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mes premiers pas dans la recherche en m’initiant à des techniques algébriques qui ont
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cia, qui me permettent d’oublier les mathématiques le temps d’une discussion (ou autre...).
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Introduction

In this thesis we study the canonical trace on certain classes of pseudodifferential oper-
ators and associated multiplicative determinants on the one hand, regularized traces on
classical pseudodifferential operators and the multiplicative anomaly of related determi-
nants such as the zeta determinant on the other hand.
The canonical trace is the unique extension [MSS] of the L2-trace to classical pseudodif-
ferential operators with non-integer order which vanishes on non-integer order brackets.1

It was introduced by M. Kontsevich and S. Vishik in [KV1], [KV2] as a tool to study
properties of determinants of elliptic pseudodifferential operators. We consider pseudod-
ifferential operators acting on smooth sections of a finite rank hermitian vector bundle E
over a smooth closed riemannian manifold M of dimension n.
The L2-trace Tr is defined on classical pseudodifferential operators of order with real part
< −n. Naturally associated with this trace are Fredholm determinants [ReSi]

det(I + A) = exp(Tr(log(I + A)))

defined for operators A of order with real part < −n; they are multiplicative:

det((I + A)(I +B)) = det(I + A) det(I +B).

Since Seeley’s seminal work [Se] it is well known that the generalized zeta function
ζ(A,Q, z) = Tr(AQ−z) is holomorphic on the half plane Re(z) > n+a

q
, where Q is an

elliptic operator with appropriate spectral properties and positive order q, and A is a
classical operator of order a. The canonical trace TR provides a meromorphic extension
ζmer(A,Q, z) = TR(AQ−z) (which we denote by the same symbol ζ(A,Q, z)) to the whole
complex plane with simple poles. If a is not an integer or if A is a differential operator,
there is no pole at z = 0 and TR(A) = ζ(A,Q, 0) is independent of Q. In particular,
TR(Q−z) = ζ(I,Q, z) is holomorphic at zero; its derivative at zero gives rise to the fa-
mous zeta determinant

detζ(Q) = exp(−∂zζ(I,Q, z)z=0)

1This uniqueness result actually follows from the description of classical pseudodifferential operators
in terms of brackets derived in [L] in Proposition 4.7.
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8 Introduction

introduced by D. B. Ray and I. M. Singer [RaSi] in the mathematics literature and by
S. Hawkings [Haw] in the physics literature. For Q = I + A with A of order with real
part < −n, the zeta determinant coincides with the Fredholm determinant; this holds in
particular for operators of the type I +A with A a smoothing operator, i.e. defined by a
smooth Schwartz kernel KA via the identity

Au(x) =

∫
M

KA(x, y)u(y)dy, ∀x ∈M.

For such an operator

Tr(A) =

∫
M

trx(KA(x, x))dx =

∫
M

∫
T ∗xM

trx(σ(A)(x, ξ)) d̄ξ dx

where trx stands for the fibrewise trace and σ(A) is the local symbol of A. Since the
kernel of a general classical pseudodifferential operator A presents singularities along
the diagonal, or equivalently since its symbol does not lie in L1 as a function of the
variable ξ, to define its trace one needs to regularize the local Schwartz kernel restricted
to the diagonal KA(x, x) =

∫
T ∗xM

σ(A)(x, ξ)d̄ξ, by extracting a finite part of a divergent

expression, using Hadamard finite parts. For any x ∈ M , the integral of the fibrewise
trace trxσ(A) over the ball B∗x(0, R) of radius R in the cotangent bundle T ∗xM has an
asymptotic expansion in decreasing powers of R; furthermore this integral is polynomial
in logR so that the cut-off integral

−
∫
T ∗xM

trx (σ(A)(x, ξ)) d̄ξ := fpR→∞

∫
B∗x(0,R)

trx (σ(A)(x, ξ)) d̄ξ

is well defined. It coincides with the ordinary integral whenever the latter converges.
Whenever the operator A has non-integer order or has order with real part < −n, the

expression
(
−
∫
T ∗xM

trx (σA(x, ξ)) d̄ξ
)
dx defines a global density on M so that its canonical

trace

TR(A) :=

∫
M

(
−
∫
T ∗xM

trx (σA(x, ξ)) d̄ξ

)
dx

is well defined. In particular if A has order with real part < −n, it coincides with Tr(A).
M. Kontsevich and S. Vishik extended the canonical trace to odd-class classical operators
in odd dimensions and G. Grubb in [Gr] to even-class operators in even dimensions. The
canonical trace was actually proved to be the unique extension to a linear form on the
algebra of odd-class operators in odd dimensions, which vanishes on brackets [MSS]. M.
Lesch in [L] further extended the canonical trace to log-polyhomogeneous operators of
non-integer order. Here, we use both extensions, to odd-class classical operators in odd
dimensions and to log-polyhomogeneous operators; this last extension is useful in view of
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determinants which involve traces of logarithms.

The goal of this thesis is to investigate, on the grounds of a careful study of the un-
derlying linear forms, two types of determinants, the first ones multiplicative, the others
not, which both extend Fredholm determinants on operators of the type I + A with A a
smoothing operator:

1) The first class of determinants we consider in odd dimensions, are multiplicative de-
terminants of the type

DET(A) = exp(TR(logA))

defined from the canonical trace for operators in the odd-class with appropriate spectral
cut.

2) The second type of determinants we consider, now in any dimension, are the zeta-
determinant mentioned above and the related weighted determinants

DetQ(A) = exp(TrQ(logA))

for any classical pseudodifferential operator with appropriate spectral cut. Here TrQ(A)
is a regularized (or Q-weighted) trace corresponding to the constant term in the Laurent
expansion of the map TR(AQ−z) at z = 0, Q being as before an elliptic operator with
positive order and appropriate spectral properties.
In the odd-dimensional case, and for A and Q in the odd-class with Q of even order,
DetQ(A) = DET(A) so that the two types of determinants coincide. But in general,
neither the zeta determinant detζ nor weighted determinants DetQ are multiplicative; in
particular, the zeta determinant presents a by now well-known multiplicative anomaly first
investigated simultaneously by K. Okikiolu [Ok2] and M. Kontsevich and S. Vishik [KV1].

1) Going back to the first type of determinant, let us describe our approach to multi-
plicative determinants in the odd-class in odd dimensions. Their classification requires
classifying traces on the algebra C`0

odd(M,E) of zero order odd-class operators in odd
dimensions acting on smooth sections of the bundle E. Whereas traces on the algebra
of odd-class classical operators C`odd(M,E) acting on smooth sections of E in odd di-
mensions are proportional to the canonical trace, since C`0

odd(M,E) is a subalgebra of
C`odd(M,E), we can expect to find other traces. The leading symbol traces used by S.
Paycha and S. Rosenberg in [PR] and given by

Trλ0(A) = λ(trx(σ0(A)),

where λ is a distribution in D′(S∗M) indeed give rises to traces on the algebra C`0(M,E),
which induce traces on C`0

odd(M,E). We prove the following characterization:
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Theorem 3.3.4 If the dimension of the underlying manifold M is odd, any trace on
C`0

odd(M,E) is a linear combination of the canonical trace and a leading symbol trace.

This is reminiscent of a similar result by J.-M. Lescure and S. Paycha [LP] who showed that
any trace on C`0(M,E) is linear combination of the noncommutative residue and lead-
ing symbol trace. In order to define multiplicative determinants corresponding to these
traces, following the same line of proof as in [LP] where the authors studied multiplicative
determinants associated with the noncommutative residue and the leading symbol traces,
we first extend the traces. Since the leading symbol trace has been taken care of in [LP],
we focus here on the canonical trace. In Chapter 3, we actually extend the canonical trace
to the whole algebra of odd-class log-polyhomogeneous operators in odd dimensions and
prove the cyclicity of the canonical trace on this algebra (Corollary 3.5.9). In Chapter
2, we provide an alternative description of this algebra in terms of powers of the (sym-
metrized) logarithm of a reference elliptic odd-class operator Q (Theorem 2.2.4), which
gives further insight on the operators in that class. Since

(
C`0

odd(M,E)
)∗

is a Fréchet

Lie group with exponential mapping and Lie algebra C`0
odd(M,E), (Proposition 1.3.4 and

Proposition 6.1.4), the above classification of traces on C`0
odd(M,E) induces a classifica-

tion of multiplicative determinants given in Chapter 6:

Proposition 6.1.5 Any multiplicative map on the range of the exponential mapping in(
C`0

odd(M,E)
)∗

is of the form:

Det(A) = exp (αTR(Log(A)) + Trτ0(Log(A))) ,

where α is a real number and τ is a distribution in the cotangent unit sphere S∗M.

Leading symbol determinants studied in [LP] vanish on operators of the type I+ smooth-
ing. With the idea in mind of extending Fredholm determinants on operators of the type
I+ smoothing, we focus on determinants associated with the canonical trace of the form

DET = exp ◦ TR ◦ log

on zero order odd-class operators. For zero order operators, this makes sense since their
logarithms also lie in the odd-class. But, for an odd-class operator with positive order,
the logarithm is no longer odd-class and we introduce for this purpose the symmetrized
logarithm, a notion introduced by M. Braverman in [B]. For an admissible operator A
with positive order a and spectral cuts θ and θ − aπ, the symmetrized logarithm of A is

logsym
θ A :=

1

2

(
logθ A+ logθ−aπ A

)
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where logθ A stands for a determination of the logarithm corresponding to the choice
of a spectral cut θ. Unlike the logarithm, the symmetrized logarithm of an odd-class
operator is odd-class, a conservation property which enables us to define the symmetrized
determinant

DETsym
θ (A) := exp (TR(logsym

θ A)) .

For an even order operator, we have logsym
θ A = logθ A− ikπI for some integer k so that

DETsym
θ (A) reduces to the ζ-determinant:

DETsym
θ (A) = exp(TR(logA)) = detζ(A).

The symmetrized determinant DETsym
θ (A) coincides with the symmetrized determinant

defined by M. Braverman [B], but the originality here is that the symmetrized trace is
replaced by the canonical trace. Under suitable assumptions on the spectral cut, the
symmetrized determinant is multiplicative. In Chapter 6, we derive its multiplicativity
from the cyclicity of the canonical trace.

Theorem 6.3.8 Let M be an odd-dimensional manifold. Suppose that A is an odd-
class admissible operator with positive order a and spectral cuts θ and θ − aπ and that B
is an odd-class admissible operator with positive order b and spectral cuts φ and φ − bπ.
Let us assume that for each t in [0, 1], AtθB has principal angle ψ(t), depending on the
choice of θ and φ, where t→ ψ(t) is continuous. Set ψ(0) = φ and ψ(1) = ψ. Then

DETsym

ψ̃
(AB) = DETsym

θ (A) DETsym
φ (B),

where ψ̃ is an angle sufficiently close to ψ.

2) Let us now turn to the second type of determinant, namely the zeta determinant
and the weighted determinant which present a multiplicative anomaly. In Chapter 5, we
derive the multiplicative anomaly for zeta determinants from the multiplicative anomaly
for weighted determinants. Our approach therefore differs from that of previous authors
who computed the zeta determinant anomaly:

• M. Kontsevich and S. Vishik [KV2] for pseudodifferential operators with leading
symbols sufficiently close to positive definite self-adjoint ones.

• M. Wodzicki [W1] for positive definite commuting elliptic differential operators,

• L. Friedlander [Fr] for positive definite elliptic pseudodifferential operators,

• K. Okikiolu [Ok2] for pseudodifferential operators with scalar leading symbols.
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It is close to C. Ducourtioux’s approach [Du1] who relates the two anomalies, however,
without deriving one from the other as we do here. Our approach to the study of the
multiplicative anomaly of the zeta determinant is essentially based on the vanishing of
the noncommutative residue of an operator

L(A,B) = log(AB)− logA− logB.

The multiplicative anomaly

MQ(A,B) =
DetQ(AB)

DetQ(A) DetQ(B)

of a weighted determinant DetQ reads:

MQ(A,B) = exp(TrQ(L(A,B))).

By results of S. Scott [Sc], the noncommutative residue res(L(A,B)) vanishes as a con-
sequence of the cyclicity of the noncommutative residue, leading to the multiplicativity
of the residue determinant detres(A) = exp(res(logA)). Hence L(A,B) is a finite sum of
commutators as a result of which the weighted trace of L(A,B) is local as a sum of non-
commutative residues (see Section 4.4). Thus, the locality of the multiplicative anomaly
MQ(A,B) is closely related to the multiplicativity of the residue determinant.
In Chapter 4 which is dedicated to the weighted trace of L(A,B), we prove an explicit
local formula for TrQ(L(A,B)) and hence for the logarithm of the multiplicative anomaly:

Theorem 4.5.2 Let A and B be two admissible operators in C`(M,E) with positive
orders a and b. Assume that there is some positive ε such that AtB is admissible for any
t ∈]− ε, ε[. Then we have

res(L(A,B)) = 0.

Moreover, there is an operator W (τ)(A,B) := d
dt |t=0

L(At, AτB) in C`0(M,E) depending

continuously on τ such that

TrQ(L(A,B)) =

∫ 1

0

res

(
W (τ)(A,B)

(
log(AτB)

aτ + b
− logQ

q

))
dτ

where Q is any weight of positive order q.

Here res stands for the noncommutative residue of a classical pseudodifferential oper-
ator, which is a local expression since it involves the integral over the base manifold of a
finite number of homogeneous components of the symbol of the operator.
The weighted determinant DetQ is related to the zeta determinant by a local expression

detζ(A)

DetQ(A)
= exp

(
− 1

2a
res

[(
logA− a

q
logQ

)2
])

.
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The multiplicative anomaly

Mζ(A,B) :=
detζ(AB)

detζ(A) detζ(B)

of the zeta determinant therefore relates to that of the weighted determinant by the local
formula which involves the residue of a classical operator:

logMζ(A,B) = logMQ(A,B) + res

(
L(A,B) logQ

q
− log2AB

2(a+ b)
+

log2A

2a
+

log2B

2b

)
.

Since we previously argued thatMQ(A,B) is also local, we a priori know thatMζ(A,B)
which differs from it by a residue, is local. We then infer from Theorem 5.3.2 the following
explicit local formula for the zeta determinant anomaly.

Theorem 5.3.2 Let A and B be two admissible operators in C`(M,E) with positive
orders a, b and with spectral cuts θ and φ in [0, 2π[ such that there is a cone delimited by
the rays Lθ and Lφ which does not intersect the spectra of the leading symbols of A, B
and AB. Then the product AB is admissible with a spectral cut ψ inside that cone. A
local formula of the multiplicative anomaly Mζ(A,B) reads:

logMζ(A,B) =

∫ 1

0

res

(
W (τ)(A,B)

(
log(AτB)

aτ + b
− logB

b

))
dτ

+res

(
L(A,B) logB

b
− log2AB

2(a+ b)
+

log2A

2a
+

log2B

2b

)
and similarly replacing logB

b
by logA

a
. When A and B commute the multiplicative anomaly

reduces to:

logMζ(A,B) =
ab

2(a+ b)
res

[(
logA

a
− logB

b

)2
]
.

This thesis is organized around six chapters, the first one of which provides prerequisites
on classical pseudodifferential operators. The second chapter reviews properties of loga-
rithms of classical pseudodifferential operators and introduces the notion of symmetrized
logarithm together with its properties. Chapter 3 characterizes, in odd dimensions, the
canonical trace on odd-class operators of order zero and extends this canonical trace to
odd-class log-polyhomogeneous operators. Chapter 4 investigates regularized traces of
the difference L(A,B) = logAB− logA− logB providing a local formula in terms of the
noncommutative residue. Chapter 5 is devoted to regularized determinants for elliptic
operators, for which an explicit formula of the multiplicative anomaly is derived on the
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grounds of the results in Chapter 4. On the basis of the results of Chapter 3, in Chap-
ter 6 we classify multiplicative determinants for zero order odd-class elliptic operators in
odd dimensions, and extend them to symmetrized canonical determinants for odd-class
operators of positive order.
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Conventions and Notations

• Sm(U) : the space of symbols of order m on a open subset U of IRn

• S−∞(U) :=
⋂

m∈ IR

Sm(U) : the algebra of smoothing symbols on U

• S(U) := 〈
⋃

m∈ IR

Sm(U)〉 : the algebra generated by all symbols on U

• CSm(U) : the space of classical symbols of order m on U

• CS(U) := 〈
⋃
m∈ IC

CSm(U)〉 : the algebra generated by all classical symbols on U

• CSm,k(U) : the set of log-polyhomogeneous symbols of order m and log degree k on
U

• CS?,k(U) = 〈
⋃
m∈ IC

CSm,k(U)〉; CS?,?(U) =
⋃
k∈N

CS?,k(U)

• CSmodd(U) : the space of odd-class classical symbols of order m on U

• CSodd(U) =
⋃
m∈Z

CSmodd(U) : the subalgebra of odd-class classical symbols on U

• Op(σ) : a pseudodifferential operator with symbol σ

• KOp(σ) : the Schwartz kernel of the pseudodifferential operator Op(σ)

• Γ(M,E) : the vector space of smooth sections of the bundle E

• ΨDOa(M,E) : the set of pseudodifferential operators of order a acting on Γ(M,E)

• C`a(M,E) : the set of classical operators of order a

• C`(M,E) := 〈
⋃
a∈ IC

C`a(M,E)〉 : the algebra generated by all classical operators

• C`a,k(M,E) : the set of log-polyhomogeneous operators of order a and log degree k

• C`?,k(M,E) =
⋃
a∈ IC

C`a,k(M,E); C`?,?(M,E) =
⋃
k≥0

C`?,k(M,E)

• σ(A) : a local symbol of the operator A

• σa−j(A) : the homogeneous component of degree a− j of the symbol of the classical
operator A
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• σL(A) : the leading symbol of the classical operator A

• σa−j,l(A) : the homogeneous component of degree a − j of the symbol of the log-
polyhomogeneous operator A

• C`a,kodd(M,E) : the set of odd-class log-polyhomogeneous operators of order a and
log degree k

• C`?,?odd(M,E) : the algebra of odd-class log-polyhomogeneous operators

• C`odd(M,E) =
⋃
a∈Z

C`aodd(M,E) : the algebra of odd-class classical operators

•
(
C`0

odd(M,E)
)∗

: the set of invertible odd-class operators of zero order

• Sp(A) : the spectrum of A

• Azθ : complex powers of the admissible operator A with spectral cut θ

• Πθ,φ(A) : spectral projection of the admissible operator A with spectral cuts θ and
φ

• logθ A : logarithm of the admissible operator A with spectral cut θ

• logsym
θ A : symmetrized logarithm of the admissible operator A

• Tr(A) : the L2-trace or usual trace of A

• res(A) : the noncommutative residue of A

• TR(A) : the canonical trace of A

• L(A,B) = log(AB)− logA− logB

• TrQα (A) : the Q-weighted trace of A for weight Q with spectral cut α

• detζ,θ(A) : the ζ-determinant of A with spectral cut θ

• DetQθ (A) : the weighted determinant of A with spectral cut θ

• MQ(A,B) : the multiplicative anomaly for weighted determinant of A and B

• Mζ(A,B) : the multiplicative anomaly for ζ-determinant of A and B

• DETsym
θ (A) : the symmetrized determinant of A with spectral cut θ
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Chapter 1

Prerequisites on pseudodifferential
operators

In this chapter we introduce various sets of symbols and corresponding pseudodifferen-
tial operators. In particular we show that the group of zero order odd-class invertible
pseudodifferential operators acting on smooth sections of a vector bundle over a closed
manifold, forms a Fréchet Lie group (Proposition 1.3.4) which will be used later on in this
work. To do so, we use basic results in the theory of pseudodifferential operators and their
symbols on closed manifolds and vectors bundles and introduce relevant definitions which
we recall in this chapter using the following monographs on pseudodifferential operators
[Sh], [Gi], [Di], [T].

1.1 Spaces of symbols on an open subset of Rn

1.1.1 The algebra of symbols

Let U be an open subset of Rn. Given a real number m, the space of symbols Sm(U)
consists of complex valued functions σ(x, ξ) in C∞(U × Rn) such that for any compact
subset K of U and any two multiindices α = (α1, · · · , αn) in Nn, β = (β1, · · · , βn) in Nn,
there exists a constant CK,α,β satisfying for all (x, ξ) in K × Rn

|∂αx∂
β
ξ σ(x, ξ)| ≤ CK,α,β(1 + |ξ|)m−|β|, (1.1)

where ∂αx = ∂α1
x1
· · · ∂αnxn and |β| = β1 + · · · + βn. The real m is called the order of the

symbol σ. Notice that if m1 < m2, then Sm1(U) ⊂ Sm2(U).
Let (Ki)i∈I be an increasing family of compacts of U verifying U =

⋃
i∈I
Ki and for any

18
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compact K on U , there exist i ∈ I such that K ⊂ Ki. From the above expression we
define the following family of semi-norms:

sup
x∈Ki

sup
ξ∈Rn

(1 + |ξ|)|β|−m ‖ ∂αx∂
β
ξ σ(x, ξ) ‖

which makes Sm(U) a Fréchet space.

The product ? on symbols is defined as follows: if σ1 lies in Sm1(U) and σ2 lies in Sm2(U),

σ1 ? σ2(x, ξ) ∼
∑
α∈Nn

(−i)|α|

α!
∂αξ σ1(x, ξ)∂αxσ2(x, ξ) (1.2)

i.e. for any integer N ≥ 1 we have

σ1 ? σ2(x, ξ)−
∑
|α|<N

(−i)|α|

α!
∂αξ σ1(x, ξ)∂αxσ2(x, ξ) ∈ Sm1+m2−N(U).

In particular, σ1 ? σ2 belongs to Sm1+m2(U).
We denote by S−∞(U) :=

⋂
m∈R

Sm(U) the algebra of smoothing symbols on U , by S(U) :=

〈
⋃
m∈R

Sm(U)〉 the algebra generated by all symbols on U . The relation σ1 ' σ2 defined by

σ1 − σ2 ∈ S−∞(U) is an equivalence relation on S(U).

Example 1.1.1. Here are two classical examples of symbols.

1. Smooth functions in C∞(U ×Rn) with compact support in ξ are smoothing symbols.
Indeed, let σ(x, ξ) be a smooth function in C∞(U × Rn) with compact support in ξ.
For any compact subset K of U, there exists rK > 0 such that for all x in K and for
all ξ, |ξ| ≥ rK , σ(x, ξ) = 0. Then σ(x, ξ) is a symbol with order m for all real m.

2. Any smooth function σ(x, ξ) in C∞(U × Rn) which is positively homogeneous of
degree m for |ξ| large enough is a symbol of order m. Indeed, for any compact sub-
set K of U, there exist rK > 0 such that for x in K and |ξ| ≥ rK , σ(x, tξ) =
tmσ(x, ξ) for t > 0. Since ∂αx∂

β
ξ σ(x, tξ) = tm−|β|∂αx∂

β
ξ σ(x, ξ), then ∂αx∂

β
ξ σ(x, ξ) =

|ξ|m−|β|∂αx∂
β
ξ σ(x, ξ|ξ|) which by the compactness of the unit sphere Sn−1 yields a uni-

form upper bound of |∂αx∂
β
ξ σ(x, ξ)| on a compact subset K of U.

In particular, the product f χ of a positively homogeneous function f in ξ of degree
m with a function χ in C∞(Rn) which vanishes for |ξ| ≤ 1

2
and such that χ(ξ) = 1

for |ξ| ≥ 1, is a symbol of order m.
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Example 1.1.2. The product of any symbol σ(x, ξ) by a Schwartz function u(ξ) i.e. u
belongs to

S(Rn) := {ϕ ∈ C∞(Rn), ∀α, β ∈ Nn, sup
y∈Rn
|yα
(
∂βϕ

)
(y)| <∞}

is a smoothing symbol. Indeed, for a compact subset K of U and for any multiindices α, β
in Nn, setting τ(x, ξ) := σ(x, ξ)u(ξ) we have:

|∂αx∂
β
ξ τ(x, ξ)| ≤

∑
γ≤β

(
β
γ

) ∣∣∣∂αx∂β−γξ σ(x, ξ)∂γξ u(ξ)
∣∣∣ ≤∑

γ≤β

(
β
γ

)
CK,γ

∣∣(1 + |ξ|)m−|β−γ|∂γξ u(ξ)
∣∣

using the upper bound

|∂αx∂
β−γ
ξ σ(x, ξ)| ≤ CK,γ(1 + |ξ|)m−|β−γ|

since σ(x, ξ) is a symbol of order m. For any real value s we have∣∣(1 + |ξ|)m−|β−γ|∂γξ u(ξ)
∣∣ =

∣∣(1 + |ξ|)m−s+|γ|∂γξ u(ξ)
∣∣ (1 + |ξ|)s−|β|;

Since u belongs to S(U), sup
ξ∈Rn

∣∣(1 + |ξ|)m−s+|γ|∂γξ u(ξ)
∣∣ is finite. Setting

C :=
∑
γ≤β

(
β
γ

)
sup
ξ∈Rn

∣∣(1 + |ξ|)m−s+|γ|∂γξ u(ξ)
∣∣

we obtain the following upper bound:

|∂αx∂
β
ξ τ(x, ξ)| ≤ C(1 + |ξ|)s−|β|

so that τ(x, ξ) is a smoothing symbol. In particular, σ(1 − χ), where σ lies in S(U) and
χ is as in the above example, is a smoothing symbol.

1.1.2 Classical symbols

A symbol σ in Sm(U) is called classical of real order m if there is an asymptotic expansion

σ(x, ξ) ∼
∞∑
j=0

χ(ξ)σm−j(x, ξ), (1.3)

where χ is a smooth cut-off function which vanishes for |ξ| ≤ 1
2

and is identically one
outside the unit ball B(0, 1), such that for any integer N ≥ 1, we have

σ(x, ξ)−
N−1∑
j=0

χ(ξ)σm−j(x, ξ) ∈ Sm−N(U).
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Here σm−j(x, ξ) is a positively homogeneous function in C∞(U × (Rn − {0})) of degree
m− j, i.e. for all positive real number t,

σm−j(x, tξ) = tm−jσm−j(x, ξ).

This definition is independent of the choice of the cut-off function χ which only modifies
the asymptotic expansion by a smoothing symbol.
The components σm−j(x, ξ) are uniquely determined for |ξ| > 1 by the following recursive
formulae:

σm(x, ξ) = lim
λ→∞

σ(x, λξ)

λm

and for N ≥ 1,

σm−N(x, ξ) = lim
λ→∞

(σ −
N−1∑
j=0

σm−j)(x, λξ)

λm−N
.

Let CSm(U) denotes the subset of Sm(U) of classical symbols of order m. The subset
CSm(U) can be endowed with a structure of Fréchet space equipped with the countable
family of semi-norms defined as follows: for any family (Ki) of compact subsets of U such
that U =

⋃
i

Ki, for any j ≥ 0 and N ≥ 1, for any multiindices α, β :

sup
x∈Ki

sup
ξ∈Rn

(1 + |ξ|)|β|−m ‖ ∂αx∂
β
ξ σ(x, ξ) ‖;

sup
x∈Ki

sup
ξ∈Rn

(1 + |ξ|)|β|−m+N ‖ ∂αx∂
β
ξ (σ −

N−1∑
j=0

χ(ξ)σm−j)(x, ξ) ‖;

sup
x∈Ki

sup
|ξ|=1

‖ ∂αx∂
β
ξ σm−j(x, ξ) ‖ . (1.4)

These definitions extend to complex powers replacing the real number m by the real
part of a complex number z. A symbol σ is classical of complex order z with real part
Re(z) = m if for a cut-off function χ and if for all non negative integers j, for any integer
N ≥ 1, there are positively homogeneous functions σz−j(x, ξ) of degree z − j such that

σ(x, ξ)−
N−1∑
j=0

χ(ξ)σz−j(x, ξ) ∈ Sm−N(U).

If a, b are two classical symbols with formal expansions

a ∼
∞∑
j=0

am−j, b ∼
∞∑
j=0

bp−j
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then their star product a ? b is a classical symbol of order m + p with homogeneous
component of degree m+ p− j given by:

(a ? b)m+p−j = ambp−j +
∑

k+l+|α|=j,l<j

1

α!
∂αξ am−kD

α
x bp−l

where Dx = −i∂x. We denote by

CS(U) = 〈
⋃
m∈C

CSm(U)〉

the algebra generated by all classical symbols on U.

1.1.3 Log-polyhomogeneous symbols

Log-polyhomogeneous symbols and associated pseudodifferential operators were used by
E. Schrohe [Schr] for the construction of complex powers of elliptic pseudodifferential
operators in that class and were developed by M. Lesch in [L]. A log-polyhomogeneous
symbol is a finite linear combination of non negative integer powers of log |ξ| with classical
symbols as coefficients. More precisely, a symbol σ in Sm(U) is called log-polyhomogeneous
of real order m and log degree k (see [L], Definition 3.1) if it has an asymptotic expansion
of the form (1.3) but where now

σm−j(x, ξ) =
k∑
l=0

σm−j,l(x, ξ) logl |ξ|, ∀ (x, ξ) ∈ U × Rn.

Here k is a non negative integer and every σm−j,l, l = 0, · · · , k is positively homogeneous
of degree m− j. With these conventions we have for a cut-off function χ:

σ(x, ξ) ∼
∞∑
j=0

χ(ξ)σm−j(x, ξ) =
∞∑
j=0

k∑
l=0

χ(ξ)σm−j,l(x, ξ) logl |ξ|, ∀ (x, ξ) ∈ U × Rn. (1.5)

We denote the set of log-polyhomogeneous symbols of order m and log degree k by
CSm,k(U). As for classical symbols the set CSm,k(U) can be equipped with a Fréchet
topology replacing in formula (1.4) for classical symbols, the homogeneous components

by σm−j(x, ξ) =
k∑
l=0

σm−j,l(x, ξ) logl |ξ| in the case of log-polyhomogeneous symbols.

Log-polyhomogeneous symbols extend to complex orders. A symbol σ is log-polyhomogeneous
of complex order z with real part Re(z) = m and log degree k if for a cut-off function χ and



Chap. 1: Prerequisites on pseudodifferential operators 23

for all non negative integers j, for any integer N ≥ 1, there are positively homogeneous
functions σz−j,l(x, ξ) of degree z − j such that

σ(x, ξ)−
N−1∑
j=0

k∑
l=0

χ(ξ)σz−j,l(x, ξ) logl |ξ| ∈ SRe(z)−N(U).

If a, b are two log-polyhomogeneous symbols with formal expansions

a ∼
∞∑
j=0

am−j =
∞∑
j=0

k∑
l=0

am−j,l logl |ξ|, b ∼
∞∑
j=0

bp−j =
∞∑
j=0

k′∑
l′=0

bp−j,l′ logl
′ |ξ|

then the star product a?b is a log-polyhomogeneous symbol of order m+p and log degree
k + k′ and its component of order m+ p− j is given by:

(a ? b)m+p−j =
∑

|α|+s+t=j

1

α!
∂αξ

(
k∑
l=0

am−s,l logl |ξ|

)
Dα
x

(
k′∑
l′=0

bp−t,l′ logl
′ |ξ|

)
(1.6)

=
∑

|α|+s+t=j

1

α!

(
k∑
l=0

(
∂αξ am−s,l

)
logl |ξ|+

k∑
l=0

am−s,l
(
∂αξ logl |ξ|

))
(

k′∑
l′=0

(Dα
x bp−t,l′) logl

′ |ξ|

)
.

Here as before Dx = −i∂x.

Let us set:
CS?,k(U) = 〈

⋃
m∈C

CSm,k(U)〉, CS?,?(U) =
⋃
k∈N

CS?,k(U),

where as before 〈S〉 stands for the algebra generated by the set S.
Note that CS?,0(U) = CS(U) i.e. a classical symbol is a particular log-polyhomogeneous
symbol.
For a vector space V we set

CSm(U, V ) = CSm(U)⊗ End(V ), CS?,k(U, V ) = CS?,k(U)⊗ End(V ).

Here End(V ) denotes the set of all endomorphisms of the vector space V.

Let us now define the notion of holomorphic family of log-polyhomogeneous symbols.
Holomorphic families of classical symbols were first introduced by V. Guillemin [Gu2]
under the name of gauged symbols and later popularized by M. Kontsevich and S. Vishik



24 M. F. Ouedraogo

[KV1]. The notion of holomorphic family of classical symbols was generalized in [PS] to
the log-polyhomogeneous case.
Let us first recall the notion of holomorphic family for functions. A function f : Ω → E
on complex domain Ω with values in a topological vector space E is holomorphic at z0 ∈ Ω
if there is a vector f ′(z0) in E such that

∣∣∣∣f(z)− f(z0)

z − z0

− f ′(z0)

∣∣∣∣
tends to zero as z tends to z0; it is holomorphic on Ω if this holds at each point z0 in
Ω. Known results for Banach space valued holomorphic functions (see e.g. [Hi] Chapter
8) generalize to (sequentially) complete Hausdorff locally convex topological vector space
valued functions, i.e. to E-valued functions with the topology of the complete Hausdorff
space E defined by a family of semi-norms ‖·‖α, α ∈ A. Inductive limits of Fréchet spaces
(known as LF spaces) of interest to us fall in this class of spaces.

In particular, holomorphicity implies analyticity. Starting from a holomorphic function f
at z0 ∈ Ω one first observes that convergence as z tends to z0 holds uniformly on compact
subsets of Ω in a neighborhood of z0 as a result of the Cauchy formula (see [Hi] Theorem
8.1.1 in the Banach case)

f(z0) =
1

2iπ

∫
|ζ−z0|=r

f(ζ)

ζ − z
dζ,

where r is a positive number such that the disk centered at z0 of radius r is contained in Ω.
Thus f : Ω→ E is uniformly complex-differentiable on compact subsets in a neighborhood
of z0; by induction one shows that it is infinitely (uniformly) complex-differentiable (see
e.g. [Hi] Theorem 8.1.5 in the Banach case) on (compact subsets of) Ω in a neighborhood
of z0 with derivative given by

f (k)(z0) =
k!

2iπ

∫
|z−z0|=r

f(ζ)

(ζ − z)k+1
dζ ∀ k ∈ IN.

It follows that (see [Hi] Theorem 8.1.6 in the Banach case)

‖f (k)(z0)‖α
k!

