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Résumé
Cette thèse s'insrit dans le adre d'une étude polyhédrale des problèmes de oneptionde réseaux �ables ave forte onnexité. En partiulier, nous onsidérons les problèmesdits du sous-graphe k-arête-onnexe et de oneption de réseau k-arête-onnexe aveontrainte de borne lorsque k ≥ 3.Dans un premier temps, nous étudions le problème du sous-graphe k-arête-onnexe.Etant donné un graphe non orienté et valué G = (V, E) et un entier positif k, leproblème du sous-graphe k-arête-onnexe onsiste à déterminer un sous-graphe de Gde poids minimum telle qu'il existe k haînes arête-disjointes entre haque paire desommets de V . Nous disutons du polytope assoié à e problème lorsque k ≥ 3. Nousintroduisons une nouvelle famille d'inégalités valides pour le polytope et présentonsplusieurs familles d'inégalités valides. Pour haque famille d'inégalités, nous étudionsles onditions sous lesquelles es inégalités dé�nissent des faettes. Nous disutons aussidu problème de séparation assoié à haque famille d'inégalités ainsi que d'opérationsde rédution de graphes. En utilisant es résultats, nous développons un algorithmede oupes et branhements pour le problème et donnons des résultats exprérimentaux.Ensuite, nous étudions le problème de oneption de réseaux k-arête-onnexe aveontrainte de borne. Soient G = (V, E) un graphe valué non orienté, un ensemble dedemandes D ⊆ V × V et deux entiers positifs k et L. Le problème de oneption deréseaux k-arête-onnexe ave ontrainte de borne onsiste à déterminer un sous-graphede G de poids minimum telle qu'entre haque paire de sommets {s, t} ∈ D, il existe khaînes arête-disjointes de longueur au plus L. Nous étudions e problème dans le asoù k ≥ 2 et L ∈ {2, 3}. Nous examinons la struture du polytope assoié et montronsque, lorsque |D| = 1, e polytope est omplètement dérit par les inégalités dites de
st-oupe et de L-hemin-oupe ave les inégalités triviales. Ce résultat généralise euxde Huygens et al. [75℄ pour k = 2, L ∈ {2, 3} et Dahl et al. [35℄ pour k ≥ 2, L = 2.En�n, nous nous intéressons au problème de oneption de réseau k-arête-onnexeave ontrainte de borne lorsque k ≥ 2, L ∈ {2, 3} et |D| ≥ 2. Le problème est



ivNP-di�ile dans e as. Nous introduisons quatre nouvelles formulations du problèmesous la forme de programmes linéaires en nombres entiers. Celles-i sont basées surla transformation du graphe G en graphes orientés appropriés. Nous disutons dupolytope assoié à haque formulation et introduisons plusieurs familles d'inégalitésvalides. Pour haune d'elles, nous dérivons des onditions pour que es inégalitésdé�nissent des faettes. En utilisant es résultats, nous développons des algorithmes deoupes et branhements et de oupes, generation de olonnes et branhements pour leproblème. Nous donnons des résultats expérimentaux et menons une étude omparativeentre les di�érentes formulations.Mots lés: Réseau �able, graphe k-arête-onnexe, haîne de longueur bornée, poly-tope, faette, séparation, génération de olonnes, algorithme de oupes et branhe-ments.



Abstrat
This thesis presents a polyhedral study of survivable network design problems withhigh onnetivity requirement. In partiular, the k-edge-onneted subgraph and the k-edge-onneted hop-onstrained network design problems when k ≥ 3 are investigated.We �rst onsider the k-edge-onneted subgraph problem. Given a weighted undi-reted graph G = (V, E) and a positive integer k, the k-edge-onneted subgraphproblem is to �nd a minimum weight subgraph of G whih ontains k-edge-disjointpaths between every pair of nodes of V . We disuss the polytope assoiated with thatproblem when k ≥ 3. We introdue a new lass of valid inequalities and present severalother lasses of valid inequalities. For eah lass we study the onditions under whihthe onerned inequalities are faet de�ning. We also disuss the separation problemassoiated with eah lass of inequalities and onsider some graph redution operations.Using these results, we devise a Branh-and-Cut algorithm for the problem and givesome omputational results.We also study the k-edge-onneted hop-onstrained network design problem. Let
G = (V, E) be a weighted undireted graph, a demand set D ⊆ V × V , two positiveintegers k and L. The k-edge-onneted hop-onstrained network design problem isto �nd a minimum weight subgraph of G suh that for every {s, t} ∈ D there existat least k-edge-disjoint st-paths of length at most L. We investigate the struture ofthe assoiated polytope when k ≥ 2 and L ∈ {2, 3}. We show that, in the ase where
|D| = 1, this polytope is ompletely desribed by the so-alled st-ut and L-path-ut inequalities toghether with the trivial inequalities. This result generalizes thoseobtained by Huygens et al. [75℄ for k = 2, L ∈ {2, 3} and Dahl et al. [35℄ for k ≥ 2,
L = 2. We show that this omplete desription yields a polynomial time algorithm forthe problem when |D| = 1, k ≥ 2 and L ∈ {2, 3}.We �nally onsider the k-edge-onneted hop-onstrained network design problemwhen k ≥ 2, L = 2, 3 and |D| ≥ 2. The problem is NP-hard in this ase. Weintrodue four new integer programming formulations based on the transformation of



vithe graph G into appropriate direted graphs. We disuss the polytope assoiated witheah formulation and introdue several lasses of inequalities that are valid for thesepolytopes. We also study onditions for these inequalities to be faet de�ning. Usingthese results, we devise Branh-and-Cut and Branh-and-Cut-and-Prie algorithms forthe problem. We provide some omputational results and a omparative study betweenthe di�erent formulations we have introdued for the problem.Keywords: Survivable network, k-edge-onneted graph, hop-onstrained path, poly-tope, faet, separation, olumn generation, Branh-and-Cut algorithm.
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Introdution
Teleommuniations have a major importane in the funtioning of modern soieties.They are partiularly important as many transations are done throughout teleom-muniation networks. The appearane of �ber opti tehnology in teleommuniations(1984) and the introdution of new generation network protools (SONET/SDH, ATM,IP, MPLS, GMPLS, et.) have allowed networks to onvey more and more data. Asa onsequene, more omplex appliations suh as video onferene, Virtual PrivateNetworks (VPN) and mobile telephony, have been developed and are used in variousdomains inluding �nane, eonomy, mediine, sienti� researh and shooling.Suh an importane implies to have robust networks. Whatever the nature of anetwork, it must survive after any equipment network failure. In ase of an outageof a network, the loss of money ould reah several millions of euros. Survivablenetworks must satisfy some onnetivity requirements that is, there exist a ertainnumber of disjoint paths between some pair of nodes of the network. This onditionensures that the tra� an still be routed between two nodes after the failure of a givennumber of links or nodes, and that the network is still funtional. One of the mainobjetives when designing a teleommuniation network is to provide a su�ient degreeof survivability, and this, with a minimum ost of onstrution and maintainane. Also,the dimensionning problem is often onsidered, that is to give the appropriate apaitiesto the links of the network in order to onvey the tra� between some nodes and satisfya given quality of servie.A network an be represented by a graph G = (V, E) where V is the set of nodesand E, the set of edges. Di�erent topologies have been proposed to design survivablenetworks. Eah topology depends on the use of the network. However, as pointedout in [83℄ (see also [80℄), the topology that seems to be very e�ient (and needed inpratie) is the uniform topology, that is to say that orresponding to networks thatsurvive after the failures of k − 1 or fewer links, for some k ≥ 2. The 2-onnetedtopology (k = 2) provides an adequate level of survivability sine most failure usuallyan be repaired relatively quikly. However, for many appliations, a higher level of



2 CHAPTER 0. INTRODUCTIONonnetivity may be neessary.Another reliability ondition onerns the length of the paths used to route the tra�.In fat, the alternative paths ould be too long to guarantee an e�etive routing. Indata networks, suh as Internet, the elongation of the route of the information ouldause a strong loss in the transfert speed and derease the quality of servie. For othernetworks, the signal itself ould be degraded by a longer routing. In suh ases, the
L-path requirement (paths of length at most L), with L ≥ 2, guarantees exatly theneeded quality of the alternative routes.Network design problems, as well as many ombinatorial optimization problems, havebeen studied using di�erent methods. Among those methods, the polyhedral approahhas appeared to be very e�etive in solving di�ult problems. This method, introduedby Edmonds [45℄, onsists in reduing the resolution of a ombinatorial optimizationproblem to that of a linear program. This is done thanks to the omplete (or evenpartial) desription of the polyhedron assoiated with the problem. The polyhedralapproah is part of the exat methods used to solve ombinatorial optimization prob-lems.The survivable network design problem has been widely studied when the onnetiv-ity requirement is low (k = 2). However, the high onnetivity requirement ase (k ≥ 3)has reeived a little attention. In this thesis, we study the survivable network designproblem with high onnetivity requirement. In partiular, we fous on two variants ofthe problem: when k-edge-disjoint paths are required between every pair of nodes (the
k-edge-onneted subgraph problem) and when k-edge-disjoint paths of length at most
L are required between ertain pairs of nodes (the k-edge-onneted hop-onstrainednetwork design problem). The study is led using the polyhedral approah and providesexat and e�ient algorithms to solve these problems.This thesis is organized as follows. In Chapter 1, we present the basi notions andnotations that will be used throughout this thesis. We also present a state-of-the-art onsurvivable network design problems. Chapters 2 and 3 deal with the k-edge-onnetedsubgraph problem when k ≥ 3. We study the polytope assoiated with this problemand devise a Branh-and-Cut algorithm. Chapters 4, 5 and 6 are dediated to the
k-edge-onneted hop-onstrained network design problem. In Chapter 4, we give aomplete desription of the polytope assoiated with the problem in the ase where
k-edge-disjoint L-paths are required between a single pair of nodes. We present apolynomial time utting plane algorithm to solve the problem in this ase. Chapters 5and 6 onern the general ase where the k-edge-disjoint L-paths are required betweenmore than one pair of nodes of the network. We introdue new integer programming



3formulations for this more general problem and study the assoiated polytopes. Wedevise Branh-and-Cut and Branh-and-Cut-and-Prie algorithms for the problem andpresent extensive omputational results.



Chapter 1
Preliminary Notions andState-of-the-Art
In this hapter we give some basi notions of ombinatorial optimization, omplexitytheory and polyhedra. We present utting plane and olumn generation methods aswell as Branh-and-Cut and Branh-and-Cut-and-Prie algorithms. We also presentthe basi de�nitions of graph theory that will be used throughout this thesis. Finallywe give a state-of-the-art on the survivable network design problem.1.1 Preliminary notions1.1.1 Combinatorial optimizationCombinatorial Optimization is a branh of operations researh and is related to om-puter siene and applied mathematis. It aims to study optimization problems wherethe set of feasible solutions is disrete or an be represented as a disrete one. Aombinatorial optimization problem an be formulated in the following way. Let
E = {e1, ..., en} be a �nite set alled basi set where eah element ei is assoiated witha weight w(ei). Let F be a family of subset of E. If F ∈ F, then w(F ) =

∑

ei∈F

w(ei) isthe weight of F . The problem onsists in �nding an element F ∗ of F whose weight is



1.1. PRELIMINARY NOTIONS 5minimum (or maximum).




Minimize (or Maximize)w(F )

s.t.

F ∈ F.

F is the set of feasible solutions of the problem. The term optimizationmeans that weare looking for the best possible solution. The term ombinatorial refers to the disretestruture of F. Most of the time, this struture is represented by a graph. Also, thenumber of feasible solutions is generally exponential, whih makes di�ult or even im-possible to solve a ombinatorial optimization problem with an enumerative proedure.Di�erent methods exist in the litterature to solve ombinatorial optimization problems,espeially graph theory, linear and non-linear programming, integer programming andpolyhedral approah.Many real-world problems an be formulated as ombinatorial optimization onessuh as the Knapsak Problem, the Travelling Salesman Problem, teleommuniationnetwork design problems, VLSI iruit design problems, mahine sequening problem,et. Some of them are diretly applied in everyday life. For example Video On Demandservies (VOD) are studied as a ombinatorial optimization problem. The objetive isto satisfy the demand of every lient (the end users) and suh that the total bandwidthalloated by the teleommuniation operator for the servie is minimum. This way,the operator an evaluate the quality of the servie he provides and the orrespondingost. Another example is the GPS (GPS stands for Global Positioning System) whihhelps a driver to �nd the best way (in terms of distane or in terms of time) to go fromone plae to another. This is a diret appliation of the shortest path problem.Combinatorial optimization is losely related to algorithm theory and omputationalomplexity theory. The next setion introdues omputational issues of ombinatorialoptimization.1.1.2 Computational and omplexity theoryComputational and omplexity theory is a branh of omputer siene whose objetiveis to lassify problems aording to their inherent di�ulty. We distinguish �easy� and�di�ult� problems. Computational and omplexity theory is based on the works ofCook [22℄, Edmonds [44℄ and Karp [77℄. For more details on this topi, the reader isreferred to [56℄.



6 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ARTA problem is a question whose answer is unknown and depends on some input pa-rameters. A problem is spei�ed by desribing its input parameters and the propertythat these parameter must satisfy. An instane of a problem is obtained by giving aspei� value to all its input parameters. A resolution algorithm is a proedure, that isa suession of elementary operations, whih produes a solution for a given instaneof the problem. The number of input parameters neessary to desribe an instane ofa problem is the size of that problem.An algorithm is said to be polynomial when the number of elementary operationsneessary to solve an instane of size n is bounded by a polynomial funtion in n. Aproblem is of lass P if there exists a polynomial algorithm to solve it. We also saythat this problem is easy or an be solved quikly.A deision problem is a problem whose answer is either �yes� of �no�. Let P be adeision problem and I the set of instanes of that problem for whih the answer is�yes�. P is said to be of lass NP (where NP stands for Nondeterministi Polynomial) ifthere exists a polynomial algorithm whih an verify that the answer is �yes� for everyinstane of I. Clearly, every problem of lass P is also of lass NP (see Figure 1.1).NP
NP-omplete

P
Figure 1.1: Relation between P, NP, NP-omplete problems.It is not known whether every problem in NP an be solved in polynomial time butit has been onjetured that P = NP . If this onjeture is proved, its onsequene willbe that every problem known as �di�ult� an, in fat, be solved in polynomial time.In the lass NP, we distinguish a partiular set of problems, the NP-omplete prob-lems. The notion of NP-ompleteness relies on the notion of polynomial redution ortransformation. A deision problem P1 an be polynomialy redued (or transformed)



1.1. PRELIMINARY NOTIONS 7into another deision problem P2 if there exists a polynomial funtion f suh that forevery instane I of P1, the answer is �yes� if and only if the answer of f(I) for P2 is �yes�.A problem P is NP-omplete if every problem of lass NP an be polynomialy reduedinto P. The 3-satis�ability problem is the �rst problem showen to be NP-omplete (see[22℄).Every ombinatorial optimization problem an be assoiated with a deision problem.A ombinatorial optimization problem whose deision problem is NP-omplete is said tobe NP-hard. Most of the ombinatorial optimization problems are NP-hard. Amongthe methods used to solve them, the polyhedral approah has appeared to be verye�ient.1.1.3 Polyhedral approah and Branh-and-Cut methodPolyhedral theory has been introdued by Edmonds in 1965 [45℄. He �rst developedthis method for the mathing problem. Later, further works were done on this topi.Polyhedral approah has appeared to be e�etive for solving many problems and slowlybeomes a must for the study of ombinatorial optimization problems. Here we presentthe basi notions of polyhedral theory. For more details, the reader is referred to[90, 96℄. We also present the applied aspet of polyhedra to ombinatorial optimizationproblems and desribe the so-alled Branh-and-Cut method.1.1.3.1 Polyhedral theoryLet n ∈ N be a positive integer and x ∈ R
n. We say that x is a linear ombination of

x1, ..., xm ∈ R
n if there exist m salar λ1, ..., λm suh that x =

m∑

i=1

λixi. If m∑

i=1

λi = 1,then x is said to be an a�ne ombination of x1, ..., xm. Moreover, if λi ≥ 0 for all
i ∈ {1, ..., m}, we say that x is a onvex ombination of x1, ..., xm.Given a set S = {x1, ..., xm} ∈ R

n×m, the onvex hull of S is the set of point x ∈ R
nwhih are onvex ombination of x1, ..., xm (see Figure 1.2), that is

conv(S) = {x ∈ R
n | x is a onvex ombination of x1, ..., xm}.The points x1, ..., xm ∈ R

n are linearly independant if the unique solution of thesystem m∑

i=1

λixi = 0 is λi = 0, i = 1, ..., m. They are a�nely independant if the unique



8 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ARTelements of S
onv(S)Figure 1.2: A onvex hullsolution of the system 




m∑

i=1

λixi = 0,

m∑

i=1

λi = 0,is λi = 0, i = 1, ..., m.A polyhedron P is the set of solutions of a linear system Ax ≤ b, that is P = {x ∈

R
n | Ax ≤ b}, where A is a m-lines n-olumn matrix and b ∈ R

m. A polytope is abounded polyhedron. A point x of P will be also alled a solution of P .A polyhedron P ⊆ R
n is said of dimension p if the maximum number of solutions of

P that are a�nely independant is p + 1. We denote it by dim(P ) = p. We also havethat dim(P ) = n − rank(A=) where A= is the submatrix of A of inequalities that aresatis�ed with equality by all the solutions of P (impliit equalities). The polyhedron
P is full dimensional if dim(P ) = n.An inequality ax ≤ α is valid for a polyhedron P ⊆ R

n if for every solution x ∈ P ,
ax ≤ α. This inequality is said to be tight for a solution x ∈ P if ax = α. The inequality
ax ≤ α is violated by x ∈ P if ax > α. The set F = {x ∈ P | ax = α} is alled a faeof P . We also say that F is the fae indued by ax ≤ α. If F 6= ∅ and F 6= P , we saythat F is a proper fae of P . If F is a proper fae and dim(F) = dim(P )− 1, then F isalled a faet of P . We also say that ax ≤ α indues a faet of P or is a faet de�ninginequality.If P is full dimensional, then ax ≤ α is a faet of P if and only if F is a proper fae



1.1. PRELIMINARY NOTIONS 9and there exists a faet bx ≤ β of P and a salar ρ 6= 0 suh that F ⊆ {x ∈ P | bx = β}and b = ρa.An inequality ax ≤ α is essential if it de�nes a faet of P . It is redundant if thesystem A′x ≤ b′ obtained by removing this inequality from Ax ≤ b de�nes the samepolyhedron P . This is the ase when ax ≤ α an be written as a linear ombinationof the inequalities of the system A′x ≤ b′. A omplete minimal linear desription of apolyhedron onsists of the system given by its faet de�ning inequalities and its impliitequalities.A solution x is an extreme point of a polyhedron P if and only if it annot be writtenas the onvex ombination of two di�erent solutions of P . It is equivalent to say that xindues a fae of dimension 0. The polyhedron P an also be desribed by its extremepoints. In fat, every solution of P an be written as a onvex ombination of someextreme points of P . Figure 1.3 illustrates the main de�nitions given in this setion.Extreme pointsValid inequality
Non valid inequality

faetProper faebut not faetP

Figure 1.3: Valid inequality, faet and extreme points
1.1.4 Polyhedral approah, Branh-and-Cut methodHere we present the algorithmi aspet of polyhedra and its appliation to ombi-natorial optimization problems. Let P be a ombinatorial optimization problem, Eits basi set, w(.) the weight funtion assoiated with the variables of P and S theset of feasible solutions. Suppose that P onsists in �nding an element of S whose



10 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ARTweight is maximum. If F ⊆ E, then the 0-1 vetor xF ∈ R
E suh that xF (e) = 1 if

e ∈ F and xF (e) = 0 otherwise, is alled the inidene vetor of F . The polyhedron
P (S) = conv{xS | S ∈ S} is the polyhedron of the solutions of P or polyhedron asso-iated with P. P is thus equivalent to the linear program max{wx | x ∈ P (S)}. Thepolyhedron P (S) an be desribed by a set of faet de�ning inequalities. When all theinequalities of this set are known, then solving P redues to solve a linear program.The objetive of the polyhedral approah for ombinatorial optimization problems isto redue the resolution of P to that of a linear program. The e�ieny of the methodthus relies on a deep study of the polyhedron assoiated with the problem.However, a omplete haraterization of the polytope of a problem is di�ult todetermine. In partiular, when the problem is NP-hard there is a little hope to �nd suha haraterization. Moreover, the number of inequalities desribing this polyhedronis, in general, exponential. Therefore, even if we know the omplete desription ofthat polyhedron, its resolution remains a hard task beause of the large number ofinequalities.Fortunately, as it has been shown by Grötshel, Lovász and Shrijver [64℄, the dif-�ulty for solving a linear program does not depend on the number of inequalities ofthe program, but on whih is alled the separation problem assoiated with the in-equality system of the program. Let Ax ≤ b be a system of inequalities in R

n. Theseparation problem assoiated with Ax ≤ b is, given x ∈ R
n, to determine whether

x satis�es Ax ≤ b and, if not, to �nd an inequality ax ≤ α of Ax ≤ b violated by
x. In 1981, Grötshel, Lovász and Shrijver [64℄ showed that an optimization prob-lem max{cx, Ax ≤ b} an be solved in polynomial time if and only if the separationproblem assoiated with Ax ≤ b so is. The utting plane method onsists in solvinga linear program having a large number of inequalities by using the following steps.Let LP = max{cx, Ax ≤ b} be a linear program and LP ′ a linear program obtainedby onsidering a small number of inequalities among Ax ≤ b. Let x∗ be its optimalsolution. We solve the separation problem assoiated with Ax ≤ b and x∗. This phaseis alled the separation phase. If every inequality of Ax ≤ b is satis�ed by x∗, then x∗is also optimal for LP . If not, let ax ≤ α be an inequality violated by x∗. Then we add
ax ≤ α it to LP ′ and repeat this proess until an optimal solution is found. Algorithm1 summarizes the di�erent steps of a utting plane algorithm.



1.1. PRELIMINARY NOTIONS 11Algorithm 1: A utting plane algorithmData: A linear program LP and Ax ≤ b its system of inequalitiesResult: Optimal solution x∗ of LPbeginConsider a linear program LP ′ with a small number of inequalities of LP1 Solve LP ′ and let x∗ be an optimal solution2 Solve the separation problem assoiated with Ax ≤ b and x∗3 if an inequality ax ≤ α of LP is violated by x∗ then4 Add ax ≤ α to LP ′5 Repeat step 26 else
x∗ is optimal for LP7 return x∗8 endThe polyhedron P (S) is often not ompletely known beause P may be NP-hard. Inthis ase, it would not be possible to solve P as a linear program. However, one may beable to solve e�iently the linear relaxation of P (S). In general, the solution obtainedfrom the linear relaxation of P (S) is frational. The resolution of P an then be doneby ombining the utting plane method with a Branh-and-Bound algorithm. Suhalgorithm is alled a Branh-and-Cut algorithm. Eah node of the Branh-and-Boundtree (also alled Branh-and-Cut tree) orresponds to a linear program. Suppose that Pis equivalent to max{wx | Ax ≤ b, x ∈ {0, 1}n} and that Ax ≤ b has a large number ofinequalities. A Branh-and-Cut algorithm starts by reating a Branh-and-Bound treewhose root node orresponds to a linear program LP0 = max{wx | A0x ≤ b0, x ∈ R

n},where A0x ≤ b0 is a subsystem of Ax ≤ b with a small number of inequalities. Thenwe solve the linear relaxation of P that is LP = max{cx | Ax ≤ b, x ∈ R
n}, using autting plane algorithm starting from the program LP0. Let x∗

0 be its optimal solutionand A′
0x ≤ b′0 the set of inequalities added to LP0 at the end of the utting plane phase.If x∗

0 is integral, then it is optimal for P. If x∗
0 is frational, then we start the branhingphase. This onsists in hoosing a variable, say x1, having a frational value andadding two nodes P1 and P2 in the Branh-and-Cut tree. The node P1 orrespondsto the linear program LP1 = max{wx | A0x ≤ b0, A

′
0x ≤ b′0, x

1 = 0, x ∈ R
n} and

LP2 = max{wx | A0x ≤ b0, A
′
0x ≤ b′0, x

1 = 1, x ∈ R
n}. We solve the linear program

LP 1 = max{wx | Ax ≤ b, x1 = 0, x ∈ R
n} (LP 2 = max{wx | Ax ≤ b, x1 = 1, x ∈

R
n}) by a utting plane method starting from LP1 (LP2). If the optimal solution of

LP 1 (LP 2) is integral then, it is feasible for P. Its value is thus a lower bound of theoptimal solution of P and the node P1 beomes a leaf of the Branh-and-Cut tree. If



12 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ARTthis solution is frational, then we selet a variable with a frational value and add twohildren to the node P1 (P2), and so on.The linear program orresponding to a node of the Branh-and-Cut tree may beinfeasible, that is the addition of a onstraint xi = 0 or xi = 1 makes the linearprogram infeasible. Also, even if it is feasible, its optimal solution may be worse thanthe best known lower bound of the problem. In both ases, we prune that node fromthe Branh-and-Cut tree. The algorithm ends when all the nodes have been explored.At the end of the algorithm, the optimal solution of P is the best feasible solutionamong the solutions given by the Branh-and-Bound tree. Figure 1.4 illustrates thealgorithm.
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beomes the best lower boundx1 is integral
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0 is frational

x1
0 = 0
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x3 is frationalworse than the best lower boundthe node is pruned

P0

P1 P2

P4P3

Figure 1.4: A Branh-and-Cut tree.The algorithm an be improved by omputing a good lower bound of the optimalsolution of the problem before it starts. This lower bound an be used by the algorithmto prune the nodes whih will not allow an improvement of this lower bound. Thiswould permit to redue the number of nodes generated in the Branh-and-Cut tree andhene redue the time used by the algorithm. Also, this lower bound an be improvedby omputing at eah node of the Branh-and-Cut tree a feasible solution when thesolution obtained at a node is frational. This is done by using a primal heuristi. It



1.1. PRELIMINARY NOTIONS 13aims to produe a feasible solution for P from the solution obtained at a given node ofthe Branh-and-Cut tree, when this later solution is frational (and hene infeasible for
P). Moreover, the weight of this solution must be as best as possible. When the solutionomputed is better than the best known lower bound, it an onsiderably redue thenumber of generated nodes as well as the CPU time. Moreover, this guarantees tohave an approximation of the optimal solution of P before visiting all the nodes of theBranh-and-Cut tree, for example when a CPU time limit has been reahed.The Branh-and-Cut method is widely used to solve ombinatorial optimization prob-lems that are onsidered di�ult to solve, suh as the Travelling Salesman Problem[4℄. Its e�ieny an be onsiderably inreased by a good knowledge of the polyhedronassoiated with the problem and by e�ient separation algorithms. The utting planemethod is e�etive when the number of variables is polynomial. However, when thenumber of variables is large (for example exponential), other methods, suh as theolumn generation method, are more appropriate to use. In the following setion webrie�y desribe this method.1.1.5 Column generation and Branh-and-Cut-and-Prie meth-odsThe olumn generation method is used to solve linear programs with a large number ofvariables. The method aims to solve the linear program by onsidering a small numberof variables. This method was introdued by Dantzig and Wolfe [36℄ in 1960 in order tosolve linear programs with large number of variables by using few ressoures (CPU timeand memory onsumption). The olumn generation method is used either for problemswhih an be solved using Dantzig-Wolfe deomposition method or for problems with alarge number of variables.The idea of a olumn generation algorithm is to solve a sequene of linear programshaving a reasonable number of variables (also alled olumns). The algorithm startsby solving a linear program having a small number of variables and whih forms afeasible basis for the original program. At eah iteration of the algorithm, we solvethe so-alled priing problem whose objetive is to determine the variables whih mustenter the urrent basis. These variables are those having a negative redued ost. Theredued ost assoiated with a variable is omputed using the dual variables. We thensolve the linear program obtained by the addition of these variables and repeat theproedure. The algorithm stops when the priing algorithm does not generate newolumn to add in the urrent basis. In this ase, the solution obtained from the lastrestrited program is optimal for the original one.



14 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ARTThe olumn generation method an be seen as the dual of the utting plane methodas it adds olumns (variables) instead of rows (inequalities) in the linear program. Thepriing problem an be NP-hard. In this ase, one an use heuristi proedures tosolve it. For more details on olumn generation algorithms, the reader is referred to[85, 86, 102℄.In order to solve integer linear programs, the olumn generation method an beombined with a Branh-and-Bound algorithm. In this ase, the algorithm is alleda Branh-and-Prie algorithm. The branhing phase happens when no variable anbe added into the urrent linear program and the solution given by that program isfrational. Moreover, the algorithm an be ombined with a utting plane algorithm,that looks for inequalities that are valid for the problem but violated by the urrentfrational solution. These an be added to the urrent linear program. In this ase, wespeak of Branh-and-Cut-and-Prie algorithm. Barnhart et al. [9℄ use this tehniqueto solve large sale integer multiommodity �ow problems. Barhnart et al. [10℄ presenthuge problems whih have been solved using Branh-and-Prie method.1.1.6 Graph theory: notations and de�nitionsIn this setion, we present some basi de�nitions and notations of graph theory whihwill be frequently used in the subsequent hapters. For more details, the reader isreferred to [15℄.The graphs we onsider are either direted or undireted, �nite, loopless and mayontain multiple ars or edges.An undireted graph is denoted by G = (V, E) where V is the set of nodes and Eis the set of edges. If e ∈ E is an edge with endnodes u and v, we also write uv todenote e. For a node subset W ⊆ V , we denote by W the node set V \ W . Given Wand W ′, two disjoint subsets of V , [W, W ′] denotes the set of edges of G having oneendnode in W and the other one in W ′. If W ′ = W , then [W, W ] is alled a ut of
G and denoted by δ(W ). A ut δ(W ) is said to be proper if |W | ≥ 2 and |W | ≥ 2.If π = (V1, ..., Vp), p ≥ 2, is a partition of V , then we denote by δ(π) the set of edgeshaving their endnodes in di�erent sets. We may also write δ(V1, ..., Vp) for δ(π). Notethat for W ⊂ V , δ(W ) = δ(W, W ).A direted graph is denoted by H = (U, A) where U is the node set and A the arset. An ar a with origin u and destination v is denoted by (u, v). Given two nodesubsets W and W ′ of U , [W, W ′] denotes the set of ars whose origins are in W and



1.1. PRELIMINARY NOTIONS 15destinations are in W ′. As before, we write [u, W ′] for [{u}, W ′] and W denotes thenode set U \W . The set of ars having their origin in W and destination in W is alleda direted ut or diut of H . This ar set is denoted either by δ+(W ) or δ−(W ). Wealso write δ+(u) for δ+({u}) and δ−(u) for δ−({u}) with u ∈ U . If s and t are twonodes of H suh that s ∈ W and t ∈ W , then δ+(W ) and δ−(W ) are alled an st-diutsof H .Let G′ = (V ′, E′) (resp. H ′ = (U ′, A′)) with V ′ ⊆ V and E ′ ⊆ E (resp. U ′ ⊆ U and
A′ ⊆ A) be a subgraph of G (resp. H). If w(.) is a weight funtion whih assoiateswith eah edge (resp. ar) e ∈ E (resp. a ∈ A) the weight w(e) (resp. w(a)), then thetotal weight of G′ (resp. H ′) is w(E ′) =

∑

e∈E′

w(e) (resp. w(A′) =
∑

e∈A′

w(a)).In the notation, we will speify the graph as a subsript (that is, we will write δG(W ),
δG(π), δG(V1, ..., Vp), δ+

H(W ), δ−H(W ), [W, W ′]G, [W, W ′]H) whenever the onsideredgraphs may not be learly dedued from the ontext.Given an undireted graph G = (V, E), for all F ⊆ E, V (F ) will denote the set ofnodes inident to the edges of F . For W ⊂ V , we denote by E(W ) the set of edgesof G having both endnodes in W and G[W ] the subgraph indued by W , that is thegraph (W, E(W )). Given an edge e = uv ∈ E, ontrating e onsists in deleting e,identifying the nodes u and v and in preserving all adjaenies. Contrating a nodesubset W onsists in identifying all the nodes of W and preserving the adjaenies.Given a partition π = (V1, ..., Vp), p ≥ 2, we will denote by Gπ the subgraph induedby π, that is, the graph obtained from G by ontrating the sets Vi, for i = 1, ..., p.Note that the edge set of Gπ is the set δ(V1, ..., Vp).A Path P of an undireted graph G is an alternate sequene of nodes and edges
(u1, e1, u2, e2, ..., uq−1, eq−1, uq) where ei ∈ [ui, ui+1] for i = 1, ..., q − 1. We will denotea path P either by its node sequene (u1, ..., uq) or its edge sequene (e1, ..., eq−1). Thenodes u1 and uq are alled the endnodes of P , while its other nodes are said to beinternal. A path is simple if it does not ontain the same node twie. In the sequel,we will always onsider that the paths are simple. By opposition, a non-simple path isalled a walk. A path whose endnodes are s and t will be alled an st-path. A yle in
G is a path whose endnodes oinide, that is u1 = uq. Also, a yle is simple if it doesnot ontain twie the same node, exepted u1. We all a hord an edge between twonon-adjaent nodes of a path.Similarly, we all a dipath P a path in a direted graph, that is an alternate sequeneof ars (u1, a1, u2, a2, ..., uq−1, aq−1, uq) with ai ∈ [ui, ui+1], i = 1, ..., q − 1. A dipath isdenoted either by its node sequene (u1, ..., uq) or its ar sequene (a1, ..., aq−1), andthe nodes u1, uq are the endnodes of that dipath. A dipath whose endnodes oinide



16 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART(u1 = uq) is alled a iruit. If u1 = s and uq = t then P is alled an st-dipath. Adipath is simple if it does not ontain twie the same node.Given a �xed integer L ≥ 1 and a pair of nodes {s, t} ∈ V × V , an L-st-path in Gis a path between s and t whose length is at most L, where the length is the numberof edges of that path. The number of edges of a path is also alled hops and we alsospeak of L-hop-onstrained paths for paths whose length is at most L.An undireted (resp. direted) graph is onneted if for every pair of node (u, v) thereis at least one path (resp. dipath) between u and v. A onneted graph whih haveno yle (resp. iruit) is alled a spanning tree. A onneted omponent of a graph G(resp. H) is a onneted subgraph of G (resp. H) whih is maximal, that is adding anode or an edge (resp. ar) to that subgraph gives a non-onneted graph.Given an undireted (resp. direted) graph G = (V, E) (resp. H = (U, A)), two st-paths (resp. st-dipaths) are edge-disjoint (resp. ar-disjoint) if they have no edge (resp.ar) in ommon. They are node-disjoint if they have no internal node in ommon. Agraph is said to be k-edge-onneted (resp. k-ar-onneted) if it ontains at least kedge-disjoint (resp. ar-disjoint) st-paths (resp. st-dipaths) for all pair of node {s, t} ∈

V × V (resp. {s, t} ∈ U × U). It is k-node-onneted if it ontains at least k node-disjoint st-paths or st-dipaths for all pair of node {s, t} ∈ V ×V (resp. {s, t} ∈ U ×U).The largest integer k suh that the graph G (resp. H) is k-edge-onneted (resp. k-ar-onneted) is the edge-onnetivity (resp. ar-onnetivity) of G (resp. H). Similarly,the largest integer k suh that the graph is k-node-onneted is the node-onnetivity ofthe graph. We say that a graph is Steiner k-edge-onneted (k-ar-onneted) (k-node-onneted) if it is k-edge-onneted (k-ar-onneted) (k-node-onneted) relatively toa ertain pair of privileged nodes. We ommit the quali�ative Steiner when the requiredonnetivity is for every pair of nodes of the graph. The privileged nodes are alledterminal nodes while non-privileged ones are alled Steiner nodes.Given an undireted graph G = (V, E), a demand set D ⊆ V ×V is a subset of pairsof nodes, alled demands. For a demand {s, t} ∈ D, s is the soure of the demand and
t is the destination of that demand. If several demands {s, t1}, ..., {s, td} have the samenode s as soure node, then these demands are rooted in s. A node involved in at leastone demand is said to be terminal. A node whih does not belong to any demand isalled a Steiner node.A omplete graph is a graph in whih there is an edge between eah node and theothers. A omplete graph with n nodes is denoted by Kn. A bipartite graph G = (V, E)is an undireted graph suh that V = V1 ∪ V2 with V1 ∩ V2 = ∅ and for every pair ofnodes u, v ∈ V1 (resp. u, v ∈ V2), [u, v] = ∅. A omplete bipartite graph is a bipartite



1.1. PRELIMINARY NOTIONS 17graph where there is an edge between eah node of V1 and the nodes of V2. A bipartiteomplete graph is denoted Km,n where m = |V1| and n = |V2|.An undireted graph is outerplanar when it an be drawn in the plane as a yle withnon rossing hords. A graph is series-parallel if it an be obtained from a single edgeby iterative appliation of the two operations:i) addition of a parallel edge;ii) subdivision of an edge.Observe that a graph is series-parallel (outerplanar) if and only if it is not ontratibleto K4 (K4 and K3,2). Therefore, an outerplanar graph is also series-parallel.A graph G is said to be a Halin graph if G = (C ∪ T, E) where the subgraph of Gindued by T is a tree whose leaves forms the yle C in G. Figure 1.5 gives an exampleof eah type of graphs desribed above.

