. Aissanin and . Etbeldjilalib, Useofmachinelearningforcontinuousimprovementofthereal time heterarchical manufacturing control system performances, International Journal of IndustrialandSystemsEngineering, vol.3, issue.4, pp.474-497, 2008.

M. R. Alam, . S. Leek, M. Rahman, and Y. F. Etzhang, Process planning optimization for the manufacture of injection moulds using a genetic algorithm, International Journal of Computer Integrated Manufacturing, vol.4, issue.3, pp.181-191, 2003.
DOI : 10.1109/4235.687888

I. Alberto, C. Azcàrate, F. Mallor, and P. M. Et-mateo, Optimization with simulation and multiobjective analysis in industrial decision-making: A case study, European Journal of Operational Research, vol.140, issue.2, pp.373-383, 2002.
DOI : 10.1016/S0377-2217(02)00075-9

R. Aler, D. Borrajo, and P. Isasi, Using genetic programming to learn and improve control knowledge, Artificial Intelligence, vol.141, issue.1-2, pp.29-56, 2002.
DOI : 10.1016/S0004-3702(02)00246-1

S. Andradottir, Simulation optimization.Handbook of Simulation, pp.307-333, 1998.

B. Archiméde, Conception d'une architecture réactive distribuée et hiérarchisée pour le pilotagedessystèmesdeproduction,Thèsededoctorat, 1991.

F. Azadivar, A tutorial on simulation optimization, Proceedings of the 24th conference on Winter simulation , WSC '92, pp.198-204, 1992.
DOI : 10.1145/167293.167332

F. Azadivar and G. Et-tompkins, Simulation optimization with qualitative variables and structural model changes: A genetic algorithm approach, European Journal of Operational Research, vol.113, issue.1, pp.169-182, 1999.
DOI : 10.1016/S0377-2217(97)00430-X

E. Y. Bajic and . Sallez, Proposition de projet transversal exploratoire du GDR MACS : « SystèmeContrôléparleProduit», pp.11-12, 2007.

T. Bäck and H. P. Et-schwefel, An Overview of Evolutionary Algorithms for Parameter Optimization, Evolutionary Computation, vol.1, issue.1, pp.1-23, 1993.
DOI : 10.1162/evco.1993.1.1.1

. Blancp and . Demongodini, Aholonicapproachformanufacturingexecution systemdesign, Anindustrialapplication.EngineeringApplicationofArtificialIntelligence, vol.21, pp.315-330, 2008.

S. Bertel and J. C. Et-billaut, A genetic algorithm for an industrial multiprocessor flow shop schedulingproblemwithrecirculation, EuropeanJournalofOperationalResearch, 2003.

O. Cardin and P. Et-castagna, Using online simulation in Holonic manufacturing systems, Engineering Applications of Artificial Intelligence, vol.22, issue.7, 2009.
DOI : 10.1016/j.engappai.2009.01.006

URL : https://hal.archives-ouvertes.fr/hal-00620880

K. K. Chan and T. A. Et-spedding, On-line optimization of quality in a manufacturing system, International Journal of Production Research, vol.39, issue.6, pp.1127-1145, 2001.
DOI : 10.1080/00207540010023015

N. E. Collins, R. W. Eglese, and B. L. Et-golden, Simulated Annealing ??? An Annotated Bibliography, American Journal of Mathematical and Management Sciences, vol.8, issue.3-4, pp.209-307, 1988.
DOI : 10.1080/01966324.1988.10737242

D. C. Creighton and S. Et-nahavandi, Optimizing discrete event simulation models using a reinforcementlearningagent, Proceedingsofthe2002WinterSimulationConference, pp.1945-1950, 2002.

B. Dengiz and C. Et-alabas, Simulation optimization using tabu serach, Proceedings of the 2000WinterSimulationConference, pp.805-810, 2000.
DOI : 10.1109/wsc.2000.899877

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

. Dindeleuxe, Propositiond'unmodèleetd'unsystèmeinteractifd'aideàladécisionpour laconduited'atelier, 1992.

A. Dolgui, A. Ereemev, A. Kolokolov, and V. Sigaev, A Genetic Algorithm for Buffer AllocationinProductionLinewithUnreliableMachine, Proc.oftheinternationalworkshopon, 2000.