≤ max
|z−z0|=r

‖f(z)‖α
rk

∀k ∈ IN, ∀α ∈ A. (1.7)
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For any complex number z such that |z − z0| < r, we write

f(z) =
1

2iπ

∫
|u−z0|=r

f(u) (u− z)−1 du

=
1

2iπ

∫
|u−z0|=r

f(u)

1− z−z0
u−z0

(u− z0)−1 du

=
1

2iπ

∞∑
k=0

(z − z0)k
∫
|u−z0|=r

f(u) (u− z0)−(k+1) du

since
∣∣∣ z−z0u−z0

∣∣∣ < 1. Thus

f(z) =
∞∑
k=0

f (k)(z0)
(z − z0)k

k!
. (1.8)

By (1.7) this series converges uniformly on any disk |z − z0| < r′ < r so that f is (uni-
formly) analytic in (compact subsets) of a neighborhood of z0. Note that the radius of
convergence is independent of α.

This applies to the space E := S(U) (or more generally to E := S(U)⊗End(V ) where V
is some finite dimensional vector space) of all symbols on an open subset U of IRn con-
sidered here, seen as the inductive limit of the Fréchet spaces Fν := S≤ν(U) of symbols
whose order has real part non larger than ν ∈ IR. The Fréchet structure on Fν is given by
the following semi-norms labelled by multiindices α, β and positive integers i (see [Hi]):

sup
x∈Ki,ξ∈ IRn

(1 + |ξ|)−ν+|β| ‖∂αx∂
β
ξ σ(x, ξ)‖,

where Ki, i ∈ IN is a countable sequence of compact sets covering U .

Definition 1.1.3. Let k be a non negative integer and let Ω be a domain of C. A family
(σ(z))z∈Ω ⊂ CSm(z),k(U) of log-polyhomogeneous symbols is holomorphic when

1. The function z → m(z) with m(z) the order of σ(z) is holomorphic in z.

2. For (x, ξ) in U × Rn, the function z → σ(z)(x, ξ) := σ(z, x, ξ) is holomorphic as a
function in C∞(Ω× U × Rn) and for each z in Ω,

σ(z)(x, ξ) ∼
∞∑
j=0

χ(ξ)σm(z)−j(z)(x, ξ)

lies in CSm(z),k(U) for some cut-off function χ.
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3. For any integer N ≥ 1, the remainder term

σN(z)(x, ξ) := σ(z)(x, ξ)−
N−1∑
j=0

χ(ξ)σm(z)−j(z)(x, ξ)

is holomorphic in z ∈ Ω as an element of C∞(Ω× U × Rn) and its l-th derivative

σ
(l)
N (z)(x, ξ) := ∂lz (σN(z)(x, ξ))

lies in SRe(m(z))−N+ε(U) for all ε > 0 locally uniformly on Ω, i.e the l-th derivative
∂kzσ(N)(z) satisfies a uniform estimate (1.1) w.r. to z on compact subsets in Ω.

In particular, for any integer j ≥ 0, the (positively) homogeneous component σm(z)−j(z)
of degree m(z)− j of the symbol is holomorphic on Ω as an element of C∞(Ω×U × IRn).

Lemma 1.1.4. The derivative of a holomorphic family of log-polyhomogeneous sym-
bols σ(z) in CSm(z),k(U) defines a holomorphic family of log-polyhomogeneous symbols
in CSm(z),k+1(U).

Proof: (see [PS]) For a holomorphic family σ(z) in CSm(z),k(U) of log-polyhomogeneous
symbols, we have

σ(z)(x, ξ) ∼
∞∑
j=0

χ(ξ)σm(z)−j(z)(x, ξ) =
∞∑
j=0

k∑
l=0

χ(ξ)σm(z)−j,l(z)(x, ξ) logl |ξ|.

We want to show that

∂z (σ(z)(x, ξ)) ∼
∞∑
j=0

∂z
(
σm(z)−j(z)

)
.

Indeed we have

σ(z)(x, ξ) =
N−1∑
j=0

σm(z)−j(z)(x, ξ) + σN(z)(x, ξ).

By definition 1.1.3,

σ′N(z)(x, ξ) := ∂z (σN(z)(x, ξ)) = ∂z (σ(z)(x, ξ))−
N−1∑
j=0

χ(ξ)∂z
(
σ(z)m(z)−j(x, ξ)

)
.

Taking different values of N shows that each term χ(ξ)σ(z)m(z)−j(x, ξ) which lies in
Sm(z)−j(U) is holomorphic and hence that

∂z (σ(z)(x, ξ)) ∼
∞∑
j=0

χ(ξ)∂z
(
σm(z)−j(z)

)
.
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To evaluate the derivative ∂z
(
σ(z)m(z)−j(x, ξ)

)
, we compute the derivative of each homo-

geneous component ∂z
(
σ(z)m(z)−j,l(x, ξ)

)
. Using the positive homogeneity of the compo-

nent σ(z)m(z)−j,l(x, ξ), we have for |ξ| 6= 0

∂z
(
σ(z)m(z)−j,l(x, ξ)

)
= ∂z

(
|ξ|m(z)−jσ(z)m(z)−j,l(x,

ξ

|ξ|
)

)
=

(
m′(z)|ξ|m(z)−jσ(z)m(z)−j,l(x,

ξ

|ξ|
)

)
log |ξ|+ |ξ|m(z)−j∂z

(
σ(z)m(z)−j,l(x,

ξ

|ξ|
)

)
= m′(z)σ(z)m(z)−j,l(x, ξ) log |ξ|+ |ξ|m(z)−j∂z

(
σ(z)m(z)−j,l(x,

ξ

|ξ|
)

)
.

Since σ(z)m(z)−j,l(x,
ξ
|ξ|) is a symbol of constant order zero, so is its derivative. Hence

∂z
(
σ(z)m(z)−j,l(x, ξ)

)
lies in CSm(z),k+1(U) and

∂z
(
σm(z)−j(z)(x, ξ)

)
=

k∑
l=0

∂z
(
σm(z)−j,l(z)(x, ξ) logl |ξ|

)
=

k∑
l=0

(
m′(z)σ(z)m(z)−j,l(x, ξ) log |ξ|+ |ξ|m(z)−j∂z

(
σ(z)m(z)−j,l(x,

ξ

|ξ|
)

))
logl |ξ|

= m′(z)σm(z)−j(z)(x, ξ) log |ξ|+
k∑
l=0

|ξ|m(z)−j∂z

(
σ(z)m(z)−j,l(x,

ξ

|ξ|
)

)
logl |ξ|.

tu
Thus, differentiating w.r. to z introduces a logarithmic term to each term σm(z)−j(z)(x, ξ).
In particular, if σ(z) is a holomorphic family of classical symbols then ∂z(σ(z)m(z)−j) is
not classical any more since it involves a log |ξ| term. It follows that the derivative of
a holomorphic family σ(z) of classical symbols yields a holomorphic family of symbols
σ′(z) := ∂zσ(z) of order m(z), whose asymptotic expansion involves a logarithmic term
and reads:

σ′(z)(x, ξ) ∼
∞∑
j=0

χ(ξ)
(
log |ξ|m′(z)σm(z)−j(z)(x, ξ) + σ′m−j(z)(x, ξ)

)
, ∀ (x, ξ) ∈ U × Rn

for some smooth cut-off function χ and some positively homogeneous symbol

σ′m(z)−j(z)(x, ξ) = ∂z(σ(z)m(z)−j(x, ξ)) = |ξ|α(z)−j ∂z

(
σm(z)−j(z)(x,

ξ

|ξ|
)

)
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of degree m(z)− j.

Iterating the lemma leads to the following proposition.

Proposition 1.1.5 ([PS]). If σ(z) is a holomorphic family of log-polyhomogeneous sym-
bols, then so is each derivative

σ(l)(z)(x, ξ) := ∂lz(σ(z)(x, ξ)) ∈ CSm(z),k+l(U)

Precisely, σ(l)(z)(x, ξ) has an asymptotic expansion

σ(l)(z)(x, ξ) ∼
∑
j≥0

σ(l)(z)m(z)−j(x, ξ)

where

σ(l)(z)m(z)−j(x, ξ) = ∂lz
(
σ(z)m(z)−j(x, ξ)

)
.

1.1.4 Odd-class symbols

The following definition is a straightforward extension of the notion of classical odd and
even class operator introduced by M. Kontsevich and S. Vishik in [KV1].

Definition 1.1.6 ([PS]). A log-polyhomogeneous symbol σ in CSm,k(U) with integer order
m is said to be odd-class if in the asymptotic expansion (1.5), for each j ≥ 0, for l =
0, · · · , k we have

σm−j,l(x,−ξ) = (−1)m−jσm−j,l(x, ξ), for |ξ| ≥ 1 (1.9)

and is said to be even class if for each j ≥ 0 we have

σm−j,l(x,−ξ) = (−1)m−j+1σm−j,l(x, ξ), for |ξ| ≥ 1.

Example 1.1.7.

1. All polynomial symbols of the form p(x, ξ) =
∑
|α|≤m

aα(x)ξα are odd-class symbols.

2. The symbol σ(x, ξ) = σ(ξ) = (1 + |ξ|2)
−1

is a classical odd-class symbol.
Indeed it has the asymptotic expansion

σ(x, ξ) ∼
∞∑
k=0

(−1)k|ξ|−2k−2
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and is a classical symbol of order −2 with positively homogeneous components:

σ−2−j(x, ξ) =

{
(−1)

j
2 |ξ|−2−j if j even

0 if j odd

i.e. σ−2−j(x,−ξ) = (−1)−2−jσ−2−j(x, ξ).

3. The symbol σ(x, ξ) = σ(ξ) =
√

1 + |ξ|2 is a classical even-class symbol.
Indeed this symbol has the asymptotic expansion

σ(x, ξ) ∼
∞∑
k=0

αk|ξ|−2k+1.

It is therefore a classical symbol of order 1 with positively homogeneous components:

σ1−j(x, ξ) =

{
α j

2
|ξ|1−j if j even

0 if j odd.

Hence σ1−j(x,−ξ) = α j
2
|ξ|1−j if j is even and 0 otherwise,

i.e. σ1−j(x,−ξ) = σ1−j(x, ξ) = (−1)2−jσ1−j(x, ξ).

Lemma 1.1.8.

1. The star product defined in (1.2) of two log-polyhomogeneous odd-class symbols of
log type k and k′ is an odd-class symbol of log type k + k′.

2. The star product of two log-polyhomogeneous even-class symbols of log type k and k′

is an odd-class symbol of log type k + k′.

3. The star product of a log-polyhomogeneous odd-class symbol of log type k by a log-
polyhomogeneous even-class symbol of log type k′ is a log-polyhomogeneous even-class
symbol of log type k + k′.

Proof: Assume that a, b are two log-polyhomogeneous symbols with formal expan-
sions

a ∼
∞∑
j=0

am−j =
∞∑
j=0

k∑
l=0

am−j,l logl |ξ|, b ∼
∞∑
j=0

bp−j =
∞∑
j=0

k′∑
l′=0

bp−j,l′ logl
′ |ξ|.
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Using the notations of (1.6), for two log-polyhomogeneous symbols a and b, we have

(a ? b)m+p−j

=
∑

|α|+s+t=j

1

α!

(
k∑
l=0

(∂αξ am−s,l) logl |ξ|+
k∑
l=0

am−s,l(∂
α
ξ logl |ξ|)

)(
k′∑
l′=0

(Dα
x bp−t,l′) logl

′ |ξ|

)
.

Hence its homogeneous components are

(a ? b)m+p−j,l

=
∑

|α|+s+t=j

1

α!

l∑
i=0

(
(∂αξ am−s,i) logi |ξ|+ am−s,|α|+i(∂

α
ξ log|α|+i |ξ|)

) (
Dα
x (bp−t,l−i) logl−i |ξ|

)
.

Note that if f(−ξ) = (−1)af(ξ), ∀ξ ∈ IR−{0} for some smooth function f on IR−{0}
and some integer a then, for any multiindex α,

(∂αf) (−ξ) = (−1)a+|α|∂αf(ξ) ∀ξ ∈ IR− {0}. (1.10)

1. If a and b are odd-class symbols then by definition

am−j,l(x,−ξ) = (−1)m−jam−j,l(x, ξ) and bp−j,l′(x,−ξ) = (−1)p−jbp−j,l′(x, ξ).

Notice that since ∂αξ am−j,l(x,−ξ) = (−1)|α|(∂αξ am−j,l)(x,−ξ), then by (1.10)

(∂αξ am−j,l)(x,−ξ) = (−1)m−j−|α|∂αξ am−j,l(x, ξ).

On the other hand, applying (1.10) to f(ξ) = log |ξ| in which case a = 0 we have:

∂αξ logl | − ξ| = (−1)|α|(∂αξ logl)|ξ|.

It follows that

(a ? b)m+p−j,l(x,−ξ)

=
∑

|α|+s+t=j

1

α!

l∑
i=0

(
(∂αξ am−s,i)(x,−ξ) logi |ξ|+ am−s,|α|+i(x,−ξ)(∂αξ log|α|+i)| − ξ|

)
(
(Dα

x bp−t,l−i)(x,−ξ) logl−i |ξ|
)

= (−1)m+p−j(a ? b)m+p−j,l(x, ξ)

so that a ? b is odd-class.
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2. If a and b are even-class symbols then

am−j,l(x,−ξ) = (−1)m−j+1am−j,l(x, ξ) and bp−j,l′(x,−ξ) = (−1)p−j+1bp−j,l′(x, ξ).

Hence
(a ? b)m+p−j,l(x,−ξ) = (−1)m+p−j(a ? b)m+p−j,l(x, ξ)

so that a ? b is odd-class.

3. If a is odd-class and b is even-class then

am−j,l(x,−ξ) = (−1)m−jam−j,l(x, ξ) and bp−j,l′(x,−ξ) = (−1)p−j+1bp−j,l′(x, ξ).

Hence
(a ? b)m+p−j,l(x,−ξ) = (−1)m+p−j+1(a ? b)m+p−j,l(x, ξ)

so that a ? b is even-class.

tu

Let us now consider the case of classical symbols: we call CSmodd(U) the set of odd-class
symbols of integer order m and we set

CSodd(U) =
⋃
m∈Z

CSmodd(U).

By Lemma 1.1.8 applied to k = k′ = 0, the product of two classical odd-class symbols is
a classical odd-class symbol. Thus CSodd(U) equipped with the star product (1.2) is an
algebra.

1.2 Pseudodifferential operators

1.2.1 Pseudodifferential operators on an open subset of Rn

Let U be an open subset of Rn. To a symbol σ in S(U), we can associate the continuous
operator Op(σ) : C∞c (U)→ C∞(U) defined for u in C∞c (U) by

(Op(σ)u) (x) =

∫
Rn
eix.ξσ(x, ξ)û(ξ)d̄ξ.

Here C∞(U) (resp. C∞c (U)) denotes the space of smooth (resp. compactly supported)
complex valued functions on U , d̄ξ := 1

(2π)n
d ξ with dξ the ordinary Lebesgue measure on

Rn and

û(ξ) =

∫
Rn
e−iy.ξu(y)dy
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is the Fourier transform of u. Indeed let β be a multiindex and let u be in C∞c (U). We
want to show that ∂βxOp(σ)u exists i.e. Op(σ)u belongs to C∞(U). Let us fix x0 in U
and K a compact neighborhood of x0. Let m be the order of the symbol σ. For any fixed
ξ ∈ Rn, the function x 7→ eix.ξσ(x, ξ)û(ξ) is smooth as a product of smooth functions. By
the properties of the Fourier transform û, for N in N with N > m+ n+ 1 there exists a
real constant C1 such that

|û(ξ)| < C1(1 + |ξ|)−N

for any ξ in Rn. On the other hand, there exists a real constant C2 such that

|∂βxσ(x, ξ)| < C2(1 + |ξ|)m

for any ξ in Rn and any x in K. It follows that

|∂βxσ(x, ξ)û(ξ)| < C1C2(1 + |ξ|)m−N ≤ C1C2(1 + |ξ|)−n−1.

Since |∂βxσ(x, ξ)û(ξ)| is bounded from above by the L1-function ξ 7→ C1C2(1 + |ξ|)−n−1,
by Lebesgue’s dominated convergence theorem, the derivative ∂βx (Op(σ)u) exists and for
x in a neighborhood of x0,

∂βx (Op(σ)u)(x) =

∫
Rn
∂βx
(
eix.ξσ(x, ξ)û(ξ)

)
d̄ξ.

Using the expression of the Fourier transform of u, we can write Op(σ) as an operator
with kernel. Indeed,

(Op(σ)u)(x) =

∫
Rn

∫
Rn
ei(x−y).ξσ(x, ξ)u(y)dyd̄ξ =

∫
Rn
KOp(σ)(x, y)u(y)dy,

where

KOp(σ)(x, y) =

∫
Rn
ei(x−y).ξσ(x, ξ)d̄ξ.

Op(σ) is called a pseudodifferential operator (ΨDO) on U with Schwartz kernelKOp(σ)(x, y),
which is a distribution on U × U smooth off the diagonal.
For a multiindex α, let us compute (x − y)αKOp(σ)(x, y). Integrating by parts and using
the fact that

(x− y)αei(x−y).ξ = ∂αξ e
i(x−y).ξ

we have

(x− y)αKOp(σ)(x, y) =

∫
Rn

(x− y)αei(x−y).ξσ(x, ξ)d̄ξ =

∫
Rn
ei(x−y).ξ∂αξ σ(x, ξ)d̄ξ.

This integral is absolutely convergent for |α| > m + n. Similarly, for |α| > m + n + |β|,
we can permute ∂βξ with the integral since we have an estimate

|∂βξ ∂
α
ξ σ(x, ξ)| ≤ C(1 + |ξ|)m−|α|−|β|.
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We infer that the map (x, y) 7→ (x−y)αKOp(σ)(x, y) lies in Cj(U×U) for all j < |α|−m−n
and in particular that KOp(σ)(x, y) is smooth off the diagonal.

The order of the pseudodifferential operator Op(σ) is the order of the symbol σ.

From now on, the symbol of a pseudodifferential operator A is denoted by σ(A) and its
order by a.

If σ(A) is a classical symbol of order a with the asymptotic expansion (1.3), then A is
called a classical ΨDO of order a on U. The first homogeneous component in the asymp-
totic expansion of the symbol σ(A) of A not identically equal to zero is called leading
symbol of the operator A. We denote it by σL(A).

If σ(A) is a log-polyhomogeneous symbol of order a and log degree k, then A is called
log-polyhomogeneous ΨDO of order a and log degree k.

If σ(A) is a smoothing symbol, A is called a smoothing operator on U. This is equiv-
alent to say that A has a smooth Schwartz kernel.

Example 1.2.1. An important example which can be seen as a motivation to introduce
the notion of ΨDOs is that of polynomials σ(x, ξ) = p(x, ξ). Here

p(x, ξ) =
∑
|α|≤a

pα(x)ξα

is a polynomial with respect to ξ of degree a and coefficients pα(x) in C∞(Rn). The cor-
responding linear operator Op(σ), namely a differential operator, is defined on a function
u in C∞c (Rn) by

(Op(σ)u) (x) =

∫
Rn
eix.ξσ(x, ξ)û(ξ)d̄ξ =

∫
Rn
eix.ξ

∑
|α|≤a

pα(x)ξαû(ξ)d̄ξ.

Clearly, the space C∞c (Rn) is contained in the Schwartz space S(Rn) and for u in C∞c (Rn),
Dαu belongs to S(Rn), for all α. Using the properties of the Fourier transform

D̂α
xu(ξ) = ξαû(ξ)

and the Fourier inversion formula, we obtain

(Op(σ)u) (x) =

∫
Rn
eix.ξ

∑
|α|≤a

pα(x)D̂α
xu(ξ)d̄ξ =

∑
|α|≤a

pα(x)Dα
xu(ξ).
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Example 1.2.2. Let f be a smooth function in C∞(U). The multiplication operator u 7→
fu on smooth functions u of U is a zero order classical ΨDO on U. Indeed, it reads
P : u 7→ fu where (fu)(x) =

∫
Rn e

ix.ξσ(x, ξ)û(ξ)d̄ξ with σ(x, ξ) = f(x).

A direct computation shows that the composition of two differential operators P =∑
|α|≤p

aα(x)Dα
x and Q =

∑
|β|≤q

bβ(x)Dβ
x with symbols σ(P ) and σ(Q) has symbol σ(P )?σ(Q).

This follows from Leibniz’s rule which yields:

Dα
x (fg) =

∑
γ+µ=α

α!

β!µ!
Dγ
x(f)Dµ

x(g), ∂βξ (ξβ+γ) =
(β + γ)!

γ!
ξγ

from which we infer that for any u in C∞c (Rn) :

((PQ)u)(x) =
∑
|α|≤p

∑
|β|≤q

aα(x)Dα
x

(
bβ(x)Dβ

xu(x)
)

=
∑
|α|≤p

∑
|β|≤q

aα(x)
∑

γ+µ=α

α!

β!µ!
(Dγ

xbβ(x))Dβ+µ
x u(x).

The symbol of the product is

σ(x, ξ) =
∑
|α|≤p

∑
|β|≤q

aα(x)
∑

γ+µ=α

α!

β!µ!
(Dγ

xbβ(x))ξβ+µ

=
∑
|α|≤p

∑
|β|≤q

aα(x)
∑

γ+µ=α

α!

β!µ!
(Dγ

xbβ(x))ξβ+α−γ

=
∑
|α|≤p

∑
|β|≤q

aα(x)
∑
γ

1

γ!
(Dγ

xbβ(x))ξβ∂γξ ξ
α

=
∑
γ

1

γ
∂γξ σ(P )(x, ξ)Dγ

xσ(Q)(x, ξ).

It follows that the symbol of the product PQ is σ(P ) ? σ(Q).

Composing general ΨDOs is not always possible; however it is for properly supported
operators. Also, the formulae obtained for differential operators remain true for ΨDOs
up to a smoothing operator and up to the fact that the sum becomes infinite.

The following definitions and properties are contained in [Sh], Section 3.

Definition 1.2.3. A continuous map f : X → Y between topological spaces is called
proper if for any compact K ⊂ Y the inverse image f−1(K) is a compact in X.
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Definition 1.2.4. Let A be a ΨDO on U and let Supp(KA) be the support of the kernel
KA of A. The ΨDO A is called properly supported if both the canonical projections π1, π2 :
Supp(KA)→ U are proper maps.

Proposition 1.2.5.

1. Let A be a properly supported ΨDO on U. Then A define a continuous map

A : C∞c (U)→ C∞c (U).

2. Any ΨDO A on U can be written in the form A = A0 + A1 where A0 is a properly
supported ΨDO on U and A1 is a smoothing operator on U i.e. has kernel KA1 in
C∞(U × U).

A properly supported ΨDO on U admits a symbol given by σ(A)(x, ξ) = e−ix.ξAeix.ξ.
Since any ΨDO A can be written as a sum A0 + A1 with A0 properly supported and A1

smoothing, one defines the symbol σ(A) of A to be that of A0. Hence, with the notations
of Proposition 1.2.5 we have

A = Op(σ(A)) + A1. (1.11)

The product on symbols induces a composition on properly supported operators. The
composition AB of two properly supported ΨDOs A and B on U is a properly supported
ΨDO on U and its symbol is σ(AB) = σ(A) ? σ(B). Moreover if A is a ΨDO on U
and R is a smoothing operator on U then the products AR and RA are both smoothing
operators on U . It follows that the product on properly supported operators extends to
ΨDOs. Furthermore the sets of ΨDOs, classical ΨDOs, log-polyhomogeneous ΨDOs are
algebras.

Change of variables on pseudodifferential operators:
Let U1, U2 be two open subsets of Rn and Φ : U1 → U2 a diffeomorphism, with Φ? :
C∞(U2) → C∞(U1) the induced diffeomorphism i.e. Φ? is defined by Φ?f(x) = f(Φ(x)).
For any ΨDO A on U1 we define a linear operator Φ]A : C∞c (U2) → C∞(U2) by the
following commutative diagram:

C∞c (U2) C∞(U2)

C∞(U1)C∞c (U1)

...................................................................................................................................................................................................... ............Φ]A
............................................................................................................
.....
.......
.....

Φ?

...................................................................................................................................................................................................... ............
A

............................................................................................................
.....
.......
.....

Φ?
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If u belongs to C∞c (U2) then

(Φ]A)u = A(u ◦ Φ) ◦ Φ−1

so that Φ]A is a pseudodifferential operator on U2. A symbol of Φ]A is given by

σ(Φ]A)(y, η)|y=Φ(x)
∼
∑
α

1

α!
Dα
ξ σ(A)(x,t Φ′(x)η).Dα

z e
iΦ′′x(z).η

|z=x ,

where

Φ′′x(z) = Φ(z)− Φ(x)− Φ′(x)(z − x)

and Φ′ is the differential of Φ. Notice that Dα
z e

iΦ′′x(z).η
|z=x is a polynomial in η. It follows

that a ΨDO transforms into another ΨDO under the action of a diffeomorphism. More-
over if A is a classical ΨDO of order a on U, its leading symbol σL(A) transforms by
change of variable as a function on the cotangent bundle T ∗U and is invariant under the
action of the diffeomorphism. Indeed, if we set η =t Φ′−1ξ and y = Φ(x)

σa(Φ
]A)(y, η) = lim

λ→∞

σ(Φ]A)(y, λη)

λa
= lim

λ→∞

σ(A)(x, λ ξ)

λa
= σa(A)(x, ξ).

These results easily extend to End(V )-valued pseudodifferential operators (resp. classical,
resp. log-polyhomogeneous) on U acting on C∞c (U)⊗ V with values in C∞(U)⊗ V.

1.2.2 Pseudodifferential operators acting on sections of a vector
bundle

Let M be a smooth closed manifold of dimension n equipped with an atlas. Recall that
an atlas is a collection {(Ui, φi, ϕi), i ∈ I} where {Ui, i ∈ I} is an open cover of M,
(Ui, φi) is a coordinate chart for each i i.e. an open subset Ui of M and a diffeomorphism
φi : Ui → φi(Ui) ⊂ Rn and {ϕi, i ∈ I} is a partition of unity subordinated to the covering.
Let C∞(M) be the space of smooth complex-valued functions on M. Let A : C∞(M) →
C∞(M) be a linear operator. A localization of A subordinated to the chart (U, φ) of A is
any map ϕAϕ̃ where ϕ and ϕ̃ are smooth functions with compact support in U. Here we
identify ϕ with the multiplication operator by ϕ.

Definition 1.2.6. A linear map A : C∞(M)→ C∞(M) is called a ΨDO on M if given
any local chart (U, φ) on M , any localization AU := ϕAϕ̃ subordinated to this chart, the
induced localized operator Aφ(U) := φ∗AU = AU ◦ φ−1 is a ΨDO on φ(U). The symbol
σφ(A)(x, .) in a given local chart (U, φ) around x in U is defined by the symbol of Aφ(U).
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The definition of ΨDOs extends to linear operators acting on smooth sections of a
vector bundle replacing local charts (U, φ) by local trivializations (U, φ, u). Let M be a
smooth closed riemannian manifold of dimension n. Let π : E →M be a hermitian vector
bundle of finite rank k. We denotes by Γ(M,E) the vector space of smooth sections of E.
The space Γ(M,E) is equipped with the hermitian product

< µ, ν >=

∫
M

< µ(x), ν(x) >Ex dx,

where dx is the riemannian volume measure on M and <,>Ex is the hermitian scalar
product on the fibre Ex of E over M.

Let us recall that a local trivialization of the vector bundle is a triple (U, φ, u) where
(U, φ) is a local chart of M and u gives rise to a diffeomorphism

π−1(U)→ φ(U)× Ck

z 7→ (φ(π(z)), u(z)) .

We denote by Γ(U,E) the vector space of smooth sections of E restricted to U. The maps
φ and u induce two maps:

φ∗u : C∞
(
φ(U),Ck

)
→ Γ(U,E)

φu∗ : Γ(U,E)→ C∞
(
φ(U),Ck

)
defined by: (φ∗us)(x) = u−1(s(φ(x))) and (φu∗s)(x) = u(s(φ−1(x))).
For a linear map A : Γ(M,E) → Γ(M,E) we define the induced map AU := rUAiU in
Γ(U,E) where rU : Γ(M,E) → Γ(U,E) is the natural restriction and iU : Γ(U,E) →
Γ(M,E) is the natural embedding. We call the operator φ]AU := φu∗AUφ

∗
u the operator

A read in the local trivialization (U, φ, u).
Let {(Ui, φi, ui), i ∈ I} be a finite trivializing covering of M for E where {Ui, i ∈ I} is an
open cover of M, (Ui, φi, ui) is a local trivialization of E for each i and let {ϕi, i ∈ I} be a
partition of unity subordinated to the covering. Let A : Γ(M,E)→ Γ(M,E) be a linear
map. We can write A on the form A =

∑
j,l∈I

ϕjAϕl.

Definition 1.2.7. A linear map A : Γ(M,E) → Γ(M,E) is a ΨDO of order a if each
operator ϕjAϕl read in the local trivialization (Ui, φi, ui) i.e. φ]i(ϕjAϕl)Ui is a ΨDO of
order a on φi(Ui) with values in End(V ) where V is the model space of the fibre of E.

It follows from the behavior under change of variables introduced in the previous
section that all these definitions and properties are independent of the choice of finite
trivializing covering and partition of unity.
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We denote by ΨDOa(M,E) the set of ΨDOs of order a acting on Γ(M,E). On the
space Γ(M,E) endowed with its Fréchet topology, a ΨDO A is continuous but in general
a ΨDO with non negative order does not extend to a continuous operator on L2(M,E),
the L2-closure of the space Γ(M,E).

Pseudodifferential operators act naturally on Sobolev spaces (see e.g. [Gi] Section 1.3
and [Sh] Section 6 and 7) of the space Γ(M,E) for the hermitian product 〈·, ·〉. For any
real s, Hs(Rn) is defined as the completion of the Schwartz space S(Rn) with respect to
the norm

‖ u ‖2
s=‖ u ‖2

s,Rn=

∫
Rn

(1 + |ξ|2)s|û(ξ)|2d̄ξ.

The space C∞c (Rn) is dense in Hs(Rn) and the Plancherel theorem shows that H0(Rn)
is isomorphic to L2(Rn). Now we use covering of the manifold M by local trivializations
and a partition of unity subordinated to the covering to define Sobolev spaces Hs(M,E)
on the vector bundle E. Indeed let (Ui, φi, ui) be local trivializations and {ϕi, i ∈ I} a
partition of unity subordinated to the covering. The space Hs(M,E) is the completion
of the space Γ(M,E) with respect to the norm

‖ u ‖2
s=‖ u ‖2

s,M,E=
I∑
i=1

‖ φ]i(ϕiu)Ui ‖2
s,Rn .

Since the various norms defined above for some fixed real s are equivalents, the space
Hs(M,E) is defined independent of the choices made. We have the following properties
([Gi], [Sh]):

Proposition 1.2.8.

1. The natural inclusion Hs(M,E)→ H t(M,E) is compact for s > t.

2. If A ∈ ΨDOa(M,E) then A : Hs(M,E)→ Hs−a(M,E) is continuous for all s.

We deduce the following property for operators of order no larger than zero and op-
erators of order smaller than zero.

Corollary 1.2.9.

1. Any linear operator in ΨDO0(M,E) is continuous.

2. Any operator in ΨDOa(M,E) with order a smaller than zero is a compact operator
on any Hs(M,E) with s in R and in particular on L2(M,E).
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Proof:

1. By item 2 of the above proposition if A lies in ΨDO0(M,E), A : Hs(M,E) →
Hs(M,E) is continuous for all s and in particular in L2(M,E) = H0(M,E).

2. If A lies in ΨDOa(M,E) with a smaller than zero then by item 1 of the above
proposition A : Hs(M,E) → Ha(M,E) is compact for all s > a and in particular
for s = 0.

tu

A pseudodifferential operator A : Γ(M,E) → Γ(M,E) is classical if each operator
φ]i(ϕjAϕi)Ui is classical, a property which holds independently of the choice of local triv-
ialization. Let C`a(M,E) denote the set of classical ΨDOs of order a. If A1 lies in
C`a1(M,E) and A2 lies in C`a2(M,E), then the product A1A2 belongs to C`a1+a2(M,E)
and we denote by

C`(M,E) := 〈
⋃
a∈C

C`a(M,E)〉

the algebra generated by all classical ΨDOs acting on smooth sections of E. If A lies in
C`a(M,E) its symbol σ(A) is only locally defined but its leading symbol σL(A), as already
mentioned, is independent of the choice of local chart and hence is globally defined. Let
T ∗M be the cotangent bundle of M, p : T ∗M−{0} →M the canonical projection and p∗E
the induced vector bundle over T ∗M. The leading symbol σL(A) is a section of End(p∗E)
so that for any x in M and any ξ in T ∗xM − {0}, σL(A)(x, ξ) is an endomorphism of the
fibre Ex of E.

We denote the set of log-polyhomogeneous operators of order a and log degree k by
C`a,k(M,E) and we set:

C`?,k(M,E) =
⋃
a∈C

C`a,k(M,E), C`?,?(M,E) = 〈
⋃
k≥0

C`?,k(M,E)〉

the latter corresponding to the algebra generated by log-polyhomogeneous operators.
Note that C`a(M,E) = C`a,0(M,E) i.e. a classical ΨDO is a particular case of log-
polyhomogeneous operator.

The definition of a holomorphic family of log-polyhomogeneous symbols extends to a
holomorphic family of ψDOs.

Definition 1.2.10. A family (A(z))z∈Ω in C`?,?(M,E) with distribution kernels (x, y) 7→
KA(z)(x, y) is holomorphic if

1. the order a(z) of A(z) is holomorphic in z.
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2. In any local trivialization of E, we can write A(z) in the form A(z) = Op(σ(z)) +
R(z), for some holomorphic family of symbols (σ(z))z∈Ω and some holomorphic fam-
ily (R(z))z∈Ω of smoothing operators i.e. given by a holomorphic family of smooth
Schwartz kernels.

3. The (smooth) restrictions of the distribution kernels KA(z) to the complement of the
diagonal ∆ ⊂M ×M , form a holomorphic family with respect to the topology given
by the uniform convergence in all derivatives on compact subsets of M ×M −∆.