Series-parallel graphOuterplanar graph
Bipartite graphComplete graph on 5 nodes

Halin graphFigure 1.5: Complete, bipartite, outerplanar, series-parallel and Halin graphs.



18 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART1.2 State-of-the-art on survivable network design prob-lemsSurvivable network design problems have been intensively studied for several deades.The �rst studies on the problems aimed to produe heuristis and approximation algo-rithms for these problems. Sine the begining of 90's, studies starts fousing on exatalgorithms with, in partiular, the use of the polyhedral approah.This setion is dediated to the presentation of the previous works in the litteraturerelated to survivable network design problems. We �rst present the general survivablenetwork design problem, the related works and main results on this problem. Then wedisuss two variants of the problem, the k-edge-onneted subgraph problem and the
k-edge-onneted hop-onstrained network design problem. These will be studied inChapters 2 and 3 for the �rst one and Chapters 4, 5 and 6 for the seond one.1.2.1 The general survivable network design problemA network an be represented by a graph, direted or undireted, where eah node ofthe network orresponds to a node of the graph and a link between two nodes of thenetwork is represented by an edge or an ar of the graph.Consider an undireted graph G = (V, E) representing a teleommuniation networkand w(.) a weight funtion whih assoiates the weight w(e) with an edge e ∈ E. Eahnode v ∈ V is assoiated with an integer, denoted by r(v) and alled onnetivity typeof v, whih an be seen as the minimum number of edges onneting v to the rest ofthe network. The vetor (r(v) | v ∈ V ) is the onnetivity type vetor assoiated withthe nodes of G. We say that a subgraph H = (U, F ), U ⊆ V and F ⊆ E, satis�esthe edge-onnetivity (resp. node-onnetivity) requirement if for every pair of nodes
(s, t) ∈ V × V , there exist at least

r(s, t) = min{r(s), r(t)}edge-disjoint (resp. node-disjoint) paths between s and t. This ondition ensures thatthe network will be still funtional when ertain equipment fails. In fat, the tra�an still be routed between two nodes s and t when at most r(s, t) − 1 links, in aseof edge-onnetivity, and at most r(s, t) − 1 nodes, in ase of node-onnetivity, fails.When r(u) = k, for every u ∈ V , the subgraph H is k-edge-onneted (resp. k-node-onneted).



1.2. STATE-OF-THE-ART ON SURVIVABLE NETWORK DESIGN PROBLEMS 19Let rmax = max{r(u) | u ∈ V }. When rmax ≤ 2 we speak of low onnetivityrequirement and of high onnetivity requirement when rmax ≥ 3.Grotshel, Monma and Stoer [66℄ introdued the general survivable network designproblem whih onsists in �nding a minimum weight subgraph of G whih satis�es theonnetivity requirement. We will denote this problem by ESNDP (resp. NSNDP) foredge-onnetivity (resp. node-onnetivity) requirement.The ESNDP (NSNDP) is NP-hard as it ontains the Steiner tree problem as a speialase (r(u) ∈ {0, 1} for all u ∈ V ) whih is known to be NP-hard [56℄. However, underertain onditions the problem an be solved in polynomial time. When r(u) = 1 forall u ∈ V , the problem is equivalent to the minimum weight spanning tree problem.Thus it is solvable in polynomial time using Kruskal [84℄ or Prim [95℄ algorithms. Alsowhen r(s) = r(t) = 1 for two nodes s, t ∈ V and r(u) = 0 for all u ∈ V \ {s, t}, theproblem is nothing but the shortest st-path problem whih an be solved in polynomialtime with the e�eient algorithm of Dijkstra [43℄.Menger [91℄ exhibited the relation between the number of edge-disjoint paths andthe ardinality of uts in the graph G. This relation is given in the theorem below.Theorem 1.2.1 [91, 96℄ Let G = (V, E) be an undireted graph and s, t two nodes of
G. Then, there exist at least k edge-disjoint paths between s and t if and only if every
st-ut of G ontains at least k edges.By Theorem 1.2.1, the ESNDP an be desribed as a linear integer program. To thisend let us introdue �rst some notations.

r(W ) = max{r(u) | u ∈ W} for all W ⊆ V,

con(W ) = max{r(u, v) | u ∈ W, v ∈ W}

= min{r(W ), r(W )} for all W ⊆ V, ∅ 6= W 6= V.The ESNDP is equivalent to the following linear integer program.Minimize∑
e∈E

c(e)x(e)

x(δ(W )) ≥ con(W ) for all W ∈ V, ∅ 6= W 6= V, (1.1)
x(e) ≥ 0 for all e ∈ E, (1.2)
x(e) ≤ 1, for all e ∈ E (1.3)
x(e) ∈ {0, 1} (1.4)



20 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ARTGrötshel and Monma [65℄ study the polyhedral aspets of that model. They disussthe dimension of the assoiated polytope as well as some basi faets. In [66℄, Grötshelet al. study further polyhedral aspets of that model. They devise utting planealgorithms and give omputational results.In [57℄, Goemans and Bertsimas give an approximation algorithm based for the ES-NDP based on a new analysis of a well-known algorithm for the Steiner tree problem.A related problem is the so-alled augmentation problem. Given an undireted graph
G = (V, E) and a onnetivity vetor (r(v) | v ∈ V ), the augmentation problem is toadd as few edges as possible to G so that the resulting graph satis�es the onnetivityrequirements given by r. This problem is equivalent to the general survivable networkdesign problem on a omplete graph where the weight of the edges of E is 0 and thatof the edges that an be added is 1. Eswaran and Tarjan [47℄ studied that problemin the ases where r(u) = 2 for all u ∈ V . They gave polynomial time algorithmsfor the ases where edge-disjoint and node-disjoint paths are required. Watanabe andNakamura [103℄ and Cai and Sun [18℄ studied the problem when r(u) = k for all u ∈ Vand k ∈ 2. They [18, 103℄ gave polynomial time algorithms for the problem in thatase. Cai and Sun [18℄ also gave a min-max formula for the minimum number of edgesthat must be added. Frank [53℄ onsidered the problem for an arbitrary onnetivityvetor r ∈ N

V . Using the splitting theorem of Mader [87℄, he gave a min-max formulafor the minimum number of edges that must be added to the original graph and devisea polynomial time algorithm for the problem. Its results generalize those obtained by[47℄ and [18℄.1.2.2 The k-edge(node)-onneted subgraph problemThe k-edge-onneted subgraph problem has been extensively studied, espeially when
k = 2 (low onnetivity requirement) [8, 49, 54, 80, 81, 83, 88, 89, 92℄. However, it hasreeived a little attention in the ase where k ≥ 3.In [21℄, Chopra studied the problem for k odd when multiple opies of an edge maybe used. In partiular, he haraterized the assoiated polyhedron for outerplanargraphs. This polyhedron has been previously studied by Cornuéjols et al. [23℄. Theyharaterized the assoiated polytope when the graph is series-parallel and k = 2. In[40℄, Didi Biha and Mahjoub also studied the problem when the graph is series-paralleland k ≥ 3, and gave a omplete desription of the polytope in that ase. In [49℄,Fonlupt and Mahjoub studied the frational extreme points of the linear relaxationof the 2-edge-onneted subgraph polytope. They introdued an ordering on these



1.2. STATE-OF-THE-ART ON SURVIVABLE NETWORK DESIGN PROBLEMS 21extreme points and haraterized the minimal extreme points with respet to thatordering. As a onsequene, they obtained a haraterization of the graphs for whihthe linear relaxation of that problem is integral. Didi Biha and Mahjoub [39℄, extendedsome of the results of Fonlupt and Mahjoub [49℄ to the ase k ≥ 3 and introdued somegraph redution operations.Muh work has been done on the problem when k = 2. In [7℄, Baïou and Mahjoubstudy the Steiner 2-edge-onneted subgraph polytope. This has been generalized byDidi Biha and Mahjoub [41℄ to the Steiner k-edge-onneted subgraph polytope for keven. Mahjoub [88℄ introdues a general lass of valid inequalities for the polytope ofthe problem when k = 2. Boyd and Hao [17℄ desribe a lass of �omb inequalities�whih are valid for 2-edge-onneted subgraph polytope. This lass, as well as thatintrodued by Mahjoub [88℄, are speial ases of a more general lass of inequalitiesgiven by Grötshel et al. [66℄ for the general survivable network polytope. In [8℄,Barahona and Mahjoub haraterize the 2-edge-onneted subgraph polytope for thelass of Halin graphs. Kerivin et al. [81℄ desribe a general lass of valid inequalities forthe problem that generalizes the so-alled F -partition inequalities introdued by [88℄.They also develop a Branh-and-Cut algorithm for the problem. In [25, 26℄, Coullardet al. study the Steiner 2-node-onneted subgraph problem. They devise in [25℄ alinear time algorithm for this problem on some speial lasses of graphs. Moreover in[26℄, they haraterize the dominant of the polytope assoiated with this problem onthe graphs whih do not have K4 as a minor.Monma et al. [92℄ desribed some strutural properties of the optimal solution ofthe k-edge-onneted subgraph problem when the ost funtion satis�es the triangleinequalities (i.e., c(e1) ≤ c(e2)+c(e3) for every three edges e1, e2, e3 de�ning a triangle).In partiular, they showed that every node of a minimum weight k-edge-onnetedsubgraph has degree 2 or 3. They also showed that the ost of an optimal tour solutionof the TSP (Travelling Salesman Problem) is at most 4
3
times the ost of an optimalsolution of the 2-edge-onneted subgraph problem. They [92℄ devised a heuristi basedon these properties. Bienstok et al. [14℄ extended the result obtained by [92℄ to thease where k ≥ 3 and showed that every node of a minimum ost k-edge-onnetedsubgraph has degree k or k + 1. This result also generalizes the result obtained byFrederikson and Jájá [54℄. In [82℄, Khuller and Raghavahari gave an approximationalgorithm for the smallest k-edge-onneted subgraph problem (c(e) = 1 for all e ∈ E).They proved that the ost of a solution given by their algorithm is at most 1.85 of theoptimal solution for all k ≥ 2. Fernandes [48℄ showed that the ratio of the algorithmof [82℄ is, in fat, 1.75 for all k ≥ 2. The algorithm is the �rst algorithm to ahieve aperformane ratio less than 2. They [82℄ also gave an approximation algorithm for theminimum ost k-node-onneted subgraph problem with k ≥ 2 in the ase where the



22 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ARTost funtion satis�es the triangle inequalities. The performane ratio of their algorithmis 2 + 2(k−1)
n

where n is the number of nodes of the graph. In [19℄, Cheriyan et al. gavean 17
12
-approximation algorithm for the 2-edge-onneted subgraph problem. Cheriyanand Thurimella [20℄ gave a (1 + 2

k+1
)-approximation algorithm for the smallest k-edge-onneted subgraph problem with k ≥ 2. Karger [78℄ gave a randomized algorithmfor the smallest k-edge-onneted subgraph problem. He proved that the performaneratio of its algorithm is 1 + O(

√
log n

k
). Gabow et al. [55℄ introdued a approximationalgorithm for the k-edge-onneted subgraph problem based on LP-rounding. Theyshowed that for undireted graphs the ratio of the LP-rounding algorithm is 1 + 3

kwhen k is odd and 1 + 2
k
when k is even.The direted version of the Steiner k-edge-onneted subgraph problem has also beenstudied. This problem is desribed as follows. Let H = (U, A) be a direted graph,

D ⊆ U ×U be a set of demands and a weight funtion w(.) whih assoiates the weight
w(a) with eah ar of H . Given an integer k ≥ 2, the Survivable Direted NetworkDesign Problem (kDNDP for short) onsists in �nding a minimum ost subgraph of
H whih ontains k-ar-disjoint st-dipaths for all {s, t} ∈ D. This problem has beenstudied by Suurballe [100℄ and Soenoka et al. [98℄. Suurballe [100℄ onsidered the
kDNDP when |D| = 1. The problem an be formulated in this ase as a network �owproblem, and hene, an be solved using for example network simplex. Suurballe [100℄gave a polynomial ombinatorial optimization algorithm for the problem in this ase.In [98℄, Soenoka et al. onsidered the problem of �nding a direted k-ar-onnetedgraph with a minimal number of ars and small diameter (the diamater is the largestamong all shortest path lengths, when all the ars have length 1). Dahl [27, 28, 29℄ alsostudied the problem from a polyhedral point of view. In [29℄, he desribed several validinequalities for the polytope of the problem and devised a utting plane algorithm.1.2.3 The k-edge-onneted hop-onstrained network design prob-lemGiven an undireted graph G = (V, E), a weight funtion w(.), a set of demands
D ⊆ V ×V and two integers k, L greater than 2, the k-edge-onneted hop-onstrainednetwork design problem onsists in �nding a subgraph of G of minimum weight suhthat for every pair {s, t} ∈ D, there exist at least k edge-disjoint paths of length atmost L between s and t.This problem takes some importane sine the onnetivity requierement is ofteninsu�ient regarding the reliability of a teleommuniations network. In fat, the



1.2. STATE-OF-THE-ART ON SURVIVABLE NETWORK DESIGN PROBLEMS 23alternative paths ould be too long to guarantee an e�etive routing. In data networks,suh as Internet, the elongation of the route of the information ould ause a strongloss in the transfer speed. For other networks, the signal itself ould be degraded by alonger routing. In suh ases, the L-path requirement guarantees exatly the neededquality of the alternative routes.The k-edge-onneted hop-onstrained network design problem is a generalization ofthe k-edge-onneted subgraph problem. In fat, this later problem orresponds to the�rst one in the ase where L = |V | − 1 and D = V × V .The k-edge-onneted hop-onstrained network design problem has been studied insome speial ases. Huygens et al. [75℄ have investigated the ase where k = 2,
|D| = 1 and the bound L on the length of the paths is 2 or 3. They give an integerprogramming formulation for the problem and show that the linear relaxation of thisformulation ompletely desribes the polytope assoiated to the problem in this ase.From this, they obtain a minimal linear desription of that polytope. They also showthat this formulation is no longer valid when L ≥ 4. In [35℄, Dahl et al. study theproblem when L = 2, k ≥ 2 and |D| = 1. They give a omplete desription of theassoiated polytope. There has been however a onsiderable amount of researh onmany related problems.In [31℄, Dahl onsiders the k-edge-onneted hop-onstrained path problem, that isthe problem of �nding between two distinguished nodes s and t a minimum ost pathwith no more than L edges when L is �xed. He gives a omplete desription of thedominant of the assoiated polytope when L ≤ 3. Thus this hop-onstrained pathproblem orresponds to the speial ase k = 1 and |D| = 1 of the k-edge-onnetedhop-ontrained network design problem. Dahl and Gouveia [32℄ onsider the diretedhop-onstrained path problem. They desribe valid inequalities and haraterize theassoiated polytope when L ≤ 3. Huygens and Mahjoub [73℄ study the problem when
L ≥ 4 and |D| = 1. They also study the variant of the problem where k node-disjointpaths of length at most L are requiered between two terminals s and t. They give aninteger programming formulation for these two problems in the ase k = 2 and L = 4.The ase where several pairs (s, t) of terminals have to be linked by L-hop-onstrainedpaths has also been studied in the litterature. In [34℄, Dahl and Johannessen onsiderthe 2-path network design problem whih onsists in �nding a minimum ost subgraphonneting eah pair of terminal nodes by at least one path of length at most 2. Theproblem of �nding a minimum ost spanning tree with hop-onstraints is also onsideredin [60℄, [61℄ and [63℄. Here, the hop-onstraints limit to a positive integer H thenumber of links between the root and any terminal in the network. Dahl [30℄ studies



24 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ARTthe problem where H = 2 from a polyhedral point of view and gives a ompletedesription of the assoiated polytope when the graph is a wheel. Finally, Huygenset al. [76℄ onsider the problem of �nding a minimum ost subgraph with at leasttwo edge-disjoint L-hop-onstrained paths between eah given pair of terminal nodes.They give an integer programming formulation of that problem for L = 2, 3 and presentseveral lasses of valid inequalities. They also devise a Branh-and-Cut algorithm, anddisuss some omputational results. In [24℄, Coullard et al. investigate the struture ofthe polyhedron assoiated with the st-walks of length K of a graph, where a walk is apath that may go through the same node more than one. They present an extendedformulation of the problem, and, using projetion, they give a linear desription of theassoiated polyhedron. They also disuss lasses faets of that polyhedron.Besides hop-onstraints, another reliability ondition, whih is used in order to limitthe length of the routing, requires that eah link of the network belongs to a ring(yle) of bounded length. In [52℄, Fortz et al. onsider the 2-node onneted subgraphproblem with bounded rings. This problem onsists in �nding a minimum ost 2-nodeonneted subgraph (V, F ) suh that eah edge of F belongs to a yle of length at most
L. They desribe several lasses of faet de�ning inequalities for the assoiated polytopeand devise a Branh-and-Cut algorithm for the problem. In [51℄, Fortz et al. study theedge version of that problem. They give an integer programming formulation for theproblem in the spae of the natural design variables and desribe di�erent lasses ofvalid inequalities. They study the separation problem of these inequalities and disussBranh-and-Cut algorithm.



Chapter 2
The k-Edge-Conneted SubgraphProblem
In this hapter we onsider the k-edge-onneted subgraph problem from a polyhedralpoint of view. We �rst present an integer programming formulation for the problem.We then introdue further lasses of valid inequalities for the assoiated polytope, anddesribe su�ient onditions for these inequalities to be faet de�ning. In Chapter 3we disuss the algorithmi aspet of this study. We devise separation heuristis forthe valid inequalities and disuss some redution operations that an be used in apreproessing phase for the separation. Then we develop a Branh-and-Cut algorithmusing these results and present some omputational results. This work has led to anartile that will be published in Networks [12℄.2.1 IntrodutionGiven an undireted graph G = (V, E), an integer k ≥ 2 and a weight funtion w(.)whih assoiates with eah edge e ∈ E the weight w(e) ∈ R, the k-edge-onnetedsubgraph problem (kECSP for short) is to �nd a subgraph H = (V, F ) of G suh that∑

e∈F

w(e) is minimum.Remind that, given an edge subset F ⊆ E, the 0-1 vetor xF ∈ R
E suh that

xF (e) = 1 if e ∈ F and 0 if e ∈ E\F is alled the inidene vetor of F . Let kECSP(G)be the onvex hull of the inidene vetors of the k-edge-onneted subgraphs of G,



26 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEMthat is
kECSP(G) = onv{xF ∈ R

E | F ⊆ E and (V, F ) is a k-edge-onneted subgraph of G}.If xF is the inidene vetor of the edge set F of a k-edge-onneted subgraph of G,then xF satis�es the following inequalities:
x(e) ≥ 0 for all e ∈ E, (2.1)
x(e) ≤ 1 for all e ∈ E, (2.2)
x(δ(W )) ≥ k for all W ⊂ V, W 6= V, W 6= ∅. (2.3)Conversely, any integer solution of the system de�ned by inequalities (2.1)-(2.3) is theinidene vetor of the edge set of a k-edge-onneted subgraph of G. Constraints (2.1)and (2.2) are alled trivial inequalities and onstraints (2.3) are alled ut inequalities.We will denote by P (G, k) the polytope given by inequalities (2.1)-(2.3).2.2 Faets of kECSP(G)In this setion we present three lasses of valid inequalities for kECSP(G). We desribesome onditions for these inequalities to be faet de�ning. But �rst, we give thefollowing lemmas, whih will be frequently used in this setion.Lemma 2.2.1 If an inequality ax ≥ α is di�erent from the trivial inequalities andde�nes a faet of kECSP(G), then a(e) ≥ 0 for all e ∈ E and α > 0.Proof. Suppose that a(e) < 0 for some edge e ∈ E. As ax ≥ α is di�erent from thetrivial inequality x(e) ≤ 1, there must exist a solution F ⊆ E of the kECSP whih doesnot ontain e and suh that axF = α. Let F ′ = F ∪ {e}. Obviously, F ′ also indues asolution of the kECSP. However, sine a(e) < 0, we have that axF ′

= axF + a(e) < α,ontradition.In onsequene, a(e) ≥ 0 for all e ∈ E. Moreover, sine ax ≥ α is faet de�ning, oneshould have a(f) > 0 for at least one edge f of E. As ax ≥ α is di�erent from x(f) ≥ 0,there exists a solution F̃ of the kECSP whih ontains f and suh that axF̃ = α. Thisyields α > 0. �



2.2. FACETS OF KECSP(G) 27Lemma 2.2.2 Let G = (V, E) be a k-edge-onneted graph and e0 = u0v0 be an edgeof G suh that every ut δ(U) of G ontaining e0, exept eventually δ(u0), is suh that
|δ(U)| ≥ k + 1. If G′ is a graph obtained from G by deleting e0 and adding an edge finident to u0, then G′ is k-edge-onneted.Proof. Let δG′(U ′) be a ut of G′. If δG′(U ′) does not separate u0 and v0, then,as G is k-edge-onneted, we have that |δG′(U ′)| ≥ k. If this is not the ase and
U ′ 6= {u0}, then δG(U ′) ontains at least k + 1 edges and hene |δG′(U ′)| ≥ k. Finally,if U ′ = {u0}, sine G is k-edge-onneted and δG′(u0) = (δG(u0) \ {e0})∪ {f}, we havethat |δG′(u0)| ≥ k. �2.2.1 Odd path inequalitiesLet G = (V, E) be a (k + 1)-edge onneted graph and π = (W1, W2, V1, ..., V2p) apartition of V with p ≥ 2. Let I1 = {4r, 4r + 1, r = 1, ...,

⌈
p
2

⌉
− 1} and I2 = {2, ..., 2p−

1} \ I1. We say that π indues an odd path on�guration if1. |[Vi, Wj]| = k − 1 for (i, j) ∈ (I1 × {1}) ∪ (I2 × {2}),2. |[W1, W2]| ≤ k − 1,3. δ(Vi) = [Vi, W1]∪ [Vi−1, Vi]∪ [Vi, Vi+1] (resp. δ(Vi) = [Vi, W2]∪ [Vi−1, Vi]∪ [Vi, Vi+1])if i ∈ I1 (resp. i ∈ I2),4. δ(V1) = [W1, V1] ∪ [V1, V2] and δ(V2p) = [W1, V2p] ∪ [V2p−1, V2p] (resp. δ(V2p) =

[W2, V2p] ∪ [V2p−1, V2p]) if p is even (resp. odd) (see Figure 2.1 for k = 3 and peven).Note that by onditions 3) and 4), we have that [Vl, Vt] = ∅ for all l, t ∈ {1, ..., 2p} and
|l − t| > 1.Let C =

2p−1⋃

i=1

[Vi, Vi+1]. Thus C an be seen as an odd path of extremities V1 and V2p inthe graph Gπ. With an odd path on�guration we assoiate the inequality
x(C) ≥ p. (2.4)Inequalities of type (2.4) will be alled odd path inequalities. We have the following.
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V1

V3

V2

V4

W2W1

V5
V6

V2p V2p−1

Figure 2.1: An odd path on�guration with k = 3 and p even.Theorem 2.2.1 Inequality (2.4) is valid for kECSP(G).Proof. As |[Vi, Wj]| = k − 1 and x(δ(Vi)) ≥ k is valid for kECSP(G), for (i, j) ∈

(I1 × {1}) ∪ (I2 × {2}), we have
x([V2s−1, V2s]) + x([V2s, V2s+1]) ≥ 1 for s = 1, ..., p − 1, (2.5)
x([V2s, V2s+1]) + x([V2s+1, V2s+2]) ≥ 1 for s = 1, ..., p − 1. (2.6)By multiplying eah inequality (2.5) (resp. inequality (2.6)) orresponding to s ∈

{1, ..., p − 1} by p−s
p

(resp. s
p
) and summing these inequalities, we obtain

∑

i∈I

x([Vi, Vi+1]) +
∑

i∈I

p − 1

p
x([Vi, Vi+1]) ≥ p − 1, (2.7)where I = {2, 4, 6, ..., 2p− 2} and I = {1, ..., 2p − 1} \ I.By onsidering the ut inequality indued by W1∪V1∪(

⋃

i∈I1

Vi) (resp. W1∪V1∪(
⋃

i∈I1

Vi)∪

V2p) if p is odd (resp. even) we have
x([W1, W2]) +

∑

i∈I

x([Vi, Vi+1]) ≥ k.As |[W1, W2]| ≤ k − 1, it follows that
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1

p

∑

i∈I

x([Vi, Vi+1]) ≥
1

p
. (2.8)By summing inequalities (2.7) and (2.8) and rounding up the right hand side, we getinequality (2.4). �In what follows, we desribe neessary onditions for inequality (2.4) to be faetde�ning. For this, we �rst give a tehnial lemma.Lemma 2.2.3 Let π = (W1, W2, V1, ..., V2p), p ≥ 2, be a partition of V whih induesan odd path on�guration and F a solution of the kECSP. Let Vr, ..., Vs, with 2 ≤ r <

s ≤ 2p − 1, be a sequene of node sets of π. Then F must ontain at least ⌈s−r+1
2

⌉edges from C.Proof. As |[W1, Vi]| = k − 1 for all i ∈ {r, ..., s} ∩ I1 and |[W2, Vi]| = k − 1 for all
i ∈ {r, ..., s}∩I2, F must ontain at least one edge from eah set δ(Vi)∩C, i ∈ {r, ..., s}.Thus the statement follows. �Theorem 2.2.2 Inequality (2.4) de�nes a faet for kECSP(G) only ifa) [V1, W1] 6= ∅ and [V2p, W1] 6= ∅ (resp. [V2p, W2] 6= ∅) if p is even (resp. odd),b) [Vi, Vi+1] 6= ∅ for i = 1, ..., 2p − 1.Proof.a) Suppose for instane that p is even and [V1, W1] = ∅ (the proof is similar if either
[V2p, W1] = ∅ or p is odd and [V2p, W2] = ∅). By ontrating the sets V1, V2, W2, weobtain a smaller odd path on�guration with 2p elements. Let

x(C ′) ≥ p − 1 (2.9)be the orresponding odd path inequality. As δ(V2) = [V1, V2] ∪ [V2, V3] ∪ [V2, W2] and
|[V2, W2]| = k − 1, by the ut onstraint on V2, we have that

x([V1, V2]) + x([V2, V3]) ≥ 1 (2.10)



30 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEMis valid for kECSP(G). By adding (2.9) and (2.10), we get x(C) ≥ p, whih impliesthat (2.4) annot be faet de�ning.b) Suppose that [Vi, Vi+1] = ∅ for some i ∈ {1, ..., 2p−1}. We will show in the followin-ing that any solution F of the kECSP whose the inidene vetor xF satis�es (2.4)with equality, intersets [Vi−1, Vi] in exatly one edge. To this end, we will distinguishtwo ases.Case 1. i, i + 1 ∈ I1 (the proof is similar if i, i + 1 ∈ I2). By Lemma 2.2.3 the edgeset F ′ = F ∩ C must over the node sets V2, ..., Vi−2 by at least ⌈ i−3
2
⌉ edges and thesets Vi+1, ...V2p−1 by at least ⌈2p−i−1

2
⌉ edges. As i, i + 1 ∈ I1, and then i is even, F ′must use, in onsequene, at least ( i

2
− 1) + (p − i

2
) = p − 1 edges from C \ [Vi−1, Vi].Sine δ(Vi) = [Vi−1, Vi] ∪ [Vi, W1] and |[Vi, W1]| = k − 1, F ontains at least one edgefrom [Vi−1, Vi]. As xF satis�es (2.4) with equality, it follows that F ontains exatlyone edge from [Vi−1, Vi].Case 2. i ∈ I1 and i+1 ∈ I2 (the proof is similar if i ∈ I2 and i+1 ∈ I1). First note thatin this ase i is odd. By Lemma 2.2.3, F must over the node sets V2, ..., Vi−2 by at least

⌈ i−3
2
⌉ = i−3

2
edges from C and the node sets Vi+1, ...V2p−1 by at least ⌈2p−i−1

2
⌉ = 2p−i−1

2edges from C. Hene F uses at least i−3
2

+ 2p−i−1
2

= p − 2 edges from C. Moreover,observe that if exatly p − 2 edges of C are used by F , then these edges should bebetween onseutive node sets of the form [V2s, V2s+1], with s ∈ {1, ..., p − 1} \ { i−1
2
}.However, in this ase, in order to satisfy the ut inequality indued by the node set

W1 ∪ (
⋃

r∈I1
Vr) ∪ V2p (resp. W1 ∪ (

⋃
r∈I1

Vr)) if p is even (resp. odd), F must ontainat least one more edge from C \ [Vi−1, Vi] between two onseutive sets of the form
[V2s−1, V2s], with s ∈ {1, ..., p − 1} \ { i−1

2
}. In onsequene, F ontains at least p − 1edges from C \ [Vi−1, Vi]. As |F ∩ [Vi−1, Vi]| ≥ 1 and xF satis�es (2.4) with equality, wethen have that |F ∩ [Vi−1, Vi]| = 1.In onsequene, for any solution F ⊆ E of the kECSP, if xF satis�es (2.4) with equal-ity, it also satis�es the equation x(δ(Vi)) = k. Sine kECSP(G) is full dimensionnaland (2.4) is not a positive multiple of x(δ(Vi)) ≥ k, (2.4) annot de�ne a faet. �Now we give su�ient onditions for inequality (2.4) to be faet de�ning. For this, letus denote by Γ the set of edges of G whih are not in C, that is, Γ = E \C. Moreover,if [Vi, Vi+1] 6= ∅, we let ei denote a �xed edge of [Vi, Vi+1], for i = 1, ..., 2p − 1.



