreover, new functions have
been defined in order to introduce topological operators as additional syntax elements of
OCL. These operators find their theoretical background in (Egenhofer and Franzosa 1991). In
the case of topological relationships between crisp regions, eight operators have been defined
where each allows the identification of a topological relationship proposed in the 9-
Intersection model. According to this approach, a spatial integrity constraintingaarant
defined for a givercontextclass. For example, let the constrai#: “buildings and roads

should be disjoint or adjaceéntC4 can be expressed as follows:

Context road inv :

Building.allInstances—>forAll(b|Self.geometry->aredisjoint(b) or self.geometry->areAdjacent(b))

2.5 Conclusion

The spatial imperfection is an inherent property of spatial data. In Section 2.2, we stressed the
diversity of the contributions around the question of spatial data imperfections. Several
taxonomies such as (Bédard 1987, Parsons 1996, Smets 1996, Smithson 1989, Fisher 1999a,
Worboys 1998, Hazarika and Cohn 2001) have been proposed to classify these imperfections
according to various points of view: the origin and nature of imperfection, the nature of
objects involved (i.ewell-defined,ill-definite), the factors causing a deficiency of data
quality, etc. Bédard (1987) studied the forms and levels of uncertainties in a spatial object
description (Bédard 1987). Then, we reviewed the management of uncertainty in spatial
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databases and data warehouses. We concluded that the data quality of these databases is
directly affected by different forms of spatial imperfections.

In this thesis work, we are specifically interested in the logical consistency of spatial
objects with vague shapes and of their topological relationships. The logical consistency is
controlled through integrity constraints which represent a set of rules specified at the
conceptual level and applied to the data in order to prevent the inconsistencies in a given
spatial database. The definition and application of integrity constraints can be affected by
various forms of imperfection such as concepts ambiguity, shape vagueness, and inaccuracy
of the quantitative information checked by these constraints. Among these forms of
imperfection, we are interested in the shape vagueness that may characterise the geometry of
some spatial objects such as pollution zones. Representing spatial objects with vague shapes
requires the use of a specific spatial model which allows a more reliable description of reality.
This model presents the background of any approach aiming at the management of integrity
constraints for spatial objects with vague shapes and their topological relationships.

In Section 2.3, we studied related works to the problem of modeling spatial objects with
vague shapes. These models can be grouped in two principal categories. First, exact models
extend concepts and structures of models defined for crisp objects in order to represent spatial
objects with vague shapes (Burrough and Frank 1996, Cohn and Gotts 1996(a), Clementini
and Di Felice 1997, Roy and Stell 2001). The advantage of these models lies iovtheir
development cost. However, the existing exact models do not represent spatial objects with
partially vague shapes. For example, a lake can be surrounded by a broad boundary (swamp
banks) on one side and a linear boundary on the other side (rocky banks) at the same time.
The existing exact models consider that a broad boundary should correspond to a closed and
connected polygonal zone that surrounds the interior of the region involved. These models
consider these regions as invalid. Moreover, the topological relationships between such

objects with vague shapes cannot be computed through the existing exact models.

The second category of models (Diloagt 2005, Schneider 2001, Zhan 1997, Worboys
1998(b), Roy and Stell 2001, Tang 2004, Pfoser and Tryfona 2005) includes approaches
based on mathematical theories such as Rough Sets theory (Pawlak 1994) or Fuzzy Logic
(Zadeh 1965). Fuzzy Logic has been used in the principal proposals in this category of
models. The fuzzy approaches have the advantage of modeling the internal structure of vague
parts of a given object. For example, a fuzzy approach generally allows to compute the

membership degree of each point inside the broad boundary of a region. However, these
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approaches arexpensivean terms of implementation as well as they require the setting of

some quantitative assumptions necessary to define the membership functions.

Section 2.4 presents a literature review on the classification of integrity constraints and
their formal specification. We concluded the absence of an approach which allows the
specification and implementation of topological constraints involving spatial objects with
vague shapes and their topological relationships. Existing methods for integrity constraints
modelling do not support spatial objects with vague shapes. The fuzzy approaches provide a
quantitative evaluation of shape vagueness of this type of objects and of their spatial
relationships. Consequently, De Tré at (2004) proposed an extension of the notion of
generalized constraintgresented in (Zadeh 1965)) in order to model a partial satisfaction of
integrity constraints involving spatial objects with vague shapes. An integrity constraint is
partially respected when it is satisfied with a membership degree between 0 and 1. However,

the fuzzy approaches present different limitations discussed in section 2.3.
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Chapter 3: Qualified topological relationships
between objects with possibly vague

shapes

Lotfi BEJAOUI, Francgois PINET, Yvan BEDARD, Michel SCHNEIDER

International Journal of Geographical Information Sciences

(In press)

3.1 Résumé de l'article

La notion defrontiére largeest généralement utilisée pour remplacer les frontiéres linéaires
pour des objets ayant des formes vagues. Une frontiere large est un invariant topologique qui
doit respecter les conditions de fermeture et de connexité. En effet, les régions ayant des
frontieres partiellement larges sont considérées comme inconsistantes dans les modéles
existants (e.g. un lac avec des berges rocheuses et d’autres marécageuses). L'objectif de ce
travail est de représenter différent niveaux de vague de forme et de les considérer lors de
I'identification des relations topologiques. Ainsi, un objet ayant une forme vague est défini
comme étant une composition de deux extensions spatiales: une extension minimale et une
autre maximale. Ensuite, les relations topologiques sont identifiées en appliquant le modele de
9-Intersection pour les sous-relations entre les extensions minimales et maximales des objets
impliqués. Quatre sous-relations sont ainsi représentées dans une matrice 4*4 que nous
utilisons également pour établir une classification des relations topologiques. Pour les régions

ayant des frontieres larges, 242 relations sont distinguées et classées dans 40 groupes. Cette
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approche permet une expression adverbiale des contraintes d'intégrité et des requétes
spatiales.

3.2 Abstract

A broad boundary is generally used to replace one-dimensional boundary for spatial objects
with vague shapes. For regions with broad boundaries, this concept should respect both
connectedness and closeness conditions. Therefore, some real configurations, like regions
with partially broad boundarieqe.g.,lake with rocky and swamp banksre considered
invalid. This paper aims to represent different levels of shape vagueness and consider them
during the identification of topological relationships. Then, an object with a vague shape is
composed by two crisp componentsmaimal extentand a maximal extentTopological
relationships are identified by applying the 9-Intersection model for the sub-relations
between the minimal and maximal extents of objects involved. Four sub-relations are then
represented through a 4-Intersection matrix used to classify the topological relationships. For
regions with broad boundaries, 242 relationships are distinguished and classified into 40
clusters. This approach supports an adverbial expression of integrity constraints and spatial

gueries.

3.3 Introduction

To satisfy the requirements of several categories of users, Geographic Information Systems
(GIS) and spatial databases provide tools to store, retrieve, analyze, and display spatial data.
Ensuring their usability requires controlling the spatial data quality, which can be degraded by
several types of imperfections. Several approaches (Smithson 1989, Fisher 1999(b), Mowrer
1999, Duckhanet al. 2001) proposed different categorizations of data imperfections that are
generally caused by the complexity of reality and limitations of the instruments and processes
used in the measurements (Bédard 1987). Moreover, inappropriate spatial data representations
can also be another source of data quality degradation (Dilo 2006). Spatial reality is generally
forced to be represented biisp spatial object type§.e., points lines, andegiong, whereas

the shapes of many spatial objects are inherently vague fggst standpollution zone
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valley, orlake). Shape vaguenesscurs when it is difficult to distinguish the boundagyg(,
regions with broad boundarigsand/or the interiorg.g., broad points or lines with broad
interior) of an object's geometry from other spatial objects of the neighborhood. Using crisp
spatial object types to represepiatial objects with vague shapestails a clear gap between

the spatial reality and its formal representation in databases and GIS (€hahg2001,
Yazici etal. 2001).

Pertinent solutions were found to overcome ttlassical sources of spatial data quality
degradation (Bédard 1987, Goodchild 1995, Guptill and Morrison 1995, Ubeda and
Egenhofer 1997, Frank 2001, Van Oort 2006, Deviktied. 2007, Pineetal. 2007). Several
approaches (Burrough and Frank 1996, Cohn and Gotts 1996, Clementini and Di Felice 1997,
Erwig and Schneider 1997, Schneider 2001, Tang 2004, Rébakr2005, Dilo 2006) have
studied specificities ofobjects with vague shapeso determine their appropriate
representations. A review of the literature in this domain (cf. Section 2.3) stresses that current
GIS and spatial database systems do not offer the specific structure to formally represent this
type of objects (as pointed by Clementini and Di Felice 1997 ten years ago). With regard to
this problem, researchers are increasingly more motivated to sivaled vagueness order
to: (1) reduce the gap between the geographic reality and the spatial models (Cohn and Gotts
1996), (2) provide formal modeling tools to represent shape vagueness @tadic2001),
and (3) specify spatial queries involvirgpatial objects with vague shapd&rwig and
Schneider 1997). In the same way, the spatial data integration requires the extraction of
heterogeneous representations of the same objects from different data sources. The main
difficulty lies in choosing one of them when no information exists about their quality
(Rodriguez 2005). By using a spatial model that suppsinepe vaguenesst becomes
possible to merge different representations in such a way that the integration result looks like
an object with a vague shape. For example, figure 3.1 shows a spatial object that has a
representatiod in a first source and a representati®im a second one. The integration result
can correspond to one geometry witlvague shape made up AfandB (figure 3.1). The
intersection ofA and B corresponds to theertain part (i.e., the part that exists in both
representatio\ and representatioB) or theminimal extenof the spatial object. However,
the union is thenaximal extenthat the object can fill; it groups the certain and the uncertain
parts (i.e., a geometry part is uncertain when it does not exist in all candidate representations
for the integration) of the geometry. Indeed, there are strong and different motivations to

present pertinent solutions in order to adequately model the shape vagueness.
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Figure 3.1 Integration of different spatial representations of a same object (e.g., lake)

To model objects with vague shapes, researchers were firstly inspired by the modeling of
crisp spatial objects. In point-set topology (Egenhofer and Herring 1990), crisp spatial objects
are typically decomposed into three mutually disjoint topological invariantgtanor, a
boundary, and aexterior. Several approaches (Clementini and Di Felice 1997, Tang 2004,
Reiset al. 2006) extend the crisp models by identifying other topological invariants for the
objects with vague shapes. For example, Clementini and Di Felice (1997) distinguish three
topological invariants for regions with broad boundaries: an intesiroad boundary (i.e., a
two—dimensional boundayy and anexterior. In this approach, the shape vagueness is
correlated to théroad boundary, which should respect the closeness and the connectedness
conditions (Clementini and Di Felice 1997, Tang 2004). Thus, any representation that does
not verify these conditions is considered invalid. Nonetheless, the shape vagueness can also
characterize only some parts of an object's geometry. For example, figure 3.2 da&es a
surrounded by crisp rocky banks on one side and swamp ones on the other side at the same
time (figure 3.2). We denote this kind of featureolagects with partially vague shapésat
cannot be represented by existing mod€len, the main questions are: How is it possible to
define an exact model where different levels of shape vagueness could be considered? How
can we retain this expressivity during the specification of topological relations between such
objects?

-
’ Ay

' :Nwam[ bank:

£
1

Rocky bank:

Figure 3.2 A lake with a partially broad boundary

The first objective of this paper is to allow the representation of three levels of shape
vaguenesscrispness partial shape vagueness, amomplete shape vagueneddodeling
objects with vague shapes requires a framework for identifying topological relations. The
second objective is to consider the different levels of vagueness in the identification of
topological relations between objects with vague shapes. In several studies (Clementini and
Di Felice 1997, Tang 2004, Reet al. 2006), topological relations can be identified by
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enumerating the intersections between the topological invariants of the objects with vague
shapes involved. For each model, the number of relations depends upon the number of
topological invariants. In this work, we look for an expressive model in which it is possible to
specify the vagueness level of the topological relation instances. We think that it would be
pertinent for the user to know whether objectswaeakly or strongly disjoint. Accordingly,

the third specific objective of this work is to classify the topological relations according to
their vagueness level. We should denote that this model is called Qualitative Min-Max model
(QMM model) in Chapter 4. This label has been proposed after the acceptance of this paper in
order to facilitate using and reference to our approach. In this Chapter, we do not use this
label in order to preserve as well as possible the original version of the paper.

The remainder of the paper is organized as follows. In sections 3.4, we present previous
works on the modeling of objects with vague shapes and their topological relationships.
Section 3.5 addresses the problem of this paper. In section 3.6, we present three basic types of
spatial objects with vague shapesgions with broad boundarieéines with vague shapes
and broad points Then, section 3.7 gives a proposition based on the 9-Intersection model
(Egenhofer and Herring 1990) in order to identify the topological relations among objects
with vague shapes. The model is applied to regions with broad boundaries, and their
topological relations are studied in detail in the appendix 1. As a result of this approach, 242
relations can be distinguished through a 4-Intersection matrix. Section 3.8 proposes a
hierarchical clustering of topological relations between regions with broad boundaries, and
section 3.9 explains how to use our approach to express spatial queries and integrity
constraints. In section 3.10, our model is compared with existing exact approaches (Cohn and
Gotts 1996, Clementini and Di Felice 1997, Tang 2004). Finally, section 3.11 presents our

conclusions and discusses future research.

3.4 Previous works

3.4.1 Spatial vagueness

According to (Erwig and Schneider 1997, Hazarika and Cohn 2001, Rfosdr 2005),
spatial vagueness can characterize the position and/or shape of the spatial extent of a given
object. From this perspective, takape vaguenessfers to the difficulty of distinguishing an

object shape from its neighborhood. Shape vagueness is an intrinsic property of an object that
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certainly has an extent in a known position but cannot or does not have a well-defined shape
(Erwig and Schneider 1997). For example, a region has a vague shape when it is surrounded
by a broad boundary instead a sharp one. One could normally use the term « fuzziness » to
speak about «shape vagueness» since it would correspond to the unclearness of an object
shape as it is defined in a general ontology (i.e., to the definitions found in the Oxford and the
Cambridge dictionaries). Nevertheless, in order to avoid confusion with the mathematical
definition found in the specialized ontology of Fuzzy Set Theory (Zadeh 1965) which is used
in several GIS-related papers (e.g., Altman 1987, Burrough 1989, Brown 1998, Schneider
2001), we have decided to use the expression “shape vagueness”. Accordingly, one must not
confuse “fuzziness” as defined in Fuzzy Set Theory with the concept of “shape vagueness” as
defined in the present paper

Spatial vagueness can also characterize well-defined (or crisp) objects when there is
uncertainty about objects' positions despite their sharp shapes; we refer to this scenario as
positional vaguenessPositional vagueness is a measurement imperfection related to the
accuracy and precision of the instruments and processes used in the measurements (Mowrer
1999) Figure 3.3 shows this categorization of spatial vaguenessshapé vaguenesand
"positional vaguenessin this paper, we only deal with the formal representation of spatial

objects with vague shapes and the topological relations between them.

Spatial vagueness

Shape vagueness Positional vagueness

Figure 3.3 Categorization of spatial vagueness

In general, we distinguish between at least two categories of models used to represent
spatial vagueness. In the first category, crisp spatial concepts are transferred and extended to
formally express spatial vagueness; we speak abexatt model{Cohn and Gotts 1996,
Clementini and Di Felice 1997, Erwig and Schneider 1997) as explained in the next section.

In the second category, three principal mathematical theories are generally used: (1) models
based on the Fuzzy Logic (Zadeh 1965) (e.g., Altman 1987, Burrough 1989, Brown 1998,
Schneider 2001, Tang 2004, Hwang and Thill 2005, Dilo 2006), which can be used to
represent continuous phenomena such as temperature, (2) models based on rough sets (e.qg.,

Ahlgvist et al. 1998, Worboys 1998), which represent the objects with vague shapes as a pair
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of approximations ypper and lower approximatiopsand (3) models based on probability
theory (e.g., Burrough and Frank 1996, Pfadex. 2005), which is principally used to model

errors of positions and attributes.

3.4.2 Formal definitions of objects with vague shapes

In the original version of paper, this section reviews previous works that formally define
objects with vague shapes. In the present manuscript, this review literature has been
transferred in Chapter 2 (cf. Section 2.3) in order to reduce redundancies and improve the

readability of the thesis.

3.5 Problem statement

The exact models presented earlier (Cohn and Gotts 1996, Clementini and Di Felice 1997,
Erwig and Schneider 1997, Tang 2004, Ratisal. 2006) have the advantage of explicitly
distinguishing the topological invariants of objects involved. Through this discrete viewpoint
of space, the specification of topological relations can be improved (Clementini and Di Felice
1997). For these reasons, we propose an exact model in order to achieve objectives.
Nevertheless, we think that the existing models do not distinguish between different levels of
shape vagueness and are not sufficiently expressive to represent partial shape vagueness. In
reality, a region with a broad boundary is not always surrounded by a large boundary
everywhere. For example, the boundary of a given lake can be broad in some locations and
sharp in some others. This situation cannot be represented by existing exact models, because
the connectedness condition is violated. The same problem is present for lines. Only two
cases of shape vagueness are distinguished for lines (cf. section 2.3). Nonetheless, a line can
have a partially broad interior independently of the boundary. Moreover, the studied models
are not sufficiently expressive in terms of topological relations since there is no distinction
between the inner and outer boundary for regions with broad boundaries. Some works try to
offer more expressivity by increasing the number of topological invariants (e.g., Tang 2004).
Nevertheless, the absence of relation clustering limits their practical use. Indeed, the main
research questions of our paper are the following:

1- How can we obtain more expressive definitions of the objects with vague shapes

through an exact model? How can we represent shape vagueness?
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2- What are the topological relations between objects with vague shapes? How is it
possible to identify topological relations between objects that have different levels of
shape vagueness? How can we formally identify these relations?

3- How can we classify the topological relations between regions with broad boundaries
in order to facilitate their use in practice? How could resulting clusters reflect the
vagueness level of a topological relation?

3.6 Spatial objects with vague shapes

In general, there is no agreement regarding the appropriate formal definition of spatial objects
with vague shapes, because shape vagueness can be interpreted in different ways. It is not the
objective of this work to unify these interpretations. We are interested in proposing an
expressive and easy definition of spatial objects with vague shapes through an exact model. In
our approach, we transfer the Egg-Yolk model into point-set topology context in order to both
consider points and lines and permit the representatiobjetts with partially vague shapes

In the literature, many expressions have been used to speak about shape vagueness of spatial
objects. For example, Burrough and Frank (1996) used the tebjects with indeterminate
boundaries, Dilo (Dilo 2006) used the terms&dgue spatial objectsand Clementini and Di

Felice (1997) usedabjects with large boundaries”. We find these different expressions
pertinent but they are not sufficiently expressive to coversttape vaguenedsr a line's

interior or a point (i.e. a point does not have a boundary; it is composed by an interior). In
other words, we make distinction betwedndad interior' and 'broad boundary that we

consider as specializations fhape vaguenessThis distinction is useful especially in the

cases of lines and points. From this perspective, we distinguish three basic tgpasiabf

objects with vague shapebroad points lines with vague shapes (i.e., lines with broad
boundaries, lines with broad interiors or broad lineahd regions with broad boundaries

Figure 3.4 shows our categorization of objects with vague shapes.
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Object with vague shape

7

Region with broad boundary Line with vague shape Broad point
[ \ |
Line with broad boundary Line with broad interior Broad line

Figure 3.4 Categorization of objects with vague shapes

Each object with a vague shape is composed afisp object types (i.epoint, line, and
region) distributed into a pair of sets called (1) thi@imal extentand (2) thenaximal extent
(figure 3.5). Figure 3.5 presents an example of broad points, lines with vague shapes, and
regions with broad boundaries. A broad point is a zone that we approximate to a crisp region
containing all of elementary space portions that the point can possibly fill. The minimal extent
of point is equal to its maximal extent because the shape vagueness concerns a unique
topological invariantthe interior (cf. section 3.6.1 for more details). For a line with a vague
shape (cf. section 3.6.2), the minimal extent is the union of the linear parts. However, its
maximal extent can contain some broad parts (i.e., presented as broad points in figure 3.5(b)),
at which the line can have any shape. For a region with a broad boundary (cf. section 3.6.3),
the shape vagueness concerns the boundary. The minimal extent refers to the geometry when
the boundary is as close as possible (i.e. it is drawn around the area&rtadhly belongs to
the region). The maximal extent is the geometry of the object when the boundary is as far
away as possible (i.e. it is drawn around the area, which contains all of posHibly

belonging to the region).

Minimal extent = maximal exte Minimal exteni Maximal exteni  Minimal extent
a A T~
— —
Y L )
- ~ _J
¥— Maximal exten
(a) A broad poin (b) A line with a vague shape  (c) A region with a broad boundary

Figure 3.5 Minimal and maximal extents for (a) a broad point, (b) a line with a vague shape and (c) a
region with a broad boundary

Generally, the minimal extent refers to the geometry's parts definitely belonging to the
spatial object. The maximal extent corresponds to the object's geometry when shape
vagueness is taken into account and added to the minimal extent. Outside of the maximal

extent, there are no spatial points that can possibly belong to the object. The nuhbtesp
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object types composing an object with a vague shape isd bavad point(i.e., a zone that

we represent as a crisp region composed of the quasi-totality of possible elementary space
portions that the point can fill (cf. section 3.6.1)), 2 foegion with a broad boundarf.e.,

two crisp regions (cf. section 3.6.3)), amdor lines with vague shapgse., 1 orn points of

the line are broad (cf. section 3.6.3)). For example, a region with a broad boundary
corresponds to a pair of crisp regions that respectively represent the minimal and maximal
extents. This general definition of spatial objects with vague shapes is based on the following
principles:

1- A spatial object with a vague shape is a generalization of a crisp spatial object.

2- The minimal and the maximal extents are made up of crisp spatial object types. Only

the combination of two extents corresponds to the object with a vague shape.

3- For the minimal and the maximal extents, the topological invariants should be

mutually disjoint.

The first principle means that the spatial extent of an object with a vague shape is crisp
when its minimal extent is equal to its maximal one. The second principle requires that the
minimal and maximal extents verify the topological consistency conditions of the crisp spatial
object types (e.g.a simple crisp region should be connected). Finally, the third principle
permits the identification of topological relations based on the intersections between the
topological invariants of the minimal and maximal extents of spatial objects with vague
shapednvolved. In the next sections, we present our definitions of broad points, lines with

vague shapes, and regions with broad boundaries.

3.6.1 Broad point

In the crisp context, a poiny is a O-dimensional object type which corresponds to an
elementary portion of the space. This portion refers to the interior of the point (i.e. the only
topological invariant of the point). Because a point does not have a boundary (the dimension
of the boundary of an object with a dimensiois n-1), the shape vagueness can characterize
only the interior and thus the point itself. Semantically, a broad point occurs when an intrinsic
property of the point or a lack of knowledge does not permit to sharply distinguish the point
from its neighborhood. For such a case, the spatial extent of the object is typically replaced by

a zone that we represent as a crisp region composed of the family of elementary space
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portions that the point can fill (see an example of broad point in figure 3.6). The losure
this crisp region represents an infinity of possible elementary space portions for the point.

Consequently, a broad point does not have a minimal extent; it only has a maximal extent.

Simple Crisp point | Broad point
(]

Figure 3.6 Broad point

Since a simple broad point corresponds, in fact, to a simple crisp region, it should verify

the following conditions:
1- The closure is a non-empty connected regular closed set.
2- The interior is a non-empty connected regular open set.
3- The boundary and exterior are connected.

To provide an example of a bropdint, consider an application to help the fire brigades in
their interventions. Generally, a fire fighter cannot precisely localize the fire source. However,
he can draw an area in which the fire source should exist. This intervention area corresponds
to a broad point and can be represented through our model. It is clear that the size of the
region representing the broad point depends on the shape vagueness lealldrger

region refers to a fuzzier pot

3.6.2 Line with a vague shape

Shape vagueness for lines has been studied in-depth in another paper that presents Chapter 4
of this thesis. In order to reduce the redundancies, we summarize the original content of this
section.

A crisp line is composed by an interior connected by two endpoints that refer to its
boundary. We consider that shape vagueness can characterize any point of the line. Indeed,
the line boundary can be partially or completely broad while the interior remains well-
defined; we then speak about lines with broad boundary. For example, the trajectory of an
aircraft (for which the pilot attempted a crash-landing) can be represented as a line with a
partially broad boundary (only the final endpoint is ill-kknown). In the same way, the interior

can be partially or completely broad while the endpoints are well-defined; we then speak

® The closure, in point set topology, is the union of the interior and the boundary.
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about lines with partially and completely broad interior, respectively. The extreme case of line
shape vagueness arises when all topological invariants of the line (i.e. the interior and the
boundary) are broad. For example, the trajectory of an historical person can be represented as
a completely broad line whether few information are available about it. Thus, a completely
broad line arises when there is a difficulty to sharply distinguish each point one the line from
its neighborhood. However, a completely crisp line is a particular case of lines with vague
shapes, for which all of the interior and boundary are well-defined. In Chapter 4, lines with

vague shapes are specifically studied. All of these aspects are presented more in detail.

3.6.3 Region with a broad boundary

A crisp region is a two-dimensional spatial object type in which the shape is typically
composed of aimterior, aboundary, and aexterior. For a region, shape vagueness occurs
when there is difficulty in precisely distinguishing between the interior and exterior through a
sharp boundary. From this perspective, shape vagueness is generally correlated with the
boundary, which can itself b&harp, partially broad, orcompletely broad. It is possible to
draw aminimal spatial extenby considering the boundary to be as close as possible (i.e., it is
drawn around the area whicertainly belongs to the region). In the same waynaximal
spatial extentcan be drawn by considering the boundary to be as far as possible (i.e., it is
drawn around the area which contains all of popassiblybelonging to the region). Figure

3.7 represents an example akegion with a partially broad boundaryrhe spatial extent of a
region with a broad boundary is composed of a portion callechthienal exten{i.e., all of

the points definitely belonging to the spatial objestd covered by maximal extenfi.e.,all

of the points possibly belonging to the spatial object

Minimal exten aximal exten

Figure 3.7 Region with partially broad boundary

We consider that a simple region with a broad boundary is made up of two crisp regions:
(1) themaximal extent, which cdme "Equal’, "Contains, or "Covers (2) theminimal extent
(see examples in figure 3.7). When the boundary is completely sharp (i.e. it does not contain
any broadpoint), the region is completely crisp. This is a particular caseegibns with

broad boundariedor which the maximal extenis equal to the minimal extentwe speak
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about regions with none broad boundary (or crisp regions). In the second case, the region
boundary is broad only in some locations. We speak atemibns with partially broad
boundarieswhere the maximal extesbversthe minimal extent. For example, a forest stand

or a lake can have sharp boundaries (eogky borders for a lakanda total cut for a forest

stand) and broad boundaries (esyvamp borders for a lakeat the same time. The third case
represents a typical region with a broad boundary for which the boundary is completely
broad. For example, the boundary of a pollution zone is broad everywhere since the pollution
decreases from its kernel to the region exterior. In fi@u8e we present an example of each

of these three cases.

Region with a broad | Representation Maximal and minimal Topological invariants of
boundary extents minimal and maximal extents
Interior Boundary
Region with none Minimal
broad boundary (i.el, - extent - -
crisp region i
Maximal
extent - -
Region with partially Minimal
broad boundary (i.e., extent - -
region with partially| . P Maximal
vague shape extent
Region with Minimal
completely broad extent - -
boundary (i.e.,region - Maximal
with completely vague extent
shap¢

Figure 3.8 Regions with broad boundaries

Since the minimal and maximal extents are crisp regions, we distinguish three mutually

disjoint topological invariants for each of them: iaterior, a boundary, and amxterior.
Thus, a region with a broad bounda&yis made up of six topological invariantee interior

of the minimal exterX ., the boundary of the minimal extent, , the exterior of the
minimal extenh;,, the interior of the maximal exteAt, , the boundary of the maximal

extendA,.,, andthe exterior of the maximal extent. (figure 3.8).
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+ Definition 1: A simple region with a broad bounda#y is composed of two simple
crisp regions A,,, andA,,, where EqUA(A...An,) CONAINSAa, A ) OF
Covers@ .. A ). Annis theminimal extenof A, a4, is the inner boundary of,
A... is themaximalextent of A, and 9A,_ is the outer boundary ok. A_. is the set

of pointscertainly belonging toA . However, the maximal extem, ., is the union of

the minimal extent and the set of poiptsssiblybelonging to the region with a broad
boundary.
The following conditions should be respected for any type of regions with broad boundaries:
1- The closures of the maximal and the minimal extents are non-empty regular connected
closed subsets.
2- The interiors of the maximal and minimal extents are non-empty regular open sets.

3- The boundaries and exteriors of the maximal and minimal extents are connected.

In this paper, we limit our investigations to simple regions with broad boundaries (i.e., we
do not consider vague regions with complex vague shapes such as regions with broad
boundaries and holes or regions with broad boundaries and several cores). We adopt this
strategy in order to clearly present the bases of our model before impravifiguite 3.9
presents some examples of invalid regions with broad boundaries. In case (a), the region is
invalid because its closure is non-regular, i.e. there is an isolated line that belongs to the
closure. In case (b), the interior of the region is non-connected because it is composed of two
disjoint minimal extents (or cores). Then, this shape cannot be considered as a simple region
with a broad boundary and therefore it is invalid according to our model. In the case (c), the
exterior does not respect the connectedness condition of the exterior (see condition 3
presented above) since the interior contains a hole. This type of regions is considered as

invalid because we only deal with simple regions with broad boundaries and without holes.

- O® C

(a)Non-regular closed closure (b) Non-connected interior (c) Non-connected exterior

Figure 3.9 Examples of invalid regions with broad boundaries

® The spatial relations (i.eEqual Contains Covers used in this definition are those defined in (Egenhofer and
Herring 1990).
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This general definition covers the crisp regions occurring whegoal (A, A )-

Accordingly, this property can be used to represent a region with only one extent and without
a full membership to the object (i.e., a region without any core; shape vagueness is about all
of the region and not only about its boundary). Our model is capable to represent this type of
regions but we do not study them in detail in the present paper. Hereafter, we only focus on

the typical regions with broad boundaries wh€@ntains,..,, A, ) or Covers@, .., An )

and their topological relations.

3.7 Topological relations between spatial objects with vague

shapes

3.7.1 Principles

To identify the topological relations between two objects with vague shapes, we interpret their
maximal and minimal extents as independent crisp geometries. In fact, our methodology
consists of identifying four specific topological relations between the minimal and maximal
extents of the objects with vague shapes involved. For that, we define a 4-Intersection matrix
containing the following four topological sub-relationBi( Ay, Buin)s Ro( Avin s Brax)s

Ra( Avaxs Brin ), @nd Ra( A, Brax)(SEE €xample in figure 3.10). These topological sub-
relations assigned to the matrix's cells are those defined in the 9-Intersection model
(Egenhofer and Herring 1990). For example, if we study the topological relations between
two regions with broad boundaries, each cell receives one of the eight possible topological
relations between two simple crisp regions (il&isjoint, Overlap, Meet Equal Contains

Insideg Covers Covered by Then, the 4-Intersection matrix corresponds to the following

representation:

Bmin Bmax

'Z‘min Rl( "?\‘nin ’ é‘min )l RZ( ginin | é‘max)
;&nax R3( A\nax’ émin )’ R4( A’nax’ §max)

Figure 3.10 shows the content of the matrix that describes the topological relation between

a region with a partially broad bounda®y and aregion with a completely broad
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boundarys . In the matrix (b), the letters @&d Care used to denote the relations Overlap and

Contains, respectively.