1.2.3 Topology on pseudodifferential operators

For a real number a, we can equip the vector spaces ΨDOa(M,E), C`a(M,E) and
C`a,k(M,E) with Fréchet topologies via the Fréchet topology on symbols. Indeed, let
{Ui, φi, ui, i ∈ I} be a finite trivializing covering of M for E where as before {Ui, i ∈ I} is
an open cover of M, (Ui, φi, ui) is a local trivialization of E for each i and let {ϕi, i ∈ I}
be a partition of unity subordinated to the covering. A pseudodifferential operator A in
ΨDOa(M,E) can be written A =

∑
i∈I

(Ai + Ri) where Ri is a smoothing operator with

smooth kernel Ki with compact support in Ui × Ui and the operators Ai are properly
supported in Ui. Let us denote by σ(i)(A)(x, ξ) the local symbol of A in the local trivial-
ization (Ui, φi, ui). Recall that with the notation of Subsection 1.2.1, this is the symbol of
the properly supported Ai which can be written Ai = Op(σ(i)(A)(x, ξ)).

In the local trivialization (Ui, φi, ui), we equip ΨDOa(M,E) with the following count-
able set of semi-norms labelled by multiindices α, β: for any compact subset K ⊂ φi(Ui),

sup
x∈K

sup
ξ∈Rn

(1 + |ξ|)|β|−a ‖ ∂αx∂
β
ξ σ

(i)(A)(x, ξ)(x, ξ) ‖;

sup
x,y∈K

‖ ∂αx∂βyKi(x, y) ‖ .

Let us specialize to C`a,k(M,E). In the local trivialization (Ui, φi, ui), we equip C`a,k(M,E)
with the following countable set of semi-norms: for any compact subset K ∈ φi(Ui) for
any j ≥ 0 and N ≥ 1, for any multiindices α, β

sup
x∈K

sup
ξ∈Rn

(1 + |ξ|)|β|−a ‖ ∂αx∂
β
ξ σ

(i)(A)(x, ξ) ‖;

sup
x∈K

sup
ξ∈Rn

(1 + |ξ|)|β|−a+N ‖ ∂αx∂
β
ξ (σ(i)(A)−

N−1∑
j=0

χ(ξ)σ
(i)
a−j(A))(x, ξ) ‖;

sup
x∈K

sup
|ξ|=1

‖ ∂αx∂
β
ξ σ

(i)
a−j(A)(x, ξ) ‖;

sup
x,y∈K

‖ ∂αx∂βyKi(x, y) ‖ . (1.12)
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1.2.4 Elliptic classical pseudodifferential operators

Let U be an open subset of Rn and let A be a classical ΨDO of order a on U. The operator
A is said to be elliptic of order a if its leading symbol σa(P )(x, ξ) = σL(P )(x, ξ) is never
zero for |ξ| 6= 0.

Example 1.2.11.

1. The Laplacian ∆ = −
n∑
j=1

∂2

∂2
xj

has leading symbol σ2(∆)(x, ξ) =
n∑
j=1

ξ2
j and is therefore

elliptic.

2. The Neumann operator A = Dx + iDy has principal symbol σ1(A) = ξ + iη and is
therefore elliptic.

Let us recall from Proposition 1.2.5 that any ΨDO A on U can be written in the
form A = A0 +R where A0 is a properly supported operator on U and R is a smoothing
operator on U. It follows that a classical ΨDO A is elliptic if and only if A0 is elliptic.

Proposition 1.2.12. Let A be a classical elliptic operator of order a on U. If A is properly
supported then there exists a classical properly supported operator B of order −a on U
such that AB − I and BA− I are smoothing operators.

Proof: Assume that such an operator B exist. This operator has a symbol σ(B) such
that σ(A) ? σ(B) = 1. Hence the ? product of symbols gives for |ξ| ≥ 1

1 = σ(A)(x, ξ) ? σ(B)(x, ξ) ∼
∑
α∈Nn

1

α!
∂αξ σ(A)(x, ξ)Dα

xσ(B)(x, ξ).

It follows that

σa(A)σ−a(B) = 1

σa(A)σ−a−j(B) +
∑

k+l+|α|=j,l<j

1

α!
∂αξ σa−k(A)Dα

xσ−a−l(B) = 0, j = 1, 2, · · ·

so that we can compute σ−a(B) and obtain the homogeneous components σ−a−j(B) re-

cursively. Thus if the symbol of B has the formal expansion σ−a(B) ∼
∞∑
j=0

σ−a−j(B) with

σ−a−j(B) obtained above, then AB − I = R, where R is a smoothing operator. In the
same way there exist an operator B′ and a smoothing operator R′ such that B′A−I = R′.
Now B′AB = B′ + B′R = B + R′B. Since B′R and R′B are smoothing operators, the
result follows. tu

Remark 1.2.13. The operator B is called a parametrix of the operator A.
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The definition of ellipticity extended to a classical operator A ∈ C`a(M,E) where
π : E → M is a hermitian vector bundle of finite rank k over M. Recall that its leading
symbol σL(A) can be defined as a section of End(p∗E) where as before p is the canonical
projection p : T ∗xM − {0} → M. For x in M and ξ in T ∗xM − {0}, σL(A)(x, ξ) is an
endomorphism of the fibre Ex of E. Hence A is elliptic if σL(A)(x, ξ) is invertible for any
x in M and any ξ in T ∗xM − {0}.

1.3 Zero order odd-class pseudodifferential operators

1.3.1 Odd-class pseudodifferential operators

Let a be an integer and k a non negative integer. A log-polyhomogeneous operator A in
C`a,k(M,E) is odd-class (resp. even-class) if in each local trivialization, the local symbol
σ(A)(x, ξ) is odd-class (resp. even-class). This property of being odd-class for the local
symbol is invariant under a change of local coordinates so that it is enough to verify this
property for a fixed finite covering of M by local trivializations.
We denote by C`a,kodd(M,E) (resp. C`?,?odd(M,E)) the set of odd-class (a, k) log-polyhomogeneous
(resp. odd-class log-polyhomogeneous) pseudo-differential operators. Since a change of co-
ordinates keeps an odd-class log-polyhomogeneous symbol odd-class, the set C`?,?odd(M,E)
is an algebra.

Let us now consider the case of classical operators: we call C`aodd(M,E) the set of odd-class
operators of integer order a and we set

C`odd(M,E) =
⋃
a∈Z

C`aodd(M,E).

The following lemma can be seen as a particular case of Lemma 1.1.8 with k = k′ = 0,
adding the fact that the class of the composition of odd-class (resp. even-class) of symbols
remains unchanged under a change of coordinates. We then recover known properties of
classical odd-class operators [KV1, Du1].

Lemma 1.3.1.

1. The composition of two classical odd-class operators is an odd-class operator i.e.
C`odd(M,E) is an algebra.

2. The composition of two classical even-class operators is a classical odd-class oper-
ator and the composition of a classical odd-class operator by a classical even-class
operator is a classical even-class operator.

3. If B is an invertible classical odd-class (resp. even-class) operator, then B−1 is an
classical odd-class (resp. even-class) operator.
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Example 1.3.2. This example is the analogous of Example 1.1.7 on odd-class (resp.
even-class) symbols for classical pseudodifferential operators.

1. All differential operators and their parametrices belong to C`odd(M,E).

2. Let ∆ be the Laplacian in Rn. The operator (1+∆)−1 is odd-class. Indeed its symbol
has the asymptotic expansion

σ((1 + ∆)−1)(x, ξ)) = σ((1 + ∆)−1)(ξ)) =
(
1 + |ξ|2

)−1 ∼
∞∑
k=0

(−1)k|ξ|−2k−2.

3.
√

1 + ∆ is an even-class operator. Indeed its symbol has the asymptotic expansion

σ(
√

1 + ∆)(ξ) =
√

1 + |ξ|2 ∼
∞∑
k=0

αk|ξ|−2k+1.

1.3.2 Lie group of zero order odd-class classical ΨDOs

The space C`a(M,E) is a Fréchet space equipped with the Fréchet topology introduced in
Section 1.2.3, hence C`0(M,E) is a Fréchet space. It has been shown by M. Kontsevich and
S. Vishik [KV1] (see also [LP]) that

(
C`0(M,E)

)∗
is a Fréchet Lie group with exponential

mapping and with Lie algebra C`0(M,E). For these notion of Lie group and Lie algebra
with exponential mapping in the infinite dimensional case, we refer to A. Kriegel and P. W.
Michor in [KM], who claim that all known smooth Fréchet Lie groups admit exponential
mapping.

Definition 1.3.3 ([KM] Definition 36.8.). A Lie group G with Lie algebra Lie(G) admits
an exponential mapping if there exists a smooth mapping Exp : Lie(G) → G such that
t 7→ Exp(tX) is a one-parameter subgroup i.e. a Lie group homomorphism (R,+) → G
with tangent vector X at 0.

Proposition 1.3.4.
(
C`0

odd(M,E)
)∗

is a Fréchet Lie group with Lie algebra C`0
odd(M,E).

Remark 1.3.5. We give here an exhaustive proof of this result. We will show later
(Proposition 6.1.4) that there is an exponential mapping.

Proof: By Lemma 1.3.1, the composition of two operators in
(
C`0

odd(M,E)
)∗

belongs

to
(
C`0

odd(M,E)
)∗

and the same holds for the inverse so that the set
(
C`0

odd(M,E)
)∗

is a group in the Fréchet algebra C`0
odd(M,E). Let us show that it is an open subset

of C`0
odd(M,E). For that, let A be an operator in

(
C`0

odd(M,E)
)∗
. We want to build

an open neighborhood of A in
(
C`0

odd(M,E)
)∗
. The algebra C`0

odd(M,E) is contained

in C`0(M,E) and by Corollary 1.2.9, C`0(M,E) corresponds to all bounded ΨDOs on
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L2(M,E) = H0(M,E) and hence it is contained in the Banach algebra L(L2(M,E)).
But by the inverse local theorem, the set of invertible operators on L(L2(M,E)) is an
open set. Hence A admits an open neighborhood V in the set of invertible operators in
L(L2(M,E)).
For any pseudodifferential operator A : Γ(M,E) → Γ(M,E), let us consider it as an
operator As : Hs(M,E) → Hs−a(M,E) with a the order of A and Hs(M,E) as defined
in section 1.2.2. We have

dim kerAs = dim kerA

and
codim ImAs = codim ImA

so that

A invertible ⇔ dim kerA = codim ImA = dim kerAs = codim ImAs = 0

⇔ kerAs = {0} and ImAs = Hs−a(M,E)

⇔ As invertible.

On the other hand, by Corollary 1.2.9, the inclusion C`0(M,E)→ L(L2(M,E)) is continu-
ous so that the inclusion i : C`0

odd(M,E)→ C`0(M,E)→ L(L2(M,E)) is also continuous
and the inverse image i−1(V ) yields an open neighborhood of A in

(
C`0

odd(M,E)
)∗
. It

follows that
(
C`0

odd(M,E)
)∗

is canonically equipped with a structure of manifold which
makes it a Lie group. tu
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Chapter 2

Logarithms of elliptic
pseudodifferential operators

In this chapter, we prove (see Theorem 2.2.4) that any operator in the algebra of odd-
class log-polyhomogeneous operators is a finite linear combinations of products of classical
operators and symmetrized logarithms of elliptic operators, all taken in the odd-class. A
similar property already observed in [Du1] holds for all log-polyhomogeneous operators
since these can be written as finite linear combination of products of classical operators
and logarithms of elliptic operators, a result for which we provide a detailed proof (see
Proposition 2.1.19). Whereas the logarithm of an odd-class operator is not generally
odd-class, the symmetrized logarithm introduced by M. Braverman [B] does lie in the
odd-class (Proposition 2.2.1).

2.1 Complex powers and logarithms of admissible pseu-

dodifferential operators

Complex powers were first introduced by R. T. Seeley in [Se]. He proved that under ap-
propriate conditions, an elliptic classical operator A admits a family of complex powers.
This notion has been further developed by M. Shubin [Sh] for elliptic differential operators
whose leading symbols do not take values in a closed angle Λ of the complex plane. This
notion was extended to pseudodifferential operators with the help of the notion of admis-
sibility. In this section, we introduce the notion of admissible elliptic operators and recall
the construction and the properties of complex powers. We then define the logarithms
and establish some of their properties.

We consider as before a finite rank hermitian vector bundle π : E → M over a closed

46
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riemannian manifold M of dimension n. To define the notion of admissibility, we need
the definition of the spectrum of an operator. Let us recall this notion. Let as before
Hs(M,E) denote the Sobolev closure of Γ(M,E) for the norm ‖ · ‖s defined in Section
1.2.2 and let A be a ΨDO of order a considered as an operator in Hs(M,E) with domain
Hs+a(M,E). The spectrum Sp(A) of A is defined as follows: a complex number λ lies out-
side Sp(A) if and only if the operator A−λI has bounded inverse RA(λ) := (A−λI)−1 in
L2(M,E), called the resolvent of A at the point λ. The spectrum of A is always a closed
subset of C. The point λ in Sp(A) is called an eigenvalue of A if ker(A − λI) 6= {0}.
If A is an elliptic operator in C`(M,E), then (see e.g. [Sh] Section 8.3) every point in
the spectrum Sp(A) is an eigenvalue of A. Furthermore the spectrum Sp(A) is either a
discrete subset of C or the whole space C. Moreover, resolvents of elliptic operators on
closed manifolds have the following property (see e.g. [Se] Corollary 1):

Proposition 2.1.1. Let A be an elliptic operator in C`(M,E) with positive order a.
Assume that there exists an open angle Λ in the complex plane C with vertex 0 which does
not intersect the spectrum of the leading symbol σL(A) of A. Then

1. There exists R > 0 such that the operator RA(λ) = (A − λI)−1 is invertible for
λ ∈ Λ and |λ| > R.

2. For any real numbers s, p with 0 ≤ p ≤ a the following norm estimate hold

‖ (A− λI)−1 ‖s,s+p≤ Cs,p|λ|
p
a
−1, λ ∈ Λ, |λ| > R

where ‖ . ‖s,s+p denotes the norm on bounded operators from Hs(M,E) to Hs+p(M,E).

2.1.1 Admissible pseudodifferential operators

Definition 2.1.2. Let A be an operator in C`(M,E) with positive order. The operator
A has principal angle θ if for every (x, ξ) in T ∗M − {0}, its leading symbol σL(A)(x, ξ)
has no eigenvalues on the ray Lθ = {reiθ, r ≥ 0}.

If an operator A admits a principal angle θ, then ([Se], [Sh]) there exists ε > 0 with the
property that the conical neighborhood Λε = {ρ eiφ, 0 < ρ <∞, θ − ε < φ < θ + ε} of Lθ
is such that any ray contained in Λε contains no eigenvalue of σL(A)(x, ξ). Moreover since
M is compact, the spectrum Sp(A) of A which consists of eigenvalues of A is discrete and
Sp(A) ∩ Λε is a finite set.

Definition 2.1.3. We call an operator A in C`(M,E) admissible with spectral cut (or
Agmon angle) θ if A has principal angle θ and its spectrum Sp(A) does not meet Lθ.

Remark 2.1.4. If an operator A is admissible, A is elliptic and invertible. Indeed, this
easily follows from the fact that A is elliptic if the leading symbol σL(A)(x, ξ) is invertible
for all x in M, ξ in T ∗xM, ξ 6= 0 and the fact that Sp(A) ∩ Lθ = ∅ i.e. 0 /∈ Sp(A).
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2.1.2 Complex powers of admissible pseudodifferential opera-
tors

Let A be an admissible operator in C`(M,E) with spectral cut θ and positive order a.
Let Γθ denote the contour in C, along the ray Lθ around the spectrum of A, defined by
Γθ = Γ1

θ ∪ Γ2
θ ∪ Γ3

θ where

Γ1
θ = {ρ eiθ,+∞ > ρ ≥ r}

Γ2
θ = {r eit, θ ≥ t ≥ θ − 2π}

Γ3
θ = {ρ ei(θ−2π), r ≤ ρ ≤ +∞} (2.1)

and where r is any small positive real number such that Γθ ∩ Sp(A) = ∅. The contour Γθ
is shown in Figure 1.

For Re(z) < 0, the complex power Azθ of A is defined by the Cauchy integral [Se]

Azθ =
i

2π

∫
Γθ

λzθ (A− λ)−1 dλ (2.2)

where λzθ is defined as exp(z logθ λ) with

logθ λ = log |λ|+ iArgλ, θ − 2π ≤ Argλ ≤ θ,

i.e. argλ = θ on Γ1
θ and argλ = θ − 2π on Γ3

θ. Here (A − λ)−1 is the resolvent of A.

The above integral makes sense since by proposition 2.1.1, ‖ (A− λ)−1 ‖= O
(

1
|λ|

)
when
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|λ| → +∞ and since
∫ +∞
ρ

λz

|λ| < +∞ for Re(z) < 0. Here ‖ . ‖ denotes the norm on

bounded operators of L2(M,E).
Let us compute the symbol of the operator Azθ. Since this symbol is defined through the
symbol of the resolvent (A − λI)−1, we denote by b−a−j the components of the symbol
of (A − λI)−1. These components are defined by the recursive system of equalities ([Sh]
Paragraph 11.1, see also [KV1] Paragraph 2)

b−a := (σa(A)− λ)−1,

b−a−1 := −b−a

(
σa−1(A)b−a +

∑
i

∂ξiσa(A)Dxib−a

)
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

b−a−j := −b−a

 ∑
k+l+|α|=j,l<j

1

α
∂αξ σa−k(A)Dα

x b−a−l

 .

It is easy to see that b−a−j(x, ξ, λ) is positively homogeneous in (ξ, λ
1
a ) of degree −a− j

i.e.
b−a−j(x, tξ, t

aλ) = t−a−jb−a−j(x, ξ, λ), for t > 0. (2.3)

Indeed, for t > 0, b−a(x, tξ, t
aλ) = (σa(A) − λ)−1(x, tξ, taλ) and since σa(A) is positively

homogeneous of degree a, then b−a(x, tξ, t
aλ) = t−ab−a(x, ξ, λ). Recursively,

b−a−j(x, tξ, t
aλ)

= −b−a(x, tξ, taλ)
∑

k+l+|α|=j,l<j

1

α
∂αξ σa−k(A)(x, tξ)Dα

x b−a−l(x, tξ, t
aλ)

= −t−a b−a(x, ξ, λ)
∑

k+l+|α|=j,l<j

1

α
ta−k−|α|∂αξ σa−k(A)(x, ξ)t−a−lDα

x b−a−l(x, ξ, λ)

= t−a−jb−a−j(x, ξ, λ).

For Re(z) < 0, let us define the functions

b
(z)
az−j(x, ξ) =

i

2π

∫
Γθ

λzθ b−a−j(x, ξ, λ) dλ. (2.4)

These functions are positively homogeneous of degree az− j. Indeed, for ξ 6= 0 and t > 1,
by a change of variable

b
(z)
az−j(x, tξ) =

i

2π

∫
Γ(t)

(taµ)z b−a−j(x, tξ, t
aµ)ta dµ.



50 M. F. Ouedraogo

Here the integration along the contour Γ(t) is equal to the integration around the contour

Γθ since the functions b
(z)
az−j do not have singularities on a small enough disc around the

origin on ξ. Now, using (2.3) we obtain

b
(z)
az−j(x, tξ) =

i

2π

∫
Γ(t)

(taµ)zt−a−j b−a−j(x, ξ, µ)ta dµ

= taz−j
i

2π

∫
Γ(t)

µz b−a−j(x, ξ, µ) dµ

= taz−j b
(z)
az−j(x, ξ).

Moreover, the result is obtained for t > 1 and ξ 6= 0 and hence holds for t 6= 0.
We therefore infer that the operator Azθ is a classical ΨDO of order az; its leading symbol
is σaz(A

z
θ)(x, ξ) = (σa(Aθ))

z(x, ξ) so that Azθ is elliptic. The homogeneous components of
the symbol of Azθ are

σaz−j(A
z
θ)(x, ξ) = b

(z)
az−j(x, ξ) =

i

2π

∫
Γθ

λzθ b−a−j(x, ξ, λ) dλ. (2.5)

The definition of complex powers can be extended to the whole complex plane by setting
Azθ := AkAz−kθ for k in N and Re(z) < k; this definition is independent of the choice of
the positive integer k and preserves the usual properties, i.e.

Az1θ A
z2
θ = Az1+z2

θ , Akθ = Ak, for k ∈ Z.

Complex powers of operators depend on the choice of spectral cut. Let Lθ and Lφ be two
spectral cuts for A outside an angle Λ which contains the spectrum of σL(A)(x, ξ). We
note that there is only a finite number of points of the spectrum Sp(A) of A outside Λ.
Assume that 0 ≤ θ < φ < 2π ; let us denote by λ1, · · · , λk the points of Sp(A) contained
in the angle {z ∈ C, θ < Argz < φ}, and Γθ,φ a contour surrounding the λ′νs for all
1 ≤ ν ≤ k and contained in the angle {z ∈ C, θ < argz < φ}. In fact, Γθ,φ is a contour
around the cone

Λθ,φ := {ρ eit,∞ > ρ ≥ r, θ < t < φ} (2.6)

delimited by the angles θ and φ. Let us consider a contour Γ = Γ1
θ ∪Γ1

φ ∪Γ3
θ,φ around the

remaining spectrum of A, with Γ1
θ, Γ1

φ defined in (2.1) and Γ3
θ,φ = {r eiλ, φ− 2π ≤ λ ≤ θ},

where r is any small positive real number such that Γ ∩ Sp(A) = ∅.
For Re(z) < 0 we have:

Azθ =
i

2π

(∫
Γθ,φ

λzθ (A− λ)−1 dλ+

∫
Γ

λzθ (A− λ)−1 dλ

)
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and likewise for the spectral cut φ,

Azφ =
i

2π

(∫
Γθ,φ

λzφ (A− λ)−1 dλ+

∫
Γ

λzφ (A− λ)−1 dλ

)
.

Since by definition,
∫

Γ
λzθ (A− λ)−1 dλ =

∫
Γ
λzφ (A− λ)−1 dλ, it follows that

Azθ − Azφ =
i

2π

∫
Γθ,φ

(λzθ − λzφ)(A− λ)−1 dλ

=
e2iπz − 1

2iπ

∫
Γθ,φ

λzθ (A− λ)−1 dλ

=
(
1− e2iπz

)
Πθ,φ(A)Azθ,

where we have set ([W2], [Po1])

Πθ,φ(A) =
1

2iπ

∫
Γθ,φ

λ−1A(A− λ)−1 dλ.

The following lemma shows that Πθ,φ(A) is a projection.

Lemma 2.1.5. Let A be an admissible operator in C`(M,E) with spectral cuts θ, φ and
positive order a. If 0 ≤ θ < φ < 2π, then the operator Πθ,φ(A) is a projection.

Proof: A proof of this result can be found in [Po1], Proposition 3.2. Let θ1 and φ1

be two spectral cuts of A with θ1 < θ < φ < φ1 < θ + 2π and such that there are no
eigenvalues of A and σL(A) in the cones Λθ1,θ and Λφ1,φ. Hence, the integration of Πθ,φ(A)
over Γθ,φ is equal to the integration over Γθ1,φ1 . It follows that

Πθ,φ(A)2 =
−1

4π2

∫
Γθ,φ

∫
Γθ1,φ1

λ−1µ−1A2(A− λ)−1(A− µ)−1 dλ dµ

By the Hilbert identity (A−λ)−1(A−µ)−1 = (λ−µ)−1[(A−λ)−1− (A−µ)−1], we obtain

4π2Πθ,φ(A)2

=

∫
Γθ,φ

1

λ
A2(A− λ)−1

(∫
Γθ1,φ1

µ−1dµ

µ− λ

)
dλ+

∫
Γθ1,φ1

1

µ
A2(A− µ)−1

(∫
Γθ,φ

λ−1dλ

λ− µ

)
dµ

= 2iπ

∫
Γθ,φ

λ−2A2(A− λ)−1dλ.

Here we have used the Cauchy formula and the fact that µ lies outside Γθ,φ in the second
integral. Now using the fact that A(A− λ)−1 = 1 + λ(A− λ)−1 we obtain

Πθ,φ(A)2 =
i

2π

∫
Γθ,φ

λ−2Adλ+
i

2π

∫
Γθ,φ

λ−1A(A− λ)−1dλ = Πθ,φ(A).



52 M. F. Ouedraogo

tu
When the cone Λθ,φ does not intersect the spectrum of the leading symbol of A, as
previously observed, it only contains a finite number of eigenvalues of A and Πθ,φ(A) is
a finite rank projection and hence a smoothing operator. In general, Πθ,φ(A), which is
a pseudodifferential projection, is a zero order operator with leading symbol given by
πθ,φ(σL(A)) defined similarly to Πθ,φ replacing A by the leading symbol of A so that:

σL(Πθ,φ(A)) = πθ,φ(σL(A)) := σL(A)

(
1

2iπ

∫
Γθ,φ

λ−1(σLA − λ)−1 dλ

)
.

To sum up, we have the following proposition:

Proposition 2.1.6. Let θ and φ be two spectral cuts for an admissible operator A such
that 0 ≤ θ < φ+ 2kπ < 2π for some integer k. Then

Azθ − Azφ = e2ikzπI +
(
1− e2iπ z

)
Πθ,φ(A)Azθ. (2.7)

Remark 2.1.7. Complex powers can also be defined for zero order elliptic operators.
Indeed if A is an operator in C`(M,E) of order 0 with spectral cut θ, then A is bounded
on Hs(M,E) and hence in L2(M,E). In that case its spectrum Sp(A) lies inside the circle
{λ : |λ| ≤‖ A ‖}. It follows that the operators Azθ can be defined directly using a Cauchy
integral formula

Azθ =
i

2π

∫
Γθ

λzθ (A− λ)−1 dλ

where Γθ is a contour around the spectrum of A and avoiding the spectral cut Lθ, shown
in Figure 2.
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2.1.3 Logarithms of admissible pseudodifferential operators

Let A be an admissible operator in C`(M,E) with non negative order a. The complex
powers (Azθ)z∈C is a holomorphic family of classical ΨDOs. The notion of holomorphic
family of classical ΨDOs was introduced in Section 1.2.2 using the related notion of holo-
morphic family of log-polyhomogeneous symbols given in Section 1.1.3. With the notation
of Definition 1.2.10 the derivative of a family A(z) = Op(σ(z)) +R(z), for some holomor-
phic family of symbols σ(z) and some holomorphic family R(z) of smoothing operators is
A′(z) = Op(σ′(z)) +R′(z). Here σ′(z) is the derivative of holomorphic function and R′(z)
is the derivative in Schwartz space.

Let us now define the logarithm of an admissible operator. Given a Banach (unital)
algebra A, and a in A, let θ ∈ R be such that the spectrum of a, i.e. the set of complex
scalars λ such that a−λ1 is not invertible in A, does not meet the ray Rθ = {reiθ, r ≥ 0}.
Then (see e.g. [Hi]) the map

z 7→ azθ :=
i

2π

∫
Γθ

λzθ (a− λI)−1 dλ

defines a holomorphic function on the complex plane with values in A, where we have set
as before

λzθ = |λ|z eizArg(λ) for θ − 2π ≤ Argλ < θ.

Here Γθ is any bounded contour around the spectrum of a which does not intersect the
ray Rθ. Hence, the logarithm of a

logθ a := (∂za
z
θ)|z=0

=
i

2π

(
∂z

∫
Γθ

λzθ (a− λI)−1 dλ

)
z=0

=
i

2π

∫
Γθ

logθ λ (a− λI)−1 dλ

lies in A, where we have set as before

logθ λ = log |λ|+ iArg(λ) for θ − 2π ≤ Argλ < θ.

This applies to the Banach algebra A = B(H) of bounded linear operators on a Hilbert
space H equipped with the operator norm ‖A‖ = sup

‖x‖=1

‖Ax‖ where ‖ · ‖ stands for the

norm on H. Thus, given an admissible operator A in C`(M,E) with zero order and
spectral cut θ, its complex powers give rise to a holomorphic map z 7→ Azθ on the complex
plane with values in B(Hs(M,E)) for any real number s, where Hs(M,E) stands for
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the Hs-closure of the space Γ(M,E) of smooth sections of E (see Section 1.2.2). The
logarithm of A is the bounded operator on Hs(M,E) defined in terms of the derivative
at z = 0 of this complex power:

logθ A := (∂zA
z
θ)|z=0

=
i

2π

(
∂z

∫
Γθ

λzθ (A− λI)−1 dλ

)
|z=0

=
i

2π

∫
Γθ

logθ λ (A− λI)−1 dλ

with the notation of (2.2).

The notion of logarithm extends to an admissible operator A with positive order a and
spectral cut θ in the following way. For any positive ε, the map z 7→ Az−εθ of order a(z−ε)
defines a holomorphic function on the half plane Re(z) < ε with values in B (Hs(M,E))
for any real number s. Thus we can set

logθ A = Aεθ
(
∂z
(
Az−εθ

))
|z=0

= Aεθ

(
∂z

(
i

2π

∫
Γθ

λz−εθ (A− λ)−1 dλ

))
|z=0

. (2.8)

for any positive ε the operator logθ AA
−ε = A−ε logθ A lies in B (Hs(M,E)) for any real

number s. It follows that logθ A, which is clearly independent of the choice of ε > 0,
defines a bounded linear operator from Hs(M,E) to Hs−ε(M,E) for any positive ε.

Just as complex powers, the logarithm depends on the choice of spectral cut. Indeed,
differentiating (2.7) w.r. to z at z = 0 yields for two spectral cuts θ, φ such that
0 ≤ θ < φ+ 2kπ < 2π, for some integer k:

logθ A− logφA = 2ikπ I − 2iπΠθ,φ(A). (2.9)

As a result of the above discussion and as already observed in [Ok1], when the leading
symbol σL(A) has no eigenvalue inside the cone Λθ,φ delimited by Γθ,φ then Πθ,φ which
is a finite rank projection, is smoothing. When θ and φ differ by a multiple of 2π, Πθ,φ

vanishes.

Lemma 2.1.8 ([KV1, Ok1]). Let A be an admissible operator in C`(M,E) with spectral
cut θ. Then logθ(A) is a ΨDO of order ε for any ε > 0. In some local chart, the symbol
of logθ A reads:

σ(logθ A)(x, ξ) = a log |ξ|I + σAθ (x, ξ) (2.10)

where a denotes the order of A and σAθ is a symbol of order zero.
Moreover, the leading symbol of σAθ is given by

(σAθ )L(x, ξ) = logθ

(
σL(A)(x,

ξ

|ξ|
)

)
, ∀(x, ξ) ∈ T ∗M − {0}.
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Remark 2.1.9. In particular, if σ(A) has scalar leading symbol then so that has σAθ . No-
tice that σ(Πθ,φ(A)) then also has scalar leading symbol, which confirms the independence
of this property on the choice of spectral cut.

Proof: Given a local trivialization over a local chart, the symbol of the operator Azθ
has the formal expansion σ(Azθ) ∼

∑
j≥0

b
(z)
az−j where a is the order of A and b

(z)
az−j, given by

(2.4), is a positively homogeneous function of degree az−j. Since logθ A = A
(
∂zA

z−1
θ

)
|z=0

,

we have

σ(logθ A) ∼ σ(A) ? σ
(
∂zA

z−1
θ

)
|z=0

.

Suppose that ξ 6= 0; using the positive homogeneity of the components, we have for j ≥ 0,

b
(z−1)
az−a−j(x, ξ) = |ξ|az−a−jb(z−1)

az−a−j

(
x,

ξ

|ξ|

)
and hence

∂zb
(z−1)
az−a−j(x, ξ) = a log |ξ||ξ|az−a−jb(z−1)

az−a−j

(
x,

ξ

|ξ|

)
+ |ξ|az−a−j∂zb(z−1)

az−a−j

(
x,

ξ

|ξ|

)
.

It follows that(
∂zb

(z−1)
az−a−j(x, ξ)

)
|z=0

= a log |ξ| b(−1)
−a−j(x, ξ) + |ξ|−a−j

(
∂zb

(z−1)
az−a−j

(
x,

ξ

|ξ|

))
|z=0

.

Hence
(
∂zA

z−1
θ

)
|z=0

has symbol
(
∂zb

(z−1)(x, ξ)
)
|z=0

of the form

a log |ξ|σ(A−1)(x, ξ) + τ(A)(x, ξ)

with τ(A) a classical symbol of order −a whose homogeneous component of degree −a−j
reads:

τ(A)−a−j(x, ξ) = |ξ|−a−j
(
∂zb

(z−1)
az−a−j

(
x,

ξ

|ξ|

))
|z=0

.

Thus the operator logθ A = A
(
∂zA

z−1
θ

)
|z=0

has a symbol of the form

a log |ξ|+ σAθ (x, ξ),

where

σAθ (x, ξ) ∼
∞∑
k=0

∑
i+j+|α|=k

1

α!
∂αξ σ(A)a−i(x, ξ)D

α
xτ(A)−a−j(x, ξ) (2.11)
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is a classical symbol of order zero. Its leading symbol reads

(σAθ )L(x, ξ) = σL(A)(x, ξ) |ξ|−a
(
∂zb

(z−1)
az−a

(
x,

ξ

|ξ|

))
|z=0

= σL(A)(x, ξ)

(
∂z

(
σL(A)

(
x,

ξ

|ξ|

))z−1

θ

)
|z=0

= logθ σ
L(A)

(
x,

ξ

|ξ|

)
for any (x, ξ) in T ∗M − {0} tu

As it can be seen from (2.10), logarithms of classical pseudo-differential operators are
not classical anymore; powers of the logarithm of a given admissible operator combined
with all classical pseudodifferential operators generate the algebra of log-polyhomogenous
operators.

Lemma 2.1.10. Let A and B be admissible operators in C`(M,E) with spectral cuts θ
and φ respectively. Then

logθ A

a
−

logφB

b
∈ C`0(M,E), (2.12)

where a is the order of A and b the order of B.

Remark 2.1.11. Let us point out that this statement does not depend on the choice of
spectral cuts since by formula (2.9) a modification of the spectral cut only modifies the
logarithm by zero order classical ΨDOs.