2.2. FACETS OF KECSP(G) 31Theorem 2.2.3 Inequality (2.4) de�nes a faet for kECSP(G) if the following hold.i) Condition b) of Theorem 2.2.2 holds,ii) The subgraphs G[W1], G[W2] and G[Vi], for i = 1, ..., 2p, are (k+1)-edge onneted,iii) |[W1, W2]| = k − 1, |[V1, W1]| = k and |[V2p, W1]| = k (resp. |[V2p, W2]| = k) if p iseven (resp. odd).Proof. We will show the result for p even (the proof is similar if p is odd).Let E0 =

p⋃

s=1

[V2s−1, V2s], E1 =

p−1⋃

s=1

[V2s, V2s+1], E = δ(π)\(E0∪E1), Ẽ = E\(E0∪E1∪E).Inequality (2.4) an then be written as
x(E0) + x(E1) ≥ p. (2.11)Suppose that onditions 1) - 3) above hold. We �rst give a laim that will be useful inthe proof.Claim. If D is a subset of edges whih overs the node sets V2, ..., V2p−1, ontains atleast one edge of [Vi0 , Vi0+1] for some i0 ∈ {1, 3, ..., 2p − 1} and suh that D ∩ Γ = ∅,then D ∪ Γ indues a k-edge-onneted subgraph of G.Proof. Let F = D ∪ Γ. Let G be the graph indued by F and G

′ the graph obtainedfrom G by ontrating the node sets W1, W2, V1, ..., V2p. Let w1, w2, v1, ..., v2p be thenodes of G
′ where wj (resp. vi) orresponding to Wj (resp. Vi) for j = 1, 2 (resp.

i = 1, ..., 2p). As by ondition 2), the subgraphs of G indued by W1, W2, V1, ..., V2pare (k + 1)-edge onneted, to show the laim, it su�es to show that G
′ is k-edge-onneted. Let δ

G
′(W ) be a ut of G

′.If, say, w1 ∈ W and w2 ∈ W , then [w1, w2] ⊆ δG
′(W ). If δG

′(W ) separates vi0and vi0+1, as D intersets [Vi0 , Vi0+1], and by ondition 3), |[W1, W2]| = k − 1, wehave that |δ
G

′(W )| ≥ k. If vi0 , vi0+1 ∈ W , then [{vi0, vi0+1}, w2] ⊆ δ
G

′(W ). Sine
|[{vi0 , vi0+1}, w2]| ≥ k − 1 ≥ 1, this yields |δG

′(W )| ≥ k.Now if w1, w2 ∈ W (or w1, w2 ∈ W ), then δG
′(W ) ontains at least two edge sets ofthe form [vi, wj] with (i, j) ∈ (I1 × {1}) ∪ (I2 × {2}). Sine |[vi, wj]| = k − 1, we havethat |δG

′(W )| ≥ k.
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�Let us denote inequality (2.11) by ax ≥ α and F = {x ∈ kECSP(G) | ax = α}.Let S = Γ ∪ {e2s−1, s = 1, ..., p}. By the laim above, we an see that S indues a

k-edge-onneted subgraph of G. Moreover, xS satis�es (2.11) with equality, whihimplies that F is a proper fae of kECSP(G). Now suppose that there exists a nontrivial faet de�ning inequality bx ≥ β suh that F ⊆ {x ∈ kECSP(G) | bx = β}. ByLemma 2.2.1, we have that β > 0, and hene we may suppose that β = α. As G is
(k +1)-edge onneted and thus kECSP(G) is full dimensional, it su�es to show that
b = a.Let e ∈ [V2s−1, V2s] \ {e2s−1} for some s ∈ {1, ..., p} and S1 = (S \ {e2s−1}) ∪ {e}. Bythe laim above, S1 indues a k-edge-onneted subgraph of G. Moreover, axS1 = α.It then follows that bxS1 = α, implying that

b(e) = ρ2s−1 for all e ∈ [V2s−1, V2s], for s = 1, ..., p, for some ρ2s−1 ∈ R, ρ2s−1 6= 0.(2.12)Similarly, for an edge e ∈ [V2s, V2s+1] \ {e2s} for some s ∈ {1, ..., p − 1} one anonsider the edge sets S2 = Γ ∪ (

p−1⋃

i=1

{e2i}) ∪ {e1} and S3 = (S2 \ {e2s}) ∪ {e}. We ansee by the laim above that S2 and S3 indue k-edge-onneted subgraphs of G. Sine,
axS2 = axS3 = α, it follows that bxS2 = bxS3 = α and then

b(e) = ρ2s for all e ∈ [V2s, V2s+1], for s = 1, ..., p − 1, for some ρ2s ∈ R, ρ2s 6= 0.(2.13)Consider the edge sets S4 = (S2 \ {e1}) ∪ {e2s−1} and S5 = (S2 \ {e1, e2s}) ∪

{e2s−1, e2s+1} for some s ∈ {1, ..., p − 1}. By the laim above, S4 and S5 indue k-edge-onneted subgraphs of G. Sine axS4 = axS5 = α, bxS4 = bxS5 = α and hene
b(e1) = b(e2s) = b(e2s+1), for s = 1, ..., p − 1. (2.14)From (2.12), (2.13) and (2.14), it follows that b(e) is the same for every edge e ∈ E0∪E1.Sine axS = bxS = α, we get b(e) = 1 for all e ∈ E0 ∪ E1.Now we are going to show that b(e) = 0 for all e ∈ Ẽ ∪E. For this, �rst onsider anedge f ∈ Ẽ. From ondition 2), Sf = S \ {f} indues a k-edge-onneted subgraph of
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G. Moreover, xSf satis�es (2.11) with equality. Hene axSf = α = bxSf . This impliesthat b(f) = bxS − bxSf = 0.Now let e ∈ [Vi, Wj] for (i, j) ∈ (I1∪{1, 2p}×{1})∪ (I2×{2}) and S6 = (S2 \{e1})∪

{ei−1} (resp. S6 = (S2 \ {e1}) ∪ {ei}) if i is even (resp. odd). From the laim above,we have that S6 and S ′
6 = S6 \ {e} indue k-edge-onneted subgraphs of G and thattheir inidene vetors satisfy ax ≥ α with equality. Hene b(e) = bxS6 − bxS′

6 = 0.For all e ∈ [W1, W2], by the laim above, the edge set S7 = S \ {e} indues a k-edge-onneted subgraph of G. Moreover, xS7 satis�es ax ≥ α with equality. Hene
axS7 = α and bxS7 = bxS = α. Thus we obtain b(e) = 0 for all e ∈ [W1, W2].Consequently, b(e) = 0 for all e ∈ E \C, whih terminates the proof of the theorem.
�2.2.2 Lifting proedure for odd path inequalitiesIn what follows we are going to desribe a lifting proedure for the odd path inequalities.This will permit to extend these inequalities to a more general lass of valid inequalities.But �rst we give the following lemma whih easily follows from the general liftingproedure presented in [93℄.Lemma 2.2.4 Let G = (V, E) be a graph and ax ≥ α a valid inequality for kECSP(G).Let G′ = (V, E ′) be a graph obtained from G by adding an edge e, that is E ′ = E ∪{e}.Then the inequality

ax + a(e)x(e) ≥ α (2.15)is valid for kECSP(G′) where a(e) = α−γ with γ = min{ax | x ∈ kECSP(G′) and x(e) =

1}. Moreover, if ax ≥ α is faet de�ning for kECSP(G), then inequality (2.15) is alsofaet de�ning for kECSP(G′). In addition, if edges e1, ..., ek−1, ek, ..., et are added to
G in this order and a(ek) is the lifting oe�ient of ek with respet to this order, then
a(ek) ≤ a′(ek) where a′(ek) is the lifting oe�ient of ek in any order ei1 , ..., eik−1

, ..., eitsuh that il = l for l = 1, ..., k − 1 and is = k for some s ≥ k.Theorem 2.2.4 Let G = (V, E) be a graph and π = (W1, W2, V1, ..., V2p), p ≥ 2, apartition of V whih indues an odd path on�guration. Let C, I1 and I2 be de�nedas in Setion 2.2.1. Let U1 =
⋃

i∈I1

Vi, U2 =
⋃

i∈I2

Vi and W = U2 ∪ V2p ∪ W2 (resp.
W = U2 ∪ W2) if p is odd (resp. even). Suppose that onditions 1) - 3) of Theorem



34 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM2.2.3 hold. If G′ = (V, E∪L) is a graph obtained from G by adding an edge set L, thenthe following inequality
x(C) +

∑

e∈L

a(e)x(e) ≥ p, (2.16)with
a(e) =





1 if e ∈ (
⋃

j=1,2

[Wj, U1 ∪ U2]) ∪ [W1, W2] ∪ (
⋃

j=1,2p

[Vj , U1 ∪ U2]) or
e ∈ ([V1, V2p ∪ W2] ∪ [V2p, W1 ∪ W2]) ∩ δ(W ),

2 if e ∈ [Vi, Vj], i, j ∈ {2, ..., 2p − 1} with j > i + 1 and i even, j odd,
λ if e ∈ [Vi, Vj] with i, j ∈ {2, ..., 2p − 1}, j > i + 1 and i oddor i and j have same parity,
0 otherwise,where 1 ≤ λ ≤ 2 is the lifting oe�ient obtained using the lifting proedure of Lemma2.2.4, is faet de�ning for kECSP(G′).Proof. Let us onsider the following edge subsets of L:

L1 = (
⋃

j=1,2

[Wj , U1 ∪ U2]) ∪ [W1, W2] ∪ (
⋃

j=1,2p

[Vj , U1 ∪ U2])∪

(([V1, V2p ∪ W2] ∪ [V2p, W1 ∪ W2]) ∩ δ(W )),

L2 = {[Vi, Vj], i, j ∈ {2, ..., 2p − 1}, j > i + 1, i even , j odd},
L3 = {[Vi, Vj], i, j ∈ {2, ..., 2p − 1}, j > i + 1, i odd or, i and j have the same parity},
L4 = L \ (L1 ∪ L2 ∪ L3).We will �rst show that the lifting oe�ient of the edges of L4 is equal to 0, inde-pendently of the order in whih they are added to G. Let e be an edge of L4 and letus denote by a′x ≥ α′ the lifted inequality obtained on G′. As, by our assumptions,(2.4) de�nes a faet of kECSP(G), a′x ≥ α′ also de�nes a faet of kECSP(G′). Sine
a′x ≥ α′ is di�erent from the trivial inequality x(e) ≥ 0, there must exist a solution
F ′ ⊆ E ′ of the kECSP on G′ suh that e ∈ F ′ and whose the inidene vetor satis�es
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a′x ≥ α′ with equality. Let h1, ..., hk be the edges of E between V1 and W1. Note that
a′(h1) = ... = a′(hk) = 0. We will distinguish two ases.Case 1. |[F ′ ∩ {h1, ..., hk}]| ≤ k − 1. Let hi be an edge not ontained in F ′. Let
F ′′ = (F ′ \ {e}) ∪ {hi}. Sine F ′ indues a k-edge-onneted subgraph of G′, F ′′ sois. Hene we have that a′xF ′′

= a′xF ′
− a′(e) + a′(hi) ≥ α′. This yields a′(e) ≤ a′(hi).Sine a′(hi) = 0, and by Lemma 2.2.1, a′(e) ≥ 0, we get a′(e) = 0.Case 2. {h1, ..., hk} ⊆ F ′. Here we also have that F ′′ = F ′ \ {e} indues a k-edge-onneted subgraph of G′. As a′xF ′′

= a′xF ′
−a′(e) ≥ α′, and thus a′(e) ≤ 0, it follows,by Lemma 2.2.1, that a′(e) = 0.Therefore a(e) = 0 for all e ∈ L4, and this, independently of the order in whih e isadded to G.Now we onsider the edges of L \ L4. For this, we give the following laim.Claim. a(e) ≥ 1 if e ∈ L1 ∪ L3, and a(e) ≥ 2 if e ∈ L2.Proof. We will show �rst that if we add one edge e ∈ L1 (resp. e ∈ L2) (resp.

e ∈ L3) to G, the lifting oe�ient of e in the new graph is 1 (resp. 2) (resp. 1). Forthis, let us denote by G̃ = (V, Ẽ) the graph obtained by adding the edge e, that is,
Ẽ = E ∪ {e}. Suppose �rst that e ∈ L1 and assume that, for instane, e ∈ [Wj0 , Vi0],with i0 ∈ {2, ..., 2p − 1} and even, and j0 ∈ {1, 2} (if i0 is odd, it su�es to onsiderthe path V1, ..., V2p in the opposite way). Note that any solution F̃ ⊆ Ẽ of the kECSPon G̃ must over the node sets V2, ..., Vi0−1 and Vi0+1, ..., V2p−1 by edges from C. ByLemma 2.2.3, F̃ must use at least ⌈ i0−2

2
⌉ + ⌈2p−i0−1

2
⌉ = p − 1 edges from C. Thus

γ ≥ p − 1 where γ is as de�ned in Lemma 2.2.4. Moreover, beause the onditions ofTheorem 2.2.3 are satis�ed, by the laim given in the proof of that theorem, the edgeset F̃1 = {e2, e4, ..., ei0−2}∪{ei0+1, ei0+3, ..., e2p−1}∪Γ∪{e} indues a k-edge-onnetedsubgraph of G̃. Sine F̃1 ontains e and uses exatly p− 1 edges from C, we have that
γ = p − 1. By Lemma 2.2.4, it then follows that the lifting oe�ient of e is equal to1.



36 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEMConsider now an edge e ∈ L2 and suppose that e ∈ [Vi0 , Vj0] with i0, j0 ∈ {2, ..., 2p−1},
j0 > i0+1, and i0 is even and j0 odd. If F̃ is a solution of the kECSP on G̃, then F̃ mustover the node sets V2, ..., Vi0−1, Vi0+1, ..., Vj0−1 and Vj0+1, ..., V2p−1. Thus by Lemma2.2.3, F̃ must use ⌈ i0−2

2
⌉+⌈ j0−i0−1

2
⌉+⌈2p−j0−1

2
⌉ = p−2 edges from C. Thus, γ ≥ p−2.Now let F̃2 = {e2, e4, ..., ei0−2}∪{ei0+1, ei0+3, ..., ej0−2}∪{ej0+1, ej0+3, ..., e2p−2}∪Γ∪{e}.We an see as before that F̃2 indues a k-edge-onneted subgraph of G̃ and ontainsexatly p − 2 edges from C. Sine e ∈ F̃2, we obtain that γ = p − 2, and therefore thelifting oe�ient of e equals 2.Finally, suppose that e is an edge of L3 between two non onseutive node sets

[Vi0 , Vj0] with i0, j0 ∈ {2, ..., 2p − 1}, j0 > i0 + 1, and , say, i0 is odd and j0 iseven (the proof is similar if i0 and j0 have the same parity). Here observe thatany solution F̃ ⊆ Ẽ of the kECSP on G̃ must over by edges from C the node sets
V2, ...Vi0−1, Vi0+1, ..., Vj0−1 and Vj0+1, ..., V2p−1. By Lemma 2.2.3, F̃ must then use atleast ⌈ i0−2

2
⌉ + ⌈ j0−i0−1

2
⌉ + ⌈2p−j0−1

2
⌉ = p − 1 edges from C. Thus γ ≥ p − 1. Moreover,as the edge set F̃3 = {e1, e3, ..., ei0−2} ∪ {ei0+1, ei0+1, ..., e2p−2} ∪ Γ ∪ {e} indues a k-edge-onneted subgraph of G̃ and ontains exatly p − 1 edges from C, we have that

γ = p − 1. Hene the lifting oe�ient of e in G̃ is equal to 1.Consequently the lifting oe�ient of e equals 1 (resp. 2) (resp. 1) if e ∈ L1 (resp.
e ∈ L2) (resp. e ∈ L3). By Lemma 2.2.4, we then have that a(e) ≥ 1 if e ∈ L1 ∪ L3and a(e) ≥ 2 if e ∈ L2, whih ends the proof of the laim. �In what follows, we are going to show that we also have a(e) ≤ 1 (resp. a(e) ≤ 2)(resp. 1 ≤ a(e) ≤ 2) if e ∈ L1 (resp. e ∈ L2) (resp. e ∈ L3). For this, let us onsidera sequene f1, ..., ft, t ≥ 1, of edges of L, and suppose that f1, ..., ft are the edges thatare added to G before e.Suppose �rst that e ∈ L1 and let us assume as before that e ∈ [Wj0 , Vi0] with
i0 ∈ {2, ..., 2p − 1} and even, and j0 ∈ {1, 2}. Let Ĝ = (V, Ê) be the graph where
Ê = E ∪ {f1, ..., ft, e}. Any solution F̂ ⊆ Ê of the kECSP on Ĝ must over the nodesets V2, ..., Vi0−1 and Vi0+1, ..., V2p−1 by edges from (C ∪ {f1, ..., ft}) \ L4. By Lemma2.2.3, F̂ must use at least ⌈ i0−2

2
⌉ + ⌈2p−i0−1

2
⌉ = p− 1 edges from (C ∪ {f1, ..., ft}) \ L4.Sine, by the laim above, a(f) ≥ 1 for every edge f ∈ (C ∪ {f1, ..., ft}) \ L4, we havethat γ ≥ p − 1 and hene by Lemma 2.2.4, we have that a(e) ≤ 1. As, by the laimabove a(e) ≥ 1, this implies that a(e) = 1. Moreover, this holds independently on theorder in whih e is added to G.
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Now onsider an edge e ∈ L2 and suppose that e ∈ [Vi0, Vj0], with i0, j0 ∈ {2, ..., 2p −

1}, j0 > i0 + 1, i0 even and j0 odd. Any solution F̂ ⊆ Ê of the kECSP on Ĝmust over the node sets V2, ..., Vi0−1, Vi0+1, ..., Vj0−1 and Vj0+1, ..., V2p−1 by edges from
(C∪{f1, ..., ft})\L4. By Lemma 2.2.3, F̂ must use ⌈ i0−2

2
⌉+⌈ j0−i0−1

2
⌉+⌈2p−j0−1

2
⌉ = p−1edges of (C ∪ {f1, ..., ft}) \ L4. Thus γ ≥ p − 2 and therefore a(e) ≤ 2. Sine, by thelaim above, a(e) ≥ 2, we get a(e) = 2.If e is an edge of L3, we show along the same line that 1 ≤ a(e) ≤ 2.In onsequene, a(e) = 1 if e ∈ L1, a(e) = 2 if e ∈ L2, 1 ≤ a(e) ≤ 2, whih ends theproof of the theorem.

�Observe that the lifting oe�ients of the edges other than those between two subsets
Vi and Vj suh that i, j ∈ {2, ..., 2p − 1}, j > i + 1, i is odd or i and j have the sameparity do not depend on the order of their addition in G. Inequalities (2.16) will bealled lifted odd path inequalities. As it will turn out, these inequalities are very usefulfor our Branh-and-Cut algorithm.2.2.3 F -partition inequalitiesIn [88℄, Mahjoub introdued a lass of valid inequalities for 2ECSP(G) as follows. Let
(V0, V1, ..., Vp), p ≥ 2, be a partition of V and F ⊆ δ(V0) with |F | odd. By adding theinequalities

x(δ(Vi)) ≥ 2 for i = 1, ..., p, (2.17)
− x(e) ≥ −1 for e ∈ F, (2.18)
x(e) ≥ 0 for e ∈ δ(V0) \ F, (2.19)we obtain 2x(∆) ≥ 2p−|F | where ∆ = δ(V0, V1, ..., Vp)\F . Dividing by 2 and roundingup the right hand side lead to

x(∆) ≥ p −
|F | − 1

2
. (2.20)



38 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEMInequalities (2.20) are alled F -partition inequalities. Didi Biha [38℄ extended theseinequalities for all k ≥ 2. He showed that, given a partition (V0, V1, ..., Vp), p ≥ 2, of Vand F ⊆ δ(V0) with F 6= ∅, the inequality
x(δ(V0, V1, ..., Vp) \ F ) ≥

⌈
kp − |F |

2

⌉
, (2.21)is valid for kECSP(G). Note here that |F | an be either odd or even. Also note thatif kp and |F | have the same parity, then the orresponding inequality (2.21) is impliedby the ut and the trivial inequalities.In what follows, we desribe su�ient onditions for inequalities (2.21) to be faetde�ning. Theorems 2.2.5 and 2.2.6 desribe these onditions for k odd and k even,respetively. Note that all the indies we will onsider here will be modulo 2l + 1.Theorem 2.2.5 Let G = (V, E) be a graph and k ≥ 3 an odd integer. Let π =

(W, V1, ..., V2l+1,

U1, ..., U2l+1), with l ≥ k−1
2
, be a partition of V suh thati) G[W ], G[Vi], G[Ui], i = 1, ..., 2l + 1, are (k + 1)-edge onneted,ii) |[W, Vi]| ≥ k − 2 for i = 1, ..., 2l + 1,iii) |[Ui, Ui+1]| ≥

k−1
2

for i = 1, ..., 2l + 1,iv) |[Vi, Vi+1]| ≥ 1 for i = 1, ..., 2l + 1,v) |[Vi, Ui]| ≥ 1 and |[Vi, Ui−1]| ≥ 1 for i = 1, ..., 2l + 1(see Figure 2.2 for an illustration with k = 5 and l = 2).Let Fi be an edge subset of [W, Vi] suh that |Fi| = k − 2, i = 1, ..., 2l + 1 and let
F =

2l+1⋃

i=1

Fi. Then the F -partition inequality
x(δ(π) \ F ) ≥ l(k + 2) +

⌈
k

2

⌉
+ 1, (2.22)indued by π and F , de�nes a faet of kECSP(G).
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U1

V1 V2 U2

V3

W

V5

U3

V4

U4

U5

Figure 2.2: An F -partition on�guration with k = 5Proof. First observe that, by onditions 1) - 5), G is (k + 1)-edge onneted andhene kECSP(G) is full dimensional. Let us denote inequality (2.22) by ax ≥ α andlet F = {x ∈ kECSP(G) | ax = α}. Clearly, F is a proper fae of kECSP(G). Nowsuppose that there exists a faet de�ning inequality bx ≥ α suh that F ⊆ {x ∈

kECSP(G) | bx = α}. We will show that b = a.Let ei be an edge of [Vi, Vi+1], i = 1, ..., 2l + 1, and fi and f ′
i be edges of [Vi, Ui−1]and [Vi, Ui], respetively, for i = 1, ..., 2l + 1. Let Ti be an edge subset of [Ui, Ui+1] of

k−1
2

edges, for i = 1, ..., 2l + 1.Let E0 be the set of edges not in F and having both endnodes in the same elementof π. First we will show that b(e) = 0 for all e ∈ E0 ∪ F . Let i0 ∈ {1, ..., 2l + 1} andonsider the edge sets
E1 = {ei0+2r, r = 0, ..., l} ∪ {f ′

i , i = 1, ..., 2l + 1} ∪ (
2l+1⋃

i=1

Ti),

E2 = E1 ∪ F ∪ E0.Claim. E2 indues a k-edge-onneted subgraph of G.Proof. Let G2 be the subgraph of G indued by E2. Sine by ondition 1) the graphsindued by the node sets W and Vi, Ui, i = 1, ..., 2l + 1, are (k + 1)-edge onneted, itsu�es to show that the graph obtained by ontrating W and Vi, Ui, i = 1, ..., 2l+1, is
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k-edge-onneted. Let G2 = (V 2, E2) be that graph and w ,v1, ..., v2l+1, u1, ..., u2l+1 thenodes of G2 where w orresponds to W , vi to Vi and ui to Ui, for i = 1, ..., 2l+1. Let δ(U)be a ut of G2 and let G

′

2 = (V
′

2, E
′

2) the subgraph of G2 indued by {w, v1, ..., v2l+1}and G
′′

2 = (V
′′

2, E
′′

2) the graph obtained from G2 by ontrating {w, v1, ..., v2l+1}. Notethat E
′

2 ∩E
′′

2 = ∅ and E2 = E
′

2 ∪E
′′

2. Also note that G
′

2 is (k − 1)-edge onneted andthat G
′′

2 is a k-edge-onneted wheel. Thus if U does not interset {w, v1, ..., v2l+1},then δ(U) is a ut of G
′′

2 and hene |δ(U)| ≥ k. If U intersets {w, v1, ..., v2l+1}, then
δ(U) ontains at least k−1 edges from E

′

2. However, in this ase δ(U) also ontains atleast one edge from E
′′

2. Thus we have that |δ(U)| ≥ k, and the statement follows. �Note that there are k + 1 edges inident to Vi0 in the graph indued by E2. Now,observe that for any edge e ∈ Fi0 , one an show in a similar way as in the laim abovethat E ′
2 = E2 \ {e} also indues a k-edge-onneted subgraph of G. As xE2 and xE′

2belong to F, it follows that bxE2 = bxE′
2 = α, implying that b(e) = 0 for all e ∈ Fi0 .As i0 is arbitrarily hosen, we obtain that b(e) = 0 for all e ∈ F . Moreover, as thesubgraphs indued by W , V1, ..., V2l+1, U1, ..., U2l+1 are all (k + 1)-edge onneted, thesubgraph indued by E2 \ {e}, for all e ∈ E0, is also k-edge-onneted. This yields asbefore b(e) = 0 for all e ∈ E0. Thus b(e) = 0 for all e ∈ F ∪ E0.Next, we will show that b(e) = a(e) for all e ∈ δ(π) \ F . Let gi be a �xed edge of Tiand let T ′

i = Ti \ {gi}, for i = 1, ..., 2l + 1. Consider the edge sets
E3 = {fi, f

′
i , i = 1, ..., 2l + 1} ∪ (

l⋃

i=1

T2i) ∪ T2l+1 ∪ (

l−1⋃

i=0

T ′
2i+1),

E4 = E3 ∪ F ∪ E0,

E ′
4 = (E4 \ g2l+1) ∪ {g1}.Note that g1 /∈ T ′
1 and thus g1 /∈ E4, and that g2l+1 ∈ E4. The edge sets E4 and E ′

4 anbe obtained from E2 using reursively the edge-swapping operation of Lemma 2.2.2.Hene both E4 and E ′
4 indue k-edge-onneted subgraphs of G. Moreover, we havethat xE4 and xE′

4 belong to F. Thus bxE4 = bxE′
4 = α and therefore b(g2l+1) = b(g1). As

g1 and g2l+1 are arbitrary edges of T1 and T2l+1, respetively, it follows that b(e) = b(e′)for all e ∈ T1 and e′ ∈ T2l+1. Moreover, we have that T1 and T2l+1 are arbitrary subsetsof [U1, U2] and [U2l+1, U1], respetively. This implies that b(e) = b(e′) for all e ∈ [U1, U2]and e′ ∈ [U2l+1, U1]. Consequently, by symmetry, we get
b(e) = ρ for all e ∈ [Ui, Ui+1], i = 1, ..., 2l + 1, (2.23)for some ρ ∈ R.
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E5 = (E4 \ {f1}) ∪ {e2l+1}.Using Lemma 2.2.2 and the fat that E4 indues a k-edge-onneted subgraph of G,we have that E5 indues a k-edge-onneted subgraph of G. Moreover, xE5 belongsto F, implying that bxE4 = bxE5 = α. Hene b(f1) = b(e2l+1). In a similar way,we an show that b(f ′

2l+1) = b(e2l+1). As f1, f ′
2l+1 and e2l+1 are arbitrary edges of

[U2l+1, V1], [V2l+1, U2l+1] and [V2l+1, V1], respetively, we obtain that b(e) is the same forall e ∈ [U2l+1, V1]∪ [V2l+1, U2l+1]∪ [V2l+1, V1]. By exhanging the roles of V2l+1, V1, U2l+1and Vi, Vi+1, Ui, for i = 1, ..., 2l, we obtain by symmetry that
b(e) = ρ′

i for all e ∈ [Ui, Vi] ∪ [Vi, Vi+1] ∪ [Vi+1, Ui], (2.24)
i = 1, ..., 2l + 1, for some ρ′

i ∈ R.Consider the edge set
E ′

5 = (E4 \ {f1}) ∪ {e1}.Similarly, we an show that E ′
5 indues a k-edge-onneted subgraph of G. As xE4 and

xE′
5 belong to F, it follows in a similar way that b(e1) = b(f1). From (2.24), we havethat ρ′

1 = ρ′
2l+1. By symmetry, it then follows that ρ′

i = ρ′
j for i, j = 1, ..., 2l + 1, i 6= j,and therefore

b(e) = ρ′ for all e ∈ [Ui, Vi] ∪ [Vi, Vi+1] ∪ [Vi+1, Ui], (2.25)for i = 1, ..., 2l + 1, for some ρ′ ∈ R.Let e ∈ ([V2l+1, W ] \F2l+1)∪ [V2l+1, Vj], j ∈ {2, ..., 2l− 1}. As before, we an observethat E6 = (E4\{f
′
2l+1})∪{e} indues a k-edge-onneted subgraph of G. Sine xE6 ∈ F,this implies that bxE6 = bxE4 = α and hene b(e) = b(f ′

2l+1). By (2.25), we then obtainthat b(e) = ρ′ for all e ∈ ([V2l+1, W ] \ F2l+1) ∪ [V2l+1, Vi] for i ∈ {2, ..., 2l − 1}. Byexhanging the roles of V2l+1 and Vi, i = 1, ..., 2l, we obtain by symmetry that b(e) = ρ′for all e ∈ ([Vi, W ]\Fi)∪ [Vi, Vj], i = 1, ..., 2l+1 and j ∈ {1, ..., 2l+1} \ {i−1, i, i+1}.For any edge e between U2l+1 and either W , Uj , j ∈ {1, ..., 2l + 1} \ {1, 2l, 2l + 1}, or
Vt, t ∈ {1, ..., 2l + 1} \ {1, 2l + 1}, we an show, using Lemma 2.2.2 and the fat that
E4 indues a k-edge-onneted subgraph of G, that

E7 = (E4 \ {f
′
2l+1, f1}) ∪ {e, e2l+1}also indues a k-edge-onneted subgraph of G. Sine xE4 and xE7 belong to F, wehave that bxE7 = bxE4 = α and b(f ′

2l+1) + b(f1) = b(e) + b(e2l+1). As by (2.25),
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b(f ′

2l+1) = b(f1) = b(e2l+1) = ρ′, we get b(e) = ρ′. Here again, by exhanging the rolesof U2l+1 and Ui, i = 1, ..., 2l, we obtain that b(e) = ρ′ for all e ∈ [Ui, W ]∪[Ui, Uj]∪[Ui, Vt],
i = 1, ..., 2l + 1, j ∈ {1, ..., 2l + 1} \ {i, i + 1} and t ∈ {1, ..., 2l + 1} \ {i − 1, i, i + 1}.As xE2 and xE4 belong to F, we have that bxE2 = bxE4 = α. Thus from (2.23) and(2.25), we obtain that ρ = ρ′, and in onsequene, the edges of E \ (E0 ∪ F ) have allthe same oe�ient in bx ≥ α. Sine axE2 = bxE2 = α, this yields b(e) = 1 for all
e ∈ E \ (E0 ∪ F ).Thus we obtain that b = a, whih ends the proof of the theorem. �We now desribe speial ases in whih inequalities (2.21) de�ne faets when k is even.Consider a graph G = (V, E) and an even integer k = 2q with q ≥ 1, a generalized odd-wheel on�guration is given by an integer l ≥ 1, a set of positive integers {p1, ..., p2l+1}and a partition π = (V0, V

s
i , i = 1, ..., 2l + 1, s = 0, ..., pi) of V suh thati) G[V0] and G[V s

i ] are (k + 1)-edge onneted, for s = 1, ..., pi and i = 1, ..., 2l + 1,ii) |[V 0
i , V 0

i+1]| ≥ 2q for i = 1, ..., 2l + 1,iii) |[V s
i , V s+1

i ]| ≥ 2q for s = 0, ..., pi and i = 1, ..., 2l + 1,iv) [V s
i , V t

i ] = ∅ for s, t ∈ {1, ..., pi}, |s − t| > 1 and (s, t) 6= (0, pi + 1), and i =

1, ..., 2l + 1,v) [V s
i , V t

t ] = ∅ for s ∈ {1, ..., pi}, t ∈ {1, ..., pt}, i, t ∈ {1, ..., 2l+1}, i 6= t (see Figure2.3).Let F 0
i be an edge subset of [V0, V

pi

i ] of q (resp. q − 1) edges if q is odd (resp. even)and F =

2l+1⋃

i=1

F 0
i .With a generalized odd-wheel on�guration with q odd (resp. even) we assoiate thefollowing F -partition inequality indued by the partition π and F ,

x(δ(π) \ F ) ≥ q

2l+1∑

i=1

pi + ql +
q + 1

2
,

(resp. x(δ(π) \ F ) ≥ q
2l+1∑

i=1

pi + (q + 1)l +
q + 2

2
).