Bmax

(@)

;\ﬂin © ( ;\ﬂin ' émin )' © (z\ﬂin ' gmax)

- - - - - (b)
Amax C(Amax' Bmin )’ O(Amax' Bma

Figure 3.10 Description of the topological relation between two regions with broad boundaries: (a)
visual content of the matrix, (b) formal identification of the relations between the minimal and
maximal extents of the objects involved

The content of a given matrix corresponds to the topological sub-relations relating the
minimal and maximal extents. We use the topological sub-relation between the maximal
extents B A,.., B ) t0 label the global topological relation. For example 4R, , Bray) IS
Overlap, we consider that spatial objects with vague shapes gl@»adifap each other. If

Ra( Anax» Brax ) IS CoONtainswe consider that the global topological relation is Contains

In figure 3.11, we present examples of an identification of topological relations between
spatial objects with vague shapes. The first example presents a description of the topological
relation between two regions with completely broad boundaiesls . The second example
concerns a line with a fairly vague shapend a region with a completely broad boundsry
The third example shows the identification of the topological relation between two lines with
fairly vague shapeasandk . Finally, the last example concerns the relation between a region

with a completely broad boundasyand a broad poirft.
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Spatial representation Correspondent matrix
Global topological relationOverlap § é‘
min max
; B A’nin Overlap( A’nin ’ Bmin )’ Overlap( A‘ﬂiﬂ ! Bmax)
A« | Contains( A ... Bn) Overlap( A ... Brax)
Global topological relationContains |'_” E
min max
,—& - A’nin Overlap( A’nin ! I‘min )’ Overlap( A‘ﬂiﬂ ' Lmax)
L - -~ -~ ~ ~
A, |Contains( A ., L), Contains( A ., Loy )
Global topological relationOverlap E E
min max
2 - K il Disjoint (K .., L), Disjoint (K, o Liay)
K akDisjoint (K .. L), Overlap(K ... Liax)
Global topological relationDisjoint 5
max
‘ IS Aninfisjomt ( Anin ' max)
; A’na DISJOInt ( A’nax' Pmax)

Figure 3.11 Examples of identification of topological relations through a 4-Intersection matrix

3.7.2 Topological relations between a region with a broad boundary and a crisp
one

In our approach, the 4-Intersection matrix highlights the sub-relations that exist between the
components of the geometries with vague shape. Indeed, this expressivity is highlighted when
the maximal extent of the spatial object with a vague shape is non-empty and different from
the minimal extent. In the other cases, some cells in the matrix will have the same values. For
example, figure 3.12 shows a region with a completely broad boundary that overlaps a crisp
region. The topological relation can be reduced to a 2-Intersection matrix, because the
regionB is crisp and so its minimal extent equals its maximal one. Hereafter, we do not study
topological relations that involve crisp regions. We focus on regions with different non-empty
maximal extent and non-empty minimal extent.
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B
- - ‘- -

min max min

'Z\'nin Overlap( ;\nin ' émin )’ Overlap( ;\nin ' gmax) <:> ;\ﬂin Overlap( ;\nin ' émin)

'Z\'nax Overlap( 'Z\'nax’ émin )’ Overlap( 'Z\'nax’ §max) Z\ﬂa Overlap( Z\nax’ émin )
Figure 3.12 Example of a topological relation between a region with a broad boundary and a crisp
region

The values assigned to the different cells of the matrix should not be arbitrarily chosen. In
general, the value d® (A, B..) enforces the other values. In the next section, we study

these aspects specifically for the topological relations between regions with broad boundaries.

3.7.3 Topological relations between regions with broad boundaries

Eight topological relations are possible between two simple crisp regions. By considering
these as the possible values in the four cells of the matrix, ther& ard096 possible
matrices. However, definition 1 imposes a condition mandating that the extents of aﬁxegion
with a broad boundary should be related by one of the following relafust (A, .., A, ),
Contains(A,ay» Anin )» OF COVers@,... Ann ). Indeed, a 4-Intersection matrix cannot identify a

topological relation between two regions with broad boundaries when this condition is
violated. Thus, the contents of the matrix cells are not independent. For example, if the

maximal extents are disjoint, it is inconsistent forGwerlapto exist between the minimal
extents (figure 3.13). In figure 3.13, the sub-rela‘cinqnlﬂs\ﬂin , I§min) is grey to denote that is not
allowed whereas (Anin, I§min) is black to show that is permitted. Consequently, several of

the 4096 possible matrices are invalid because the dependency between the cells of the matrix

involved is not respected.
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Bmin Bmax _ - Bm.inH i
Anin O('A‘min*Bmin) o H. D[:Amm,gmj H-- —
;&nax - D(Anax'Bmax) me D[:Amx,gmj
_ A - v
S @@
(ayvalid Disjoint' relz;t}on (b) Valiisjoint' relation

Figure 3.13 Controlling the validity of a Disjoirglation

In order to enumerate the valid 4-Intersection matrices, we firstly studied possible values in
the other three cells for each of the eight possible valué¥ &f.,,B,..). For example, if
Contains( A, Bnax ), the only possible relation betwegp, and B, is Contains;otherwise,
the expected relation cannot respect the general definition of a region with a broad boundary.
Figure 3.13 shows an example of an inconsistent matrix in wbisjoint (A, B.) and
Contains(A,;, ,B.;, ). This matrix is inconsistent becalRéB, ., , B,;,) O{Contains Covers
Equab. In the second step, we also fix the relation betwegpand B, to deduce the
possible values oR (A, ,B..). For example, wheiContains (A, B.,) and Contains
(Avin » Buin )» R (Avin » Brax) ShoUId not béleetor Equal In this way, 31 rules (cf. appendix 2)
are defined in order to ensure the consistency of matrices and to minimize the number of
topological relations. In the premises of rules, we specify eiR€rA,.,B.) Of R
(A Bra) @NdR (A, B, ). Then, we deduce the possible values in the remaining cells.
In figure 3.13, the matrix on the left is not valid because it requires the minimal extent to be
disjoint to the minimal extent (i.e., the definition of regions with broad boundaries is not
respected, becau&é :&max, Bmax) Should beContains Covers,or Equal).

This study proves that only 242 topological relations are possible between two simple
regions with broad boundaries (cf. appendix 1). More specifically, only one matrix is valid

when Disjoint (A, Bna ), 29 Matrices are valid wheDontains( Ay, By ), 29 for Inside

(Ayas Bra ), 46 for Covers (A..,B...), 46 for Covered by(A...,B..), 65 for Overlap

(A Brax), 4 for Meet (A,..,B..), and 22 whenEqual (A, B..). The topological
relations are numbered from 1 to 242 according to the relation betwggands, ... Table

3.1 shows this numbering (see the appendix 1 to explore these relations).
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Table 3.1 Relations' numbers

The relation betweenA,.,. B Correspondent matrice

Disjoint (A, B

n

max )

1

max )

Contains (B\“a) : éma,) 2230

N 31>52
Equal (A, . Ba)

Covers (;\“a) , éma,) 5398
Covered by (Z\ma) , §ma)) 99>144
Inside (A, B..) 1455173
Meet (;\m , §ma)) 174177
A D 178>242

Overlap (A, By )

3.8 Clustering of topological relations between regions with broad

boundaries

3.8.1 Principles

In our work, the proposed model is expressive in terms of the topological relations
distinguished between regions with broad boundaries. In this context, 242 topological
relations are enumerated. Consequently, the clustering of relations into larger groups of
relations is an important step, because it is very difficult to keep in the mind this high number
of relations. It is additionally very difficult to find a name for each one of them, and so the
user will have difficulty of choosing the appropriate topological operator in order to express a
query or an integrity constraint. Mark and Egenhofer (Mark and Egenhofer 1994) studied the
clustering of topological relations between simple crisp regions and simple crisp lines both
through a formal basis and by taking into account cognitive aspects. Clementini and Di Felice
(1997) defined atopological distanceto classify the approximate topological relations
between regions with completely broad boundary. In this way, they deduced 17 clusters that
they represent in a conceptual neighborhood graph.

In our approach, most of the distinguished topological relations are not completely
different from each other. For example, two simple regions with broad boundariesaiey
or completely overlapeach other depending on the content of the 4-Intersection matrix
involved. In the first case, only the maximal extents overlap. In the second case, however,

Overlap is the unique value in the matrix cells. Thus, it is possible to deduce the relation
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vagueness level according to the content of the 4-Intersection matrix. The objective of this
section is to group the 242 topological relations into a limited number of clusters based on the

content of their respective matrices.

3.8.2 Clustering results

In section 3.7, we showed that the global topological relationship is identified through a 4-
Intersection matrix that enumerates four sub-relations. Thus, a topological relation becomes
possible if it appears at least once in the matrix. This possibility increases according to the
number of similar sub-relations. For examplé&;@erstopological relation in whiclCovers

(Anacs Bra) @ndCovers( A, , B, ) iS stronger than another where oflgvers(A, .., Bya)-

Because there are eight possible values for the matrix cells, we distinguish eight basic clusters
that we call:DISJOINT, CONTAINS,INSIDE, COVERS,COVERED BY EQUAL, MEET,

and OVERLAPEach cluster contains all of the topological relations for which at least one of
the four sub-relations has the same name. For example, figure 3.14 shows a topological
relation that belongs to the following cluste®ISJOINT, CONTAINS,and COVERS.
Nevertheless, it belongs to tEESJOINT clustermore strongly than to theONTAINSand
COVERS clusters.

~
1

_.' COVERZLluster

"> CONTAINSCluster

Disjoint Disjoint
Contains Covers \ -------
{ _> DISJOINTCluster

Figure 3.14 Example of clustering of a topological relation

For each one of the eight basic clusters, we identify four levels of relation membership: (1)
completely (2) strongly, (3) fairly, and (4)weakly(table 2). A topological relation belongs to
the clustercompletelywhen the four sub-relations are similar. It belongs to the cluster
stronglywhen only three sub-relations have the same name as the cluster. The level labelled
fairly contains all relations for which two sub-relations have the same name as the cluster.
Finally, the level calledveaklycontains the relations for which only one sub-relation has the
same name as the cluster. Figure 3.15 presents some relations that belong to different levels of
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CONTAINS and DISJOINT clusters, respectively, according to the contents of their

correspondent matrices.

Disjoint  Disjoint Disjoint  Disjoint Disjoint Disjoint Disjoint Overlap
Disjoint  Disjoint Disioint  Overlap Contains  Overlap Contains  Overlap
Completely disjoint Strongly disjoint Fairly disjoint Weakly disjoint
Contalns Contalns Contalns Overlap Covers Overlap Disjoint Overlap
Contalns Contalns Contalns Contalns Contalns Contalns Contains  Covers
Completely contains Strongly contains Fairly contains Weakly contains

Figure 3.15 Evaluation of a topological relation membership to one of the eight basic clusters

3.8.3 Overlapping clusters

The main result of this clustering process is a hierarchical classification of the topological
relations (figure 3.16). The top level is made up of eight basic clusters that each contains
typically four levels:completely strongly, fairly, and weakly The resulting 32 sub-clusters
overlap each other because a topological relation typically belongs to different levels of 1, 2,
3, or 4 clusters at the same time. For example, topological relation number 56 (see the
appendix 1 and the table 3.2) belorfggly to the CONTAINS cluster andieaklyto the
COVERS andNSIDE clusters. The bottom level of the classification contains the 242
topological relations that appear in different sub-clusters.

Table 3.2 Clustering results

Cluster's naine Vagueness Topological relations' numbers (cf. appendix 1)
level
DISJOINT Weakly 13, 14, 15, 17, 41, 42, 43, 44, 67, 69, 70, 71, 72, 74, 75, 80,

113, 115, 116, 117, 118, 120, 121, 126, 157, 159, 161,|162,
193, 194, 195, 196, 197, 198, 199, 200, 201, 204, 205,|208,
213, 214, 215, 216

Fairly 16, 73, 76, 119, 122, 158, 175, 176, 202, 203, 206, 207,
209, 210, 211, 212
Strongly 174,217

Completely 1

CONTAINS Weakly 31, 34, 36, 39, 43, 44, 45, 48, 51, 52, 57, 59, 61, 63, 67, 68,
69, 71, 73,76, 77, 79, 80, 82, 85, 86, 88, 91, 93, 94, 95, 96,
102, 105, 110, 113, 118, 125, 128, 130, 135, 137, 140,|145,
146, 153, 157, 163, 167, 173, 181, 184, 186, 189, 193,|195,
198, 210, 213, 218, 219, 221, 223, 226, 230, 232, 234,238,
240
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Fairly 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22| 23,
24, 25, 26, 27, 28, 29, 32, 33, 37, 53, 54, 55, 56, 60, [103,
104, 152,178, 179, 180
Strongly 2,3,4,5,7
Completely 6
EQUAL Weakly 4, 25, 26, 29, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 55, 77, 78, 79, 84, 91, 101,
123, 124, 125, 131, 138, 145, 148, 170, 171, 230, 231,|232,
232
Fairly 24, 30, 31, 169
Strongly
Completely
COVERS Weakly 7,18, 19, 21, 25, 30, 35, 38, 40, 41, 42, 46, 47, 50, 52, 53,
55, 56, 57, 59, 60, 61, 63, 67, 68, 69, 71, 73, 76, 77, 79, 80,
88, 93, 94, 95, 96, 99, 107, 108, 115, 116, 123, 124, 129,
132, 135, 137, 139, 141, 147, 156, 159, 160, 166, 167,|171,
183, 185, 187, 192, 194, 196, 201, 211, 215, 218, 219,|221,
223, 225, 227, 228, 231, 233, 235, 239, 241
Fairly 20, 49, 54, 58, 62, 64, 65, 66, 70, 72, 74, 75, 78, 82, 85, 86,
89, 90, 91, 92, 97, 98, 136, 142, 168, 220, 222
Strongly 83, 84, 87
Completely 81
COVERED BY Weakly 3,12, 14, 21, 22, 23, 26, 30, 33, 37, 39, 40, 42, 44, 45, 47,
49, 51, 53, 61, 62, 69, 70, 77, 78, 83, 85, 88, 90, 92, 94, 99,
101, 102, 103, 105, 106, 107, 109, 113, 114, 115, 117,|122,
123, 125, 126, 135, 140, 141, 142, 143, 151, 163, 164,|166,
170, 180, 186, 187, 191, 195, 196, 200, 212, 216, 219,|220,
223, 225, 226, 227, 229, 232, 233, 234, 235, 242
Fairly 50, 89, 95, 100, 104, 108, 110, 111, 112, 116, 118, 119,
120, 121, 124, 128, 130, 132, 133, 136, 137, 138, 139,|144,
165, 224, 228
Strongly 129,131,134
Completely 127
INSIDE Weakly 2,9, 13, 18, 22, 23, 28, 29, 31, 32, 36, 38, 41, 43, 46, 48,
51, 52, 56, 59, 64, 67, 72, 79, 82, 88, 90, 93, 98, 103, (105,
107, 109, 113, 114, 115, 117, 122, 123, 125, 126, 128,|132,
133, 135, 138, 140, 141, 142, 143, 178, 184, 185, 188,|193,
194, 197, 209, 214, 218, 225, 226, 227, 229, 230, 231,|236,
240, 241
Fairly 8, 34, 35, 57, 58, 99, 100, 101, 102, 106, 145, 152, (153,
154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,|165,
166, 167, 168, 169, 170, 171, 172,173, 181, 182, 183
Strongly 146, 147, 148, 149, 151
Completely 150
MEET Weakly 9, 11, 12, 15, 36, 38, 39, 40, 59, 61, 62, 63, 64, 66, 74, 80,
105, 107, 108, 109, 110, 112, 120, 126, 153, 155, 156,|161,
174, 184, 185, 186, 187, 188, 189, 190, 191, 192, 204,|205,
206, 207, 213, 214, 215, 216
Fairly 10, 65, 68, 111, 114, 154, 175, 176, 208
Strongly
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Completely 177

OVERLAP Weakly 5,11, 17, 19, 28, 33, 45, 46, 47, 48, 60, 63, 66, 71, 75, 86,
87, 92, 93, 94, 98, 109, 112, 117, 121, 130, 133, 134,|139,
140, 141, 149, 155, 160, 162, 164, 173, 178, 180, 181,|183,
184, 185, 186, 187, 193, 194, 195, 196, 206, 207, 208,209,
210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,|223,
225, 226, 227, 228, 230, 231, 232, 233
Fairly 27, 96, 97, 143, 144, 172, 179, 182, 188, 189, 191, 192,
197, 198, 200, 201, 202, 203, 204, 205, 221, 222, 224,|229
234, 235, 240, 241

Strongly 190, 199, 236, 238, 239, 242
Completely 237

Root
Disioint Contains Inside Covers Covered by | Overlap Eaual Meet
Weakly | Fairly Siigelale]\Y Completely Weakly | Fairly Strongly Completely

- @& C
\ 242 relations in the bottom level /

Y

Figure 3.16 Hierarchical classification of the topological relations

3.9 Specification of spatial queries and integrity constraints

In the previous sections, we presented a framework for identifying topological relations
between regions with broad boundaries. Because it uses the 9-Intersection model (Egenhofer
and Herring 1990), our model can be easily integrated in a spatial database system. Indeed,
the SQL language can be extended in order to retrieve regions with broad boundaries based
on the qualitative information given by the user regarding their topological relations. In fact, a
topological relation between two regions with broad boundaries can be recognized through
the combination of four crisp topological operators. For example, relation number 56
corresponds to Oisjoint, Disjoint, Contains Cover9. Hereafter, we suppose that we
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integrated our spatial model in a relational engine in order to give an example of its possible
use in spatial queries involving regions with broad boundaries. We suppose that the spatial
database stores pollution zones, which are represented as regions with broad boundaries. In
the first query example, the user gives a coarse description of the topological relation when he
introduces the specificatidiairly DISJOINT. The query results should contain fhalution
zonesrelated to a user-defined zoAdyy a topological relation belonging to this sub-cluster.

In the second example, the query is more specific because the user identifies all topological
sub-relations that relateA(;,,, Bunn): (Anin»Brax)s (Amax» Buin )y @Nd (Ayax» Brax)- The third
example shows another use of our model, in which it is possible to display the different
strength levels of a relation (e.gveaklyOverlap or strongly Overlap) that occurs between

two regions with broad boundaries (cf. table 3.3). Table 3.3 shows a possible result for the

guery presented in example 3.
Table 3.3 Result of query 3

P1l.id P2.id Determine
11 23 Weakly overlap
45 14
18 26 Strongly Overlap

Example 1: Select Pollution_Zone.geometfyom Pollution_ZonéNhere
vague_Relatgollution_zone.geometnA.geometryfairly DISJOINT);

Example 2: Select Pollution_Zone.geometfyom Pollution_ZonéNhere
vague_Relateollution_Zone.geometnA.geometryDisjoint, Meet,
Contains, Contains

Example 3: Select P1.id, P2.id, determine (P1.geometry, P2.geometry, "Overlap")
From Pollution_Zone P1, P2 WherB1l.id<>P2.id;

In the same way, it is possible to use the model to formally express spatial integrity
constraints for objects with vague shapes. For example, let the constraint sayiriggdhat *
different lakes can be only fairly meet or completely disjoliitis constraint can be formally
expressed by integrating new spatial operators (eagmpletely Containsweakly Covers
etc.) in a formal constraint language like the Object Constraint Language (OCL)dRahet
2007). The database storing tlaesis consistent only if the topological relations between
the different entities belong téairly MEET or completely DISJOINTsub-clusters (see

example 4).

Example 4. Context Lake inv:
Lake.allinstance® forAll (a, b| a<>b implies fairly MEE(R,b)or
completely DISJOINT(a,b));
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3.10 Discussion

Clementini and Di Felice (1997) propose an extension of the 9-Intersection model (Egenhofer
and Herring 1990) that uses a broad boundary to replace the sharp boundary. In this approach,
44 topological relations are distinguished between two regions with broad boundaries. By
considering a topological distance, Clementini and Di Felice (1997) draw a conceptual
neighborhood graph that shows similarity degrees between relations classified into 17
clusters. The main advantage of this approach is the ability to support a coarser spatial
reasoning involving regions with broad boundaries. When the needs are more specific, it
becomes more difficult to use this model. Furthermore, the identification of a broad boundary
as a two-dimensional topological invariant requires respecting consistency conditions related
to closeness and connectedness. Tang (2004) presents a more expressive model than that
defined by Clementini and Di Felice (1997), because he decomposes the broad boundary into
the boundary's interiorand theboundary's boundaryBased on this definition, Tang (2004)
presents another extension of 9-Intersection model, in which topological relations are
identified through a 4*4-Intersection matrix. He distinguishes 152 topological relations
presented as variants of the 44 relations proposed by Clementini and Di Felice 1997).
Nonetheless, this model does not distinguish between the boundaries rofntheal and
maximal extents Accordingly, many topological relations cannot be distinguished (see
examples in Section 2.3). Moreover, regions p#ntially broad boundaries (see example in
figure 3.2) are considered invalid and cannot be presented through existing exact models. In
our approach, we resolve this problem by considering a simple region with a broad boundary
as a general concept which can be specialized into: regions with none broad bojamdary
crisp regions)regions with a partially broad boundamgndregions with a completely broad
boundary A region is then defined as a maximal extent and a minimal extent, in which either

Equal (3 _, A, ) or Contains @, A, ) or Covers @&, A.,). The notion of broad boundary

(i.e., in the sense of connected and closed polygonal zone) is not formally defined as a
topological invariant in our model. It can be deduced from the difference between the minimal
extent and the maximal one. This difference can be non-empty everywhere around the
minimal extent (i.e.region with completely broad bound3ryhon-empty in some location

and empty in some others (i.eegion with partially broad boundajyor empty everywhere
around the minimal extent (i.ecrisp region). Our main motivations for adopting this
framework are (1) to consider regions with partially broad boundaries and (2) to present an

expressive model in terms of the identification of topological relations between regions with
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broad boundaries. With regards to principal exact models (Clementini and Di Felice 1997,
Cohn and Gotts 1996, Erwig and Schneider 1997, Tang 2004), our approach allows to make
distinction betweerpartial shape vaguenessidcomplete shape vaguene3sis distinction
is very important in order to deal with two main problems: an ontological problem and a
modeling one. First, the ontological problem means tsdbfpe vaguene€sss generally
considered as ablhary imperfectioh (i.e., only two possibilities are considered for an
object’'s shape: crisp or vague). Spatial objects can be characterized by different levels of
shape vagueness (e.g., how can we classify a region with partially broad boundary? Is - it a
crisp or a vague region?). These levels are easily computed in fuzzy models by using a
quantitative approach. In our submission, we try to categorize two levels by using a
qualitativeapproach because we believe tlsdtdpe vagueness a qualitative problem. It is
clear that our approach cannot provide a fine computation of shape vagueness as in fuzzy
models. However, we believe that our model provides a solution to qualitatively distinguish
different levels of shape vagueness in the category of exact models. We do not claim that
exact models are better than fuzzy ones, because the needs are not identical and therefore the
direct comparison is not appropriate. Second, the modegdmaiplem refers to the lack of
expressivity in existing exact models to represent the objects, which include sharpness and
broadness in their topological invariants at the same time. To deal with this gecblam
our model can formally represent regions wtrtially broad boundaryin addition to those
with completely broad boundaryrhis distinction is ignored in the most of existing exact
models; notably in (Clementini and Di Felice 1997, Cohn and Gotts 1996, Erwig and
Schneider 1997, Tang 2004)).

For topological relationships, we propose a 4-Intersection matrix where it is possible to

identify respective sub-relations between minimal extents and maximal ones: €., ).
(Avin 1 Brac)s (Avas Brin )» @nd (A, Bo ). These sub-relations are labelled by using the 9-

Intersection model (Egenhofer and Herring 1990). In our paper, 31 rules (or strategies) have
been defined in order to minimize the number of topological relations between regions with
broad boundaries and to control their consistency. In this context, we would clarify that the
seven first strategies defined in (Schmitz and Morris 2006) can be considered as a subset of
our 31 rules (see these rules in the appendix 2). More specifically, Strategy 1 (Schmitz and
Morris 2006) can correspond to Rule 1 in our model, Strategy 2 <==> Rule 2, Strategy 3
<==> Rule 3, Strategy 4 <==> Rule 3 (this rule is appliedriside and Containsrelations),
Strategy 5 <==> Rule 5, Strategy 6 <==> Rule 6 and Strategy 7 <==> Rule 6 (this rule is
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applied forinsideandContainsrelations).The 8th strategy presented in (Schmitz and Morris
2006) does not provide any indication about the appropriate topological sub-relations when
overlap relations arise between components of regions with broad boundaries involved (i.e., it
recommends additional investigations). However, in our paper, we propose eight strategies
when anOverlap relation occurs between maximal extents of two regions with broad
boundaries (Rule 20 — Rule 27). Then, incoherent and redundant topological relations have
been removed by using the 31 rules presented in the appendix 2. We distinguish 242 different
topological relations that we classify into eight overlapping basic clusters. Each cluster has
four membership levels (or sub-clusterspmpletely strongly fairly, and weakly This
classification of the topological relations is proposed to support an adverbial expression of
topological integrity constraints. Nevertheless, our model is not able to quantify the gradual
change inside the maximal extent in the same way as the fuzzy approaches do (Zhan 1997,
Schneider 2001, Dat al. 2005, Dilo 2006, Verstraegt al. 2007). Finally, we are convinced

that a more detailed comparison of the models' expressivity requires to be thoughtfully
investigated in another paper.

The Egg-Yolk model (Cohn and Gotts 1996) was our main inspiration to develop this
framework for identifying topological relations. However, there are some fundamental
differences between our model and that defined in (Cohn and Gotts 1996). For instance, the
topological relations used in (Cohn and Gotts 1996) are those defined in the RCC-5 model
(Randell and Cohn 1989, Colen al. 1997). In contrast, the topological relations used in the
cells of our matrix are those defined in the 9-Intersection model (Egenhofer and Herring
1990). It is true that we follow the same methodology to identify topological relations.
However, our definitions obbjects with vague shapease substantially different. Our model
is based on the point-set theory where points and lines are considered as basic crisp spatial
object types. In terms of originality, we do not formally redefine the corlmegatd boundary
as it is done in most of existing exact models. Our approach is based on the distinction
between a minimal extent and a maximal one. The broad boundary can be deduced from the
difference between these two extents but it is not defined as a topological invariant of the
object. In (Cohn and Gotts 1996), a conceptual neighborhood graph was drawn with 44
topological relations are classified into 13 clusters. In our model, we define a hierarchical
classification based on the content of the matrices we use to identify the topological relations.
This classification is the basis of an adverbial approach that we use to specify topological

integrity constraints between regions with broad boundaries.
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3.11 Conclusions and future works

Shape vagueness is an inherent property of many spatial objectelés valleys and
mountains In GIS and spatial databases, it is a general practice to neglect shape vagueness
and formally represent spatial objects with vague shapes as crisp geometries. Using such
inappropriate representations can provide a source of spatial data quality degradation, because
the reliability of spatial data is decreased. With emergence of prediction applications, data
integration, and strategic decisional needs, researchers are increasingly motivated to propose
different methods for the formal representation of shape vagueness. A review of the literature
regarding this topic proves that existing exact models do not permit the representation of
objects with partially vague shapEor such objects, shape vagueness partially characterizes
one or several of its topological invariants. For example, a lake carrdagebankon one
sideandswampbankson the other side at the same time; the boundary is broad only for the
swamp part. In this work, we have proposed an exact model in order to represent spatial
objects that can haverisp shapespartially vague shapesor completely vague shapes/e
have considered this categorization of shape vagueness during the identification of
topological relations.

More specifically, this paper contributes in three main ways. Based on point-set topology,
we firstly define three basiypes of spatial objects with vague shapgmead point line with
a vague shape (i.e., lines with broad boundaries, lines with broad interiors or broad lines),
and region with a broad boundaryEach one of them is typically defined as a minimal

extentA,,,and a maximal extem ., and these extents must verify some topological

conditions in order to be valid. This model permits the representation of spatial objects with
partially vague shapes considered as invalid in the existing models of (Clementini and Di
Felice 1997, Tang 2004, Rez$ al. 2006). Then, we identify a topological relation through
use of a 4-Intersection matrix that permits the enumeration of four sub-relaRgns:
(Avin + Brin )» Re (Avin + Briax)s Re (Avaxs Brin ), @NAR4 (A, Bk )- By Using this formalism for
simple regions with broad boundaries, 242 relations can be distinguished (cf. appendix 1). In
order to retain our propositions useful in practice, we propose the clustering of these
topological relations. A topological relation can belong to one or several clusters with various
gualitative strengthssompletelystrongly, fairly, andweakly The objective of this qualitative
clustering is to improve the specification of spatial queries and integrity constraints involving

spatial objects with vague shapes.
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In this paper, our study is limited to the regions with broad boundaries which are composed
by a simple core (or minimal extent). Extending this approach to regions with more complex
shapes (e.g., regions with broad boundaries and holes, regions with several cores, regions
composed by disjoint uncertain sub-regions, etc.) is one of our future researches. We are
conscious that it can be a limitation of our current model but considering this type of regions
requires additional investigations which exceed the objectives of this paper. The goal of this
paper is to clearly present the basis of our approach before improving it. Another extension
consists of using this approach to improve the logical consistency of spatial databases
involving spatial objects with vague shapes. More specifically, we are interested in the
specification of integrity constraints in spatial databases storing objects with vague shapes.
We hope to identify both integrity constraint categories and the requirements for their formal
expression. The framework presented earlier can provide a basis for the extension of a formal
constraint language like OCL (Pinet al. 2007) to expregslerantintegrity constraintsor
objects with vague shapes.

Finally, this approach can be used to deal with geometric heterogeneities between sources
databases in decisional applications. These applications require the integration of spatial data
from heterogeneous sources before they are stored in a spatial data warehouses{Bédard
2007). The main difficulty lies in choosing one of the available geometric representations. We
suggest merging the different representations in such way that the result looks like a spatial
object with a vague shape. Thaerant integrity constraints can be used to increase the

logical consistency of such data.
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Chapter 4: Qualitative Min-Max model for lines with
vague shapes and their topological

relations

Lotfi BEJAOUI, Yvan BEDARD, Francgois PINET, Michel SCHNEIDER

Transactions in GIS

(Submitted)

4.1 Résumeé de l'article

Le vague de forme est plus difficile a modéliser pour les lignes que pour les régions
(Clementini 2005). Deux types de lignes ayant des formes vagues sont généralement
distingués : (1)es lignes ayant des frontiéres vagues (2) celles qui sont complétement
vagues(Clementini and Di Felice 1997, Reisat 2006). Cependant, l'intérieur d'une ligne

peut étrepartiellementou complétement vaguadépendamment des points finaux. La forme
d'une ligne peut étre également vague quand seulement une des points fivagxiesin

effet, un probleme conceptuel caractérise les travaux existants ou différents types et niveaux
de vague de forme ne sont pas considérés. Ce probleme implique le besoin d’'une méthode
permettant I'identification des relations topologiques entre les lignes avec différentes formes
vagues. Cet article propose une approche qualitative appelée le modele QMM (acronyme de
Qualitative Min-Max), ou des lignes avec des niveaux différents de vague de forme sont
distingués :aucun,vague de forme partiebt vague de forme compleNous définissons

formellement une ligne avec la forme vague en tant qu'une combinaison d’'une extension
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minimale et une autre maximale. Les relations topologiques sont alors identifiées en fonctions
des sous-relations entre les extensions minimales et maximales respectives des lignes
impliquées. Lepoids d'une relation topologique peut étre exprimée qualitativement en
employant des adverbes tels daédlementou fortement Cette approche peut étre servir a
exprimer des contraintes topologiques et des requétes spatiales sur des lignes ayant des

formes vagues.

4.2 Abstract

Shape vagueness about lines is more complicated to model than about regions (Clementini
2005). Two types of lines with vague shapes are generally distinguishdideglyvith broad
boundaryand (2)completely broad lineéClementini and Di Felice 1997, Reisat 2006).
However, a line's interior can bpartially or completely broad independently of the
endpoints. A line's shape can be also vague when only one of the endpbnoidisThen,

there is a conceptual problem, because different types and levels of shape vagueness are
ignored in existing works. Overcoming this problem implies studying the identification of
topological relations between lines with different vague shapes. This paper proposes a
qualitative approach called Qualitative Min-Max model (QMM model for short), where
different levels of shape vagueness of lines are distinguistoedt partial vaguenesand
complete vaguenes®/e formally define a line with vague shape as haaimginimal extent

anda maximal oneThe topological relations are then specified according to the sub-relations
between respective minimal and maximal extents of lines involved. The strength of a
topological relation can be qualitatively expressed by using a set of adverbs swedkyor

fairly. This approach can be integrated into a framework to express topological integrity

constraints and spatial queries.