Proof: In some local chart, using formula (2.10), we have

σ

(
logθ A

a

)
(x, ξ) = log |ξ|I +

1

a
σAθ (x, ξ) and σ

(
logφB

b

)
(x, ξ) = log |ξ|I +

1

b
σBφ (x, ξ)

where σAθ and σBφ are classical symbols of zero order. Hence

σ

(
logθ A

a
−

logφB

b

)
(x, ξ) = σ(

logθ A

a
)(x, ξ)− σ(

logφB

b
)(x, ξ) =

1

a
σAθ (x, ξ)− 1

b
σBφ (x, ξ)

and the result follows. tu

Lemma 2.1.12. Let A be an operator in C`(M,E) and let B be an admissible operator
in C`(M,E) with spectral cut φ; then

[A, logφB] ∈ C`(M,E)

where [R, S] stands for the commutator RS − SR.
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Proof: Let us evaluate σ([A, logφB]). As already pointed out in Remark 2.1.11, the
result does not depend on the choice of the spectral cut. We know that

σ([A, logφB]) ∼ [σ(A), σ(logφB)]?

where for two symbols σ, δ the star bracket is given by [σ, δ]? := σ ? δ − δ ? σ.
Since by (2.10), σ(logφB)(x, ξ) = b log |ξ|I +σBφ (x, ξ) where σBφ (x, ξ) is a classical symbol
of zero order,

[σ(A), σ(logφB)]?(x, ξ) = [σ(A)(x, ξ), b log |ξ|I + σBφ (x, ξ)] = [σ(A)(x, ξ), σBφ (x, ξ)]

and the result follows. tu

Corollary 2.1.13. Let A be an admissible operator in C`(M,E) with spectral cut θ; then
adlogθ A is a derivation on C`(M,E) and C`?,?(M,E).

Proof: For any log-polyhomogeneous operators B,C in C`?,?(M,E),

adlogθ A(BC) = [logθ A,BC] = [logθ A,B]C +B[logθ A,C] = adlogθ A(B)C +Badlogθ A(C).

Since C`?,?(M,E) is an algebra, it follows that [logθ A,BC], [logθ A,B]C and B[logθ A,C]
belong to C`?,?(M,E) and the result follows. If B and C are classical operators, since the
three commutators belong to C`(M,E) so does adlogθ A. tu

For further use let us investigate the differentiability of a logarithm of a differentiable
family of admissible ΨDOs. A family At of classical operators in C`(M,E) is said to be
differentiable if it satisfies the requirements of Definition 1.2.10 replacing holomorphic by
differentiable.

Proposition 2.1.14 ([OP]). Let At be a differentiable family of admissible operators in
C`(M,E) with constant spectral cut θ. Then for any positive integer K, we have

d

dt
logθ At = ȦtA

−1
t +

K∑
k=1

(−1)k

k + 1
adkAt(Ȧt)A

−(k+1)
t +RK(At, Ȧt)

where we have set Ȧt := d
dt
At and

RK(At, Ȧt) := − i

2π

∫
Γθ

logθ λ
[
(λ− At)−1, adKAt(Ȧt)

]
(λ− At)−K−1 dλ,

since At commutes with (λ− At)−k.
If At commutes with Ȧt, then d

dt
logθ At = ȦtA

−1
t . If At has constant order a, then d

dt
logθ At

lies in C`(M,E).
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Proof: By (4.3) in [Ok1] we first observe that for any t in a compact neighborhood
Kt0 of t0, one can bound the modulus of the order α(t) from above by some integer k, in
which case

∃C > 0, ∀t ∈ Kt0 , ‖(At − λ)−1‖s,s−k ≤ |λ−1|,

where ‖ · ‖s,s′ stands for the operator norm of bounded operators from the Sobolev clo-
sure Hs(M,E) to the Sobolev closure Hs′(M,E) of Γ(M,E). Moreover, (At − λ)−1 is
differentiable at t0 with derivative given by:

d

dt |t=t0
(At − λ)−1 = −(At0 − λ)−1 Ȧt0 (At0 − λ)−1

as a consequence of the identity

(λ− At)−1 − (λ− At0)−1 = (t− t0) (λ− At0)−1 ∆t (λ− At)−1,

where we have set ∆t :=
At−At0
t−t0 .

For operators At of zero order this leads to

d

dt |t=t0
logθ At =

i

2π

∫
Γθ

logθ λ
d

dt |t=t0
(At − λ)−1 dλ

= − i

2π

∫
Γθ

logθ λ (At0 − λ)−1 Ȧt0 (At0 − λ)−1 dλ,

where we have set Ȧt0 = d
dt |t=t0

At.

In order to generalize this to higher order operators, we need to consider the family (see
(2.8)):

logθ AtA
−1
t =

i

2π

∫
Γθ

logθ λλ
−1 (At − λ)−1 dλ

for which we can also write:

d

dt |t=t0

(
logθ AtA

−1
t

)
=

i

2π

∫
Γθ

logθ λλ
−1 d

dt |t=t0
(At − λ)−1 dλ

= − i

2π

∫
Γθ

logθ λλ
−1 (At0 − λ)−1 Ȧt0 (At0 − λ)−1 dλ.
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This leads to the expected formula

d

dt |t=t0
logθ At =

d

dt |t=t0

(
logθ AtA

−1
t

)
At +

(
logθ At0 A

−1
t0

)
Ȧt0

= − i

2π

∫
Γθ

logθ λλ
−1 (At0 − λ)−1 Ȧt0 (At0 − λ)−1At0 dλ

+
i

2π

∫
Γθ

logθ λλ
−1 (At0 − λ)−1Ȧt0 dλ

= − i

2π

∫
Γθ

logθ λλ
−1 (At0 − λ)−1 Ȧt0 (At − λ)−1 (At0 − (At0 − λ)) dλ

= − i

2π

∫
Γθ

logθ λ (At0 − λ)−1 Ȧt0 (At0 − λ)−1 dλ.

On the other hand,

[
(λ− At0)−1, Ȧt0

]
= (λ− At0)−1

(
Ȧt0(λ− At0)− (λ− At0)Ȧt0

)
(λ− At0)−1

= (λ− At0)−1 [At0 , Ȧt0 ] (λ− At0)−1

= [At0 , Ȧt0 ](λ− At0)−2 +
[
(λ− At0)−1, [At0 , Ȧt0 ]

]
(λ− At0)−1

= [At0 , Ȧt0 ](λ− At0)−2 + (λ− At0)−1
[
At0 , [At0 , Ȧt0 ]

]
(λ− At0)−2

= [At0 , Ȧt0 ](λ− At0)−2 + [At0 , [At0 , Ȧt0 ]](λ− At0)−3

+
[
(λ− At0)−1, [At0 , [At0 , Ȧt0 ]]

]
(λ− At0)−2

= [At0 , Ȧt0 ](λ− At0)−2 + ad2
At0

(Ȧt0) (λ− At0)−3

+
[
(λ− At0)−1, ad2

At0
(Ȧt0)

]
(λ− At0)−2

=
K∑
k=1

adkAt0 (Ȧt0)(λ− At0)−(k+1) +
[
(λ− At0)−1, adKAt0 (Ȧt0)

]
(λ− At0)−K .
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Hence,

d

dt |t=t0
logθ At = − i

2π

∫
Γθ

logθ λ [(At0 − λ)−1 , Ȧt0 ] (At0 − λ)−1 dλ

− i

2π

∫
Γθ

logθ λ Ȧt0 (At0 − λ)−1 dλ

=
K∑
k=0

adkAt0 (Ȧt0)
i

2π

∫
Γθ

logθ λ (λ− At0)−(k+2) dλ

+
i

2π

∫
Γθ

logθ λ
[
(λ− At0)−1, adKAt0 (Ȧt0)

]
(λ− At0)−K−1 dλ.

A Cauchy integral yields

i

2π

∫
Γθ

logθ λ (λ− At0)−2 dλ =
i

2π

∫
Γθ

λ−1
θ (λ− At0)−1 dλ

= −A−1
t0
.

Similarly, by integration by parts,

i

2π

∫
Γθ

logθ λ (λ− At0)−3 dλ =
1

2

i

2π

∫
Γθ

λ−1
θ (λ− A0)−2 dλ

= −1

2

i

2π

∫
Γθ

λ−2
θ (λ− At0)−1 dλ

=
1

2
A−2
t0
.

Iterating this procedure yields

d

dt |t=t0
logθ At =

K∑
k=0

(−1)k

k + 1
adkAt0 (Ȧt0)A

−(k+1)
t0 +RK(At0 , Ȧt0),

where we have set

RK(At0 , Ȧt0) = − i

2π

∫
Γθ

logθ λ
[
(λ− At0)−1, adKAt0 (Ȧt0)

]
(λ− At0)−K−1 dλ.

tu
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Corollary 2.1.15. Let A and B be admissible operators in C`(M,E) with positive orders
a, b and spectral cuts θ and φ respectively and such that AB is also admissible with spectral
cut ψ depending on the choice of θ and φ. Let us assume that for each t in [0, 1], the
operator AtθB has spectral cut ψ(t), where t → ψ(t) is continuous. Set ψ(0) = φ and
ψ(1) = ψ. If A commutes with B, then

logψ AB = logθ A+ logφB. (2.13)

Proof: Let us consider the family At = AtθB. It is a differentiable family of admissible
operators. Following arguments similar to Okikiolu’s (see [Ok2]), we can build a finite
partition

⋃K
k=1 Jk of [0, 1] in such a way that we can choose on each of the intervals

Jk = [tk, tk+1] a common fixed spectral cut ψk of AtθB when t varies in Jk. Indeed, the
angle ψk is close to each angle ψk(t) in the sense that there is ε such that there are no
eigenvalues of AtθB in the cone Λψk−ε,ψk(t)−ε. We have Ȧt = d

dt
At = logθ AA

tB. Since A

commutes with B, At commutes with Ȧt. Then applying the above proposition to each
interval Jk, we obtain

d

dt
logψ(t) At = ȦtA

−1
t = logθ A.

Integrating from t = 0 to t = 1, it follows that∫ 1

0

(
d

dt
logψk At

)
dt = logψ AB − logφB = logθ A.

tu

We introduce the following class of ΨDOs defined in [Ok2] and further used in [B]. A
pseudodifferential operator A : Γ(M,E) → Γ(M,E) is logarithmic if its symbol in local
chart has an asymptotic expansion of the form

σ(A)(x, ξ) ∼ γ log |ξ|+
∞∑
j=0

χ(ξ)σa−j(A)(x, ξ), (x, ξ) ∈ T ?M, a, γ ∈ C, (2.14)

where each term σa−j(A)(x, ξ) is positively homogeneous in ξ of degree a− j. The number
a is called the degree of the logarithmic ΨDO A and the number γ is called the type of
this operator. We denote the set of logarithmic ΨDOs of degree a and type γ ((a, γ)-

logarithmic) by C̃`
a,γ

(M,E). Notice that

• A logarithm is a logarithmic operator of zero degree i.e. a = 0.

• C̃`
a,γ

(M,E) ⊂ C`a,1(M,E) i.e. a logarithmic ΨDO is a log-polyhomogeneous op-
erator.
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• C̃`
a,0

(M,E) = C`a(M,E) i.e. a classical operator is a logarithmic operator.

We set:

C̃`
a
(M,E) =

⋃
γ∈C

C̃`
a,γ

(M,E), C̃`(M,E) =
⋃
a∈C

C̃`
a
(M,E)

A logarithmic operator A in C̃`
a
(M,E) is odd-class if in the asymptotic expansion (2.14),

each term satisfies

σa−j(A)(x,−ξ) = (−1)a−jσa−j(A)(x, ξ), for |ξ| ≥ 1.

Denote by C̃`
a,γ

odd(M,E) (resp. C̃`odd(M,E)) the set of odd-class (a, γ)-logarithmic (resp.
odd-class logarithmic) pseudodifferential operators.

Lemma 2.1.16.

1. If A,B ∈ C̃`(M,E), then [A,B] ∈ C`(M,E).

2. If A,B ∈ C̃`odd(M,E), then [A,B] ∈ C`odd(M,E).

3. If A in C`(M,E) is admissible with spectral cut θ, then adlogθ A is a derivation on

C̃`(M,E).

Proof: Let us prove the first item. Suppose that A belongs to C̃`
a,γ

(M,E) and B

belongs to C̃`
p,δ

(M,E). Then we have σ(A)(x, ξ) = γ log |ξ|+σ(A1)(x, ξ) and σ(B)(x, ξ) =
δ log |ξ|+ σ(B1)(x, ξ) where A1, B1 are classical ΨDOs of order a, b respectively. Hence

σ(AB)(x, ξ)

∼
∑
α

1

α!
∂αξ σ(A)(x, ξ)Dα

xσ(B)(x, ξ)

∼ γδ log2 |ξ|+ γ log |ξ|σ(B1)(x, ξ) + δ log |ξ|σ(A1)(x, ξ) + σ(A1)(x, ξ)σ(B1)(x, ξ)

+γ
∑
α 6=0

1

α!
∂αξ log |ξ|Dα

xσ(B1)(x, ξ) + δ
∑
α 6=0

1

α!
∂αξ σ(A1)(x, ξ)Dα

xσ(B1)(x, ξ).

On the other hand,

σ(BA)(x, ξ)

∼ γδ log2 |ξ|+ δ log |ξ|σ(A1)(x, ξ) + γ log |ξ|σ(B1)(x, ξ) + σ(B1)(x, ξ)σ(A1)(x, ξ)

+δ
∑
α 6=0

1

α!
∂αξ log |ξ|Dα

xσ(A1)(x, ξ) + γ
∑
α 6=0

1

α!
∂αξ σ(B1)(x, ξ)Dα

xσ(A1)(x, ξ).
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It follows that

σ([A,B])(x, ξ)

∼ [σ(A1)(x, ξ), σ(B1)(x, ξ)]

+γ
∑
α 6=0

1

α!
∂αξ log |ξ|Dα

xσ(B1)(x, ξ) + δ
∑
α 6=0

1

α!
∂αξ σ(A1)(x, ξ)Dα

xσ(B1)(x, ξ)

−δ
∑
α 6=0

1

α!
∂αξ log |ξ|Dα

xσ(A1)(x, ξ)− γ
∑
α 6=0

1

α!
∂αξ σ(B1)(x, ξ)Dα

xσ(A1)(x, ξ).

Since ∂αξ log |ξ| is homogeneous of degree −|α|, [A,B] lies in C`(M,E).
Furthermore

σ([A,B])a+b−j(x, ξ) = σa(A)(x, ξ)σb−j(B)(x, ξ)− σa−j(A)(x, ξ)σb(B)(x, ξ)

+
∑

k+l+|α|=j,l<j

1

α!
∂αξ σa−k(A)(x, ξ)Dα

xσb−l(B)(x, ξ)

and the second item follows. Moreover, if A is an admissible operator, logθ A belongs to

C̃`(M,E) and hence the commutator [logθ A,B] belongs to C`(M,E) which is include on

C̃`(M,E). The third item follows. tu

Let us introduce some notations. In what follows L(k)(P,Q) denotes a Lie monomial of de-
gree k, i.e. a linear combination of expressions of the form [Rk, [Rk−1, · · · [R3, [R2, R1]] · · · ]]
where each of the elements Ri is either P or Q.

Lemma 2.1.17.

1. Let A and B be admissible operators in C`(M,E) with spectral cuts θ and φ respec-
tively. Then

(a) adklogθ A
(logφB) ∈ C`0(M,E), ∀k > 0.

(b) L(k)(logθ A, logφB) ∈ C`0(M,E), ∀k > 1.

2. Moreover if A and B have scalar leading symbols, then

(a) adklogθ A
(logφB) ∈ C`−k(M,E), ∀k > 0.

(b) L(k)(logA, logB) ∈ C`−k+1(M,E), ∀k > 1.

Remark 2.1.18. Here again, as already pointed out in Remark 2.1.11, the result does
not depend on the choice of the spectral cut.

Proof: For simplicity, we drop the subscripts which specify the spectral cuts.
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1. We prove the results by induction on k.

(a) For k = 1, since

adlogA(logB) = [logA, logB] =

[
logA, logB − b

a
logA

]
where a is the order of A and b is the order of B, by Lemma 2.1.10 logB− b

a
logA

is a classical zero order operator and by Lemma 2.1.12, the operator bracket
[logA, logB] is a classical operator. Let us prove that it is zero order.
By (2.10), σ(logθ A)(x, ξ) = a log |ξ|I+σAθ (x, ξ) and σ(logφB)(x, ξ) = b log |ξ|I+
σBφ (x, ξ). As before we define the bracket of symbols [σ, τ ]? to be σ ? τ − τ ? σ.
We have

[σ(logA), σ(logB)]? (x, ξ) ∼ [σ(logA)(x, ξ), σ(logB)(x, ξ)]

∼
[
σAθ (x, ξ), σBφ (x, ξ)

]
.

Since σBφ and σBφ are classical symbols of zero order, [logA, logB] is a classical
zero order operator.
Let us now assume that the property holds for a given positive integer k, i.e.
adklogA(logB) belongs to C`0(M,E). Then

adk+1
logA(logB) =

[
logA, adklogA(logB)

]
and

σ(adk+1
logA(logB)) ∼

[
σ(logA), σ(adklogA(logB))

]
?
∼
[
σAθ , σ(adklogA(logB))

]
?
.

Since σA0 and σ(adklogA(logB)) are classical symbols of zero order, the result
follows.

(b) For k = 2, L(2)(logA, logB) is a linear combination of expressions of the type
[logA, logB] = adlogA(logB) so that L(2)(logA, logB) lies in C`0(M,E). Now,
assuming that L(k)(logA, logB) is a linear combination of expressions of the
type

[
logG,L(k−1)(logA, logB)

]
= adlogG(L(k−1)(logA, logB)) where logG =

logA or logG = logB we have

L(k+1)(logA, logB) =
[
logG,L(k)(logA, logB)

]
= adlogG(L(k)(logA, logB)).

By assumption L(k)(logA, logB) lies in C`0(M,E) and hence L(k+1)(logA, logB)
lies in C`0(M,E).
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2. Here we will prove the result for step (a). The step (b) can be proved using the
arguments of step (b) of 1). We prove the result by induction on k. For k = 1, by
item 1, the bracket [logA, logB] has zero order. We have

[σ(logA), σ(logB)]?(x, ξ) ∼
[
σAθ (x, ξ), σBφ (x, ξ)

]
.

Since A and B have scalar leading symbols, by Remark 2.1.9, so have σAθ and σBφ
and hence [σAθ , σ

B
φ ]L = [(σAθ )L, (σBφ )L] = 0. It follows that [logA, logB] has order

−1. If we assume that adklogA(logB) lies in C`−1(M,E), then since

σ(adk+1
logA(logB)) ∼

[
σAθ , σ(adklogA(logB))

]
?

and (
σ(adk+1

logA(logB))
)L

=
[
(σA0 )L, (σ(adklogA(logB))L

]
= 0.

The result follows.

tu

In the following proposition, we recall well-known results about log-polyhomogeneous op-
erators i.e. all log-polyhomogeneous operators can be written as finite linear combination
of products of classical operators and logarithms.

Proposition 2.1.19. Let Q be an admissible operator in C`(M,E) with positive order q
and spectral cut α. Then for k ≥ 0,

1. (logαQ)kC`(M,E) ⊂
k⊕
l=0

C`(M,E)(logαQ)l.

2. C`?,k(M,E) =
k⊕
l=0

C`(M,E) (logαQ)l =
k⊕
l=0

(logαQ)l C`(M,E).

Proof: We proceed by induction on k; let A be a classical operator in C`(M,E).

1. For k = 1, logαQA = A logαQ+[logαQ,A]. Since [logαQ,A] is a classical operator,
(logαQ)A lies in C`(M,E)

⊕
C`(M,E) logαQ.

Assume that (logαQ)k−1A lies in
k−1⊕
l=0

C`(M,E)(logαQ)l. Then

(logαQ)kA = (logαQ)k−1(logαQ)A

= (logαQ)k−1A logαQ+ (logαQ)k−1[logαQ,A]

Since by the induction assumption, (logαQ)k−1[logαQ,A] and (logαQ)k−1A belong

to
k−1⊕
l=0

C`(M,E)(logαQ)l, the result follows.
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2. From 1) it follows that one can put the powers of the logarithms either on the l.h.s.

or on the r.h.s.. Indeed, (logαQ)kC`(M,E) ⊂
k⊕
l=0

C`(M,E)(logαQ)l implies that

k⊕
l=0

(logαQ)lC`(M,E) ⊂
k⊕
l=0

C`(M,E)(logαQ)l.

On the other hand, by the same argument, one can write

k⊕
l=0

C`(M,E) (logαQ)l ⊂
k⊕
l=0

(logαQ)l C`(M,E).

The second identity follows.

Let us check that
k⊕
l=0

C`(M,E) (logαQ)l = C`?,k(M,E).

The inclusion from left to right is straightforward. Indeed, let A =
k∑
l=0

Al(logαQ)l

be an element of
k⊕
l=0

C`(M,E) (logαQ)l. Since (logαQ)l lies in C`?,k(M,E) for any

l ≤ k, it follows that A belongs to C`?,k(M,E).
To show the inclusion from right to left, let us show by induction on k that any

element A of C`?,k(M,E) can be written on the form A =
k∑
l=0

Al(logαQ)l.

This clearly holds for k = 0. Let us assume it holds for k. Since logαQ has a
symbol of the form q log |ξ|+σ0

Q with σ0
Q a classical symbol, (logαQ)k has a symbol

of the form qk logk |ξ| + σk−1
Q with σk−1

Q a log-polyhomogeneous symbol of log-type

k− 1. It follows that to any A in C`?,k(M,E) with symbol σ(A) =
k∑
l=0

σl(A) logl |ξ|,

using a partition of unity adapted to a finite trivializing covering of M for E,we can
associate a classical operator

Ak := Op(σk(A)).

Then

B1 := A− 1

qk
Ak(logαQ)k ∈ C`?,k−1(M,E).

Similarly, to the operator B1 we can associate a classical operator

Ak−1 := Op(σk−1(B1)).
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Hence

B2 := B1 −
1

qk−1
Ak−1(logαQ)k−1 = A− 1

qk
Ak(logαQ)k − 1

qk−1
Ak−1(logαQ)k−1

lies in C`?,k−2(M,E). Iterating this procedure, we build a sequence of classical op-
erators Al, l = 1, · · · , k such that

Bk := A−
k∑
l=1

1

ql
Al(logαQ)l

is a classical operator.

tu

This yields back well-known results (see [L]) concerning the structure of C`?,?(M,E).

Proposition 2.1.20. The algebra C`?,?(M,E) :=
∞⊕
k=0

C`?,k(M,E) is a Z-graded algebra.

2.2 Symmetrized logarithms and odd-class pseudod-

ifferential operators

Inspired by M. Braverman [B], we introduce the symmetrized logarithm of a odd-class
classical admissible ΨDOs. We show that this symmetrized logarithm is also odd-class and
we characterize the odd-class log-polyhomogeneous operators in terms of a finite linear
combination of products of classical operators and symmetrized logarithms of admissible
odd-class operators.

Let A be an admissible operator in C`aodd(M,E) which admits spectral cuts θ and θ− aπ.
The symmetrized logarithm of A is defined by the formula

logsym
θ A :=

1

2

(
logθ A+ logθ−aπ A

)
. (2.15)

Proposition 2.2.1. The symmetrized logarithm of A in C`aodd(M,E) with spectral cuts θ
and θ − aπ is an odd-class log-polyhomogeneous operator of log degree 1.

Proof: The proof is similar to proofs in [B] (see also [Pa2]).
Assume that A is an odd-class classical operator of order a and θ, θ−aπ are spectral cuts
for A. By formulae (2.10), (2.11), since σAθ is a classical ΨDO of zero order,

σ(logθ(A))(x, ξ) = a log |ξ|I + σAθ (x, ξ) ∼ a log |ξ|I +
∞∑
j=0

σ−j(logθ(A))(x, ξ)
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σ−j(logθ(A))(x, ξ) = |ξ|−j∂zσaz−j(Azθ)(x,
ξ

|ξ|
)|z=0 .

Since the operator (Azθ)|z=0 is equal to I, the identity of matrices, we have

σaz−j(A
z
θ)(x, ξ)|z=0 = δ0,jI.

We need to evaluate

σ−j(logsym
θ A)(x,−ξ) =

1

2

(
σ−j(logθ A)(x,−ξ) + σ−j(logθ−aπ A)(x,−ξ)

)
.

By formula (2.5) the homogeneous components of the symbol of Azθ are

σaz−j(A
z
θ)(x, ξ) =

i

2π

∫
Γθ

λzθ b−a−j(x, ξ, λ) dλ.

with b−a−j, the homogeneous components of the resolvent (A− λI)−1 defined in Section

2.1.2. These components b−a−j(x, ξ, λ) are positively homogeneous in (ξ, λ
1
a ) i.e.

bk(x, tξ, t
1
aλ) = tkbk(x, ξ, λ) ∀t > 0, ∀(x, ξ) ∈ T ?M.

Moreover, if A belongs to C`aodd(M,E), using the explicit formulae of b−a−j, this extends
to any real number t since we have

bk(x,−ξ, (−1)aλ) = (−1)kbk(x, ξ, λ). (2.16)

Assume that Re z < 0. Then using formula (2.16) we can write

σaz−j(A
z
θ)(x,−ξ) =

i

2π

∫
Γθ

λzθ b−a−j(x,−ξ, λ) dλ

= (−1)a+j i

2π

∫
Γθ

λzθ b−a−j(x, ξ, (−1)aλ) dλ.

By a change of variable µ = e−iaπz, we obtain

σaz−j(A
z
θ)(x,−ξ) = (−1)a+j i

2π

∫
Γθ−aπ

(eiaπµ)zθ b−a−j(x, ξ, µ) d(eiaπµ)

= (−1)a+jeiaπ
i

2π

∫
Γθ−aπ

eiazπµzθ−aπ b−a−j(x, ξ, µ) dµ

= (−1)jeiazπσaz−j(A
z
θ−aπ)(x, ξ).

Thus
σaz−j(A

z
θ)(x,−ξ) = eiπ(az+j)σaz−j(A

z
θ−aπ)(x, ξ). (2.17)
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Since both the left and the right hand side of this equality are analytic in z, we conclude
that the equality holds for all complex z in C. Similarly,

σaz−j(A
z
θ−aπ)(x,−ξ) = (−1)a+j i

2π

∫
Γθ−aπ

(e−iaπµ)zθ b−a−j(x, ξ, µ) d(e−iaπµ)

= (−1)a+je−iaπ
i

2π

∫
Γθ

e−iazπµzθ−aπ b−a−j(x, ξ, µ) dµ

= (−1)je−iazπσaz−j(A
z
θ)(x, ξ).

We therefore infer that

σaz−j(A
z
θ−aπ)(x,−ξ) = e−iπ(az+j)σaz−j(A

z
θ)(x, ξ). (2.18)

Differentiating equation (2.17) w.r. to z yields:

σaz−j(∂zA
z
θ)(x,−ξ) = ∂z (σaz−j(A

z
θ)(x,−ξ))

= ∂z
(
eiπ(az+j)σaz−j(A

z
θ−aπ)(x, ξ)

)
= eiπ(az+j)

(
iaπσaz−j(A

z
θ−aπ)(x, ξ) + σaz−j(∂zA

z
θ−aπ)(x, ξ)

)
i.e.

σaz−j(∂zA
z
θ)(x,−ξ) = eiπ(az+j)

(
iaπσaz−j(A

z
θ−aπ)(x, ξ) + σaz−j(∂zA

z
θ−aπ)(x, ξ)

)
. (2.19)

Similarly, differentiating equation (2.18) w.r. to z yields:

σaz−j(∂zA
z
θ−aπ)(x,−ξ) = ∂z

(
σaz−j(A

z
θ−aπ)(x,−ξ)

)
= ∂z

(
e−iπ(az+j)σaz−j(A

z
θ)(x, ξ)

)
= e−iπ(az+j) (−iaπσaz−j(Azθ)(x, ξ) + σaz−j(∂zA

z
θ)(x, ξ))

i.e.

σaz−j(∂zA
z
θ−aπ)(x,−ξ) = e−iπ(az+j) (−iaπσaz−j(Azθ)(x, ξ) + σaz−j(∂zA

z
θ)(x, ξ)) . (2.20)

Now, combining equations (2.19) and (2.20) yields at z = 0 :

σ−j(logsym
θ A)(x,−ξ) =

1

2

(
σ−j(logθ A)(x,−ξ) + σ−j(logθ−aπ A)(x,−ξ)

)
=

1

2

(
σ−j((∂zA

z
θ)|z=0)(x,−ξ) + σ−j((∂zA

z
θ−aπ)|z=0)(x,−ξ)

)
=

1

2
(−1)j

(
iaπσ−j(I)(x, ξ) + σ−j(logθ−aπ A)(x, ξ)

)
+

1

2
(−1)j (−iaπσ−j(I)(x, ξ) + σ−j(logθ A)(x, ξ))

= (−1)jσ−j(logsym
θ A)(x, ξ)

and logsym
θ A = 1

2

(
logθ A+ logθ−aπ

)
is an odd-class log-polyhomogeneous operator. tu
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Corollary 2.2.2. If A in C`aodd(M,E) admits a spectral cut θ and a is even, then logθ(A)
is an odd-class log-polyhomogeneous operator.

Proof: If a is even i.e. a = 2k for some integer k, then logθ−aπ A = logθ−2kπ A so that

logθ−2kπ A− logθ A = −2ikπI.

We obtain logsym
θ A = logθ A − ikπI. Since I is an odd-class operator we deduce that

logθ A is an odd-class operator.
Another way to obtain the result is to compute directly homogeneous components de the
symbol of logθ A by evaluating formula (2.19) at z = 0. This gives

σ−j(logθ A)(x,−ξ) = (−1)jiaπσ−j(I)(x, ξ) + (−1)jσ−j(logθ−aπ A)(x, ξ).

But (−1)jiaπσ−j(I)(x, ξ) = 0 for j > 0. Hence

For j > 0, σ−j(logθ A)(x,−ξ) = (−1)jσ−j(logθ−aπ A)(x, ξ).

Now, if a = 2k is even then using formula logθ−2kπ A − logθ A = −2ikπI, we have for
j > 0,

σ−j(logθ A)(x,−ξ) = (−1)jσ−j(logθ A)(x, ξ) and σ0(logθ A)(x,−ξ) = σ0(logθ A)(x, ξ).

The result follows. tu

In this section we show the equivalent of Proposition 2.1.19 for the case of odd-class
operators, namely that all log-polyhomogeneous operators in the odd-class algebra can
be written as finite linear combinations of products of odd-class classical operators and
symmetrized logarithms of odd-class elliptic operators. To do so, let us first show that
in Proposition 2.1.19, we can replace the logarithm of the admissible operator Q by the
symmetrized logarithm of an admissible odd-class operator.

Proposition 2.2.3. Let Q be any odd-class admissible operator in Clodd(M,E) with pos-
itive order q and spectral cuts α and α− qπ. Then for k ≥ 0,

1. (logsym
α Q)kC`odd(M,E) ⊂

k⊕
l=0

C`odd(M,E)(logsym
α Q)l.

2. C`?,k(M,E) =
k⊕
l=0

C`(M,E) (logsym
α Q)l =

k⊕
l=0

(logsym
α Q)l C`(M,E).

Proof: Since the proposition is the odd-class case of Proposition 2.1.19, the proof
goes similarly. We have just to verify some points using the odd-class property.
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1. If Q is odd-class, the same argument used to prove item 1 of Proposition 2.1.19
holds, replacing C`(M,E) by C`odd(M,E), since logsym

α Q lies in the odd class and
the odd-class is stable under products.

2. The first identity in 2) can be derived as in the proof of item 2 of Proposition 2.1.19.
All we need to show is that

k⊕
l=0

C`(M,E)(logαQ)l =
k⊕
l=0

C`(M,E)(logsym
α Q)l.

Let us prove the inclusion form left to right. To do so let us write

logasym
α Q :=

1

2

(
logθ A− logθ−aπ A

)
.

It is easy to check (formula 2.12) that logasym
α Q is a classical operator of zero order

and

logαQ = logsym
α Q+ logasym

α Q.

This last equality combined with the fact that logasym
α Q is a classical operator implies

that

(logαQ)l = (logsym
α Q+ logasym

α Q)l

is a finite linear combination of products of the type

C1(logsym
α Q)k1 · · ·Cp(logsym

α Q)kp

with k1 + · · ·+ kp = l. This clearly lies in
l⊕

j=0

C`(M,E)(logsym
α Q)j. Hence

k⊕
l=0

C`(M,E)(logαQ)l ⊂
k⊕
l=0

C`(M,E)(logsym
α Q)l.

The inclusion from right to left can be shown similarly writing

(logsym
α Q)l = (logαQ− logasym

α Q)l.

tu

We provide a description of the algebra of odd-class log-polyhomogeneous pseudodif-
ferential operators in terms of symmetrized logarithms.
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Theorem 2.2.4. Let Q be any odd-class admissible operator in C`odd(M,E) with positive
order q and spectral cuts α and α− qπ. Then,

C`?,kodd(M,E) =
k⊕
l=0

(logsym
α Q)l C`odd(M,E) =

k⊕
l=0

C`odd(M,E) (logsym
α Q)l.

Proof: Let us check the independence on the choice of Q. Assume that Qi, i = 1, 2

are odd-class operators with spectral cuts αi, αi − qiπ. Let A =
k∑
l=0

Al(logsym
α1

Q1)l. Since

logα1
Q1 = logsym

α1
Q1 + logasym

α1
Q1 and logα2

Q2 = logsym
α2

Q2 + logasym
α2

Q2,

we can write

logsym
α1

Q1 =
q1

q2

logsym
α2

Q2 +

(
logα1

Q1 −
q1

q2

logα2
Q2

)
−
(

logasym
α1

Q1 −
q1

q2

logasym
α2

Q2

)
=

q1

q2

logsym
α2

Q2 +B12,

where

B12 =

(
logα1

Q1 −
q1

q2

logα2
Q2

)
−
(

logasym
α1

Q1 −
q1

q2

logasym
α2

Q2

)
∈ C`odd(M,E).

By the first part of Proposition 2.2.3, (logsym
α1

Q1)l =
(
q1
q2

logsym
α2

Q2 +B12

)l
which is a

finite linear combination of products of the type C1(logsym
α2

Q2)k1 · · ·Cp(logsym
α2

Q2)kp with

k1 + · · ·+ kp = l, lies in
l⊕

j=0

C`odd(M,E)(logsym
α2

Q2)j.

Hence
k⊕
l=0

C`odd(M,E) (logsym
α Q)l is independent of the odd-class operator Q.

We are now left to show that

k⊕
l=0

C`odd(M,E) (logsym
α Q)l = C`?,kodd(M,E).