(2.26)
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edges of F

edges of δ(π) \ F

V 0

5

V 0

1

V 1

1

V 2

2

V 1

2

V 0

2

V 2

3
V 2

4

V 1

4

V 0

4
V 0

3

V 1

3

V 2

5

V 1

5

V0

Figure 2.3: A generalized odd-wheel on�guration with k = 4Inequalities of type (2.26) will be alled generalized odd-wheel inequalities. We havethe following theorem given without proof, sine it follows the same line as that ofTheorem 2.2.5Theorem 2.2.6 Inequalities (2.26) de�ne faets of kECSP(G).2.2.4 SP -partition inequalitiesIn [21℄, Chopra introdues a lass of valid inequalities for the kECSP when the graph
G is outerplanar, k is odd, and eah edge an be used more than one. Let G = (V, E)be an outerplanar graph and k ≥ 1 an odd integer. He showed that if π = (V1, ..., Vp),
p ≥ 2, is a partition of V , then the inequality

x(δ(V1, ..., Vp)) ≥

⌈
k

2

⌉
p − 1, (2.27)is valid for kECSP(G).Didi Biha and Mahjoub [40℄ extended this result for general graphs and when eahedge an be used at most one. They showed that if G is a graph and π = (V1, ..., Vp),

p ≥ 2, is a partition of V suh that Gπ is series-parallel and k is odd, then inequality



44 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM(2.27) is valid for kECSP(G). They alled inequalities (2.27) SP -partition inequalities(SP stands for series-parallel). They also desribed neessary onditions for inequality(2.27) to be faet de�ning, and showed that if G is series-parallel and k is odd, then
kECSP(G) is de�ned by the trivial, ut and SP -partition inequalities. Further on-ditions for inequalities (2.27) to be faet de�ning are given in the following theorems.But before, we give the next two lemmas whih desribe strutural properties of thesolutions of the kECSP whih satisfy inequalities (2.27) with equality. Note that, inthe following results, the indies are taken modulo p.Lemma 2.2.5 [40℄ Let x ∈ P (G, k) and π = (V1, ..., Vp), p ≥ 2, a partition of V whihindues a series-parallel graph. If the SP -partition inequality indued by π is tight for
x, then

x([Vi, Vj]) ≤

⌈
k

2

⌉
, for all i, j ∈ {1, ..., p}, i 6= j. (2.28)Moreover, if (2.28) is tight for x for a given i and j with i < j, then the partition π′obtained by ontrating Vi and Vj is also tight for x.Lemma 2.2.6 Let x be an integer solution of P (G, k) and π = (V1, ..., Vp), p ≥ 2, bea partition of V suh that Gπ is series-parallel. Let also t ∈ {1, ..., p}, suh that theset Vt is adjaent to exatly two elements of π, say Vt−1 and Vt+1. Then x satisi�es atleast one of these inequalities

x([Vt, Vj0]) ≥

⌈
k

2

⌉ with j0 ∈ {t − 1, t + 1}. (2.29)Moreover, if x satisi�es with equality the inequality (2.27) indued by π, then
x([Vt, Vj0]) =

⌈
k

2

⌉
.Proof. Let x ∈ R

E be an integer solution of P (G, k). Suppose, w.l.o.g., that
x([Vt, Vt−1]) ≥ x([Vt, Vt+1]) and that j0 = t − 1. As x ∈ P (G, k), we have that

x(δ(Vt)) = x([Vt, Vt−1]) + x([Vt, Vt+1]) ≥ k.As x is integer, this yields x([Vt, Vt−1]) ≥
⌈

k
2

⌉.Now if x satis�es with equality the SP -partition inequality indued by π, then, byLemma 2.2.5, x([Vt, Vt−1]) ≤
⌈

k
2

⌉, implying, together with the previous result, that
x([Vt, Vt−1]) =

⌈
k

2

⌉
.
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�Theorem 2.2.7 Let G = (V, E) be a (k + 1)-edge onneted graph and k ≥ 3 an oddinteger. Let π = (V1, ..., Vp), p ≥ 2, be a partition of V suh that Gπ is series-parallel.The SP -partition inequality indued by π de�nes a faet of kECSP(G), di�erent fromthe trivial inequalities, only ifi) Gπ is 2-node-onneted,ii) Gπ is outerplanar,iii) |[Vi, Vi+1]| ≥

⌈
k
2

⌉ for i = 1, ..., p.Proof.i) First observe that Gπ is k-node-onneted with 1 ≤ k ≤ 2. In fat, sine Gπ isseries-parallel, it ontains a node whih is adjaent to exatly two other nodes. Thisimplies that the node-onnetivity of Gπ is at most 2. Moreover, as G is onneted,
Gπ is also onneted. Thus k ≥ 1. We will show in the following that in fat k = 2.Suppose, on the ontrary, that k = 1, that is Gπ is 1-node-onneted. Thus there existsa node vi0 ∈ Vπ and two node sets W1 and W2 of Vπ suh that ({vi0}, W1, W2) forms apartition of Vπ and [W1, W2] = ∅ (see Figure 2.4).

vi0

W1 W2Figure 2.4: A 1-node-onneted graphLet pi = |Wi|, i = 1, 2, and π1 (resp. π2) be the partition obtained by ontratingthe sets of π whih orrespond to the nodes of W2 (resp. W1) toghether with thoseorresponding to vi0 . Clearly, Gπi
, i = 1, 2, is series-parallel. Thus, the followinginequalities are valid for kECSP(G)

x(δ(πi)) ≥

⌈
k

2

⌉
(pi + 1) − 1, for i = 1, 2. (2.30)



46 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEMAs [W1, W2] = ∅, by summing the inequalities (2.30), we get
x(δ(π)) ≥

⌈
k

2

⌉
(p1 + p2 + 2) − 2 =

⌈
k

2

⌉
p − 1 +

⌈
k

2

⌉
− 1. (2.31)As k ≥ 3, we have that ⌈

k
2

⌉
− 1 > 0, implying that the inequality (2.27) indued by

π is dominated by those indued by π1 and π2, and hene, annot de�ne a faet.ii) Suppose that Gπ is series-parallel but not outerplanar, that is one annot draw Gπin the plane as a yle with non rossing hords. Thus, there exist two onseutivesets of π, say Vi and Vi+1, suh that there exist two sets, W 1
i , W 2

i , of elements of πsatisfying the following onditions (see Figure 2.5)a) [W 1
i , W 2

i ] = ∅,b) [W j
i , Vi] 6= ∅ 6= [W j

i , Vi+1] for j = 1, 2.
V1

V3
V6

V5
V4

V2

W1

1

W2

4 W1

4

W2

1

Figure 2.5: A partition induing a series-parallel but not outerplanar graphLet I = {i ∈ {1, ..., p} | Vi, Vi+1 ∈ π and there exist W 1
i , W 2

i ⊆ Vπ satisfyingConditions a) and b)}. Hene, I 6= ∅. Let π′ be the partition obtained by ontrating



2.2. FACETS OF KECSP(G) 47together the sets Vi, Vi+1, W 1
i , W 2

i , for every i ∈ I. Clearly, Gπ′ is outerplanar. Let
p1

i (resp. p2
i ) be the number of elements of π that are inluded in W 1

i (resp. W 2
i ), and

pi = p1
i + p2

i . Also let r =
∑

i∈I

pi and πW j
i
, i ∈ I, j ∈ {1, 2}, be the partition obtainedfrom π by ontrating together every set of π whih is not in W j

i (see Figure 2.6).
V2V1

V3

V5
V4

V6

partition π′

V2V1

V6
V3

V4V5 partition πW2
1Figure 2.6: Two partitions π′ and πW j

iObviously, the graph Gπ
W

j
i

is series-parallel. Thus, the following inequalities are validfor kECSP(G),
x(δ(π′)) ≥

⌈
k

2

⌉
(p − r − |I|) − 1 (inequality (2.27) indued by π′), (2.32)

x(δ(πW 1
i
)) ≥

⌈
k

2

⌉
(p1

i + 1) − 1, for all i ∈ I (inequality (2.27) indued by πW 1
i
),(2.33)

x(δ(πW 2
i
)) ≥

⌈
k

2

⌉
(p2

i + 1) − 1, for all i ∈ I (inequality (2.27) indued by πW 2
i
,(2.34)

x([Vi, Vi+1]) ≥ 0 (trivial inequalities). (2.35)By summing these inequalities, we get
x(δ(π)) ≥

⌈
k

2

⌉
p − 1 + |I|(

⌈
k

2

⌉
− 2). (2.36)If k = 3, the right hand side of (2.36) is the same as that of (2.27) indued by

π. Therefore inequality (2.27) is redundant with respet to (2.32), (2.33), (2.34) and(2.35), and hene annot de�ne a faet.



48 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEMIf k ≥ 4, sine |I| ≥ 1, the right hand side of (2.36) is greater than that of (2.27).Therefore, (2.27) is dominated by (2.32), (2.33), (2.34) and (2.35), and hene annotde�ne a faet.iii) Let ax ≥ α denotes the SP -partition inequality indued by π and suppose that thisinequality de�nes a faet of kECSP(G) di�erent from the trivial inequalities. Supposethat there exists an integer i ∈ {1, ..., p} suh that |[Vi, Vi+1]| ≤
k−1
2
. Let ei be a �xededge of [Vi, Vi+1]. As ax ≥ α is di�erent from inequality x(ei) ≤ 1, there exists asolution x ∈ kECSP(G) suh that ax = α and x(ei) = 0. We distinguish two ases.Case 1. The set Vi or Vi+1 is exatly adjaent to two elements of π. W.l.o.g. we willsuppose that Vi is adjaent to Vi−1 and Vi+1 only. As |[Vi, Vi+1]| ≤
k−1
2

and x(ei) = 0,we have x([Vi, Vi+1]) ≤
k−1
2

− 1 and x([Vi−1, Vi]) ≥
k+1
2

+ 1, whih ontradits Lemma2.2.5.Case 2. The sets Vi and Vi+1 are both adjaent to at least three elements of π (seeFigure 2.7).
V2

V3

V6

V5

V1

V7

V4

Figure 2.7: The sets V1 and V2 are both adjaent to at least three elements of πObserve that, as Gπ is outerplanar and hene series-parallel, one an obtain from π atwo-size partition by applying repeatidly the following operation. Let πj = (V j
1 , ..., V j

pj
)be a SP -partition of G and an element V j

i0
inident to exatly two elements V j

i0−1 and
V j

i0+1 of πj . By Lemma 2.2.6, we have either x([V j
i0
, V j

i0−1]) = k+1
2

or x([V j
i0
, V j

i0+1]) =
k+1
2
. W.l.o.g., we will suppose that x([V j

i0
, V j

i0−1]) = k+1
2

sine i0 − 1 and i0 + 1 playthe same role. Then, the operation onsists in ontrating the sets V j
i0−1 and V j

i0
and



2.2. FACETS OF KECSP(G) 49onsidering the partition πj+1 = (V j+1
1 , ..., V j+1

pj+1
) where

V j+1
i = V j

i for i = 1, ..., i0 − 2,

V j+1
i0−1 = V j

i0−1 ∪ V j
i0
,

V j+1
i = V j

i+1 for i = i0, ..., pj − 1.We will say that V j
i0

is merged with V j
i0−1. Note that eah partition πj indues anouterplanar subgraph of G and that we apply p − 2 times the operation to obtain atwo-size partition from π. Also note that, by Lemma 2.2.5, the SP -partition inequalityindued by eah partition πj is tight for x.Let πj0 be the �rst partition obtained by the appliation of this proedure and suhthat there exists a node set V j0

r of πj0 whih is adjaent to exatly two elements, say
V j0

r−1 and V j0
r+1, and suh that either Vi ⊆ V j0

r or Vi+1 ⊆ V j0
r . W.l.o.g., we will supposethat Vi ⊆ V j0

r and Vi+1 ⊆ V j0
r+1. Remark that πj0 is obtained by the appliation ofthe proedure to πj0−1 and V j0−1
s , for some s ∈ {1, ..., pj0−1}, with V j0−1

s adjaent toexatly two elements of πj0−1.Sine πj0 is the �rst partition that we have meet during the suessive applia-tions of the proedure and whih satis�es the above ondition, the partition πj0−1 =

(V j0−1
1 , ..., V j0−1

pj0−1
) is neessarily suh that1. V j0−1

s is adjaent to exatly two elements V j0−1
s−1 and V j0−1

s+1 ,2. Vi ⊆ V j0−1
s−1 and Vi+1 ⊆ V j0−1

s+2 ,3. V j0−1
s−1 is adjaent to exatly three elements and V j0−1

s+2 is adjaent to at least threeelements.One an suppose, w.l.o.g., that V j0−1
s has been merged with V j0−1

s−1 to obtain πj0 (seeFigure 2.8).
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V j0−1

s+2 = V j0
r+1

V j0−1
s+1 = V j0

r

V j0−1
s

V j0−1
s−1

V j0−1
s+3 = V j0

r+2

V j0−1
s+4 = V j0

r+3

V j0
r−1 = V j0−1

s ∪ V j0−1
s−1

V2

V3

V6

V5

V4

V1

V7

Figure 2.8: Partitions πj0−1 and πj0.Now, sine by assumption Vi ⊆ V j0
r and Vi+1 ⊆ V j0

r+1, we have that |[V j0
r , V j0

r+1]| ≥

|[Vi, Vi+1]|. We are going to show that in fat |[V j0
r , V j0

r+1]| = |[Vi, Vi+1]|. Suppose theontrary, that is to say that there exists an edge e ∈ [V j0
r , V j0

r+1]\[Vi, Vi+1]. Clearly, thereexist two elements Vt and Vt′ of π suh that e ∈ [Vt, Vt′ ] and Vt ⊆ V j0
r and Vt′ ⊆ V j0

r+1.Sine Gπ is outerplanar, and hene its nodes an be drawn on a yle with no rossinghords, and sine Vi and Vi+1 are onseutive on this yle, the node set Vt omes before
Vi and Vt′ omes after Vi+1 on this yle (see Figure 2.9 for an illustration).
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V
j0

r−1 = V
j0−1

s ∪ V
j0−1

s−1

V
j0−1

s+3 = V
j0

r+2

V
j0−1

s+4 = V
j0

r+3

V
j0−1

s+2 = V
j0

r+1

V
j0−1

s+1 = V
j0
r

V
j0−1

s

V
j0−1

s−1

V2

V3

V6

V5

V4

V1

V7

Figure 2.9: An edge of e ∈ [V j0
r , V j0

r+1] \ [V1, V2]. Here e ∈ [Vt, Vt′] with t = 7 and t′ = 3.However, in this situation, any edge e ∈ [Vt, Vt′ ] is a hord whih neessarily rossesthe edges of δ(Vi∪Vi+1) (see Figure 2.9), ontraditing the fat that Gπ is outerplanar.Thus |[V j0
r , V j0

r+1]| = |[Vi, Vi+1]|. Therefore, as |[Vi, Vi+1]| ≤
k−1
2

and x(ei) = 0, we havethat x([V j0
r , V j0

r+1]) ≤ k−1
2

− 1 and x([V j0
r , V j0

r−1]) ≥ k+1
2

+ 1, whih ontradits Lemma2.2.5 and ends the proof. �The following theorem gives some su�ient onditions for inequalities (2.27) to befaet de�ning.Theorem 2.2.8 Let G = (V, E) be a graph and k ≥ 3 an odd integer. Let π =

(V1, ..., Vp), p ≥ 2, be a partition of V suh that Gπ is outerplanar and 2-node-onneted.Then the SP -partition inequality indued by π is faet de�ning for kECSP(G), if thefollowing onditions holdi) G[Vi] is (k + 1)-edge onneted for i = 1, ..., p,ii) |[Vi, Vi+1]| ≥
⌈

k
2

⌉, i = 1, ..., p(see Figure 2.10 for an illustration with k = 3).
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V1

V2
V6

V4

V3
V5

Figure 2.10: An outerplanar on�guration with k = 3Proof. Note that sine Gπ is outerplanar and Conditions 1) and 2) hold, G is
(k + 1)-edge onneted. It then follows that kECSP(G) is full dimensional. Letus denote by ax ≥ α the SP -partition inequality indued by π and let F = {x ∈

kECSP(G) | ax = α}. Clearly, F is a proper fae of kECSP(G). Now suppose thatthere exists a faet de�ning inequality bx ≥ α di�erent from the trivial inequalitiessuh that F ⊆ {x ∈ kECSP(G) | bx = α}. We will show as before that b = a.Let Ti be an edge subset of [Vi, Vi+1], i = 1, ..., p, of k+1
2

edges and let T ′
i = Ti \ {gi},where gi is a �xed edge of Ti. Consider

E0 =

p⋃

i=1

E(Vi),

E1 = (

p⋃

i=1

Ti) \ {gi0} for some i0 ∈ {1, ..., p},

E2 = E1 ∪ E0.Note that gi0 /∈ E2 and gi0+1 ∈ E2. Sine by Condition 1) the subgraphs indued bythe node sets V1, ..., Vp are (k + 1)-edge onneted, it is not hard to see that E2 and
E ′

2 = (E2 \ {gi0+1}) ∪ {gi0} indue k-edge-onneted subgraphs of G. Sine xE2 and
xE′

2 belong to F, we have that bxE2 = bxE′
2 = α and hene b(gi0) = b(gi0+1). As gi0 and

gi0+1 are arbitrary edges of Ti0 and Ti0+1, respetively, it follows that b(e) = b(e′) for all
e ∈ Ti0 and e′ ∈ Ti0+1. Moreover, sine Ti0 and Ti0+1 are arbitrary subsets of [Vi0 , Vi0+1]and [Vi0+1, Vi0+2], respetively, we obtain that b(e) = b(e′) for all e ∈ [Vi0 , Vi0+1] and



2.2. FACETS OF KECSP(G) 53
e′ ∈ [Vi0+1, Vi0+2], i0 = 1, ..., p. Consequently, by symmetry, we get

b(e) = b(e′) for all e, e′ ∈

p⋃

i=1

[Vi, Vi+1]. (2.37)Now let e ∈ [Vi0, Vj0], i0, j0 ∈ {1, ..., p} with |i0 − j0| > 1. Note that T0 = Tp,
T−1 = Tp−1 and T ′

0 = T ′
p. Consider the edge sets

E4 = (E2 \ {gi0−1}) ∪ {e},

E ′
4 = (E4 \ {e}) ∪ {gi0}.Using Lemma 2.2.2 and the fat that E2 indues a k-edge-onneted subgraph of G,we an see that E4 and E ′

4 indue k-edge-onneted subgraphs of G. Sine xE4 and
xE′

4 belong to F, it follows that bx4 = bxE′
4 = α, and hene b(e) = b(gi0). By (2.37)this yields

b(e) = b(e′) for all e, e′ ∈ δ(π).Sine axE2 = bxE2 = α, we obtain that b(e) = 1 for all e ∈ δ(π).Next, we will show that b(e) = 0 for all e ∈ E0. Consider the edge set
E5 = E2 \ {e} for some e ∈ E0.Sine G[Vi], i = 1, ..., p, are (k + 1)-edge onneted, E5 indues a k-edge-onnetedsubgraph of G. As xE2 and xE5 belong to F, we have that bxE2 = bxE5 = α, and thus

b(e) = 0 for all e ∈ E0.In onsequene we get b = a and the proof is omplete. �Chopra [21℄ desribed a lifting proedure for inequalities (2.27) whih an be pre-sented as follows. Let G = (V, E) be a graph and k ≥ 3 an odd integer. Let
G′ = (V, E∪L) be a graph obtained from G by adding an edge set L. Let π = (V1, ..., Vp)be a partition of V suh that Gπ is series-parallel. Then the following inequality is validfor kECSP(G′)

x(δG(V1, ..., Vp)) +
∑

e∈L∩δG′ (V1,...,Vp)

a(e)x(e) ≥

⌈
k

2

⌉
p − 1, (2.38)



54 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEMwhere a(e) is the length (in terms of edges) of a shortest path in Gπ between theendnodes of e, for all e ∈ L ∩ δG′(V1, ..., Vp).We will all inequalities of type (2.38) lifted SP -partition inequalities. Chopra [21℄also showed that, when G is outerplanar, inequality (2.38) de�nes a faet of kECSP(G′)if G is maximal outerplanar, that is to say G is outerplanar and if we add a new edgein G the new graph is not outerplanar. In the following we show that under the sameonditions, an inequality of type (2.38) also de�nes a faet of kECSP(G).Before this, we give the following lemma whose proof an be found in [21℄.Lemma 2.2.7 [21℄ Let G = (V, E) be a maximal outerplanar graph whih is 2-nodeonneted. Let u, v be two nodes of G and P1 and P2 two node-disjoint paths between
u and v. Also let U = {u0, ..., ur1}, r1 ≥ 2 and W = {w0, ..., wr2}, r2 ≥ 2, the nodesets of P1 and P2 respetively, with u0 = w0 = u and ur1 = ur2 = v. Remark that
U ∩ W = {u, v} and V = U ∪ W . If l ≥ 2 is the length of a shortest path between uand v in G, then there exists at least l− 1 egdes e = uiwi suh that ui ∈ U \ {u, v} and
wi ∈ W \ {u, v}.Theorem 2.2.9 Let G = (V, E) be a graph and π = (V1, ..., Vp), p ≥ 2, be a partitionof V suh that Gπ = (Vπ, Eπ) is outerplanar. Let G = (V, E) be a graph suh that
E = E ∪ {e1, ..., el}, l ≥ 1. The lifted SP -partition inequality indued by π on Gde�nes a faet of kECSP(G) if the following onditions holds.1. Gπ is 2-node-onneted and maximal outerplanar,2. |[Vi, Vi+1]| ≥

⌈
k
2

⌉, i = 1,...,p, (modulo p),3. G[Vi] is (k + 1)-edge onneted for all i = 1, ..., p.Proof. Note that if Conditions 1)-3) hold, then G and G are both (k + 1)-edgeonneted. It then follows that kECSP(G) is full dimensional.Let us denote by ax ≥ α, the lifted SP -partition inequality indued by π on G and
F = {x ∈ kECSP(G) | ax = α}. By Conditions 1)-3), the restrition of ax ≥ α to Gde�nes a faet of kECSP(G). Thus, F 6= ∅ and is a proper fae of kECSP(G). Nowsuppose that there exists a faet de�ning inequality bx ≥ α di�erent from the trivialinequalities suh that F ⊆ {x ∈ kECSP(G) | bx = α}. We will show that b = a.



2.2. FACETS OF KECSP(G) 55Let Vπ = {v1, ..., vp}, where vi orresponds to the set Vi, i = 1, ..., p, and let Gπ =

(Vπ, Eπ) be the subgraph of G indued by π. Note that Eπ ⊆ Eπ. Sine Conditions1)-3) hold, by Theorem 2.2.8, the SP -partition inequality indued by π on G de�nes afaet of kECSP(G). Using a proof similar to that of Theorem 2.2.8, one an show that
b(e) = 0, for all e ∈ (

p⋃

i=1

E(Vi)), and b(e) = 1, for all e ∈ Eπ. In the following, we aregoing to show that b(e) = a(e) for all e ∈ {e1, ..., el}. Reall that for all e ∈ Eπ \ Eπ,
a(e) is the length of a shortest path in Gπ between the endnodes of e.Let Ti be an edge subset of [Vi, Vi+1], i = 1, ..., p, of k+1

2
edges and T ′

i = Ti \ {gi},where gi is a �xed edge of Ti. Let e = uv ∈ {e1, ..., el} and P1 and P2 be two pathsin Gπ between u and v. Also let r be the length of a shortest path between u and
v in Gπ. Let U and W denote the node sets of P1 and P2 respetively. By Lemma2.2.7, there exist r − 1 edges fi ∈ Eπ, i ∈ {1, ..., r − 1}, whose endnodes are in U and
W , respetively. We let wi0 = u and wi0 , ..., wi0+r−1 be the endnodes of the edges fi,
i = 1, ..., r − 1, in W .Let

E1 = {f1, ..., fr−1} ∪ (
r−1⋃

j=0

T ′
i0+j) ∪ (

i0−1⋃

i=1

Ti) ∪ (

p⋃

i=i0+r

Ti) ∪ (

p⋃

i=1

)E(Vi).Obviously, E1 indues a solution of the kECSP on G and its inidene vetor, xE1,satis�es ax ≥ α with equality. Let gi ∈ Ti, for i ∈ {1, ..., p} \ {i0, ..., i0 + r − 1}, andonsider the edge set
E2 = (E1 ∪ {e}) \ {gi, i = i0 − r, ..., i0 − 1}.It is not hard to see that E2 indues a solution of the kECSP on G. Moreover, xE2satis�es ax ≥ α with equality. This implies that bxE1 = bxE2 = β. Thus,

bxE2 = bxE1 + b(e) −
i0−1∑

i=i0−r

b(gi).Sine gi ∈ Eπ, i = i0 − r, ...i0 − 1, and hene b(gi) = 1, we have that b(e) = r.Therefore, for an edge e ∈ {e1, ..., el}, b(e) = a(e).From this, we get b(e) = a(e), for all e ∈ E and hene, we have b = a, whih endsthe proof of the theorem. �



56 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM2.2.5 Partition InequalitiesIn this setion we present a further lass of inequalities, valid for kECSP(G), introduedby Grötshel et al. in [66℄, that generalizes the ut inequalities. These inequalities,alled partition inequalities, are de�ned as follows.Let π = (V1, ..., Vp), p ≥ 3, be a partition of V . The partition inequality indued by
π is given by

x(δ(V1, ..., Vp)) ≥

⌈
kp

2

⌉
. (2.39)If kp is even, then inequality (2.39) is redundant with respet to the ut inequalities.Grötshel et al. [66℄ gave su�ient onditions for the partition inequalities (2.39) tobe faet de�ning.Note that the partition inequalities are not a speial ase of the F -partition in-equalities. In fat, if we onsider a partition π = (V0, V1, ..., Vp), p ≥ 2, the partitioninequality indued by π is

x(δ(V0, V1, ..., Vp)) ≥

⌈
k(p + 1)

2

⌉
. (2.40)However the F -partition inequality indued by π and F = ∅ is given by

x(δ(V0, V1, ..., Vp)) ≥

⌈
kp

2

⌉
. (2.41)One an remark that inequality (2.40) dominates inequality (2.41).2.3 Redution operationsIn this setion, we are going to desribe some graph redution operations whih will beutile for our Branh-and-Cut algorithm. These operations are based on the onept ofritial extreme points of P (G, k) introdued by Fonlupt and Mahjoub [49℄ for k = 2and extended by Didi Biha and Mahjoub [39℄ for k ≥ 3.2.3.1 DesriptionBefore desribing these operations, we shall �rst introdue some notation and de�nition.Let G = (V, E) be a graph and k ≥ 2 an integer. If x is a solution of P (G, k), we will



2.3. REDUCTION OPERATIONS 57denote by E0(x), E1(x) and Ef (x) the sets of edges e ∈ E suh that x(e) = 0, x(e) = 1and 0 < x(e) < 1, respetively. We also denote by Cd(x) the set of degree tight uts
δ(u) suh that δ(u) ∩ Ef(x) 6= ∅, and by Cp(x) the set of proper tight uts δ(W ) with
δ(W ) ∩ Ef(x) 6= ∅. Let x be an extreme point of P (G, k). Thus there is a set of uts
C∗

p(x) ⊆ Cp(x) suh that x is the unique solution of the system
S(x)





x(e) = 0 for all e ∈ E0(x);

x(e) = 1 for all e ∈ E1(x);

x(δ(u)) = k for all δ(u) ∈ Cd(x);

x(δ(W )) = k for all δ(W ) ∈ C∗
p(x).Note that the system S(x) annot ontain an equation x(δ(W )) = k suh that δ(W )∩

Ef (x) = ∅. Suh an equation is redundant with respet to x(e) = 0, e ∈ E0(x), and
x(e) = 1, e ∈ E1(x).Suppose that x is frational. Let x′ be a solution obtained by replaing some (but atleast one) frational omponents of x by 0 or 1 (and keeping all the other omponentsof x unhanged). If x′ is a point of P (G, k), then it an be written as a onvexombination of extreme points of P (G, k). If y is suh an extreme point, then y is saidto be dominated by x, and we write x ≻ y. Note that if x dominates y, then {e ∈

E | 0 < y(e) < 1} ⊂ {e ∈ E | 0 < x(e) < 1}, {e ∈ E | x(e) = 0} ⊆ {e ∈ E | y(e) = 0}and {e ∈ E | x(e) = 1} ⊆ {e ∈ E | y(e) = 1}. The relation ≻ de�nes a partial orderingon the extreme points of P (G, k). The minimal elements of this ordering (i.e., theextreme points x for whih there is no extreme point y suh that x ≻ y) orrespondto the integer extreme points of P (G, k). The minimal extreme points of P (G, k) arealled extreme points of rank 0. An extreme point x is said to be of rank p, if x onlydominates extreme points of rank ≤ p−1 and if it dominates at least one extreme pointof rank p − 1. We notie that if x is an extreme point of rank 1 and if we replae onefrational omponent of x by 1, keeping unhanged the other integral omponents, weobtain a feasible solution x′ of P (G, k) whih an be written as a onvex ombinationof integer extreme points of P (G, k).Didi Biha and Mahjoub [39℄ introdued the following redution operations with re-spet to a solution x of P (G, k).
θ1: delete an edge e ∈ E suh that x(e) = 0;
θ2: ontrat a node subset W ⊆ V suh that G[W ] is k-edge-onneted and x(e) = 1for all e ∈ E(W );
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θ3: ontrat a node subset W ⊆ V suh that |W | ≥ 2, |W | ≥ 2, |δ(W )| = k and

E(W ) ontains at least one edge with frational value;
θ4: ontrat a node subset W ⊆ V suh that |W | ≥ 2, |W | ≥ 2, G[W ] is ⌈

k
2

⌉-edgeonneted, |δ(W )| = k + 1 and x(e) = 1 for all e ∈ E(W ).Starting from a graph G and a solution x ∈ P (G, k) and applying θ1, θ2, θ3, θ4, weobtain a redued graph G′ and a solution x′ ∈ P (G′, k). Didi Biha and Mahjoub [39℄showed that x′ is an extreme point of P (G′, k) if and only if x is an extreme point of
P (G, k). Moreover, they showed the following results.Lemma 2.3.1 [39℄ x′ is an extreme point of rank 1 of P (G′, k) if and only if x is anextreme point of rank 1 of P (G, k).Lemma 2.3.2 [39℄ If C∗

p(x) = ∅, then the graph indued by Ef(x) is an odd yle
C ⊆ E suh thati) x(e) = 1

2
for all e ∈ C,ii) x(δ(u)) = k for all u ∈ V (C).An extreme point x of P (G, k) will be said ritial if it is of rank 1 and none of theoperations θ1, θ2, θ3, θ4 an be applied to it. If suh an extreme point satis�es theassumption of Lemma 2.3.2, then it violates the following F -partition inequality

∑

e∈C

x(e) ≥
|C| + 1

2
.Hene the ritial extreme points of P (G, k) that satisfy the assumption of Lemma2.3.2 an be separated in polynomial time.We will use operations θ1, θ2, θ3, θ4 in our Branh-and-Cut algorithm for the kECSP.As we will see, we use them as a preproessing for the separation proedures.2.3.2 Redution operations and valid inequalitiesGiven a frational solution x of P (G, k), we let G′ = (V ′, E′) and x′ be obtained byrepeated appliations of operations θ1, θ2, θ3, θ4 with respet to x.As pointed out above, x′ is an extreme point of P (G′, k) if and only if x is an extremepoint of P (G, k). Moreover, we have the following lemmas whih an be easily seen.



2.3. REDUCTION OPERATIONS 59Lemma 2.3.3 Let a′x ≥ α be an F -partition inequality (resp. partition inequality)valid for kECSP(G′) indued by a partition π′ = (V ′
0 , V

′
1 , ..., V

′
p), p ≥ 2, (resp. π′ =

(V ′
1 , ..., V

′
p), p ≥ 3) of V ′. Let π = (V0, V1, ..., Vp), p ≥ 2, (resp. π = (V1, ..., Vp), p ≥ 3)be the partition of V obtained by expanding the subsets V ′

i of π′. Let ax ≥ α be aninequality suh that
a(e) =





a′(e) for all e ∈ E ′,

1 for all e ∈ (E \ E ′) ∩ δG(π),

0 otherwise.Then ax ≥ α is valid for kECSP(G). Moreover, if a′x ≥ α is violated by x′, then
ax ≥ α is violated by x.Lemma 2.3.4 Let a′x ≥ α be an odd path inequality (resp. SP -partition inequality)valid for kECSP(G′) indued by a partition π′ = (W ′

1, W
′
2, V

′
1 , ..., V

′
2p), p ≥ 2 (resp.

π = (V ′
1 , ..., V

′
p), p ≥ 3). Let π = (W1, W2, V1, ..., V2p), p ≥ 2 (resp. π = (V1, ..., Vp),

p ≥ 3), be the partition of V obtained by expanding the elements of π′. Let ax ≥ αbe the orresponding lifted odd path inequality (resp. lifted SP -partition inequality)obtained from a′x ≥ α by appliation of the lifting proedure desribed in Setion 2.2.2(resp. Setion 2.2.4) for the edges of E \ E ′. Then ax ≥ α is violated by x, if a′x ≥ αis violated by x′.Lemmas 2.3.3 and 2.3.4 show that looking for an odd path, F -partition, SP -partitionor a partition inequality violated by x redues to looking for suh inequality violated by
x′ on G′. Note that this proedure an be applied for any solution of P (G, k) and may, inonsequene, permit to separate frational solutions whih are not neessarily extremepoints of P (G, k). In onsequene, for more e�ieny, our separation proedures willbe performed on the redued graph G′. The violated inequalities generated in G′ withrespet to x′ are lifted to violated inequalities in G with respet to x using Lemmas2.3.3 and 2.3.4.