4.3 Introduction

Topological errors can refer to the anomalies in an object's shapai(elgsed polygon) or

more often to an invalid topological relation between two objects (e.g., an overlap relation
between two buildings). These topological properties and relations change according to the
shapes of spatial objects stored in the database (Ubeda and Egenhofer 1997) as well as over
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time if objects move, enlarge, rotate, etc. Moreover, some researches notably in (Altman
1987, Burrough and Frank 1996, Cohn and Gotts 1996, Hunter and Goodchild 1996, Erwig
and Schneider 1997, Couclelis 1996)) proved that spatial objects can have vague shapes (e.g.
regions with broad boundaries like a pollution zpaad/or uncertain positions. These spatial

data imperfections are generally caused by the complexity of reality and limitations of the
measurement instruments and processes (Bédard 1987). Shape vagueness occurs when there
is a difficulty to distinguish an object shape from its neighborhood and therefore the
topological invariants (e.ga broad boundary could not have the same definitions as in the

crisp context (Winter 2000). Using crisp spatial object types to represent spatial objects with
vague shapes entails a gap between the knowledge that we have about spatial objects and their
formal representation in spatial databases and GIS (Cheng and Lin 2001, Yazici et al. 2001).
Then, the topological properties and relations can also change whether the objects
manipulated have vague shapes such as regions with broad boundaries (e.g., a polljfion zone
lines with vague shapes (e.the trajectory of an historic exploreor broad points (e.ga

wreck on the bottom of the sea).

In the literature, the topological aspects for regions with broad boundaries have been
thoughtfully explored (Altman 1987, Burrough and Frank 1996, Cohn and Gotts 1996, Erwig
and Schneider 1997, Zhan 1997, Hazarika and Cohn 2001, Roy and Stell 2001, Winter 2000,
Morris 2003, Robinson 2003, Zhan and Lin 2003, Tang 2004, Dilo 2006, Bejaoui et al. 2008).
However, lines with vague shapes have not received the same attention except in few works
(Clementini and Di Felice 1997, Clementini 2002, Clementini 2005, Raik 2006). These
last approaches proposed modeling of lines by using the appropriate shapesirfgetwo-
dimensional parts which denote the shape vagueness such as broad ehdaodhts
emphasizing of lines shape vagueness during the identification of topological relations (e.g.,
connectiongcrossing, etc). Two types of lines with vague shapes are generally distinguished:
(1) lines with broad boundargnd (2)completely broad linesHowever, the interior of a
given line can beartially or completely broad independently of the boundary (or endpoints).

A line's shape can also be considered as vague when only one of the endjpooad (8.9.,

an engine trajectory with only one ill-defined endppirtowever, existing works (Clementini

and Di Felice 1997, Clementini 2002, Clementini 2005, Regs. @006) do not explicitly and
exhaustively distinguish these different types and levels of shape vagueness for lines.
Furthermore, the shape vagueness affects the identification of topological relations, which

depend on the objects’ shapes. It is the second main problem addressed in this work.
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In this paper, we study the different types and levels of shape vagueness which can
characterize the topological invariants of a given line (peundaryandinterior). We look
for a new geometric model to describe different levels of shape vagueness of the boundary
and/or interior. More specifically, we aim to make a distinction between the notions of broad
interior and broad boundary, because each can be vague independently of the other. In this
paper, this distinction is useful for simple lines with vague shapes and it will be extended for
multi-lines and polygons. Additionally, a topological invariant (i.e., the interior or the
boundary) of a given line can be characterized by one of the following levels of shape
vaguenessnone (i.e. the topological invariant is well-definedpartial shape vaguenessd
complete shape vagueneds. the same way, we aim to describe the vagueness of a
topological relation by using a qualitative approach. We think that is pertinent for users to
know whether two lines with vague shapes weakly or strongly connected. For that, we
define a line with a vague shape asiiaimal extenf(i.e., it contains all of the points which
certainly belong to the liencluded into anaximal extenfi.e., it contains all of the points
which possibly belong to the lineThe difference between these two extents refers to the
shape vagueness of the line involved. Therefore, the topological relations between two lines
with vague shapes can be qualitatively identified according to sub-relations between their
respective extents. These sub-relations are identified through an extension of CBM method
(Clementini and Di Felice 1995) which provides a limited number of topological operators
that are more expressive than those defined in the 9-Intersection model (Egenhofer and
Herring 1990, Clementini and Di Felice 1995, Clementini 2005). Our approach can be then
seen as an extension of existing geometric models for objects with well-defined shapes. This
model can be simply used to support the specification of topological relations in queries and
integrity constraints by using a set of adverbs (&gakly fairly, strongly, andcompletely,
which denote the vagueness of a relation to occur between the crisping of lines with vague
shapes. The crisping of a line with a vague shape refers to any line with well-defined
endpoints and interior that is strictly inside the spatial extent covered by the line with a vague
shape (Bennett 2000, Clementini 2005). We call this approachQtiaditative Min-Max
model QMM model for short), because it deals with shape vagueness in a qualitative way by
distinguishing different types of lines with vague shapes according to the difference between
the minimal extent and the maximal one. This first part of model is cQieditative Min-
Max Definitions(QMMpegs for short), because it includes the principles of the spatial model to
represent the shape vagueness for linear geometries. In addition, QMM model includes a

second part calle@ualitative Min-Max Topological relationgQMM+gr for short) used to
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identify the topological relations between lines with vague shapes by studying the sub-
relations between the minimal extents and maximal extents of lines involved. The vagueness
of each topological relation can be qualified by using a set of adverbs such asoxéaikly.

We denote that we speak about the same model presented in the previous chapter and applied
to regions with broad boundaries. We recall that the acronym QMM model have been
proposed after acceptance of the first paper in order to facilitate reference to our approach.

The remainder of this paper is organized as follows. In Section 4.4, we explore some
previous works on the definition of lines with vague shapes and their topological
relationships. In Section 4.5, we present the QMNnhodel for lines with vague shapes,
where we thoughtfully underline the different levels of shape vagueness. In Section 4.6, we
propose the QMNk model in order to identify topological relations between lines with vague
shapes. For that, we propose an extension of the CBM method in order to identify the
topological sub-relations, which occur between minimal and maximal extents of lines
involved. After that, we define a 4-Intersection matrix in order to describe these sub-relations
and classify topological relations. Section 4.7 proposes an adverbial approach to classify the
topological relations by using the similarity between the sub-relations enumerated in their
respectives 4-Intersection matrices. In Section 4.8, we show hoadiesbialapproach can
be used to express topological integrity constraints and spatial queries involving lines with

vague shapes. Section 4.9 draws the conclusions and some perspectives of this work.

4.4 Shape vagueness for lines

Shape vagueness occurs when an intrinsic property of the object or a lack of knowledge does
not allow to sharply distinguish this object from its neighborhood (Bejacaii @008). For

regions, the shape vagueness is generally correlated to the boundary which stoaitlbe

For example, a lake can be considered as a region with a broad boundary, because its limits
change according to the level of precipitation. Two types of models are generally used to
represent objects with vague shapes. Exact models such as Burrough and Frank (1996), Cohn
and Gotts (1996), Clementini and Di Felice (1997), Erwig and Schneider (1997) and Hazarika
and Cohn (2001) proposed the extension of the models defined for crisp objects to underline
the vagueness of the boundary (ethe one-dimensional boundary is replaced by a broad

one without any hypothesis about its internal structure. The main advantage of this approach
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Is its simplicity to be integrated in existing spatial database systems (Erwig and Schneider
1997, Clementini and Di Felice 1997). Other approaches (Altman 1987, Brown 1998,
Burrough and Frank 1996, Dilo 2006, Robinson and Thongs 1986, Schneider 2001, Tang
2004, Zhan 1997, Morris 2003, Robinson 2003, Zhan and Lin 2003) are based on Fuzzy Sets
Theory (Zadeh 1965) in order to precisely describe the structure of broad boundary, or on
Rough Sets (Pawlak 1994) (e.g., (Worboys 1998(b))), or (3) on the probability theory (e.qg.,
(Burrough and Frank 1996, Pfoser &t 2005)). For fuzzy models, some quantitative
hypotheses should be set in order to define mathematical functions associated to the spatial
objects with vague shapes. Furthermore, these approaches are expensive in implementation
and they generally require an important effort to be manipulated by users (Clementini 2005).

For lines, the shape vagueness cannot be only correlated to the boundary (i.e. the line's
endpoints). In (Clementini and Di Felice 1997, Reis et al. 2006), two categories of lines with
vague shapes are generally distinguished:s with broad boundarand completely broad
lines Reis etal. (Reis etal. 2006) distinguish 77 topological relations between lines with
broad boundary and 5 between completely broad ones. They apply the 9-Intersection model
(Egenhofer and Herring 1990) on lines with vague shapes in order to identify their topological
relations. Figure 4.1 shows two examples of topological relations between two lines with
vague shapes according to (Hazarika and Cohn 2001). In Clementini (2002), Clementini
(2005), Clementini explained that the line's interior can be also broad (or)vagliéherefore
it is important to distinguish between the notiondafad boundaryandbroad interior. This
second approach is more expressive than Clementini and Di Felice (1997), &e{2@06)
model, because it allows to distinguish the case where only the line's interior is broad and not
the boundary. By using the 9-Intersection model, Clementini (2005) distinguishes 146
topological relations between two lines with vague shapes. He considers these lines as
complex geometries composed by two-dimensional p&stsbfoad parts of the lineand
one-dimensional partdof certain party. Therefore, the line's interior corresponds to the
union of interiors otwo-dimensionahndone-dimensiongparts (line's boundary is the union
of boundary of one-dimensional and two-dimensional parts). Clementini (2005) distinguishes
146 topological relations without any labelling or clustering process. This approach has two
main limitations. First, the participation of each onawb-dimensionaluncertain parts of
the line) andone-dimensional part¢certain parts of the lines) of lines in the topological
relation is not described. In other words, the lines are defined as complex shapes without a

formal distinction between their certain and uncertain parts. Second, this approach does not
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allow the description of partial shape vagueness and the 146 topological relations are not

labelled.
Ly B
Lo
L4
IL, BLy E Ly ILs BLEL
ILi 11101 ILs |0 |1
BL' [0 | o | 1 B Ls
ELilq 01 |1 ELs

Figure 4.1 |dentification of topological relations between lines with vague shapes iet{Riei2006)
(with IL, BL and ELrefer respectively to the interior, boundary and exterior of the lines involved)

According to Clementini (2005), we agree about the importance of making the difference
between the shape vagueness of an interior and that of a boundary. However, existing
approches dealing with lines with vague shapes do not cover the cases where the boundary
and/or interior of the line is partially vague. For example, figure 4.2 shows the trajectory of an
historic explorer where the final destination is ill-known (i.e., only one of the endpoints is
broad). The final destination is presented by a broad point which covers the set of the points,
which can be the destination of the explorer. In the same way, only a part of the interior can
be broad for araircraft which traversed a turbulence area and that has not be detected by
radars during this time period. In this paper, we aim to stress these different types and levels
of shape vagueness in a new classification of lines with vague shapes. After that, an exact
model is proposed in order to formally represent the lines with vague shapes. This
formalization allows to overcome the limitations of existing works in terms of identification

of the topological properties and relations between this type of lines.

Broad destinatic

\—’_f\ Start poin

Figure 4.2 An example of a trajectory with vague shape of an historic explorer

4.5 QMMpes model for lines with vague shapes

4.5.1 Evaluation of shape vagueness for linear geometries
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A simple crisp line is a one-dimensional object type made up of an interior and a disconnected
boundary (i.e. two endpoints). The endpoints represent the boundary of a crisp line, whereas
the interior is the set of points connecting them. Shape vagueness can characterize the interior
or the boundary of a given line. Consequently, the line’s boundary carartially or
completely broad while the interior remains well-defined; we then speak about lines with
broad boundariesin the same way, the interior can artially or completely broad while

the endpoints are well-defined; we speak about lines pattially and completely broad
interior, respectively (figure 4.4). Thextremecase of shape vagueness for lines arises when

all of the line's topological invariants (i.the interior andthe boundary are broad (figure

4.4). Thus, acompletely broad linarises when it is not possible to sharply distinguish the

line from its neighborhood. It is also possible to have a line with completely broad line with
broad boundary where there is a vague indication about the endpoints (see examples in lower-
right cell of figure 4.4). In our categorization, we also consideorapletely crisp linas a
particular case of lines with vague shapes, for which both the interior and endpoints are well-
defined. According to Clementini (2005), shape vagueness of atareor is always present

even only endpoints are broad. In other words, a broad endpoint implies that there is a part of
space where each point can thee endpointin interior or in exteriorof the line. Figure 4.4
presents our general categorization of lines with vague shapes. A line with a vague shape can
correspond to one or a combination of three basic object tylpess with broad boundary

lines with broad interior or completely broad linesin figure 4.3, the specification
"overlapping” means that different types of shape vagueness can be combined in a same line
at the same time. For example, it can have a broad boundary and a broad interior at the same

time.

Line with vague shape
A

_-T ------------------------------- ‘--- {Overlapping }

Line with broad boundary Line with broad interior Completely broad line

Figure 4.3 Categorization of lines with vague shapes

The different levels of shape vagueness for lines can be combined as presented in figure
4.4. We use one pronoun and four adverbs to underline these levelsnélor crisp lines),
(2) weakly (3) fairly, (4) strongly, and (5)completely The term iveakly indicates that one of
the topological invariants igartially broad. The termfairly"” reflects either a complete shape
vagueness of one of topological invariants or the case where the interior and boundary are
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partially broad at the same time. The terstrongly' specifies complete shape vagueness for
one of the topological invariants and partial shape vagueness for the second one. Finally, the
term 'completely is used to express total shape vagueness of the line's components. Figure
4.4 shows a symmetrical matrix, in which the shape vagueness increasesdr@n the

upper-left cell to tompletely in the lower-right cell through a progression including
"weakly, "fairly,” and 'strongly'.

Line with Crisp interior Partially broad Completely broad
vague interior interior
shape
Crisp none weakly vague fairly vague shape
boundary e e shape - -

@ e - -

Partially weakly vague shapg fairly vague| strongly vague shape
broad shape
boundary — — = -
[ y - - e
® _ - ® . ®

Completely| fairly vague shape strongly vaguecompletely vague shape

broad shape
boundary — _ _ e e
[ J
—d e ® 9
_— @
® O
® . crisp endpoint : broad endpoint . crisp interior broad interior

Figure 4.4 Lines with vague shapes
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* Example of a line with a weakly vague sh&pg., only one broad endpoini)

The Bermuda triangle is a region in the Atlantic Ocean where some aircrafts and surface
vessels have disappeared. Fight 19 is the designation of five American fighters which
disappeared in this triangle on December 9, 1945. The five fighters left Naval Air Station of

Lauderdale for a patrol. Their plan is to fly over the south east coast before landing in Florida.
However, communication was interrupted when they enter into Bermuda Triangle. Then, only
the start point (i.e. Naval Air Station of Lauderdale) and a part of the trajectory’s interior are

well-known before the communication interruption. The final endpoint is broad because the
trajectory can have any shape inside the triangle. This situation can be modeled thirmeigh a

with weakly vague shape
« Example of a line with a weakly vague shapth two crisp endpoints—«—= :

We suppose that an aircraft disappeared for some time from radar screens because it traversed
a turbulence area. After that, the communication returns to normal and the engine arrives at its
destination. In this case, the aircraft trajectory is composed of two crisp endpoints. However,
the interior ispartially broad because the trajectory can take any unpredictable shape inside
the turbulence zone. The trajectory of the aircraft can also be representédeasvith a

weakly vague shape

This approach is called the QMM model, because different levels of shape vagueness
can be distinguished by using a set of adverbs (i.e., a qualitative approach). Furthermore, the
level of shape vagueness of a given line is deduced from the difference between its minimal
extent and its maximal extent. Hereafter, we present the formal definition of a line with a

vague shape in the QM4 model.

4.5.2 Definition of lines with vague shapes

In the QMM model, a line with a vague shape is typically composed of two-dimensional
parts that correspond to the vague parts of the line and one-dimensional parts that refer to the
crisp parts of the line. We defilbe maximal extendf a line with a vague shape as a crisp
complex geometry resulting from the union of the one-dimensional and two-dimensional
parts. The interior omaximal extentorresponds to the union of interiors of one-dimensional

parts and those of two-dimensional parts. In the same way, the boundary of the maximal
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extent is the union of boundaries of one-dimensional parts and those of two-dimensional

parts. The maximal extent cannot be empty.

The minimal extentcorresponds only to the crisp parts of the line involved (i.e., one-
dimensional parts and well-defined endpoints). The minimal extent is also a crisp geometry
and it is a subset of the maximal extent. It can be empty if the line is completely broad. The

minimal and maximal extents are not mutually exclusive; . [l Lmax

A line with a vague shape geometrically (but not semantically) refers to the maximal extent
Lmax Lmin @andLmax are crisp geometriefmax can include two-dimensional parts as well as
one-dimensional parts. Howevér,, includes only one-dimensional parts and well-defined
endpoints of the line. The interpretation of shape vagueness of each part of the maximal
extentLmax IS made with regards to the related object represented by the line with a vague
shape. ThenlLqax is semantically different from the line itself; i.emax Cannot havea
definition and a semantic independently of the line involved. The notion of maximal extent is
distinguished from the minimal extent in order to distinguish the crisp parts of the line from
the broad ones.

The notions of broad boundaries and broad interiors are proper to the line with a vague
shape. For a line with a broad boundary, each point inside the broad boundary may be an
endpoint, inside the interior or outside the line. The latter property proves that a point of the
broad boundary cannot be outside the broad interior. Then, the concept of broad interior
includes that of the broad bounadry. A broad interior is always present, even if the shape
vagueness concerns only the endpoints (i.e. broad interior and broad boundary are not
mutually exclusive). In other words, a point of the broad boundary is also a point of the broad

interior at the same time.

For the maximal extent as well as for the minimal extent of a line with a vague shape, the
interior can b e disconnected. The boundary can be also disconnected. Figure 4.5 shows
different cases of decomposition of topological invariants composing extents of lines with
vague shapes. We should denote that these different representations of lines with vague
shapes correspond to a set of pictograms. In other words, these representations are not based
on a mathematical model that allows to consider the error component of spatial data as in
(Chrisman 1991). In Figure 4.5, the semantic difference between a line with a vague shape
and its maximal extent is stressed by drawing linear boundaries for broad parts of the

maximal extent. Such boundaries show that the maximal extent is a crisp complex geometry
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where we can distinguish the interiors and boundaries of its subparts as presented in the next

figure.
Lines with Extents Topological invariants
vague shapes
Minimal Interior
extent o=
Boundary | -
*o— - -
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Boundary | -
Minimal Interior
extent
@
Boundary -
.— . -
Maximal Interior .
extent ’—O .
s
Boundary | o O
Minimal Interior
extent Boundary O
Maximal Interior ) SRS
extent - T
(J—3 | Boundary 0 N
Minimal Interior
extent Boundary | -
Interior "5
< ’;
extent 3 @ e
Minimal Interior -
. am extent a
Boundary | -
Maximal Interior e oy
extent ‘—O—O A
Boundary - O 0

132



Minimal Interior L
extent
Boundary O
Maximal Interior s~ 00
extent O_Q_O LT
Boundary O O
Interior O
Minimal
Boundar
extent Y. -
Interior o "
{ o
Maximal D
extent Boundary :
Interior 0
Minimal
extent Boundary - -
Interior e
4 o
Maximal -
extent Boundary Q
Minimal Interior O
extent
Boundary | e
Maximal Interior e
extent AR
Boundary D
Interior 0
Minimal
extent Boundary -
Maximal Interior STy
extent "
Boundary

133



Interior 0

Minimal O Boundary 0
extent

Interior - .

Maximal Q So__--
extent Boundary

Minimal 0 Interior 0
extent

Boundary O

Maximal Interior P
extent @ e @
Boundary
O
O

Minimal O Interior
extent

Boundary

® Maximal Interior =TT T
extent \ ,!- )
Boundary :_

——————— : The line does not belong to the interio~ : broad endpoint
- : Crisp end point

Figure 4.5 Topological invariants according to the line shape vagueness

More formally, a line_ with vague shape is composed by a maximal ef];%[gand a

minimal extenfmin. The minimal extent corresponds to the one-dimensional parts and well-
defined endpoints of the line. The maximal extent refers to the spatial extent of the line when
the shape vagueness is considered. The maximal extent includes the minimal extent and the

difference between them corresponds to the shape vagueness of the line. In our approach, we

focus on the definition of the topological invariants for the maximal eingpand the

minimal ondfmin. For each one, we distinguish an interior and a boundary that can be empty

according to the configuration of the line (figure 4.5). From a point-set topology view point, a
simple line with a vague shape should verify the following conditions:
1- Each one-dimensional part of the simple line with a vague shape is connected.
2- Each one-dimensional part of the simple line with a vague shape is not self-
intersecting.
3- Each one-dimensional part of the simple line with a vague shape does not form a loop.
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4- If the endpoints are broad, they do not overlap with each other.

The three first conditions are those defined for a crisp line in the general point-set
topology. Then, we apply these conditions to each linear part of the line with a vague shape.
The last condition is defined to eliminate any risk of a self-intersection or loop configurations.

Figure 4.6 shows some cases of lines that are invalid according to our model.

e = o

Non-regular interior of maximal extent  Self-intersecting line  The line forms a loop

The endpoints can be identical

Figure 4.6 Examples of invalid lines

In the next section, we propose a qualitative approach to identify topological relations of
between lines with vague shapes. This approach is calléguhlgative Min-Maxmodel for
Topological Relation§QMM g for short) between lines with vague shapes and it is based on

the QMMper model presented above.

4.6 QMM Topological Relationships between lines with vague

shapes

4.6.1 Extending of CBM method

In general, two models have been used for specifying topological relations between lines with
vague shapes: the 9-Intersection model (Egenhofer and Herring 1990) and the CBM method
(Clementini 1995). In the 9-Intersection model, topological relations between two spatial
objects are defined in terms of nine intersections between their topological invariants
(interiors, boundaries and exteriors). This approach has been extended to simple regions with
broad boundaries in (e.g. Clementini and Di Felice 1997, Tang 2004, Bejaoui et al. 2008) as
well as for lines with vague shapes (e.g. Clementini 2005, Reis 2006). In the case of

lines, the 9-Intersection model generally distinguishes a high number of topological relations
either for crisp lines or for lines with vague shapes (Clementini 2005). In absence of any
clustering method, the 9-Intersection model becomes useless because users cannot intuitively

distinguish all of possible topological relations between lines with vague shapes. For example,
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33 relations are possible between two simple crisp lines and 77 between two lines with broad
boundary (Reis atl. 2006). In (Clementini 2005), 146 topological relations are distinguished

computationally by using 9-Intersection matrices.

However, the CBM method (Clementini and Di Felice 1995) proposes five high-level
operators tpbuch, in, cross overlap anddisjoint) in addition to the interior and boundary
operators. Clementini and Di Felice (1995) proved that this approach is more expressive than
the 9-Intersection model. Furthermore, each relationship identified by the 9-Intersection
model can be classified into one of the five clusters associated to the five high-level operators
of CBM. The main advantages of this approach are its expressivity and simplicity in
identifying topological relations. CBM method was extended for regions and lines with broad
boundaries (Clementini 2002). In this paper, we adapt the CBM method to our model of lines
with vague shapes. More specifically, we propose an additional operator exdlleadin that
we use to extract the minimal extent of the line. This operator allows to underline the
participation of one-dimensional parts in a topological relation. Furthermore, new topological
operators are suggested in order to improve the expressivity of the approach regarding the
specification of topological relationships between lines with vague sheyess. min and
overlap_min are respective specialization©wérlap andCross.These new operators can be
applied between minimal extents of lines involved. The extension of CBM method provides
the set of topological operators of QMMo identify the topological relations between lines
with vague shapes (cf., Section 4.6). In the next definitions, the formal definitions of basic
and new operators are presented and some examples are given in figure 4.7. We assume that
O; and Q are two lines with vague shapes:

» Definition 1: touch
( Q,touchO,) & (O, N O, =0)Nn (O, n O, 1)
» Definition 2: in
(Q,,in,0,) < (O,n 0,=0,)
» Definition 3: Disjoint
(0,,in,0,) & (O, n O, =0)
e Definition 4: cross_min (arises betweeaxt min(0Q;) and ext_min(Q) where
dim(ext_mirfO,))=1 and dim(ext_mifD,))=1)
(Q.cross_min,0,)&  ((ext min(Q)n ext_min(Q ) # ext_min(O,))

n (ext min(Q)n ext_min(Q )z ext_min(0O,)))
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n (dim(O; n 0,)=0)

» Definition 5: cross(arises between a line with a vague shape and the minimal extent
of another one, example;@nd ext_min(@) where dim(extmin(O,))=1)
(Q,cross0O,) < ( Q,cross_min,0O,)

OW(( @n ext_min(Q )# ext_min(0,))
n (ext min(Q) n Q # ext_min(O,))
n (dim(O; n 0,)=1))
» Definition 6: overlap_min arises betweeext_ min(Q) and ext_mirO,) where
dim(ext_mirfO;))=1 and dim(ext_mifO,))=1)
( Q,overlap_min,0, )< (dim(O; n 0,)=1)
n (ext min(Q)n ext_min(Q )# ext_min(0O,))
n (ext min(Q)n ext_min(Q )# ext_min(O,))
« Definition 7: overlap
(Q,overlapO,) < ( Q ,overlap_min,O,)

O{(0,n0,20,)
N0, n0O,20)
n(dim@O, n O, ¥ 2)

(a) cross_min relatio (b) overlap_min relation

Figure 4.7 Examples of cross_min and overlap_min relations

Additionally, we look for highlighting the dimension of an intersection resulting from a
touch relation. In essenc@;dim_touchand 1-dim touch are specializations of theuch
operator; they are used to specify whether the dimension of an intersection in a touch relation
is a point or a line. In the same way, the CBM method does not explicitly distinguish the
Covered byrelation as in the 9-Intersection model. In this work, we consider it as a
specialization of thén relation; we call this relatiom_touchp) (b is an operator to extract a
line's boundary), because it requires that the boundary of the inner object touches that of outer
one.in_disjoini(b) is another specialization of therelation; it means that boundaries of the

inner object and the outer one are disjoint. Figure 4.8 shows examples of these four relations.
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(a)0-dim_touch relation (b) 1-dim_touch relation  (c) in-disjoint(b) relation

(d) in-touch(b)relation

Figure 4.8 Examples of (a) 0-dim_touch relation, (b) 1-dim_touch relation, (c) in-disjoint(b) relation
and (d) in-touch(b) relation

The relations 0-dim_touch, 1-dim_touch, in_touch(b), in_disjoint(b) are defined as follows:
e Definition 8: 0-dim_touch
(O, 0-dim_touchO,) < (O, n O, =0) n (O, n O, 1)
n (dim(O, n 0,)=0)
e Definition 9: 1-dim_touch
(O, I-dim_touchO,) < (O n O, =) n (O, n O, #0)
n (dim(Q, n 0,)=1
e Definition 10: in_touch(b)
( Q, in_touchb),0,) & (O, n O, =0,)
n ((Q) n BK(O,) #01)
» Definition 11: in_disjoint(b)
( Q, in_disjoint(b),0,) < (O, n O, =0,) n (HQ) n KO,) =0)

Figure 4.9 shows generalization/specialization relations between the topological operators in

the QMMrr model applied for lines with vague shapes:

‘ CBM relations ‘
\ \ \

‘ 0-dim_touch H 1-dim_touch T ‘ Cross_min H Overlap_min ‘
‘ in_touch(b) ‘ ‘ in_disjoint(b) ‘

Figure 4.9 Generalization/Specialization links between relations of the Qkbtel
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The topological operators of each level of @&lMtg model are mutually exclusive. This
property is verified for the first level, which contains the following relati@isjoint, Touch,
In, Crossand Overlap. In the same wayisjoint, 0-dim_touch,1-dim_touch,in_touch(b)
in_disjoint(b) Cross_min andverlap_minare also mutually exclusive. In the next section,
we explain how we use these operators to identify topological relations between lines with

vague shapes.

4.6.2 Principles of identification of topological relations in the QMM TR Model

We interpret the maximal extents of lines with vague shapes as composite geometries. It is
composed by one-dimensional parts and two-dimensional ones. The minimal extent is a
subset of the maximal one (i.e., it corresponds to one-dimensional parts and crisp points of the
line). In fact, our methodology consists in identifying four specific topological relations
between minimal and maximal extents of lines with vague shapes involved. For this purpose,
we define a 4-Intersection matrix containing the following four topological sub-relations:
Ri( Avin + Brin )» Re( Anin + Brax)s Re( Avaxs Brin ) @NAR( Ay, Bray) (S€€ €X@mMple in figure 4.10)

(with AandB two lines with vague shapes). According to this idea, we should remind that the
the structure of 4-Intersection matrix has been used by (Eegnhofer 1989) to identify
topological relationships between crisp regions. In the present work, we propose a model
based on the use of 4-Intersection matrices in the specific context of lines with vague shapes.
These matrices are just containers; i.e. a formal representation of the topological relationships
between lines with vague shapes involved. The method used to fill the matrices’ cells is
different to that used in (Egenhofer 1989). In the present approach, the basic idea consists in
using the extension of CBM method (i.e., the topological opergt@sented above in the
QMM+R) to fill the four cells of the matrix. Then, the 4-Intersection matrix corresponds to the

following representation:

'Z‘min Rl( ;\nin , é‘min )l RZ( ;&min 1 ~max)
'Z‘max R%( Amax' Bmin )! R4( Anax’ Bmax)

Figure 4.10 shows the content of the matrix that describes a topological relation between two

lines with vague shap@sands .
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>

;|

B | B

min max

(o8]

;\“in Disjoint(:z\11in , émin ), Disjoint ( ;‘;ﬂin , §max)
'Z\'nax CI’OSS( 'Z\'nax' émin )’ CI’OSS( Z\nax’ §max) (b)

Figure 4.10 Description of a topological relation between two lines with vague shapes: (a) visual
content of the matrix, (b) formal identification of the relations between the minimal and maximal
extents of the objects involved

The content of the matrix corresponds to the four topological sub-relations between
respective minimal and maximal extents of lines involved. Since the maximal extents
geometrically (but not semantically) refer to the lines, we use the topological sub-relation

between themR4(A,.,,B..,) (value of the down-right cell) in order to label the global
topological relation. For example, R A, Brex) IS Cross we consider that one of the lines
with vague shapes globaliyrosseshe other. IfR4( A, B..) iS Contains we consider that

the global topological relation i€ontains In the example of figure 4.10A globally

Crosses .

4.7 Clustering of topological relations between lines with vague

shapes

4.7.1 Principles

In this work, topological relationships between lines with vague shapes are specified through
the topological operatordefined in the QMMgr model (cf., section 4.6) that we apply
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between minimal and maximal extents of involved lines. Eleven topological operators can be
used to specify these sub-relations. These operators allow to describe any topological relation
between two lines with vague shapes. However, it is very difficult to enumerate all of possible
relations, because the shapes of such composite objects are unpredictable. It is also not
realistic to find a name for each one of possible relations, and therefore the user will have
difficulty to choose the appropriate operator in order to express a spatial query or a
topological integrity constraint. For this purpose, the clustering of topological relations into
larger groups may be a pertinent alternative followed by previous works such as (e.g.
Clementini and Di Felice 1997, Mark and Egenhofer 1994).

In this paper, we use the content of the proposed 4-Intersection matrix in order to classify
the topological relations. Five basic clusters are distinguisbé8JOINT, IN, CROSS,
OVERLAPand TOUCH Each cluster contains all of the topological relations for which at
least one of the four sub-relations has the same name as the cluster. A topological relation
becomes possible if it appears at least once in the matrix. This possibility increases according
to the number of similar sub-relations. For exampl€rasstopological relation in which

Cross (AnaBna) and Cross (A, ,B,,) iS stronger than another where onBGross
(Ana» Bra)- I Order to distinguish these different levels of a relation's membership, we use

four adverbs to evaluate the vagueness of a topological relatiotortletely (2) strongly;

(3) fairly, and (4)weakly. A topological relation belongs to one clusampletelywhen the

four sub-relations are identical. It belongs to one clustemgly when only three sub-
relations have the same name as the cluster. The level téairigdontains all relations for

which two sub-relations have the same name as the cluster. Finally, the leveesldg
contains the relations for which only one sub-relation has the same name as the cluster. For
example, figure 4.11 shows a topological relation that belongs to the following clusters:
DISJOINT, TOUCHandIN. Nevertheless, it belongs to the clustermore strongly than to

the DISJOINTand COVERS clusters. By using our adverbial approach, we can conclude that
the topological relation is fairly INveakly DISJOINTand weakly TOUCH

A B -
— <_weakly % BISIOINT

Disjoint In e —V\;e—aI(I—y* IS
|:0-dim_Touch In_touch(b) ] e - TOUCH
\ ity N

Figure 4.11 Example of clustering of a topological relation
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Figure 4.12 presents examples of relations that belong to different levélSNTAINSand
DISJOINTclusters, respectively, according to the contents of their correspondent matrices.