The inclusion from left to right follows from item 2 of Proposition 2.2.3 and the fact that

an operator of
k⊕
l=0

C`odd(M,E) (logsym
α Q)l is a linear combination of products of odd-class

operators and therefore lies in the odd class i.e. lies in C`?,kodd(M,E).
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Let us prove the inclusion from left to right.
Let A be an operator in Cl?,kodd(M,E) with order a and symbol of the form

σ(A) ∼
∞∑
j=0

k∑
l=0

σa−j,l(A) logl |ξ|.

Since A is odd-class, each σa−j,l(A) verify σa−j,l(A)(x,−ξ) = (−1)a−jσa−j,l(A)(x, ξ).
Let us write

σ(A) ∼
k∑
l=0

σl(A) logl |ξ|

with σl(A) ∼
∞∑
j=0

σa−j,l(A); each σl(A) is an odd-class symbol.

On the other hand, by item 2 of Proposition 2.2.3, we can write A =
k∑
l=0

Al(logsym
α Q)l.

In order to show that Al is an odd-class operator for l = 0, · · · , k we compute the compo-
nents of σ(A). Since the odd-class operator logsym

α Q has a symbol of the form q log |ξ|+σ0

with σ0 a classical odd class symbol, (logsym
α Q)l has a symbol of the form ql logl |ξ|+σl−1

with σl−1 an odd class log-polyhomogeneous symbol of log-type l − 1. The odd-class log-

polyhomogeneous symbol σl−1 has an expression of the form
l−1∑
j=0

σj,l−1 logj |ξ| with each

σj,l−1 an odd-class symbol. We have

σ(A) ∼ σ(A0) +
k∑
l=1

∑
α

1

α!
∂αξ σ(Al)D

α
xσ
(
(logsym

α Q)l
)

∼ σ(A0) +
k∑
l=1

σ(Al)σ
(
(logsym

α Q)l
)

+
k∑
l=1

∑
α 6=0

1

α!
∂αξ σ(Al)D

α
xσ
(
(logsym

α Q)l
)

∼ σ(A0) +
k∑
l=1

qlσ(Al) logl |ξ|+
k∑
l=1

σ(Al)σ
l−1 +

k∑
l=1

∑
α 6=0

1

α!
∂αξ σ(Al)D

α
xσ

l−1.

Hence

σ(A) ∼ σ(A0) +
k∑
l=1

qlσ(Al) logl |ξ|+
k∑
l=1

l−1∑
j=1

σ(Al)σj,l−1 logj |ξ|

+
k∑
l=1

∑
α 6=0

l−1∑
j=1

1

α!
∂αξ σ(Al) (Dα

xσj,l−1) logj |ξ|.
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Comparing with σ(A) ∼
∑k

l=0 σl(A) logl |ξ|, we obtain:

σk(A) = qkσ(Ak),

σk−1(A) = qk−1σ(Ak−1) + σ(Ak)σk−1,k−1 +
∑
α 6=0

1

α!
∂αξ σ(Ak)D

α
xσk−1,k−1 logj |ξ|,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

σi(A) = qiσ(Ai) +
k∑

l=i+1

σ(Al)σi,l−1 +
k∑

l=i+1

∑
α 6=0

1

α!
∂αξ σ(Al)D

α
xσi,l−1 logj |ξ|

for i = k − 2, · · · , 0. Since A is an odd-class operator, σk(A) lies in the odd-class which
implies that σ(Ak) is odd-class symbol and Ak is odd-class operator. But Ak odd-class
operator implies that Ak−1 is odd-class operator. We show this way, inductively on l, that
Al lies in the odd-class for l = 0, · · · , k. Finally,

k⊕
l=0

C`odd(M,E) (logsym
α Q)l = C`?,kodd(M,E).

tu

Here again, this provides similar information on the structure of C`?,?odd(M,E).

Proposition 2.2.5. The algebra C`?,?odd(M,E) :=
∞⊕
k=0

C`?,kodd(M,E) is a Z-graded algebra.
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Chapter 3

The canonical trace on odd-class
pseudodifferential operators

The aim of this chapter is twofold. We first characterize traces on C`0
odd(M,E) (Theorem

3.3.4) when the underlying manifold M is odd dimensional; these are linear combina-
tions of leading symbol traces, which involve the leading symbol, and the canonical trace
which involves the whole symbol of the operator. The canonical trace is extended to
odd-class operators in odd-dimensions after which we express regularized traces of log-
polyhomogeneous odd-class operators in terms of this canonical trace (Theorem 3.5.7) and
derive from there the cyclicity of the canonical trace on odd-class log-polyhomogeneous
operators in odd dimensions (Corollary 3.5.9).

3.1 The L2-trace on smoothing operators

The L2-trace (or usual trace)

Tr : C`−∞(M,E)→ R

A 7→ Tr(A) :=

∫
M

trx (KA(x, x)) dx =

∫
M

∫
T ∗xM

trx (σ(A)(x, ξ)) d̄ξ dx.

where trx is the fibrewise trace and where, as before, d̄ξ := 1
(2π)n

d ξ with dξ the ordinary

Lebesgue measure on the cotangent bundle T ∗xM ' IRn, is up to a multiplicative factor
the unique trace on the algebra of smoothing operators C`−∞(M,E). Indeed, in [Gu3] V.
Guillemin showed the following proposition:

Proposition 3.1.1.

1. Any operator R in C`−∞(M,E) such that Tr(R) = 0 is sum of commutators in
C`−∞(M,E).

76
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2. Any trace in C`−∞(M,E) is proportional to the usual trace.

Let R be a smoothing operator in C`−∞(M,E) such that Tr(R) 6= 0. For any pseu-
dodifferential projection J in C`−∞(M,E) of rank 1, the smoothing operator R−Tr(R)J
verifies Tr(R−Tr(R)J) = 0. As a consequence of the above proposition it follows that we
can express R as a sum of commutators and a smoothing operator

R = Tr(R)J +
N∑
j=1

[Sj, Tj]. (3.1)

where J is as above and Sj, Tj are smoothing operators.

The trace Tr further extends by the same formula to a trace on the algebra of classi-
cal operators of order with real part < −n (where n is the dimension of the underlying
manifold) since these are trace-class. However,

Proposition 3.1.2. The trace Tr does not extend to a trace functional on the whole
algebra C`(M,E).

Proof: This follows from Wodzicki’s characterization of traces on C`(M,E) [W1],
but we give here a more simple and direct proof which can be found in [L]. Assume λ is
a trace on C`(M,E) such that for any A in C`(M,E) with order a, if Re(a) < −n, then
λ(A) = Tr(A). We may choose an elliptic operator A in C`(M,E) with non-vanishing
Fredholm index. Let B be a parametrix in C`(M,E) of A. Then

I −BA, I − AB ∈ C`−∞(M,E)

and we arrive at the contradiction

0 6= ind(A) = Tr(I −BA)− Tr(I − AB) = Tr([A,B]) = λ([A,B]) = 0.

tu
There is therefore no trace on C`(M,E) which extends the L2-trace. M. Wodzicki in [W1]
(see also [K]) proved that on a connected closed manifold of dimension > 1, any trace
on C`(M,E) is proportional to the noncommutative residue defined as follows: for any
classical operator A of order a which symbol has the asymptotic expansion σ(A)(x, ξ) ∼
∞∑
j=0

χ(ξ)σ(A)a−j(x, ξ) in local coordinates, the noncommutative residue of A is

res(A) =

∫
M

resx(A)dx =

∫
M

∫
S∗M

trx(σ−n(A)(x, ξ))d̄ξ dx.

Here n is the dimension of the manifold M and σ(A)−n(x, ξ) is the homogeneous compo-
nent of degree −n of the symbol of A. This definition is independent of the chosen local
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chart. From this expression, it is easy to see that the noncommutative residue is local in
the sense that it depends on a finite number of homogeneous components of the symbol
of A. We deduce the following result.

Lemma 3.1.3. Let A be a classical ΨDO.

1. If ord(A) < −n, then res(A) = 0.

2. If A lies in C`odd(M,E) and n is odd, then res(A) = 0.

Proof: For the first item, if A is of order < −n then σ−n(A) = 0.
For the second item, if A lies in C`odd(M,E) and n is odd, then σ−n(A)(x,−ξ) =
−σ−n(A)(x, ξ). Integrating over S∗M the odd-function σ−n(A)(x, ξ) we infer that resx(A) =
−resx(A) = 0. tu
Consequently, if the dimension of M is odd, the algebra of odd-class operators is contained
in the kernel of the noncommutative residue i.e. C`odd(M,E) ⊂ Ker(res).

3.2 Classification of traces on C`odd(M,E)

In odd dimensions C`odd(M,E) is contained in Ker(res) so that it is natural to look for
other traces than res on this subalgebra.

3.2.1 Linear forms on odd-class symbols and Stokes’ property

Let us recall that a smooth function f(ξ) on Rn − {0} is called positively homogeneous
of degree m if for any t > 0, f(tξ) = tmf(ξ). Euler’s identity for homogeneous function
of degree m is given by

n∑
i=1

ξi∂ξif = mf.

This follows directly from the fact that

n∑
i=1

ξi∂ξi(f(ξ)) = ∂t(f(tξ))|t=1 = ∂t(t
mf(ξ))|t=1 = mf(ξ).

Let us consider the n− 1 form

σ =
n∑
i=1

(−1)i+1ξjdξ1 ∧ · · · ∧ dξi−1 ∧ dξi+1 ∧ · · · ∧ dξn.

We have dσ = ndξ1 ∧ · · · ∧ dξn and restricted to the unit sphere Sn−1, σ is the volume
form on Sn−1. If the degree of f is −n we define the integral resf =

∫
Sn−1 fσ.



Chap. 3: The canonical trace on odd-class pseudodifferential operators 79

Lemma 3.2.1 ([FGLS]). Let f be a homogeneous function on Rn − {0}. Each of the
following conditions is sufficient for f to be a sum of derivatives:

1. deg(f) 6= −n.

2. deg(f) = −n and resf = 0.

Proof:

1. If deg(f) = m 6= −n let us consider the homogeneous function gi(ξ) := 1
m+n

ξif(ξ).
By Euler’s identity we have

n∑
i=1

∂ξigi(ξ) =
1

m+ n

(
n∑
i=1

ξi∂ξif + nf

)
= f.

2. If deg(f) = −n and resf =
∫
Sn−1 fσ = 0, let us write S := Sn−1 and consider the

equation
∆Sg = f|S

where ∆S is the restriction of the Laplacian to the unit sphere S and f|S is the
restriction of f to S. Since

∫
Sn−1 fσ = 0, f|S is orthogonal to the constants which

form the kernel ker(∆S). It follows that the equation above has a unique solution.
In polar coordinates (r, ω) ∈ R+

0 × S, the Laplacian reads

∆ = −
n∑
i=1

∂2
ξi

= −r1−n∂r(r
n−1∂r)− r−2∆S.

Therefore, for any function g ∈ C∞(S),

∆(g(ω)r2−n) = r−n∆Sg(ω) = r−nf|S = f.

It follows that f is a sum of derivatives.

tu

Proposition 3.2.2. Let σ be a classical symbol in CSm(Rn). If σ belongs to Ker(res)
then there exists τi in CSm+1(Rn) such that

σ ∼
n∑
i=1

∂ξiτi.

Moreover if σ is odd-class then the τi can be chosen in CSm+1
odd (Rn).
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Proof: The proof is similar to the one in [MSS]. Let σ in CSm(Rn) be such that

res(σ) =
∫
Sn−1 σ−n(x, ξ)d̄ξ = 0. For a cut-off function χ we write σ ∼

∞∑
j=0

χσm−j, with

σm−j in C∞(Rn − {0}) a positively homogeneous function of degree m− j in ξ i.e.

σm−j(x, tξ) = tm−jσm−j(x, ξ), ∀t > 0.

Applying Lemma 3.2.1 to each positively homogeneous component σm−j, we build posi-
tively homogeneous components τi,m−j+1 such that σm−j =

∑
i

τi,m−j+1 so that

σ ∼
n∑
i=1

∞∑
j=0

χ∂ξi(τi,m−j+1) ∼
n∑
i=1

∂ξiτi,

where we have set τi ∼
∞∑
j=1

χτi,m−j+1. Since ∂ξiχ has compact support, the difference

σ −
n∑
i=1

∂ξiτi is smoothing. Let us show that the symbols τi can be chosen odd-class

if σ is odd-class. A close look at the proof of Lemma 3.2.1 shows that f is odd-class

implies that f =
n∑
i=1

∂ifi with fi odd-class. Indeed, if f has order different from −n

then fi = 1
m+n

ξif(ξ). If f has order −n with res(f) = 0 then f = ∆(g(ω)r2−n) where

(r, ω) ∈ R+
0 × S and S is the unit sphere. It follows that τi lies in CSm+1

odd (Rn). tu

3.2.2 Characterization of traces on C`odd(M,E)

In this paragraph, we show that any trace on the algebra C`odd(M,E) is proportional to
the canonical trace when the dimension of the underlying manifold M is odd. Although
this uniqueness result had already been proved in [MSS] by a similar method, we provide
a proof for completeness in order to adapt it later to the case of zero order operators. We
start with the following decomposition result.

Proposition 3.2.3. Assume that M is an odd-dimensional manifold. Let A be an odd-
class operator in C`odd(M,E). Then for any odd-class pseudodifferential projection J of
rank 1, there exist Ck, Dk in C`odd(M,E) and a smoothing operator RA such that

A =
N∑
k=1

[Ck, Dk] + Tr(RA)J. (3.2)

Proof: The proof is inspired by that of [MSS]. Let A be a classical ΨDO of order a
in C`(M,E). Let us consider a finite trivializing covering {(Uj, φj, uj), j ∈ I} of M for E
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and a finite subordinate partition of unity {ϕj, j ∈ I}. For each index j let ψj ∈ C∞c (Uj)
be a real function such that ψj = 1 near Supp(ϕj). We localize A writing

A =
∑
j∈I

ϕjAψj +R.

Each operator ϕjAψj may be considered as a ΨDO on Rn with symbol σj = σ in CS(Rn).
Since we are interested in odd-class operators, to simplify, we can assume that σ is an
odd-class symbol of order a. By Proposition 3.2.2, we know that there exist odd-class
symbols τl of order a+ 1 such that

σ ∼
n∑
l=1

∂ξlτl.

For any symbol τ we have,
Op(∂ξlτ) = −i[xl, Op(τ)]

up to a smoothing operator since

σ([xl, Op(τ)]) = xl · τ − τ · xl − i−1∂ξlτ = i∂ξlτ.

It follows that

Op

(
n∑
l=1

∂ξlτl

)
=

n∑
l=1

Op (∂ξlτl) = −i
n∑
l=1

[xl, Op(τl)].

Since σ ∼
n∑
l=1

∂ξlτl, there exists a smoothing operator R′ such that

Op(σ) = Op

(
n∑
l=1

∂ξlτl

)
+R′ = −i

n∑
l=1

[xl, Op(τl)] +R′.

Then for χ in C∞c (Rn) such that χϕj = ϕj, χψj = ψj, we have

ϕjOp(σ)ψj = −i
n∑
l=1

ϕj[xl, Op(τl)]ψj + ϕjR
′ψj = −i

n∑
l=1

[χxl, ϕjOp(τl)ψj] + ϕjR
′ψj.

Using formula (1.11) to write ϕjAψj = Op(σj) + Rj with Rj smoothing operators, we
have A =

∑
j

Op(σj) +
∑
j

Rj +R so that A can be written in the form

A =
N
′∑

k=1

[αk, Bk] +RA, (3.3)
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where αk is a smooth function in M , Bk lies in C`a+1
odd (M,E), and RA is a smoothing oper-

ator. Let us recall that by formula (3.1), the smoothing operator RA can be decomposed
in the form

RA = Tr(RA)J +
N
′′∑

j=1

[Sj, Tj]

where J is any odd-class pseudodifferential projection of rank 1 and Sj, Tj are smoothing
operators. Summing up, the expression for A becomes

A =
N∑
k=1

[Ck, Dk] + Tr(RA)J.

tu
Let us reformulate Proposition 3.2.3 in the following way:

Proposition 3.2.4. Assume that M is an odd-dimensional manifold. All traces on
C`odd(M,E) are proportional to one another and uniquely determined by their restric-
tion to smoothing operators.
In particular, the L2-trace Tr on smoothing operators uniquely extends to a trace T̃r on
C`odd(M,E).

Proof: Let Λ be a linear form on C`odd(M,E) which vanishes on brackets. By (3.2)
we have Λ(A) = Tr(RA) Λ(J) which shows that Λ is determined by its restriction to
smoothing operators since RA is smoothing. It moreover shows that all such traces are
proportional. tu

3.2.3 Explicit construction of the canonical trace

In [KV1], [KV2] M. Kontsevich and S. Vishik introduced the canonical trace TR for any
non-integer order classical ΨDO. We recall the construction of this functional and its
properties to show that any trace on C`odd(M,E) is proportional to TR. For that let us
first recall the definition of the cut-off integral: for a trace-class operator A the expression
Tr(A) =

∫
M

∫
T ∗xM

trx(σ(A)(x, ξ))d̄ξ dx makes sense since the symbol of A has order < −n.
But in general this expression does not make sense. We need to extract a finite part from
a divergent expression of this type using Hadamard finite parts (see e.g. [H, Schw]).
Let A be a classical ΨDO of order a with local symbol given by formula (1.3):

σ(A)(x, ξ) = σ(x, ξ) =
N−1∑
j=0

χ(ξ)σa−j(x, ξ) + σN(x, ξ)

for a fixed positive integer N , with positively homogeneous components σa−j(x, ξ) of
degree a − j, σN(x, ξ) a symbol of order a − N and χ a cut-off function which vanishes



Chap. 3: The canonical trace on odd-class pseudodifferential operators 83

for |ξ| ≤ 1
2

and such that χ(ξ) = 1 for |ξ| ≥ 1. Let B∗x(0, R) be the ball of radius R in
the cotangent space T ∗xM at point x in M and S∗xM the unit cosphere at point x. For N
sufficiently large, the integral

∫
B∗x(0,R)

σN(x, ξ)dξ is well defined. We write∫
B∗x(0,R)

χ(ξ)σa−j(x, ξ)dξ =

∫
B∗x(0,1)

χ(ξ)σa−j(x, ξ)dξ +

∫
B∗x(0,R)\B∗x(0,1)

χ(ξ)σa−j(x, ξ)dξ.

Using the fact that σa−j is positively homogeneous of degree a− j we have∫
B∗x(0,R)\B∗x(0,1)

χ(ξ)σa−j(x, ξ)dξ =

∫ R

1

∫
|ω|=1

ra−j+n−1σa−j(x, ω)dωdr.

If a is an integer, then there exits an integer j0 such that a − j0 + n = 0 and hence for
N − 1 > j0,

N−1∑
j=0

∫
B∗x(0,R)\B∗x(0,1)

χ(ξ)σa−j(x, ξ)dξ

=
N−1∑
j=0

∫ R

1

∫
|ω|=1

ra−j+n−1σa−j(x, ω)dωdr

∼
R→∞

N−1∑
j=0

a−j+n6=0

1

a+ n− j
Ra+n−j

∫
|ω|=1

σa−j(x, ω)dω + logR

∫
|ω|=1

σ−n(x, ω)dω + cx.

where cx is a constant term. It follows that the integral
∫
B∗x(0,R)

σ(x, ξ)d̄ξ admits the
asymptotic expansion∫

B∗x(0,R)

σ(x, ξ)d̄ξ

∼
R→∞

N−1∑
j=0

a−j+n6=0

1

a+ n− j
Ra+n−j

∫
S∗xM

σa−j(x, ξ)d̄ξ + logR

∫
S∗xM

σ−n(x, ξ)d̄ξ + cx(σ),

with the constant term given by

cx(σ) =

∫
T ∗xM

σN(x, ξ)d̄ξ +
N−1∑
j=0

∫
B∗x(0,1)

χ(ξ)σa−j(x, ξ)d̄ξ

−
N−1∑
j=0

a−j+n6=0

1

a− j + n

∫
S∗xM

σa−j(x, ξ)d̄ξ. (3.4)
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We define the finite part integral to be the constant term in the asymptotic expansion:

−
∫
T ∗xM

σ(x, ξ)d̄ξ := LIM
R→∞

∫
B∗x(0,R)

σ(x, ξ)d̄ξ = cx(σ).

Remark 3.2.5. Because of the logarithm term in R, we cannot expect the finite part to
be invariant under a change of coordinates. However, as we shall see in further details in
the more general case of log-polyhomogeneous operators (see Lemma 3.5.2), if the order
of A is not an integer, there is no longer a logarithmic term and −

∫
T ∗xM

σ(A)(x, ξ)d̄ξ is

independent of the local representation of σ(A)(x, ξ).

We are now able to introduce the canonical trace:

Proposition 3.2.6 ([KV1]). Let A be a classical operator in C`(M,E) with non-integer
order. Then

TR(A) :=

∫
M

TRx(A)dx =

∫
M

−
∫
T ∗xM

trx (σ(A)(x, ξ)) d̄ξdx

is well defined and satisfies the following elementary properties:

1. For any operator A in C`(M,E) with order a such that a < −n, TR(A) = Tr(A).

2. For A,B in
⋃

a∈R\Z
C`a(M,E) and for any real α in R, such that ord(αA+B) is not

an integer, TR(αA+B) = αTR(A) + TR(B).

3. For A,B in C`(M,E) such that ord(A)+ord(B) is not an integer, TR([A,B]) = 0.

Example 3.2.7. Any differential operator A has a well-defined canonical trace which
vanishes:

TR(A) =

∫
M

−
∫
Rn

trx (σ(A)(x, ξ)) d̄ξdx = 0.

Indeed, in local coordinates the symbol of A reads σ(A)(x, ξ) =
∑
|α|≤a

pα(x)ξα with homo-

geneous components σa−j(A)(x, ξ) = pα(x)ξα and σN(A)(x, ξ) = 0 for N ≥ a. It follows
that

−
∫
Rn
σ(A)(x, ξ)d̄ξ =

∑
|α|≤a

pα(x)LIM
R→∞

∫
B∗x(0,R)

ξαd̄ξ

=
∑
|α|≤a

pα(x)LIM
R→∞

(
R|α|+N

|α|+N

)∫
S∗xM

ξαd̄ξ

= 0.
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A fundamental property of the canonical trace is given in the following:

Theorem 3.2.8 ([KV1]). Let a(z) be a holomorphic function on C such that a′(z) 6= 0
for z in a−1{j − n : j ∈ N}. Let A(z) be a holomorphic family of classical operators
of order a(z). Then the function z → TR(A(z)) is holomorphic in the domain {z ∈ C :
Re(a(z)) < −n} and can be extended to a meromorphic function TR(A(z)) with simple
poles at zj = a−1(j − n), j ∈ N and the complex residues read:

Resz=zjTR(A(z)) = − 1

a′(zj)
res(A(zj)).

Here res denotes the noncommutative residue.

The canonical trace can therefore be extended by continuity to C`odd(M,E) when M
is an odd-dimensional manifold. Notice that M. Kontsevich and S. Vishik [KV1] have
already extended the canonical trace to odd-class operators in odd dimension manifolds
using an even order positive definite odd-class operator Q and a holomorphic family AQ−z

where A is an odd-class operator.

Proposition 3.2.9. Assume that the dimension of M is odd. Let A be in C`odd(M,E)
and let Q be an admissible operator in C`odd(M,E) with positive order and spectral cut α.
The function TR(AQ−zα ) is holomorphic at z = 0 and lim

z→0
TR(AQ−zα ) := TR(A) satisfies

the following properties

1. TR(A) is independent of the choice of Q.

2. For A,B ∈ C`odd(M,E), TR([A,B]) = 0.

3. TR extends the L2-trace on smoothing operators.

Proof: Since the dimension n of M is odd, if A lies in the odd-class C`odd(M,E),
res(A) =

∫
M

∫
S∗M

trx(σ(A)−n(x, ξ))d̄ξ dx = 0. It follows from the previous theorem that

TR(AQ−zα ) is holomorphic at z = 0. Hence TR is well defined on operators in Clodd(M)
and is independent of Q. TR extends the L2-trace on smoothing operators since it extends
TR which coincides with the L2-trace on smoothing operators. By applying the previous
theorem to the holomorphic family TR([AQ−zα , BQ−zα ], we obtain TR([A,B]) = 0. tu

By Proposition 3.2.4 the extensions T̃r and TR coincide so that we have:

TR = TR = T̃r.

Proposition 3.2.4 can therefore be reformulated as follows:

Theorem 3.2.10. Assume that the dimension of the underlying manifold M is odd. Any
trace on C`odd(M,E) is a constant multiple of the canonical trace TR.
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Remark 3.2.11. This was first proved by L. Maniccia, E. Schrohe and J. Seiler in [MSS].
In [Pa2], S. Paycha proved the uniqueness by proving the equivalence between Stokes’ prop-
erty for linear forms on symbols and the vanishing of linear forms on operator brackets.
R. Ponge in [Po2] classified traces using the fact that any non-integer order operator or
odd-class operators in odd dimensions or even-class operators in even dimensions is a sum
of commutators up to a smoothing operator.

3.3 Classification of traces on C`0
odd(M,E)

Since C`0
odd(M,E) is a subalgebra of C`odd(M,E), we can expect other traces to arise in

this subalgebra. For that, let us reformulate Proposition 3.2.2 and formula (3.3) to the
context of C`0

odd(M,E). We obtain the following consequences:

Proposition 3.3.1 ([NO]). If σ lies in CS0
odd(Rn) and has the asymptotic expansion

σ ∼
∞∑
j=0

χσ−j, then there is a finite set {τi, i = 1, · · · , n} of symbols in CS0
odd(Rn) such

that

σ − σ0 ∼
n∑
i=1

∂ξiτi.

Proof: Apply Proposition 3.2.2 to the symbol σ − σ0 of CS−1
odd(Rn). tu

Let us consider a finite trivializing covering {(Uj, φj, uj), j ∈ I} of M for E and a fi-
nite subordinate partition of unity {ψj, j ∈ I}. Let A be an operator in C`0

odd(M,E).
Let σj(A) be its symbol read in the local chart (Uj, φj). The leading symbol σ0(A)
of A is globally defined as a section of End(p∗E) where p is the canonical projection
p : T ∗xM − {0} → M. Let σj0(A) denotes the leading symbol read in the local chart
(Uj, φj). With the notations of Section 1.2.2, the local operator Op(σj0(A))’s patched up
to an operator A′ =

∑
j∈I

ψjφu∗Op(σ
j
0(A))φ∗uψj which has order 0. By abuse of notation, we

write Op(σ0(A)) for A′.

Proposition 3.3.2 ([NO]). If A lies in C`0
odd(M,E), then there exist operators Bk in

C`0
odd(M,E), smooth functions αk, k in {1, · · · , n} on M and a smoothing operator RA

such that

A−Op(σ0(A)) =
n∑
k=1

[αk, Bk] +RA.

Proof: It follows from formula (3.3) applied to A−Op(σ0(A)) of C`−1
odd(M,E). tu
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As for classical odd-class operators, let us use formula (3.1) to decompose the smoothing
operator RA in the form

RA = TR(RA)J +
N
′′∑

j=1

[Sj, Tj]

where J is any pseudodifferential projection of rank 1 and Sj, Tj are smoothing operators.
Summing up, we obtain

A−Op(σ0(A)) =
N∑
k=1

[Ck, Dk] + TR(RA)J. (3.5)

where J,Ck, Dk lie in C`0
odd(M,E).

We now introduce another type of trace on the algebra C`0(M,E), defined by S. Paycha
and S. Rosenberg in [PR], which had actually already been considered by Wodzicki in an
unpublished manuscript.

Lemma 3.3.3 (Lemma 3.1 in [PR]). For any distribution λ in D′(S∗M), the map Trλ0 :
C`0(M,E)→ R given by Trλ0(A) = λ(trx(σ0(A)) is a trace.

Proof: This follows from the multiplicativity of the leading symbol:

trx(σ0(AB)) = trx(σ0(A)σ0(B)) = trx(σ0(B)σ0(A)) = trx(σ0(BA)).

tu

Using formula (3.5), we observe that:

Theorem 3.3.4 ([NO]). If the dimension of the underlying manifold M is odd, any trace
on C`0

odd(M,E) is a linear combination of the canonical trace and a leading symbol trace.

Proof: This is a straightforward application of formula (3.5). If A lies in C`0
odd(M,E)

then A−Op(σ0(A)) =
N∑
k=1

[Ck, Dk] + TR(RA)J. If λ is a trace on C`0
odd(M,E), applying λ

to both sides of the previous expression for A we have

λ(A) = λ(Op(σ0(A))) + TR(RA)λ(J).

By construction, Op(σ0(A)) is an operator with symbol σ0, the leading symbol of A.
Hence, there exists a distribution τ on C∞(S∗M) such that

λ(A) = τ(σ0(A)) + TR(RA)λ(J).

tu
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3.4 The local residue density extended to C`?,?odd(M,E)

The noncommutative residue does not extend to a trace on C`?,?(M,E), where it defines
a Z-graded trace, but the local residue density does extend locally and this extension
turns out to be a useful tool for our purposes.

Let A be a log-polyhomogeneous operator in C`a,k(M,E). Recall that in local coordi-
nates its symbol σ(A) has the asymptotic expansion (1.5) given by:

σ(A)(x, ξ) ∼
∞∑
j=0

χ(ξ)σa−j(A)(x, ξ) =
∞∑
j=0

k∑
l=0

χ(ξ)σa−j,l(A)(x, ξ) logl |ξ|.

In [L], M. Lesch extended the residue trace to a log-polyhomogeneous operator A in
C`a,k(M,E) with k > 0 by setting:

resk(A) := (k+1)!

∫
M

resx,k(A) dx = (k+1)!

∫
M

(∫
S∗xM

trx (σ−n,k(A)(x, ξ)) d̄ξ

)
dx (3.6)

where

resx,k(A) :=

∫
S∗xM

trx (σ−n,k(A)(x, ξ)) d̄ξ.

Indeed, for a log-polyhomogeneous operator A in C`a,k(M,E) with k > 0, the form
σ−n,k(A)(x, ξ)dx defines a global density on M. This is not the case for the lower densities
σ−n,0(A)(x, ξ)dx, · · · , σ−n,k−1(A)(x, ξ)dx. Nevertheless we set by extension [PS]

resx,l(A) :=

∫
S∗xM

trx (σ−n,l(A)(x, ξ)) d̄ξ, for l ≤ k. (3.7)

In [Ok2], K. Okikiolu extended the noncommutative residue to logarithms of admissible
operators. Let A be an admissible operator of order a with spectral cut θ. The symbol of
logθ A has an asymptotic expansion in local coordinates of the form (2.10)

σ(logθ A)(x, ξ) = a log |ξ|I + σAθ (x, ξ) ∼ a log |ξ|+
∞∑
j=0

χ(ξ)(σAθ )−j(x, ξ).

K. Okikiolu proved that in that case, the local density denoted by

resx(logθ A)dx :=

∫
S∗xM

trx
(
(σAθ )−n(x, ξ)

)
d̄ξdx
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defines a global density so that res(logθ A) is called the noncommutative residue of logθ A.
In [PS], Definition 1.3, the local noncommutative residue is extended to log-polyhomogeneous
operators by setting resx,0(B) =

∫
S∗xM

trx (σ−n(B)(x, ξ)) d̄ξ. Indeed,

resx,0(B) =

∫
S∗xM

trx (σ−n(B)(x, ξ)) d̄ξ

=
k∑
l=0

∫
S∗xM

trx (σ−n,l(B)(x, ξ)) logl |ξ| d̄ξ

=

∫
S∗xM

trx (σ−n,0(B)(x, ξ)) d̄ξ

since the logarithmic terms in |ξ| are cancelled in the integration over the unit cosphere.
It follows that this coincides with the case k = 0 of formula (3.7). We will denote
resx,0(A) := resx(A). For operators in the odd-class in odd dimensions, the local residue
vanishes and hence local residues patch up to a globally defined residue.

Proposition 3.4.1. Assume that M is an odd-dimensional manifold. Let A be a log-
polyhomogeneous operator in C`a,kodd(M,E). Then resx,l(A) vanishes for l = 0, · · · , k, hence
resl(A) :=

∫
M

resx,l(A)(x, ξ) dx = 0.
In particular A has well-defined noncommutative residue and

res(A) =

∫
M

(∫
S∗xM

trx ((σ−n(A)(x, ξ))) d̄ξ

)
dx = res0(A) = 0.

Proof: The operator A in C`a,kodd(M,E) is an odd-class operator, so

σ−n,l(A)(x,−ξ) = (−1)nσ−n,l(A)(x, ξ).

The dimension of M is odd and we have to integrate over the unit cosphere S∗xM
the odd function σ−n,l(A)(x, ξ). It follows that resx,l(A) = (−1)nresx,l(A) = 0. Hence
resl(A) :=

∫
M

resx,l(A)(x, ξ) dx is well defined and vanishes for any l = 0, · · · , k. In par-
ticular, res(A) =

∫
M

resx,0(A)(x, ξ) dx = 0 so that A has well-defined noncommutative
residue which vanishes. tu

3.5 The canonical trace extended to C`?,?odd(M,E)

In this section, we extend the canonical trace previously defined on classical operators
with non-integer order and odd-class classical operators to odd-class log-polyhomogeneous
ones. Although such an extension had already been built in [PS], we adopt here a slightly
different point of view and therefore explicitly construct this extension for completeness.
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We use the finite part of a holomorphic family of log-polyhomogeneous operators to prove
that the canonical trace extends by continuity to C`?,?odd(M,E).

In section 3.2.3, we recalled the construction of the canonical trace introduced by M.
Kontsevich and S. Vishik [KV1] on classical pseudodifferential operators with non-integer
order and proved that it uniquely extends to a trace on classical odd-class operators
in odd dimensions. On the other hand, M. Lesch [L] further extended the canonical
trace to log-polyhomogeneous operators with non-integer order in the following way: let

σ ∼
∞∑
j=0

k∑
l=0

σa−j,l logl |ξ| be a log-polyhomogeneous symbol on an open subset U of Rn with

order a and log degree k. The integral
∫
B∗x(0,R)

σ(x, ξ) d̄ξ has an asymptotic expansion for

R→∞ (see [L] formula (5.5), [PS] Lemma 1.6)∫
B∗x(0,R)

σ(x, ξ) d̄ξ

∼
R→∞

cx(σ) +
N−1∑
j=0

a−j+n6=0

k∑
l=0

Pl(σa−j,l)(logR)Ra+n−j +
k∑
l=0

logl+1R

l + 1

∫
S∗xU

σ−n,l(x, ξ)d̄ξ

where Pl(σa−j,l)(X) is a polynomial of degree l with coefficients depending on σa−j,l. The
finite part integral is defined by the constant term in the asymptotic expansion:

−
∫
Rn
σ(x, ξ)d̄ξ := LIM

R→∞

∫
B∗x(0,R)

σ(x, ξ)d̄ξ = cx(σ).