Chapter 3
Branh-and-Cut algorithm for the
kECSP
In this hapter, we desribe a Branh-and-Cut algorithm for the kECSP. Our aim is toaddress the algorithmi appliations of the theoritial results presented in the previoussetions and desribe some strategi hoies made in order to solve that problem. So,let us assume that we are given a graph G = (V, E) and a weight vetor w ∈ R

Eassoiated with the edges of G. Let k ≥ 3 be the onnetivity requirement for eahnode of V .3.1 Branh-and-Cut algorithm3.1.1 DesriptionWe desribe the framework of our algorithm. To start the optimization we onsiderthe following linear program given by the degree uts assoiated with the verties ofthe graph G together with the trivial inequalities, that isMin ∑

e∈E

w(e)x(e)

x(δ(u)) ≥ k for all u ∈ V,

0 ≤ x(e) ≤ 1 for all e ∈ E.The optimal solution y ∈ R
E of this relaxation of the kECSP is feasible for the problemif y is an integer vetor that satis�es all the ut inequalities. Usually, the solution y is



3.1. BRANCH-AND-CUT ALGORITHM 61not feasible for the kECSP, and thus in eah iteration of the Branh-and-Cut algorithm,it is neessary to generate further inequalities that are valid for the kECSP but violatedby the urrent solution y. For this, one has to solve the so-alled separation problem.This onsists, given a lass of inequalities, in deiding whether the urrent solution
y statis�es all the inequalities of this lass, and if not, in �nding an inequality thatis violated by y. An algorithm solving this problem is alled a separation algorithm.The Branh-and-Cut algorithm uses the inequalities previously desribed and theirseparations are performed in the following order1. ut inequalities,2. SP -partition inequalities,3. odd path inequalities,4. F -partition inequalities,5. partition inequalities.We remark that all inequalities are global (i.e., valid for all the Branh-and-Cuttree) and several inequalities may be added at eah iteration. Moreover, we go tothe next lass of inequalities only if we haven't found any violated inequalities in theurrent lass. Our strategy is to try to detet violated inequalities at eah node of theBranh-and-Cut tree in order to obtain the best possible lower bound and thus limitthe number of generated nodes. Generated inequalities are added by sets of 200 orfewer at a time.Now we desribe the separation proedures used in our Branh-and-Cut algorithm.These are all heuristi proedures exept that for the ut inequalities whih is performedusing an exat polynomial-time algorithm. The proedures are applied on G′ withweights (y′(e), e ∈ E ′) assoiated with its edges where y′ is the restrition on E ′ of theurrent LP-solution y (G′ and y′ are obtained by repeated appliations of operations
θ1, θ2, θ3, θ4).3.1.2 Separation of ut inequalitiesThe separation of the ut inequalities (2.3) an be performed by omputing minimumuts in G′. This an be done in polynomial time using Gus�eld algorithm [68℄. Thisalgorithm produes the so-alled Gomory-Hu tree with the property that for all pairs



62 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSPof nodes s, t ∈ V ′, the minimum (s, t)-ut in the tree is also a minimum (s, t)-ut in thegraph G′. The algorithm requires |V ′|−1 maximum �ow omputations. The maximum�ow omputations are handled by the e�ient Goldberg and Tarjan algorithm [58℄ thatruns in O(m′n′ log n′2

m′ ) time where m′ and n′ are the number of edges and nodes of G′,respetively. Thus our separation algorithm for the ut inequalities is exat and runsin O(m′n′2 log n′2

m′ ) time.3.1.3 Separation of odd path inequalitiesIn what follows, we onsider the separation of the odd path inequalities (2.4). For this,we need the following lemma.Lemma 3.1.1 Let x ∈ R
E be a frational solution of P (G, k) and π = (W1, W2, V1, ..., V2p),

p ≥ 2, a partition of V , whih indues an odd path on�guration. If eah edge set
[Vi, Vi+1], i = 1, ..., 2p − 1, ontains an edge with frational value and

x([Vi−1, Vi]) + x([Vi, Vi+1]) ≤ 1 for i = 2, ..., 2p − 1,then the odd path inequality indued by π is violated by x.Proof. As x([Vi−1, Vi]) + x([Vi, Vi+1]) ≤ 1, i = 2, ..., 2p − 1, we have that
x([V2s−1, V2s]) + x([V2s, V2s+1]) ≤ 1 for s = 1, ..., p − 1, (3.1)
x([V2s, V2s+1]) + x([V2s+1, V2s+2]) ≤ 1 for s = 1, ..., p − 1. (3.2)By multiplying inequality (3.1) by p−s

p
and inequality (3.2) by s

p
and summing theresulting inequalities, we obtain

∑

i∈I

x([Vi, Vi+1]) +
∑

i∈I

p − 1

p
x([Vi, Vi+1]) ≤ p − 1, (3.3)where I = {2, 4, 6, ..., 2p− 2} and I = {1, 2, ..., 2p − 1} \ I. Beause eah set [Vi, Vi+1],

i = 1, ..., 2p − 1, ontains an edge with frational value, we have that x([Vi, Vi+1]) < 1for all i ∈ I. Hene
∑

i∈I

x([Vi, Vi+1]) < p. (3.4)



3.1. BRANCH-AND-CUT ALGORITHM 63By multiplying inequality (3.4) by 1
p
and summing the resulting inequality and inequal-ity (3.3), we obtain

2p−1∑

i=1

x([Vi, Vi+1]) < p,and the result follows. �Our separation heuristi is based on Lemma 3.1.1. The idea is to �nd a partition
π = (W ′

1, W
′
2, V ′

1 , ..., V
′
2p), p ≥ 2, whih indues an odd path on�guration that satis�esthe onditions of Lemma 3.1.1. The proedure works as follows. We �rst look, usinga greedy method, for a path Γ = {e1, ..., e2p−1}, p ≥ 2, in G′ suh that the edges

e1, ..., e2p−1 have frational values and y′(ei−1) + y′(ei) ≤ 1, for i = 2, ..., 2p − 1. If
v′
1, ..., v

′
2p are the nodes of Γ taken in this order when going through Γ, we let V ′

i = {v′
i},

i = 1, ...2p, and T1 = (
⋃

i∈I1

V ′
i ) ∪ V ′

1 (resp. T1 = (
⋃

i∈I1

V ′
i ) ∪ V ′

1 ∪ V ′
2p) if p is odd (resp.even), and T2 = (

⋃

i∈I2

V ′
i ) ∪ V ′

2p (resp. T2 = (
⋃

i∈I2

V ′
i )) if p is odd (resp. even) where I1and I2 are as de�ned in Setion 2.2.1. In order to determine W ′

1 and W ′
2, we omputea minimum ut separating T1 and T2. If δ(W ) is suh a ut with T1 ⊆ W , we let

W ′
1 = W \ T1 and W ′

2 = V ′ \ (W ∪ T2). If the partition π = (W ′
1, W

′
2, V

′
1 , ..., V

′
2p) thusobtained indues an odd path on�guration, then, by Lemma 3.1.1, the orrespondingodd path inequality is violated by y′. If not, we apply again that proedure by lookingfor an other path. In order to avoid the detetion of the same path, we label the edgesof the deteted paths so that they won't appear again when searhing for a new path.This proedure is iterated until either a violated odd path inequality is found or all theedges, having frational values, are labeled. The routine that permits to look for anodd path runs in O(m′n′) time. To ompute the minimum ut separating T1 and T2,we use Goldberg and Tarjan algorithm [58℄. Sine this algorithm runs in O(m′n′log n′2

m′ )time, our proedure is implemented to run in O(m′2n′ log n′2

m′ ) time.In the lifting proedure for inequalities (2.4) given in Setion 2.2.2 we have to omputea oe�ient λ for some edges e ∈ E \ E ′. Sine the omputation of this oe�ient isitself a hard problem, and λ ≤ 2, we onsider 2 as lifting oe�ient for those edgesrather than λ.



64 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSP3.1.4 Separation of F -partition inequalitiesNow we disuss our separation proedure for the F -partition inequalities (2.21). Theseinequalities an be separated in polynomial time using the algorithm of Baïou et al.[6℄ when k is even and the edge set F is �xed. For the general ase, we devised threeheuristis to separate them.Our �rst heuristi is based on Lemma 2.3.2. As pointed out by that lemma, if x is aritial extreme point of P (G, k) suh that C∗
p(x) = ∅, then the edges having frationalvalues with respet to x have all a value equal to 1

2
and form an odd yle C. Moreover,

x(δ(u)) = k for all u ∈ V (C) and
∑

e∈C

x(e) ≥
|C| + 1

2
,is an F -partition inequality violated by x. The heuristi works as follows. It startsby determining an odd yle in G′ whose edges have frational value and nodes aretight. Let v′

1, ..., v
′
p, p ≥ 3, be the nodes involved in this yle. Then we let V ′

i = {v′
i},for i = 1, ..., p, and V ′

0 = V ′ \ {v′
1, ..., v

′
p}. We hoose the edges of F among those of

δ(V ′
0) having values greater than 1

2
and in suh a way that |F | and kp have di�erentparities (if suh an edge set F is empty then we look for an other partition). The yleis obtained by a diret labeling proedure. Hene the heuristi runs in a linear time.Before introduing our seond heuristi, we �rst give the following lemma.Lemma 3.1.2 Let x ∈ R

E be a frational solution of P (G, k) and π = (V0, V1, ..., Vp),
p ≥ 2, a partition of V suh that x(δ(Vi)) = k for i = 1, ..., p. Then an F -partitioninequality, indued by π and an edge set F ⊆ δ(V0) suh that |F | and kp have di�erentparities is violated by x if the following inequality holds

|F | − x(F ) + x(δ(V0) \ F ) < 1. (3.5)Proof. As x(δ(Vi)) = k, i = 1, ..., p, we have that
p∑

i=1

x(δ(Vi)) = 2x(δ(V1, ..., Vp)) + x(δ(V0)) = kp.This together with (3.5) yield
− 2x(F ) + 2x(δ(V0)) + 2x(δ(V1, ..., Vp)) < kp − |F | + 1,



3.1. BRANCH-AND-CUT ALGORITHM 65and thus the statement follows. �The heuristi is based on Lemma 3.1.2. It starts by determining all the nodes u of V ′suh that y′(δ(u)) = k and δ(u) ontains at least one edge with frational value. Let
{v′

1, ..., v
′
p}, p ≥ 2, be the set of suh nodes. We onsider the partition (V ′

0 , V
′
1 , ..., V

′
p)suh that V ′

i = {v′
i}, for i = 1, ..., p, and V ′

0 = V ′\{v1, ..., vp}, and hoose the edges of Fin a similar way as in the �rst heuristi. If inequality (3.5) holds with respet to F and
V ′

0 , then by Lemma 3.1.2 the F -partition inequality orresponding to (V ′
0 , V

′
1 , ..., V

′
p)and F is violated by y′.Before presenting our last heuristi for the F -partition inequalities, let us �rst remarkthat a partition (V ′

0 , V
′
1 , ..., V

′
p) and an edge set F ⊆ δ(V ′

0) may indue a violated F -partition inequality if y′(δ(V ′
0)) is high and the edges of F are among those of δ(V ′

0)with high values. Our heuristi tries to �nd suh a partition. For this, we �rst omputea Gomory-Hu tree in G′ with the weights (1− y′(e), e ∈ E ′) assoiated with its edges.Then from eah proper ut δ(W ) with V ′ \ W = {v′
1, ..., v

′
p}, p ≥ 2, obtained from theGomory-Hu tree, we onsider the partition π = (V ′

0 , V
′
1 , ..., V

′
p) suh that V ′

i = {v′
i},for i = 1, ..., p, and V ′

0 = W . The edge set F is hosen in a similar way as in theprevious heuristis. Sine the omputation of the Gomory-Hu tree an be done in
O(m′n′2 log n′2

m′ ) time, the heuristi runs in O(m′n′2 log n′2

m′ ).These three heuristis are applied in the Branh-and-Cut algorithm in that order.3.1.5 Separation of SP -partition inequalitiesNow we turn our attention to the separation of the SP -partition inequalities (2.27).These inequalities an be separated in polynomial time using the algorithm of Baöuet al. [6℄ when G′ is series-parallel. That algorithm uses a redution of the separationproblem to the minimization of a submodular funtion. Reently, Didi Biha et al. [42℄devised a pure ombinatorial algorithm for the separation of the SP -partition inequali-ties when the graph is series-parallel. For our purpose, we devised a heuristi to separateinequalities (2.27) in the general ase. This heuristi is based on Theorems 2.2.7 and2.2.8. The main idea of the heuristi is to determine a partition π = (V ′
1 , ..., V

′
p), p ≥ 3,of V ′ whih indues an outerplanar graph suh that |[V ′

i , V
′
i+1]| ≥

⌈
k
2

⌉, i = 1, ..., p,(modulo p) (see Figure 2.10), and for every onseutive sets V ′
i and V ′

j , the edge set
[V ′

i , V
′
j ] ontains at least one edge with frational value. To this end, we look in G′ for a
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1v

′
2, v

′
2v

′
3, ..., v

′
p−2v

′
p−1}, p ≥ 3, suh that |[v′

i, v
′
i+1]| ≥

⌈
k
2

⌉ and [v′
i, v

′
i+1] on-tains one edge or more with frational value, for i = 1, ..., p−2. We then let V ′
i = {v′

i},
i = 1, ..., p− 1, and V ′

p = V ′ \ {v′
1, ..., v

′
p−1}. Afterwards, we hek by a simple heuristiif the graph G′

π is outerplanar. Finally, we hek if the SP -partition inequality induedby π is violated by y′ or not. If either the graph G′
π is not outerplanar or the SP -partition inequality, indued by π, is not violated by y′, we apply again this proedureby looking for an other path. In order to avoid the detetion of the same path, welabel the nodes we met during the searh of the previous ones, so that they won't beonsidered in the searh of a new path. This proess is iterated until either we �nd aviolated SP -partition inequality or all the nodes of V ′ are labeled. The heuristi anbe implemented to run in O(m′n′) time.3.1.6 Separation of partition inequalitiesNow we disuss the separation of the partition inequalities (2.39). First observe thatif π = (V ′

1 , ..., V
′
p) is a partition of V ′, with p ≥ 3 and odd, suh that y′(δ(V ′

i )) = k,for i = 1, ..., p, then the partition inequality indued by π is violated by y′. Thusone an devise a heuristi to separate inequalities (2.39) whih onsists in �nding apartition π = (V ′
1 , ..., V

′
p), with p ≥ 3 and odd, suh that y′(δ(V ′

i )) is as small aspossible for i = 1, ..., p. To do this, we ompute a Gomory-Hu tree, say T, in G′with the weights (y′(e), e ∈ E ′) assoiated with its edges. After that, we ontrat thedisjoint node subsets that indue proper tight uts in T. Let V ′
1 , ..., V

′
t be these sets and

{vt+1, ..., vp} = V ′ \ (

t⋃

i=1

V ′
i ). We then onsider the partition (V ′

1 , ..., V
′
t , {vt+1}, ..., {vp})and hek whether or not the orresponding partition inequality is violated by y′. Thisalgorithm leads to an O(m′n′2 log n′2

m′ ) time omplexity.To store the generated inequalities, we reate a pool whose size inreases dynamially.All the generated inequalities are put in the pool and are dynami, i.e., they areremoved from the urrent LP when they are not ative. We �rst separate inequalitiesfrom the pool. If all the inequalities in the pool are satis�ed by the urrent LP-solution,we separate the lasses of inequalities in the order given above.3.1.7 Implementation of redution operationsAs mentioned before, the redution operations θ1, θ2, θ3, θ4 are applied before the sepa-ration proedures. Here we desribe the implementation of these redution operations.



3.1. BRANCH-AND-CUT ALGORITHM 67We give only the algorithms for Operations θ2, θ3 and θ4. That of θ1 is trivial sine itonsists in deleting every edge e ∈ E with y(e) = 0. Note that Operations θ2, θ3 and
θ4 are applied on the support graph G(y).3.1.7.1 Implementation of Operation θ2Operation θ2 onsists in ontrating a node set W ⊆ V suh that the subgraph G[W ]indues a k-edge-onneted subgraph and y(e) = 1 for all e ∈ E(W ).We apply the following heuristi for Operation θ2. First, we onsider the graph
G1 obtained by deleting from G(y) all the edges with a frational value and omputethe onneted omponents of G1. Let (V1, ..., Vp), p ≥ 1, be the set of the onnetedomponents. Note that G1 may be onneted. Then, we apply the following proedureto every onneted omponent of G1. Consider a stak Q of node sets, initialized withthe sets Vi, i = 1, ..., p. Remind that to push a node set W in Q is to put W on thetop of Q. Also to pop an element from Q is to remove from Q the node set whih ison the top Q. We apply the following algorithm on the sets in Q until Q is empty.Algorithm 2: Operation θ2Data: Q = {V1, ..., Vp}, G(y) = (V, E(y))Result: Redued graph Gr = (Vr, Er)beginwhile Q is not empty doLet W be the top of Q and pop W ;if |W | ≥ 2 and |V \ W | ≥ 2 thenif the subgraph indued by W in G(y) does not ontain edges withfrational value thenChek if G1[W ] is k-edge-onneted or not by omputing theminimum apaity ut of G1[W ];if true thenontrat W ;elseLet [W1, W2] denote the minimum apaity ut of G1[W ];Push W1 and W2 on Q;endTo ompute the minimum apaity ut of G1[W ], we use Hao and Orlin's algorithm[69℄ whih runs in O(nm log n2

m
) times. Note that given a set Vi, i = 1, ..., p, the main



68 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSPloop of Algorithm 2 ontains a number of iterations in O(log(|Vi|)). Eah iterationonsists at most in heking if the graph indued by W ontains edges with frationalvalue and omputating of a minimum apaity ut. Thus, the algorithm for Operation
θ2 runs in O(log (n)(nm log (n2

m
) + m)). Hene, this proedure is polynomial.3.1.7.2 Implementation of Operation θ3Operation θ3 onsists in ontrating a node set W suh that |W | ≥ 2, |V \ W | ≥ 2,

|δ(W )| = k and E(V \W ) ontains edges with frational values. We devise the followingheuristi for this operation. First we give 1 as apaity for every edge of G(y) andompute a Gomory-Hu tree on it. Let T be the tree obtained. Observe that everyedge of T with weight k indues a ut δ(W ) of exatly k edges in G(y). We apply theproedure desribed below on every k-apaity ut δ(W ) obtained from T until we �nda andidate node set to ontrat or we explore all the k-apaity uts obtained from
T . The proedure is desribed as follows. If |W | ≥ 2 and |V \ W | ≥ 2, then we hekif the subgraph indued by V \W in G(y) ontains edges with frational values or not.If this is the ase, then we ontrat W . If not, then we hek if the graph indued by
W in G(y) ontains edges with frational values. If this is the ase, then we ontrat
V \ W and terminate the proedure.We repeat this proedure until no ontration is possible by the algorithm.The implementation for Operation θ3 is summarized by Algorithm 3.



3.1. BRANCH-AND-CUT ALGORITHM 69Algorithm 3: Operation θ3Data: G(y) = (V, E(y))Result: Redued graph Gr = (Vr, Er)beginrepeatGive 1 as apaity on the edges of G(y);Compute a Gomory-Hu tree T ;foreah δ(W ) obtained from T suh that |δ(W )| = k doif |W | ≥ 2 and |V \ W | ≥ 2 thenif G(y)[V \ W ] ontains edges with frational values thenContrat W ;Break;elseif G(y)[W ] ontains edges with frational values thenContrat V \ W ;Break;until no ontration is possible;endThis algorithm ontains at most O(log (n)) iterations. Eah iteration is omposed ofthe omputation of a Gomory-Hu tree and, for every ut δ(W ) obtained in T , the hekthat G(y)[V \W ] or G(y)[W ] ontains edges with frational values. As the omputationof the Gomory-Hu tree runs in O(mn2 log n2

m
), eah iteration runs in O(mn2 log n2

m
+m).Thus, the whole algorithm runs in O(log (n)(mn2 log n2

m
+ m)) and is polynomial.3.1.7.3 Implementation of operation θ4Operation θ4 onsists in ontrating a node set W suh that |W | ≥ 2, |V \ W | ≥ 2,

|δ(W )| = k + 1, G[W ] is ⌈
k
2

⌉-edge-onneted and y(e) = 1 for all e ∈ E(W ). Wepropose two heuristis for this operation.The �rst heuristi is as follows. We give 1 as apaity for every edge of G(y) andompute a Gomory-Hu tree on G(y) with these apaities. If T denotes this tree, onean observe that every edge of T with weight k + 1 indues in G(y) a ut δ(W ) ofexatly k + 1 edges. For every ut δ(W ) suh that |δ(W )| = k + 1 obtained from T ,we hek if the subgraph G(y)[W ] does not ontain any edge with frational value.If this is the ase, then we hek if G(y)[W ] is ⌈
k
2

⌉-edge-onneted by omputing its



70 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSPminimum ut. If G(y)[W ] is ⌈
k
2

⌉-edge-onneted, then we ontrat W . If G(y)[W ] isnot ⌈
k
2

⌉-edge-onneted or it ontains edges with frational values, then we perform thesame heks on W . If G(y)[W ] does not ontain edges with frational value and is ⌈
k
2

⌉-edge-onneted, then we ontrat W . We repeat this algorithm until no ontration ispossible.In the seond heuristi, we look for liques W of G(y) with (
⌈

k
2

⌉
+1) nodes suh that

y(e) = 1 for all E(y)(W ) and suh that |δ(W )| = k + 1. It is not hard to see that if Wis a lique of (
⌈

k
2

⌉
+ 1) nodes, then the subgraph indued by W is ⌈

k
2

⌉-edge-onneted.If suh lique exists in G(y) with |δ(W )| = k+1 and y(e) = 1 for all e ∈ E(y)(W ), thenwe ontrat W . One an use a greedy algorithm to ompute a lique W of (
⌈

k
2

⌉
+ 1)nodes and suh that the subgraph indued by W does not ontain edges with frationalvalue. As for the previous heuristi, we repeat this algorithm until no ontration ispossible.These two algorithms are summurized in Algorithms 4 and 5.Algorithm 4: Operation θ4 − 1Data: G(y) = (V, E(y))Result: Redued graph Gr = (Vr, Er)beginrepeatGive 1 as apaity on the edges of G(y);Compute a Gomory-Hu tree T ;foreah δ(W ) obtained from T suh that |δ(W )| = k + 1 doif |W | ≥ 2 and |V \ W | ≥ 2 thenif G(y)[W ] does not ontain edges with frational value thenCompute the minimum ut of G(y)[W ];if G(y)[W ] is ⌈

k
2

⌉-edge-onneted thenContrat W ;Break;until no ontration is possible;end



3.1. BRANCH-AND-CUT ALGORITHM 71Algorithm 5: Operation θ4 − 2Data: G(y) = (V, E(y))Result: Redued graph Gr = (Vr, Er)beginrepeatSearh a lique W of G(y) on (
⌈

k
2

⌉
+ 1) nodes and suh that y(e) = 1 for all

e ∈ E(y)(W );if W exists and |W | ≥ 2 and |V \ W | ≥ 2 thenif |δG(y)(W )| = k + 1 thenContrat W ;Break;until no ontration is done;endThe minimum ut of a subgraph G[W ] is omputed using Hao and Orlin's algorithm[69℄. As for Operation θ3, the �rst heuristi runs in O(log (n)(mn2 log n2

m
+ m)). It isthus polynomial. For the seond algorithm, the greedy algorithm used to �nd liquesof G(y) runs in O(n2K3

2
) where K = max{|δG(y)(u)|, for all u ∈ V }. Remark that inmost ases, |δG(y)(u)| ≤ 2k, for every u ∈ V . We will thus onsider that K ≤ 2k. Thisimplies that the heuristi runs in O(n2k3) in most ases, and is polynomial.Figure 3.1 gives an example of appliation of Operations θ3 and θ4 on a frationalextreme point of P (G, k). The dashed edges have value 0.5 and the plain edges havevalue 1.
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11

edges with value 1edges with value 0.5
912 8 14 3 4

6 513 7 1210
θ3

{9, 10, 11}

1 6 125432 8 13 714
θ4

2 714 456
3

12{1, 8, 9, 10, 11} 13
θ4

{1, 8, 9, 10, 11}

{5, 6, 12}13 7142 3 4
Figure 3.1: Example of appliation of Operations θ3 and θ4 for k = 3On Figure 3.1, we an easily see that the partitions

π1 = ({1, 8, 9, 10, 11}, {2}, {13}, {3, 4, 5, 6, 7, 12, 14}) and
π2 = ({5, 6, 12}, {4}, {7}, {1, 2, 3, 8, 9, 10, 11, 13, 14}) indue two SP -partition inequali-ties that are violated by the underlying frational solution of the example.3.1.8 Primal heuristiAnother important issue in the e�etiveness of the Branh-and-Cut algorithm is theomputation of a good upper bound at eah node of the Branh-and-Cut tree. Todo this, if the separation proedures do not generate any violated inequality and theurrent solution y is still frational, then we transform y into a feasible solution ofthe kECSP, say ŷ, by rounding up to 1 all the frational omponents of y. We thentry to redue the weight of the solution thus obtained by removing from the subgraph
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H = (V, Ê) indued by ŷ some uneessary edges, that is to say edges whih do nota�et the k-edge-onnetedness of H . To this end, we remove from Ê eah edge e = uvsuh that |δ(u)∩ Ê| ≥ k +1 and |δ(v)∩ Ê| ≥ k+1. We then hek if the resulting edgeset, say Ê ′, indues a k-edge-onneted subgraph of G by omputing a Gomory-Hutree. If there exists in Ê ′ a ut δ(W ), W ⊆ V , ontaining less than k edges, then weadd in Ê ′ edges of [W, V \ W ] \ δ(W ) that have been previously removed from Ê asmany as neessary in order to satisfy the ut δ(W ). We do this until the graph (V, Ê ′)beomes k-edge-onneted. Note that we add to eah violated ut the edges havingthe smallest weights.3.2 Computational resultsThe Branh-and-Cut algorithm desribed in the previous setion has been implementedin C++, using ABACUS 2.4 alpha [1, 101℄ to manage the Branh-and-Cut tree, andCPLEX 9.0 [2℄ as LP-solver. It was tested on a Pentium IV 3.4 Ghz with 1 Gb ofRAM, running under Linux. We �xed the maximum CPU time to 5 hours. The testproblems were obtained by taking TSP test problems from the TSPLIB library [3℄.The test set onsists in omplete graphs whose edge weights are the rounded eulidiandistane between the edge's verties. The tests were performed for k = 3, 4, 5. Inall our experiments, we have used the redution operations desribed in the previoussetions, unless otherwise spei�ed. Eah instane is given by its name followed byan extension representing the number of nodes of the graph. The other entries of thevarious tables are:



74 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSPNCut : number of generated ut inequalities;NSP : number of generated SP -partition inequalities;NOP : number of generated odd path inequalities;NFP : number of generated F -partition inequalities;NP : number of generated partition inequalities;COpt : weight of the optimal solution obtained;Gap1 : the relative error between the best upper bound(the optimal solution if the problem has been solvedto optimality) and the lower bound obtained at theroot node of the Branh-and-Cut tree using only theut and the trivial inequalities;Gap2 : the relative error between the best upper bound(the optimal solution if the problem has been solvedto optimality) and the lower bound obtained at theroot node of the Branh-and-Cut tree;NSub : number of subproblems in the Branh-and-Cut tree;TT : total CPU time in hours:min:se.The instanes indiated with "*" are those whose CPU time exeeded 5 hours. Forthese instanes, the gap is indiated in itali.Our �rst series of experiments onerns the kECSP for k = 3. The instanes wehave onsidered have graphs with 14 up to 318 nodes. The results are summarizedin Table 3.1. It appears from Table 3.1 that all the instanes have been solved tooptimality within the time limit exept the last �ve instanes. Also we have thatfour instanes (burma14, gr21, fri26, brazil58) have been solved in the utting planephase (i.e., no branhing is needed). For most of the other instanes, the relative errorbetween the lower bound at the root node of the Branh-and-Cut tree and the bestupper bound (Gap2) is less than 1%. We also observe that our separation proeduresdetet a large enough number of SP -partition and F -partition inequalities and seemto be quite e�ient.Our seond series of experiments onerns the kECSP with k = 4, 5. The resultsare given in Table 3.2 for k = 4 and Table 3.3 for k = 5. The instanes onsideredhave graphs with 52 up to 561 nodes. Note that for k = 4, the SP -partition andpartition inequalities are redundant with respet to the ut inequalities (2.3). Thusthese inequalities are not onsidered in the resolution proess for k = 4, and thereforedo not appear in Table 3.2.
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Instane NCut NSP NOP NFP NP COpt Gap1 Gap2 NSub TTburma14 4 3 0 0 4 5530 4.67 0.00 1 0:00:01ulysses16 5 7 1 15 7 11412 1.17 0.39 3 0:00:11gr21 5 6 1 0 2 4740 1.65 0.00 1 0:00:01fri26 9 5 0 0 0 1543 1.30 0.00 1 0:00:01bayg29 14 16 2 33 2 2639 1.76 0.19 7 0:00:01dantzig42 41 31 6 90 18 1210 2.27 0.68 71 0:00:07att48 34 34 5 60 9 17499 1.83 0.56 61 0:00:06berlin52 36 31 12 97 6 12601 1.66 0.45 33 0:00:03brazil58 46 42 2 36 29 42527 2.67 0.00 1 0:00:05eil76 9 12 3 298 2 876 0.63 0.06 7 0:00:03pr76 130 207 72 2231 54 187283 3.9 1.50 6767 0:35:32rat99 41 26 13 341 23 2029 1.26 0.38 41 0:00:47kroA100 170 197 31 1207 57 36337 4.64 0.97 4201 0:54:06kroB100 130 114 37 830 47 37179 2.61 0.73 723 0:08:00rd100 101 74 11 418 18 13284 1.91 0.43 171 0:03:37eil101 86 72 21 3604 15 1016 1.06 0.55 1109 0:17:41lin105 179 198 47 829 68 25530 3.66 0.69 1031 0:22:39pr107 201 190 34 674 114 70852 2.48 0.84 2071 1:26:49gr120 50 45 6 588 17 11442 1.12 0.19 99 0:11:15bier127 46 59 4 276 13 198184 1.50 0.15 11 0:01:55h130 121 132 30 1355 40 10400 2.27 0.55 1693 1:05:05h150 92 93 19 588 22 11027 2.04 0.41 193 0:20:31kroA150 155 143 41 845 47 44718 2.27 0.53 1205 1:16:35kroB150 130 110 16 952 48 43980 2.26 0.31 437 0:38:43rat195 24 19 3 514 1 3934 0.48 0.06 7 0:08:21d198 171 105 23 617 59 25624 2.00 0.21 159 1:04:19gr202 77 69 14 558 22 65729 1.02 0.11 69 0:13:16*pr226 364 248 35 162 41 - 11.05 9.02 261 5:00:00*gr229 179 245 23 1568 94 - 2.43 1.00 1219 5:00:00*pr264 275 181 145 668 62 - 12.56 12.29 69 5:00:00*a280 142 84 56 2539 59 - 3.73 2.69 459 5:00:00*lin318 189 147 15 610 58 - 6.5 4.94 25 5:00:00Table 3.1: Results for k = 3 with redution operations.



76 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSPFirst observe that for k = 4, the CPU time for all the instanes is relatively small andmost of the instanes have been solved in less than 1 minute. We an also observe that23 instanes over 27 are solved in the utting plane phase. Moreover, a few numberof odd path inequalities are generated. However a large enough number of F -partitioninequalities is deteted. Thus these latter inequalities seem to be very e�etive forsolving the kECSP when k is even. This also shows that the kECSP is easier to solvewhen k is even, what is also on�rmed by the results of Table 3.3 for k = 5. In fat, theinstane pr264 has been solved for k = 4 in 1 seond, whereas it ould not be solved tooptimality for k = 5 after 5 hours. The same observation an be done for pr439. Also,we an remark that the CPU time for all the instanes when k = 5 is higher than thatwhen k = 4. For instane, the test problem d198 has been solved in 1h 50mn when
k = 5, whereas only 16 seonds were needed to solve it for k = 4.Compared to Table 3.1, Tables 3.2 and 3.3 also show that, for the same parity of k,the kECSP beomes easier to solve when k inreases. In fat, with k = 3, we ould notsolve to optimality instanes with more than 202 nodes, whereas for k = 5, we ouldsolve larger instanes.The results for k = 3, 4, 5 an also be ompared to those obtained by Kerivin et al.[81℄ for the 2ECSP. It turns out that for the same instanes, the problem has beeneasier to solve for k = 2 than for k = 3. However, for k = 4 the problem appearedto be easier to solve than for k = 2. This shows again that the ase when k is odd isharder to solve than that when k is even and that the problem beomes easier when kinreases with the same parity.In order to evaluate the impat of the redution operations θ1, θ2, θ3, θ4 on theseparation proedures, we tried to solve the kECSP, for k = 3, without using them.The results are given in Table 3.4.As it appears from Tables 3.1 and 3.4, the CPU time inreased for the majority of theinstanes when the redution operations are not used. In partiular, for the instanepr107, without the redution operations, we ould not reah the optimal solution after5 hours, whereas with the redution operations, it has been solved to optimality after1h 26mn. Also, the CPU time for the instanes h130 and d198 inreased from 1 hourto more than 4 hours. Moreover, we remark that when using the redution operations,we generate more SP -partition, F -partition and partition inequalities and fewer nodesin the Branh-and-Cut tree. This implies that our separation heuristis are less e�ientwithout the redution operations. It seems then that the redution operations play animportant role in the resolution of the problem. They permit to strengthen muh morethe linear relaxation of the problem and aelerate its resolution.