Disioint Disioint Disjoint Disjoint Disjoint Disjoint Disjoint 0-dim touc
Disjoint  Disioint Disjoint  0-dim_touch| | 0-dim tanch  QOverlap Cross_min Overlap

Completely DISJOINT  Strongly DISJOINT Fairly DISJOINT  weakly DISJOINT
Cross min  Cross Cross min  Cross Disjoint Cross Overlap Cross
Cross min  Cross Cross min Overlap Disjoint Overlap Overlap Overlal

Completely CROSS  Strongly CROSS Fairly CROSS Weakly CROSS

Figure 4.12 Evaluation of topological relationship strength

4.7.2 Overlapping clusters

The main result of this clustering process is a hierarchical classification of the topological
relations (figure 4.13). The top level is made up of five basic cludb@&IQINT, TOUCH,

IN, CROSS, OVERLARhat each contains typically four levetompletely strongly; fairly,
andweakly The resulting 32 sub-clusters overlap each other because a topological relation
can belongs to different levels of 1, 2, 3, or 4 clusters at the same time. Figure 4.13 shows the
structure of this hierarchical classification. The bottom level includes all of possible cases that

can occur between two lines with vague shapes.

Weakly Strongly | Completely

AN NS4S

Relations between lines with vague shapes in the bottom level /

Figure 4.13 A hierarchical classification of the topological relations between lines with vague shapes

Disjoint

Siigelals])% Completely
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4.8 Specification of topological integrity constraints and spatial

gueries for lines with vague shapes

The simplicity and expressivity of the CBM method (Clementini and Di Felice 1995,
Clementini 2002, Clementini 2005) can be inherited by the QMkkpecially with a
qualitative classification of topological relations between lines with vague shapes. Then, this
approach can provide necessary conceptual tools in order to formally express topological
integrity constraints for lines with vague shapes. A topological integrity constraint is a rule
that insure that a topological property of an object or a topological relation is not violated.
These constraints are used to insure the consistency of a spatial database (Frank 2001). For
example, we assume that a spatial database stores the geometries of some protected animals’
trajectories and that shape vagueness is considered in this database. A topological integrity
constraint can be defined in order to say thzifferent trajectories of one species in one
season should not beompletely or strongly Digoint'. This constraint can be formally
expressed by integrating new spatial operators @agpletely Disjointweakly Coversetc.)

in a formal constraint language such as the Object Constraint Language (OCL) (Pinet et al.
2007). The database storing thmjectories is consistent only whether the topological
relations between the different trajectories do not belong to the following subclusters:
completely or strongly Digoint. This constraint can be expressed through Spatial OCL as

follows:

Example 1 : Context Trajectory inv:
Trajectory.allinstances forAll (a, b| a<>b implies not
(strongly DISJOINT(a,b)or completely DISIOINT(a,b)));

In the same way, the QMM model can be integrated in a spatial database system. Indeed,
the SQL language can be extended in order to express spatial queries involving lines with
vague shapes based on the qualitative information given by the user regarding their
topological relation. In this section, we suppose that we integrated our spatial model in a
relational engine in order to give an example of its possible use in spatial queries involving
lines with vague shapes. In the next query example, the user would select the animals'
trajectories thatveakly Overlap oweakly Meeteach other. According to our approach, this

guery can be expressed as follows:
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Example 2: Select A.geometry, B. geomefisom Trajectories A, Trajectories B
Wheretrajectories_id<> B.trajectories_id AND
vague_Rel@fegeometryB.geometryweakly MegtOR

vague_Relat@.geometryB.geometryweakly Overlap)

4.9 Conclusion

Shape vagueness has been thoughtfully studied for regions (notably in (Burrough and Frank
1996, Cohn and Gotts 1996, Dilo 2006, Erwig and Schneider 1997, Roy and Stell 2001, Tang
2004, Zhan and Lin 2003)). However, shape vagueness of lines has been generally considered
more complicated to model than regions. Some approaches (Clementini and Di Felice 1997,
Clementini 2002, Clementini 2005, Reisat 2006) was interested in modeling lines with
vague shapes and their topological relations. The main limitation of these approaches is that
they do not make the distinction between different types and levels of shape vagueness of
lines (i.e.partial shape vagueness, complete shape vagueness, partial broad interior, and
partial broad interior, etd). In this paper, we proposed a new geometric model called QMM
model composed by two sub-models: (1) the QMMmodel and QMMr model. The
QMMpes model proposes an expressive taxonomy of lines with vague shapes and their formal
definitions. In the proposed taxonomy, we made the distinction between the shape vagueness
of the interior of a given line from that arising in its boundary. The line interior can be
partially or completelybroad independently of the boundary, and vice versa. We identified
four levels of shape vagueness for lines according tatispness partial broadnessand
complete broadness the interior and/or boundary: (Meakly (2) fairly, (3) stronglyand (4)
completely Generally, we defined a line with a vague shape as a minimal extent composed
only by one-dimensional parts of the line and a maximal extent that additionally includes the
two-dimensional or broad parts. Topological relations between lines with vague shapes are
then identified through an extension of the CBM method (Clementini and Di Felice 1995) that
we integrate into the QMM model and apply for sub-relations between minimal and
maximal extents of involved lines. After that, we proposed a 4-Intesersection matrix to
describe these four sub-relations and classify topological relations between lines with vague
shapes. A topological relation can belong with different strengths Wweakly fairly,
strongly, andcompletely to one or multiple of the following basic clusteBISJOINT, IN,
CROSS,OVERLAP and TOUCH This adverbial approach can provide the basis of an
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extension of a constraint language to express topological integrity constraints involving lines
with vague shapes. Finally, the main perspective of this work is to extend our model to the

composite lines with vague shapes.
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Chapter 5. Reducing the vagueness of topological

relationships in spatial data integration

Lotfi BEJAOUI, Francois PINET, Michel SCHNEIDER, Yvan BEDARD

International Journal of Geographical Information Science
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5.1 Résumé de l'article

L’intégration des bases de données spatiales peut étre basée sur l'analyse de leur qualité
interne. Cette analyse justifie la sélection d’'une base de domézencecontenant les
meilleures(dans le sens de la qualité interne) géométries qui peuvent représenter les objets
dans une base de données finale. Toutefois, cette approche n'est pas toujours possible, en
particulier lorsque des éléments de qualité sont mal décrits au niveau des bases de données
sources. Dans cet article, nous nous sommes intéressés a un cas particulier de l'intégration de
bases de données spatiales visant a fusionner (1) des représentations géométriques
hétérogéenes stockées dans des sources différentes pour lesquelles (2) la qualité interne est
mal-décrite. Dans ce cas, une approche commune consiste a supposer que toutes les
géomeétries sources d’'un objet contribuent d’'une fagcon égale dans sa géométrie finale. Par

conséquent, un objet spatial peut avoir une géométrie finalerae vague (par exemple,
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régions ayant des frontieres largdsysqu’il y a une différence entre I'union et l'intersection

de ses géométries sources. Dans cet article, nous adressons le problaguedopologique

que nous définissons comme lincertitude par rapport a la relation topologique appropriée
entre les géométries finales. Ces relations topologiques sont généralement différentes de
celles définies dans les bases de données sources car le vague de forme doit étre pris en
compte. L'objectif de cet article est di&duire le vague par rapport aux relations topologiques

entre les géométries finales. Dans notre approche, nous énumeérons les relations topologiques

possibles et proposons différentes stratégies pour les vérifier.

5.2 Abstract

The integration of multiple spatial databases takes into account the analysis of their spatial
data quality. This comparison leads to select or to generateetigeometries to be loaded

in the final database. Such a process is a challenge when the elements of spatial data quality
are poorly described in the data sources. In this case, a common approach consists of
assuming that all the crisp source geometries of each object contribute, in an equal way, to
produce the final geometric representation. Then, a spatial object may be represented through
ageometry witha vague shape (e.g. region with a broad boundanhe final database. The

shape vagueness results from the difference between crisp source geometries. In addition, for
a same pair of objects, the topological relationships between their final geometry cannot be
deduced from those defined between their former crisp geometries in the original data
sources. Therefore, we address the probletomdlogical relationships vaguengss. the
uncertainty about the appropriate topological relationships between the final geometries. This
paper aims ateducing the topological relationships vagueness in a given final database. We
analyze which topological relationships are possible, and propose different strategies to

manage them.

5.3 Introduction

Spatial data integration is a complex problem that can be defined, addressed and resolved
differently according to different needs. In (Shibasztkil. 1994, Ziegler and Dittrich 2004),
spatial data integration aims at combining data stored in different sources in order to produce
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a more complete final database with respect to the areas, epochs or themes to be covered. In
(Uitermarket al. 2005), the integration of multiple spatial databases consists of establishing
the relationships between corresponding instances in different spatial databases representing
the same geographic space. It can be also used to (1) load a multi-representation spatial
database (Laurini 1996, Megrin 1996), (2) reuse the data in another context (Breunig and
Perkhoff 1992), (3) improve the completeness and non-redundancy of an existing database
(Nyerges 1989), and so on. It is also possible to distinguish vertical integration (integrating
spatial data describing different themes in the same location) from horizontal integration
(integrating spatial data describing the same theme but in different locations) (Poulliot 2005).
In the context of decision-support systems, spatial data integration is often a necessary
process to load spatial data warehouses (Malinowski and Zimanyi 2005, B¢ddr@007,

Shoui et al. 2007). According to Franklin (1992), 80% of data have a spatial component.
When a spatial data warehouse is modelled and implemented with a hypercube structure, this
property of data is exploited in order to improve the data analysis by providing the geometric
navigation in a spatial dimension. A spatial dimension includes different geometric levels
which are organised in a hierarchjhe members of each level of analysis can involve
geometries loaded from different source databases selected in an integration process. In this
work, we deal with a special case of the vertical integration; i.e. where the same spatial
objects are represented with heterogeneous redundant geometries measured at the same epoch
but using different specifications for different data sources. Then, we assume that the final
geometries resulted from the integration may be loaded into the spatial dimensions of a spatial
data warehouse (with a hypercube structure) and provide vague shapes for the members of a

hierarchy level.

The internal qualityf a spatial databasefers to the respect of the specifications defined
by the data producer, and generally includes the following elements: (1xctatdity, (2)
geometric and thematic accuracie$¢4) lineage (i.e. genealogyf data), (5)logical
consistency(i.e. themati¢c geometri¢ temporal topological and structural coherencies of
data; generally controlled with integrity constraints) and dénpletenesg¢Devillers and
JeansoulirRk005, Mostafavet al. 2004). An internal quality analysis involves the comparison
of these quality elements to the theoretical specifications or the nominal ground (David and
Fasquel 1997). Multiple spatial databases can be integrated based on a comparison of their
respective internal quality. According to Devogel (1997), the integration process requires the

selection of a source database afarence The geometries of these sources are used to
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control the integration of the geometries coming from the other sources. Then, if a source
geometry does not occur inside a matching area, it is not considered in the final geometry of
the spatial object involved. Theferencedatabase is selected based on the internal quality
analysis. In the final database, the topological relationships between spatial objects are
defined according to theeferencedatabase. This is the most desirable case amongst those we
can meet for spatial data integration.

Unfortunately, the internal quality is not always well-described. Therefore, a comparison
between the available source databases cannot usually support the selectiorefefrenee
Let's assume that a set of spatial objects is given, each having different geometries in different
sources, and that the spatial data quality of each object is poorly described, then no clear
conclusion can be drawn from such a situation. In this case, one possibility is to consider that
the available source geometries of each spatial object contribute in an equal way to its final
geometry. Then, the spatial intersection of the source geometries of a given object provides
the subpart where a consensus has been found. In addition, the spatial union of these same
geometric representations provides the exhaustive area where the object might be found. If the
difference between the intersection and union is non-empty, then the object shape can be
considered as vague since only a subpart was agreed upon (i.e. the result of the spatial
intersection). In other words, by using only the knowledge provided by the data sources, it is
not possible to be certain about the object shape; however, it is possible to deduce the
complete or partial vagueness of this shapegions with broad boundaries such as forest
standsandlines with broad interiors such as canoe routes between two arerg&xamples
among several of objects with vague shapes. A database designer may use this type of
geometries to integrate heterogeneous redundant geometries in order to improve the data
reliability, especially in a data feeding process. For example, the management of the wood
industry in a given forest should consider the broad boundaries of forest stands (i.e. it is an
oversimplification of the reality to surround a forest stand by a linear boundary), to decrease
the risks of wrong analyses and decisions. In Figure 1, we assume that a spatiah abject
represented by three heterogeneous geometries in three different databases, respectively. The
final geometry resulted from the integration of the source geometriégsod region with a
broad boundary. The broad boundary refers to the difference between the union and
intersection of source geometries. Then, the decision-maker takes account of broad boundary
in order to get the most appropriate decision. For exampAegfers to a forest stand, he can

adjust the production of wood inside the broad boundary according to the available data.
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Representation of f a source,

In 4 ’
S \ . ’ >
Integratlon of the Region with a broad
In$ source geometries boundary resulted from
integratior

Figure 5.1 Example of the integration of three heterogeneous geometries representing the same object

In the source databases, topological relationships happen between well-defined shapes can
be controlled by topological integrity constraints (Pieeal. 2007). Such control allows one
to make sure the quality of data is on par with the specifications. Topological (integrity)
constraints are an important class of integrity constraints for such spatial databases. They refer
to a set of rules defined at the conceptual level in order to reduce the topological
inconsistencies in spatial databases (@gds and buildings should be Disjoir{tCockcroft
1997, Normand 1999, Servigrez al. 2000). These constraints can be specified by using
specific languages such as the Object Constraint Language (OCL) (Waremer and Kleppe
1998, Pinet et al. 2007).

The heterogeneity of partly or totally redundant source geometries and the poor description
of their internal quality entail a shape vagueness and may produce an uncertainty concerning
the topological relationships between objects of the final database. In the final database, the
shape vagueness must be taken into account in order to define the topological integrity
constraints properly. An adequate model of topological relationships is necessary and an
adapted method is needed to characterize them in a given situation. The characterization of

such relationships can be also useful for the specification of spatial queries.

In this paper, we address the problentadological relationships vaguengsshich we

define as the uncertainty about the appropriate topological relationship between possibly
vague shapes resulting from the integration of multi-source redundant data. These
relationships are generally different from those occurring in the source databases, because
they involve shape vagueness. The main objective is to reduce this topological relationships
vagueness when specifying the topological integrity constraints for a given final database (e.g.

a warehouse). We propose a model to define this vagueness and an approach to characterize
the possible topological relationships between the geometries resulting from the integration
process. We apply these concepts to the case where the final database is a spatial data
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warehouse (with. a hypercube structure) and where the final geometries are loaded in one
hierarchy level of a spatial dimension (for the details of hypercube structures in spatial data
warehousing, we refer the readers to (Bédard and Han 2008)). In this context, we assume that
the semantic heterogeneities have been resolved and only the appropriate intra-level
topological relationships need to be specified in the final constraints. In the same way, we
assume that no integrity constraints are defined between geometries belonging to different
hierarchy levels. We do not deal with the topological relationships between child and parent

members in a spatial dimension hierarchy.

The paper is organised as follows. In Section 5.4, we refer to some works related to the
topic of geometric heterogeneities in spatial data integration and the use of specific spatial
models to represent the shape vagueness. In Section 5.5, we explain the problem studied in
this paper. Section 5.6 presents the spatial model to merge heterogeneous redundant
geometries that represent a given spatial object. Section 5.7 describes our approach to analyze
possible topological relationships between geometries with vague shapes resulting from the
integration process. We propose two strategies to reduce the topological relationships
vagueness: (1jnodifying the final geometries in order to completely respect topological
relationships(i.e. using topological operators for objects with well-defined shapes, such as
those defined in the 9-Intersection model (Egenhofer and Herring 188@}) using an
adverbial approach to partially characterize these relationshipsction 5.8 presents an
example of reducing the vagueness of intra-level topological relationships in a spatial data

warehouse. Finally, Section 5.9 presents the conclusions and some perspectives of this work.

5.4 Previous works

5.4.1 Geometric heterogeneities in spatial data integration

In spatial databases, the values of geometric attributes can be observed and measured in
different ways (Mowrer 1999). This property of geometric data allows room for more than
one value and could entail some difficulty when heterogeneous geometries for a same object
need to be integrated (Devogel 1997). Figure 2 presents three examples of spatial objects with
heterogeneous redundant representations in source databases. Figure 5.2(a) shows a set of
points, each one of them being an heterogeneous redundant representation measured at the
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same epoch for the same spatial object (e.g. a fire hydrant). In the same way, Figure 5.2(b)
and Figure 5.2(c) show the same thing for lines and regions that can represent objects such as

a river and a lake, respectively.

(@) (€)

Figure 5.2 Example of redundant heterogeneous representations: (a) 5 representations of the same 0-D
object, (b) 3 representations of the same 1-D object, (c) 2 representations of the same 2-D object

The principal function used to merge source crisp geometries avénky method (Frank
1987, Demirkesen and Schaffrin 1996, Harvey and Vauglin 1996). This approach consists in
identifying features in different data sources intended to represent a same world object before
merging them into a final geometric representation. The overlay method assumes that one
data source (callegeference has a higher quality then the other available data sources. The
nodes of a geometry belongingAcshould remain fixed. A tolerance error termebbrance
match is associated to the geometrief\oh order to consider the geometries of the other
sources within this tolerance in the integration process. In other words, if a f&gture
belonging to a data sour&is within the match tolerance of a feat&ebelonging to the
referenceA, then each node &fs should be moved to an existing or newly created nodr of
(Ware and Jones 1998).

The overlay approach requires that the internal quality is well described in the data sources
in order to select a reference among them. Then, a final geometry with a possibly vague shape
may result from the integration of source geometries (Shepherd 1992). Accordingly, some
approaches use specific spatial models in order to represent inherent shape vagueness of
several spatial objects such as inundation areas or pollution zones (Clementini and Di Felice
1997, Cohn and Gotts 1996, Erwig and Schneider 1997, Tang 2004, Bejadui2608)

(Section 5.4.2). These models can be also used to represent final geometries with vague
shapes resulted from the integration of redundant and heterogeneous geometries.
Nevertheless, the specification of topological integrity constraints involving these geometries

is still an open question since it is required to consider the shape vagueness. Spaccapietra and
Parent (1991) suggested choosing the least constrained database as a reference. This approach
can be efficient when the least constrained database has also the highest quality. Rodriguez

(2005) proposed to disable any constraints when different topological relationships are
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possible for geometries resulted from the integration process. For example, figure 5.3 shows
two spatial objects that are represented differently in two data soAr@esd B. Three
topological relationships are possible between final geome@®wsrlap, Meet Disjoint. The

topological inconsistencies in the final database are increased.

Representations of two Final geometries resulted  pgssiple topological
objects in sources and B from integration relatlonshlps after integration

Source A~\ Overlap
Source B‘ '
' Disjoint

Figure 5.3. Possible topological relationships for final geometries

5.4.2 Formal specification of objects with vague shapes and their topological

relationships

Two categories of models are generally used to deal with spatial vagueness. In the first
category, crisp spatial concepts are transferred and extended to formally express the spatial
vagueness: we speak abaxact model{Clementini and Di Felice 1997, Cohn and Gotts
1996, Erwig and Schneider 1997, Tang 2004). In the second category, three principal
mathematical theories are generally used: (1) the models based on Fuzzy Logic (Zadeh 1965)
(e.g. Dilo 2006) which can be used to represent continuous phenomena such as temperature,
(2) the models based on Rough Sets (e.g. Worboys 1998) which represent spatial objects with
vague shapes as a pair of approximatiangpér approximationlower approximation) and

(3) the models based on probability theory (e.g. Burrough and Frank 1996, é&tfas@005)

which are primarily used to model position errors. A literature review on specification of
spatial objects with vague shapes and their topological relationships has been realized in
Section 2.3.
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5.5 Problem Statement

In the integration procesdhe topological relationships vaguenesscreases when the
available source geometries of each spatial object are heterogemeeasured using
different methods which not give the same regaltsl the internal quality is ill described in
source databases. In this case, geometric heterogeneities entail shape vagueness for the final
geometries whenever the difference between the union and intersection of available source
geometries is non-empty. The topological relationships between final geometries should be

redefined to take into account their possible shape vagueness.

Let A andB be two spatial objects with heterogeneous geomethieB() and @A, By) in
two source database€S and S respectively. The final geometries éf and B can be
represented by two regions with broad boundaries. A broad boundary refers to the difference
between the union and intersection of the source geometried{,&s)(for Aand Ug, Ig) for
B). For example, assume that the geometrieA ahdB areDisjoint in both sources (Figure
5.4). It appears that thBisjoint relationship ispartially respected in the final database

because it holds for the intersectiohs [g), whereas the union8lf, Ug) meet each other.

Representations of A

: Ag
andB in sourceS1 ﬁ \ Ua F
o Us
A2 /()any lA and b are D|S]0|nt

Figure 5.4. Example of topological relationships vagueness

Representations &
andB in sourceS2

From this perspective, there is a need for a specific spatial model to represent the shape
vagueness and to compute the topological relationships between final geometries. Therefore,
the primary existing exact models (Cohn and Gotts 1996, Clementini and Di Felice 1997,
Erwig and Schneider 1997, Tang 2004, Reis et al. 2006) show some limitations. Most of these
models cannot formally represent objects wptrtially vague shapes, such as a lake with
rocky banks on one side and swamp banks on the other. For exeegpdas with partially
broad boundariesre considered invalid because the connectedness condition is violated (i.e.
the boundary should be broad everywhere around the region interior). However, it is

important to consider this type of regions, as they can result from integration when the
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difference between the union and intersection of source geometries is non-empty on some
locations and empty on other ones. The spatial model proposed by Bstjabu{2008) can

be used to define regions of this type and their topological relationships (Section 5.6).

In this paper, we address the problem of characterizingtapelogical relationships
vaguenesdor final geometries resulting from the integration process. Our aim is to answer

the following questions:

4- How is it possible to represent a region with a broad boundary that results from
merging the heterogeneous polygons representing a given spatial object in different
source databases?

5- How can we deduce the possible topological relationships between final geometries
from the relationships defined in the data sources? The answer can help the
specification of topological integrity constraints.

6- Which strategies can be defined to reduce the topological relationships vagueness

5.6 Merging heterogeneous polygons through regions with broad

boundaries

The shape vagueness can characterise any geometric prirpding Ifne or region). In this

paper, we focus our investigation on the regions. For other geometric primitives, we suggest
the following references (Clementini 2005, Bejaetal. 2008). The present section presents

the spatial model for regions with broad boundaries defined in (Bega@li 2008). This

model is not a contribution of the present paper. However, it is one of the primary elements
on which our proposed approach is based. The definition of a region with a broad boundary is
adapted to the geometric heterogeneity problem and semantically different from that proposed
in (Bejaouietal. 2008) (cf. Section 5.6.1). For that reasons, we present the spatial model in a

separate section, in order to facilitate understanding of the remainder of the paper.

5.6.1 Regions with broad boundaries resulting from integration

In spatial data integration, a region with a broad boundary may result from geometric
heterogeneities of the sources' geometries of the object involved. It corresponds to the
difference between the union and intersection of the source geometries. The intersection refers
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to the minimal extent of the object, whereas the union refers to its maximal extent. Figure 5.5
represents an example of a region with a broad boundary resulting from the integration of two
heterogeneous source geometries of the same spatial Abggdhe same epoch. The final

geometry of this object corresponds to a region where the minimal extent is covered by the
maximal one. In this example, the boundary of the minimal extent is partially superposed on

the boundary of the maximal one. Then, the region has a partially broad boundary

Crisp boundary
) ) Minimal exten
Geometric representation
in a source S
~a aximal exten
Geometric representatio 4
in a source § Q Broad boundat

Figure 5.5. Region with a partially broad boundary in spatial data integration

We consider a region with a broad boundasy resulted from the integration of
heterogeneous geometries of the same object at the same epoch. It is made up of two crisp

sub-regionsa maximal extenta_.. (i.e. the union of source representations), angiaimal
extent A, (i.e. the intersection of source representations) where BEgaial,A.,) or

Contains(d, .., A, ) or Covers@...., A, ) (Figure 5.5). In this definition, we assume that the

source geometries should intersect each other (i.e. an isolated geometry cannot be considered
in the integration process). In other words, we do not deal with the case where there is no
intersection between source geometries, because we consider that they do not represent the
same object if they represent the geometry for the same time. The boundargasf be
completely crisp (or not at all broad) when the difference between the nméosin{al extent

and the intersectionm(inimal extentof the source geometries (iidentical geometries in all

source databasgsis empty. In another case, the boundarypastially broad when the
intersection and union are different only in some locations. In this case, the union of source
geometriesoverstheir intersection. Finally, the third possibility is a region wittbenpletely
broadboundary In other words, the union of source geometti@stainstheir intersection. In

Figure 5.6, we present an example of each of these three cases.

" The spatial relations (i.€qual Contains Cover3 used in this definition are those defined in (Egenhofer and
Herring 1990).
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Region with a vague | Representatio Maximal and minimal Topological invariants of minimal
shape extents and maximal extents
Interior Boundary
A region with a crisp Minimal | i | g | 7
broad boundary (i.€. * extent ’ - ........
crisp regior) Maximal | . oadeser | | ec-eel
extent ‘ - ........
A region with a Minimal | _sasmes. | | ectcee,
partially broad extent * - ........
boundary (i.epartially m Maximal R
vague regioh extent S
A region with a Minimal A << S .
completely broad extent
boundary (i.e. w Maximal penttt
completely vague extent s
region) ernaanen’

Figure 5.6. Regions with broad boundaries

The consideration of all the available geometries in the integration result increases the
shape vagueness of the final geometry. However, it decreases the uncertainty about the
possible shape vagueness (or the meta-uncertainty (Bédard 1987)) of the spatial object
involved. The user has a reliable idea of the data imperfection despite the fact that he does not
have the well-defined shapes that would be obtained by a simplification of the reality nor well
described quality information. One can make an analogy between this approach and the
computation of an error ellipse in geodesy (Chrisman 1991). An error ellipse provides an area
of a probable position around the true position of a point (its uncertainty) along with a
percentage of probability for this point to be within this area (meta-uncertainty). This
percentage increases according to a paran@tbat defines the size and orientation of the
ellipse. For example, there is a 38 per cent chance that the true position will fall within a
standard error ellipse (i.€=1). Similarly, there is a 90 per cent chance that the true position
fall within an ellipse defined b€=4.6. Then, increasing the error ellipse radius improves the
spatial accuracy (or exactness) whereas it decreases the data precision, and in both cases the
meta-uncertainty is known (38%, 90%). The user manipulates the data with better accuracy

despite the more limited precision.

5.6.2 Topological relationships between regions with broad boundaries

In this paper, we defined the result of integration of heterogeneous source polygons

representing as a region with a broad boundary. In order to specify their topological
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relationships, we use the QMMoiogical RelationshipgModel for regions with broad boundaries
defined in (Bejaoui et al. 2008) (cf. section 3.7).

5.7 Controlling the validity of topological relationships in spatial

data integration

5.7.1 The different situations

Let's consider a spatial object represented by heterogeneous and redundant crisp geometries
stored in different data sources with different specifications. The final geometry of this object
displays shape vagueness if there is a difference between the intersection and union of the
source geometries. The source geometries contribute equally to the final geometry of the
object while the comparison of their quality does not allow the selection of a reference
geometry. Then, we speak aboutan-distinctiveinternal quality. In this case, the topological
relationships vagueness can bsduced when the source topological relationships are
identical. The impossible relationships may be deduced despite the shape vagueness of the
final geometries. For example, let's assume that the geometries of two spatial Algjeds

are respectively disjoint in two data sources. Then the intersections of the source geometries
of A and the source geometries Bfare necessarily disjoinContainsis an inconsistent
relationship between the final geometriesfofind B. In this paper, we consider only the
situation where the internal quality is non-distinctive and the topological relationships in the
data sources are identical. We also study the problem of topological relationships vagueness
only for spatial objects represented by polygons. The same methodology can be used to

address such a problem for objects represented by lines and points.

Considering that internal quality of sources can be distinctive or non-distinctive and that
topological relationships in sources can be identical or different, there exist four situations
that can be studied (Table 5.1). Only the second situation (the grey cell) is explored in the

present work.
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Table 5.1 potential cases of topological relationship in different
sources

Distinctive internal quality| Non-distinctive
internal quality

Identical  topological Non-Studied Studied
relationships in thg
sources
Different topological Non-Studied Non-Studied
relationships in thg
sources

In the following, we assume that the source geometries are topologically consistent in their
respective data sources (i.e. the topological relationships specified in the integrity constraints
are respected). Then, we explore the topological relationships to be respected by the final
geometries resulting from the integration process. Two points of view are considered in the
following study: (1) modifying the topological relationships and keeping the shapes of final
geometries invariant, (2) keeping the source topological relationships invariant and modifying

the final geometries.

5.7.2 Characterizing the possible topological relationships for the final
geometries when a same topological relationship is specified in the

sources

We assume that the final geometry of a given object is a region with a broad boundary.
Likewise, we assume that the same topological relationships are specified for a same set of
objects. The main objective of this section is to characterize the possible topological

relationship between the final geometries.

In the cases studied below, we suppose that an oBjdwsn heterogeneous source

geometried\, A,,.. and A, in the sources, S, .., §, respectively. In the same way, an
object B hasn heterogeneous source geometBigsB,,.., and B, in S, S, .., and §,

respectively. Then, we consider separately the different cases of the topological relationships
that can arise in the data sources @&sjoint, Contains Inside Covers Covered byMeet

and Overlap). In Figures 5.10-5.14, we represent only two heterogeneous redundant
geometries forA and B in order to improve the paper readability. These examples can be

easily extended to any other number of sources.

We termlp andlg the intersection ofA, A,,.. and A, and that ofB,, B,,.. and B,
respectively. In the same way, we tedxn andUg the union of A, A,,.. and A, and that of

160



B,, B,,.. andB,, respectively. The demonstrations of the possible relationships between the

intersections If, Ig) and between the unionbl{, Ug) are presented in Appendix 3. These
demonstrations concern the eight cases of topological relationships that can arise in the data
sources.

+ Disjoint

In each source database, the geometries of spatial oBjectsB have the same topological
relationship: they areDisjoint. Then, I and lg are certainlyDisjoint. Otherwise, the
topological relationship is not respected in one data source at leakt, BodUg, one of the
following relationships is possibleDisjoint, Meet or Overlap (see the demonstrations in
Appendix 3). A union can contain points that do not belong to all of the source geometries.
Therefore, whether the unions overlap or meet each othddjsjwent relation is still possible
between the objects involved. Tir@aximal topological consistency obtained wheDisjoint

(Ia, 18) andDisjoint (Ua, Ug), because then the source topological relationship is respected
despite the shape vagueness. Finally, we conclude thindhgeometrieshould conform to

the restrictions of the next matrix:

IB UB

Ia Disjoint (I, Ig)

Ua - {Disjoint, Meet, Overlap} (Ua,Ug)

In the matrix presented above, no restrictions are imposetAbg and I,/Ug. this
situation is marked by “--" in the corresponding cells of the matrix. Figure 5.10 shows an
example illustrating this case with two heterogeneous geometries of two spatial Algeadts
B. In S and$, the geometries oA andB are disjoint. In this example, regions with broad
boundariesRs andRg are resulted from the integration process to represemtd B in the
final database. IR, andRg, the intersectionk, andlgareDisjoint. The uniongJ, andUg are
also Disjoint Then, we conclude that these final geometries are topologically consistent

Representations of A A
andB in sourceS1 1 \ Ua ?
0 U

Rs
Representations @f Ra
Az

andB in sourceS2

Ra Disjoint Rs

Figure 5.10. Integration example where the topological relationship defined in source databases is
Disjoint
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% Contains/Inside
In the data sources, the geometry Afcontains that ofB. Then, relationship between

intersectionda andlg is necessarilyContains Likewise,Ua containsUg. Consequently, the
topological relationship (i.eContains/Insidg holds despite the shape vagueness. The final
geometries are consistent while the source geometries involved in the integration respect the
topological relationshigContains/Inside(see the demonstrations in Appendix 3). Hence, we
say thatContainsandInside are invariant topological relationshipsThey are still invariant
despite the heterogeneity of the source geometries. For these relationships, the final
geometries should conform to the restrictions of one of the following matrices:

* For Contains A, B)
|B UB

|, | Contains (la, lg)

Contains (Ua,Up)
Ua

* For Inside(A, B)
|B UB

| Inside (la, Ig)
A

Ua - Inside (Ua,Ug)

Figure 5.11 shows an example of two heterogeneous geometric representations of two
spatial object® andB, whereA; containsB; andA; containsB,. Thenla containslg andUa

containsUg.