R. W. Eglese, Simulated annealing: A tool for operational research, European Journal of Operational Research, vol.46, issue.3, pp.271-281, 1990.
DOI : 10.1016/0377-2217(90)90001-R

A. El-bouri and P. Shah, A neural network for dispatching rule selection in a job shop, The International Journal of Advanced Manufacturing Technology, vol.8, issue.3-4, 2006.
DOI : 10.1007/s00170-005-0190-y

M. C. Fu, Optimizationviasimulation:areview.AnnalsofOperationresearch, pp.53-199, 1994.

M. C. Fu, Optimization for simulation: Theory vs Practice, INFORMS Journal on Computing, vol.14, pp.3192-215, 2002.

L. L. Garcia and A. P. Et-bolivar, A simulator that uses Tabu search to approach the optimal solutiontostochasticinventorymodels, Computers &IndustrialEngineering, vol.37, issue.12, pp.215-218, 1999.

D. Gouyon, J. F. Pétin, and G. Morel, Control Synthesis For Product-Driven Automation. IFAC WODES'04,7thWorkshoponDiscreteEventSystems, pp.22-24

G. Habchi, Conceptualisation et Modélisation pour la Simulation des Systèmes de Production, 2001.

C. Berchet, Modélisation pour la simulation d'un système d'aide au pilotage industriel, 2000.

G. Habchi, . Et-labrune, and . Ch, Study of lot sizes on job shop systems performance using simulation, Simulation Practice and Theory, vol.2, issue.6, pp.277-289, 1994.
DOI : 10.1016/0928-4869(95)00003-C

J. Haddock and J. Mittenthal, Simulation optimization using simulated annealing, Computers & Industrial Engineering, vol.22, issue.4, 1992.
DOI : 10.1016/0360-8352(92)90014-B

N. F. Hu, Tabu search method with random moves for globally optimal design, International Journal for Numerical Methods in Engineering, vol.19, issue.5, 1992.
DOI : 10.1002/nme.1620350508

. D. Hurrionr, An example of simulation optimisation using a neural network metamodel: finding the optimum number of kanbans in a manufacturing system, Journal of the Operational Research Society, vol.48, issue.11, pp.1105-1112, 1997.
DOI : 10.1057/palgrave.jors.2600468

A. Huyet, Extraction de connaissances pertinentes sur le comportement des systèmes de production : une approche conjointe par optimisation évolutionniste via simulation et apprentissage, p.305, 2004.

A. Huyet and J. Paris, Synergy between evolutionary optimization and induction graphs learning for simulated manufacturing systems, International Journal of Production Research, vol.3, issue.20, pp.4295-4313, 2004.
DOI : 10.1016/S0377-2217(02)00215-1

URL : https://hal.archives-ouvertes.fr/hal-00118212

A. L. Huyet, Optimization and analysis aid via data-mining for simulated production systems, European Journal of Operational Research, vol.173, issue.3, pp.827-838, 2006.
DOI : 10.1016/j.ejor.2005.07.026

V. Jayaraman and A. Et-ross, A simulated annealing methodology to distribution network designandmanagement, EuropeanJournalofOperationalResearch, vol.144, pp.629-645, 2003.

. Kallelg, Propositiond'uneconduitedécentraliséecoordonnée(CODECO)pourunatelier defabrication, 1985.

K. Key and . Lee, Fuzzy rule generation for adaptive scheduling in a dynamic manufacturing environment, AppliedSoftComputing, vol.8, pp.1295-1304, 2008.

R. A. Kilmer, A. E. Smith, and L. J. Shuman, Computing confidence intervals for stochastic simulationusingneuralnetworkmetamodels, Computers&IndustrialEngineering, vol.36, pp.391-407, 1999.

L. J. Krajewski, B. E. King, L. P. Ritzman, and D. S. Wong, Kanban, MRP and shaping the manufacturingenvironment, ManagementScience, vol.33, issue.1, pp.39-57, 1987.

K. Kouiss, H. Pierreval, and N. Et-merbaki, Toward the use of a multi-agent approach to the dynamic scheduling of flexible manufacturing systems, International Conference on Industrial EngineeringandProductionManagement(IEPM'95), pp.118-125, 1995.

H. J. Kushner, Anewmethodforlocatingthemaximumofanarbitrarymultipeakcurvein thepresenceofnoise, Proc.oftheJointAutomaticControlConference, 1963.