3.3. CONCLUDING REMARKS 77We also tried to measure the e�et of the di�erent non-basi lasses of inequalities(i.e., inequalities other than ut and trivial inequalities). For this, we have �rst on-sidered a Branh-and-Cut algorithm for the kECSP with k = 3 using only the utonstraints in addition to the trivial ones. As it appears from Table 3.1, for all theinstanes we have that Gap1 is greater than Gap2. For example, for the instanesKroA100 and rat195, the gap is inreased by almost 3%.Furthermore, in this ase, we ould not solve any of the instanes with more than52 nodes. Even more, after less than 10 minutes of CPU time, the Branh-and-Cuttree got a very big size and the resolution proess stops. To illustrate this, take forexample the instane brazil58. For this instane, the Branh-and-Cut tree ontained11769 nodes after 10 minutes when the Branh-and-Cut algorithm used only the utand trivial inequalities, whereas it has been solved without branhing when using theother lasses of inequalities.Finally, we tried to evaluate separately the e�ieny of eah lass of the non-basiinequalities. For this, we also onsidered the ase when k = 3. We have seen thatall the lasses of inequalities have a big e�et on the resolution of the problem. Inpartiular, the SP -partition inequalities seem to play a entral role. This an be seenby onsidering the instane d198. This instane has been solved in 1h 04mn using allthe onstraints. However, without the SP -partition inequalities, we ould not reahthe optimal solution after 5 hours. We also remarked that the gap2 inreased whenone of these lasses of inequalities is not used in the Branh-and-Cut algorithm.3.3 Conluding remarksIn this hapter, we have studied the k-edge-onneted subgraph problem with highonnetivity requirement, that is, when k ≥ 3. We have presented some lasses of validinequalities and desribed some onditions for these inequalities to be faet de�ning forthe assoiated polytope. We also disussed separation heuristis for these inequalities.Using these results, we have devised a Branh-and-Cut algorithm for the problem. Thisalgorithm uses some redution operations.Our omputational results have shown that the odd path, the F -partition, the SP -partition and the partition inequalities are very e�etive for the problem when k isodd. They have also shown the importane of the F -partition inequalities for the evenase. We ould also see the importane of our separation heuristis. In partiular,our heuristis to separate the SP -partition and F -partition inequalities have appeared



78 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSPto be very e�ient. In addition, the redution operations have been essential forhaving a good performane of the Branh-and-Cut algorithm. In fat, they permittedto onsiderably redue the size of the graph supporting a frational solution and toaelerate the separation proess.These experiments also showed that the kECSP is easier to solve when k is even andthat, for the same parity of k, the problem beomes easier to solve when k inreases.One of the separation heuristi devised for the F -partition inequalities is based ona partial haraterization of the ritial extreme points of the linear relaxation of the
k-edge-onneted subgraph polytope. It would be very interesting to have a ompleteharaterization of these points. This may yield the identi�ation of new faet de�ninginequalities for the problem. It may also permit to devise more appropriate separationheuristis for the inequalities given in this hapter.In many real instanes, we may onsider node-onnetivity instead of edge-onnetivity.The study presented in this hapter may be very usefull for the k-node-onneted sub-graph problem for whih we require k node-disjoint paths between every pair of nodes.In addition to the survivability aspet, one an onsider the apaity dimensioningof the network. These issues have been mostly treated separately in the literature. Itwould be interesting to extend the study developed in this hapter to the more generalapaitated survivable network design model.
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Instane NCut NOP NFP COpt Gap2 NSub TTberlin52 5 0 2 18295 0.00 1 0:00:01pr76 3 0 4 266395 0.00 1 0:00:01kroA100 10 0 11 51221 0.00 1 0:00:47kroB100 9 5 123 53597 0.08 21 0:00:09rd100 10 1 91 19130 0.00 1 0:00:05eil101 0 0 60 1453 0.00 1 0:00:02lin105 20 1 5 36353 0.00 1 0:00:01pr107 29 0 0 98381 0.00 1 0:00:01gr120 6 0 36 16400 0.00 1 0:00:02bier127 16 0 0 282207 0.00 1 0:00:01h130 12 0 132 14854 0.00 1 0:00:05h150 12 2 70 15854 0.00 1 0:00:02kroA150 13 0 27 64249 0.00 1 0:00:02kroB150 20 0 4 62710 0.00 1 0:00:01rat195 0 0 37 5750 0.00 1 0:00:13d198 43 0 71 35404 0.01 3 0:00:16gr202 13 3 220 94841 0.02 3 0:01:28pr226 91 0 6 183537 0.00 1 0:00:04gr229 24 2 15 318565 0.00 1 0:00:03pr264 59 1 7 122941 0.00 1 0:00:06a280 3 0 180 6317 0.00 1 0:01:00pr299 30 0 427 117559 0.00 1 0:00:20lin318 28 0 2 105000 0.00 1 0:00:06rd400 21 2 232 36676 0.00 1 0:07:39pr439 78 3 61 264975 0.02 19 0:02:52si535 0 0 4 53604 0.00 1 0:00:39pa561 10 1 306 6724 0.00 1 0:08:37Table 3.2: Results for k = 4.
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Instane NCut NSP NOP NFP NP COpt Gap2 NSub TTberlin52 5 2 2 26 2 24845 0.00 1 0:00:01pr76 2 0 0 52 1 372392 0.00 1 0:00:01kroA100 5 1 5 76 6 71422 0.04 11 0:00:06kroB100 6 1 2 83 5 74241 0.01 3 0:00:06rd100 6 2 6 193 5 26168 0.01 5 0:00:24eil101 1 0 0 309 0 1938 0.00 1 0:01:10lin105 9 1 3 119 3 50711 0.00 1 0:00:26pr107 92 40 57 680 33 132870 0.41 381 0:14:45gr120 2 0 3 93 3 22024 0.11 27 0:00:17bier127 22 2 12 450 8 383165 0.09 25 0:04:25h130 1 0 0 45 0 20508 0.01 3 0:00:05h150 5 0 7 58 1 21791 0.01 37 0:00:50kroA150 9 0 5 141 3 87950 0.07 11 0:00:19kroB150 14 1 7 462 6 85583 0.02 11 0:15:39rat195 1 0 0 508 0 7773 0.00 1 0:20:54d198 56 9 6 1093 32 47614 0.15 337 1:50:40gr202 0 0 0 64 0 128990 0.00 1 0:00:31pr226 142 34 20 661 50 260878 0.58 103 2:38:50gr229 18 1 11 679 9 434422 0.06 43 0:31:58*pr264 105 12 38 1327 28 - 1.78 43 5:00:00a280 2 0 2 302 0 8643 0.02 7 0:05:05pr299 11 3 2 637 1 161576 0.00 1 0:05:12lin318 24 3 11 1548 11 144341 0.02 7 4:34:39rd400 11 1 15 691 6 49893 0.01 17 1:29:09*pr439 46 2 8 746 0 - 3.46 1 5:00:00si535 0 0 0 0 0 79115 0.00 1 0:00:19pa561 1 0 2 286 1 9161 0.00 1 3:26:58Table 3.3: Results for k = 5.
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Instane NCut NSP NOP NFP NP COpt Gap2 NSub TTberlin52 31 28 19 44 4 12601 0.44 15 0:00:04brazil58 50 27 1 28 31 42527 0.22 3 0:00:07eil76 9 6 3 102 2 876 0.00 1 0:00:01pr76 103 168 65 1378 37 187283 1.60 3483 0:38:46rat99 41 19 10 223 17 2029 0.32 61 0:01:29kroA100 193 234 47 1765 70 36337 1.42 7575 4:13:38kroB100 141 142 36 899 38 37179 0.98 1337 0:45:34rd100 103 84 15 445 21 13284 0.40 233 0:11:40eil101 77 58 26 2527 12 1016 0.38 801 0:18:50lin105 161 158 50 569 53 25530 0.61 547 0:34:25*pr107 218 221 136 1101 104 - 0.81 4447 5:00:00gr120 42 38 6 252 15 11442 0.18 93 0:05:38bier127 58 56 9 240 12 198184 0.16 17 0:04:43h130 141 147 38 1590 45 10400 0.52 2459 4:10:31h150 90 76 15 391 23 11027 0.39 107 0:21:07kroA150 155 135 23 705 56 44718 0.55 1107 3:08:37kroB150 150 141 22 1006 43 43980 0.31 535 1:55:20rat195 23 18 7 898 1 3934 0.01 19 0:19:23d198 192 118 25 720 50 25624 0.27 585 5:03:16gr202 73 62 13 278 23 65729 0.05 37 0:37:31Table 3.4: Results for k = 3 without redution operations.



Chapter 4
The k-Edge-Disjoint Hop-ConstrainedPaths Problem
Given a graph G = (V, E) and two nodes s, t ∈ V , and a positive integer L ≥ 2, an
L-st-path in G is a path between s and t of length at most L, where the length is thenumber of its edges. Given a funtion c : E → R whih assoiates a ost c(e) to eahedge e ∈ E and an integer k ≥ 2, the k-Edge-Disjoint Hop-Constrained Paths problem(kHPP for short) is to �nd a minimum ost subgraph suh that between s and t thereexist at least k edge-disjoint L-st-paths.In this hapter, we onsider the kHPP from a polyhedral point of view. In partiular,we give a omplete desription of the assoiated polytope in the ase L = 3. We givean integer programming formulation for the problem in this ase. In partiular, weshow that for L = 3, the kHPP polytope is given by the so-alled st-ut and L-path-ut inequalities together with the trivial inequalities. We also desribe neessaryand su�ient onditions for these inequalities to be faet de�ning and show that the
kHPP polytope is ompletely desribed by the st-ut and L-path-ut toghether withthe trivial inequalities. These results generalize those obtained by [75℄ who give aomplete desription of the kHPP polytope in the ase k = 2 and L = 2, 3 and by [35℄who ompletely haraterize the kHPP polytope when k ≥ 2 and L = 2. This work hasled to a tehnial report submitted for possible publiation in Disrete Optimization[13℄.The hapter is organized as follows. In next setion, we give some preliminary resultswe will use along this hapter. In Setion 4.2, we desribe neessary and su�ientonditions for the so-alled st-ut and L-path-ut inequalities to be faet de�ning.



4.1. PRELIMINARY RESULTS 83Our main result, whih is a omplete desription of the kHPP polytope for L = 3, ispresented in Setion 4.3. In Setion 4.4, we give some onluding remarks.4.1 Preliminary results4.1.1 Valid inequalities for the kHPP polytopeGiven a graph G = (V, E), two nodes s, t of V and a positive integer k ≥ 2, we willdenote by kHPP(G) the kHPP polytope that is the onvex hull of the inidene vetorsof the solutions of the kHPP on G.If xF is the inidene vetor of the edge set F of a solution of the kHPP, then learly
xF statis�es the following inequalities:

x(δ(W )) ≥ k, for all st − ut δ(W ), (4.1)
0 ≤ x(e) ≤ 1, for all e ∈ E. (4.2)Inequalities (4.1) will be alled st-ut inequalities and inequalities (4.2) trivial inequal-ities.In [31℄, Dahl onsiders the problem of �nding a minimum ost path between two giventerminal nodes s and t of length at most L. He desribes a lass of valid inequalities forthe problem and gives a omplete haraterization of the assoiated L-path polyhedronwhen L ≤ 3. In partiular he introdues a lass of valid inequalities as follows.Let V0, V1, ..., VL+1 be a partition of V suh that s ∈ V0 and t ∈ VL+1, and Vi 6= ∅ forall i = 1, ..., L. Let T be the set of edges e = uv, where u ∈ Vi, v ∈ Vj , and |i− j| > 1.Then the inequality

x(T ) ≥ 1is valid for the L-path polyhedron.Using the same partition, this inequality an be generalized in a straightforward wayto the kHPP polytope as
x(T ) ≥ k. (4.3)
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Figure 4.1: Support graph of a 3-path-ut inequality.The set T is alled an L-path-ut, and a onstraint of type (4.3) is alled an L-path-utinequality. See Figure 4.1 for an example of a 3-path-ut inequality with V0 = {s} and
V4 = {t}. Note that T intersets every 3-st-path in at least one edge and eah st-ut
δ(W ) intersets every st-path. We denote by Pk(G) the polytope given by inequalities(4.1)-(4.3).4.1.2 FormulationIn this subsetion, we give an integer programming formulation for the kHPP. We willshow that the st-ut, 3-path-ut and trivial inequalities, together with the integralityonstraints su�e to formulate the kHPP as a 0-1 linear program. To this end, we �rstgive a lemma. Its proof an be found in [75℄.Lemma 4.1.1 [75℄ Let G = (V, E) be an undireted graph and s and t two nodes of
V . Suppose that there do not exist k edge-disjoint 3-st-paths in G, with k ≥ 2. Thenthere exists a set of at most k − 1 edges that intersets every 3-st-path.Theorem 4.1.1 Let G = (V, E) be a graph and k ≥ 2. Then the kHPP is equivalentto the integer program Min{

cx; x ∈ Pk(G), x ∈ {0, 1}E
}

.Proof. To prove the theorem, it is su�ient to show that every 0-1 solution x of Pk(G)indues a solution of the kHPP. Let us assume the ontrary and suppose that x doesnot indue a solution of the kHPP but satsi�es the st-ut and trivial inequalities. We



4.1. PRELIMINARY RESULTS 85will show that x neessarily violates at least one 3-path-ut inequality. Let G(x) bethe subgraph of G indued by x, that is the graph obtained from G by deleting everyedge e ∈ E suh that x(e) = 0. As x is not a solution of the problem, G(x) does notontain k edge-disjoint 3-st-paths. By Lemma 4.1.1, it follows that there exist at most
k − 1 edges in G(x) that interset every 3-st-path. Consider the graph G′(x) obtainedfrom G(x) by deleting these edges. Obviously, G′(x) does not ontain any 3-st-path.We laim that G′(x) ontains at least one st-path of length at least 4. In fat, as x isa 0-1 solution and satis�es the st-ut inequalities, G(x) ontains at least k edge-disjoint
st-paths. Sine at most k−1 edges were removed from G(x), at least one path remainsbetween s and t. However, sine G′(x) does not ontain a 3-st-path, that st-path mustbe of length at least 4.Now onsider the partition (V0, ..., V4) of V with V0 = {s}, Vi the set of nodes atdistane i from s in G′(x) for i = 1, 2, 3, and V4 = V \ (

3⋃

i=0

Vi), where the distanebetween two nodes is the length of a shortest path between these nodes. Sine theredoes not exist a 3-st-path in G′(x), it is lear that t ∈ V4. Moreover, as by thelaim above, G′(x) ontains an st-path of length at least 4, the sets V1, V2 and V3are nonempty. Futhermore, no edge of G′(x) is a hord of the partition (that is anedge between two sets Vi an Vj where |i − j| > 1). In fat, if there exists an edge
e = vivj ∈ [Vi, Vj] with |i− j| > 1 and i < j, then vj is at distane i + 1 < j, from s, aontradition.Thus, the edges deleted from G′(x) are the only edges that may be hords of thepartition G(x). In onsequene, if T is the set of hords of the partition in G, then
x(T ) ≤ k−1. But this implies that the orresponding 3-path-ut inequality is violatedby x. �

4.1.3 Disjoint st-paths in direted graphsHere we will introdue known results related to disjoint st-paths in direted graphswhih will be very useful in the following setions.Given a direted graph D = (V, A), two nodes s, t ∈ V , an integer k ≥ 2 and aweight funtion c(.) on the ars of D, the k ar-disjoint st-paths problem (kADPP forshort) onsists in �nding a minimum weight subgraph of D whih ontains at least k



86CHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEMar-disjoint paths from s to t. Let kADPP(D) be the onvex hull of the solutions ofthe kADPP on D.If B is an ar subset of A whih indues a solution of the kADPP, then its inidenevetor xB satis�es the following inequalities:
x(δ+(W )) ≥ k, for all W ⊆ V, s ∈ W and t ∈ W, (4.4)
0 ≤ x(a) ≤ 1, for all a ∈ A. (4.5)Conversely, any integral solution of the system given by inequalities (4.4) and (4.5)indues a solution of the kADPP. Inequalities (4.4) are alled st-diut inequalities andonstraints (4.5) are alled trivial inequalities. Thus, the kADPP is equivalent tomin{cx | x satis�es (4.4), (4.5), x ∈ {0, 1}A}.Theorem 4.1.2 [96℄The polytope kADPP(D) is full dimensional if and only if every st-diut δ+(W ) of Dontains at least k + 1 ars.Theorem 4.1.3 An inequality (4.4), indued by a node set W ⊆ V , de�nes a faetof kADPP(D) if and only if the orresponding st-diut is minimal inlusionwise andontains at least k + 1 ars.The following theorem shows that the st-diut and the trivial inequalities su�e todesribe the polytope kADPP(G).Theorem 4.1.4 [96℄The polytope kADPP(G) is ompletely desribed by inequalities (4.4) and (4.5).The following theorem indiates that two node subsets W1 and W2 of V that induetight st-diut inequalities for a solution y ∈ kADPP(D), an be seen as embeddednode sets. This omes from the fat that the sets induing st-diuts in a graph form alaminar family.Theorem 4.1.5 [96℄Let W1 and W2 be two node subsets of V that indue st-diuts of D suh that W1∩W2 6=

∅ 6= (V \ W1) ∩ W2. If the st-diut inequalities, indued by W1 and W2, are tight fora solution x of kADPP(G), then there exists a node set di�erent from W1 and W2ontained either in W1 or in W1 ∪ W2 whih indues a tigh st-diut inequality for x.



4.2. FACETS OF KHPP(G) 87These results will be utile in the rest of the hapter for exhibiting some faets of the
kHPP polytope, and for proving our main result.4.2 Faets of kHPP(G)In this setion, we give neessary and su�ient onditions for inequalities (4.1)-(4.3)to de�ne faets. These will be useful in the sequel.Let G = (V, E) be an undireted graph, s and t two nodes of G and k a positiveinteger ≥ 2. An edge e ∈ E is said to be 3-st-essential if e belongs to an st-ut or a
3-path-ut of ardinality k. Let E∗ be the set of the 3-st-essential edges. We have thefollowing results that an be easily seen to be true.Theorem 4.2.1 dim(kHPP(G)) = |E| − |E∗|.An immediate onsequene of Theorem 4.2.1 is the following.Corollary 4.2.1 If G = (V, E) is a omplete graph suh that |V | ≥ k + 2, then
kHPP(G) is full dimensional.In the rest of the hapter, we will onsider that G = (V, E) is a omplete graphwith |V | ≥ k + 2, and whih may ontain multiple edges. Thus, by Corollary 4.2.1,
kHPP(G) is full dimensional.Lemma 4.2.1 Let ax ≥ α be an inequality whih de�nes a faet of kHPP(G), di�erentfrom (4.2). Then a(e) ≥ 0 for all e ∈ E.Proof. Let f ∈ E. As ax ≥ α is di�erent from faets indued by the trivial inequalities,it is di�erent from x(f) ≤ 1. Thus, there exists a solution x ∈ kHPP(G) suh that
ax = α and x(f) = 0. Let x′ be the solution de�ned by

x′(e) =

{
x(e), for all e ∈ E \ {f},

1 if e = f.Clearly, x′ is a solution of kHPP(G). Hene, ax′ = ax+a(f) ≥ α, yielding a(f) ≥ 0. �The following theorems show when inequalities (4.1)-(4.3) de�ne faets for kHPP(G).



88CHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEMTheorem 4.2.2 1. Inequality x(e) ≤ 1 de�nes a faet of kHPP(G) for all e ∈ E.2. Inequality x(e) ≥ 0 de�nes a faet of kHPP(G) if and only if either |V | ≥ k + 3or |V | = k + 2 and e does not belong neither to an st-ut nor to a 3-path-utontaining exatly k + 1 edges.Proof. 1) As |V | ≥ k + 2 and G is omplete, the edge set Ef = E \ {f} is a solutionof kHPP, for all f ∈ E \ {e}. Hene, the sets E and Ef , for all f ∈ E \ {e}, onstitutea set of |E| solutions of the kHPP. Moreover, their inidene vetors satisfy x(e) = 1and are a�nelly independant.2) Suppose that |V | ≥ k+3. Then G ontains k+2 node-disjoint st-paths (an edge of
[s, t] and k+1 paths of the form (s, u, t), u ∈ V \{s, t}). Hene any edge set E \{f, g},
f, g ∈ E, ontains k edge-disjoint 3-st-paths among these 3-st-paths.Consider the |E| edge sets E \ {e} and Ef = E \ {e, f} for all f ∈ E \ {e}. There-fore, these sets indue solutions of the kHPP. Moreover the inidene vetors of thesesolutions satisfy x(e) = 0 and are a�nelly independant.Now suppose that |V | = k +2. If e belongs to an st-ut δ(W ) (resp. a 3-path-ut T )with k + 1 edges, then x(e) ≥ 0 is redundant with respet to the inequalities

x(δ(W )) ≥ k (resp. x(T ) ≥ k),

− x(f) ≥ −1 for all f ∈ δ(W ) \ {e}(resp. f ∈ T \ {e}),and annot hene be faet de�ning. If e does not belong neither to an st-ut nor to a
3-path-ut with k+1 edges, then the edge sets E \{e} and Ef , f ∈ E \{e}, introduedabove, are still solutions of kHPP. Moreover, their inidene vetors satisfy x(e) = 0and are a�nelly independant. �Theorem 4.2.3 Every st-ut inequality de�nes a faet of kHPP(G).Proof. Let W ⊆ V suh that s ∈ W and t ∈ W . Observe that [s, t] ⊆ δ(W ). Let us de-note by ax ≥ α the st-ut inequality indued by W and let Fa = {x ∈ kHPP(G) | ax =

α}. We �rst show that Fa is a proper fae of kHPP(G). As |V | ≥ k + 2, there exist
W1 ⊆ W \ {s} and W2 ⊆ W \ {t} suh that |W1| + |W2| = k. Note that W1 and W2



4.2. FACETS OF KHPP(G) 89may be empty but not both. Let F1 = {sv, v ∈ W2}∪{ut, u ∈ W1} and E1 = F1 ∪E0where E0 = E(W ) ∪ E(W ). It is not hard to see that E1 is a solution of the kHPPwhose inidene vetor satis�es ax ≥ α with equality. Hene, Fa 6= ∅ and, therefore, isa proper fae of kHPP(G).Now suppose that there exists a faet de�ning inequality bx ≥ β suh that Fa ⊆ {x ∈

kHPP(G) | bx = β}. We will show that there exists a salar ρ suh that b = ρa.Consider an edge e ∈ F1. Clearly, the edge set E2 = (E1 \ {e}) ∪ {st} is a solutionof the kHPP and its inidene vetor satis�es ax ≥ α with equality. It then followsthat bxE2 = bxE1 − b(e) + b(st). Sine xE1 ∈ Fa, we obtain that b(e) = b(st). As e isarbitrary in F1, this implies that
b(e) = b(st) = ρ for all e ∈ F1. (4.6)Now let f = uv ∈ δ(W ) \ F1, with u ∈ W \ {s} and v ∈ W \ {t}. If u ∈ W1and v ∈ W2, then let E3 = (E1 \ {sv, ut}) ∪ {f, st}. Clearly, E3 is a solution of the

kHPP and its inidene vetor satis�es ax ≥ α with equality. Hene, we have that
bxE3 = bxE1 . This implies that b(sv) + b(ut) = b(f) + b(st). From (4.6), it follows that
b(f) = ρ.If u ∈ W1∪{s} (resp. u ∈ W \(W1∪{s})) and v ∈ W \(W2∪{t}) (resp. v ∈ W2∪{t}),by onsidering the edge set E4 = (E1 \ {ut}) ∪ {f} (resp. E4 = (E1 \ {sv}) ∪ {f}), wesimilarly obtain that b(f) = ρ.If u /∈ W1 and v /∈ W2, then one an onsider the solution E5 = (E1 \{e})∪{f}, where
e is an edge of F1, and obtain along the same lines that b(f) = ρ.Thus, toghether with (4.6), this yields

b(e) = ρ for all e ∈ δ(W ).Now let e ∈ E0, and suppose, w.l.o.g., that e ∈ E(W ). If e does not belong to a
3-st-path of E1, then the edge set E6 = E1 \ {e} also indues a solution of the kHPPand satis�es ax ≥ α with equality. We then have that bxE6 = bxE1 implying b(e) = 0.If e belongs to a 3-st-path of E1, say (su, ut), then the edge set E7 = (E1 \{su, ut})∪

{st} indues a solution of the kHPP and its inidene vetor satis�es ax ≥ α withequality. It then follows that bxE7 = bxE1 and hene b(st) = b(su)+ b(ut). As by (4.6),
b(ut) = b(st), we get b(e) = 0.



90CHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEMConsequently, we have that
b(e) =

{
ρ for all e ∈ δ(W ),

0 if not.Thus, b = ρa with ρ ∈ R, and the result follows. �The next theorem desribes neessary and su�ient onditions for L-path-ut in-equalities to de�ne faets. But before, we give the following lemma.Lemma 4.2.2 Let T be an L-path-ut indued by a partition π = (V0, ..., V4) with
s ∈ V0 and t ∈ V4. If an edge set F ⊆ E indues a solution of the kHPP suh that
xF (T ) = k, then F ∩ ([s, V1] ∪ [V3, t] ∪ [s, t]) ≥ k. Moreover, if F ∩ [V1, V3] 6= ∅, then
F ∩ ([s, V1] ∪ [V3, t] ∪ [s, t]) ≥ k + 1.Proof. Let A = [s, V1] ∪ [V3, t] ∪ [s, t]. Sine eah 3-st-path of F intersets T atleast one and |F ∩ T | = k, F neessarily ontains exatly k edge-disjoint 3-st-paths.Moreover, eah of these paths intersets T only one. This implies that every 3-st-pathof F is of the formi) (su1, u1u2, u2t), (su2, u2u3, u3t), (su1, u1t), (su3, u3t), (st) orii) (su1, u1u3, u3t).If P is one of these st-paths, then |P ∩ A| = 1 (resp. |P ∩ A| = 2) if P is of type i)(resp. ii)). Thus, |F ∩ A| ≥ k.Now if F ∩ [V1, V3] 6= ∅, then F ontains at least one path of type ii) and therefore
|F ∩ A| ≥ k + 1. �Theorem 4.2.4 An inequality (4.3), indued by a partition π = (V0, ..., V4) with s ∈ V0and t ∈ V4, de�nes a faet of kHPP(G), di�erent from a trivial inequality, if and onlyif 1. |V0| = |V4| = 1;2. |[s, V1]| + |[V3, t]| + |[s, t]| ≥ k + 1.



4.2. FACETS OF KHPP(G) 91Proof. Let T be the 3-path-ut indued by π. Let ax ≥ α denote the 3-path-utinequality produed by T and F = {x ∈ kHPP(G) | ax = α}.Neessity.1) We will show that if |V0| ≥ 2, inequality x(T ) ≥ k does not de�ne a faet. The asewhere |V4| ≥ 2 follows by symmetry. Suppose that |V0| ≥ 2 and onsider the partition
π′ = (V ′

0 , ..., V
′
4) given by

V ′
0 = {s},

V ′
1 = V1 ∪ (V0 \ {s}),

V ′
i = Vi, i = 2, 3, 4.The partition π′ produes a 3-path-ut inequality x(T ′) ≥ k, where T ′ = T\[V0\{s}, V2].Sine G is omplete, [V0\{s}, V2] 6= ∅ and T ′ is stritly ontained in T . Thus, x(T ) ≥ kis redundant with respet to the inequalities

x(T ′) ≥ k,

x(e) ≥ 0 for all e ∈ [V0 \ {s}, V2],and hene annot de�ne a faet of kHPP(G).2) Suppose that ondition 1) holds. Let A = [s, V1]∪ [V3, t]∪ [s, t] and let ui be a �xednode of Vi, i = 1, 2, 3. Let us suppose that F is a faet of kHPP(G) di�erent from atrivial inequality. Thus there exists a solution F of the kHPP suh that xF ∈ F and
F ∩ [V1, V3] 6= ∅. If this is not the ase, then F would be equivalent to a faet de�ned byany of the inequalities x(e) ≥ 0, e ∈ [V1, V3]. Hene, as F ∩ [V1, V3] 6= ∅, from Lemma4.2.2, we have that |F ∩ A| ≥ k + 1.Su�ieny.Suppose that onditions 1) and 2) hold. First we show that F 6= ∅. As |[s, V1]∪ [V3, t]∪

[s, t]| ≥ k +1, there exist node sets U1 ⊆ V1, U3 ⊆ V3, and an edge set E0 ⊆ [s, t] \ {st}suh that |U1| + |U3| + |E0| = k. Consider the st-paths (su, ut), u ∈ U1 ∪ U3 and (e),
e ∈ E0. Clearly, these st-paths form a set of k edge-disjoint 3-st-paths. Moreover,eah of these paths intersets T only one. Thus they indue a solution, say E1, of the
kHPP whose inidene vetor belongs to F. Therefore F 6= ∅.Now suppose that there exists a faet de�ning inequality bx ≥ β suh that F ⊆ {x ∈

kHPP(G) | bx = β}. As before, we will show that there exists a salar ρ 6= 0 suh that
b = ρa.Let e ∈ E1∩T (where E1 is the solution introdued above). Let E2 = (E1\{e})∪{st}.Sine E2 is a solution of the kHPP whose inidene vetor belongs to F, we have
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bxE2 = bxE1 = β, implying that b(e) = b(st). As e is an arbitrary edge, we then obtainthat

b(e) = ρ for all e ∈ (E1 ∩ T ) ∪ {st}, for some ρ ∈ R. (4.7)Now let e ∈ E \ T . If e /∈ E1, then let E3 = E1 ∪ {e} is a solution of the kHPP.Moreover, its inidene vetor belongs to F. Hene, b(e) = bxE3 − bxE1 = 0. If
e ∈ E1 \ T , then e is either of the form su, u ∈ U1, or vt, v ∈ V3. Suppose, w.l.o.g.,that e = su, the ase where e = vt is similar. Note that, by the de�nition of E1, ut alsobelongs to E1. Let E ′

3 = (E1 \ {su, ut})∪ {st}. We have that E ′
3 indues of the kHPPand xE′

3 ∈ F. Hene, bxE′
3 = bxE1 = β and, in onsequene, b(su) + b(ut) = b(st). As,by (4.7), b(ut) = b(st), we have that b(su) = 0. Thus, we obtain that

b(e) = 0 for all e ∈ E \ T. (4.8)Consider now an edge e ∈ T \ E1. If e ∈ [s, t] \ {st}, then learly, the edge set
(E1 \ {g}) ∪ {e} indues a solution of the kHPP and its inidene vetor belongs to Fwhere g is an edge of E1. Hene, as before, b(e) = b(g) = ρ.Now if e = sv (resp. e = vt) with v ∈ V2, then the edge set E4 = (E1 \{su3})∪{e, vu3}(resp. E4 = (E1 \ {u1t}) ∪ {u1v, e}) indues a solution of the kHPP. Moreover, itsinidene vetor belongs to F. Thus, bxE4 − bxE1 = b(e) + b(vu3) − b(su3) = 0 (resp.
bxE4 − bxE1 = b(u1v) + b(e) − b(u1t) = 0). From (4.7) and (4.8) we get b(e) = ρ.Let e = sv with v ∈ V3. The ase where e ∈ [V1, t] is similar. If v ∈ U3, then the edge set
E5 = (E1 \ {f})∪{e}, where f is the edge of E1 between s and v, indues a solution ofthe kHPP whose inidene vetor belongs to F. Hene bxE5 − bxE1 = b(e)− b(su3) = 0.By (4.7), we get b(e) = ρ. If v /∈ U3, then we have that E ′

5 = (E1 \ {f ′}) ∪ {e, vt},where f ′ ∈ E1 ∩ [s, U3], also indues a solution of the kHPP and its inidene vetorbelongs to F. Thus, bxE′
5 − bxE1 = b(e) + b(u3t)− b(f) = 0. By (4.7) and (4.8), we get

b(e) = ρ.Now suppose that e = uv ∈ [V1, V3]. If u ∈ U1 and v ∈ U3, then by onsidering theedge set E6 = (E1 \ {ut, sv}) ∪ {e, st}, we get b(e) + b(st) = b(sv) + b(ut). From (4.7)and (4.8), we have that b(e) = ρ. If u /∈ U1 and v ∈ U3, then by onsidering theedge set E7 = (E1 \ {g}) ∪ {su, e}, where g is the edge of E1 between s and v, we get
b(e) + b(su) = b(g). By (4.7) and (4.8), we have b(e) = ρ. If u ∈ U1 and v /∈ U3, thenwe show in a similar way that b(e) = ρ. If u /∈ U1 and v /∈ U3, then by onsidering theedge set E8 = (E1 \ {st}) ∪ {su, e, vt}, we get b(e) = ρ. Thus, we obtain

b(e) = ρ for all e ∈ T \ (E1 ∪ {st}). (4.9)