Representations of A

andB in sourceS1 a \
Representations & /
Ay

andB in sourceS2 AContains B

Figure 5.11. Integration example where the topological relationship in the data source is Contains

% Covers/Covered by
In the data sources, we assume that the geomethycoiers that oB. The intersection of

source geometries @& covers the intersection of source geometrieB {fy Coverslg). The

relationship between the intersections is also valid when it correspor@sntains In the
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latter case, the intersections between the boundaries of source geometries of thé abgcts

B do not arise in the same location in the different data sources. The relationship between
intersections cannot be different @mntainsor Covers(see the demonstrations in Appendix

3).

The unionU, should always covedg. The maximal topological consistency is obtained
when Covers(la, Ig) and Covers(Ua, Ug) because the topological relationship is respected
despite the shape vagueness. The same conclusions may be Qaderéa by{Covered by
or Insidg between the intersections$a( Ig) and Covered bybetween the uniondJg, Usg).
Covers and Covered byare also twoinvariant topological relationshipdor the unions.
Finally, the final geometries should conform to the restrictions of one of the following

matrices:

 Covers(A, B e Us

Ia | {Covers, Contains} (Ia, Ig)

Ua ” Covers (Ua,Ug)

» Covered byA, B)
Is Us

In | {Covered by, Inside} (la, Ig)

Un - Covered by (Ua,Ug)

Figure 5.12 shows an example two spatial objéceand B that are represented in two
different data sourceS1landS2.In S1 and S2, the representation®&ndB are respectively
related by the following relationship€overs (A;, B1) and Covers(A,, By). For the final

geometries, we have Covdls, Ig) and CovergUa, Usg).

Representations of A

Representations & /
P Aze

andB in sourceS2
ACovers B

Figure 5.12. Integration example where the topological relationship defined in the sources is Covers
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s Overlap

In the data sources, the geometry Afand that ofB overlap each other. In the final
geometries, one of the following relationships may arise between the interségtaont g:
Disjoint, Meetor Overlap. However, the unioridy andUg should overlap each other. When

the Overlaprelationship does not occur in the same location for all the source geometries, this
part of the interior cannot appear in the intersections. In the latter cas&vdr&ap
relationship is still possible between the objects involved while the relationship between the
intersectionsl, and Ig is Meet or Disjoint (see the demonstrations in Appendix 3). The
maximal topological consistency is obtained wirerlap (a, 1s) andOverlap Ua, Ug), i.e.

the topological relationship is preserved despite the shape vagueness. Finally, the final

geometries should conform to the restrictions of the following matrix:

Is Us

|, | {Overlap, Meet, Disjoint} (I, Is)

Ua - Overlap (Ua,Ug)

Figure 5.13 shows an example of two heterogeneous geometric representations of two
spatial object®\ andB. In S, andS,, the respective geometriesAfandB overlap each other.
After the integration, the intersectioms andlg overlap each other. In the same way, the

relationship between the uniong Bnd W is Overlap.

®
/ B

A Overlap B

Representation of A
andB in sourceS1

Representation ok
andB in sourceS2

Figure 5.13. Integration example where the topological relationship defined in the sources is Overlap
* Meet

Let’s assume thatleetis the relationship between the geometriea @ndB in each one of

data sources. In the final database, the topological relationship between the intersgctions
andlg can be eithebDisjoint or Meet However, the uniongy andUg should be connected by

one of the following relationshipsdeet Overlap. The uniong&J, andUg should overlap or
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meet each other while the intersectidasand Iz meet each other. Otherwise, the source
geometries oA andB do not respect the topological relationship in one data source at least

(see the demonstrations in Appendix 3).

When the intersectiorig andlg areDisjoint, the uniongJ, andUg should overlap or meet
each other. The latter case occurs when the source geometAeandB do not meet each
other in the same locations. A maximal topological consistency is obtainedvdst(l 5, Is)
and Meet (Ua, Ug), because the topological relationship is preserved despite the shape
vagueness. Finally, the final geometries should conform to the restrictions of one of the

following matrices:

J Mee(IA, |B):
Is Us
Ia Meet (I a, IB)
Ua - {Overlap, Meet} (Ua,Ug)

» Disjoint(la, Ig)
Is Us

la" (Disjoint (Ia, Ig)
Ua - {Overlap, Meet} (Ua,Ug)

Figure 5.14 shows two spatial objeéteindB where the geometry @& meets that oB in
each data source. In this example, the intersectipasd Ig are Disjoint even though the
unions Ux and Ug overlap each other. The final geometries with vague shapes are
topologically valid because they satisfy the specifications of the second matrix presented

above: Disjoint(l, Is) and Overlap{,, Ug).

Representation of A B 1
andB in sourceS1 1 \ - H
0 8 UB

Figure 5.14. Integration example where the topological relationship defined in the sources is Meet

Representation ok
andB in sourceS2

Ao
AMeet B
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5.7.3 Strategies to reduce the vagueness of topological relationships

5.7.3.1 Principles of the strategies
In this paper, we propose two strategies to reduce the vagueness about the topological
relationships in a final database:

1) Choosing the best extents of objects involved and modifying them if they violate the
topological relationship defined in the sources. The final geometries are modified to
be crisp (or well-defined).

2) Using final geometries with vague shapes and apply an adverbial approach to
stress the partial respect of the topological relationship.

The geometric modifications of final geometries aimsfaating them to respect the
topological relationships defined in the data sources. Such a strategy may be used when the
topological relationships are more important to the final users than the objects’ shapes
involved. For example, it is sometimes required to prevent an overlap relationship between
the forest stands in spite of their broad boundaries. The principles of geometric modifications
are proposed and discussed in (Ubeda and Egenhofer 1997). For example, it is possible to
retain only the relationship between intersections of the source geometric representations even
though the unions may violate the source topological relationship, and vice versa. In the case
of the Disjoint relationship (Section 5.7.2), the intersections of the objects involved are
usuallyDisjoint. Consequently, the intersections give rise to consistent final geometries of the

objects involved.

The second strategy retains the final geometries and uses topological operators adapted to
regions with broad boundaries, as defined in (Bejabail. 2008). This strategy considers the
intersection as the minimal extent of the object and the union as its maximal extent. Then, a
given topological relationship gartially respected, because only the impossible relationships
(based on the source geometries and the topological relationships defined in the)sangrces
forbidden. For example, if the source geometriesDas@int, then it is impossible to have a
Containsrelationship between the intersections or between the unions (Section 5.7.2).

5.7.3.2 First strategy: modifying the final geometries

The modification of geometries is an important issue that has been thoroughly studied in

several works on the spatial data conflation (e.g. Saalfled 1993, Rodriguez 2005, Casado
2006) and the control of spatial databases consistency (e.g. Ubeda and Egenhofer 1997). In
this section, pragmatic examples are provided in order to illustrate several possible ways to

modify a final geometry resulted from an integration process. The goal of this modification is
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to force the verification of a topological relationship in a final database and to reduce the
vagueness of topological relationship due to geometric heterogeneities.

In (Ubeda and Egenhofer 1997), two types of geometric modifications are proposed in
order to correct topological relationship violationsoving and reshaping. Moviran object
A consists of translating it in one of five main directions: alongXlais, along they axis,
perpendicular t@® (a second object), parallel B) and alongA. Moving an object can be used
to change its relative position according to another object while preserving itRastaping
an objectA consists of deforming its original geometry. According to Ubeda and Engenhofer
(1997), reshaping refers to move one or several parts of A's geometry and leaving another
part unchanged. In this context, it is important to note that both the original and reshaped
geometries are crisp, simple and connected. Reshaping an object aims to modify its shape in
order to force the topological relationship between the two objects involved without changing

their relations with other objects of the database.

When the spatial data quality is poorly described, the integration process can produce two
geometries for each integrated spatial object: (1) the intersection and (2) union of the source
geometries. The goal of this section is to apply geometric modifications on the intersections

and/or unions of source geometries in order to force a given topological relationship.

The intersection refers to the parts that exist in all of its source geometries while the unions
integrate all of the points that belong to any of the source geometries. It is less risky to choose
the intersections if we assume that all of the source geometries have a poor accuracy
(Rodriguez 2005). However, the unions can be selected when we assume that all of the source
geometries are incomplete (i.e. they do not include all of points that they should). The unions
become more reliable geometric representations than the intersections. In other cases, the
union may be more appropriate than the intersection for the first object involved, whereas the

intersection is better for the second object.

Our approach is to choose thest extenamong the union and intersection of source
geometries of each spatial object. Then, depending on whether the source topological
relationship is preserved or not, two principal methods are proposed: (1) preserving the shapes
of the best extentsr (2) changing them (i.e. moving and/or reshaping). The goal of the first
method is to leave the shapes of the best extents of the objects unchanged when the
topological relationship is respected. The second method aims to modify these extents in

order to insure the topological relationship specified in the sources. In Figures 5.15a-5.15e,
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we consider that two sources are available and we apply the methods presented above on the
different cases for the topological relationship (il@&sjoint, Contains Inside Covers

Covered byOverlap, orMee). According to Section 5.7.2, we look for the most appropriate
method to respect the topological relationship. The goal is to fordeestextents selected

(i.e. intersectionsunionsor intersection — union) to respect this relationship.

Source topological relationship : Digoint

Best extents The topological The topological relationship is violated
chosen relationship is respected Moving one of the bes Reshaping one of the bes
extents extents

Intersections i Not needed because the Not needed because the
,i @ intersections are intersections are necessarily

necessarily disjoint (cf] disjoint (cf. Section 5.7.2)

_______________ Section 5.7.2)

Intersections are disjoin

Unions @ @@ - 'l@»

Moving Ug
J Deleting the part ofJg

, ————p
which violates the relation

Occurs when the uniong

are disjoint

The B _ . _

intersection “ e ﬁ )
for one and @ @ ' = %) ' "L

the union for
the other

Q : Moving Ug N Deleting the part ot/g
! which violates the relation

1
Occurs when the best 'H

extents chosen are
disjoint

Figure 5.15a. Strategies for forcing a topological relationship in spatial data integration

(case of Disjoint
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Source topological relationship : Contains/Inside
Best extents The topological The topological relationship is violated
chosen relationship is respected Moving one of the best Reshaping one of the best
extents extents

Intersections Not needed because thé&lot needed because the
relation between therelation between  the
intersections i intersections is necessarily
necessarily Contains/| Contains/  Inside (cf.
Inside (cf. Section| Section 5.7.2)

5.7.1)

Unions Not needed because th&lot needed because the
relation between therelation between the
unions is necessarilyunions is  necessarily
Contains/ Inside (cf. | Contains/  Inside (cf.
Section 5.7.1) Section 5.7.2)

The

intersection

for one and

the union for

the other

Deleting the part ofJa
which violates the relation
IBI

Figure 5.15b. Strategies for forcing a topological relationship in spatial data integration

(case of Contains/Insidle
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Source topological relationship : Cover€Lovered by

Best extents

The topological

The topological relationship is violated

chosen relationship is respected
Moving one of the best| Reshaping one of the best extents
extents
Intersections ,
Moving I - Expandingla

Unions Not needed because thé&lot needed because the relatjon
relation between thebetween the unions is necessarily
unions is necessarilyCovers/ Covered bycf. Section
Covers/ Covered bycf. | 5.7.2)
Section 5.7.1)

The

intersection

for one and
the union for
the other

Moving Ug !

—=

Deleting the part ofJa that
violates the relation

Figure 5.15c. Strategies for forcing a topological relationship in spatial data integration

(case of Covers/Covered)by
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Source topological relationship : Overlap

Best extents

The topological

The topological relationship is violated

chosen relationship is respected

Moving one of the best| Reshaping one of the best
extents extents

Intersections
Moving Ig - Expandinglg

Unions Not needed because th&lot needed because the
relation between therelation between the
unions is necessarilyunions is necessarily
Overlap (cf. Section Overlap (cf. Section
5.7.2) 5.7.2)

The

intersection

for one and

the union for
the other

Moving Ig

~!4-

Expandinglg

Figure 5.15d. Strategies for forcing a topological relationship in spatial data integration

(case of Overlap
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Source topological relationship : Meet

Best extents The topological The topological relationship is violated
chosen relationship is respected™;ouinaone of the best Reshaping one of the best
extents extents
Intersections @ @
o I_\/I_O\-nF\é I_B _____________ E)Zp-lehdingl B

Unions

Deleting the part ofJa
--r which violates the relation

ﬂ

The 6 y

intersection

weee () () <&
the union for

the other | - oo |- L e e e
Moving Ia Deleting the part ofJg
which violates the relation

Figure 5.15e. Strategies for forcing a topological relationship in spatial data integration
(case of Me@gt

5.7.3.3Second strategy: using an adverbial approach to reduce the vagueness of the

topological relationships

The objective of this second strategy is to preserve the final geometries resulting from the
integration of heterogeneous source geometries. The shape vagueness of the final geometries
implies that the topological relationships cannotcbenpletelyrespected. Our methodology
consists of studying the possible topological relationships between the respective unions and

intersections of the objects involved. For each topological relationship, the final geometries
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are valid if the specifications of the related matrices are satisfied (cf. Section 5.7.2). For
example, if the source geometries dbgsjoint, then their respective intersections are
necessarilyDisjoint. In order to express this specification, we propose using the topological
relationships introduced in (Bejaowt al. 2008). This adverbial approach reduces the
topological relationships vagueness because the topological relationship defined in the source
databases is partially respected, and impossible configurations are forbidden. Figure 5.16

shows how the topological relationships are redefined for final geometries with vague shapes.

Topological relation Example of| Topological integrity constraint defined for
displayed in the geometries resultingthe final geometries
source databases from integration

Disjoint (A weakly Disjoint B / Disjoint(lalg) and
R(Ua,Ug)={Overlap, Meet) or (A completely,
@ “) Disjoint B / Disjoint(Ia,lg) and Disjoint(Ua,
~— Us))
Contains/Inside For Contains:
AT A fairly Contains B / Containgla,lg) and

o

' ContaingUa, Ug)

For Inside:
A fairly InsideB / Insid€l,lg) and Insid€Ua,
Ug)

4

g

For Covers:

(A weakly CoversB / Containgla,ls) and
CovergUp,Ug)) or (A fairly Covers B /
Covergla,lg) and Cover@Ja,Ug))

For Covered by:

(A weakly Covered by / Insidgla,lg) and
Covered bfUa,Ug)) or (A fairly Covered byB
/ Covered bfl,lg) and Covered ki, Ug))

Covers/ Covered by

@

Overlap (A weakly OverlapB / R(alg)= {Disjoint,
- Mee} and OverlapUa,Ug)) or (A fairly
EM Overlap B /  Overlap(als) and
A OverlapUa,Ug))
Meet (A weakly MeeB / R(la,lg)= {Disjoint, Meet

) and OverlapUa,Ug)) or (A weakly MeetB /
‘ Disjoint(la,1g) and Mee(Ua,Ug)) or (A fairly
MeetB / Meefla,ls) andMee(Ua,Ug))

Figure 5.16. An adverbial approach to reduce the topological vagueness
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5.8 Example of reducing the intra-level topological relationships

vagueness in a spatial data warehouse

In the present example, we consider the case of population density transitions from the urban
zones to rural ones. The urban-rural classification may be based on the population density,
which often decreases progressively from the urban zones to rural ones. Generally, the urban
planners are appointed to estimate the boundary of the urban zones. An urban zone can have
heterogeneous geometries in different databases when the estimates are made by different
experts. Therefore, it is not reliable to surround an urban zone using a linear boundary.
Nonetheless, these spatial objects are falsely represented as regions with crisp boundaries that

replace the real broad boundaries.

In this example, a spatial data warehouse (with a cube structure) is required to support a
decision-making process in the domain of urbanism. Figure 5.17 shows a star schema of the
spatial data warehouse. The fact table is connected to three dimensions. The spatial dimension
is made up of four hierarchy levelBuilding_group,Urban_zone Region, Country The
temporal dimension contains three hierarchy levéésir, Five_yearsTwenty yearsThe last
dimension is calledaxe_Categoryand it is composed of one hierarchy level that describes
the categories of required taxes (gupvincial, federal, property tax, house tax, etOnly

one measure, called required_taxesconsidered in this spatial data cube.

taxe Category

[ category
Spatial_dimension
Temporal_dimension
Fact_table [0 Courtry
[1 Twenty_year . [1 Region
[1 Five_year 1 reauired taxe [1 Urban_zone
R

[ ‘esr Buildling _group

Figure 5.17. The star schema of a spatial data warehouse in the domain of urban planning

In this example, the urban zones are loaded from different data sources. For an urban zone
A, we assume that the intersection between its source geometries is non-empty. The

integration of source geometriesAigenerates a final geometry with a vague shape. We are
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interested in specifying final topological integrity constraints for geometries stored at the
Urban_zondevel of the spatial dimension.

We remind the hypotheses made in this example. First, the same topological relationships
between urban zones are specified in the different data sources. Second, semantic
heterogeneities are not considered in our specification of final constraints. Finally, we do not
deal with inter-levels topological relationships.

Figure 5.18 shows an example of two urban zofhesnd B that are disjoint in their
respective sources,&, and Sbut are represented by heterogeneous crisp geometries in each
one. The same topological relationship is specified in the topological integrity constraints
defined in the data sourceshé geometries of two different urban zones should be disjoint
The final geometries are regions with broad boundaries that overlap each other (th&wnions

and W overlap each other, whereas the intersectigasd k are disjoint).

Y
Ne——1 A

S —>

Integratlon process

N~—
Y
N———1
N——
Y
Ne——1 UB

S —>

Final geometry with vague shapes, which

N——

can be loaded into the spatial dimension

Spatial dimensic

—»| Urban_zone

Figure 5.18. Integration of the heterogeneous source geometries of an urban zone

The source topological integrity constraints cannot be completely respected by the final
geometries with vague shapes. Therefore, we use the two strategies defined above to reduce
the topological relationships vagueness in the lewban_zoneof the spatial dimension. The
following constraints are expressed using a spatial extension of OCL @iaét 2007,

Bejaoui etal. 2008).

» Using the first strategy (modifying the final geometries):
In this example, the intersections are certainly disjoint because the source geometries respect
this constraint. If we assume that the topological relationship is more important than objects
shapes, then it is less risky to choose the intersections as the best spatial extents of the urban
zones. In the other cases, the best extensions should be translated (see the first case in Figure
5.15) to verify the constraint before loading them in thban_zonelevel. The final

topological integrity constraint is expressed as follows:
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ContextUrban_zone inv:
Urban_zone.allinstance®orall (a, b| a<>b implie®ISIOINT(a,b));
» Using the second strategy (an adverbial approach to express final topological
integrity constraints):
In this strategy, we consider that the shapes of objects are more relevant than the topological
relationships in the decision-making process. In other words, decision-makers need to take
into account the shape vagueness of urban zones in order to improve the quality of their
decisions by considering the uncertainty of input data. Nonetheless, the vagueness of the
topological relationships can be reduced by preventing impossible relationships between the

final geometries. For this purpose, we use the second strategy.

According to the constraints defined in the data sources, the intersections should be disjoint
at least. Then we use the topological operatmesakly Disjoint and “completely Disjoiritto
express this specification (see the first case in Figure 5.16). The unions sh@ikjon#,
Overlap or Meet each other. Otherwise, the final geometries are invalid and cannot be
accepted in the spatial dimension. The final constraint is expressed as follows:
ContextUrban_zone inv:
Urban_zone.allinstancedePAll (a, b| a<>b impliesweakly Disjoint(a,b)

Disjoint(l,,1p) and RU,,Up)={Overlap, Mee})) OR (completely Disjoint(a,ld)
Disjoint(l4,1p) and Disjoin{Ua,,Up))));

5.9 Conclusion

In spatial data integration, the spatial data quality can be used to compare the data sources in
order to deal with geometric heterogeneities. When the data quality is distinctive, one data
source can be selected as a reference in order to apply an overlay method and generate crisp
geometries from the integration process. Otherwise, the spatial data integration consists of
merging all of the source geometries that contribute equally in the final geometry of a given
spatial object. In the latter case, the final geometries may be geometries with vague shapes
(e.g. regions with broad boundarigsvhen there is a difference between the union and
intersection of source geometries. The topological relationships between final geometries
should be redefined in order to take into account their shape vagueness. In this paper, we
studied the problem of topological relationships vagueness, defined as the uncertainty about

the appropriate topological relationship between the final geometries. The main objective is to
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reduce the topological relationships vaguendsstween the final geometries. Table 1

explained the scope of this work. We limited our study to the case where the same topological
relationship is specified in the source for the objects involved and where the data quality is
not distinctive. For the other cases, additional investigations are required to deal with

topological relationships vagueness.

This paper provides three main contributions. First, a model for objects with vague shapes
(Bejaouiet al. 2008) has been reused to merge all the source geometries of a given object
when the internal quality analysis mon-distinctive Second, we have studied the valid
topological relationships between the final geometries resulted from an integration process
considering the case where the saapmlogical relationships found in the data sources. For
each of the eight topological relationships (Egenhofer and Herring 1990) that can arise in the
data sources, we studied which topological relationships can occur between the respective
unions and intersections of the source geometries of objects involved. We proposed patterns
of matrices to verify the validity of relationships between final geometries with vague shapes
(cf. Section 5.7.2). Third, we proposed two main strategies to reduce the topological
relationships vagueness: @)oosing the best extents of objects involved and modifying them
if they violate a given topological relationship, (Zeserving the final geometries with vague
shapes and using an adverbial approach to stress the partial satisfaction of a given
topological relationship. The first strategy can be used when the topological relationships are
considered more important than the shapes of objects involved to meet the users’ needs. The
second strategy aims to preserve the possible vague shapes of final geometries and to partially
satisfy the source topological relationships. These strategies were tested in an example of a

spatial data warehouse (with a cube structure) in the domain of urbanism.

According to Malinowski and Zimanyi (2005), topological relationships between hierarchy
levels have been the focus of many works (e.g. Tryfona and Egenhofer 1997). However,
neither the shape vagueness of the geometries involved in these relationships nor their
implications in computing of measure aggregations were considered (Pedersen and Tryfona
2001, Jenseret al. 2004. In the future researches, we aim at studying these problems using
the contributions of the present work.

A code generator could be also proposed and implemented. Such a generator could
produce triggers or SQL queries from OCL constraints in order to check the validity of data in
the data warehouses. The generated code will be used to control if the data comply with the

topological conditions of the constraints. In order to reach this goal, a specific extension of
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the existing code generator OCL2SQL could be considered for data warehousest(&linet
2007).
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6.1 Résumé de l'article

Dans les bases de données spatiales, les contraintes topologiques d'intégrité contrdlent les
propriétés topologiques des objets spatiaux ainsi que la validité de leurs relations
topologiques. Ces contraintes peuvent étre exprimées en utilisant des langages formels tels
gue l'extension spatiale d’OCL (acronymeCQthject Constraint Language OCL spatial

permet I'expression des contraintes topologiques impliquant les objets spatiaux ayant des
formes bien définis. Cependant, ce langage ne fournit pas les éléments de syntaxe requis pour
exprimer des contraintes topologiques impliquant les objets spatiaux ayant des formes vagues
(ex. régions ayant des frontieres largesLe vague de forme requiert des opérateurs
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topologiques appropriés (exortement disjoint, faiblement adjacgénpour désigner les
relations valides entre ce type d'objets. Cet article adresse le probleme de manque des
éléments de syntaxe pour exprimer des contraintes topologiques impliquant des régions ayant
des frontieres larges. Nous proposons une extens{@@ld’spatialbasée sur notre modele
géométrique pour des objets ayant des formes vagues et une approche adverbiale pour des
relations topologiques entre des régions ayant des frontiéres larges. Cette extension a été
validée sur un exemple d’une base de données stockant des informations sur les épandages

agricoles.

6.2 Abstract

Topological integrity constraints control the topological properties of spatial objects and the
validity of their topological relationships in spatial databases. These constraints can be
specified by using formal languages such as the spatial extension Objihet Constraint
Language(OCL). Spatial OCL allows the expression of topological integrity constraints
involving crisp spatial objects. However, topological integrity constraints involving spatial
objects with vague shapes (e.ggions with broad boundarigsare not supported by this
language. Shape vagueness requires using appropriate topological operatossrdediy,
Disjoint, fairly Mee} to specify valid relations between these objects; otherwise, the
constraints cannot be respected. This paper addresses the problem of the lack of terminology
to express topological integrity constraints involving regions with broad boundaries. We
propose an extension 8patial OCLbased on the QMM model for objects with vague shapes
and an adverbial approach for topological relations between regions with broad boundaries.
This extension oEpatial OCLis then tested on a database storing data related to agricultural

spreading.

6.3 Introduction

Integrity constraints are well-know techniques to guarantee the consistency of the data.
According to Altman (1994), integrity constraints are rules that are dependent on a problem
domain, and they must be held to be true for all meaningful states of information systems. The
modeling of integrity constraints in a conceptual data model may be viewed as a
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representation of a set of business rules for the information system. The satisfaction of these
constraints tends to guarantee the consistency and quality of data.

In geographical databases, the spatial integrity constraints are required to control the
topological properties of geometries, the semantic aspects (e.g., a house has one floor at
least), and topological relations (e.g., cultural parcels should be disjoint or adjacent) in
addition to basic constraints (e.g., domain constraints) (Frank 2001, Souris 2006). The formal
specification of these integrity constraints requires using an unambiguous language adapted to
geographical databases. A spatial database-oriented language should allow the specification of

both alphanumeric and spatial constraints (Duboisset et al. 2005).

The work of (Demuth and Hussmann 1999, Demuthal.e2001) proposed to make use of
the Object Constraint Language (OCL) (Warner and Kleppe 1999) to model alphanumerical
database integrity constraints. OCL provides a framework to define constraints on UML class
diagrams. This language has several advantages. First, it allows a declarative expression of
constraints. Second, it is based on UML which is commonly used in the information system
and software engineering domains. Third, it can be interpreted by code engines/compilers to
generate integrity checking mechanisms automatically. Some tools allow producing code in
different languages (Java, C#, SQL, etc) from specifications of constraints expressed in OCL
(Klasse 2005). For instance, different tools can produce SQL code (Demuth 2005, Demuth et
al. 2004). The produced SQL queries can be used to check if a database verifies the

constraints or to forbid inserting data that do not verify a constraint.

A recent extension of OCL called “Spatial OCL” has been proposed to model complex
spatial integrity constraints (Hasenohr and Pinet 2006, Piradt 2007). Currently, Spatial
OCL cannot be used to define topological constraints involving objects with vague shapes.
However, the shapes of many spatial objects are inherently vague (Bejaalui2€08,
Burrough and Frank 1996, Clementini and Di Felice 1997, Cohn and Gotts 1996, Dilo 2006,
Reis etal. 2006, Tang 2004). This is the case of regions with broad boundaries (e.g. forest
stand, pollution zone, valley or lake). In this paper, we propose a formalism based on Spatial
OCL to model integrity constraints involving topological relations in databases storing vague
objects. More precisely, we focus on regions with broad boundaries and we integrate the
recentQualitative Min-Maxmodel QMM) (Bejaoui etal. 2008) into Spatial OCL. In this
model, a region with a broad boundary is composed of crisp and vague parts. The advantage
of QMM is its capacity to represent regions with partially broad boundarieQVintis also

very expressive in terms of topological relationships. 242 topological relationships have been

183



distinguished between two regions with broad boundaries. An intuitive method based on
adverbs is proposed in (Bejaoui @t 2008) to term the relationships. This makgsiM

adapted to query or constraint languages.

The paper is organized as follows. In section 2, we briefly review the concept of objects
with vague shapes and we present@ M model. In section 3, we review related works on
the specification of spatial integrity constraints involving topological relationships. These
constraints are termed topological (integrity) constraints in the present paper. In section 4, we
introduce our extension of Spatial OCL. Section 5 presents a case study inspired of a spatial
database storing information about agricultural spreading activities. Some spatial objects in
this database could be represented by vague shapes. Their topological constraints are
expressed using the proposed extension of Spatial OCL. Section 6 focuses on the

implementation of the approach and Section 7 presents the conclusions of our work.

6.4 Objects with vague shapes in QMM model

6.4.1 Categorization of spatial objects with vague shapes

According to Erwig and Schneider (1997) and Hazarikal.g2001),shape vaguenessfers

to the difficulty of distinguishing the shape of one object from its neighborhood. It is an
intrinsic property of an object that has a spatial extent in a known position but does not have a
well-defined shape (e.g., a pollution zone, a lake, a forest stand, etc.). According to the QMM
model defined in Bejaoui edl. (2008) (cf. Chapter 3), we distinguish three basic types of
spatial objects with vague shapésoad pointslines with vague shapes (i.e., lines with broad
boundaries lines with broad interiorsor broad line3, andregions with broad boundaries

Figure 6.1 shows an example of each one of these types of objects. A region has a vague
shape when it is surrounded by a broad boundary instead of a sharp one (Figure 6.1(c)); we
refer to these agegions with broad boundarie®.g., a pollution zone)A line has a vague

shape when its boundary (endpoints) and/or its interior are broad (Figure 6.1(b); e.g., the
itinerary of an historic explorerror lines,we make a distinction betwedsoad interiorand

broad boundaryas we consider them specializationdinéar shape vaguenegsf. Chapter

4). This distinction is also useful for points because a point does not have a boundary; it is
only composed of an interior. The shape of a given point corresponds to the elementary space
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portion, which refers to its interior (Figure 6.1(a)). A broad point arises when there is a
difficulty to distinguish the punctual object from its neighborhood (e.g., a mountain peak).
Principles of QMM model can be retrieved in Section 3.6. The original version of this section

has been modified to reduce redundancy and improve the readability of the thesis manuscript.

— = -

(a) A broad poir (b) A line with a vague shape  (c) A region with a broad boundary

Figure 6.1 Examples of objects with vague shapes
6.4.2 Regions with broad boundaries and their topological relations

In this paper, we define a region with a broad boundary according {QNt model. A

region with a broad boundary is then composed by two crisp sub-regiors:nfaximal

extent Awax (i.€., the representation of the region when the boundary is considered as far as
possible)and (2) a minimal extent A (i.e., the representation of the region when the
boundary is considered as close as possible). These two extents should are related by one of
the following topological relation€qual( Anin, Anay) or Contains(Ain, Amay) or Covers(Ain,

Amay (Figure 6.2). The broad boundary refers to the difference between these two extents.
This difference may include area everywhere around the minimal extent (i.e., regions with
completely broad boundaries), may include area in some locations but not others around the
minimal extent (i.e., regions with partially broad boundaries) or empty everywhere around the
minimal extent (i.e., regions with no broad boundaries, or crisp regions). In figure 6.2(b), we
present an example of a region with a partially broad boundary. The boundary is partially
broad because the difference between the maximal extent and the minimal one is empty in
some locations. Figures 6.2(a) and 6.2(c), represent an example of a crisp region and another

one of a region with a completely broad boundary, respectively.

Maximal extent Maxijmal extent

Minimal extent

Minimal extent = Maximal exte

Minimal extent

(a) A crisp reqio (b) A region with a (c) A region with a
partially broad boundar completely broad boundary

Figure 6.2 Regions with broad boundaries

® The spatial relations (i.eEqual Contains Covers used in this definition are those defined in (Egenhofer and
Herring 1990).
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In this paper, th€@MMropoiogical relationsfOr regions with broad boundaries (cf. section 3.7)
has been used to identify topological relationships between spatial objects concerned by a

topological integrity constraint.