. S. Kwakt, . Suzukit, . B. Baew, . Ueharay, and . Etohmorih, Applicationofneuralnetwork and computer simulation to improve surface profile of injection molding optic lens, Journal of materialsprocessingtechnology, vol.170, pp.24-31, 2005.

. L. Lemoignej, Lathéoriedusystèmegénéral:théoriedelamodélisation.2èmeédition, 1990.

D. Li, C. Wu, T. Tsai, and Y. Et-lina, Using mega-trend-diffusion and artificial samplesinsmalldatasetlearningforearlyflexiblemanufacturingsystemschedulingknowledge, 2007.

D. Li, C. Wu, T. Tsai, and Y. Et-lina, Using mega-trend-diffusion and artificial samplesinsmalldatasetlearningforearlyflexiblemanufacturingsystemschedulingknowledge, 2007.

E. M. Manz and J. Haddock, Optimization of an automated manufacturing systemsimulationmodelusingsimulatedannealing, Proceedingsofthe1989Wintersimulation Conference, pp.390-395, 1989.

G. Metan and I. Sabuncuoglu, A simulation based learning mechanism for scheduling systemswithcontinuouscontrolandupdatestructure, pp.2148-2156, 2005.

. Monostoril, AIandmachinelearningtechniquesformanagingcomplexity,changesand uncertaintiesinmanufacturing,EngineeringApplicationsofArtificialIntelligence, pp.277-291, 2003.

W. Mouelhi, A. Huyet, and H. Et-pierreval, Combining simulation and artificial neural networks:anoverview.6thEUROSIMCongressonModelingandSimulation, CD-ROM), 2007.

W. Mouelhi and H. Et-pierreval, Construction d'heuristiques basées sur des règles de priorité pourjobshopparoptimisationviasimulation, ème ConférenceInternationaledeModélisationet Simulation(MOSIM),CD-ROM,5pages, 2008.

W. Mouelhi and H. Et-pierreval, Le concept d'apprentissage autonome et son application au pilotagedessystèmesdeproduction, ème Congrèsinternationaldegénieindustriel(CIGI),CD- ROM,9pages, 2007.

. Mouelhi-chibaniw, Traininganeuralnetworktoselectdispatchingrules inrealtime, 2009.

K. M. Osei-bryson, Evaluation of decision trees: a multi-criteria approach, Computers & Operations Research, vol.31, issue.11, pp.311933-1945, 2004.
DOI : 10.1016/S0305-0548(03)00156-4

P. Pierrevalh, ADistributedEvolutionarySimulationOptimisationApproachfor the Configuration of Multiproduct Kanban Systems, International Journal of Computer IntegratedManufacturing, vol.14, pp.5421-430, 2001.

P. Gouyond and . Etmorelg, Supervi-sorysynthesisforproduct-drivenautomation anditsapplicationtoaflexibleassemblycell, ControlEn1gineeringPractice, issue.5, pp.595-614, 2007.

H. Pierreval, C. Caux, J. L. Paris, and F. Et-viguier, Evolutionary approaches to design and organizationofmanufacturingsystems, Computers&industrialEngineering, vol.44, pp.339-364, 2003.

H. Pierreval and L. Et-tautou, Using evolutionary algorithms and simulation for the optimizationofmanufacturingsystems, IIETransactions, vol.29, issue.3, pp.181-190, 1997.

. Pierrevalh, Propositiondetypologiedesdécisionsentempsréelagissantsurlesfluxdes systèmesdeproduction,2èmeCongrèsMOSIM'99, p.331, 1999.

H. Pierreval, Training A Neural Network By Simulation For Dispatching Problems, Proceedings of the Third International Conference on Computer Integrated Manufacturing,, pp.332-336, 1992.
DOI : 10.1109/CIM.1992.639120

H. Pierreval and H. Ralambondrainy, A simulation and learning technique for generating knowledgeaboutmanufacturingsystemsbehavior, JournalofOperationalResearchSociety, vol.46, pp.6461-474, 1990.

H. Pierreval, Simulation combinée discret/continu : étude du cas d'une fonderie, ème ConférenceFrancophonedeMOdélisationetSIMulation?MOSIM'06, 2006.

H. Pierreval, Training A Neural Network By Simulation For Dispatching Problems, Proceedings of the Third International Conference on Computer Integrated Manufacturing,, pp.332-336, 1992.
DOI : 10.1109/CIM.1992.639120

H. Pierreval and R. Et-huntsinger, An investigation on neural network capabilities as simulation metamodels, pp.413-417, 1992.