Remark 3.5.1. This method of extraction of a finite part from a divergent expression is
already used in the classical case in order to define the canonical trace. In fact we obtain

cx(σ) =

∫
T ∗xU

σN(x, ξ)d̄ξ +
N−1∑
j=0

∫
B∗x(0,1)

χ(ξ)σa−j(x, ξ)d̄ξ

+
N−1∑
j=0

a−j+n6=0

k∑
l=0

(−1)l+1l!

(a− j + n)l+1

∫
S∗xU

σa−j,l(x, ξ)d̄ξ.

As in the classical case, the finite part integral is not invariant under a change of
coordinates of Rn. Indeed, the transformation rule is given in the following lemma:

Lemma 3.5.2 ([L] Proposition 5.2). Let P be a regular matrix in GL(n,R) and let σ be
a log-polyhomogeneous symbol on an open subset U of Rn with order a and log degree k.
We have the transformation rule

−
∫
Rn
σ(x, Pξ)dξ = |detP |−1

(
−
∫
Rn
σ(x, ξ)dξ +

k∑
l=0

(−1)l+1

l + 1

∫
S∗xU

σ−n,l(x, ξ) logl+1 |P−1ξ|dξ

)
.
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We refer to [L] for the proof.
Let us now apply these results to odd-class operators C`?,?odd(M,E).

Proposition 3.5.3. If the dimension of M is odd, the canonical trace extends to the
algebra C`?,?odd(M,E) of odd-class log-polyhomogeneous operators.

Proof: Let us assume that A in C`a,k(M,E) is odd-class. Its symbol in local coordi-

nates reads σ(A) ∼
∞∑
j=0

k∑
l=0

σ(A)a−j,l logl |ξ| with σa−j,l(A)(x,−ξ) = (−1)a−jσa−j,l(A)(x, ξ).

It follows from Lemma 3.5.2 that TRx(A)dx =
(
−
∫
T ∗xM

trx (σ(A)(x, ξ)) d̄ξ
)
dx defines a

global density on M since we have to integrate over the unit cosphere S∗xM the odd func-
tion σ−n,l(A)(x, ξ), and for a change of coordinates, the odd function σ−n,l(A)(x, ξ) logl+1 |P−1ξ|.
Hence TR(A) =

∫
M

TRx(A)dx is well defined. tu

Independently of the dimension of the underlying manifold, as in the case of classical
pseudodifferential operators, it has been shown by M. Lesch that the canonical trace ex-
tends to non-integer order log-polyhomogeneous operators. We recall in the following
theorem the analogous of Proposition 3.2.6 and Theorem 3.2.8 for log-polyhomogeneous
operators.

Theorem 3.5.4 (Section 5 in [L]). For a in C \Z, for any positive integer k, there exists
a linear functional TR : C`a,k(M,E)→ C with the following properties:

1. For A in C`a,k(M,E), TR(A) =
∫
M

TRx(A)dx =
∫
M
−
∫
Rn trx (σ(A)(x, ξ)) d̄ξdx

2. TR[A,B] = 0 if A lies in C`a,k(M,E), B lies in C`p,l(M,E) and a+ b /∈ Z.

3. Let a(z) be a holomorphic function on C such that a′(z) 6= 0 for z in a−1{j − n :
j ∈ N}. Let A(z) be a holomorphic family of log-polyhomogeneous operators in
C`a(z),k(M,E). Then the function z 7→ TR(A(z)) is meromorphic with poles at
zj = a−1(j − n), j in N of order smaller than k + 1 and:

Resk+1TR(A(z))|z=zj =
(−1)k+1

(k + 1)a′(zj)
resk(A(zj))

where Resk+1 is the coefficient of (z−zj)−k−1 in the Laurent expansion of the meromorphic
function TR(A(z)) and resk is the noncommutative residue defined by formula (3.6).

Let us recall a result which extends results of [PS] to the log-polyhomogeneous case.
This is unpublished work by the authors of [PS] communicated to me by S. Paycha.
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Theorem 3.5.5. Let A(z) be a holomorphic family of log-polyhomogeneous operators in
C`a(z),k(M,E) parametrized by z in Ω, a domain of C with non constant order a(z) =
−qz + a. Then for any z0 in Ω we have

fpz=z0TR(A(z)) =

∫
M

dx

(
TRx(A(z0)) +

k∑
l=0

(−1)l+1

(a′(z0))l+1
resx,l(A

(l+1)(z0))

)
, (3.8)

where fpz=z0 stands for the constant term in the Laurent expansion.

Applying this theorem to A(z) = AQ−zα where A lies in C`?,?(M,E), Q is admissible
with spectral cut α, z0 = 0 and A(0) = A, we obtain the following formula for a log-
polyhomogeneous operators [PS]:

fpz=0TR(AQ−zα ) =

∫
M

dx

(
TRx(A) +

k∑
l=0

1

(−q)l+1
resx,l

(
A(logαQ)l+1

))
. (3.9)

Remark 3.5.6.

1. If A is a classical ΨDO, formula (3.9) gives back the defect formula of [PS]

fpz=0TR(AQ−zα ) =

∫
M

dx

(
TRx(A)− 1

q
resx(A logαQ)

)
. (3.10)

2. If A is a logarithmic operator i.e. if the symbol of A is of the form

σ(A)(x, ξ) ∼ γ log |ξ|+
∞∑
j=0

χ(ξ)σa−j(A)(x, ξ),

by formula (3.9) we get

fpz=0TR(AQ−zα ) =

∫
M

dx

(
TRx(A)− 1

q
resx,0(A logαQ) +

1

q2
resx,1

(
A(logαQ)2

))
.

(3.11)

The following theorem compares regularized traces with the canonical trace, thus
generalizing a result of [Pa2] established in the classical case.

Theorem 3.5.7. Assume that the dimension of M is odd. Let A(z) be a holomorphic
family of log-polyhomogeneous operators in C`a(z),k(M,E) with non constant order a(z) =
−qz + a.
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1. If A(0) = A lies in the odd-class then,

fpz=0TR(A(z)) = TR(A) +
k∑
l=0

(−1)l+1

(a′(0))l+1

∫
M

dx
(
resx,l(A

(l+1)(0))
)
.

2. If A(0) = A and if for all positive integers j, A(j)(0) lies in the odd-class then,

fpz=0TR(A(z)) = lim
z→0

TR(A(z)) = TR(A).

Proof:

1. Let us assume that A(z) lies in C`a(z),k(M,E). Since A(0) = A lies in the odd-
class, by Proposition 3.5.3 TR(A) is well defined TR(A) =

∫
M

TRx(A)dx. Applying
formula (3.8) to the holomorphic family A(z) at z = 0, we have

fpz=0TR(A(z)) = TR(A) +
k∑
l=0

(−1)l+1

(a′(0))l+1

∫
M

dx
(
resx,l(A

(l+1)(0))
)
.

2. If A(0) = A and for all positive integers j, A(j)(0) lies in the odd-class using Propo-
sition 3.4.1, we get resx,l

(
A(j)(0)

)
= 0 so that fpz=0TR(A(z)) = lim

z→0
TR(A(z)) =

TR(A).

tu

Example 3.5.8. Let A be a classical odd-class operator and let Q be an admissible odd-
class operator with positive order q and spectral cuts α and α − qπ. Consider the holo-

morphic family A(z) = A
Qzα+Qzα−qπ

2
. For l ≥ 0, A(l)(0) lie in the odd-class. We have

A(0) = A and for l > 1, A(l)(0) = A(logsym
α Q)l. In odd dimension, the family A(z) fulfills

the assumptions of the theorem so that:

fpz=0TR

(
A
Qz
α +Qz

α−qπ

2

)
= lim

z→0
TR

(
A
Qz
α +Qz

α−qπ

2

)
= TR(A).

When Q has even order, the same result holds with A(z) = AQz
α.

We are ready to check the expected cyclicity property of TR on C`?,?odd(M,E) thus
extending the result of M. Kontsevich and S. Vishik [KV1].

Corollary 3.5.9. Assume that the dimension of M is odd. For any odd-class operators
A,B in C`?,?odd(M,E),

TR[A,B] = 0.
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Proof: This follows from applying Theorem 3.5.7 to the family A(z) = [AQz
α, BQ

z
α].

Here Q is an odd-class admissible operator with even order q and spectral cut α. The
operator A(z) is a holomorphic approximation of the bracket [A, B]. Using Leibniz’s rule,
we have for j ≥ 0:

A(j)(z) =

j∑
l=0

Cl
j

[
A (logαQ)lQz

α, B (logαQ)j−lQz
α

]
and at z = 0,

A(j)(0) =

j∑
l=0

Cl
j

[
A (logαQ)l, B (logαQ)j−l

]
.

The operator A(j)(0) lies in the odd class since this class is stable under products and
logαQ lies in the odd-class. Thus, by Theorem 3.5.7, fpz=0TR(A(z)) = TR([A,B]). Now
using the fact that the canonical trace vanishes on non-integer order brackets and taking
finite parts as z → 0 we get TR[A,B] = 0. tu
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Chapter 4

The regularized trace of the
logarithm of a product

In this chapter we compare regularized traces of the logarithm of a product of classical
pseudodifferential operators with the sum of the regularized traces of the logarithms of
the operators involved in the product. We therefore investigate regularized traces of the
difference:

L(A,B) := log(AB)− logA− logB.

Since L(A,B) has vanishing residue [Sc], it can be expressed as a finite sum of operator
brackets (Proposition 4.4.2), a property from which we then infer that a regularized trace
of this difference L(A,B) is local as a finite sum of noncommutative residues (Theorem
4.4.3). Theorem 4.5.2 provides an explicit local formula for a regularized trace of L(A,B)
in terms of the noncommutative residue. We first recall known properties of regularized
traces.

4.1 Weighted traces of classical pseudodifferential op-

erators

Since traces on C`(M,E) are proportional to the noncommutative residue which van-
ishes on smoothing operators, the L2-trace on smoothing operators does not extend to
the whole algebra C`(M,E). Instead we use linear extensions called weighted traces, of
the ordinary L2-trace on smoothing operators to the whole algebra C`(M,E). Weighted
traces studied in [MN] are defined via meromorphic extensions of generalized zeta func-
tions.

Given an admissible operator Q in C`(M,E) with positive order q and spectral cut
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α, and given an operator A in C`(M,E) with real order a, we can approximate A by
a holomorphic family A(z) = AQ−zα where Q−zα is the complex power defined in (2.2).
Recall (Theorem 3.2.8) that the map z 7→ Tr (AQ−zα ) is holomorphic on the domain
{z ∈ C,Re(z) > n+a

q
} and has a meromorphic extension TR (AQ−zα ) to C with simple

poles at zj = n+a−j
q

, j in N and the complex residues read:

Resz=zjTR(AQ−zα ) =
1

q
res
(
AQ−zjα

)
.

Using this meromorphic extension, one can defined the Q-weighted trace of any classical
operator A by [MN]:

TrQα (A) := fpz=0TR
(
AQ−zα

)
= lim

z→0

(
TR

(
AQ−zα

)
− 1

qz
res(A)

)
.

The admissible operator Q with positive order q and spectral cut α is called a weight.

Remark 4.1.1.

1. If the classical operator A is trace-class, then AQ−zα is also trace-class in a neigh-
borhood of z = 0 so that TrQα (A) = Tr(A) is the usual trace of A.

2. If the dimension of M is odd and A lies in C`odd(M,E) then res(A) = 0 and by
Theorem 3.5.7, TrQα (A) = TR(A) is independent of the choice of the weight Q as
long as logαQ lies in the odd-class, a property which holds in particular if Q lies in
the odd-class and has even order.

Weighted traces are not cyclic on C`(M,E) in spite of their names but they are
interesting because they do not vanish on trace-class operators for which they coincide
with the ordinary trace. Let us recall basic properties of weighted traces.

Proposition 4.1.2 ([CDMP], [MN]). Let A and B be two operators in C`(M,E). For any
weight Q with positive order q and spectral cut α, the operators [A, logαQ] and [B, logαQ]
lie in C`(M,E) and

TrQα ([A,B]) = −1

q
res (A [B, logαQ]) =

1

q
res (B [A, logαQ]) . (4.1)

In particular, if Q = A or Q = B then TrQα ([A,B]) = 0.

Proof: By Lemma 2.1.12, the operators [A, logαQ] and [B, logαQ] are classical. Let
a be the order of A and b the order of B. For Re(z) > a+b+n

q
, the map z 7→ Tr ([A,B]Q−zα )

is holomorphic and

Tr
(
[A,B]Q−zα

)
= Tr

(
A[B,Q−zα ] + AQ−zα B −BAQ−zα

)
= Tr

(
A[B,Q−zα ] + [AQ

− z
2

α , Q
− z

2
α B]

)
= Tr

(
A[B,Q−zα ]

)
.
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Moreover, since the noncommutative residue vanishes on brackets of classical operators,
we have 0 = res([A,B]) = qResz=0TR([A,B]Q−zα ). Hence, the map z 7→ TR ([A,B]Q−zα )
is holomorphic at z = 0 and so is the map z 7→ TR (A[B,Q−zα ]) . It follows that

TrQα ([A,B]) = fpz=0TR
(
[A,B]Q−zα

)
= Resz=0TR(z−1A[B,Q−zα ]) =

1

q
res

(
d

dz
(A[B,Q−zα ])|z=0

)
= −1

q
res (A[B, logαQ]) .

The second equality immediately follows from the trace property of the noncommutative
residue. tu

4.2 Weighted traces involving logarithms

Recall from Lemma 2.1.12 that, whereas a logarithm is not classical, the bracket [A, logB]
is classical for A classical and B admissible, and recall from Lemma 2.1.10 that if A is
also admissible then logA

a
− logB

b
is classical where a is the order of A, b the order of B.

Corollary 4.2.1. Let A and B be admissible operators in C`(M,E) with spectral cuts θ
and φ respectively. For any weight Q with positive order q and spectral cut α,

TrQα ([logθ A,B]) = −1

q
res
(

(logθ A−
a

b
logφB)[B, logαQ]

)
(4.2)

where a > 0 is the order of A and b > 0 is the order of B.
In particular,

TrAθ ([logθ A,B]) = TrBφ ([logθ A,B]) = TrAθ
(
[logθ A, logφB]

)
= 0. (4.3)

Proof: Since [logθ A,B] = [logθ A − a
b

logφB,B] and logθ A − a
b

logφB is a classical
operator (formula (2.12)), by the above proposition we have

TrQα ([logθ A,B]) = −1

q
res
(

(logθ A−
a

b
logφB)[B, logαQ]

)
.

If Q = A, it follows that

TrAθ ([logθ A,B]) = −1

a
res
(

(logθ A−
a

b
logφB)[B, logθ A]

)
= −1

a
res
(

(logθ A−
a

b
logφB)[B, logθ A−

a

b
logφB]

)
= −1

a
res
([

(logθ A−
a

b
logφB)B, logθ A−

a

b
logφB

])
= 0
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since
[
(logθ A− a

b
logφB)B, logθ A− a

b
logφB

]
is a bracket of classical ΨDOs and the

residue is tracial.
If Q = B, since B and logφB commute i. e. [B, logφB] = 0, then

TrBφ ([logθ A,B]) = −1

b
res
(

(logθ A−
a

b
logφB)[B, logφB]

)
= 0.

Now TrAθ
(
[logθ A, logφB]

)
= TrAθ

(
[logθ A, logφB − b

a
logθ A]

)
= 0, with B replaced by

logφB − b
a

logθ A.
Let us provide an alternative direct proof of this last statement. Since the map z 7→
TR([B, logθ A]A−z) is meromorphic by Theorem 3.2.8 and since TR is cyclic on non integer
order operators, we have the following identity of meromorphic functions:

TR
(
[B, logθ A]A−zθ

)
= TR

(
B[logθ A,A

−z
θ ]
)

= 0

using the fact that logθ A commutes withA−zθ . It follows that the constant term TrAθ ([logθ A,B])
in the Laurent expansion vanishes. Similarly we prove that TrBφ ([logθ A,B]) = 0. tu

Remark 4.2.2. Using the definition of the weighted trace,

TrAθ ([logθ A,B]) = lim
z→0

(
TR

(
[logθ A,B]A−zθ

)
− 1

az
res([logθ A,B])

)
.

Since TR
(
[B, logθ A]A−zθ

)
= TrAθ ([logθ A,B]) = 0, we immediately deduce that

res ([logθ A,B]) = 0

from which we infer (using the formula [logθ A, logφB] = [logθ A, logφB − b
a

logθ A]) that

res
(
[logθ A, logφB]

)
= 0. (4.4)

Replacing in formula (3.10) the l.h.s. fpz=0TR (AQ−zα ) by TrQα (A) yields the following
defect formula for weighted traces:

TrQα (A) =

∫
M

dx

(
TRx(A)− 1

q
resx(A logαQ)

)
. (4.5)

When A is a differential operator, then TRx(A) vanishes for any x in M (Example 3.2.7)
and resx (A logαQ) dx defines a global density in which case

TrQα (A) = −1

q
res(A logαQ)
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is a local expression. If res(A logαQ) vanishes, e.g. if A has non integer order or in odd
dimensions if both A and Q lie in the odd-class and Q has even order, then TRx(A) dx
defines a global density so that TR(A) is well-defined and

TrQα (A) = TR(A).

Generally speaking, weighted traces are not expected to be local. However the difference
of two weighted traces is local. Indeed, given two weights Q1 and Q2 with spectral cuts
α1, α2 and positive orders q1, q2, substracting the above expression (4.5) obtained with
Q2 from the one obtained with Q1 we get back the well-known formula [MN], [CDMP]:

TrQ1
α1

(A)− TrQ2
α2

(A) = res

(
A

(
logα2

Q2

q2

−
logα1

Q1

q1

))
, (4.6)

which is local keeping in mind that the difference
logα2

Q2

q2
− logα1

Q1

q1
lies in C`(M,E).

Weighted traces can be extended to logarithms: let A be an admissible operator in
C`(M,E) with positive order a and spectral cut θ. Given an admissible operator Q in
C`(M,E) with positive order q and spectral cut α, the map z 7→ TR(logθ AQ

−z
α ) is

meromorphic with simple pole at z = 0 and the complex residue reads ([Du1], Lemma
II.4.2):

Resz=0TR(logθ AQ
−z
α ) =

1

q
res

(
logθ A−

a

q
logαQ

)
.

The Q-weighted trace TrQα (logθ A) is defined as before, picking out the constant term of
the meromorphic map z 7→ TR(logθ AQ

−z
α ) i.e.

TrQα (logθ A) := fpz=0TR
(
logθ AQ

−z
α

)
.

With these notations we have ζ ′Q,α(0) = −TrQα (logαQ) = − limz→0 TR(logαQQ
−z
α ).

Let us recall that weighted traces of logarithms depend on the choice of the weight in
the following way ([Ok2] Lemma 0.1, [Du1] Proposition II.4.6): Let A, Q1, Q2 be admis-
sible operators with orders a, q1, q2 respectively and spectral cuts θ, α1, α2 respectively.
Then

TrQ1
α1

(logθ A)− TrQ2
α2

(logθ A)

= −1

2
res

[(
logθ A−

a

q1

logα1
Q1

)(
logα1

Q1

q1

−
logα2

Q2

q2

)]
−1

2
res

[(
logθ A−

a

q2

logα2
Q2

)(
logα1

Q1

q1

−
logα2

Q2

q2

)]
. (4.7)
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4.3 Weighted traces of differentiable families of op-

erators

For further use, we prove in the following property by which the canonical and weighted
traces as well as the noncommutative residue commute with differentiation on differen-
tiable families of operators with constant order. Differentiable families of symbols and
operators are defined in the same way as holomorphic families in Definitions 1.1.3 and
1.2.10 replacing holomorphic by differentiable.

Proposition 4.3.1 ([OP]). Let At be a differentiable family of C`(M,E) of constant
order a.

1. The noncommutative residue commutes with differentiation

d

dt
res(At) = res(Ȧt). (4.8)

where Ȧt = d
dt
At.

2. If the order a is non integer, the canonical trace commutes with differentiation

d

dt
TR(At) = TR(Ȧt). (4.9)

3. For any weight Q with positive order q and spectral cut α,

d

dt
TrQα (At) = TrQα (Ȧt). (4.10)

Proof: By formula (1.3) we write

σ(At)(x, ξ) =
N−1∑
j=0

χ(ξ)σa−j(At)(x, ξ) + σN(At)(x, ξ).

1. By assumption, the map t 7→ trx (σ−n(At)(x, ·)) is differentiable leading to a dif-
ferentiable map t 7→

∫
S∗xM

trx (σ−n(At)(x, ·)) after integration over the compact set

S∗xM with derivative: t 7→
∫
S∗xM

trx (σ̇−n(At)(x, ·)) , where σ̇(At) = σ(Ȧt) stands

for the derivative of σ(At) at t. Thus, the map t 7→ res(At) is differentiable with
derivative

d

dt
res(At) = res(Ȧt).
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2. Since TR(At) =
∫
M
−
∫
T ∗xM

trx (σ(At)(x, ξ)) d̄ξdx, to prove formula (4.9) we need to

check the differentiability of the map t 7→ −
∫
T ∗xM

trx(σ(At)(x, ·)) and to prove that

d

dt
−
∫
T ∗xM

trx(σ(At)(x, ·)) = −
∫
T ∗xM

trx(σ̇(At)(x, ·)),

where as before σ̇(At) = σ(Ȧt) stands for the derivative of σ(At) at t.
The cut-off integral involves the whole symbol and we set σt := σ(At) in order
to simplify notations. Since the family σt has constant order, N can be chosen
independently of t in the asymptotic expansion. The corresponding cut-off integral
is given explicitly by (3.4):

−
∫
T ∗xM

trx(σt(x, ξ)) d̄ξ

=

∫
T ∗xM

trx ((σt)N (x, ξ)) d̄ξ +
N−1∑
j=0

∫
|ξ|≤1

χ(ξ) trx

(
(σt)a−j (x, ξ)

)
d̄ξ

−
N−1∑

j=0,a−j+n 6=0

1

a− j + n

∫
S∗xM

trx

(
(σt)a−j (x, ω)

)
d̄ω.

The map t 7→
∫
T ∗xM

trx ((σt)N (x, ξ)) d̄ξ is differentiable at any point t0 since by as-

sumption the maps t 7→ trx ((σt)N) are differentiable with modulus bounded from
above |trx ((σ̇t)N)| ≤ C|ξ|a−N by an L1 function provided N is chosen large enough,
where the constant C can be chosen independently of t in a compact neighbor-
hood of t0. Its derivative is given by t 7→

∫
T ∗xM

trx ((σ̇t)N (x, ξ)) d̄ξ. The remaining

integrals
∫
|ξ|≤1

χ(ξ) trx

(
(σt)a−j (x, ξ)

)
d̄ξ and

∫
S∗xM

trx

(
(σt)a−j (x, ω)

)
d̄ω are also

differentiable as integrals over compact sets of integrands involving differentiable

maps t 7→ trx

(
(σt)a−j

)
with derivatives given by

∫
S∗xM

χ(ξ) trx

(
(σ̇t)a−j (x, ξ)

)
d̄ξ

and
∫
|ξ|=1

trx

(
(σ̇t)a−j (x, ω)

)
d̄ω. Thus, the map t 7→ TR(At) is differentiable with

derivative
d

dt
TR(At) = TR(Ȧt).

3. By formula (4.5) we have

TrQα (At) =

∫
M

dx

(
−
∫
T ∗xM

trx(σ(At)(x, ·))d̄ξ −
1

q

∫
S∗xM

resx (σ−n(At logαQ)(x, ·)) d̄ξ
)

which reduces the proof of the differentiability of t 7→ TrQα (At) to that of the two
maps t 7→ −

∫
T ∗xM

trxσ(At)(x, ·) and t 7→
∫
S∗xM

resx (σ−n(At logαQ)) (x, ·).
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Differentiability of the first map was shown in the second item of the proof. Let us
therefore investigate the second map. By (1.2) we have

σ−n(At logαQ) =
∑

|α|+a−j−k=−n

(−i)|α|

α!
∂αξ σa−j(At) ∂

α
xσ−k(logαQ).

By assumption, the maps t 7→ σa−j(At) are differentiable any non negative integer j
so that the map t 7→

∫
S∗xM

resx (σ−n(At logαQ)(x, ·)) is differentiable with derivative

given by the map t 7→
∫
S∗xM

resx (σ̇−n(At logαQ)(x, ·)) . Integrating over the compact

manifold M then yields that the map t 7→ TrQα (At) is differentiable with derivative

d

dt
TrQα (At) = TrQα (Ȧt).

tu

4.4 Locality of the weighted trace of L(A,B)

Let A and B be two admissible operators in C`(M,E) with positive orders a and b and
spectral cuts θ and φ respectively. Assume that their product AB is also admissible with
spectral cut ψ. We consider the following expression

L(A,B) := logψ(AB)− logθ A− logφB.

In [Sc], S. Scott showed the multiplicativity of the associated residue determinant

detres(A) := exp(res(logA)).

He actually showed more, namely that given two admissible operators A and B such that
their product AB is also admissible,

res(L(A,B)) = res(logψ(AB)− logθ A− logφB) = 0. (4.11)

Remark 4.4.1. Strictly speaking, we should specify the spectral cuts θ of A, φ of B and
ψ of AB in the expression L(A,B) setting instead

Lθ,φ,ψ(A,B) := logψ(AB)− logθ A− logφB.

Then by formula (2.9)

Lθ,φ,ψ(A,B)− Lθ′,φ′,ψ′(A,B) = −2iπ (Πψ,ψ′(AB)− Πθ,θ′(A)− Πφ,φ′(B))
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so that a change of spectral cut introduces pseudodifferential projections which have van-
ishing residue by results of M. Wodzicki [W2]. Thus, a change of spectral cut does not
affect the residues.
More generally, we can choose fixed spectral cuts θ and φ by the following argument of K.
Okikiolu [Ok1]:

Lθ,φ,ψ(A,B) = Lπ,π,ψ−(θ+φ)(ei(π−θ)A, ei(π−φ)B).

Indeed, if A,B,AB have spectral cut θ, φ, ψ respectively, then A′ = ei(π−θ)A and B′ =
ei(π−φ)B have spectral cut π and A′B′ has spectral cut ψ + 2π− θ− φ. So we can assume
that θ = φ = π without loss of generality. To simplify notations, we drop the explicit
mention of the spectral cuts.

Any trace on C`(M,E) i.e. any linear form on C`(M,E) which vanishes on commuta-
tors [C`(M,E), C`(M,E)] is proportional to the noncommutative residue [W1] (see also
[K]); in other words:

∀A ∈ C`(M,E) (res(A) = 0 =⇒ A ∈ [C`(M,E), C`(M,E)]) .

It follows from (4.11) that

L(A,B) ∈ [C`(M,E), C`(M,E)]

so that L(A,B) is a finite sum of commutators. The following proposition provides a
refinement of this statement.

Proposition 4.4.2 ([OP]). Let A and B be two admissible operators, which w.l.o.g. are
assumed to have π as spectral cut, such that their product AB is also admissible with
spectral cut π. Then L(A,B) is a finite sum of Lie brackets of operators in C`0(M,E):

L(A,B) ∈ [C`0(M,E), C`0(M,E)].

Proof: Up to a pseudodifferential projection, let us check that L(A,B) lies in C`0(M,E).
Since AB has order a + b, by Lemma 2.1.8 we have

σ(L(A,B))(x, ξ)

= σ(logAB)(x, ξ)− σ(logA)(x, ξ)− σ(logB)(x, ξ)

= (a+ b) log |ξ| I + σAB0 (x, ξ)− a log |ξ|I − σA0 (x, ξ)− b log |ξ| I − σB0 (x, ξ)

= σAB0 (x, ξ)− σA0 (x, ξ)− σB0 (x, ξ)

where σC0 denotes the symbol of order zero associated to the symbol of logC. It follows
that the operator L(A,B) is indeed classical of order 0 with leading symbol given for any
(x, ξ) ∈ T ∗M − {0} by

σL(L(A,B))(x, ξ) = log σL(AB)(x,
ξ

|ξ|
)− log σL(A)(x,

ξ

|ξ|
)− log σL(B)(x,

ξ

|ξ|
)

=: L(σL(A), σL(B))(x,
ξ

|ξ|
).
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Here as before, σL(C) stands for the leading symbol of the operator C.
Let us apply the usual Campbell-Hausdorff formula to the matrices σL(A)(x, ξ|ξ|) and

σL(B)(x, ξ|ξ|) and implement the fibrewise trace trx. This yields:

trx

(
L(σL(A), σL(B))(x,

ξ

|ξ|
)

)
= trx

(
log σL(AB)(x,

ξ

|ξ|
)− log σL(A)(x,

ξ

|ξ|
)− log σLB(x,

ξ

|ξ|
)

)
= 0.

It follows that any leading symbol trace Trλ0(C) := λ (trx(σ0(C))) (Lemma 3.3.3) on the
algebra C`0(M,E) where λ is a current in C∞(S∗M)′, vanishes on L(A,B):

Trλ0(L(A,B)) = λ (trx (σ0(L(A,B)))) = 0.

Thus both the noncommutative residue and leading symbol traces vanish on L(A,B).
But by the results of [LP], any trace on C`0(M,E), i.e. any linear form on C`0(M,E)
which vanishes on [C`0(M,E), C`0(M,E)], is a linear combination of the noncommutative
residue and a leading symbol trace. Consequently all traces on C`0(M,E) vanish on the
operator L(A,B) which therefore lies in [C`0(M,E), C`0(M,E)]. tu

Since the operator L(A,B) is classical we can compute its weighted trace. The following
result is reminiscent of an observation made in [Ok1] (see also [Sc]), namely that only
the first n homogeneous components of the symbols come into play for the derivation of
the Campbell-Hausdorff formula for operators with scalar leading symbols; the weighted
trace of L(A,B) presents a similar feature in our more general situation.

In the following, to simplify notations, we drop the mention of the spectral cut α of
the weight Q.

Theorem 4.4.3 ([OP]). Given a weight Q and two admissible operators A and B in
C`(M,E), the weighted trace TrQ(L(A,B)) is a local expression as a finite sum of non-
commutative residues.
If both operators A and B have non negative order, then for any operator S in C`(M,E)
with order whose real part is < −n,

d

dt
TrQ(L(A(1 + tS), B)) =

d

dt
TrQ(L(A,B(1 + tS))) = 0, (4.12)

so that TrQ(L(A,B)) only depends on the first n homogeneous components of the symbols
of A and B.
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Proof: By Proposition 4.4.2, L(A,B) is a finite sum of commutators of zero or-
der classical pseudodifferential operators [Pj, Qj]. By formula (4.1), each weighted trace
TrQ([Pj, Qj] is proportional to res (Qj [Pj, logαQ]). Since Pj and Qj are of order zero, so
is Qj[Pj, logαQ] of order zero so that TrQ(L(A,B)) is indeed a finite sum of noncommu-
tative residues of zero order operators.
Let us check that requirement (4.12) is equivalent to the fact that TrQ(L(A,B)) only
depends on the first n homogeneous components of the symbols of A and B.
Given an operator S in C`(M,E) of order < −n and an operator A in C`(M,E) of order
a, we first observe that in any local trivialization the first n homogeneous components of
the symbols of A and A(1 + S) coincide since AS has order a− n. Conversely, if the first
n homogeneous components of the symbols of two classical operators A and B of orders
a and b coincide, then a = b and if B is invertible, the first n homogeneous components
of the symbol of B−1 defined inductively using formula (1.2) by:

σ−b(B
−1) = (σb(B))−1 ,

σ−b−j(B
−1) = − (σb(B))−1

∑
k+l+|α|=j,l<j

(−i)|α|

α!
∂αξ σb−k(B) ∂αxσ−b−l(B

−1),

coincide with that of the symbol of A−1 since the terms corresponding to j ≤ n only involve
homogeneous components σb−k(B) = σa−k(A) and σ−b−l(B

−1) with k and l no larger than
n. Consequently, by (1.2) it follows that S = A−1B has order < −n. Thus, showing that
the expression TrQ(L(A,B)) only depends on the first n homogeneous components of A
amounts to showing that TrQ(L(A + S,B)) = TrQ(L(A,B)) for any classical operator S
of order < −n.
This part of the proof is inspired by steps of Okikiolu’s proof of the Campbell-Hausdorff
formula [Ok1]. Let us further observe that the proof of (4.12) reduces to the proof at
t0 = 0. Indeed for any real number t0, for any S, T in C`(M,E) of order < −n and for
any admissible operators A,B,C,D, we have

d

dt |t=0

TrQ(L(C(1 + tT ), D)) = 0 =⇒ d

dt |t=t0
TrQ(L(A(1 + tS), B)) = 0. (4.13)

To check this implication, we set u = t− t0 so that

1 + tS = 1 + t0S + uS = (1 + uS(1 + t0S)−1)(1 + t0S).

Setting T = S(1 + t0S)−1 which also has order < −n, we have

A(1 + tS) = A(1 + uS(1 + t0S)−1)(1 + t0S) = A(1 + uT )(1 + t0S)

and
A(1 + tS)B = A(1 + uT )(1 + t0S)B.
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It follows that

L(A(1 + tS), B)− L(A(1 + uT ), (1 + t0S)B)

= log(A(1 + tS)B)− log(A(1 + tS))− log(B)− log(A(1 + uT )(1 + t0S)B)

+ log(A(1 + uT )) + log((1 + t0S)B)

= − log(A(1 + uT )(1 + t0S))− log(B) + log(A(1 + uT )) + log((1 + t0S)B)

= L(1 + t0S,B)− L(A(1 + uT ), 1 + t0S),

and hence

L(A(1 + tS), B) = L(A(1 + uT ), (1 + t0S)B) + L(1 + t0S,B)− L(A(1 + uT ), 1 + t0S).