6.5 Specification of topological integrity constraints in spatial
databases

Topological (integrity) constraints are defined as rules, which control the validity of
topological relations between objects in spatial databases. They may be also viewed as spatio-
semantic constraints, in the sense given by Bejaacal. €2007) and Salehi etl. (2007). In

this Section, we study the formal expression of topological constraints.

6.5.1 OCL

The Object Constraint Language (OCL) is a subset of the well-known Unified Modeling
Language (UML) that allows specifying constraints over entities representing concepts from
the application domain (Warner and Kleppe 1999, OMG 2007). OCL constraints are defined
on UML diagrams. OCL was first developed by a group of IBM’s scientists around 1995
during a business modeling project. It was influenced by Syntropy that is an object-oriented
modeling language that makes heavy use of mathematical concepts (Cook and Daniel 1994).
OCL is supported by the Object Management Group and its role is important in the Model
Driven Architecture approach (Kleppe and Warner 2003). OCL is used to specify invariants,
I.e. conditions that "must be true for all instances of a class at any time" (Schahi@@az2).

In the context of databases, an important advantage of OCL is due the fact that constraints are
expressed in declarative manner at a conceptual level. OCL integrates notations close to a
spoken language to express constraints. It is easier for database users to express the integrity
constraints using OCL than SQL.

OCL provides a platform-independent and generic method to model constraints. It can be
interpreted by compilers to generate code automatically. Some tools allow producing integrity
checking mechanisms in different languages (Java, C#, SQL, etc) from specifications of
constraints expressed in OCL (Klasse 2005). For example, OCL2SQL can generate SQL code
from OCL constraints (Demuth and Hussmann 1999, Demwth 2001, Demuth etl. 2004,
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Demuth 2005). The produced code can be used to check if a database verifies the constraints
or to forbid inserting data that do not verify a constraint (Demuth and Hussmann 1999,
Demuth et al. 2001).

Let us consider a clagsgricultural_Parcelin a spatial database. The declaration of the
class isAgricultural_Parcel(id: Integer, shape: Region, surface_area: Re&adme of these
parcels may have no spatial representation stored in the database. In this case, the value of the
attributeshapeis equal toNULL. The following OCL constraint models that the surface area

of a parcel is greater than 0 if a spatial representation is available for this parcel:

context Agricultural_Parcel inv:

self.shape& notEmpty() implies self.surface_area >0

In OCL constraints, self always represents an instance of a class. This class is specified in
"context". An OCL constraint defines a condition that must be true for each instance of the
class, i.e. for each value of self. Thus the above constraint specifies a condition that must be
true for each instance of Agricultural_Parcel; self.shape and self.surface_area are attributes of
self. The OCL functiomotEmpty) returns true if self.shape has a value and false otherwise.

The operator “implies” corresponds to the logical implication.

6.5.2 Spatial OCL

Some tools and methods have been proposed to model visually spatial integrity constraints
(Cockcroft 1997, Cockroft 1998, Servigne at 2000, Borges eal. 2001, Cockroft 2001,
Cockcroft 2004, Parent el. 2006, Raffaeta etl. 2008); their goal is to enable end-users to
specify simple constraints thanks to specific GUI and different visual representations. They
provide very interesting possibilities to end-users but they cannot be used to model complex
constraints (e.g., topological constraints depending on complex conditions (Kaalg et
2004)).

In order to define complex spatial integrity constraints, Karaj. ¢2004), Duboisset etl.
(2005) and Pinet edl. (2007) proposed an extension of OCL meta—model. This extension
called Spatial OCL adds geographic basic types (ant, line, andregion) into the OCL
meta-model - see Figure 6.3. These spatial types are generalized through an abstract type
called BasicGeoType Topological constraints between simple regions can be expressed

through Spatial OCL; this language integrates spatial functions based on Egenhofer's
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relationships between simple regions into OCL. The general syntax of these Spatial OCL

functions is:
(A) .EgenhoferTopologicalRelation (B) : Boolean

Thus,EgenhoferTopologicalRelation can laisjoint, contains inside equal meet covers
coveredByoverlap.A andB are the parameters of the functions, i.e. the two simple regions to
compare. These operations return true or false depending on whether the topological relation
betweenA andB is true or false. The following example of Spatial OCL constraint illustrates

the use of the proposed functions.

Let Road andBuilding be two classes; these two classes hagbéapeattribute. The
topological constraint « buildings and roagtsould not overlap each otheris specified as
follows in Spatial OCL:

context Road inv:

Building.allinstances() —>forAll( b]
self.shape . di sj oi nt (b.shape) or
self.shape .neet  (b.shape))

In OCL, the functionC.allinstances() returns a collection that contains all the
instances of a clags. ConsequentlyBuilding.allinstances() returns a collection
that contains all the instances of Bilding class. The OCL operatidorAll corresponds
to the universal quantifier. In the constraisglf is an instance of Road class, i.e. an
instance of the context. The semantics of the constraint is “For each insédince Road
and for each instandzin Building, the shapes d&f andself must be disconnected or must

meet each other.”

OCLBasicType

‘ Integer ‘ ‘ Real ‘ ‘ String ‘ ‘ Boolean ‘ ‘ BasicGeoType ‘

e

Figure 6.3 Extension of the meta—model of OCL proposed in (Kang et al. 2004).
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6.6 Adverbial spatial OCL for Objects with vague shapes (AOCL ovs)

As seen in previous sections, the shapeRRBB are more complex than those of crisp ones
and their topological relations should be identified differently. Then, topological constraints
cannot be specified in the same way as for crisp regions. Additional OCL extensions are
required to deal with topological constraints RBB For example, how can we express a
topological constraint, which specifies that “two zones shoulcobgpletely disjoinbr fairly
meeteach other’? We need mai@erant topological functions than those currently used in
Spatial OCL.

Hereafter, we propose an extension of the Spatial OCL in order to support the formal
expression of topological constraints betw&BB We call this extension Adverbial spatial
OCL for Objects with vague shapg®OCLoys for short). For that, we integrate the
specifications ofQMM spatial model defined for objects with vague shapes into the meta—
model of Spatial OCL. Moreover, we integrate our adverbial approach into a set of new
functions of Spatial OCL in order to express strength of topological relations specified in

a constraint.

We propose to distinguish two abstract subclasses of geometries generalized by
BasicGeoTypen the meta-model of Spatial OCL: a type fObjects with vague shapes
(OVSTypg and another one foObjects with Crisp Shape@OCSTypg OVSTypeis a
generalization of three basic types of objects with vague shbpesd point line with a
vague shapandregion with a broad boundaryrhese additional geometric basic types are
defined according to th@ MM model. Then, &BBis composed by two crisp polygons (i.e.,
this relation is expressed through aggregations between the obje®dgman with a broad
boundaryand the object typRegion), which respectively represent the minimal extent and
the maximal extent of the object. Figure 6.4 shows a general extension of the Spatial OCL
meta—model, which covers three basic types of objects with vague shapes. Hereafter, we focus

on topological constraints for only regions with broad boundaries.
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‘ BasicGeoType ‘
A

OVSType OCSType

i
| | |

‘ Point ‘ ‘ Line ‘ ‘ Region ‘
2 2
minimal extent
*
maximal extent
Broad point H Line with vague shape H Region with broad boundary &

*

Figure 6.4 Extension of the meta—model of Spatial OCL

As presented in Section 2.2., the qualitative approach @khel model permits to model
a relation betweeRRBB by an Egenhofer’s relation associated to an adwedakly fairly,
strongly, completely. The proposed Spatial OCL extension introduces new topological

functions adapted to RBBhe general syntax of these new Spatial OCL functions is:
(A) .Adverb_EgenhoferTopologicalRelation (B) : Boolean

Thus,EgenhoferTopologicalRelation can laisjoint, containg inside equal meet covers
coveredBy overlap. Adverb can beweakly fairly, strongly, completely A and B are the
parameters of the functions, i.e. the two objects havingRéggon with broad boundarype.
These functions return true or false depending on whether the topological relation b&tween

and Bis true or false.

Note that an object having tfegion with broad boundanype is considered valid when

it verifies the next conditions:

- Each one of the minimal extent and maximal extent verifies the closeness and

connectedness conditions of a simple crisp region.

- The minimal and maximal extents of a region with a broad boundary are related
by one of the following topological relationSontains(max, min),Covers(max, min)

or Equal(max, min) (cf. section 2.2).

These last conditions are timvariantsof the spatial model. We call these invariantta-

constraints which control the validity of RBB
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6.7 Example in agricultural spreading activities

To illustrate the practical use of our extension of Spatial OCL, we introduce a case study
related to an environmental information system for the traceability of agricultural spreading
activities. Agricultural spreading activities consist of putting an organic substarmeinto

the soil in order to improve its agricultural productivity. In France, this activity is strictly
controlled by public organizations, because the substances used in spreading may be
dangerous for ecological systems whether they are not reasonably applied (Rin20@t,

Pinet etal. 2009). The quantities and types of substances allowed in agricultural spreading
activities depend on several criteria such as the parcel emplacement and soil type.

. surface area:
input the exact surface

area of the spreading

zone (numeric value)

maximal extent

minimal extent

exact value

Farmers %

spreading zone represented by a
draw the approximate region with a broad boundary
shape of the spreading

zone (spatial data)

approximate shape
(surface area = 80)

Figure 6.5 Example of RB&#duction — in the present case the exact surface area is greater than the
surface area of the drawn shape

In France, the farmers should declare the areas to be spread (i.e. the spreading parcels)
thanks to a Web-based tool (i.e., they declareoattine for the geographical area to be
spread). These data are stored into a national spatial database (RIN087, Pinet eal.

2009). In practice, the farmers use the Web-based tool to input a numeric value indicating the
surface areas of parcels before approximately drawing their respective geometries on a map
through a GIS-based interface. The surface areas indicated by farmers are generally calculated
thanks to expertise of land parcels. While declared surface areas are considered exact, the
geometries drawn by farmers only provide approximate information about the location of
spreading. The surface areas of drawn geometries are also computed by a GIS-based tool.
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They are generally different from those declared by farmers. It could be possible to deduce a
spreading parcel with a broad boundary (i.e., a)R&En the drawn geometry and the surface

area indicated by farmers. The crisp part of tRBB is the zone where spreading is
considered as certain, and its vague part is the zone where spreading is uncertain. The surface
area of theRBBshould be equal to the declared surface area. Figure 6.5 provides an example
of produced RBB.

A spreading parcel may include several capacity zones, which correspond to subparts of
the parcel where the spreading is allowed with conditions (e.g., preserve the soil quality). The
approximate geometry of capacity zones is also drawn by farmers thanks to the Web-based
application; consequently they can be also represent&BBy A spreading perimeter is an
area that includes all the parcels of a farm. Figure 6.6 shows a spreading parcel and a capacity

zone both represented by RBB

A Spreading perimeter

Figure 6.6 Spreading perimeter, spreading parcel, and capacity zone

Figure 6.7 presents the conceptual model of our example. The Rdassl refers to
spreading parcels. A parcel is described by an identifier, a declared surface area, a surface
area computed from the drawn geomeyaw_area) and &RBB Capacity zones are also
represented by RBB
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Parcel

Capacity_zone

Id_Parcel
Id_Zone

“Ica pacity
Vague_geometry

capacity_zone
Declared_area > >
Drawn_area 1 0 1%
Vague_geometry

/N
parcel *

A1

SpreadingPerimeter

Id_Perimeter
Department_num
Area

Label

Comment

Figure 6.7 Conceptual model

6.7.1 Formal expression of constraints

We present a set of spatial constraints expressed in ARCILhey mainly concern the

spreading parcels and their capacity zones.

Constraint 1:
The spreading parcels of farmers should be disjoint or meet each other. In the present
example, a parcel is represented by an object with a vague shape. The topological relation

between two vague parcels is valid, when it belongs to one of the following relations:

completely Disjoin{i.e., occurs when both minimal and maximal extents are disjoint,

respectively),

- completely Meeti.e., occurs when both minimal and maximal extents meet each
other, respectively),

- strongly Disjointand weakly Med{.e., occurs when maximal extents meet each other
whereas minimal extents are disjoint, respectively), or

- fairly Disjoint and fairly Meet(i.e., occurs when maximal extents meet each other,

minimal extents are disjoint and one of the minimal extents meets one the maximal

extents).

The context of this topological constraint is the clRsscel The constraint is formally

expressed as follows:
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Context Parcel inv

Parcel.allinstancesp forAll (b| self<>b implies
self.vague_geo .completely Meet (b.vague_ geodr
self.vague_geo .completely Disjoir{b.vague_geo) or
(self.vague_geo .strongly Disjoint (b.vague_gea@nd
self.vague_geo .weakly Meet (b.vague_geo)) or
(self.vague_geo .fairly Digoint  (b.vague_ge@nd
self.vague geo .fairly Meet (b.vague_geo)))

Constraint 2:

A spreading parcel is composed by one or several capacity zones. The geometry of a
capacity zone is drawn by the farmer after drawing the parcel's geometry. A capacity zone is
then inside, covered by or equal to the drawn geometry of the parcel involved. The relations
that should be respected between the respective RBB of a parcel and each one of its capacity
zones, arecompletely Containsompletely Covergstrongly Containsandweakly Coverg
(strongly Containsandweakly Overlap),fairly Containsandfairly Coverg, (fairly Contains
and weakly Coversand weakly Overlap), gtrongly Coversand weakly Containg (fairly
Containsandfairly Coverg or (strongly Coversandweakly Overlap). The constraint can be

specified declaratively as follows:

Context Parcel inv

self.vague_geo-> forAllb| self.capacity_zone - exists(d|
(b.vague_geo .completely Contain@.vague_geo)pr
(b.vague_geo .completely Covers (d.vague_geo)r
(b.vague_geo .strongly Contains (d.vague_geo) and
b.vague_geo .weakly Covers (d.vague_geo)) or
(b.vague_geo .strongly Contains (d.vague_geo) and
b.vague geo .weakly Overlap (d.vague_geo)) or
(b.vague_geo .fairly Contains  (d.vague_geo) and
b.vague_geo .fairly_Covers (d.vague_geo)) or
(b.vague_geo .fairly Contains  (d.vague_geo) and
b.vague geo .weakly Covers (d.vague_geo) and
b.vague_geo .weakly Overlap (d. vague_geo)) or
(b.vague_geo .strongly Covers (d.vague_geo) and
b.vague geo .weakly Contains (d.vague_geo)) or
(b.vague_geo .fairly Contains  (d.vague_geo) and
b.vague_geo .fairly_Covers (d.vague_geo)) or
(b.vague_geo .strongly Covers (d.vague_geo) and
b.vague geo .weakly Overlap (d.vague_geo))))

The OCL operation exists expresses the existential quantifier. The subexpression
self.capacity_zone returns a collection that contains all the capacity zones associated to the

parcel self.
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Constraint 3:

Inside a spreading parcel, two different capacity zones should verify one of the following
relations:completely Disjointcompletely Meet(strongly Disjoint and weakly Méeor (fairly
Disjoint and fairly Meet The context of this topological constraint is the class
Capacity_zoneThe constraint is then formally expressed as follows:

Context Capacity_zone inv

Capacity_zone.allinstances()

- forAll (a | a<>self and a.parcel=self.parcel implies
a.vague_geo .completely Meet (self.vague_geopr
a.vague_geo .completely Digjoir{self.vague_geo) or
(a.vague_geo .strongly Digoint (self.vague geacand

a.vague_geo .weakly Meet (self.vague_geo)) or
(a.vague_geo .fairly Digoint (self.vague_gemnd
a.vague_geo .fairly Meet (self.vague_geo)))

The subexpression self.parcel returns the parcel associated to the capacity zone self.
Constraint 4:

Let P be a spreading perimeter composed\bspread parcels. The sum of areas of minimal
extents of spread parcels is inferior or equal to the ar®a Hbwever, the sum of areas of
maximal extents of spreading parcels is superior or equal to the declared #&ed haf

constraint is expressed as follows:

Context SpreadingPerimeter inv:

self.parcel.vague_geo.minimal_extent.absam()x self.area and
self.parcel.vague _geo.maximal_extent.a¥sam()>self.area

The subexpression self.parcel.vague_geo.minimal_extentarsam() provides the sum
of areas of minimal extents of parcels belonging to the spreading perimeter involved (i.e., this

function makes the same thing for maximal extents of capacity zones in one spread parcel).

6.7.2 Implementation of AOCL ovs

We developed a prototype to automatically generate SQL queries from the oAOCL
expressions. More precisely, we extended OCL2SQL developed by TU Dresden University.
This tool has been extended by Duboissetl.ef2005) and Pinet etl. (2007) to express the
topological constraints involving crisp regions. The code generator is a Java application. The
constraints are defined on an UML class diagram that is storedkmidite. They are written

using AOCloys Our extension of OCL2SQL translates these constraints in Oracle SQL using
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new topological operators implemented in the database. Each topological operator defined in
the QMM model is implemented as a SQL spatial operator that refers to a PL-SQL function.
The PL-SQL function verifies if the concerned relationship is respected by the geometries of
objects involved. For example, the AO&Jks operation completely Disjoint

corresponds to a SQL operation (that has the same name) implemented by a specific PL-SQL

functions.

All the RBB of a same database are stored in a single table tevdn&€lUE_GEO The
other tables of the database can have an attribute galle@ geo that references the primary
key of VAGUE_GEO The attributegeo_maxhas the typdDSYS.SDO_Geometand stores
the maximal extent of the object. The attribgeo_min is used to store the minimal extent.
When a topological operator (e.gompletely Disjoiri} is executed for two given objects, a
PL-SQL function compares their minimajgo_min) and maximalgéo_max extents. The
SQL expression below shows the definition of the VAGUE_Gib2.

Create table VAGUE_GEO

( PK_VG NUMBER(10) primary key
GEO_MAX MDSYS.SDO_Geometry
GEO_MIN MDSYS.SDO_Geometry

);
To illustrate the generation of SQL code we introduce an example concerning pollution

zones. The SQL expression below shows the definition oPMELUTION_ZONES table.

The attribute geometry_pk_vg is the foreign key that references VAGUE_GEO.pk_vg.
Create table POLLUTION_ZONES
( PK_Pz NUMBER(10) primary key

, DESCRIPTION VARCHAR2
, GEOMETRY_PK_VG NUMBER(10)

);
The constraint 5 models that two pollution zones should be strongly disjoint.

Constraint 5:

Context Pollution_zones inv:

Parcel.allinstancesf)forAll (b] self<>b implies self.vague_geo .strongly_Digoint (b.vague)geo

The SQL query generated by OCL2SQL for this constraint is presented below. This query
selects all the rows that violate the AQ&ykconstraint. Thus this SQL query can be executed

by the users of a spatial database in order to retrieve possible inconsistencies.
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Select * from OV_Pollution_Zone SELF
Where not (not exists ( (select PK_ PZ from Pollution_Zone) minus
Select PK_ PZ from Pollution_Zone SELF2 Where (SELF.PK_PZ = SELF2.PK_PZ) OR
stronglyDisjoin{(select PK_VG from VAGUE_GEO
Where PK_VG IN (Select GEOMETRY_PK_VG From

Pollution_Zone where PK_PZ = SELF2.PK_PZ)),
(Select PK_VG from VAGUE_GEO Where PK_VG in
(Select GEOMETRY_PK_VG From Pollution_Zone
Where PK_PZ = SELF2.PK_PZ)) , VAGUE_GEO)=0));

Figure 6.8 schematizes the architecture of the extension of OCL2SQL, which covers
topological constraints involving regions with broad boundaries. This Figure is adapted from
(Duboisset et al. 2005). Other platforms (MySQL, SQL Server, etc.) could be considered in

the future.
UML Class diagram Geographic metadata for Topological integrity
(exported in an xmi file)  geometric attributes constraints in OCL on the
UML mode

«—

[ Spatial OCL2SQL editor + adverbial extension for regions with broad boundari%s

A”’ \

Using other platforms in order to store data and
check topological integrity constraints for
regions with broad boundaries (MySQL, SQL
Server, etc

- SQL queries/triggers for Oracle Spatial
- Definition of new SQL spatial operators
(e.g. fairlyDisjoint, stronglyMeet etc)

Figure 6.8 Architecture of the application used to check the OCL constraints (this figure is adapted
from (Duboisset eal. 2005))

6.8 Conclusion

Controlling topological constraints is an important aspect of the spatial data quality. Visual
tools and methods proposed in (Cockroft 1997, Cockroft 1998, Servigne et al. 2000, Borges et
al. 2001, Cockroft 2001, Cockroft 2004, Parenalet2006, Raffaeta etl. 2008) enable end-

users to easily specify simple constraints but they cannot be used to model complex spatial
constraints (e.g., topological constraints depending on complex conditions (Kang@a4).

As presented in (Duboissetadt 2005, Pinet eal. 2007), complex topological constraints can
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be expressed through Spatial OCL which integrates the Egenhofer’s relations. This language
provides easiness in the specification of formal constraints in UML class diagrams.

However, Spatial OCL assumes that objects are represented using crisp geometries
whereas they can have vague shapes (e.g. a pollution zone, the itinerary of an historic
explorer, etc.). Spatial OCL lacks syntactical tools to express the topological constraints for
objects with vague shapes. In this paper, we addressed the problem of the formal specification
of topological constraints for regions with broad boundaries. It contributes in two main

directions.

First, the meta-model of Spatial OCL has been extended in order to consider new object
types covering spatial objects with vague shapes. We proposed a new abstract type called
OVSTypgObject with Vague Shape Type), which can be specializedbnbad point line
with a vague shapeand region with a broad boundaryThe adverbial approach for
topological relations presented in (Bejaouakt2008) has been integrated into Spatial OCL;
new topological functions are proposed in this language. We called this extéasierial
spatial OCL for Objects with Vague Shaga©CLovs).

Second, AOCLkys has been implemented into OCL2SQL. This extension allows
generating Oracle SQL code from AO&Js constraints. The generated SQL queries control
the consistency of spatial databases. These queries are executed by the database
administrators to detect possible inconsistencies. The main objective of this AOCL
implementation was to show the feasibility of our approach. Some constraints of the case
study presented in Section 5 have been used to experiment our extension. These constraints
principally concern spreading parcels and their capacity zones both represented by regions

with broad boundaries.

In future, we will generalize our framework in order to specify topological relations
between different objects with vague shapes (i.e., broad points, lines with vague shapes, and
regions with broad boundaries). We will also study the specification of topological constraints
involving complex regions with vague shapes (i.e. regions with several kernels, regions

composed by several sub-regions with broad boundaries, etc.).

The syntax of AOChys could be also simplified by grouping the adverbs that concern the

same topological relations. For instance, the following constraint:

“self.vague_geo .strongly_Di sj oi nt (b.vague_geo) or
self.vague_geo .weakly_Di sj oi nt (b.vague_geo)”

It could be expressed more directly as follows:
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“self.vague_geo .{ st rongl y| weakl y} Di sj oi nt (b.vague_geo)”

In this case, it is needed to introduce additional OCL operators in order to group adverbs.

Visual methods (extended to
RBB) ; used for the modelling
of simple constraints

OCL2SQL editor + AOCL ¢
extension; used for the modelling
of complex constraints

code generation

constraints edition

constraints in AOCL ¢

code generation (OCL2SQL)

SQL queries

Figure 6.9 Combination of different tools to generate the SQL code

AOCLoys and the extension of OCL2SQL are intended to computer scientists. This
approach can be used jointly with other existing methods to specify the spatial constraints.
For example, the simple constraints could be specified with user-oriented methods such as
those presented in (Cockroft 1997, Cockroft 1998, Servigaé @000, Borges etl. 2001,
Cockroft 2001, Cockroft 2004, Parent at 2006, Raffaeta etl. 2008) before being
translated into AOCgysexpressions. The user-oriented methods are very efficient to visually
and easily model simple constraints. Complex constraints may be directly specified using
AOCLoys For that purpose, the user-oriented methods should be preliminary extended. They

should cover the RB8nd generate AOGQysconstraints .Figure 6.9 illustrates this solution.

It could be also possible to generate triggers (with OCL2SQL) that are executed
automatically with each update of the databases (Demuth and Hussmann 1999, Damuth et
2001). Difficulties of performances may be observed in the case of large spatial databases. In

our opinion, optimizing the generated code requires an in-depth study.
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Chapter 7: Conclusions and discussion

The shape vagueness is considered as an inherent property of some spatial objects such as
lakes, pollution zones, forest stands, etc. This type of imperfection can also result from
merging heterogeneous and crisp redundant geometries that describe the same spatial object

in different source databases.

The representation of spatial objects with vague shapes requires using specific spatial
models in order to stress the vagueness of topological invariants such as broad boundaries for
regions. This thesis proposes a general approach to represent spatial objects with partially or
totally vague shapes and their topological relationships (Chapters 3 and 4). The spatial model
is also used to study the topological relationships vagueness that arises between geometries
with vague shapes that result from an integration process (Chapter 5). Then, it is integrated
into the Spatial Object Constraint Language (Chapter 6) in order to express topological

constraints involving regions with broad boundaries.

7.1 Contributions

The main contributions of this research work are presented in four papers which refer to
Chapters 3, 4, 5 and 6 of this thesis.

Chapter 3 proposes an exact spatial model to represent spatial objects with vague shapes.
Three basidypes of spatial objects with vague shapase been definediroad point line
with a vague shape (i.e., lines with broad boundaries, lines with broad interiors or broad
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lines), andregion with a broad boundaryn the proposed model, the shape vagueness relates
to the difference between the certain and uncertain knowledge about the appropriate shape of
a given spatial object. From this perspective, an object with a vague shape is defined as a

minimal extentA,,;, (the object geometry including space points tetainly belong to the
object) and a maximal exteAt,, (includes space points thpbssiblybelong to the object)

that respect some topological conditions. The difference between the minimal extent and
maximal one can be emptglijects with well-defined shapegmpty in some locations and
non-empty in some othersljects with partially vague shapesr non-empty everywhere
(objects with completely vague shapeghe advantage of this model is that spatial objects
with partially vague shapes are represented whereas they are considered as invalid in the
existing models of (e.g. Clementini and Di Felice 1997, Tang 2004,eRais2006). Then,

the topological relationships between spatial objects with vague shapes are identified using a

4-Intersection matrix that enumerates four sub-relati®ag:A,;, , B )» R (Anin » Brax): R3
(Anacs Brin )» @NAdRy (A, Broy ). We distinguished 242 relations between regions with broad

boundaries (cf. appendix 1). In order to retain our propositions useful in practice, we classify
these topological relationships into eight basic clusters using the contents of their respective
matrices. We use four adverbs strengths to describe the membership to a given cluster:
completely strongly, fairly, andweakly This model is terme@Qualitative Min-Max(QMM)

model.

Chapter 4 focused on the shape vagueness of lines and the identification of their topological
relationships. Then, two components of the QMM model are proposed: (1) thepQMM
model and QMMgr model. The QMMpes model proposes an expressive taxonomy of lines
with vague shapes and their formal definitions. In this taxonomy, we make the distinction
between the shape vagueness of the interior and boundary of a given line. For each
topological invariant, shape vagueness can be partial or total. The line boundary can be
partially or completelybroad while the boundary remains well-defined, and vice versa. We
identify four levels of shape vagueness for lines according tortfignesspartial broadness
and complete broadnessf the interior and/or boundaryweakly fairly, strongly and
completely In this chapter, lines are defined according to the principles of the QMM model
set in Chapter 3. We define a line with a vague shape as a minimal extent composed by only
one-dimensional parts and a maximal extent that additionally includes two-dimensional (or
broad) parts. The topological relationships between lines with vague shapes are then
identified through an extension of the CBM method (Clementini and Di Felice 1995) that we
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integrate into the QMI¥k model and apply to compute the sub-relations between minimal and
maximal extents of the lines involved. Then, a 4-Intesersection matrix is proposed to describe
these four sub-relations and to classify the topological relationships between lines with vague

shapes.

In Chapter 5, we are interested in a vertical integration where heterogeneous and redundant
crisp geometries that represent the same object, in different data sources, are intended to be
integrated and loaded in a final database. In this study, we assume that the data quality is
poorly described in the data sources and can be used neither to choose geometries with best
qguality nor to identify the appropriate topological relationships in the final database.
Geometries with vague shapes can then result from the integration because source geometries
are heterogeneous and contribute in an equal way in the final geometry of a given object.
Consequently, for a same set of objects, the topological relationships between their final
geometries cannot be identified to those defined for crisp geometries in the data sources.
Therefore, we address the problentagological relationships vaguengs®. the uncertainty
about the appropriate topological relationships between the final geometries. Accordingly, we
aim atreducing the topological relationships vagueness in a given final database. For this
purpose, Chapter 5 contributes in two main directions. First, heterogeneous and redundant
crisp geometries that represent a given same object, in different source databases, are merged
using the QMM model for regions with broad boundaries. The broad boundaries of final
regions result from the difference between the union and intersection of the source geometries
involved. Second, we propose a method to deduce the valid topological relationships between
them. In this method, we assume that the same topological relationship is defined between the
objects involved in source databases. This assumption is required to allow the reasoning about
topological relationships between the final geometries of the same collection of objects in the
final database. For example, let's assume that the geometries of two spatial Algedi®
are respectively disjoint in two data sources. Then the intersections of the source geometries
of A and the source geometries Bfare necessarily disjoinContainsis an inconsistent
relationship between the final geometriesAcdindB. Then, for each topological relationship
of the 9-Intersection model (Egenhofer and Herring 1990), we define patterns of matrices that
specify the valid relationships between the unions and intersections of the source geometries
of objects involved, respectively (section 5.7.1). The patterns matrices are used to reduce the
topological relationships vagueness through two main strategieshd@¥ing the best extents

of concerned objects and modifying them whether they violate the recommended topological
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relation, (2)preserving the geometries with vague shapes and using an adverbial approach to
stress the partial respect of a given topological relation. The first strategy can be used when
the topological relationships are considered as more important than the shapes of objects to
meet the users’ needs. The second strategy is more appropriate to preserve possible vague

shapes of final geometries that partially respect source topological relationships.

The results obtained in Chapter 5 can be very useful to deal with geometric heterogeneities
in the context of spatial data warehouses (especially those with a hypercube structure). The
spatial dimension of a spatial data warehouse is generally loaded from different sources that
have different specifications. Our approach proposes to represent the final geometry of a
given spatial object using geometries with vague shapes while the source crisp geometries are
heterogeneous and have a same quality level. Such approach allows the decision-maker to
distinguish between the certain and uncertain data and to consider the shape vagueness in his
decision. An example of a spatial data warehouse in the urban planning domain is presented
to illustrate the contributions of chapter 5.

Chapter 6 proposes an extension of Spatial OCL for regions with broad boundaries and
their topological relationships. First, we extend the meta-model of Spatial OCL in order to
consider new geometric types covering objects with vague shapes. Then, the geometry of an
object with a vague shape is defined as a new abstract type CME&typegObject with a
vague shape Typewhich can be specialized inbvoad point line with a vague shapend
region with a broad boundarySecond, the topological constraints involving regions with
broad boundaries are specified using the QMM model defined in Chapter 3. We integrate
forty new topological operators as additional keywords of Spatial OCL. These topological
operators refer to the forty clusters distinguished in the QMM model for regions with broad
boundaries. We term this extensiéuverbial spatial OCL for Objects with vague shapes
(AOClLoys for short). Third, we integrate AOGls in the constraint editoOCL2SQL
(Duboisset 2007). Then, the SQL query that implements a topological constraint (in the
physical level of the database) can be automatically generated from thepA§®Rpression.

An example of agricultural spreading database is presented in order to show the possibilities
to express topological constraints involving regions with broad boundaries. This example has
been inspired from the existing application called SIGEMO used to control the traceability of
agricultural spreading activities in France (Soulignac et al. 2005).
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7.2 Discussion

This thesis provides a general qualitative approach to deal with spatial objects with vague
shapes and their topological relationships. We propose this approach in the context of
controlling topological consistency of such objects and of their topological relationships. The
general hypothesis made in this workitiss possible to provide an approach that supports

the specification of topological integrity constraints involving spatial objects with vague
shapes and of their topological relationships, both in transactional spatial databases and

in spatial data warehousesThis hypothesis requires a specific spatial model to represent
different levels of shape vagueness and evaluate the vagueness of a topological relationship.
Therefore, we proposed an adverbial approach to express the topological constraints involving
regions with broad boundaries using an extension of Spatial OCL. We think that the general

hypothesis has been verified in this thesis work.