. H. Pierreval, Training A Neural Network By Simulation For Dispatching Problems, Proceedings of the Third International Conference on Computer Integrated Manufacturing,, pp.332-336, 1992.
DOI : 10.1109/CIM.1992.639120

H. Pierreval, Data-analysis oriented techniques for learning about manufacturing control withsimulation, Proceedingsofthe2 nd EuropeanSimulationMulti1Conference:Factoryofthe Future, pp.61-66, 1988.

H. Pierreval, Using multiple correspondence analysis in the analysis of simulation experiments: a study of dynamic scheduling strategies, International Transactions in Operational Research, vol.1, issue.2, pp.147-157, 1994.
DOI : 10.1016/0969-6016(94)90016-7

. Pujop and . Ounnarf, Versuneapprocheholoniquedessystèmesmécatroniquescomplexes? Propositiond'unsystèmedepilotageauto-organiséetisoarchique, JESA, issue.6, pp.41673-706, 2007.

C. R. Reeves, Genetic algorithms, Modern heuristic Techniques for Combinational Problems, Reves(orientLongman).Chapter4, pp.151-188, 1993.

. Santososóriof, Unsystèmehybrideneuro-symboliquepourl'apprentissageautomatique constructif, Thèsededoctorat,L'InstitutNationalPolytechniquedeGrenoble, 1998.

D. Roy, Une architecture hiérarchisée multi-agents pour le pilotage réactif d'ateliers de production,ThèsedeDoctoratenAutomatique-Productique, pp.15-1998, 1998.

D. Roy, D. Anciaux, and F. Vernadat, SYROCO: A novel multi-agent shop-floor control, 2001.

Y. Shiue and R. Et-guh, Learning based multi-pass adaptive scheduling for a dynamic manufacturingcellenvironment, RoboticsandComputer1IntegratedManufacturing, vol.22, pp.203-216, 2006.

. Sebagm and . Gallinarip, Apprentissageartificiel:acquis,limitesetenjeux.Apprentissage artificiel, pp.303-333, 2002.

P. Siarry, . Berthiaug, . Durbinf, and . Haussyj, Enhanced simulated annealing for globally minimizing functions of many-continuous variables, ACM Transactions on Mathematical Software, vol.23, issue.2, pp.209-228, 1997.
DOI : 10.1145/264029.264043

B. E. Stuckman and E. E. Et-easmon, 1992, a comparisonof bayesian/sampling global optimization techniques, pp.1024-1031

R. Sun, H. Ding, X. Xiong, and R. Et-du, Iterative learning scheduling: a combination of optimization and dispatching rules, Journal of Manufacturing Technology Management, vol.15, issue.3, pp.298-305, 2004.
DOI : 10.1108/17410380410523524

K. Tamani, R. Boukezzoula, and G. Et-habchi, High level Petri nets based approach for analyzing conceptual objects for production systems simulation, Proceedings Volume from the 12 th IFACConference, pp.339-344, 2006.
DOI : 10.1016/b978-008044654-7/50190-4

L. Tautou and H. Et-pierreval, Using evolutionary algorithm and simulation to optimize manufacturingsystems, Proc.ofETFA'95, pp.509-516, 1995.

D. Trentesaux, Conception d'un système de pilotage distribué, supervisé et multicritère pourlessystèmesautomatisésdeproduction», 1996.

J. Wang and Y. Et-yih, Using neural networks to select a control strategy for automated storage and retrieval systems (AS/RS), International Journal of Computer Integrated Manufacturing, vol.10, issue.6, pp.487-495, 1997.
DOI : 10.1080/095119297131048

M. Wetter and E. Polak, Aconvergentoptimizationmethodusingpatternsearchalgorithms with adaptive precsion simulation, Eigth International IBPSA Conference, pp.1393-1400, 2003.

A. Youssef, Architecture distribuée multi-experts avec contrôle hiérarchique pour le pilotagedessystèmesdeproduction, 1998.

D. A. Zighed and R. Etrakotomalala, Graphesd'induction,Hermès. -139- --D , S (? Create(issu du template Basic Process) : Un bloc Createpermet de créer des entités. Celui représentédanslafiguresuivanteestintituléCreate1(champName=Create1)Sontindiqués: -La période de création des lots d'entités (cadre Time Between Arrivals, 2000.