Differentiating w.r. to t at t = t0 on the l.h.s boils down to differentiating the r.h.s. at
u = 0 and the implication (4.13) then easily follows.
We are therefore left to prove that d

dt |t=0
TrQ(L(A(1 + tS), B) = 0. Applying (4.10) to the

operator At := L(A(1 + tS), B) we have

d

dt |t=0

TrQ(L(A(1 + tS), B)) = TrQ
(
d

dt |t=0

(L(A(1 + tS), B))

)
.

We therefore need to investigate the behaviour of L(A(1+tS),B)−L(A,B)
t

as t→ 0. Since

L(A(1 + tS), B)− L(A,B) = log(A(1 + tS)B)− log(AB)− (log(A(1 + tS))− logA) ,

let us study the difference log(A(1 + tS)C) − log(AC) with C equal to either B or the
identity operator. Applying Proposition 2.1.14 to At := A(1 + tS)C so that A0 = AC
and Ȧ0 = ASC, and then implementing the weighted trace TrQ yields

d

dt |t=0

TrQ (log(A(1 + tS)C))

= TrQ(ASC (AC)−1) +
K∑
k=1

(−1)k

k + 1
TrQ

(
adkAC(ASC) (AC)−(k+1)

)
+ TrQ(RK(AC,ASC))

for arbitrary large K, with remainder term

RK(At, Ȧt) = − i

2π

∫
Γθ

logθ λ
[
(λ− AC)−1, adKAC(ASC)

]
(λ− AC)−K−1 dλ.

But for any positive integer k, by (4.1) we have

TrQ
(
adkAC(ASC) (AC)−(k+1)

)
= TrQ

(
adAC(adk−1

AC (ASC)) (AC)−(k+1)
)

= TrQ
(
adAC

(
adk−1

AC (ASC) (AC)−(k+1)
))

=
1

q
res
(
adk−1

AC (ASC) (AC)−(k+1) [AC, logQ]
)

= 0,
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since the operator adk−1
AC (ASC) (AC)−(k+1) [AC, logQ] has order (k − 1)(a+ c) + a+ c+

s − (k + 1)(a + c) = s − a − c (here s is the order of S, a the order of A, c the order of
C) and hence, is smaller than −n. Thus

d

dt |t=0

TrQ (log(A(1 + tS)C)) = TrQ
(
ASC (AC)−1

)
+ TrQ (RK(AC,ASC)) ,

independently of the choice of the integer K. The remainder term

TrQ(RK(AC,ASC)) = −TrQ
(
i

2π

∫
Γθ

logθ λ
[
(λ− AC)−1, adKAC(ASC)

]
(λ− AC)−K−1 dλ

)
depends on S via the iterated brackets adKAC(ASC) and hence via K. Since it is indepen-
dent of K, it is also independent of S. Setting S = 0 which has order < −n, we infer that
TrQ(RK(AC,ASC)) vanishes for all positive integers K. Thus

d

dt |t=0

TrQ (log(A(1 + tS)C)) = TrQ
(
ASC (AC)−1

)
= TrQ

(
ASA−1

)
independently of C. Setting back C = B and C = I yields

d

dt |t=0

TrQ(L(A(1 + tS), B))

= TrQ
(
d

dt |t=0

log(A(1 + tS)B

)
− TrQ

(
d

dt |t=0

log(A(1 + tS))

)
= 0.

tu

4.5 A local formula for the weighted trace of L(A,B)

We derive an explicit local expression for the weighted traces TrQ(L(A,B)) of L(A,B)
(Theorem 4.5.2). Our approach is inspired by the proof of K. Okikiolu for the Campbell-
Hausdorff formula for operators with scalar leading symbols. In the case of operators
with scalar leading symbols, as it was noticed and used by K. Okikiolu, as from a certain
order in the Campbell-Hausdorff expansion, one can implement ordinary traces since the
iterated brackets have decreasing order. In our more general situation, such a phenomenon
does not accour so that we use weighted traces instead.

Proposition 4.5.1 ([OP]). Let A and B be two admissible operators in C`(M,E) with
positive orders a and b. We have the following identities for weighted traces: for any real
µ > 0,

d

dt |t=0
TrB(L(At, Bµ)) = 0,

d

dt |t=0
TrA(L(At, Bµ)) = 0
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as well as for the noncommutative residue:

d

dt |t=0
res(L(At, Bµ)) = 0,

provided there is some positive ε such that AtBµ is admissible for any t ∈]− ε, ε[.

Proof: Let us prove the result for the B-weighted trace; a similar proof yields the
result for the A-weighted trace. By Proposition 4.3.1, weighted traces and the residue
commute with differentiation on constant order operators so that

d

dt |t=0

TrB
(
L(At, Bµ)

)
= TrB

(
d

dt |t=0

L(At, Bµ)

)
resp.

d

dt |t=0
res
(
L(At, Bµ)

)
= res

(
d

dt |t=0
(L(At, Bµ)

)
.

But
d

dt |t=0
L(At, Bµ) =

d

dt |t=0
log(AtBµ)− d

dt |t=0

(
logAt

)
.

We therefore apply Proposition 2.1.14 to At := AtBµ so that A0 = Bµ, including the
case µ = 0 for which At = At and A0 = I. Since Ȧ0 = logABµ and Ȧ0A

−1
0 = logA,

implementing the weighted trace TrB yields

d

dt |t=0

TrB
(
log(AtBµ)

)
= TrB(logA) +

K∑
k=1

(−1)k

k + 1
TrB

(
adkBµ(logABµ)B−µ(k+1)

)
+ TrB(RK(Bµ, logABµ))

for arbitrary large K, with remainder term

RK(Bµ, logABµ) = − i

2π

∫
Γθ

logθ λ
[
(λ−Bµ)−1, adKBµ(logABµ)

]
(λ−Bµ)−K−1 dλ.

But for any positive integer k, by formula (4.1) we have

TrB
(
adkBµ(ABµ)B−µ(k+1)

)
= TrB

(
adBµ(adk−1

Bµ (ABµ))B−µ(k+1)
)

= TrB
(
adBµ

(
adk−1

Bµ (ABµ)B−µ(k+1)
))

=
1

b
res
(
adk−1

Bµ (ABµ)B−µ(k+1) [Bµ, logB]
)

= 0,
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since B commutes with logB. A similar computation shows that

TrB(RK(Bµ, logABµ)) = 0.

Thus
d

dt |t=0

TrB
(
log(AtBµ)

)
= TrB (logA) .

independently of the choice of the integer K. It follows that d
dt |t=0

TrB (log(AtBµ)) =

TrB (logA) independently of µ so that

d

dt |t=0
TrB

(
L(At, Bµ)

)
= 0.

Similarly, replacing the weighted trace TrB by the noncommutative residue res and using
the cyclicity of the noncommutative residue, yields

d

dt |t=0
res
(
L(At, Bµ)

)
= 0.

tu

The following statement provides a local formula for the weighted trace of L(A,B). It also
shows that the residue of L(A,B) vanishes and therefore yields back the multiplicativity
of the residue determinant derived in [Sc].

Theorem 4.5.2 ([OP]). Let A and B be two admissible operators in C`(M,E) with
positive orders a and b. Assume that there is some positive ε such that AtB is admissible
for any t ∈]− ε, ε[. Then we have

res(L(A,B)) = 0.

Moreover, there is an operator

W (τ)(A,B) :=
d

dt |t=0
L(At, AτB) (4.14)

in C`0(M,E) depending continuously on τ such that

TrQ(L(A,B)) =

∫ 1

0

res

(
W (τ)(A,B)

(
log(AτB)

aτ + b
− logQ

q

))
dτ (4.15)

where Q is any weight of positive order q.
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Proof: By Proposition 4.5.1, we know that

d

dt |t=0
res(L(At, B)) =

d

dt |t=0
TrA(L(At, B)) =

d

dt |t=0
TrB(L(At, B) = 0.

We want to compute

d

dt |t=τ
res(L(At, B)) =

d

dt |t=0
res(L(At+τ , B))

and
d

dt |t=τ
TrQ(L(At, B)) =

d

dt |t=0
TrQ(L(At+τ , B)).

For this we observe that

L(AB,D)− L(A,BD) = − log(AB)− log(D) + logA+ log(BD) = L(B,D)− L(A,B)

Replacing A by At, B by Aτ and D by B, we get

L(At+τ , B)− L(At, AτB) = L(Aτ , B)− L(At, Aτ ) = L(Aτ , B).

Implementing the noncommutative residue, by Proposition 4.5.1 we have:

d

dt |t=τ
res(L(At, B)) =

d

dt |t=0
res(L(At+τ , B))

=
d

dt |t=0
res(L(At, AτB))

= 0.

Hence since res(L(I, B)) = 0.

res(L(A,B)) =

∫ 1

0

d

dt |t=τ
res(L(At, B)) dτ + res(L(I, B)) = 0. (4.16)

If instead we implement the weighted trace TrQ, we have:

d

dt |t=τ
TrQ(L(At, B)) =

d

dt |t=0
TrQ(L(At+τ , B)) =

d

dt |t=0
TrQ(L(At, AτB)).

Since A and B have positive order so has Aτ B so that applying Proposition 4.5.1 with
weighted traces TrA

τ B yields:

d

dt |t=τ
TrQ(L(At, B) =

d

dt |t=0
TrQ(L(At, AτB))

=
d

dt |t=0
TrA

τB(L(At, AτB))

+
d

dt |t=0

(
TrQ(L(At, AτB))− TrA

τB(L(At, AτB))
)

=
d

dt |t=0

(
TrQ(L(At, AτB))− TrA

τB(L(At, AτB))
)
.
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Applying (4.6) to Q1 = Q and Q2 = AτB, we infer that

d

dt |t=0

(
TrQ(L(At, AτB))− TrA

τB(L(At, AτB))
)

=
d

dt |t=0
res

(
L(At, AτB)

(
log(AτB)

aτ + b
− logQ

q

))
= res

(
W (τ)(A,B)

(
log(AτB)

aτ + b
− logQ

q

))
,

where q is the order of Q and where we have set W (τ)(A,B) := d
dt |t=0

L(At, AτB). Since

TrQ(L(A0, B)) = 0, we finally find that

TrQ(L(A,B)) = TrQ(L(A1, B))− TrQ(L(A0, B))

=

∫ 1

0

res

(
W (τ)(A,B)

(
log(AτB)

aτ + b
− logQ

q

))
dτ. (4.17)

tu
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Chapter 5

The multiplicative anomaly for
regularized determinants

In this chapter we investigate the multiplicative anomaly for regularized determinants of
elliptic operators. The local formula for the multiplicative anomaly of weighted deter-
minants (Proposition 5.2.1) corresponds to an exponentiated weighted trace of L(A,B)
studied in the previous chapter. It compares with the multiplicative anomaly for the
ζ-determinant by a local term which, combined with the explicit formula for regularized
traces of L(A,B), provides an explicit local formula for the multiplicative anomaly of the
zeta determinant (Theorem 5.3.2).

5.1 The ζ-determinant and the weighted determinant

The determinant on the linear group Gl( IRn) reads

detA = exp (tr(logA))

where tr is the matrix trace. It is independent of the choice of spectral cut used to define
the logarithm and is multiplicative as a result of the Campbell-Hausdorff formula and the
cyclicity of the trace, namely:

det(AB) = exp (tr(logAB)) = exp (tr(logA+ logB)) = detA detB.

This determinant extends to admissible operators by means of the ζ-determinant: an
admissible operator A in C`(M,E) with spectral cut θ and positive order has well-defined
ζ-determinant:

detζ,θ(A) := exp
(
−ζ ′A,θ(0)

)
= exp

(
TrAθ (logθ A)

)
114
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since the ζ-function ζA,θ(z) := TR(A−zθ ) is holomorphic at z = 0. In the second equality,
the weighted trace has been extended to logarithms as before, picking out the constant
term of the meromorphic map z 7→ TR(logθ AQ

−z).

The ζ-determinant were first introduced by D. B. Ray and M. I. Singer [RaSi] in re-
lation with the R-torsion. K. Okikiolu investigated the ζ-determinant on elliptic classical
ΨDOs [Ok2]. She used the Campbell-Hausdorff formula for classical ΨDOs [Ok1] she
established to prove that the ζ-determinant is not multiplicative and hence presents a
multiplicative anomaly studied independently by M. Kontsevich and S. Vishik in [KV1].
Before investigating the multiplicative anomaly of the ζ-determinant and proving its lo-
cality in Section 5.3, let us point out that the ζ-determinant generally depends on the
choice of spectral cut. However, it is invariant under mild changes of spectral cut in the
following sense.

Lemma 5.1.1. Let 0 ≤ θ < φ < 2π be two spectral cuts of the admissible operator A. If
there is a cone Λθ,φ (formula (2.6)) which does not intersect the spectrum of the leading
symbol of A then

detζ,θ(A) = detζ,φ(A).

Proof: The classical proof of this result starts from the definition

detζ,θ(A) = exp
(
−ζ ′A,θ(0)

)
of the determinant in terms of the zeta function and uses Lidskii’s theorem ([ReSi]) which
says that the trace of a trace-class operator is equal to the sum of its eigenvalues. Since
for Re(z) large enough, the operator A−zθ is trace-class then

Tr(A−zθ ) = TR(A−zθ ) =
∑

λ∈Sp(A)

λ−zθ

where Sp(A) is the spectrum of A and each eigenvalue λ is counted with multiplicities.
Let us denote by λ1, · · · , λk the finite number of eigenvalues of A contained in the cone
Λθ,φ. It follows that

TR(A−zθ )− TR(A−zφ ) = Tr(A−zθ )− Tr(A−zφ ) =
k∑
i=1

(
λ−zθ − λ

−z
φ

)
from which the result follows differentiating with respect to z and applying the exponen-
tial map.
We give an alternative proof which starts from the definition of the determinant detζ,θ(A) =
exp

(
TrAθ (logθ A)

)
in terms of a weighted trace of the logarithm of the operator using a
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formula proved in [PS]: for an admissible operator A in C`(M,E) with spectral cut θ and
positive order a, the logarithm of detζ,θ(A) is given by

log detζ,θ(A) =

∫
M

dx

[
TRx(logθ A)− 1

2a
resx(log2

θ A)

]
(5.1)

where resx is the noncommutative residue density extended to log-polyhomogeneous op-
erators defined previously. It follows from formula (5.1) that

detζ,φ(A)

detζ,θ(A)
= exp

(∫
M

dx

[
TRx(logφA− logθ A)− 1

2a
resx(log2

φA− log2
θ A)

])
.

By formula (2.9), logφA − logθ A = 2iπΠθ,φ(A) is a finite rank operator and hence a
smoothing operator under the assumptions of the proposition so that

detζ,φ(A)

detζ,θ(A)
= exp

(∫
M

dx

[
TRx(2iπΠθ,φ(A))− 1

2a
resx

(
2iπΠθ,φ(A)(logφA+ logθ A)

)])
= exp

(
2iπTr(Πθ,φ(A))− 2iπ

2a
res
(
Πθ,φ(A)(logφA+ logθ A)

))
= exp (2iπ rk(Πθ,φ(A)))

= 1.

Here rk stands for the rank and we have used the fact that the noncommutative residue
vanishes on smoothing operators on which the canonical trace coincides with the usual
trace on smoothing operators. tu

Remark 5.1.2. If there are infinitely many eigenvalues of A in the cone Λφ,θ, detζ,φ(A)
and detζ,θ(A) might differ.

Lemma 5.1.3. Let A be an admissible operator in C`(M,E) with spectral cut θ and
positive order a. Then, for any integer k

detζ,θ+2kπ(A)

detζ,θ(A)
= exp

(
−2ikπ

a
res(logθ A)

)
. (5.2)

Proof: We first derive this formula using the description of the zeta determinant in
terms of the zeta function. It is easy to see that for any integer k, A−zθ+2kπ = e2ikπA−zθ and
then

ζA,θ+2kπ(z) = TR(A−zθ+2kπ) = e2ikπζA,θ(z).

Differentiating this expression w.r. to z at z=0 gives the result.
An alternative proof uses the formula of the zeta determinant in terms of a weighted trace
of the logarithm of the operator. Since by definition detζ,θ(A) = exp

(
TrAθ (logθ A)

)
and
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detζ,θ+2kπ(A) = exp
(
TrAθ+2kπ(logθ+2kπ A)

)
, let us compute TrAθ+2kπ(logθ+2kπ A)−TrAθ (logθ A).

Applying formula (4.7) and formula (2.9) we get

TrAθ+2kπ(logθ+2kπ A)− TrAθ (logθ A)

= TrAθ+2kπ

(
logθ+2kπ A− logθ A

)
+
(
TrAθ+2kπ − TrAθ

)
(logθ A)

= TrAθ+2kπ(2ikπI)− 1

2a
res
[
(logθ A− logθ+2kπ A)(logθ+2kπ A− logθ A)

]
− 1

2a
res
[
(logθ A− logθ A)(logθ+2kπ A− logθ A)

]
= TrAθ+2kπ(2ikπI) +

1

2a
res
[
(logθ A− logθ+2kπ A)2

]
= TrAθ+2kπ(2ikπI) +

1

2a
res
[
(2ikπI)2

]
= −2ikπ

a
res(logθ A).

Here again we use the fact that the noncommutative residue vanishes on differential
operators and the fact that TR(I) = 0 by Example 3.2.7 combined with formula (4.5)
which reduces to

TrAθ (I) = −1

a
res(logθ A) = ζA,θ(0). (5.3)

tu

Our approach to the multiplicative anomaly of the ζ-determinant will be based on the
locality of the regularized trace of the operator L(A,B) studied in the previous chapter.
In order to relate these two expressions, let us introduce another type of regularized deter-
minant, namely the weighted determinant: given an admissible operator A in C`(M,E)
with spectral cut θ and positive order, for a weight Q with spectral cut α, the Q-weighted
determinant of A [Du1] (see also [FrG]) reads:

DetQθ (A) := exp(TrQα (logθ A)).

Since the Q-weighted trace restricts to the ordinary trace on trace-class operators, this
determinant, as the ζ-determinant, extends the ordinary determinant on operators in the
determinant class. The Q-weighted determinant, as well as being dependent on the choice
of spectral cut θ, also depends on the choice of spectral cut α. Nevertheless, as for the
ζ-determinant, it is invariant under mild changes of the spectral cut of A.

Lemma 5.1.4. Let 0 ≤ θ < φ < 2π be two spectral cuts of the admissible operator A.
If there is a cone Λθ,φ (see formula (2.6)) which does not intersect the spectrum of the
leading symbol of A then

DetQθ (A) = DetQφ (A).
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Proof: Under the assumptions of the proposition, the cone Λφ,θ contains only a finite
number of points in the spectrum of A so that logφA − logθ A = 2iπΠθ,φ(A) is a finite
rank operator and hence a smoothing operator. Hence,

DetQφ (A)

DetQθ (A)
= exp

(
TrQ

(
logφA− logθ A

))
= exp

(
TrQ (2iπΠθ,φ(A))

)
= exp (2iπTr (Πθ,φ(A))) = exp(2iπ rk(Πθ,φ(A)))

= 1,

where as before rk stands for the rank. tu

The Q-weighted determinant and the ζ-determinant differ by local expression.

Proposition 5.1.5 ([Du1]). Let A be an admissible operator in C`(M,E) with spectral
cut θ and positive order a. For a weight Q in C`(M,E) with spectral cut α and positive
order q,

detζ,θ(A)

DetQθ (A)
= exp

(
− 1

2a
res

[(
logθ A−

a

q
logαQ

)2
])

. (5.4)

Proof: Indeed by formula (4.7) we have

TrAθ (logθ A)− TrQα (logθ A) = − 1

2a
res

[(
logθ A−

a

q
logαQ

)2
]
.

Recall from Corollary 2.1.10 that the operator logθ A − a
q

logαQ is classical. It follows
that

detζ,θ(A)

DetQθ (A)
=

exp
(
TrAθ (logθ A)

)
exp(TrQα (logθ A))

= exp

(
− 1

2a
res

[(
logθ A−

a

q
logαQ

)2
])

.

tu

This relation will allow us in the next sections to relate the multiplicative anomalies
for the two determinants. Concretely since the r.h.s. of formula (5.4) is a local expres-
sion, the locality of one of them implies the locality of the other one. Let us start with
the multiplicative anomaly of the Q-weighted determinant which is easier to compute.

5.2 Multiplicative anomaly for the weighted deter-

minant

As ζ-determinant, the Q-weighted determinant is not multiplicative. The multiplicative
anomaly for Q-weighted determinants of two admissible operators A and B with spectral
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cuts θ, φ such that AB has spectral cut ψ is defined by:

MQ
θ,φ,ψ(A,B) :=

DetQψ (AB)

DetQθ (A) DetQφ (B)
,

which we write MQ(A,B) for simplicity when there is no ambiguity for the choice of
ψ, θ, φ. It follows that

logMQ(A,B) = log DetQ(AB)− log DetQ(A)− log DetQ(B)

= TrQ(logAB)− TrQ(logA)− TrQ(logB)

= TrQ(L(A,B))

so that the multiplicative anomaly for Q-weighted determinants studied in [Du1] has
logarithm given by the Q-weighted trace of L(A,B), as a result of which it is local.

Proposition 5.2.1. Let A and B be two admissible operators with positive orders a, b
and with spectral cuts θ and φ in [0, 2π[ such that there is a cone delimited by the rays Lθ
and Lφ which does not intersect the spectra of the leading symbols of A, B and AB. Then
the product AB is admissible with a spectral cut ψ inside that cone and for any weight Q
with spectral cut α, dropping the explicit mention of the spectral cuts we have:

logMQ(A,B) =

∫ 1

0

res

(
W (τ)(A,B)

(
log(AτB)

aτ + b
− logQ

q

))
dτ. (5.5)

Q-weighted determinants are multiplicative on commuting operators.

Proof: Since the leading symbol of the product AB has spectrum which does not
intersect the cone delimited by Lθ and Lφ, the operator AB only has a finite number
of eigenvalues inside that cone. We can therefore choose a ray ψ which avoids both the
spectrum of the leading symbol of AB and the eigenvalues of AB. By Lemma 5.1.4, the
Q-weighted determinants detQθ (A), detQφ (B) and detQψ (AB) do not depend on the choices
of spectral cuts satisfying the requirements of the proposition. Since

logMQ(A,B) = TrQ(L(A,B)),

the logarithm of the multiplicative anomaly for Q-weighted determinants is a local quan-
tity as a finite sum of noncommutative residues as a consequence of Theorem 4.5.2.
To prove the second part of the statement we observe that

[A,B] = 0 =⇒ L(A,B) = 0. (5.6)
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Even though this property is equivalent to formula 2.13, let us prove directly that L(A,B)
vanishes. Indeed, let Γ be a contour along a spectral ray around the spectrum of At0B
for some fixed t0, then

d

dt |t=t0
log(AtB) =

i

2π

∫
Γ

log λ
d

dt |t=t0
(AtB − λ)−1 dλ

=
i

2π

∫
Γ

log λ (At0B − λ)−1 logAAt0B (At0B − λ)−1 dλ.

Since [A,B] = 0, by integration by parts we obtain

d

dt |t=t0
log(AtB) = logAAt0B

i

2π

∫
Γ

log λ (At0B − λ)−2 dλ

= − logAAt0B
i

2π

∫
Γ

λ−1(At0B − λ)−1 dλ

= − logA At0B (At0B)−1

= − logA.

Similarly, we have d
dt |t=t0

log(At) = − logA so that finally

d

dt |t=t0
L(At, B) =

d

dt |t=t0
log(AtB)− d

dt |t=t0
log(At)

vanishes. It follows that

L(A,B) =

∫ 1

0

d

dt |t=τ
L(At, B) dτ = 0.

Since L(A,B) vanishes when A and B commute, Q-weighted determinants are multiplica-
tive on commuting operators. tu

5.3 Multiplicative anomaly for the ζ-determinant

As already mentioned the ζ-determinant is not multiplicative. Let A and B be two
admissible operators with positive order and spectral cuts θ and φ and such that AB is
also admissible with spectral cut ψ. The multiplicative anomaly

Mθ,φ,ψ
ζ (A,B) :=

detζ,ψ(AB)

detζ,θ(A) detζ,φ(B)
,

was proved to be local, independently by M. Wodzicki [W1], for positive definite com-
muting elliptic differential operators, by L. Friedlander [Fr] for positive definite elliptic
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pseudodifferential operators, by K. Okikiolu [Ok2] for pseudodifferential operators with
scalar leading symbol and by M. Kontsevich and S. Vishik [KV1] for pseudodifferential
operators with leading symbols ”sufficiently close to positive definite self-adjoint ones”.
For simplicity, we drop the explicit mention of θ, φ, ψ and write Mζ(A,B).

Since the ζ-determinant is related to the Q-weight determinant by formula (5.4) the
multiplicative anomaly of the ζ-determinant is related to the multiplicative anomaly of
the Q-weighted determinant.

Proposition 5.3.1. Let A and B be two admissible operators with positive orders a, b
and with spectral cuts θ and φ in [0, 2π[ such that there is a cone delimited by the rays Lθ
and Lφ which does not intersect the spectra of the leading symbols of A, B and AB. Then
the product AB is admissible with a spectral cut ψ inside that cone and for any weight Q
with spectral cut α, dropping the explicit mention of the spectral cuts we have:

logMζ(A,B) = logMQ(A,B) + res

(
L(A,B) logQ

q
− log2AB

2(a+ b)
+

log2A

2a
+

log2B

2b

)
(5.7)

so that the multiplicative anomaly of the ζ-determinant is local.

Proof: By formula (5.4), we have

logMζ(A,B) = logMQ(A,B)− 1

2(a+ b)
res

[(
logAB − a+ b

q
logQ

)2
]

+
1

2a
res

[(
logA− a

q
logQ

)2
]

+
1

2b
res

[(
logB − b

q
logQ

)2
]
.

Let us recall, as before, from Corollary 2.1.10 that each operator logC − c
q

logQ where c

is the positive order of C is classical. Using formula (4.4) to simplify we obtain

logMζ(A,B) = logMQ(A,B) + res

(
L(A,B) logQ

q
− log2AB

2(a+ b)
+

log2A

2a
+

log2B

2b

)
.

Since the logarithm of the multiplicative anomaly of the Q-weighted determinant is
given by a local residue, we recover the fact that the multiplicative anomaly for the
ζ-determinants has logarithm given by a finite sum of noncommutative residues as a re-
sult of which it is local. tu

Let us now compute the explicit local formula of the multiplicative anomaly of the ζ-
determinant.
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Theorem 5.3.2. Let A and B be two admissible operators in C`(M,E) with positive
orders a, b and with spectral cuts θ and φ in [0, 2π[ such that there is a cone delimited by
the rays Lθ and Lφ which does not intersect the spectra of the leading symbols of A, B
and AB. Then the product AB is admissible with a spectral cut ψ inside that cone. A
local formula of the multiplicative anomaly Mζ(A,B) reads:

logMζ(A,B) =

∫ 1

0

res

(
W (τ)(A,B)

(
log(AτB)

aτ + b
− logB

b

))
dτ

+res

(
L(A,B) logB

b
− log2AB

2(a+ b)
+

log2A

2a
+

log2B

2b

)
=

∫ 1

0

res

(
W (τ)(A,B)

(
log(AτB)

aτ + b
− logA

a

))
dτ

+res

(
L(A,B) logA

a
− log2AB

2(a+ b)
+

log2A

2a
+

log2B

2b

)
(5.8)

where W (τ)(A,B) is a classical operator of order zero depending continuously on τ given
by formula (4.14). When A and B commute the multiplicative anomaly reduces to:

logMζ(A,B) =
ab

2(a+ b)
res

[(
logA

a
− logB

b

)2
]
. (5.9)

Remark 5.3.3. For commuting operators, (5.9) gives back the results of M. Wodzicki as
well as formula (III.3) in [Du1]:

logMζ(A,B) =
res
(
log2(AaB−b)

)
2ab(a+ b)

.

Proof: By formula (5.7) we have

logMζ(A,B) = logMQ(A,B) + res

(
L(A,B) logQ

q
− log2AB

2(a+ b)
+

log2A

2a
+

log2B

2b

)
.

Using formula (5.5) and formula (4.6) (since L(A,B) is a classical operator) applied to
Q1 = Q and Q2 = B, we can express the local formula of logMζ(A,B).

logMζ(A,B) = TrQ(L(A,B)) + res

(
L(A,B) logQ

q
− log2AB

2(a+ b)
+

log2A

2a
+

log2B

2b

)
= TrB(L(A,B)) + res

(
L(A,B) logB

b
− log2AB

2(a+ b)
+

log2A

2a
+

log2B

2b

)
=

∫ 1

0

res

(
W (τ)(A,B)

(
log(AτB)

aτ + b
− logB

b

))
dτ

+ res

(
L(A,B)

logB

b
− log2AB

2(a+ b)
+

log2A

2a
+

log2B

2b

)
.
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which proves the first equality in (5.8). The second one can be derived similarly exchanging
the roles of A and B.
When A and B commute, by formula (5.6) L(A,B) vanishes and by Proposition 5.2.1
logMQ(A,B) vanishes so that formula (5.7) reduces to:

logMζ(A,B) = logMQ(A,B) + res

(
L(A,B) logQ

q
− log2AB

2(a+ b)
+

log2A

2a
+

log2B

2b

)
= −res

(
log2AB

2(a+ b)
− log2A

2a
− log2B

2b

)
=

ab

2(a+ b)
res

[(
logA

a
− logB

b

)2
]
.

tu

We can also obtain independently the local formula of the multiplicative anomaly of
the ζ-determinant relating it to the locality of the weighted trace of the operator L(A,B).
To do so let us establish the following useful Lemma.

Lemma 5.3.4. Let A and B be admissible operators in C`(M,E) with positive orders a, b
and spectral cuts θ and φ respectively and such that AB is also admissible with spectral
cut ψ. Then

K(A,B) :=
log2

ψ AB

2(a+ b)
− log2

θ A

2a
−

log2
φB

2b

has a symbol of the form

σ(K) ∼ log |ξ|(σAB0 − σA0 − σB0 ) + σK0

for some zero order classical symbol σK0 and where we have written σ(logA)(x, ξ) =
a log |ξ|I + σA0 (x, ξ) for an admissible operator A of order a.

In particular, both operators L(A,B) logθ A
a
− K(A,B) and L(A,B)

logφB

b
− K(A,B) are

classical operators of zero order.

Proof: Recall that by formula (2.9), another choice of spectral cut only changes the
logarithms by adding an operator in C`0(M,E) so that it will not affect the statement. As
usual, we drop the explicit mention of spectral cut assuming the operators have common
spectral cuts. An explicit computation on symbols shows the result.
Indeed, since σ(logA)(x, ξ) = a log |ξ|+ σA0 (x, ξ), we have

σ(log2A)(x, ξ) = σ(logA) ? σ(logA)(x, ξ)

∼ a2 log2 |ξ|I + 2a log |ξ|σA0 (x, ξ) + σA0 (x, ξ) · σA0 (x, ξ)

+
∑
α 6=0

(−i)|α|

α!
∂αξ σ

A
0 (x, ξ) ∂αxσ

A
0 (x, ξ).
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This yields:

σ(K)(x, ξ)

∼ log |ξ|
(
σAB0 − σA0 − σB0

)
(x, ξ) +

1

2(a+ b)
σAB0 (x, ξ)σAB0 (x, ξ)

+
∑
α 6=0

1

α!
∂αξ σ

AB
0 (x, ξ)Dα

xσ
AB
0 (x, ξ)− 1

2a
σA0 (x, ξ)σA0 (x, ξ)−

∑
α 6=0

1

α!
∂αξ σ

A
0 (x, ξ)Dα

xσ
A
0 (x, ξ)

− 1

2b
σB0 (x, ξ)σB0 (x, ξ)−

∑
α 6=0

1

α!
∂αξ σ

B
0 (x, ξ)Dα

xσ
B
0 (x, ξ)

from which the first part of the statement follows. On the other hand, it follows from
(4.12) combined with (2.10) that L(A,B) logA

a
and L(A,B) logB

b
both have symbols which

differ from log |ξ|
(
σAB0 − σA0 − σB0

)
(x, ξ) by a classical symbol of order zero, from which

we infer the second part of the statement. tu

Now, using equation (5.1) we have

logMζ(A,B) = log detζ(AB)− log detζ(A)− log detζ(B)

=

∫
M

dx

[
TRx(L(A,B))− resx

(
log2AB

2(a+ b)
− log2A

2a
− log2B

2b

)]
.

Substracting the defect formula (4.5) applied to the operator L(A,B) and weight B to
logMζ(A,B) and combining with equation (4.15) applied to Q = B we write:

logMζ(A,B)

= TrB(L(A,B)) +

∫
M

dx

[
resx

(
L(A,B) logB

b
− log2AB

2(a+ b)
+

log2A

2a
+

log2B

2b

)]
=

∫ 1

0

res

(
W (τ)(A,B)

(
log(AτB)

aτ + b
− logB

b

))
dτ

+res

(
L(A,B) logB

b
− log2AB

2(a+ b)
+

log2A

2a
+

log2B

2b

)
,

which proves the first equality in (5.8).
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Chapter 6

Determinants on odd-class
pseudodifferential operators

In the present chapter we investigate determinants on odd-class elliptic operators which
in contrast to the ζ-determinant on elliptic operators studied in the previous chapter,
are multiplicative and hence do not present a multiplicative anomaly. Multiplicative
determinants are associated to traces on zero order odd-class classical operators, which
by the results of Chapter 3, are linear combinations of the leading symbol trace and
the canonical trace. Since multiplicative determinants associated with leading symbol
traces were studied elsewhere [LP], we focus here on the only remaining multiplicative
determinants on odd-class operators, those associated with the canonical trace, which
unlike the leading symbol trace determinants, extend Fredholm determinants on operators
of the type I+ smoothing. They are expected to be of the type DET := exp ◦ TR ◦ log,
which is indeed the case for zero order odd-class operators since their logarithms also
lie in the odd-class. However, this does not hold any longer for positive order operators
whose logarithms are not expected to lie in the odd-class in general. Nevertheless, the
logarithm extends to a symmetrized logarithm logsym for elliptic operators with positive
order which fulfill certain technical assumptions on the spectral cut. We show that exp ◦
TR ◦ logsym indeed yields a multiplicative determinant under some natural restrictions on
the spectral cuts (Theorem 6.3.8) on such odd-class elliptic operators, which coincides with
Braverman’s determinant. Our approach via the canonical trace shows that the origin of
its multiplicativity lies in the cyclicity of the canonical trace on odd-class operators and
stresses the fact that it is a natural extension of the canonical determinant DET on zero
order operators associated with the canonical trace TR.