The QMM model is principally inspired from the Egg-Yolk model (Cohn and Gotts 1996).
However, there are some fundamental differences between our model and that defined in
(Cohn and Gotts 1996). First, the sub-relations described in the 4-Intersection matrix of the
Egg-Yolk theory (Cohn and Gotts 1996) are those defined in the RCC-5 model (Randell and
Cohn 1989, Cohret al. 1997) whereas we use those defined in the 9-Intersection model
(Egenhofer and Herring 1990). In addition, the same methodology is used to identify
topological relationships between objects with vague shapes. However, our definitions of this
type of objectsare substantially different because they are based on the point-set topology.
Then, points and lines are also considered as basic crisp spatial object types. Moreover, the
concept ofbroad boundaryis not redefined in our model as it is done in most of existing
exact models. In our approach, shape vagueness of a given object refers to the difference
between its minimal extent and maximal one. Finally, the topological relationships are
organised into a hierarchical classification based on the content of their respective matrices.
This classification is the basis of an adverbial approach that we use to specify the topological

constraints between regions with broad boundaries.

In (Clementini and Di Felice 1997), the notion of broad boundary has been used to replace
linear (or well-defined) boundary. According to Clementini and Di Felice (1997), 44
topological relations are distinguished between two regions with broad boundaries using an
extension of the 9-Intersection model (Egenhofer and Herring 1990). These relations have

classified into 17 clusters and organised into a conceptual neighborhood graph that shows
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their similarity degrees (Clementini and Di Felice 1997). The main advantage of this approach
is the ability to support a coarser spatial reasoning involving regions with broad boundaries.
However, it becomes more difficult to use this model when the needs are more specific.
Furthermore, the identification of a broad boundary as a two-dimensional topological
invariant requires respecting the consistency conditions related to closeness and
connectedness. Tang (2004) decomposed the broad boundary inbutigary's interiorand
boundary's boundaryHe distinguished 152 topological relationships presented as variants of
the 44 ones defined in (Clementini and Di Felice 1997). Nonetheless, many topological
relationships cannot be identified because there is no distinction between the boundaries of
minimal extenaind those of the maximal exteWtoreover, spatial objects with partially vague
shapes such as regions with partially broad boundaries cannot be presented in existing exact
models. In this thesis, we resolved this problem by considering a simple region with a broad
boundary as a general concept that can be specialized into: regions with none broad boundary
(or crisp regions in fuzzy approaches terminologgg@ions with a partially broad boundary

and regions with a completely broad boundary

With regards to the principal exact models (Clementini and Di Felice 1997, Cohn and
Gotts 1996, Erwig and Schneider 1997, Tang 2004), we made the distinction between the
partial shape vaguenessmdcomplete shape vaguendssdeal with two main problems: an
ontological problem and a modeling one. The ontological problem occurs becdnage “
vaguenessis generally considered as hiflary imperfection" (an object shape canvall-
defined orvagug. However, spatial objects can be characterized by different levels of shape
vagueness that can be easily computed in fuzzy models by ugumnatativeapproach. In
this thesis, the shape vagueness levels are categorized wgiadjtative approach because
we believe thatshape vaguen€sis a qualitative problem. In this context, we denote that the
computation of shape vagueness provide coarse values contrary to evaluation based on fuzzy
models. Different levels of shape vagueness are qualitatively distinguished using a set of
adverbs ¢ompletely weakly fairly, etc.). We do not claim that exact models are better than

fuzzy ones, because the needs are not identical and therefore thecalingetrison is not
appropriate.

The modeling problem refers to the difficulty of existing exact models (notably
(Clementini and Di Felice 1997, Cohn and Gotts 1996, Erwig and Schneider 1997, Tang

2004)) to represent spatial objects with partially vague shapes and their topological

relationships. For example, a region can have well-defined boundaries on one side and broad
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ones on the other side at the same time. In this work, we made the distinction between the
regions with partially broad boundariesand thosewith completely broad boundary
Topological relationships between regions with broad boundaries have been classified into
eight overlapping basic clusters. This adverbial classification supports the specification of
topological constraints involving spatial objects with vague shapes. Nonetheless, it is
important to denote that the QMM model is not able to quantify the gradual change inside the
maximal extent in the same way as the fuzzy approaches done in (Zhan 1997, Schneider
2001, Du et al. 2005, Dilo 2006, Verstraete et al. 2007).

7.3 Future researches

This thesis provides a qualitative approach to represent spatial objects with vague shapes and

reduce their topological relationship vagueness. This sets a starting point for future research

projects that we present in the next paragraphs:

 Modding complex spatial objects with vague shapes and their topological

relationships
In this thesis, we studied shape vagueness for simple objects types: simple regions,
simple lines and simple points. In the practice, complex spatial objects may also have
vague shapes such regions with broad boundaries and holes, regions with several
cores, regions composed by disjoint uncertain sub-regions, lines with several start
broad points, etc. Currently, the QMM model does not cover this type of objects and
their topological relationships. Studying this type of objects requires additional
investigations that exceed the objectives of this thesis. Extending the present approach
to model the complex objects with vague shapes is one of our future researches. Our
methodology consists in generalizing the principles of the QMM model for complex
objects with vague shapes by verifying appropriate conditions for each component of

the object’s shape involved.

» Considering topological relationships between objects with vague shapes and
different dimensions
Topological relationships studied in this research are those between spatial objects
with vague shapes having the same dimension. We studied relationships between

simple regions with broad boundaries as well as those between lines with vague
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shapes. We also showed that our approach can be applied for objects with different
dimensions such as topological relationships between a region with a broad boundary
and a line with a partially vague shape. However, additional investigations are

required to study specificities of these relationships and to propose a method to

classify them.

Studying the temporal vagueness

In many applications such as the management of forest stands, the temporal
information is generally required in order to follow the existence of spatial objects and
their geometric evolution. Temporal data may be vague, difficult to be collected and
represented. For example, the birthday of an historic person and the construction
period of a monument are often poorly known. Dyreson and Snodgrass (1993)
distinguished four sources that affect the perfection about the dimensiomn(i.e.
interval or an instan} of a time event as well as its location on the time axis:
granularity, dating techniques, future planning and unknown/imprecise time events.
The temporal vagueness has been studied in several works (e.g. (Dreyson and
Snodgrass 1993, Pfoser and Tryfona 2001)). One perspective of the present work is to
extend the QMM model in order to represent time events with vague temporal
dimensions and/or vague locations. We are specifically interested in the partial
temporal vagueness. For example, a time period can be bounded by a vague start time
point on one side and a well-defined final one on the other side. We are also interested
in the identification of topological relationships between vague temporal primitives
using the same qualitative approach defined in the context of spatial objects with
vague shapes. We look for an adverbial approach that can help to express topological
constraints involving spatio-temporal objects with vague shapes and/or vague

temporalities.

Considering vaguenessin the definition of topological relationships

In spatial databases, a topological relationship has a definition given by the spatial
model (e.g. the 9-Intersection model) or by the model-maker. A topological
relationship has also an extension that refers to its instance for two spatial objects
stored in the database. In this thesis, we studied the vagueness of a topological
relationship because it depends on the shape vagueness of objects involved. However,
the definition can also be vague while the shapes of spatial objects involved remain

well-defined. For example, it is possible to define a topological relationship called
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“weakly meétthat can arise between two crisp objects. In this case, objects weakly
meet each other if the intersection between their boundaries occurs in three points at
most. A vague topological relationship can be also associated to a quantitative
function which returns its strength according to the definition and not to the shape
vagueness of objects involved. In our future researches, we aims at studying this type
of vagueness for topological relationships such as the metricfée,gclosg and

directional (e.g. in the north ,ah the south gfrelationships.

Coupling quantitative and qualitative approaches

Qualitative approaches are generally simple to be used and provide a coarse evaluation
of vagueness. These approaches can be the base of an intuitive interface to
communicate the vagueness to the users of spatial databases and GIS. However, the
guantitative approaches provide a fine computation of vagueness using specific
mathematical theories such as Fuzzy Logic (Zadeh 1965) or Rough sets (Pawlak
1994). For example, they can model the gradual changes of shape vagueness inside a
broad boundary. We think that it is possible to couple these approaches in only one
framework where the qualitative aspects are placed at its high level and quantitative
ones in the bottom level. For example, it is possible to implement vagueness adverbs
(e.g weakly, fairly) by using fuzzy sets in a lower level. The user may have the choice
to use the qualitative approach or to drill-down in the vagueness detail by using the
values provided by the membership functions. Such a framework provides the easiness

of qualitative approaches and the precision of quantitative ones.

Considering the shape and semantic vagueness in topological relationships between

different level of a spatial dimension in a spatial data warehouse

In Chapter 5, we studied topological relationships vagueness at the level of final
geometries with vague shapes resulted from the integration of heterogeneous and
redundant source geometries. In spatial data warehouses, final geometries can be
stored in different hierarchy levels (e.gountry, region, county of a spatial
dimension. One perspective of the present work is to consider the topolotgcal
levelsrelationships vagueness that can arise between the final geometries belonging to
different hierarchy levels of the spatial dimension. In this context, the topological
relationships vagueness affects the measure aggregations. For example, how to
compute the required taxes for a given object with a vague shape that is partially

contained in different members belonging to the immediately higher hierarchy level?
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According to Malinowski and Zimanyi (2005), the topological relationships between

hierarchy levels are the focus of several works such as (Tryfona and Egenhofer 1997).
However, neither the shape vagueness of geometries which can be involved in these
relationships nor their implications on the computation of measure aggregations are

consideredRedersen and Tryfona 2001, Jensen et al. 2004)

Extending AOCLoys to support the specification of other types of spatial objects

with vague shapes

AOCLoys provides syntactic tools to express the topological constraints involving
regions with broad boundaries. In our future researches, we look for extending this
language in order to express the constraints involving lines with vague shapes, spatial
objects with vague shapes having different dimensions as well as objects with
complex vague shapes. We think that the same adverbial approach can be used to
express the strength of topological relationships between these types of objects.
However, these relationships will be termed by considering the type of objects

involved.
Testing the approach in other domains and for other uses

In the future researches, we aim at testing the present approach in other domains such
land cover/land use, urbanism, forestry, pollution, climatic changes, erosion of
beaches, etc. The same spatial model may be used to represent the shape vagueness of
spatial objects in these domains. In the same way, we preview to develop a framework

in order to express spatial queries for objects with vague shapes and their topological
relationships (see example in section 3.9). This framework can be easily implemented
using the existing prototypeDCL2SQL where the spatial SQL queries are

automatically generated.

7.4 General conclusion

According to the general objective set in the beginning of this work, we develop a spatial

model that supports different types of objects with different levels of shape vagueness. The

vagueness of topological relationships is stressed using a set of adverbs that are integrated in

an existing integrity constraint language. This language is Spatial OCL that we have extended

to support the specification of topological integrity constraints on objects with vague shapes
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in a transactional database. The proposed approach is also used to deal with the problem of
topological relationships vagueness in the context of a vertical integration with redundant
source geometries. In the latter case, we propose two strategies to reduce the uncertainty
about the appropriate topological relationships between final geometries resulting from an
integration process, both based on the same spatial model proposed in the first phase. Then,
the spatial model has been integrated in an existing DBMS and the constraint language is

easily implemented in an existing editor of integrity constraints OCL2SQL.

Nevertheless, it is important to denote that the proposed approach is not perfect; i.e. it does
not resolve all the problems related to the modeling of spatial objects with vague shapes. The
first problem is that the shape vagueness cannot be directly computed through a measurement
device. Some computational functions (such as that we applied to deduce the broad boundary
for the spreading agricultural parcels) should be applied on the initial data in order to deduce
the shape vagueness. The computation of shape vagueness should be preceded by a strong
study to build required functions that correctly use the input data to meet the need of
computing vagueness. Otherwise, the shape vagueness is wrongly computed and serious risks
of a degradation of spatial data quality could appear. Our approach does not provide a
solution to this problem since we assume that the appropriate functions to compute vagueness

are defined.

The present approach is also developed in the context of a feature-oriented view of spatial
phenomena. In other words, the space is coarsely subdivided into three parts: a first one that
certainly belongs to the object, a second that may belong to the object and a third that is
certainly outside the object. However, an extension (coupling with a quantitative approach) of
the approach is required to provide a fine computation of shape vagueness using a field-
oriented view of space. In the latter case, the fuzzy and probabilistic models are more

advantageous.

Furthermore, the number of topological operators (forty) used to express the topological
relationships between regions with broad boundaries, in our approach, is high with regards to
the most of existing GIS and spatial DBMS that generally propose eight topological operators
at most to express the same relationships between crisp regions. Additional investigations are
then required to allow an implementation in existing software intended to meet different
needs of users with different skills. In addition, the proposed approach can be used to deal
with topological relationships vagueness in a specific case of integration where different

hypotheses have been set to identify the possible topological relationships between
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geometries resulting from integration. Consequently, the problem of topological relationships

vagueness remains an open question for other types of integration and should be studied
regarding the specificities of each one. Finally, we conclude that the present thesis leads to
address many complex problems that require several projects and a real research community

to be resolved.
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Appendix 1: 242 topological relations between regions with broad

boundaries and required rules to deduce them
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Appendix 2: Rules of consistency

Table A2.1 Reqwred rules for topological relations between reglons with broad boundaries

Rule 1 Let A and B are two simple regions with broad Bmln Bmax
boundaries, IDISJOInt(AnaX, max)then An D(An --
In In ’ mln
DISJOInt(Amm, min ) Amax -- D(Amaxigmax)
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max

(Amn mln) # Disjoint. In this case, the relation between minimal exté«m;1 and maximal extenAnaX of a region

with a broad boundaryA or that betweeerax and Bmin does not correspond @ontains Covers, Equal Thus, there
is acontradiction with definition 1
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bOleanEs, if Meet (A“ax ma)  ten| A | R(A B )LI{D, M} .

R( Aﬂin ' Bmin )D{D’ M}' Anax - M (Anax’ Bmax)

Proof: Let ,& and B two simple regions with broad boundaries theet(,Z\mx, B ) Now, we suppose that

R( Amn, mln) U{Disjoint, Mee}. In this case, relation between minimal exteﬁp“n and maximal extenﬁ\nax,

(A\max A\n,n) or that betweerB andBmin LR ( B B
there is aontradiction with def|n|t|on 1

max+ Bmin ) does not correspond @ontains Covers, EqualThus,

min B
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Z\nax C ( Z\nax' émin ) C ( A’nax max
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Contains ( Aﬂax, ) then Contains ( Anax
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Proof: Let ;& and B two simple regions with broad boundaniisereContains( A“ax, B, ..). According to definition

max

1, any region with a broad boundan@ should respect the principal following conditioEqual(Z\naX,;\“m),

Contains(A, ., A, ) or Covers(A,... A, )- Moreover, Contains is a transitive topological relati@ontains (A,B)

and Contains(B, Cﬁ)Contalns(A C) Then, sinceContains( A“ax Bax) @andR (B, .. B,in) = {Contains Covers
Equa} then Contains( A“ax min ) @nd vice versa.
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In
[J {Contains Cover$, and vice versa.
A\na R( A’nax min )D{C C\/} C ( A’nax max
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any region with a broad boundar)K should respect the principal following conditioEquaI(;\naX,Aﬂm),
Contains(Amx,Z\mn) or Covers(AmX,;wn) Containsis a transitive topological relation: €ontains(A,B)and

Contams(B C) = Conatins(A,C) Then, if Contains (B
(B

max+ Bmin ) then Contains (Anax, B,,) else if R

)L{Covers Equa} then Covers(AnaX, mln) else if CoversBmax, mln) thenR (Anax, mln) U

max’ mln
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{Contains Coverg and vice versa.

Rule 5 Let A and B _two regions with broad Bnax
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topological relation becomes between crisp regions thoughtfully studied in other works (e.g, Egenhofer and
1990). Equal and Contains are transitive topological reIationfquaI(A B) and Equal(B,C) =2 EquaI(A Q),
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considering definition 1 and (1), there is a contradiction and (2) cannot be true.

) andCovered by ;\“in ,

)L{Contains Covers

max max

Rule 12: Let A and B two reg|ons with broad

min max

boundaries, if  Containg Anax, max) and 'Z\n o 'Z\“ B ) R(An , )D{CVB e

~

Overlaq;\mn,Bmm) then R (Anm,émax)D ,Z‘m . o( Am ,

{Covered bylnside, Overlap and vice versa.

~

Proof: Let A and B two simple regions with broad boundaries wh€antaing ;\nax, B

~ ~

) (1) We suppose now tha (Amn,

) and Overlap(;\nm,
)[J{Contains Covers Disjoint, Meet, Equdl (2). If (2) thenR

max

m|n

(Bmax, min ) LJ{ Contains Covers Equa} or (1) is false. By considering definition 1 and (1), there is a contradi

max

ttion

and (2) cannot be true.
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~

if Bmin

Covers(Aﬂax maX) and Containg Amn, mln) then R A.l c(A,.B,) R(A,.B

(Amn , max)D{Disjoint, Meet, and vice versa. ,Z\ﬂ
A

Rule 13 Let A and B two regions with broad boundaries, é

- CV(AnaX,

max

)L{D, M}

max)

Proof: Let A and B two simple regions with broad boundaries Wh@evers(Aﬂax,Bmax

~ ~ ~ ~ ~

) and Contains

(;\nin’ min) (1). We suppose now thabisjoint (A, By) of Meet (A, By (2. If (2) thenR
(Bmax, min )LJ{Contains Covers Equa} or (1) is false. By considering definition 1 and (1), there is a contradigtion
and (2) cannot be true.

Rule 14: Let A and B two regions with broad boundaries, | if I§min I§max

Covers (Amx, max)  and  Insidg Amn, min)  then ,an | (,an’ §min) I ( Amn’ )

Insidg( Amn , maX), and vice versa. ,Z\mx . cV( Amax' max)

Proof: Let A and B two simple regions with broad boundaries wheéowers( Aﬂax, ~max) andlnade(Amn Nmm

We suppose now thd (;\“m , émax) L] {Insidg (1). Additionally, Inside is a transitive relatiohnside(A,B)and
Inside(B,C)=>» Inside(A,C)(2). By considering definition 1 and (2), sinkd émax, B,., )LJ{Contains Covers Equa}
andInside( ;\“m , émin) theninside( ;\“m , émax) (2). Thus, (1) cannot be true.

Rule 15 Let K and é two sinlple rSgions with §min émax

broad bourldaries, ilCovers (A, . Bra) and 'an R( ,an , émin)D{D' M} R( 'an , gmaX)D{C'CV’D' E
R(~Amn,~ B.,,)L{Disjoint, Meet then R ;\ﬂa . CV(A\nax )

(A, Bra)U{Contains Covers Disjoint,

Equal, and vice versa.

Proof: Let A and B two simple regions with broad boundaries whe@overs (;‘;nax, émax) and
R(;\“m , émin )[1{Disjoint,Mee} (1). We suppose now th& ( ;\“m B,.ax) J{ Contains Covers Disjoint, Equa} (2).

If (2) thenR ( émax B,., ) LI{ Contains Covers Equa} or (1) is false. By considering definition 1 and (1), there is a
contradiction and (2) cannot be true.

Rule 16 Let A and B two 5|mple reg|0ns witH émin émax

broad boundaries, |Covers(A“ax, max) and ,an R(;\“m m|n)|:|{E cvB R(;\mn ~max)D{CVB b

R( Amn mln)D{Equal, Covered by} then Aﬂa - cV( Aﬂax )

R( Amn, max)D{Covered by, Inside and vice

versa.

Proof: Let A and B two simple regions with broad boundaries wheGoverg ,Z\mx, émax) and R
(;\nin ~maX)D{EquaI, Covered By(1). We suppose now th& ( ;\nin , I§maX)D{Covered bylnsidg (2). If (2) thenR
(Bmax, min )LJ{Contains Covers Equa} or (1) is false. By considering definition 1 and (1), there is a contradig¢tion
and (2) cannot be true.

Rule 17 Let A and §~ two simple regions with broad §min émax

~

boundaries, iCovers( A, . B.,) andOverlap (A, . A O('Z\n' . B_) R(A\n , )D{CVB g

~

B.n) then R( 'Z\mn , gmax)D{Covered by, Inside, ;&\n - CV(An
ax!
Overlag, and vice versa.

max
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~

Proof: Let A and B two simple regions with broad boundaries wh@m/ers(,&mx, B

) (1) We suppose now thaR (Amn

) and Overlap(;\mn,
)U{Covered by Inside, Overlap (2). If (2) then R

max

I’T‘III"I max
(Bmax, win )J{Contains Covers Equa} or (1) is false. By considering definition 1 and (1), there is a contradi
and (2) cannot be true.
Rule 18: Let A and B two simple regions with broad Bmin Bmax
boundaries, Jﬂ\Aeet(A“ax maX) and Meet(Amn mln) then A MA,. mm) M (A\mn )
Mee( Amn, B, ..) andMee( Aﬂax, mln) and vice versa. A M (Anax’ mm) M (Amax' max)

Proof: Let A and B two simple regions with broad boundaries whidieset( A“ax maX) andMeet( Amn min) (D).
We suppose now thatR (Amn , B max) = Meet (2) and R (Aﬂax, B )~#Meet (3). If (2) then R
(B

contradiction because ( Bmax min ) J{Contains Covers Equa} or (1) is false. By considering definition 1 and (

min

)[I{Contains Covers Equal or (1) is false. Thus, (2) cannot be true. In the same way, if (3) then the

max’ mln

ction

eisa

there is a contradiction and (3) cannot be true.

~ ~

min B
~ max and DISJOInt A’nin D ( A\nln min ) R( A\nln max) D{ M, D}
(A mln) thenR( Amn maX)D{Meet, Disjoin} and 'Z\“ax R( A“ax _O{M,D} M (A“ax )

R( A2 Brin ) J{ Meet, Disjoin}, and vice versa.

Rule 19 Let A and B two simple regions with broad B
boundaries, if Meet (A“ax

max

—~ ~

Proof: Let Z and I§ two simple regions with broad boundaries wmﬂ@t(,&m, ) andDisjoint ( Amn ,

)O{Meet, Disjoin} (2) andR (A, B

max m|n

(1). We suppose now thit( Amn, )[{ Meet, Disjoin} (3). If (2) then

max m|n

there R (B )U{Contains Covers Equa} or (1) is false. By c0n3|der|ng definition 1 and (1), there i

max’ I’T'III"I

contradiction and (2) cannot be true. In the same way, if (S)Rr(damax, win ) J{ Contains Covers Equal or (1) is

false. By considering definition 1 and (1), there is a contradiction and (3) cannot be true.

Rule 20 :Let A and B two simple regions with broad B Igmax

boundaries, if Overlap (A, .. Bmy) then R An
In

(Anax,gmin)D{Equal, Inside, Covered byand vice ,Z\“a R(A'nax m|n)|:|{E |, CVB} O(Anax )

versa.

Proof: Let ;& and é two simple regions with broad boundaries whekerlap ( Z\nax, B....). According to definition

max
1, any region with a broad boundan@ should respect the principal following conditioBEgual ;\nax ;\mn
Contalns(Amx, Amn) or Covers(AmX, Amn) (1). We suppose now tha& (Aﬂax, mIn)D{Equal Inside, Covere

by} (2). By considering definition 1, if (1) and (2) théh( B
contradiction withdefinition 1

)[I{Contains Covers Equal. Thus, there is 3

max’ mln

Rule 21 Let ;& and é two simple regions with broad B . I§

min max

boundaries, if Overlap (Aﬂax, B,.) and Contains A.lC(A,. mln) R(Au. max)D{O I, CVB}

(;\nin, B.,) thenR (Amn maX) LI{Overlap, Inside, A\n C(A\n O(A\n

Covered byand Containg Anax, ), and vice versa.

min

Proof: Let ;& and § two simple regions with broad boundaries whébeerlap (Z\nax,B ) and Contains

max

~

(;\nin’Bmin) (1). We suppose now thaR (;\mn,gmax)D{Overlap, Inside, Covered by (2) and R
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~ ~ ~

(Amx, mm)#Contams (3). By considering definition 1 an€ontaingA.,,, B
(B
the same way, if (3) thelR(B

if (2) then R

min )'

max+ Bmin ) J{ Contains Covers Equal or (1) is false. Thus, (2) cannot be true because there is a contradicti

~

max’ m|n

Containg Amn \ mln) (3) cannot be true because there is also a contradiction.

Rule 22: Let A and B two simple regions B, B

min max

with broad boundaries, ®verlap (A, .., Biax) Am R(An . B_)yO{o, M R(An , )D{O I, CVB

and
F(Amnv m.n)D{OverIap, Meétthen A“ax R(A"ax’ m'”)D{O Y O(Anax’ max)

RA\n.n maX) U { Overlap, Inside,

Covered byand R( A“ax min ) LI{Overlap,
Covers, Contairjgs and vice versa.

—~

Proof: Let A and B two simple regions with broad boundaries whéreerlap (;\nax,Bmax) and R (;\mn,

)D{Overlap Medt (1). We suppose now thaR (Amn )[1{Overlap, Inside, Covered by(2)

I’T'III"I

R( Anax min JU{Overlap, Covers, Contaihg3). If (2) thenR (Bmax mln)D{Contalns Covers Equal or (1) is
false. By considering definition 1, there is a contradiction and (2) cannot be true. In the same way, if B3

(B YI{Contains Covers Equa} or (1) is false. By considering definition 1, there is contradiction and
cannot be true.

max

max? m|n

min Bmax
boundaries, ifOverlap (A, .. Biax) and Equal (A, . A (EA..B.) R(A.,.B )D{ I, CVB}
B.in) thenR (A, . B.) L{Overlap, Inside, Coveref ,Z\mx R( ,Z\mxy émin)[l{cv' g o Amax' )
by} and R( A, ... By )LJ{Overlap, Covers, Contais
and vice versa.

Rule 23 Let Zq and § two simple regions with broad §

min

Proof: Let A and B two simple regions with broad boundaries wh@xerlap ( Z\nax Brax) anquuaI(Amn
yO{Inside, Covered By(2) R( Anax

I’T'III"I

yU{Covers, Contair}s(3). If (2)

~

(1). We suppose now th&( 'Z\mn ; B
thenR ( B

max min

)[J{ Contains Covers Equal or (1) is false. By conS|der|ng definition 1 akajual ( Amn ,

max’ m|n min )’

there is contradiction and (2) cannot be true. In the same way, if (SRWBgaX )J{ Contains Covers Equal or

min

(1) is false. By considering definition 1 arieqjual (Anin, B.,). (3) cannot be true because there is alg
contradiction.
Rule 24 Let A and B two simple regions with broad B Bmax
boundaries, |Dverlap(Aﬂax B,.ax) andinside( A, , A | (A\mn ) | (A\nax )

By ) thenR (A, By, ) Li{nsicd and Aua ROAw B )T{C, OV, G O (A Bigy)
(Anax, mln)D{ Contains, Covers, Overl@pand vice
versa.

yJ{ Contains Covers Equal or (1) is false. By considering definition 1 and

on. In

then
©)

0 a

Proof: Let A and B two simple regions with broad boundaries Wr@mrlap(;\mx, Bax) @ndinside( Amn

max I’T'III"I

(1). we suppose now thRt( Amn maX)D{In5|de}(2) R( Anax mln)D{Contams Covers, Overlag3). If (2) thenR
(B

cannot be true. In the same way, if (3) ti&(’lB

yI{Contains Covers Equa} or (1) is false. By considering definition, there is a contradiction ang

max? m|n

max+ Bmin ) J{ Contains Covers Equal or (1) is false. By considerin

)

definition 1, (3) cannot be true because there is also a contradiction.
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Rule 25 Let Z and § two simple regions with broad
if Overlap (A, B

(;\mn , By ) thenR ( 'Z\mn , ~max) U{Inside, Covereqg

by, Overlap and R( Z\nax )LI{Covers, Contairls
and vice versa.

boundaries, ) and Covers

max

I’T'III"I

Bwmin gmm
Aol CV(Aun. Brin) R(Ayn.Br) D{l cveﬁ
An R(Anax’ m|n)|:|{CVq' O(Amax' max

Proof: Let K and § two simple regions with broad boundaries whégerlap (Z\nax,B

~

(;\mn , Bpin ) (1). We suppose now thet( 'Z\mn , émax)D{Inside, Covered by, Overlqf2) R( ;‘-\nax |§min yU{Covers,

~

Containg (3). If (2) thenR (B, B
(1),

m|n

contradiction.

(2) cannot be true because there is a contradiction. In the same way, if (B (tBar,%x, B
Covers Equal or (1) is false. By considering definition 1 and (1), (3) cannot be true because there is

max

min

) and Covers

yJ{ Contains Covers Equal or (1) is false. By considering definition 1 and

yI{Contains

Rule 26 Let A and B two 5|mple reglons with broad
boundaries, if  Overlag Aﬂax, maX)

Disjoint( A, ,B_. ) then R (A, B, )J{Equal,

Contains, Covels and R( ,Z\mx, §min)D{Equal,
Covered by, Insideand vice versa.

and

max

B,
Anin D(Amn '

A’na R( A’nax

min )

B

R(Aun maX)D{E C.CV
B, )J{E.CVB,} O(A,, B

max

Proof: Let ,& and § two simple regions with broad boundaries whébeerlap (;‘;nax,

) (1). We suppose now thd& (;\nin

(;\nin’é

Covered by, Inside(3). If (2) thenR (B, .B

min

m|n

deflnltlon 1 and (1), (2) cannot be true because there is a contradiction.

(Bmax’

there is also a contradiction.

min

max

~

)LJ{Equal,Contains,Cove}s(2) R( ;\“ax B

y[J{Contains Covers Equal or (1) is false. By considerin
In the same way,

Y[I{ Contains Covers Equal or (1) is false. By considering definition 1 and (1), (3) cannot be true be

B..x) and Disjoint

YyU{Equal,

min

if (B

Rule 27 Let ,& and § two simple regions with
) and

~

A’nin

~

An

broad boundaries, ®verlap( Anax

max
Covered by Amn mln)thenR
(Aﬂ,n, max)D{In3|de Covered Byand

R( Anax min ) LI{ Covers, Contains, Overlap
and vice versa.

Bmin
CVB( Amn

mln

R(Anax’ min)D{CV' C, Q

Bmax
R(Aun B
O (Apa B

D{l CVB

max

Proof: Let ,& and § two simple regions with broad boundaries whéreerlap (,Z\mx,

~

(Amn, B.,) (1). We suppose now thaR (Amn, max)D{In3|de Covered By (2) R( Aﬂax, mln)D{Covers

Contains, Overlap(3). If (2) thenR ( B

max’ mln

1 and (1), (2) cannot be true because there is a contradiction. In the same way, if K3} B},%Q B
Covers Equal or (1) is false. By considering definition 1 and (1), (3) cannot be true because there is

contradiction.

~

)[I{Contains Covers Equal or (1) is false. By considering definitio

min

) and Covered by,

yI{Contains

Rule 28 Let ,& and § two simple regions with broad

boundaries, if Contains (A“ax max)  and
Disjoint( A ., B_. ) then R
(;\mn,lgmax)D{Contains, Covers, Equal and

Containg A, B,,,), and vice versa.

Bmin
Amn D ( A\mn m|n
Amax C( Anax’ m|n

B

max

R(Ay,. B

max

C ( Anax’ max

)D{c CV,B

also a

)]
then

rause

=)

also a
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~

) and Disjoint (;\mn :
)[I{Containg (3).

Proof: Let A and B two simple regions with broad boundaries whémntains( A, Brax

~ ~ ~

B.in) (1). We suppose now thR{ A, , B,,.x) L{ Contains, Covers, Equa(2) and R( Z\nax

I’T'III"I

If (2) thenR ( § )J{ Contains Covers Equal or (1) is false. By conS|der|ng definition 1 and (1), (2) canno

max’ m|n

true because there is a contradiction. In the same way, if (SRthB;hax, win ) J{Contains Covers Equal or (1) is
false. By considering definition 1 and (1), (3) cannot be true because there is also a contradiction.

t be

Rule 29 Let ,& and § two simple regions with B B

min max

~ ~

broad boundaries, iCovers (A, Bry) and| A ((ov(A B ) R(A,, max)D{CVB O, E CVY

Covers_— (AwnBpa) - then R A Y R(AL By )(CV. G CUA,Broy)
(Ain s Bra) U{Inside, Covered by, Equa|,

Overlap, Covers and R( Anax
Containg, and vice versa.

)L1{ Covers,

min

~ ~ ~

Proof: Let A and B two simple regions with broad boundaries wheowers( ,Z\mx, B, ..) andCovers( A, B.in)

(1). We suppose now thatR (;\“in,é )U{Covered by, Overlap, Equal, Covers, Inideg2)

max
R( ,Z\mx, ~min yU{Covers, Contairjs(3). If (2) thenR (émax, B..,)LJ{Contains Covers, Equdlor (1) is false. By
con5|der|ng definition 1 and (1), (2) cannot be true because there is a contradiction. In the same way, ifR(3

(Bmax, min ) LJ{ Contains Covers Equal or (1) is false. By considering definition 1 and (1), (3) cannot be true be
there is also a contradiction.

3) then
rause

Rule 30 Let K and § two simple regions with B B
broad boundaries, Rule 2%nd ~

Anin CV( A\mn ' m|n CV( Z\nin ' ~max

Coverg Amn , maX) Then -
~ R L{C Ccv
RO A min)D{Covers}, and vice versa. Ana (A“ax m'”) ey (A“ax max)

min max

Proof: Let ,& and § two simple regions with broad boundaries whietde 29 andR ( 'Z\mn , B max) I{Covers (1).

We suppose now thaR( Anax yU{Cover§ (2). By considering definiton 1 and (1), if (2) theR

min

( Bmax min ) LJ{ Contains Covers, Equdlor (1) is false. Thus, (2) cannot be true because there is a contradiction.
Rule 31 Let A and B two simple regions with broad émin émax

bOl:IIWdariiS, iRule 2%ndR (A, , B, ) LU{Insidg then A‘nln CV(A’nln mm) R(,Z\mn max) LI{1}

R( A, Brmin )U{Containg, and vice versa. A“a R( A“ax m|n)D{C} CV(Anax )

Proof: Let ,Z, and § two simple regions with broad boundaries wheute 29andR ( 'Z\mn , B max) L{Inside (1). We

suppose now thaR( Z\nax B.., ) L{Containg (2). If (2) thenR ( Bmax min )L{Contains Covers, Equdlor (1) is
false. By considering definition 1 and (1), (2) cannot be true because there is a contradiction.
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Appendix 3. Demonstrations of the possible topological
relationships between regions with broad boundaries resulted from

an integration process

In this appendix, we prove the results obtained in Section 5.7. For the next proofs, we use the
following terminology:

Let 0A the boundary ofA,, A’y its interior andA its closure
0A,the boundary ofA, , A’ its interior andA, its closure
0A,the boundary ofA, , A’n its interior andA,,its closure
0B, the boundary oB, , B'1 its interior andB, its closure
9B, the boundary oB,, B’ its interior andB, its closure

0B, the boundary oB,, B its interior andB,, its closure
A3.1 Disjoint

Let Disjoint( A, B,), Disjoint( A,,B,),..and Disjoint( A,,B,) with A, A,,.. and A, the
available heterogeneous oA and B,, B,,. and B, the available heterogeneous
representations dB. According to Section 5.7, the final geometries should conform to the

specifications of the next matrix:

Disjoint (Ia, Ig)

{Disjoint, Meet, Overlap} (Ua,Ug)

- Disjoint (I, Ig)

In order to prove that Disjoint(la, 1lg), we should demonstrate that

(AnA.nA)N(BNB,..n B,)=0

WO xO(AN A .0 Ay, we have XA, xOA,,..and x0 A,.
Is-it possible fo to be an element o, n B,...n B,)?

(2) If x 0 B, then, there is a contradiction becausen B, =01
(3) If x 0 B, then, there is a contradiction becausen B, =[]
(4) If x O B,, then, there is a contradiction becausgn B, =0

(5) According to (2), (3) and (4%, 0(B,n B,...n B,)
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Finally, (1) and (5) means thatA(n A,..n A;)n(B,n B,...n B,)=0 and so
Disjoint((A n A,..n A,), (B,n B,...n B,)) that we write Disjoint (I, Ig) (I for
intersection). In addition, (1) and (5) show that 0 A,..0 A,)0(B,0 B,...0 B,)
because A n A,..n A)O (AOA..OA)and(An A,..n A))O(B,0B,...00B,)

- {Disjoint, Meet, Overlaf{ Ua,Ug)

» For Overlap(Ua,Ug), we should prove that
if ((A1n(B1UB2...0 B n))U(A"
N(B1UB 2...0 B n))..0(Ann (B 10 B 2...00 B'n))# O then
(A10 A 2. 0A N (B1UB2...0B ) 2 0.

Letx O (A1n(B1O0B2...0BW)O(A2n(B10B 2...0 B'n))..
O(Ann(B10B2...0B" 1)), we havex 0 (B'10 B 2...0 B'n)

WIF A1n(B1UB2...0Bn)=0thenkl (A2 n(B1U B 2...00 B'n)
Nl (Aon N (B°1 0B ..U Bon))) else there is a contradiction. Indeed, A >
orxt AO3OI‘,..,X l Aon

@1f A2 n(B10OB2...0Bn)=0 thenk O (A1n(B10B2...0B"n)
.0 (Aon N (B°1 0B .0 Bon))) else there is a contradictiond A'1
orxt A030r,..,XD A

R)IF Ann(B1UB2...0B n)=0 then K U(A1n (B 10 B 2...0 B'n) I (A2
n(B1UB 2...0Bn) ..U(Anan(B1UB2...0 B'n)))
else there is a contradiction.] A’10rxL A z0or ..x U A'n-.

(1), (2) and (3) mean that] (A10 A2..0 A'n).
(A10A 2. 0AWN(B1OB 2...0 B n)) #0 and so
Overlag(A U A,..U A,), (B, U B,...U B,)) that we writeOverlap(Ua,Ug).

» For Meet Ua,Ug): aMeetrelationship is possible between unions if there is only
intersection between their boundaries, we suppose that interiors does not intersect so
we should prove that

if (0A, n (0B, 0B, ... dB,))U( 0A, n (0B, L1 0B, ... dB,))..LI(
0A, n (0B, L 0B, ...l 0BR)))# O then
(OA, L 0A,..L0 0A,)) n ((0B, LU 0B, ... LU dB))) # O

Letx [ (0A, n (B, 0 3B,... 0 0B,,)) L ( 9A, n (8B, 0B, ... 1] 8B,,))..0 (
A, n (8B, 0 0B, ... 1 8B,,))), we havex [ (8B, LI B, ... LI dB;,)
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(1) If 0A n (0B, 0 0B, ...0 0B,)= 0 then & O (0A, n (0B, 0 0B, ... 0 dBy)
WU (0A, n (0B 0B, ...0 dB,))) else there is a contradiction. Inderd,
Uo0A,or xJoA;or, .., XU 0A,.

(2)If 0A, n (0B, U 0dB,...110B,)=0 then kU (0A n (0B U 0B, ... dBy)
.U (0A, n (0B U0dB,...U 0dB,))) else there is a contradiction XA, or x L1 dA; or, ..,
XL 0A,.

(3)If 0A, n (0B, 0B,...00 0By)= 0O then & L(0A n (0B, U 0B, ... 0B,) U (0A,
n (0B, 0 0B,...00By) ..0( 0A,_, n (0B, 0B, ... dB)))
else there is a contradiction. XA, or x L1 0A, or, .., XL 0A,

(1), (2) and (3) mean thatx(0A U 0A, ..LJ 0A,) .
Indeed, @A U 0A, .1 0A,)n (0B, L 0B, ... dB,)) # O and so
Meef(A U A,..LU A,), (B, U B,...U B,)) that we write Mee(Ua,Ug).

» For Disjoint (Ua,Ug), a Disjoint relation is possible between unions if there is no
intersection respectively between their boundaries and interiors, we should prove that
If

(A1n(B1UB2...0B ) 0(A2n(B10B 2...0 B'n))..0(Ann (B10
B'2...0B'n))=0 and (@A, n (8B, 0 0B,...0 9B,)) O ( oA,
n(8B,00B,...00B,))..0( A, n (0B, 0dB,...0 8B,))=0 then
(AOA,.0A)N (B OB,..0B,))=0

(1) Letx (B'10 B 2...00 B'n), then
Ifx L A1, there is a contradiction because: n (B°1 0B 2.0 Bon): O
Ifx U A2, there is a contradiction becausez n (B°1 0B 2.0 Bon): O
Ifx U A'n, there is a contradiction becausen n (B°1 0B 2.0 Bon): O

Indeedx D(Aol OA .0 Aon) and so
(A10A 2. 0A N (B1OB ...0 B n))=0

Lety (0B, U 0B, ... 1 0B,), then

Ify O 0A,, there is a contradiction becaud& n (0B, [! 0B, ... dB,)=0
Ify O 0A,, there is a contradiction becaud®, n (0B, [l 0B, ... [l dB,)=0
Ify O 0A,, there is a contradiction becaud& n (0B, [l 0B, ... [l dB,)=0

(2) Indeedy O(0A U 0A,..UJ 0A,) and so
(OA L 0A,..L0 0A,) n (0B, U 0B, ... 1 0B,))=0 (6)
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(1) and (2) mean that¥(01 A,..00 A,)n (B,0 B,...0 B,)) =0 and so Disjoint
(A0 A..OA), (B OB,...0 B,)) that we writeDisjoint (Ua,Ug).

A3.2 Contains/Inside

Let Containg A, B,), Containg A, , B, ),..andContaing A,,B,) with A, A,,.. and A, the
available heterogeneous oA and B,, B,,. and B, the available heterogeneous

representations d. Then, we haveB, 0 A, B, 0 A,,.. andB, 0 A,,. The final geometries
should conform to the specifications of one of the next matrices:

=>For Contains(A, B)
|B UB

|, | Contains (la, Ig)
U Contains (Ua,Ug)
A

=>Forinside(A, B)
|B UB

| Inside (la, Ig)
A

Ua - Inside (Ua,Ug)

- Contains(la, Is)
In order to prove thaContaingla, Ig), we should demonstrate thaB,(n B,...n B,)O

(AnA.0 Ay
0 x0(B,n B,...n B,), we have x1B,, xIB,,.. andx I B,
(1) If x O A then, there is a contradiction becalgel A

(2) If x 0 A, then, there is a contradiction becalgr A,
(3) If x O A, then, there is a contradiction becalged A,

(1), (2) and (3) mearx OA, x OA, andx OA,; sox O(An A,..n A,). Indeed,
(Bjn B,...n B,)O(An A..n Ay).

Finally, we have the intersection of the closures of A's representations contains that of B's
representations. Then, we can concl@Gdataing(A n A,..n A,), (B,n B,...n B,)) that

we writeContains(l, Ig).
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- Contains(Ua,Usg)
In order to prove thaContain§Ua,Ug), we should demonstrate thaB,(J B,...[] B,)O
(AUA,.UA)
0 x 0(B,U B,...0 B,), we havex 0By, x 0B,,.. orx 0B,. In addition, we have
B,0A,B,0A,,. andB, 0 A,

(1) If x 0 A thenx O B,..orx [0 B, else there is a contradiction becalel A
(2) If x 0 A, thenx 00 B,..orx 00 B,, else there is a contradiction beca@sel A,
(3) If x 0 A, thenx U B, orx LI B,, else there is a contradiction becaled A,

(1), (2) and (3) mearx OA, x OA, or x OA,; sox (AOA,..0A,) Indeed,
(B,0B,..0B,)O0(ATA,.OA,).

Finally, we have the union of the closures of A's representations contains that of B's
representations. Then, we can concl@entains (A Ul A,...L1 A,), (B U B,...I B,))
that we writeContains(Ua,Ug).

A3.3 Covers/Covered by

Let CovergA,B,;), CovergA,,B,),..and CovergA,,B,) with A, A,,.. and A, the
available heterogeneous oA and B,, B,,. and B, the available heterogeneous
representations d@. Then, we havB'10 A1, B20A2,..andB n O Aon(l). In addition,

we have 0A n dB,=0AB, 20, 0A, n dB,=0A,B,#0,.. and 0A, n dB,=0A B, # 0.
According to Section 5.7, the final geometries should conform to the specifications of the next

matrix:
=>For Covers(A, B)

||3 UB
{Covers, Contains} (I, I)

Covers (Ua,Up)

=>ForCovered byA, B)
Is Ug
In | {Covered by, Inside} (la, Ig)

Un - Covered by (Ua,Ug)
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- Covers(Ua,Ug)
In order to prove tha€CovergUa,Ug), we should demonstrate thaBo(l 0B >...O0 Bon)D
(A10 A2..0 A'n)and @A 0 0A,..00 9A,) n (8B, [1 0B,..[1 8B,)# O .

(10O xD(B°1D B...O0 Bon), we have X0B'1, xOB'2,.. or xO B’

If x O A°1 then xJ Boz .orxQd Bon, else there is a contradiction becalli?soeD A°1
If x O Aoz then xJ B°1..orx O Bon, else there is a contradiction becalli?soe O A°2
If x O Aon then xJ B°1 orx Boz, else there is a contradiction becalBsoe O Aon

(2) Indeed, X A'1orxOA'2..orxOA s and so >U(A°1 0A .0 Aon)
Because (1), (2) means theBo(lD B2...0 Bon)[l (A°1D A0 Aon).

O x/ xo (0B, U 0B, ..U 0B,) andxd 0AB,or x0 0A,B, ..or xO dA, B,,, we havex 0B, x
UoB,,.. or x10B,,.

If x O 0B, then xJ dA,, else there is a contradiction becadden 0B,=0AB, # [
If x O 0B, then x 0A,, else there is a contradiction becadge n 0B,=0A,B, # [
If x O 0By, then xJ 0A,, else there is a contradiction becadgg n 0B,=0A B, # U

Indeed, xJ(0A, Ll 0A,..L1 8A,) and so 0A, LI 0A,..L1 0A,) n (9B, L1 8B,..L1 9B,) % O (3)

Finally, (1), (2) and (3) mean th&@overs((A O A,...0 A,), (B,0 B,...0 B,)) that we
write Covers(Ua,Ug).

- {Contains, Covers}{(a, Ig)

> Contains(a, Ig)

In order to prove thatontains(la, Ig), we should demonstrate thao(l nB2..n Bon)D
(A'1n A2..n A'n)and @A n 0A,..n 0A,) n (3B, n 8B,..n 3B,)=01.

O x/ xd(0B, n 0B,..n 0B,,) butxd 0A B,andx0d dA,B, ..andx0d dA,B,,, we havex L1 0B,, X
U oB,,.. andx L] 0B,.

If x 0 0B, thenx O 0A,, else there is a contradiction becaxsedA B,
If x 0 0B, thenx O dA,, else there is a contradiction becaxsedA,B,
If x 0 0B, thenx O dA, else there is a contradiction becaxsedA By,

Indeed, x O0A, X OO0A,,.. and x OO0A,; so x O(0A n 0A,..n dA,). Then,
(0A, n 0A,..n 0A,) n (0B, n 0B,..n 0B,)=0 (1)
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Now, 0 x/x3(B'1n B 2...n B'n), we havex 1 B'1, x U B'2,... and x B'n.

If x O A°1 there is a contradiction becalBoe 0 A°1
If x O Aoz there is a contradiction becauBéz 0 Aoz
If x O Aon there is a contradiction becauBén 0 Aon

Indeed,>d](A°m Az.n Aon); and so Bom B,...n Bon)D (Aom A'2..n Aon) (2)

(1) and (2) mean thaContains (A n A,..n Ay), (B n B,...n B,)), that we write
Contains(l a, Ig).

» Covers(a, Ig)

In order to prove thaCovers(la, Ig), we should demonstrate th%o(l nB2..n Bon)D
(A1n A2..n A'n)and @A n 0A,..n 0A,)n (9B, n 8B,..n dB,)# 0.

With (2), we have B'1n B 2...n B n)0 (A1n A2..n A'n).

Now,U x/ xO0(0B, n dB,..n dB,) andxU 0A B,andxlJ dA,B,..andx[] dA B,,, we havex
0oB,,x[0B,,.. andx [10B,,.

If x O 0A,, else there is a contradiction becaxis¢dA B,
If x O dA,, else there is a contradiction becaxsédA,B,
If x O dA, else there is a contradiction becaxsédA, B,

Indeed, x UO0A, x UO0A,,.. and x L0A,; so x U (0A n 0A,..n dA,). Then,
(0A, n 0A,..n 0A,) n (0B, n 0B,..n dB,)=0 (3)

(2) and (3) mean thaCovers (A n A,..n Ay), (B,n B,...n B,)), that we write
Covergla, Ig).

A3.4 Overlap

Let Overlag A, B,), Overlag A,,B,),..and Overlag A,,B,) with A, A,,.. and A, the
available heterogeneous oA and B,, B,,. and B, the available heterogeneous

representations d. Then, we haveB'1n A120, B2n A2#0,.andBnn Anz0.
In addition, we have O0A n 0B,=0AB,#0, 0A,no0B,=0AB,#0,. and
0A, n 0B,=0A B, # . According to Section 5.7, the final geometries should conform to
the specifications of the next matrix:
IB UB

|, | {Overlap, Meet, Disjoint} (I, I8)

Ua - Overlap (Ua,Up)

237



- {Overlap, Meet, Disjoir}i( 1,1g)

In this case, we should prove that the relationg{ip,ls) #{Contains, Inside Covers,
Covered by

» R# Containsly, Ig)

In order to prove thaContains(la, Ig), we should demonstrate th@o(l nB2..n Bon) [
(A1n A2.n A'n)

Let x/ xD(B°1 nB2..n Bon) andx D(B°1 0B ..U Bon), then xU B 10r XL B'10r ..X
LB

Q) IfxO B'1, then xO A1, else there is a contradiction becaBsen A1 # 0
(2) If x O B"> then xO A2, else there is a contradiction becaBsen A’z # 0
) IfxO B'n then xO A’n there is a contradiction becauBen n A'n # [

(1), (2) et (3) show that if xO(B'1n B 2...n B'n) then xO(A1n A2..n An).
Consequently, B°1 nB2..n Bon)D (A°1 nA2.n Aon).

In conclusion,R# Containgla, Ig). The same demonstration may be madeR@insidg,
Ig), i.e. it is required to demonstrate thmo( nA2.n Aon)D(Bol nB2..n Bon).

Since the interior of the first intersectibn(or Ig) cannot be inside the second intersectipn
(or 1a). It is possible to conclude that CovarsdCovered byare also impossible

- For Overlap (a, Ug) we should prove that

if (A1n(B10B2...0 B n)L(A"
N(B1UB 2.0 B n)..U(A W n (B 11U B 2...0 B'n))# O then
(A10A2.0A N (B1UB2...0B ) 20.

LetxO (A1n(B1O0B2...0BWw)O(A2n(B10B 2...0 B'n))..
O(Ann(B10B2...0B" 1)), wehavexd (B 10 B 2...0 B'n)

WIF A1n(B10B2...0Bn)=0 thenk 1 (A2 n(B 10 B 2...00 B'n)
. (Aon N (B°1 0B .0 Bon))) else there is a contradiction. Indeed, A >
or X/ Aogor,.., xt A°n

@1f A2 n(B10B2...0Bn)=0thenk O (A1n(B10B2...0B"n)
.0 (Aon N (B°1 0B >...O0 Bon))) else there is a contradictionxA 1
or XJ Aosor,.., X0 A'n
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R)F Ann(B10B2...0B n)=0 then K U(A1n(B10 B 2...0 B'n) I (A"
N (B1UB 2...0Bn) ..0(Anan(B1UB2...0 B'n)))
else there is a contradictionxA 10r X1 Az or .. XU A'n-.

(1), (2) and (3) mean thatx(A 10 A2..0 A'n) .
(A10A 2. 0A WA (B1OB2...0 B n)) #0 and so
Overlap((A, U A,..LI A,), (B, U B,...U B,)) that we write Overlapla,Ug).

A3.5 Meet

In this case, we assume thMee( A ,B,), Mee( A,,B,),..andMee( A,,B,) with A, A,,..
and A, the available heterogeneous/dtind B,, B,,.. and B, the available heterogeneous
representations @. Then, we haveB'1n A'1=0 , B2n A=0 ,.. and B'nn A'h=0.
In addition, we have O0A n 0B=0AB,20, 0A,n0B,=0AB,#0,. and

0A, n 0B,=0A B, # . According to Section 5.7, the final geometries should conform to
the specifications of the next matrices:

> Meella, Ip):
Ig Us
IA Meet (IA, IB)
Ua

{Overlap, Meet} (Ua,Ug)

> Disjoint(la, Ig)
Is Us

la [ Disjoint (I, Ig)

Ua {Overlap, Meet} (Ua,Upg)

The demonstrations ®leet (I, Ig) andDisjoint (I, Ig) are identical to those presented in the
Overlap case (see Section A3.4 of the appendix).

The demonstrations of Overldpa,Ug) and MegiiJa,Ug) are identical to those presented in the
Disjoint case (see Section A3.1 of the appendix)
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Appendix 4: Extrait de la convention de cotutelle

- UNIVERSITE
- LAVAL %

Faculté des études supérieures Université Blaise Poscal

@ Cemagref

CONVENTION DE COTUTELLE DE THESE

PREAMBULE

Conformément aux dispositions et modalités arrétées darSdavention-cadre de cotutelle de
these signée entre la CPU, la CDEFI et la CREPUQ le 18 octobre 1996, et mise a jour en mars
1997,

LA PRESENTE CONVENTION EST CONCLUE ENTRE :

L’établissement francais : I'Université Blaise Pascal
représenté par son présideril. Pascal Albert ODOUARD
ET

Le Centre National du Machinisme Agricole du Génie Rural, des Eaux et des Foréts,
Etablissement Public a caractéere Scientifique et Technologique (EPST),

désigné ci-apres par “ Cemagref ”,

ayant son siege, parc de Tourvoie, 92160 Antony, France

représenté par son Directeur Régional de Clermont Ferrand, Monsieur Didier Mechineau,
agissant au nom et pour le compte du Directeur Général du Cemagref,

ET

L'Université Laval représentée par le vice-doyen de la Faculté des études supérieures,
Monsieur Gérard Charlet, qui agit a titre de représentant de la vice-rectrice aux études.

Elle concerne :

M™ou M.  Lotfi Bejaoui
Née ounéle 17-10-1981

De nationalité Tunisienne

241



M ODALITES ADMINISTRATIVES

ARTICLE 1 - Inscription

(Le doctorant s’inscrit obligatoirement, simultanément a temps complet dans les deux
établissements.)

= Le doctorant est inscrit :

1) a I'Université Blaise Pascal
au doctorat, spécialité sciences pour I'ingénieur
a compter de la rentrée universitaire 2005-2006

ET

2) al'Université Laval, programme de doctorat en sciences géomatiques
a compter de la session hiver 2006

» Droits d’inscription et de scolarité
Le doctorant ne paiera les droits d’inscription et de scolarité que dans un seul des deux
établissements partenaires, a savoir dans I'établissement universitaire ou il effectue son
séjour d’études et de recherche, comme convenu ci-apres par année ou par session(s)

- 1® année ou session(s) 12 mois a l'université Laval :  H-06, E-06, A-06

- Z année ou session(s) 18 mois a 'université Blaise Pascal : H-07, E-07, A-07, H-08

- Fannée ou session(s) 6 mois a l'université Laval : E-08, A-08

ARTICLE 2 - Scolarité et thése

» Le sujet de theseléposé par le doctorant est :

« Spécification de contraintes d'intégrité spatio-temporelles : application a la
modélisation des systemes d’information agri environnementaux »

= La durée prévisionnelle de la scolarité et des travaux de recherche du doctorant est
normalement de trois ans. Elle pourra étre prolongée par avenant avec I'accord des deux
établissements, sur proposition conjointe des deux directeurs de these.

» Le doctorant effectusa scolarité et ses travaux de recherchen alternance entres
deux établissements, par périodes déterminées d’'un commun accord entre les deux
directeurs de these selon les modalités prévisionnelles suivantes

- périodes previsionnelles dans I'établissement francais :
Janvier 2007- Juin 2008

- périodes preévisionnelles a I'Université Laval :
Les sessions d’hiver, d’'été, d’automne 2006 et celles d’'été et d’automne 2008
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Lors de son séjour en France, le doctorant M. Lotfi Bejaoui aura un bureau au sein de I'Unité
de Recherche Technologies et Systemes d'information pour les agrosystemes, du Cemagref de
Clermont Ferrand et bénéficiera de I'ensemble des moyens de travail (notamment
informatiques et documentaires) de cette Unité.

Lors de son séjour au Canada, le doctorant M. Lotfi Bejaoui aura un bureau au sein du
Département des Sciences géomatiques et pourra accéder aux equipements de la Chaire
CRSNG de recherche industrielle en bases de données géospatiales, localisée au Centre de
recherche en géomatique de I'Université Laval.

= La protection du sujet de thése ainsi que la publideon, I'exploitation et la protection
des résultats de recherche issus des travaux de recherdahe doctorant dans les deux
établissements seront assujetties a la réglementation en vigueur et assurées conformément
aux procédures de chaque pays engagé dans la cotutelle.

Lorsque nécessaire, les dispositions relatives a la protection des droits de propriété
intellectuelle feront I'objet d’une annexe patrticuliere a la présente convention.

ARTICLE 3 - Couverture sociale et responsabilité civile

M ODALITES PEDAGOGIQUES

ARTICLE 4 - Directeurs de these

Le doctorant effectue sa scolarité et ses travaux de recherche sous la responsabilité conjointe
d’'une directrice ou d’un directeur de thése en France et d’'une directrice ou d’'un directeur de
thése a I'Université Laval, les deux personnes ayant déja établi une collaboration :

- al’'Université Blaise Pascal, le directeur de thése est :

Monsieur Michel Schneider

- al'Université Laval, le directeur de thése est :

Monsieur Yvan Bédard

Les deux directeurs de these s’engagent a exercer pleinement la fonction de tuteur

aupres de la doctorante ou du doctorant. lls exercent conjointement les compétences

attribuées en France et a I'Université Laval a une directrice ou a un directeur de these.
ARTICLE 5 - Déroulement de la scolarité

= Activités pédagogiques de la doctorante ou du doctant
(préciser les cours, séminaires, etc., dans chacun des établissements)

Dans I'établissement francais :

2 modules "Sciences Pour I'lngénieur” de 15 heures au choix
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A I'Université Laval :

La géomatique et ses référentiels (SCG-66672) (scolarité probatoire), SIG et analyse
spatiale (SCG-66673) (scolarité probatoir@@minaire (SCG-60430), Recherche préliminaire
(SCG-65825), Examen de doctorat (SCG-65912), Conception de bases de données SIG (SCG-
64738), Réalisation d’application en SIG (SCG-64739).

= Examen de doctorat

Apres concertation entre les deux directeurs de thése, et compte tenu des acquis du
doctorant validés lors de sa scolarité antérieure, la préparation et le contenu de I'examen de

doctorat québécois sont adaptés comme suit dans le respect des objectifs du programme ou
de la formation

L'examen de doctorat sera conforme a la procédure en vigueur au programme de doctorat
en sciences géomatiques a la faculté de foresterie de de géomatique de I'Université Laval.

ARTICLE 6 - Soutenance

» Lathese donne lieu a useutenance unique, reconnue par les deux établissements.
» ’admission a la soutenance de thése est décidé sur avis conjoint des directeurs de these, et
fait intervenir une évaluation par au moins deux rapporteurs, extérieurs a I'établissement de

soutenance. Les rapporteurs sont désignés conjointement par les deux établissements
concernés.

= Le jury de soutenanceest composé de scientifiques désignés a parité par les deux
établissements partenaires. Il comprend obligatoirement les deux directeurs de these
auxquels s’ajoute au moins un professeur de chacun des deux établissements partenaires.
S’y ajoute aussi au minimum, dans le respect de la procédure d’évaluation de I'Université
Laval, une examinatrice ou un examinateur externe aux deux établissements.

= Autres aspects

* Le doctorant soutiendra sa these au___Québeg I'Université Laval.

* La soutenance devrait avoir lieu en Décembre 2008 .
- Lathese sera rédigée et soutenue en langue Francaise.

- Le résumé de la these sera rédigé et présenté en langue Francaise.

N.B. La doctorante ou le doctorant est tenu de rédiger soit la thése, soit le résumé, en langue francaise; il est
tenu de soutenir la thése ou de présenter le résumé oral en langue francaise. Pour toute autre précision
guant a la rédaction de la thése et a la soutenance, veuillez consulter le guide intitulé « Le mémoire et la

thése : de la rédaction a la diplomation », qui est accessible en ligne a l'adresse suivante :
www.fes.ulaval.ca <http://www.fes.ulaval.ca>

ARTICLE 7 - Délivrance des deux diplomes

Sur avis favorable du jury de soutenance,
I'établissement frangais : I'Université Blaise Pascal
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s’engage a conférer a Monsieur Lotfi Bejaoui
le grade de docteur et a lui délivrer le diplédme correspondant.

ET

I'Université Laval s’engage a conférer a Monsieur Lotfi Bejaoui
le grade de Ph.D. et a lui délivrer le diplome correspondant.

Le libellé de chaque diplome fera mention de la collaboration de I'établissement partenaire
ainsi que de la cotutelle.
ARTICLE 8 - Dépdt, signalement et reproduction de la thése

Dans chaque pays, ils seront effectués selon la réglementation en vigueur, en particulier celle
de I'Université Laval.

SIGNATURES

Le doctorant Date
Monsieur Lotfi Bejaoui

Pour I'établissement francais

Le directeur de thése Date
Monsieur Michel Schneider

Directeur régional de Clermont Ferrand - Cemagref Date
Monsieur Didier Mechineau

Le responsable de I'école doctorale Date
Monsieur Philippe Mahey

Le président Date
Monsieur Pascal Albert Odouard
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Pour I'Université Laval

Le directeur de thése
Monsieur Yvan Bédard

Le directeur du programme de doctorat
Monsieur Jean-Jacques Chevalier

Date

Le vice doyen de la Faculté des étudapérieures
Monsieur Gérard Charlet

Date

Date
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Lotfi BEJAOUI

Qualitative topological relationships for objects with possibly vague shapes

Résumé

Dans les bases de données spatiales actuellement mises en oeuvre, les phénomenes naturels
sont généralement représentés par des géométries ayant des frontieres bien délimitées. Une
telle description de la réalité¢ ignore le vague qui caractérise la forme de certains objets
spatiaux (zones d’inondation, lacs, peuplements forestiers, etc.). La qualit¢ des données
enregistrées est donc dégradée du fait de ce décalage entre la réalité et sa description.

Cette these s’attaque a ce probléme en proposant une nouvelle approche pour représenter
des objets spatiaux ayant des formes vagues et caractériser leurs relations topologiques. Le
modele proposé€, appelé QMM model (acronyme de Qualitative Min-Max model), utilise les
notions d’extensions minimale et maximale pour représenter la partie incertaine d’un objet.
Un ensemble d’adverbes permet d’exprimer la forme vague d’un objet (ex : a region with a
partially broad boundary), ainsi que ’incertitude des relations topologiques entre deux objets
(ex : weakly Contains, fairly Contains, etc.). Cette approche est moins fine que d’autres
approches concurrentes (modélisation par sous-ensembles flous ou modélisation probabiliste).
Mais elle ne nécessite pas un processus d’acquisition complexe des données. De plus elle est
relativement simple & mettre en ceuvre avec les systémes existants de gestion de bases de
données.

Cette approche est ensuite utilisée pour contrdler la qualité des données dans les bases de
données spatiales et les entrepots de données spatiales en spécifiant des contraintes d’intégrité
par I'intermédiaire des concepts du modéle QMM. Une extension du langage de contraintes
OCL (Object Constraint Language) a été étudiée pour spécifier des contraintes topologiques
impliquant des objets ayant des formes vagues. Un logiciel existant (outil OCLtoSQL
développé a I’Université de Dresden) a été étendu pour permettre la génération automatique
du code SQL d’une contrainte lorsque la base de données est gérée par un systéme relationnel.
Une expérimentation de cet outil a été réalisée avec une base de données utilisée pour la
gestion des épandages agricoles. Pour cette application, I’approche et 1’outil sont apparus trés
efficients.

Cette thése comprend aussi une étude de 1’intégration de bases de données spatiales
hétérogenes lorsque les objets sont représentés avec le modéle QMM. Des résultats nouveaux
ont été produits et des exemples d’application ont été explicités.
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