126
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6.1 Classification of infinitesimal multiplicative de-

terminants on
(
C`0

odd(M,E)
)∗

Well-known general results in the finite dimensional context concerning determinants
associated with traces generalize to the context of Banach spaces (see [HS]) and further
to Fréchet spaces as in [LP]. Let G be a Fréchet Lie group with exponential mapping
Exp (see Definition 1.3.3) and Lie algebra Lie(G). In [KM] Remark 36.9, A. Kriegel and
P. W. Michor showed that if G admits an exponential mapping, it follows that Exp is
a diffeomorphism from a neighborhood of 0 in Lie(G) to a neighborhood of 1 in G if a
suitable inverse function theorem is applicable. This is the case for smooth Banach Lie
groups. A generalization of the inverse function theorem on Banach spaces to a class of
tame Fréchet spaces is developed in [Ha] under the name of Nash-Moser theorem (Part
III, Theorem 1.1.1.). In contrast to the Banach space setup for which the invertibility of
the derivative at a point is sufficient for a function to be locally invertible, for the Nash-
Moser theorem to hold, it is necessary that the derivative is invertible in a neighborhood
of the point. For further details see [Ha].
The existence of a smooth exponential mapping for a Lie group is insured by a notion of
regularity ([Mi], [KM]) on this group. For J. Milnor [Mi], a Lie group G modelled on a
locally convex space is a regular Lie group if for each smooth curve u : [0, 1] → Lie(G),
there exists a smooth curve γu : [0, 1]→ G (which is unique, Lemma 38.3 in [KM]) which
solves the initial value problem γ̇ = γ.u with γ(0) = 1G, where 1G is the identity of G,
with smooth evolution map

C∞([0, 1], Lie(G))→ G
u 7→ γu(1).

For example, Banach Lie groups and finite dimensional Lie groups are regular. For our
purpose in this section, we assume that the Lie group G is regular.

In the following Lemma we give the construction of a locally defined determinant from a
trace on Lie(G) i.e. a linear form on Lie(G) which vanishes on brackets.

Lemma 6.1.1. A continuous linear map λ : Lie(G) → C gives rise to a multiplicative
map Λ : R(Exp) ⊂ G → C∗ defined on the range of the exponential mapping by Λ(g) =
exp(λ(Log(g))) where Log = Exp−1, making the following diagram commutative: for any
small enough neighborhood U0 of zero in Lie(G).
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U0 ⊂ Lie(G) C

C∗Exp(U0) ⊂ G

..................................................................................................................................................................... ............
λ

.....................................................................................................................................
.....
.......
.....

exp

................................................................................................................................................................ ............
Λ

.....................................................................................................................................
.....
.......
.....

Exp

Proof: We first observe that log(Λ(g)) = λ(Log(g)) where g belongs to Exp(U0) i.e.
there exists u in U0 ⊂ Lie(G) such that g = Exp(u). Since G is a regular Fréchet Lie group
i.e. admits an exponential mapping Exp, let us consider the C1-path γ(t) = Exp(tu) going
from 1G to Exp(u) = g. We have γ−1(t)γ̇(t) = u and hence

λ

(∫ 1

0

γ−1(t)γ̇(t)dt

)
=

∫ 1

0

λ(γ−1(t)γ̇(t))dt = λ(u) = λ(Log(g))

using the continuity of λ. It follows that if γ1, γ2 are two C1-paths going from 1G to g1

and g2 respectively, then γ1γ2 is a C1-path going from 1G to g1g2 and we have

λ

(
(γ1(t)γ2(t))−1

˙̃
γ1(t)γ2(t)

)
= λ

(
γ2(t)−1γ1(t)−1γ̇1(t)γ2(t) + γ2(t)−1γ̇2(t)

)
= λ

(
γ1(t)−1γ̇1(t)

)
+ λ

(
γ2(t)−1γ̇2(t)

)
where we have use the tracial property of λ. Now, for g1, g2 ∈ R(Exp) ⊂ G,

log(Λ(g1.g2)) = λ(Log(g1.g2))) = λ (Log(g1)) + λ (Log(g2)) .

tu
Conversely, following [LP] we give a construction of a trace from a determinant.

Lemma 6.1.2. A multiplicative map Λ : U1 → IC∗ defined on a neighborhood U1 of 1 in
G which is of class C1 on G yields a continuous linear form λ : Lie(G)→ C which makes
the following diagram commutative:

G C∗

CLie(G) ........................................................................................................................................................................................................ ............
λ

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...................

............

exp

................................................................................................................................................................................................................................. ............
Λ

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...................

............

Exp

i.e. for all u ∈ Lie(G), λ(u) = DeΛ(u)) = d
dt |t=0

Λ(Exp(tu)).
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Proof: Indeed, for u1, u2 ∈ Lie(G),

λ([u1, u2]) =
d

ds |s=0

d

dt |t=0
Λ (Exp(tu1).Exp(su2).Exp(−tu1))

=
d

ds |s=0

d

dt |t=0
Λ(Exp(tu1))Λ(Exp(su2))Λ(Exp(−tu1))

=
d

ds |s=0

d

dt |t=0
Λ(Exp(su2))

= 0.

Here we use the fact that Λ is multiplicative, which implies that Λ(g−1) = Λ(g)−1. tu
Remark 6.1.3. The two Lemmata imply that continuous traces on Lie(G) are in one to
one correspondence with C1-multiplicative maps on the open subset of G corresponding to
the range of the exponential mapping.

As we saw in Chapter 1, Proposition 1.3.4,
(
C`0

odd(M,E)
)∗

is a Fréchet Lie group. The

following proposition provides more information on its Lie structure i.e.
(
C`0

odd(M,E)
)∗

is a regular Fréchet Lie group which admits an exponential mapping and its Lie algebra
is C`0

odd(M,E).

Proposition 6.1.4.
(
C`0

odd(M,E)
)∗

is a regular Fréchet Lie group with exponential map-

ping and its Lie algebra is C`0
odd(M,E).

Proof: By Proposition 1.3.4, we already know that
(
C`0

odd(M,E)
)∗

is a Fréchet Lie

group and its Lie algebra is C`0
odd(M,E). Let us construct an exponential mapping. Given

any operator B in C`0
odd(M,E), the differential equation

A−1
t Ȧt = B, A0 = I

has a unique solution in
(
C`0

odd(M,E)
)∗

given by:

At =
i

2π

∫
Γ

exp(tλ)(B − λ)−1 dλ,

where Γ is a contour around the spectrum of B which is bounded since B has zero order.
Let us check that At belongs to

(
C`0

odd(M,E)
)∗
. The homogeneous component of At are:

σ(At)−j =
i

2π

∫
Γ

exp(tλ)b−j(B) dλ

where b−j denote the components of the resolvent (B − λ)−1 of B at the point λ. They
are given by:

b0 := (σ0(B)− λ)−1,

b−j := −b0

∑
k+l+|α|=j,l<j

1

α
∂αξ σ−k(B)Dα

x b−l.
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Since B lies in C`0
odd(M,E) it follows that At lies in

(
C`0

odd(M,E)
)∗
. This defines an

exponential mapping

Exp : C`0
odd(M,E)→

(
C`0

odd(M,E)
)∗
.

Moreover, it follows that for any smooth curve u : [0, 1] → C`0
odd(M,E), there exists a

unique smooth curve γu : [0, 1]→
(
C`0

odd(M,E)
)∗

defined by the following diagram

(
C`0

odd(M,E)
)∗

C`0
odd(M,E)[0, 1] ............................................................................................................................................................................. ............

Exp
........................................................................................................................................................... ............

u

which solves the initial value problem γ−1γ̇ = u. tu

On the basis of Remark 6.1.3, we infer from the classification of traces on C`0
odd(M,E)

derived in Section 3.3 a description of multiplicative maps defined on the range of the
exponential mapping in

(
C`0

odd(M,E)
)∗
.

Proposition 6.1.5. Any multiplicative map on the range of the exponential mapping in(
C`0

odd(M,E)
)∗

is of the form:

Det(A) = exp (αTR(Log(A)) + Trτ0(Log(A))) ,

where α is a real number and τ is a distribution in the cotangent unit sphere S∗M.

Proof: By Theorem 3.3.4, we know that any trace on C`0
odd(M,E) is a linear combi-

nation of the canonical trace and a leading symbol trace. By Proposition 6.1.4, we can
apply Lemma 6.1.1 to G =

(
C`0

odd(M,E)
)∗

and Lie(G) = C`0
odd(M,E). It follows that a

multiplicative determinant is of the form

Det(A) = exp (αTR(Log(A)) + Trτ0(Log(A))) .

tu

6.2 Determinants on zero order odd-class operators

In this paragraph we extend the multiplicative maps defined in the previous section beyond
the range of the exponential mapping, namely to the pathwise connected component of
the identity. There are two possible ways to do so. The first one is to use a C1-path and
to define a determinant of the form

Λ(g) = exp

(∫ 1

0

λ(γ(t)−1γ̇(t)) dt

)
(6.1)
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where γ : [0, 1] → G is a C1-path with γ(1) = g. Such an approach was adopted in [HS]
by P. de la Harpe and G. Skandalis in the case of a Banach Lie group. In her thesis [Du1],
C. Ducourtioux applied this method with slight modifications to construct a determinant
associated to a weighted trace with associated Lie algebras C`0(M,E) and C`(M,E). In
[LP], J. M. Lescure and S. Paycha showed that such a construction extends to Fréchet
Lie groups with exponential mapping.
Let G̃ denote the pathwise connected component of the identity 1G of G and P(G) the set

of C1-paths γ : [0, 1] → G starting at 1G so that γ(0) = 1G in G̃. On P(G) we introduce
the map: Detλ : P(G)→ C∗ defined by

Detλ(γ) = exp

(∫
γ

λ(ω)

)
= exp

(∫ 1

0

λ(γ∗ω)

)
where ω = g−1dg is the Maurer-Cartan form on G. Note that since λ satisfies the tracial
property, we have the multiplicative property:

Lemma 6.2.1. Let γ1, γ2 be two C1-paths in P(G). Then

Detλ(γ1γ2) = Detλ(γ1)Detλ(γ2).

Proof: The same proof applies as in Lemma 6.1.1. tu

In general the Maurer-Cartan form ω = g−1dg is not exact on G so that for a C1-path
c : [0, 1]→ G with c(0) = c(1), the integral

∫
c
ω =

∫ 1

0
c∗ω does not vanish.

Proposition 6.2.2.

1. The map

Φ : L(G)→ Lie(G)

c 7→
∫
c

ω =

∫ 1

0

c∗ω

defined on the space L(G) of C1-loops in G i.e. C1-paths such that c(0) = c(1),
induces a map Φ : Π1(G)→ Lie(G) on the fundamental group Π1(G) of G.

2. Consequently, the map Detλ only depends on the homotopy class of the path γ. If
Detλ(Π1(G)) = 1, then it induces a multiplicative map:

Detλ : G → IC∗

g 7→ exp

(∫ 1

0

λ(γ∗ω)

)
independently of the choice of path γ.
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3. If g lies in the range of the exponential mapping Exp then

Detλ(g) = exp (λ(Log(g))

where Log = Exp−1 is the inverse of the exponential mapping.

Proof:

1. We want to show that two homotopic loops c1 and c2 have common primitive. Let
us first recall the following general construction of a primitive: for ω a differential
form on G, let γ : [0, 1] → G be a C1-path and F : [0, 1] → G be such that
for any t ∈ [0, 1] F ′(t) = ω((γ(t))γ′(t). If ω is an exact form i.e. w = df then
F (t) = f(γ(t)) is a primitive of F ′. If the form ω is closed, then ω is locally exact.
Let 0 = t0 < t1 < · · · < tk = 1 be a subdivision of the interval [0, 1] such that
γ([ti−1, ti]) is a subset of G. There exists fi defined on [ti−1, ti] such that dfi = ω.
We can construct a function F (t) on [0, 1] in the following manner: F (t) = f0(γ(t))
on [t0, t1], F (t) = f1(γ(t)) − h1 on [t1, t2] where h1 = f1(γ(t1)) − f0(γ(t1)) and for
i = 3, · · · , k, F (t) = fi(γ(t))−hi on [ti−1, ti] where hi = fi(γ(ti))−fi−1(γ(ti))+hi−1.
Now let F (t) and G(t) be two primitives of c1 and c2 respectively. Since c1 and c2

are homotopic, there exists a family of C1-paths (αi)0≤i≤k defined in a neighborhood

of 1 such that c1 = c2

k∏
i=0

αi. Each path αi is closed so that
∫
c
ω vanishes on αi. It

follows that F (t) = G(t) i.e. the map Φ is well-defined on Π1(G).

2. The multiplicativity of Detλ on G follows from Lemma 6.2.1. Indeed, let g1, g2

be two elements of G and γ1, γ2 two C1-paths in P(G) such that γ1(1) = g1 and

γ2(1) = g2. Then Detλ(g1g2) = exp
(∫ 1

0
λ(γ1γ2)∗ω)

)
= Detλ(g1)Detλ(g2)

3. For g in the range of the exponential mapping, Log = Exp−1 is well-defined so that
λ(Log(γ(t))) is a primitive of λ(γ(t)−1γ̇(t)) dt. It follows that∫ 1

0

λ(γ(t)−1γ̇(t)) dt = λ(Log(g)).

tu

In the case of G =
(
C`0

odd(M,E)
)∗

the logarithm locally defined as inverse of the ex-
ponential mapping extends beyond a neighborhood of the identity provided one chooses
a spectral cut θ thereby to fix a determination logθ of the logarithm.

An alternative way to extend local determinants beyond a neighborhood of the identity
is therefore to set

Detλθ (A) = exp (λ(logθ A)) .
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Recall from Corollary 2.2.2 that if the operator A lies in the odd-class and has even order,
then the logarithm logθ A is also odd-class. If φ is another spectral cut of A such that
0 ≤ θ < φ < 2π, by formula (2.9) we have logθ A− logφA = −2iπΠθ,φ(A) where Πθ,φ(A) is
the odd-class projection defined in Lemma 2.1.5. In other words, the fundamental group
of
(
C`0

odd(M,E)
)∗

is generated by the homotopy class of loops exp(2iπtP ) where P is a

projector in C`0
odd(M,E) (see [KV1] Section 4, and in [Du1] Lemma A.5).

The following Proposition provides a way to build maps which send the fundamental
group to 1.

Proposition 6.2.3. Any continuous trace λ on C`0
odd(M,E) which takes integer values

on the image of Πθ,φ(A) for all θ, φ and A gives rise to a multiplicative determinant
Detλ(A) = exp(λ(logθ A)), on admissible operators, independent of the choice of the spec-
tral cut θ for an operator A with spectral cut θ.

Example 6.2.4. For an admissible operator A in C`0
odd(M,E) with spectral cut θ, the

determinant associated to the leading symbol trace is defined by

Detλ0(A) := exp
(
Trλ0(logθ A)

)
.

In [LP] Example 2, it is shown that if P is a zero order pseudodifferential idempotent,
then its leading symbol p is also an idempotent so that the fibrewise trace trx(p(x, .)) is
the rank rk(p(x, .)). Hence

Trλ0(Πθ,φ(A)) = λ(trx(σ0(Πθ,φ(A)(x, ξ))) = rk(Πθ,φ(A))Trλ0(I).

It follows that Detλ0(A) is independent of the choice of the spectral cut θ.

In contrast, the canonical trace does not satisfy the requirement of Proposition 6.2.3
so that a determinant associated to the canonical trace will depend on the choice of spec-
tral cut. To build such a determinant, we first observe that if A is a zero order odd-class
operator so is logθ A in odd-class. Hence the canonical trace extends to logarithms of ad-
missible odd-class operators of zero order with its property of cyclicity in odd dimensions.
Let us set for an admissible operator A in C`0

odd(M,E)

DETθ(A) := exp(TR(logθ A)).

6.3 A symmetrized canonical determinant on (C`odd(M,E))∗

Our aim in this section is to further extend the determinant DETθ beyond operators of
zero order. But in general, the logarithms of admissible odd-class operator with odd order
is no longer odd-class. Instead, we carry out the extension with the help of symmetrized
logarithms since the symmetrized logarithm of admissible odd-class operators belong to
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the odd-class. This section is inspired from Braverman’s work [B] in which the author
introduced a symmetrized determinant using symmetrized regularized traces (see section
3.6 in [B]). In contrast to his approach which uses regularized traces applied to sym-
metrized logarithms, we define a symmetrized determinant with the help of the canonical
trace applied to symmetrized logarithms, thus clarifying the presentation and simplifying
the proofs.

Definition 6.3.1. Suppose that M is an odd-dimensional manifold. Let A be an odd-
class admissible operator with positive order a which admits spectral cuts θ and θ− aπ. A
determinant associated to TR is defined by setting:

DETsym
θ (A) := exp (TR(logsym

θ A)) . (6.2)

Remark 6.3.2. If A has even order, then logsym
θ A = logθ A−ikπI and DETsym

θ coincides
with the determinant defined in [PS], which in turn coincides with the ζ-determinant:

log DETsym
θ (A) = log detζ,θ(A) = TR(logθ A).

Indeed, using formula (5.3) and Proposition 3.4.1, TrAθ (I) = − 1
a
res(logθ A) = 0. Hence

TrAθ (logsym
θ A) = TrAθ (logθ A) and with item 2 of Theorem 3.5.7 we have

TrAθ (logsym
θ A) = fpz=0TR (logsym

θ A(Azθ)) = TR (logsym
θ A) = TR (logθ A) .

Proposition 6.3.3. Under the assumptions of Definition 6.3.1, DETsym
θ (A) coincides

with the symmetrized determinant introduced in [B]:

Detsym
θ A := exp

(
1

2
Trsym

(
logθ A+ logθ−aπ A

))
= exp (Trsym (logsym

θ A))

where TrsymA := TrQ,symα A = 1
2

(
TrQαA+ TrQα−qπA

)
. Here Q is any odd-class admissible

operator with positive order q and spectral cuts α, α− qπ.

Proof: It is easy to see that

TR(logsym
θ A) = fpz=0TR

(
1

2
(logsym

θ A)(Azθ + Azθ−aπ)

)
= Trsym(logsym

θ A)

when apply Theorem 3.5.7 to the family A(z) = 1
2
(logsym

θ A)(Azθ +Azθ−aπ) since all deriva-
tives A(j)(0) lie in the odd class as powers of symmetrized logarithms. tu

Remark 6.3.4. Though our symmetrized determinant coincides with the one defined by
M. Braverman, its expression is more simple since it involves the canonical trace instead
of a symmetrized regularized trace.
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If the order of A is even, by Remark 6.3.2, the symmetrized determinant coincides
with the ζ-determinant. As we saw for zero order operators, the ζ-determinant generally
depends on the choice of spectral cut but it is invariant under mild changes of spectral
cut. The same property holds for the symmetrized determinant since in that case, they
coincide.

Let us examine now the case of odd order odd-class operators. As already observed
by M. Braverman, if the order of A is odd, the symmetrized determinant generally de-
pends on the choice of spectral cut since infinitely many eigenvalues of A might lie in the
cone Λθ−aπ,φ−aπ. Nevertheless, we have the following proposition, proved in [B]:

Proposition 6.3.5. Let M be an odd-dimensional manifold and let A be an odd-class
admissible operator with odd positive order a which admits spectral cuts θ, θ − π and
φ, φ− π. Suppose that 0 ≤ φ− θ < π. We have

DETsym
θ (A) = ±DETsym

φ (A)

in the following cases:

1. if only a finite number of eigenvalues of A lie in Λθ,φ ∪ Λθ−π,φ−π,

2. if all but finitely many eigenvalues of A lie in Λθ,φ ∪ Λθ−π,φ−π.

Proof: By formula (2.9) we write logφA = logθ A + 2iπΠθ,φ(A) and logφ−π A =
logθ−π A+ 2iπΠθ−π,φ−π(A), where Πθ,φ(A) and Πθ−π,φ−π(A) denote respectively the spec-
tral projections corresponding to the eigenvalues of A which lie in the cones Λθ,φ and
Λθ−π,φ−π. It follows that logsym

φ A = logsym
θ A+iπ (Πθ,φ(A) + Πθ−π,φ−π(A)) . In the first case

Πθ,φ(A) and Πθ−π,φ−π(A) are finite rank projectors and in the second case, I−Πθ,φ(A) and
I −Πθ−π,φ−π(A) or one of them are of finite rank. Recall that I is a differential operator
and hence by Example 3.2.7 TR(I) = 0. It follows that TR(logsym

φ A) = TR(logsym
θ A)+iαπ

for some integer α in Z and the result follows. tu

From Corollary 2.1.15 we infer the following multiplicative property of the symmetrized
determinant for commuting operators.

Proposition 6.3.6. Suppose that M is an odd-dimensional manifold. Let A be an odd-
class admissible operator with positive order a and spectral cuts θ and θ − aπ and let B
be an odd-class admissible operator with positive order b and spectral cuts φ and φ − bπ
such that AB is also admissible with spectral cuts ψ and ψ − (a + b)π depending on the
choice of θ and φ. If [A,B] = 0 then

DETsym
ψ (AB) = DETsym

θ (A) DETsym
φ (B).
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Proof: Indeed,

log DETsym
ψ (AB) = TR(logsym

ψ AB)

= TR(logsym
θ A+ logsym

φ B)

= log DETsym
θ (A) + log DETsym

φ (B)

since by Corollary 2.1.15,

logψ(AB) = logθ A+ logφB

and

logψ−(a+b)π(AB) = logθ−aπ A+ logφ−bπ B

whenever [A,B] = 0. tu

This result generalizes to non commuting operators as it was shown by M. Braverman [B]
using, under suitable assumptions, the formula for the multiplicative anomaly established
by K. Okikiolu [Ok2]. Our proof of this result is based on the cyclicity of the canonical
trace on odd-class operators in odd dimensions. For that, we first recall the following
definition [B].

Definition 6.3.7. Let θ be a principal angle for an elliptic operator A in C`aodd(M,E).
A spectral cut φ ≥ θ is sufficiently close to θ if there are no eigenvalues of A in the cones
Λ(θ,φ] and Λ(θ−aπ,φ−aπ]. We shall denote by logθ̃ A, logsym

θ̃
A, DETsym

θ̃
A the corresponding

numbers obtained using a spectral cut sufficiently close to θ. Clearly, those numbers are
independent of the choice of θ̃.

Theorem 6.3.8. Let M be an odd-dimensional manifold. Suppose that A is an odd-class
admissible operator with positive order a and spectral cuts θ and θ− aπ and that B is an
odd-class admissible operator with positive order b and spectral cuts φ and φ− bπ. Let us
assume that for each t in [0, 1], AtθB has principal angle ψ(t), depending on the choice of
θ and φ, where t→ ψ(t) is continuous. Set ψ(0) = φ and ψ(1) = ψ. Then

DETsym

ψ̃
(AB) = DETsym

θ (A) DETsym
φ (B),

where ψ̃ is an angle sufficiently close to ψ.

Let us give the following two alternative proofs of this proposition. The first one is
based on the cyclicity of the canonical trace on odd-class operators in odd dimensions.
Proof 1: Using formula (2.17) we know that

σaz−j(A
z
θ)(x,−ξ) = (−1)jeiazπσaz−j(A

z
θ−aπ)(x, ξ).
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For a fixed t, the operator AtθB is classical with order at+ b. Since A and B are odd-class

σat+b−j(A
t
θB)(x,−ξ)

=
∑

|α|+k+l=j

1

α!
∂αξ σat−k(A

t
θ)(x,−ξ)Dα

xσb−l(A
z
θ)(x,−ξ)

=
∑

|α|+k+l=j

1

α!
(−1)|α|+keiatπ∂αξ σat−k(A

t
θ−aπ)(x, ξ)(−1)leibπDα

xσb−l(A
z
θ)(x, ξ).

Hence
σat+b−j(A

t
θB)(x,−ξ) = (−1)jei(at+b)πσat+b−j(A

t
θ−aπB)(x, ξ). (6.3)

It follows that if ψt is a principal angle for AtθB, then ψt − (at + b)π is a principal angle
for Atθ−aπB. Let R(λ) and R̂(λ) denote the resolvents of AtθB and Atθ−aπB respectively.
Using formula (6.3) and the standard formulae for the parametrix ([KV1, B]) we deduce
that the symbols r(x, ξ;λ) and r̂(x, ξ;λ) verify

r−at−b−j(x,−ξ; ei(at+b)πλ) = (−1)jei(at+b)πr̂−at−b−j(x, ξ;λ).

Then by the same computation used to prove Proposition 2.2.1 we obtain

σs(at+b)−j(A
t
θB)sψ(t)(x,−ξ) = (−1)jeis(at+b)πσs(at+b)−j(A

t
θ−aπB)sψ(t)−(at+b)π(x, ξ)

and hence logsym
ψ(t)(A

t
θB) is an odd-class operator. Let us set

logMsym(Atθ, B) := log DETsym
ψ(t)(A

t
θB)− log DETsym

θ (Atθ)− log DETsym
φ (B).

Following the same arguments similar to Okikiolu’s (see [Ok2]), already used in the proof
of Corollary 2.1.15, we can build a finite partition

⋃K
k=1 Jk of [0, 1] so as to choose on

each of the intervals Jk = [tk, tk+1] a common fixed principal angle ψk of AtθB when t
varies in Jk. Then there exists ε such that there are no eigenvalues of AtθB on the cone
Λ[ψk−ε,ψk+ε]. Since ψk is a spectral cut for AtθB, ψk − mπ where m = at + π is also a
spectral cut for AtθB; hence there exist ε′ such that there are no eigenvalues of AtθB on

the cone Λ[ψk−mπ−ε′,ψk−mπ+ε′]. Let us choose an angle ψ̃k sufficiently close to ψ by the

following manner: let η be such that 0 < η ≤ Min(ε, ε′) and ψ − η ≤ ψ̃k ≤ ψk + η.
It is easy to see that there are no eigenvalues of AtθB inside the cone Λψk,ψ̃k

since

ψk − ε ≤ ψk − η ≤ ψk + η ≤ ψk + ε. Again, there are no eigenvalues of AtθB on the
cone Λψk−mπ,ψ̃k−mπ since ψk −mπ − ε′ ≤ ψk −mπ − η ≤ ψk −mπ + η ≤ ψk −mπ + ε′. It

follows that ψ̃k is an angle sufficiently close to ψk.

We want to show that for all t in [0, 1], d
dt

(logMsym(Atθ, B)) = 0 i.e. for all τ in [0, 1],

d

dt |t=0

(
logMsym(At+τθ , B)

)
= 0.
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Let us start by proving the result at τ = 0. In practice we work on each of the intervals
Jk with the spectral cut ψ̃k; to simplify notations, we just write ψ̃ instead of ψ̃k.

d

dt |t=0

(
logMsym(Atθ, B)

)
=

d

dt |t=0
TR

(
logsym

ψ̃
(AtθB)− logsym

θ (Atθ)− logsym
φ (B)

)
=

1

2

d

dt |t=0
TR

(
logψ̃(AtθB)ψ̃ + logψ̃−mπ(Atθ−aπB)ψ̃−mπ − logθ A

t
θ − logθ−aπ A

t
θ−aπ

)
=

1

2
TR

[
(

˙
AtθB)ψ̃(AtθB)−1

ψ̃
+ (

˙
Atθ−aπB)ψ̃−mπ(Atθ−aπB)−1

ψ̃

]
|t=0

−1

2
TR

[
(

˙
Atθ)θ(A

t
θ)
−1
θ + (

˙
Atθ−aπ)θ−aπ(Atθ−aπ)−1

θ−aπ

]
|t=0

= 0,

where we have used the formula of Proposition 2.1.14

d

dt
logCt = ĊtC

−1
t +

K∑
k=1

(−1)k

k + 1
adkCt(Ċt)C

−(k+1)
t +RK(Ct, Ċt)

combined with the traciality of TR in the third identity. Now, replacing B by AτθB yields

d

dt |t=0

(
logMsym(Atθ, A

τ
θB)

)
= 0.

An easy computation shows that

logMsym(At+τθ , B)−logMsym(Atθ, A
τ
θB) = TR

(
− logsym

θ (Aτθ)− logsym

ψ̃
B − logsym

ψ̃
(AτθB)

)
.

Since the r.h.s. of the previous equation in independent of t, it follows that for all τ ∈ [0, 1]

d

dt |t=τ

(
logMsym(Atθ, B)

)
= 0.

tu
The second proof taken in [B] uses a formula proved in [KV1, Ok2] which expressed the
multiplicative anomaly of the ζ-determinant in terms of an integral of noncommutative
residues.
Proof 2: It is shown in [B] (Proposition 4.3) that

log Detsym
θ A =

1

2
(log detζ,θA+ log detζ,θ−aπA)
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Since the multiplicative anomaly for the ζ-determinant is given [KV1, Ok2] modulo 2iπ
by the formula:

log detζ,ψAB − log detζ,θA− log detζ,φB =
a

2

∫ 1

0

res

((
logψ(t) A

t
θB

at+ b
− logθ A

a

)2
)
dt,

using Remark 6.3.2 item 2, we obtain modulo 2iπ [B]:

log DETsym
ψ (AB)− log DETsym

θ (A)− log DETsym
φ (B) =

a

4

∫ 1

0

res
(
U(t)2 + V (t)2

)
dt

where

U(t) =
logψ(t) A

t
θB

at+ b
− logθ A

a

and

V (t) =
logψ(t)−(a+b)π A

t
θ−aπB

at+ b
−

logθ−aπ A

a
.

We want to prove that U(t)2+V (t)2 is an odd-class operator and hence its noncommutative
residue vanishes on odd dimensions. Differentiating equation (2.17) at z = 0 yields

σ−j(logθ A)(x,−ξ) = (−1)j
(
iaπδj,0 + σ−j

(
logθ−aπ A

)
(x, ξ)

)
. (6.4)

Applying this equation to logθ A and logψ(t)−(a+b)π A
t
θ−aπB, we get

1

a
σ−j(logθ A)(x,−ξ) = (−1)j

(
iπδj,0 +

1

a
σ−j

(
logθ−aπ A

)
(x, ξ)

)
and

1

at+ b
σ−j(logψ(t) A

t
θB)(x,−ξ) = (−1)j

(
iπδj,0 +

1

at+ b
σ−j

(
logψ(t)−(a+b)π A

t
θ−aπB

)
(x, ξ)

)
.

Combining these two equations yields:

σ−j(U(t))(x,−ξ) = (−1)jσ−j(V (t)(x, ξ). (6.5)

Similarly,

σ−j(V (t))(x,−ξ) = (−1)jσ−j(U(t)(x, ξ). (6.6)

We deduce therefore that

σ−j(U(t) + V (t))(x,−ξ) = (−1)jσ−j(U(t) + V (t)(x, ξ).
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i.e. U(t) + V (t) is an odd-class operator.
Let us show now that U(t)2 + V (t)2 is also an odd-class operator. Using formula (1.2)
which gives the composition of the symbols of ΨDOs we know that

σ−j(U(t)2)(x, ξ) ∼ σ0(U(t))(x, ξ)σ−j(U(t))(x, ξ)

+
∑

k+l+|α|=j

(−i)|α|

α!
∂αξ σ−k(U(t))(x, ξ)∂αxσ−l(U(t))(x, ξ).

This implies using Equation 6.5 that

σ−j(U(t)2)(x,−ξ)
∼ σ0(V (t))(x, ξ)(−1)jσ−j(V (t))(x, ξ)

+
∑

k+l+|α|=j

(−1)k+|α| (−i)|α|

α!
∂αξ σ−k(V (t))(x, ξ)∂αx (−1)lσ−l(V (t))(x, ξ).

As before, it follows that σ−j(U(t)2)(x,−ξ) = (−1)jσ−j(V (t)2)(x, ξ) from which we deduce
that U(t)2 + V (t)2 is an odd-class operator. tu
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ABSTRACT

This thesis is devoted to the study of the canonical trace and two types of deter-
minants: on the one hand a determinant associated with the canonical trace on a
class of pseudodifferential operators and on the other hand determinants associated
with regularized traces.

In the first part, in odd dimension, we revisit the uniqueness of the canonical
trace on the space of classical pseudodifferential operators of odd class before ex-
tending it to log-polyhomogeneous operators of odd class. We classify the traces
on the algebra of classical pseudodifferential operators of odd class and order zero.

In the second part, we establish the locality of the multiplicative anomaly of the
weighted determinant and the zeta determinant. These results are obtained thanks
to the study of the locality of the weighted trace of the operator L(A,B). We then
derive from these results the local expression of the multiplicative anomalies in
terms of the noncommutative residue.

In the third part, we classify multiplicative determinants on the grounds of the
classification of traces on classical pseudodifferential operators of odd class and order
zero in odd dimension. We also define the symmetrized determinant obtained from
the canonical trace applied to the symmetrized logarithm of an odd class operator
in odd dimension. We show the multiplicativy of this determinant under some
restrictions on the spectral cuts of the operators.

RÉSUMÉ

Cette thèse est consacrée à l’étude de la trace canonique et de deux types de
déterminants: d’une part un déterminant associé à la trace canonique sur une
classe d’opérateurs pseudodifférentiels et d’autre part des déterminants associés à
des traces régularisées.

Dans la première partie, en dimension impaire, nous revisitons l’unicité de la
trace canonique sur l’espace des opérateurs pseudodifférentiels classiques de classe
impaire avant de l’étendre aux opérateurs log-polyhomogènes de classe impaire.
Nous classifions les traces sur l’algèbre des opérateurs pseudodifférentiels classiques
de classe impaire d’ordre zéro.

Dans la deuxième partie, nous établissons la localité de l’anomalie multiplicative
du déterminant pondéré et du déterminant zeta. Ces résultats sont obtenus grâce
à l’étude de la localité de la trace pondérée de l’opérateur L(A,B). Nous dduisons
alors de ces résultats l’expression locale de ces anomalies multiplicatives en fonction
du résidu noncommutatif.

Dans la troisième partie, nous classifions les déterminants multiplicatifs en util-
isant la classification des traces sur les opérateurs pseudodifférentiels de classe im-
paire et d’ordre zéro en dimension impaire. Nous définissons aussi le déterminant
symétrisé obtenu de la trace canonique appliquée au logarithme symétrisé en dimen-
sion impaire. Nous montrons la multiplicativité de ce déterminant sous certaines
restrictions sur les coupures spectrales des opérateurs.
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