4.3. COMPLETE DESCRIPTION OF KHPP(G) 93From (4.7), (4.8) and (4.9), we have
b(e) =

{
ρ for all e ∈ T,

0 if not.Therefore, b = ρa. Moreover ρ 6= 0 sine bx ≥ β de�nes a faet whih ends the proofof the theorem. �As it will turn out in the next setion, the onditions given for inequalities (4.1)-(4.3)to de�ne faets will be useful for haraterizing the kHPP polytope.4.3 Complete desription of kHPP(G)In this setion, we will present our main result, that is the polytope Pk(G), given bythe st-ut, the 3-path-ut and the trivial inequalities, is integral, whih implies that
kHPP(G) is ompletely desribed by these inequalities.To this end, onsider an undireted graph G = (V, E). Let N = V \ {s, t}, N ′ be aopy of N and Ṽ = N ∪ N ′ ∪ {s, t}. The opy in N ′ of a node u ∈ N will be denotedby u′. Let G̃ = (Ṽ , Ã) be the direted graph suh that Ṽ = N ∪ N ′ ∪ {s, t} and Ã isobtained from as follows. To eah edge e ∈ [s, t], we assoiate an ar from s to t in G̃.To eah edge su ∈ E (resp. vt ∈ E), we assoiate in G̃ the ar (s, u), u ∈ N (resp.
(v′, t), v′ ∈ N ′). To eah edge uv ∈ E, with u, v /∈ {s, t}, we assoiate two ars (u, v′)and (v, u′), with u, v ∈ N and u′, v′ ∈ N ′. Finally, to eah node u ∈ V \ {s, t}, weassoiate in G̃ k ars (u, u′) (see Figure 4.2 for an illustration for k = 3).Remark that any st-dipath in G̃ is of length no more than 3. Also note that eah
3-st-path in G orresponds to an st-path in G̃ and vie-versa. In fat, a 3-st-path
Γ = (s, u, v, t), with u 6= v, u, v /∈ {s, t}, orresponds to an st-path in G̃ of the form
(s, u, v′, t) with u ∈ N and v′ ∈ N ′, and a 3-st-path L = (s, u, t), u /∈ {s, t} orrespondsto an st-path in G̃ of the form (s, u, u′, t).The main idea of the proof is to show that eah solution of Pk(G) orresponds to asolution of kADPP(G̃) and vie versa. We will use this orrespondane together withTheorem 4.1.4 to ahieve the proof.Given a solution x of R

E , we let y be the solution of R
eA obtained from x as follows.
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G G̃Figure 4.2: Constrution of G̃

y(a) =





x(su) if a = (s, u), u ∈ N,

x(vt) if a = (v′, t), v′ ∈ N ′,

x(uv) if a ∈ {(u, v′), (v′, u)}, u, v ∈ N, u′, v′ ∈ N ′, u 6= v, u′ 6= v′,

x(st) if a = (s, t),

1 if a = (u, u′), u ∈ N, u′ ∈ N ′.We will say that the solutions x and y are assoiated.In what follows we will show that any st-ut and 3-path-ut of G orresponds toan st-diut in G̃. Indeed, let us onsider an edge set C ⊆ E and an ar set C̃ ⊆ Ãobtained from C as follows.i) For an edge st ∈ C, add (s, t) in C̃;ii) for an edge su ∈ C, add (s, u) in C̃, u ∈ N ;iii) for an edge vt ∈ C, add (v′, t) in C̃, v′ ∈ N ′;iv) for an edge uv ∈ C, u 6= v, u, v ∈ N ,iv.1) if su ∈ C or vt ∈ C, then add (v, u′) in C̃, with v ∈ N and u′ ∈ N ′;



4.3. COMPLETE DESCRIPTION OF KHPP(G) 95iv.2) if su /∈ C and vt /∈ C, then add (u, v′) in C̃.Observe that C̃ does not ontain any ar of the form (u, u′) with u ∈ N and u′ ∈ N ′.Also note that C̃ does not ontain at the same time two ars (u, v′) and (v, u′), for anedge uv ∈ E with u, v ∈ V \ {s, t}.Conversly, an ar subset C̃ of Ã an be obtained from an edge set C ⊆ E if C̃ doesnot ontain simultaneously two ars (u, v′) and (v, u′), u, v ∈ N , u′, v′ ∈ N ′, and doesnot ontain any ar of the form (u, u′) with u ∈ N , u′ ∈ N ′.As eah ar of C orresponds to a single ar of C̃ and vie versa, both sets have thesame weight, that is x(C) = y(C̃).Lemma 4.3.1 Let C ⊆ E be an edge set of G whih is an st-ut or a 3-path-utindued by a partition (V0, ..., V4) suh that |V0| = |V4| = 1. Then the ar set obtainedfrom C by the proedure given above is an st-diut of G̃. Moreover, x(C) = y(C̃)Proof. Suppose �rst that C is an st-ut δ(W ) for some W ⊂ V with s ∈ W and t ∈ W .Let W̃ ⊆ Ṽ suh that W̃ = W ∪ {u′ | u ∈ W \ {s}}. We will show that C̃ = δ+(W̃ ).We �rst show that C̃ ⊆ δ+(W̃ ). Observe that any ar f of C̃ is of the form (s, t), (s, u),
u 6= t, (v′, t), (u, v′) or (v, u′), u, v ∈ N , u′, v′ ∈ N ′. In fat, if f = (s, u) ∈ C̃, with
u ∈ N ∪ {t}, then su ∈ C. Thus, u ∈ W and therefore, (s, u) ∈ δ+(W̃ ).If f = (v′, t) for v′ ∈ N ′, this implies that vt ∈ C. Thus, v ∈ W and hene (v′, t) ∈

δ+(W̃ ).If f = (v, u′) for v ∈ N , u′ ∈ N ′, then by step iv.a) of the onstrution of C̃, weshould have su and vt in C. Hene, v ∈ W and u ∈ W . Therefore, v ∈ W̃ and
u′ ∈ Ṽ \ W̃ . Hene (v, u′) ∈ δ+(W̃ ). If f = (u, v′), it similarly follows that f ∈ δ+(W̃ ).Consequeltly, we have that C̃ ⊆ δ+(W̃ ).Next, we show that δ+(W̃ ) ⊆ C̃. Let g be an ar of δ+(W̃ ). If g = (s, u) for u ∈ N ,then u ∈ Ṽ \ W̃ and hene su ∈ δ(W )(= C). This implies that (s, u) ∈ C̃.If g = (v′, t) for v′ ∈ N ′, then v′ and hene v belongs to W̃ . Thus, vt ∈ δ(W ) andtherefore (v′, t) ∈ C̃. If g = (v, u′) with v ∈ N and u′ ∈ N ′, then v ∈ W̃ , and
u, u′ ∈ Ṽ \ W̃ . This implies that v ∈ W and u ∈ W . In onsequene, su ∈ δ(W ) and
vt ∈ δ(W ), and thus (v, u′) ∈ C̃.If g = (u, v′) with u ∈ N and v′ ∈ N ′, we similarly show that g ∈ C̃.



96CHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEMWe thus obtain that δ+(W̃ ) ⊆ C̃, and hene δ+(W̃ ) = C̃.Now suppose that C is a 3-path-ut indued by a partition (V0, V1, V2, V3, V4) suhthat V0 = {s} and V4 = {t}. By onsidering W̃ = V1 ∪ {u′ | u ∈ V1 ∪ V2}, we an showas before that C̃ = δ+(W̃ ). �Note that for an edge set C whih is a 3-path-ut of G, indued by a partition
(V0, ..., V4) suh that |V0| ≥ 2 or |V4| ≥ 2, the orresponding ar set C̃ may not bean st-diut of G̃. In fat, C̃ may simultaneously ontain two ars (s, u), (u, v′) or
(u, v′), (v′, t). In the example of Figure 4.3, C̃ simultaneously ontains the ars (s, u2)and (u2, u

′
0). If there exists a node subset W̃ ⊆ Ṽ suh that C̃ = δ+(W̃ ), we wouldhave u2 ∈ W̃ and u2 ∈ Ṽ \ W̃ , a ontradition.Also note that by Theorem 4.2.4, the L-path-ut inequalities indued by suh parti-tions do not de�ne faets of kHPP(G).
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Figure 4.3: A 3-path-ut in G whih does not indue an st-diut in G̃.The following lemma shows that an st-diut in G̃ whih does not ontain any ar ofthe form (u, u′), u ∈ V \ {s, t} orresponds to either an st-ut or a 3-path-ut in Gwith a lower weight.Lemma 4.3.2 Let C̃ be an st-diut of G̃ suh that C̃ does not ontain an ar of the



4.3. COMPLETE DESCRIPTION OF KHPP(G) 97form (u, u′), u ∈ V \ {s, t}. Then there exists an st-ut or a 3-path-ut C ⊆ E in Gsuh that x(C) ≤ y(C̃).Proof. Let C̃ = δ+(W̃ ) with W̃ ⊂ Ṽ . Sine C̃ does not ontain any ar of the form
(u, u′), u ∈ N , C̃ may ontain ars of the form either (u, v′) or (v, u′) or none of thembut not both.If C̃ ontains an ar of the form (u, v′) with u ∈ N , v′ ∈ N ′, sine C̃ is an st-diut in
G̃, the ars (s, u) and (v′, t) are not in C̃. If C̃ ontains an ar (v, u′), as C̃ does notontain ars of the form (z, z′), z ∈ N , we should have u ∈ Ṽ \ W̃ and v′ ∈ W̃ . Hene
(s, u) and (v′, t) are in C̃. Therefore C̃ an be obtained from an edge set C ⊆ E of G.Moreover x(C) = y(C̃).Futhermore, C intersets all the 3-st-paths of G. In fat, if there exists a 3-st-path
Γ = (su, uv, vt) whih does not interset C, then the ars (s, u), (u, v′), (v, u′) and (v′, t)of G̃ are not in C̃. Thus, the st-path ((s, u), (u, v′), (v′, t)) of G̃ does not interset C̃,ontraditing the fat that C̃ is an st-diut of G̃. Thus C intersets all the 3-st-pathsof G.If C is an st-ut then the result holds. If this is not the ase, then we will show thatthere exists a 3-path-ut T suh that T ⊆ C. Consider the graph G′ obtained from
G by deleting all the edges of C. G′ does not ontain any 3-st-path sine C intersetsall these paths. Let π = (V0, ..., V4) be a partition of V in G′ suh that V0 = {s}, Vi,for i = 1, 2, 3, is the set of nodes of G′ at distane (in terms of edges) i from s and
V4 = V \ (

3⋃

i=0

Vi). As C intersets all the 3-st-paths of G, all the st-paths in G′ are oflength at least 4 and hene, t ∈ V4. Moreover, the subgraph G′
π indued by π in G′does not ontain any hord, that is an edge uv with u ∈ Vi, v ∈ Vj , and |i− j| > 1. Infat, if uv is a hord, then v is at distane i + 1 < j of s, a ontradition. Therefore,if T is the 3-path-ut indued by π, we have that T ⊆ C. As x(e) ≥ 0, for all e ∈ E,this implies x(T ) ≤ x(C) = y(C̃). �In what follows, we will show that Pk(G) is integral. To this end, we give somelemmas.Lemma 4.3.3 Let x ∈ Pk(G) and y be its assoiated solution. Then y ∈ kADPP(G̃).



98CHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEMProof. Clearly, y satis�es inequalities 0 ≤ y(a) ≤ 1, for all a ∈ Ã. Now supposethat there exists an st-diut inequality, say y(δ+(W̃ )) ≥ k with W̃ ⊆ Ṽ , suh that
y(δ+(W̃ )) < k.First note that δ+(W̃ ) does not ontain any ar of the form (u, u′), u ∈ N . In fat,if (u, u′) ∈ δ+(W̃ ), for some u ∈ N , then one would have that [u, u′] ⊆ δ+(W̃ ). Sine
|[u, u′]| = k and y(a) = 1 for all a ∈ [u, u′], one would have y(δ+(W̃ )) ≥ k, a ontra-dition. Hene, from Lemma 4.3.2, there exists either an st-ut or a 3-path-ut C ⊆ Eof G suh that x(C) ≤ y(δ+(W̃ )) and therefore x(C) < k. But this is impossible sine
x ∈ Pk(G). �Lemma 4.3.4 Let e = uv be an edge of G suh that u, v ∈ V \ {s, t}, and y ∈ R

eA asolution of kADPP(G̃). If there exists an st-diut C̃ of G̃ whih does not ontain anyar of the form (z, z′), z ∈ V \ {s, t}, and suh that (u, v′) ∈ C̃ and y(C̃) = k, then
y(C̃ ′) > k for all st-diut C̃ ′ of G̃ ontaining the ar (v, u′).Proof. Suppose that there exists an st-diut C̃ = δ+(W̃ ) of G̃ whih does not ontainars of the form (z, z′), z ∈ V \ {s, t} and suh that (u, v′) ∈ C̃ and y(C̃) = k. Supposealso, on the ontrary, that there exists an st-diut C̃ ′ = δ+(W̃ ′) ontaining the ar
(v, u′) and suh that y(C̃ ′) = k. From Theorem 4.1.5, W̃ and W̃ ′ an be hosen sothat either W̃ ′ ⊆ W̃ or W̃ ⊆ W̃ ′. As (u, v′) ∈ C̃, we have that u ∈ W̃ and v′ ∈ Ṽ \ W̃ .Sine (z, z′) /∈ C̃, for all z ∈ V \ {s, t}, it follows that u, u′ ∈ W̃ , and v, v′ ∈ Ṽ \ W̃ .Similarly, as (v, u′) ∈ C̃ ′, we have that v, v′ ∈ W̃ ′ and u, u′ ∈ Ṽ \ W̃ ′.If W̃ ′ ⊆ W̃ , then one would have v ∈ W̃ . But this ontradits the fat that v ∈ Ṽ \W̃ .If W̃ ⊆ W̃ ′, then we would obtain that u ∈ W̃ ′. As u ∈ Ṽ \W̃ ′, this is a ontradition. �Now we are ready to state our main result.Theorem 4.3.1 The polytope kHPP(G) is ompletely desribed by inequalities (4.1)-(4.3).Proof. We will show that the polytope Pk(G) is integral. For this, let us suppose, onthe ontrary, that there exists a frational extreme point x of Pk(G). Then there existsa set of st-uts C∗(x) and a set of 3-path-uts T ∗(x) suh that x is the unique solutionof the system
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S(x)





x(e) = 0, for all e ∈ E0(x),

x(e) = 1, for all e ∈ E1(x),

x(C) = k, for all C ∈ C∗(x),

x(T ) = k, for all T ∈ T ∗(x),where E0(x) (resp. E1(x)) is the set of edges suh that x(e) = 0 (resp. x(e) = 1) and
|E0(x)| + |E1(x)| + |C∗(x)| + |T ∗(x)| = |E|.We will show that there exists a solution x′

1 of Pk(G) di�erent from x whih is alsoa solution of S(x), yielding a ontradition.Clearly, the solution y, assoiated with x, is frational and, by Lemma 4.3.3, is asolution of kADPP(G̃). Let Ã0(y) = {(u, v) ∈ Ã | x(uv) = 0} and Ã1(y) = {(u, v) ∈

Ã | x(uv) = 1} ∪ {(u, u′), u ∈ N, u′ ∈ N ′}. By Lemma 4.3.1, eah st-ut C ∈ C∗(x)and 3-path-ut T ∈ T ∗(x) orresponds to an st-diut C̃ of G̃ having the same weight,that is y(C̃) = k. We denote by C∗(y) the set of the orresponding st-diuts. It thenfollows that y is solution (not neessarily unique) of the system S(y) given by
S(y)





y(a) = 0, for all a ∈ Ã0(y),

y(a) = 1, for all a ∈ Ã1(y),

y(C̃) = k, for all C̃ ∈ C∗(y).Sine y is frational and hene, by Theorem 4.1.4, annot be an extreme point of
kADPP(G̃), y an be written as a onvexe ombination of integral extreme points of
kADPP(G̃). Let y1 be one of these extreme points. Clearly, y1 is also a solution of S(y).In the following, we show that there exists an integer solution y′

1 of kADPP(G̃) whihis a solution of S(y) and suh that y′
1(u, v′) = y′

1(v, u′) for all pair of ars ((u, v′), (v, u′))of G̃, orresponding to an edge uv ∈ E with u, v ∈ V \ {s, t} and u 6= v. If suh asolution exists, then y′
1 an be assoiated with a solution x′

1 ∈ Pk(G) satisfying S(x)and di�erent from x.If for all pair of ars ((u, v′), (v, u′)) of G̃, with u, v ∈ N , u′, v′ ∈ N ′, y1(u, v′) =

y1(v, u′), then we an take y′
1 = y1. So suppose that there exist two nodes u, v ∈

V \{s, t}, suh that uv ∈ E and y1(u, v′) 6= y1(v, u′). As y1 is integral, we an suppose,w.l.o.g., that y1(u, v′) = 1 and y1(v, u′) = 0. It follows that y(u, v′), y(v, u′), x(uv)are frational. Note that x(uv) = y(u, v′) = y(v, u′). Also note that any st-diut of
G̃ induing a tight st-diut inequality for y or y1 does not ontain ars of the form
(z, z′), z ∈ V \ {s, t}. If there is an st-diut C̃ of G̃ whih ontains (u, v′), and suhthat y1(C̃) = k, then, by Lemma 4.3.4, every st-diut ontaining (v, u′) is not tight for
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y1. Let y′

1 be the solution given by
y′

1(a) =

{
y1(a), for all a ∈ Ã \ {(v, u′)},

1, for a = (v, u′).Clearly, y′
1 is a solution of kADPP(G̃) with y′

1(u, v′) = y′
1(v

′, u) = 1, and satis�es withequality every st-diut inequality whih is tight for y1. In partiular, the st-diutsinequalities of C̃∗(y) are also tight for y′
1. Hene, y′

1 is a solution of S(y).If there is an st-diut C̃ whih ontains (v, u′) and suh that y1(C̃) = k, then, byLemma 4.3.4, every st-diut R̃ ⊆ Ã ontaining (u, v′) is suh that y1(R̃) ≥ k + 1.Hene, the solution y′
1 given by
y′

1(a) =

{
y1(a), for all a ∈ Ã \ {(u, v′)},

0, for a = (u, v′),is a solution of kADPP(G̃) suh that y′
1(u, v′) = y′

1(v
′, u) = 0, and every st-diut in-equality whih is tight for y1 is also tight for y′

1. Thus y′
1 is also a solution of S(y).Consequently, there exists an integer solution y′

1 ∈ kADPP(G̃) whih is a solutionof S(y) and suh that y′
1(u, v′) = y′

1(u
′, v) for all ars (u, v′), (v, u′) ∈ Ã orrespondingto an edge uv ∈ E. Thus, y′

1 an be assoiated with a solution x′
1 of Pk(G). As y′

1is integral, x′
1 is also integral. Moreover, x′

1 is a solution of S(x). In fat, it is nothard to see that, as y′
1 is a solution of S(y), and y′

1(a) = 0 for all a ∈ Ã0(y) and
y′

1(a) = 1 for all a ∈ Ã1(y). Hene x′
1(e) = 0 for all e ∈ E0(x) and x′

1(e) = 1 forall e ∈ E1(x). Suppose that there is an st-ut (resp. 3-path-ut) inequality in C∗(x)(resp. T ∗(x)) whih is not tight for x′
1, say x′

1(C0) > k. Then by Lemma 4.3.2, we havethat x′
1(C0) ≤ y1(C̃0), where C̃0 is the st-diut of C̃∗(y) orresponding to C0. We thusobtain that y′

1(C̃0) > k. Hene y′
1 is not a solution of S(y), a ontradition. Thus, x′

1is a solution of S(x). Sine x′
1 is integral and x is frational, x′

1 6= x. In onsequene,
x is not the unique solution of S(x), ontraditing the fat that x is an extreme pointof Pk(G). Therefore, x annot be frational, whih ends the proof of the theorem. �A diret onsequene of Theorems 4.2.2, 4.2.3, 4.2.4 and 4.3.1 is the following.Corollary 4.3.1 If G = (V, E) is a omplete graph and |V | ≥ k + 2, a minimal



4.4. CONCLUDING REMARKS 101omplete linear desription of kHPP(G) is given by
x(δ(W )) ≥ k for all st − ut δ(W ),

x(T ) ≥ k for all 3-path-ut T indued by a partition satisfyingonditions 1) and 2) of Theorem 4.2.4,
x(e) ≥ 0 for all e ∈ E,

x(e) ≤ 1 for all e ∈ E.As mentionned in Setion 4.1.1, the separation problem for the st-ut and 3-path-ut inequalities an be solved in polynomial time. Thus, the kHPP an be solved inpolynomial time using a utting plane algorithm.4.4 Conluding remarksIn this hapter we have given a omplete desription of the polytope assoiated with the
k edge-disjoint hop-onstrained paths problem when L = 3 and k ≥ 2. We have pre-sented valid inequalites for the problem and given an integer programming formulation.We have also desribed neessary and su�ient onditions for the trivial inequalities,the st-ut and L-path-ut inequalities to de�ne faets of the polytope. Using theseresults together with a transformation of the kHPP in G into the kADPP in a di-reted graph G̃, we have shown that the polytope kHPP(G) is ompletely desribedby the trivial, st-ut and 3-path ut inequalities. As the separation problem for theseinequalities an be solved in polynomial time, this yields a polynomial time uttingplane algorithm to solve the problem.These results generalize those obtained by Huygens et al. [75℄ and Dahl et al. [35℄for k = 2 and L = 2, 3 and for k ≥ 2 and L = 2, respetively. Unfortunately thelinear desription of the kHPP is no longer valid when L ≥ 4. As shown by Huygensand Mahjoub [73℄, further inequalities are even needed for an integer programmingformulation of the problem when k = 2 and L = 4.The kHPP an also be seen as a minimum ost �ow problem in the graph G̃ byassoiated with its ars unit apaities and appropriate weights. In fat, an ar of
G̃ whih orresponds to an edge of G takes the same weight as this edge while thears of the form (u, u′), u ∈ V \ {s, t} (whih do not orrespond to any edge in G)are given the weight 0. By the orrespondane between the 3-st-paths of G and the



102CHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEM
st-paths in G̃, a minimum weight subgraph of G whih ontains k edge-disjoint 3-st-paths orresponds to a subgraph of G̃ ontaining k ar-disjoint st-paths of the sameweight. Moreover, the weight of this subgraph is minimum. The kHPP is thus equiva-lent to �nding a minimum ost �ow from s to t of value k in G̃. This implies that theproblem an also be solved in polynomial time using any minimum ost �ow algorithm.The integer programming formulation for the kHPP an be easily extended to themore general ase where more than pair of terminals are onsidered. However, aspointed out in [74℄, the ut inequalities toghether with the L-path-ut and trivial in-equalities do not su�e to ompletely desribe the kHPP polytope even when only twopair of terminals are onsidered L ≥ 3 and k = 2.The results of this hapter an be exploited in a Branh-and-Cut algorithm for thatgeneral ase. Also the transformation of the kHPP into the kADPP in an appropriatedireted graph introdued and exploited here, an be used to give based �ow formula-tions. It would also be interesting to investigate this type of approah for L ≥ 4. Thisis our aim in the next hapter.



Chapter 5
The k-Edge-ConnetedHop-Constrained Network DesignProblem
Let G = (V, E) be an undireted graph, a set of demands D ⊆ V × V , a ost funtion
c : E → R, whih assoiates the ost c(e) with eah edge e ∈ E. The k-Edge-Conneted Hop-Constrained Network Design Problem (kHNDP for short) onsists in�nding a minimum ost subgraph of G suh that there exist k edge-disjoint L-st-pathsbetween the terminals of eah demand {s, t} of D.In this hapter, we onsider the kHNDP with L = 2, 3 and k ≥ 2 and introduefour new integer programming formulations for the problem. In Setion 5.1, we givea formulation of the kHNDP using the design variables. In Setions 5.2 and 5.3,we introdued four new integer programming formulations. These formulations usetransformations of the initial undireted graph into direted graphs.5.1 Integer programming formulation for the kHNDPusing the design variablesLet G = (V, E) be an undireted graph, L ≥ 2 and D = {{s1, t1}, ..., {sd, td}}, d ≥ 2, bethe set of demands. We will denote by RD the set of terminal nodes of G, that is thosenodes of G whih are involved in at least one demand. It is lear that the inidene



104 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMvetor xF of any solution (V, F ) of the kHNDP satis�es the following inequalities.
x(δ(W )) ≥ k for all st-ut, {s, t} ∈ D, (5.1)
x(T ) ≥ k for all L-st-path-ut, {s, t} ∈ D, (5.2)
x(e) ≥ 0 for all e ∈ E, (5.3)
x(e) ≤ 1 for all e ∈ E, (5.4)Conversely, any integer solution of the system de�ned by inequalities (5.1)-(5.4) isthe inidene vetor of a solution of the kHNDP when L = 2, 3.Reall that inequalities (5.1), (5.2) and (5.3)-(5.4) are alled respetively st-ut in-equalities, L-st-path-ut inequalities and trivial inequalities.It is not hard to see that the kHNDP an be formulated as a linear integer programsimilarly to the ase of a single demand (Chapter 4). The following lemma and theoremgive this result. Their proof are similar to those of Lemma 4.1.1 and Theorem 4.1.1.Lemma 5.1.1 Let G = (V, E) be an undireted graph and s and t two nodes of V .Suppose that there do not exist k edge-disjoint L-st-paths in G, with k ≥ 2. Then thereexists a set of at most k − 1 edges that intersets every L-st-path.Theorem 5.1.1 Let G = (V, E) be a graph, k ≥ 2 and L ∈ {2, 3}. Then the kHNDPis equivalent to the following inter program
min{cx; subjet to (5.1) − (5.4), x ∈ Z

E}. (5.5)Formulation (5.5) will be alledNatural formulation. We will denote it by kHNDPNat.It only uses the design variables.In the next setions, we give new integer programming formulations for the kHNDPin the ase where k ≥ 2 and L = 2, 3.5.2 Separated formulations for the kHNDPIn this setion we introdue three integer programming formulations for the kHNDP.Let G = (V, E) be an undireted graph, L ∈ {2, 3}, k ≥ 2, two integers, and D a setof demands. Before giving these formulations, we introdue a graph transformationwhih produes |D| direted graphs from the graph G.



5.2. SEPARATED FORMULATIONS FOR THE KHNDP 1055.2.1 Graph transformationLet {s, t} ∈ D and G̃st = (Ṽst, Ãst) be the direted graph obtained from G using thefollowing proedure.Let Nst = V \ {s, t}, N ′
st be a opy of Nst and Ṽst = Nst ∪ N ′

st ∪ {s, t}. The opy in
N ′

st of a node u ∈ Nst will be denoted by u′. To eah edge e = st ∈ E, we assoiate anar (s, t) in G̃st with apaity 1. With eah edge su ∈ E (resp. vt ∈ E), we assoiatein G̃st the ar (s, u), u ∈ Nst (resp. (v′, t), v′ ∈ N ′
st) with apaity 1. With eah node

u ∈ V \ {s, t}, we assoiate in G̃st one ar (u, u′) with an in�nit apaity. Finally, if
L = 3 we assoiate with eah edge uv ∈ E \ {s, t}, two ars (u, v′) and (v, u′), with
u, v ∈ Nst and u′, v′ ∈ N ′

st with apaity 1 (see Figure 5.1 for an illustration with
L = 3).
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Figure 5.1: Constrution of graphs G̃st with D = {{s1, t1}, {s1, t2}, {s3, t3}} for L = 3Note that eah graph G̃st ontains |Ṽst| = 2|V | − 2 (= |Nst ∪N ′
st ∪{s, t}|) nodes and

|Ãst| = |δ(s)|+ |δ(t)| − |[s, t]|+ |V | − 2 ars if L = 2 and |Ãst| = 2|E| − |δ(s)| − |δ(t)|+

|[s, t]| + |V | − 2 ars if L = 3, for all {s, t} ∈ D.Given a demand {s, t}, the assoiated graph G̃st = (Ṽst, Ãst), and an edge e ∈ E, wedenote by Ãst(e) the set of ars of G̃st orresponding to the edge e.It is not hard to see that G̃st does not ontain any iruit. Also, observe that any
st-dipath in G̃st is of length no more than 3. Moreover eah L-st-path in G orrespondsto an st-dipath in G̃st and onversely. In fat, if L ∈ {2, 3}, every 3-st-path (s, u, v, t),



106 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMwith u 6= v, u, v ∈ V \ {s, t}, orresponds to an st-dipath in G̃st of the form (s, u, v′, t)with u ∈ Nst and v′ ∈ N ′
st. Every 2-st-path (s, u, t), u ∈ V \ {s, t}, orresponds to an

st-dipath in G̃st of the form (s, u, u′, t).We have the following lemma.Lemma 5.2.1 Let L ∈ {2, 3} and {s, t} ∈ D.i) If two L-st-paths of G are edge-disjoint, then the orresponding st-dipaths in G̃stare ar-disjoint.ii) If two st-dipaths of G̃st are ar-disjoint, then the orresponding st-paths in Gontain two edge-disjoint L-st-paths.Proof. We will suppose, w.l.o.g., that L = 3. The proof is similar for L = 2.i) Let P1 and P2 be two edge-disjoint 3-st-paths of G. Let P̃1 and P̃2 be the two st-dipaths of G̃st orresponding to P1 and P2, respetively. We will show that P̃1 and P̃2are ar-disjoint. Let us assume that this is not the ase. Then they interset on an ar
a of the form either (s, t), (s, u), (v′, t), (u, v′) or (u, u′), with u ∈ Nst and v′ ∈ N ′

st.If a is of the form (s, t), (s, u), (v′, t) or (u, v′), then it orresponds to an edge e of
G of the form either st, su, vt or uv. This implies that P1 and P2 ontain both theedge e, a ontradition. Thus, P̃1 and P̃2 interset on an ar of the form (u, u′), with
u ∈ Nst. As the st-dipaths of G̃st ontain at most 3 ars, P̃1 and P̃2 are of the form
(s, u, u′, t). But this implies that P1 and P2 ontain simulataneously the edges su and
ut, a ontradition.ii) Now onsider two ar-disjoint st-dipaths P̃1 and P̃2 of G̃st and let P1 and P2 be theorresponding 3-st-paths of G. Suppose that P1 ∩P2 6= ∅. If P1 and P2 interset on anedge e = st, then P̃1 and P̃2 also ontain the ar (s, t), a ontradition. If P1 and P2interset on an edge of the form su, u ∈ V \ {s, t} (resp. vt, v ∈ V \ {s, t}), then, asbefore, both P̃1 and P̃2 ontain the ar (s, u) (resp. (v′, t)), yielding a ontradition.Now if P1 and P2 interset on an edge of the form uv, u, v ∈ V \ {s, t}, then P̃1 and
P̃2 ontain the ars (u, v′) and (v, u′) of G̃st. Sine P̃1 and P̃2 are ar-disjoint, P̃1 on-tains say (u, v′) and P̃2 (v, u′). Thus they are respetively of the form (s, u, v′, t) and
(s, v, u′, t). This implies that P1 = (su, uv, vt) and P2 = (sv, vu, ut). Let P ′

1 = (su, ut)and P ′
2 = (sv, vt). Clearly P ′

1 and P ′
2 are edge-disjoint and of length 2. Thus, weassoiate P̃1 and P̃2 with them, whih ends the proof of the lemma. �



5.2. SEPARATED FORMULATIONS FOR THE KHNDP 107As a onsequene of Lemma 5.2.1, for L ∈ {2, 3} and every demand {s, t} ∈ D, a setof k edge-disjoint L-st-paths of G orresponds to a set of k ar-disjoint st-dipaths of
G̃st, and k ar-disjoint st-dipaths of G̃st orrespond to k edge-disjoint L-st-paths of G.Therefore we have the following orollary.Corollary 5.2.1 Let H be a subgraph of G and H̃st, {s, t} ∈ D, the subgraph of G̃stobtained by onsidering all the ars of G̃st orresponding to an edge of H, plus the ars ofthe form (u, u′), u ∈ V \{s, t}. Then H indues a solution of the kHNDP if H̃st ontains
k ar-disjoint st-dipaths, for every {s, t} ∈ D. Conversly, given a set of subgraphs H̃stof G̃st, {s, t} ∈ D, if H is the subgraph of G obtained by onsidering all the edges of
G assoiated with at least one ar in a subgraph H̃st, then H indues a solution of the
kHNDP only if H̃st ontains k ar-disjoint st-dipaths, for every {s, t} ∈ D.Remark that a graph G̃st will ontain k ar-disjoint st-dipaths if and only if every
st-diut ontains at least k ars. This implies, by the Max �ow - Min ut Theorem,that G̃st ontains k ar-disjoint st-dipaths if and only if there exists a feasible �ow ofvalue ≥ k where every ar of G̃st has apaity 1. Given a demand {s, t} and a feasible�ow f of value ≥ k on G̃st, we will denote by H̃f

st the set of ars of G̃st having a positivevalue of �ow with respet to f .In what follows, we will give three integer programming formulations for the kHNDPusing graphs G̃st, {s, t} ∈ D. These formulations will be alled separated formulations.5.2.2 Cut formulationThe �rst formulation is based on uts in the graphs G̃st, {s, t} ∈ D. Given a subgraph
H̃st of G̃st, we let y

eHst
st ∈ R

eAst be the inidene vetor of H̃st, that is to say y
eHst
st (a) = 1if a ∈ H̃st and y

eHst
st (a) = 0 if not. By Corollary 5.2.1, if a subgraph H of G induesa solution of the kHNDP, then the subgraph H̃st ontains at least k ar-disjoint st-dipaths, for all {s, t} ∈ D, and onversely. Thus, for any solution H of the kHNDP,the following inequalities are satis�ed by y

eHst
st , for all {s, t} ∈ D,

yst(δ
+(W̃ )) ≥ k, for all st-diut δ+(W̃ ) of G̃st, (5.6)

yst(a) ≤ x(e), for all a ∈ Ãst(e), e ∈ E, (5.7)
yst(a) ≥ 0, for all a ∈ Ãst, (5.8)
x(e) ≤ 1, for all e ∈ E. (5.9)



108 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMwhere yst ∈ R
eAst for all {s, t} ∈ D and x ∈ R

E.Inequalities (5.6) will be alled direted st-ut inequalities or st-diut inequalities andinequalities (5.7) linking inequalities. Inequalities (5.7) indiate that an ar a ∈ Ãstorresponding to an edge e is not in H̃st if e is not taken in H . Inequalities (5.8) and(5.9) are alled trivial inequalities.We have the following result whih is given without proof sine it easily follows fromthe above results.Theorem 5.2.1 The kHNDP for L = 2, 3 is equivalent to the following integer pro-gram
min{cx; subjet to (5.6) − (5.9), x ∈ Z

E
+, yst ∈ Z

eAst

+ ,for all {s, t} ∈ D}. (5.10)This formulation is alled Cut formulation and denoted by kHNDPCu. It ontains
|E| +

∑

{s,t}∈D

|Ãst| = |E| + d(n − 2) +
∑

{s,t}∈D

|δ(s)| +
∑

{s,t}∈D

|δ(t)| −
∑

{s,t}∈D

|[s, t]|variables if L = 2 and
|E| +

∑

{s,t}∈D

|Ãst| = |E| + 2d|E| + d(n − 2) −
∑

{s,t}∈D

|δ(s)| −
∑

{s,t}∈D

|δ(t)| +
∑

{s,t}∈D

|[s, t]|variables if L = 3 (remind that d = |D|).However, the number of onstraints is exponential sine the direted st-uts are inexponential number in G̃st, for all {s, t} ∈ D. As it will turn out in Chapter 6, itslinear relaxation an be solved in polynomial time using a utting plane algorithm.5.2.3 Node-Ar formulationLet H ⊆ E be a subgraph of G and xH its inidene vetor. Given a demand {s, t},we let f st ∈ R
eAst be an integer �ow vetor on G̃st of value k. Then f st satis�es the�ow onservation onstraints, given by
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∑

a∈δ+(u)

f st
a −

∑

a∈δ−(u)

f st
a =





k if u = s,

0 if u ∈ Ṽst \ {s, t},

−k if u = t,





,for all u ∈ Ṽst. (5.11)Also xH and (f st){s,t}∈D satisfy the following inequalities
f st

a ≤ x(e), for all a ∈ Ãst(e), {s, t} ∈ D, e ∈ E, (5.12)
f st

a ≥ 0, for every a ∈ Ãst and {s, t} ∈ D, (5.13)
x(e) ≤ 1, for all edge e ∈ E. (5.14)Inequalities (5.12) are also alled linking inequalities. They indiate that if an edge

e ∈ E is not in the solution, then the �ow on every ar orresponding to e is 0.Inequalities (5.13)-(5.14) are alled trivial inequalities.We have the following theorem whih will be given without proof.Theorem 5.2.2 The kHNDP for L = 2, 3 is equivalent to the following integer pro-gram
min{cx; subjet to (5.11) − (5.14), x ∈ Z

E
+, f st ∈ Z

eAst

+ ,for all {s, t} ∈ D}. (5.15)This formulation will be alled Node-Ar formulation and denoted by kHNDPNA. Itontains
|E| +

∑

{s,t}∈D

|Ãst| = |E| + d(n − 2) +
∑

{s,t}∈D

|δ(s)| +
∑

{s,t}∈D

|δ(t)| −
∑

{s,t}∈D

|[s, t]|variables if L = 2 and
|E| +

∑

{s,t}∈D

|Ãst| = |E| + 2d|E| + d(n − 2) −
∑

{s,t}∈D

|δ(s)| −
∑

{s,t}∈D

|δ(t)| +
∑

{s,t}∈D

|[s, t]|variables if L = 3.The number of onstraints is
d|V | +

∑

{s,t}∈D

|δ(s)| +
∑

{s,t}∈D

|δ(t)| −
∑

{s,t}∈D

|[s, t]|



110 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMif L = 2 and
d|V | + 2d|E| −

∑

{s,t}∈D

|δ(s)| −
∑

{s,t}∈D

|δ(t)| +
∑

{s,t}∈D

|[s, t]|if L = 3.Clearly the number of variables and the number of onstraints are both polynomial.Hene, the linear relaxation of Formulation (5.15) an be solved in polynomial timeusing a linear programming method.5.2.4 Path-Ar formulationThe kHNDP an also be formulated using a path-based model. Every solution of theproblem is represented by a olletion of direted st-paths in graphs G̃st, {s, t} ∈ D.Let {s, t} ∈ D and Pst be the set of st-dipaths in G̃st. Given a direted path P̃ ∈ Pst,we denote by Γst
eP

= (γst
eP,a

)a∈ eAst
the inidene vetor of P̃ that is the vetor given by

γst
eP,a

= 1 if a ∈ P̃ and γst
eP,a

= 0 otherwise. Given a subgraph H of G and a setof subgraphs H̃st of G̃st, {s, t} ∈ D, we let µst
eHst

∈ R
Pst be the 0-1 vetor suh that

µst
eHst

(P̃ ) = 1 if P̃ ∈ Pst is in H̃st and µst
eHst

(P̃ ) = 0 otherwise.If H indues a solution of the kHNDP, then xH and (µst
eHst

){s,t}∈D satisfy the followinginequalities.
∑

eP∈Pst

µst(P̃ ) ≥ k, (5.16)
∑

eP∈Pst

γst
eP,a

µst(P̃ ) ≤ x(e), for all a ∈ Ãst(e), {s, t} ∈ D, e ∈ E, (5.17)
x(e) ≤ 1, for all edge e ∈ E, (5.18)
µst(P̃ ) ≥ 0, for every P̃ ∈ Pst, {s, t} ∈ D, (5.19)where µst ∈ R

Pst and x ∈ R
E.Inequalities (5.16) express the fat that the subgraph G̃st must ontain at least k

st-dipaths. Inequalities (5.17) indiate that the st-dipaths are ar-disjoint.The following theorem gives an integer programming formulation for the kHNDPusing the path-based model desribed above.



5.3. AGGREGATED FORMULATION FOR THE KHNDP 111Theorem 5.2.3 The kHNDP for L = 2, 3 is equivalent to the following inter program
min{cx; subjet to (5.17) − (5.19), x ∈ Z

E
+, µst ∈ Z

Pst

+ ,for all {s, t} ∈ D}. (5.20)Formulation (5.20) is alled Path-Ar formulation and denoted by kHNDPPA. Re-mark that this formulation ontains an exponential number of variables while the num-ber of non trivial inequalities is
∑

{s,t}∈D

|δ(s)| +
∑

{s,t}∈D

|δ(t)| −
∑

{s,t}∈D

|[s, t]| − d(n − 3)if L = 2 and
2d|E| −

∑

{s,t}∈D

|δ(s)| −
∑

{s,t}∈D

|δ(t)| +
∑

{s,t}∈D

|[s, t]| − d(n − 3)if L = 3, whih is polynomial. To solve the linear relaxation of Formulation (5.20), itis neessary to use appropriate method suh as olumn generation.In the next setion we introdue a further formulation for the kHNDP also basedon direted graphs. However, unlike the separated formulations, this formulation issupported by only one direted graph.5.3 Aggregated formulation for the kHNDPLet G = (V, E) be an undireted graph, L ∈ {2, 3}, k ≥ 2 be two integers, and Dbe the demand set. We denote by SD and TD respetively the sets of soure anddestination nodes of D. In the ase where two demands {s1, t1} and {s2, t2} are suhthat s1 = t2 = s, we keep a opy of s in both SD and TD.In this setion, we will introdue a new formulation for the kHNDP whih is supportedby a direted graph G̃ = (Ṽ , Ã) obtained from G as follows. Let N ′ and N ′′ be twoopies of V . We denote by u′ and u′′ the nodes of N ′ and N ′′ orresponding to a node
u ∈ V . Let Ṽ = SD ∪N ′∪N ′′∪TD. For every node u ∈ V , we add in G̃ an ar (u′, u′′).For eah {s, t} ∈ D, with s ∈ SD and t ∈ TD, we apply the following proedure.i) For an edge e = st, we add in G̃ an ar (s, t′) and an ar (t′, t);ii) For an edge su ∈ E, u ∈ V \ {s, t}, we add an ar (s, u′) in G̃;



112 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMiii) For an edge vt ∈ E, v ∈ V \ {s, t}, we add an ar (v′′, t).If L = 3, for eah edge e = uv ∈ E, we also add two ars (u′, v′′) and (v′, u′′) (seeFigures 5.2 and 5.3 for examples with L = 2 and L = 3).
s′
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s′
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t2

s3

Graph eG
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Figure 5.2: Constrution of graph G̃ with D = {{s1, t1}, {s1, t2}, {s3, t3}} and L = 2.
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Figure 5.3: Constrution of graph G̃ with D = {{s1, t1}, {s1, t2}, {s3, t3}} and L = 3.
G̃ ontains |Ṽ | = 2|V |+ |S|+ |T | nodes and |Ã| = |V |+

∑

s∈S

|δ(s)| +
∑

t∈T

|δ(t)| ars if
L = 2 and |Ã| = 2|E| + |V | +

∑

s∈S

|δ(s)| +
∑

t∈T

|δ(t)| ars if L = 3.If G̃ = (Ṽ , Ã) is the graph assoiated with G, then for an edge e ∈ E, we denote by
Ã(e) the set of ars of G̃ orresponding to e.Observe that G̃ is iruitless. Also note that for a given demand {s, t} ∈ D, every
st-dipath in G̃ ontains at most 3 ars. An L-st-path P = (s, u, v, t) of G, where uand v may be the same, orresponds to an st-dipath P̃ = (s, u′, v′′, t) in G̃. Conversely,every st-dipath P̃ = (s, u′, v′′, t) of G̃, where u′ and v′′ may orrespond to the samenode of V , orreponds to an L-st-path P = (s, u, v, t), where u and v may be the same.Moreover G̃ does not ontain any ar of the form (s, s′) and (t′′, t), for every s ∈ SDand t ∈ TD. If a node t ∈ TD appears in exatly one demand {s, t}, then [s′′, t] = ∅. Inthe remain of this hapter we will suppose w.l.o.g. that eah node of TD is involved,as destination, in only one demand. In fat, in general, if a node t ∈ TD is involved, asdestination, in more than one demand, say {s1, t}, ..., {sp, t}, with p ≥ 2, then one mayreplae in TD t by p nodes t1, ..., tp and in D eah demand {si, t} by {si, ti}, i = 1, ..., p.We have the following result.



114 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMLemma 5.3.1 Let L ∈ {2, 3}. If eah node t ∈ TD appears in exaly one demand,then for every {s, t} ∈ D,i) if two L-st-paths of G are edge-disjoint, then the orresponding st-dipaths of G̃are ar-disjoint.ii) if two st-dipaths of G̃ are ar-disjoint, then the orresponding st-paths in G on-tain two edge-disjoint L-st-paths.Proof. The proof will be given for L = 3. It follows the same lines for L = 2.i) Let {s, t} ∈ D and let P1 and P2 be two edge-disjoint 3-st-paths and P̃1 and P̃2 bethe two st-dipaths of G̃ orresponding to P1 and P2. We will show that P̃1 and P̃2 arear-disjoint. Suppose the ontrary that is P̃1 and P̃2 interset on an ar a ∈ Ã of theform either (s, t′), (s, u′), (v′′, t), (u′, v′′) or (u′, u′′), with u′ ∈ N ′ and v′′ ∈ N ′′. If a isof the form (s, t′), (s, u′), (v′′, t) or (u′, v′′), then it orresponds to an edge e of G ofthe form either st, su, vt or uv. It then follows that P1 and P2 both ontain edge e,a ontradition. If P̃1 and P̃2 interset on an ar of the form (u′, u′′), then they alsoontain ars of the form (s, u′) and (u′′, t). Thus, P1 and P2 also ontain simultaneouslythe edges su and ut, a ontradition. Thus, P̃1 and P̃2 are ar-disjoint.ii) Let P̃1 and P̃2 be two ar-disjoint st-dipaths of G̃ and suppose that P1 and P2, the
3-st-paths of G orresponding to P̃1 and P̃2, are not edge-disjoint. Thus P1 and P2interset on edges of the form either st, su, vt or uv, with u, v 6= s, t.If P1 and P2 interset edge st, then eah path P̃1 and P̃2 ontains at least one aramong those orresponding to st in G̃, that is (s, t′), (s′, t′′) or (t′, s′′). If P̃1 and
P̃2 ontain (s′, t′′), then they should also ontain ar (s, s′). Sine [s, s′] = ∅, this isimpossible. In a similar way, we show that P̃1 and P̃2 annot ontain (t′, s′′). Hene,
P̃1 and P̃2 both ontain ar (s, t′), a ontradition.If P1 and P2 interset on su, then eah path P̃1 and P̃2 ontains either (s, u′), (s′, u′′) or
(u′, s′′). Sine [s, s′] = ∅ = [s′′, t], P̃1 and P̃2 should both use ar (s, u′), a ontradition.If P1 and P2 interset on vt, then P̃1 and P̃2 ontain either (v′, t′′), (t′, v′′) or (v′′, t). As
[t′′, t] = ∅, P̃1 and P̃2 annot use ar (v′, t′′). Moreover, if P̃1 or P̃2 ontains (t′, v′′), thenit also ontains ar (v′′, t). Hene, P̃1 and P̃2 both ontain ar (v′′, t), a ontradition.In onsequene, P1 ∩ P2 = {uv}, u, v 6= s, t. This implies that P̃1 and P̃2 are re-spetively of the form (su′, u′v′′, v′′t) and (sv′, v′u′′, u′′t), and P1 = (su, uv, vt) and
P2 = (su, vu, ut). Let P ′

1 = (su, ut) and P ′
2 = (sv, vt). Clearly P ′

1 and P ′
2 are edge-disjoint. Sine they are of length 2, we simply assoiate P̃1 and P̃2 with them, whih



5.3. AGGREGATED FORMULATION FOR THE KHNDP 115ends the proof of the lemma. �As a onsequene of Lemma 5.3.1, the graph G ontains k edge-disjoint L-st-pathsfor a demand {s, t} if and only if G̃ ontains at least k ar-disjoint st-dipaths. Thuswe have the following orrollary.Corollary 5.3.1 Let H be a subgraph of G and H̃ the subgraph of G̃ obtained byonsidering all the ars of G̃ orresponding to the edges of H toghether with the arsof the form (u′, u′′), u ∈ V , and (t′, t), for every t ∈ TD. Then H indues a solutionof the kHNDP if H̃ is a solution of the Survivable Direted Network Design Problem(kDNDP). Conversely, if H̃ is a subgraph of G̃ and H is the subgraph of G obtainedby onsidering all the edges whih orrespond to at least one ar of H̃, then H induesa solution of the kHNDP only if H̃ is a solution of the kDNDP.By Menger's Theorem, G̃ ontains k ar-disjoint st-dipaths if and only if every st-diut of G̃ ontains at least k ars. Let x ∈ R
E and y ∈ R

eA. If H̃ is a solution of the
kDNDP and H is the subgraph of G whose edges orrespond to the ars of H̃ , then
xH and y

eH, the inidene vetors of H and H̃ , satisfy the following inequalities
y(δ+(W̃ )) ≥ k, for all st-diut δ+(W̃ ), {s, t} ∈ D, (5.21)
y(a) ≤ x(e), for all a ∈ Ã(e), e ∈ E, (5.22)
y(a) ≥ 0, for all a ∈ Ã, (5.23)
x(e) ≤ 1, for all e ∈ E. (5.24)We have the following theorem, whih easily follows from Corollary 5.3.1.Theorem 5.3.1 The kHNDP for L = 2, 3 is equivalent to the following integer pro-gram

min{cx; subjet to (5.21) − (5.24), x ∈ Z
E
+, y ∈ Z

eA
+}. (5.25)Formulation (5.25) will be alled Aggregated formulation and denoted by kHNDPAg.Inequalities (5.21) will be alled direted st-ut inequalities or st-diut inequalities and(5.22) will be alled linking inequalities. The latter inequalities indiate that an ar a,orresponding to an edge e, is not in H̃ if e is not taken in H . Inequalities (5.23) and(5.24) are alled trivial inequalities.



116 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMThis formulation ontains |E| + |Ã| = |E| + |V | +
∑

s∈SD

|δ(s)| +
∑

t∈TD

|δ(t)| variablesif L = 2 and |E| + |Ã| = 3|E| + |V | +
∑

s∈SD

|δ(s)| +
∑

t∈TD

|δ(t)| variables if L = 3. Thenumber of onstraints is exponential sine the st-diuts are in exponential number.But, as it will turn out, the separation problem of inequalities (5.21) an be solved inpolynomial time and hene, the linear relaxation of (5.25) so is.In the next setion, we present a omparitive study of di�erent formulations presentedin the last setion. In partiular, we will show that the values of the linear relaxationsof the separated and Aggregated formulations are greater than that of the Naturalformulation and thus, these formulations are as strong as the Natural formulation.5.4 Separated and Aggregated formulations versus Nat-ural formulationHere we show that the values of the linear relaxations of Formulations (5.10)-(5.25),are greater than that of the Natural formulation of the kHNDP. For this, we show thata solution x of the linear relaxation of any of these four formulations is also a solutionof the linear relaxation of Formulation (5.5).5.4.1 Separated formulations versus Natural formulationWe �rst onsider the Cut, Node-Ar and Path-Ar formulations. We will examinethe Node-Ar formulation, the proof for the Cut and Path-Ar formulations is alongthe same lines. We will show that, if a vetor x ∈ R
E and |D| �ow vetors f

st
∈

R
eAst , {s, t} ∈ D, indue a solution of the linear relaxation of (5.15), then x alsosatis�es inequalities (5.1)-(5.4). To this end, we �rst assoiate with eah digraph G̃sta solution yst ∈ R

eAst obtained from x. Then we introdue a proedure whih permitsto assoiate with every st-ut and L-st-path-ut of G an st-diut of G̃st with the samevalue regarding yst.For all {s, t} ∈ D, let yst ∈ R
eAst be the vetor given by
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yst(a) =





x(su) if a is of the form (s, u), u ∈ Nst,

x(vt) if a is of the form (v′, t), v′ ∈ N ′
st,

x(uv) if a is of the form (u, v′) or (v′, u),

u, v ∈ Nst, u′, v′ ∈ N ′
st, u 6= v, u′ 6= v′,

x(st) if a is of the form (s, t),

1 if a is of the form (u, u′), u ∈ Nst, u′ ∈ N ′
st.Note that, sine f

st is of value ≥ k, for all {s, t} ∈ D, by inequalities (5.12), it followsthat yst(δ
+(W̃ )) ≥ k for all st-diut δ+(W̃ ) of G̃st.Now we introdue a proedure, alled Proedure A, whih, for a demand {s, t} andan edge set C ⊆ E, produes an ar subset C̃ of G̃st.i) For an edge st ∈ C, add the ar (s, t) in C̃;ii) for an edge su ∈ C, add the ar (s, u) in C̃, u ∈ Nst;iii) for an edge vt ∈ C, add the ar (v′, t) in C̃, v′ ∈ N ′

st;iv) for an edge uv ∈ C, u 6= v, u, v ∈ V \ {s, t},iv.1) if su ∈ C or vt ∈ C, then add (v, u′) in C̃, with v ∈ Nst and u′ ∈ N ′
st;iv.2) if su /∈ C and vt /∈ C, then add the ar (u, v′) in C̃.Observe that C̃ does not ontain any ar of the form (u, u′) with u ∈ Nst and u′ ∈ N ′

st.Also note that C̃ does not ontain at the same time two ars (u, v′) and (v, u′), for anedge uv ∈ E with u, v ∈ V \ {s, t}.Conversely, an ar subset C̃ of Ãst an be obtained from an edge set C ⊆ E, usingProedure A, if C̃ does not ontain simultaneously two ars (u, v′) and (v, u′), u, v ∈ Nst,
u′, v′ ∈ N ′

st, and does not ontain any ar of the form (u, u′) with u ∈ Nst, u′ ∈ N ′
st.As eah ar of C orresponds to a single ar of C̃ and vie versa, C and C̃ have thesame weight with respet to x and y, that is x(C) = yst(C̃).Lemma 5.4.1 Let (x, f

s1t1
, ..., f

sdtd
) be a solution of the linear relaxation of Formu-lation (5.15). Let C ⊆ E be an edge set of G whih is an st-ut or a L-st-path-utindued by a partition (V0, ..., VL+1) suh that |V0| = |VL+1| = 1, with L ∈ {2, 3}. Alsolet yst ∈ R

eAst be the solution obtained from x and G̃st. Then the ar set C̃ obtainedfrom C by Proedure A is an st-diut of G̃st. Moreover, x(C) = yst(C̃).



118 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMProof. Similar to that of Lemma 4.3.1. �By Lemma 5.4.1, every st-ut and L-st-path-ut C of G, indued by a partition
(V0, ..., VL+1) suh that |V0| = |VL+1| = 1, orresponds to an st-diut C̃ of G̃st of thesame weight, that is x(C) = yst(C̃). As by the remark above, yst(C̃) ≥ k, for every
st-diut of G̃st, we have that x(C) ≥ k. Therefore, x satis�es inequalities (5.1)-(5.4).This result implies that if a vetor x and a set of �ow vetors (f

st
){s,t}∈D induingan optimal solution of the linear relaxation of Formulation (5.15), then x is a solutionof the linear relaxation of (5.5). This yields the theorem below.Theorem 5.4.1 If Z∗

NA (resp. Z∗
Cut) (resp. Z∗

PA) is the value of the linear relaxationof Formulation (5.15) (resp. (5.10)) (resp. (5.20)) and Z∗
nat is that of Formulation(5.5), then Z∗

nat ≤ Z∗
NA (resp. Z∗

nat ≤ Z∗
Cut) (resp. Z∗

nat ≤ Z∗
PA).In the next setion we show that this result also holds for the Aggregated formulation.5.4.2 The linear relaxation of the Aggregated formulationConsider the Aggregated formulation (5.25) and let G̃ = (Ṽ , Ã) be the direted graphassoiated with G. Let also (x, y) ∈ R

E × R
eA be a pair of vetors whih indues asolution of the linear relaxation of Formulation (5.25). As for the Node-Ar formulation,we are going to assoiate with every edge set C ⊆ E and demand {s, t} ∈ D, an arset C̃ of G̃, and show that if C is an st-ut or an L-st-path-ut indued by a partition

(V0, ..., VL+1) with |V0| = |VL+1| = 1, then C̃ is an st-diut of G̃.For this, we give the following proedure alled Proedure B. Let C ⊆ E and {s, t} ∈

D, and let C̃ be the ar set of G̃ obtained as follows.i) For an edge st ∈ C, add the ar (s, t′) in C̃;ii) for an edge su ∈ C, add the ar (s, u′) in C̃, u′ ∈ N ′;iii) for an edge vt ∈ C, add the ar (v′′, t) in C̃, v′′ ∈ N ′′;iv) for an edge uv ∈ C, u 6= v, u, v ∈ V \ {s, t},iv.1) if su ∈ C or vt ∈ C, then add (v′, u′′) in C̃, with v′ ∈ N ′ and u′′ ∈ N ′′;



5.4. SEPARATED AND AGGREGATED FORMULATIONS VERSUS NATURALFORMULATION 119iv.2) if su /∈ C and vt /∈ C, then add the ar (u′, v′′) in C̃.Observe that C̃ does not ontain any ar neither of the form (u′, u′′) with u′ ∈ N ′and u′′ ∈ N ′′, nor of the form (t′, t) for t ∈ TD. Also note that C̃ does not ontain atthe same time two ars (u′, v′′) and (v′, u′′), for an edge uv ∈ E.Conversely, an ar subset C̃ of Ã an be obtained by Proedure B from an edge set
C ⊆ E if C̃ does not ontain simultaneously two ars (u′, v′′) and (v′, u′′), u′, v′ ∈ N ′,
u′′, v′′ ∈ N ′′, and any ar of the form (u′, u′′) with u′ ∈ N ′, u′′ ∈ N ′′ and (t′, t), t ∈ TD.As eah ar of C orresponds to an ar of C̃ and vie versa, and (x, y) satis�esinequalities (5.22), we have that x(C) ≥ y(C̃). We then have the following result givenwithout proof sine its proof is similar to that of Lemma 4.3.1.Lemma 5.4.2 Let (x, y) be a solution of the linear relaxation of Formulation (5.25).Let C ⊆ E be an edge set of G whih is an st-ut or a L-st-path-ut indued by apartition (V0, ..., VL+1) suh that |V0| = |VL+1| = 1, with L ∈ {2, 3}. Then the ar setobtained from C and {s, t} by Proedure B is an st-diut of G̃. Moreover, x(C) ≥ y(C̃).Proof. The proof is similar to that of Lemma 4.3.1. �By Lemma 5.4.2, every st-ut and L-st-path-ut C of G orresponds to an st-diut
C̃ of G̃ suh that x(C) ≥ y(C̃). As (x, y), indues a solution of the linear relaxationof Formulation (5.25), and hene, y(C̃) ≥ k, for every st-diut C̃ of G̃, we have that
x(C) ≥ k. Therefore, x satis�es inequalities (5.1)-(5.4), yielding the theorem below.Theorem 5.4.2 If Z∗

Ag is the optimal solution of Formulation (5.25) and Z∗
nat is theoptimal solution of Formulation (5.5), then Z∗

nat ≤ Z∗
Ag.The next setion is devoted to a polyhedral study of the di�erent formulations in-trodued before. For the polytope assoiated with eah formulation we desribe somelasses of valid inequalities and give some onditions under whih these inequalitiesde�ne faets.



120 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEM5.5 The kHNDP polytopesLet G = (V, E) be an undireted graph, L ∈ {2, 3} and k ≥ 2 two integers, and
D = {{s1, t1}, ..., {sd, td}}, d ≥ 2, the set of demands.We will denote by kHNDPAg(G, D) (resp. kHNDPCu(G, D)) (resp. kHNDPNA(G, D))(resp. kHNDPPA(G, D)) the polytope assoiated with the Aggregated formulation(resp. Cut formulation), (resp. Node-Ar formulation), (resp. Path-Ar formulation).5.5.1 The polytope kHNDPAg(G, D)We �rst onsider the polytope kHNDPAg(G, D). Let G̃ = (Ṽ , Ã) be the direted graphassoiated with G and D in the ase of the Aggregated formulation. Let E∗ be theset of edges e ∈ E suh that there exists a demand {s, t} ∈ D suh that G \ {e}does not ontain k edge-disjoint L-st-paths. Suh an edge is said to be L-st-essential.Also onsider an ar a ∈ Ã suh that there exists a demand {s, t} ∈ D suh that thegraph G̃ \ {a} does not ontain k ar-disjoint st-dipaths. Suh an ar a is said to be
st-essential. We will denote by Ã∗ the set of st-essential ars of G̃.The following theorem haraterizes the dimension of kHNDPAg(G, D).Theorem 5.5.1 dim(kHNDPAg(G, D)) = |E| + |Ã| − |E∗| − |Ã∗|.Proof. Obviously, we have that dim(kHNDPAg(G, D)) ≤ |E|+ |Ã|− |E∗|− |Ã∗|. Nowwe show that dim(kHNDPAg(G, D)) ≥ |E|+ |Ã| − |E∗| − |Ã∗|. For this, we show thatthe maximum number of a�nely independant solutions of kHNDPAg(G, D) is greaterthan or equal to |E|+ |Ã| − |E∗| − |Ã∗|+ 1. Reall that a solution of kHNDPAg(G, D)is desribed by a pair (F̃ , F ) where F̃ ⊆ Ã and F ⊆ E is the assoiated edge set.Also note that an edge set F indues a solution of the kHNDP if and only if theassoiated ar set F̃ indues a subgraph of G̃ ontaining k ar-disjoint st-dipaths forevery {s, t} ∈ D.Consider the pairs (Ã \ {a}, E), for all a ∈ Ã \ Ã∗. As a /∈ Ã∗, these pairs induesolutions of kHNDPAg(G, D).For every edge e ∈ E \ E∗, onsider the pair (Ã \ Ã(e), E \ {e}). Remind that,for all e ∈ E, Ã(e) is the set of ars of Ã orresponding to e. As e ∈ E \ E∗, thesubgraph indued by E \ {e} ontains k edge-disjoint L-st-paths for every {s, t} ∈ D



5.5. THE KHNDP POLYTOPES 121and the subgraph of G̃ indued Ã\Ã(e) also ontains k ar-disjoint st-dipaths for every
{s, t} ∈ D. Hene this pair indues a solution of kHNDPAg(G, D).One an easily observe that these solutions, toghether with the solution given by thepair (Ã, E), form a family of |E \ E∗| + |Ã \ Ã∗| + 1 solutions of the kHNDPAg thatare a�nely independant. Therefore, dim(kHNDPAg(G, D)) ≥ |E| + |Ã| − |E∗| − |Ã∗|,whih ends the proof of the theorem. �Consequently, kHNDPAg(G, D) is full dimensional if and only if E∗ = ∅ = Ã∗.The next theorem shows that if G is omplete and |V | ≥ k + 2, then E∗ = ∅ = Ã∗,implying that kHNDPAg(G, D) is full dimensional. But before, we give the followinglemma.Lemma 5.5.1 If G is omplete, then for every {s, t} ∈ D, there exist at least |V | − 1ar-disjoint st-dipaths in G̃.Proof. Suppose that G is omplete. Consider a demand {s, t} ∈ D and the ar set
H̃ = [s, N ′]∪ [N ′, N ′′]∪ [N ′′, t]∪ [t′, t]. Clearly, sine G is omplete, |[s, N ′]| = |V | − 1,
|[N ′′, t]| = |V |−2. Moreover, by the onstrution of G̃, |[N ′, N ′′]| = |V | and |[t′, t]| ≥ 1.Thus, the subgraph indued by H̃ ontains |V | − 1 ar-disjoint st-dipaths in G̃. �A onsequene of Lemma 5.5.1 is that for a omplete graph G with |V | ≥ k + 2,the graph G̃ ontains at least k + 1 ar-disjoint st-dipaths for every {s, t} ∈ D. Thisimplies that E∗ = ∅ = Ã∗. We thus have the following.Corollary 5.5.1 If G is omplete and |V | ≥ k + 2, then kHNDPAg(G, D) is full di-mensional.In what follows, we give neessary and su�ient onditions for the trivial inequalitiesto de�ne faets of kHNDPAg(G, D). Remark that the inequalities y(a) ≤ 1, for all
a ∈ Ã, and x(e) ≥ 0, for all e ∈ E, are redundant with respet to the inequalities

y(a) ≥ 0 for all a ∈ Ã,

x(e) ≤ 1 for all e ∈ E,

y(a) ≤ x(e) for all ar a ∈ Ã(e),and hene, do not de�ne faets.



122 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMTheorem 5.5.2 If G is omplete and |V | ≥ k + 2, then the following hold.i) Every inequality x(e) ≤ 1 de�nes a faet of kHNDPAg(G, D);ii) An inequality y(a) ≥ 0 de�nes a faet of kHNDPAg(G, D) if and only either |V | ≥

k +3 or |V | = k +2 and a does not belong to an st-diut of G̃ of ardinality k +1.Proof. First note that, as G is omplete and |V | ≥ k + 2, by Corollary 5.5.1,
kHNDPAg(G, D) is full dimensional.i) Let a ∈ Ã. Sine G is omplete and |V | ≥ k + 2, the subgraph indued by Ã \ {a}ontains k ar-disjoint st-dipaths for every {s, t} ∈ D. Thus, the pair (Ã \ {a}, E)indues a solution of kHNDPAg(G, D). Moreover, its inidene vetor satis�es x(e) = 1.Now let f ∈ E \ {e}. As before, the subgraph indued by E \ {f} ontains k edge-disjoint L-st-paths, for every {s, t} ∈ D. Thus, the pair (Ã \ Ã(f), E \ {f}) induesa solution of kHNDPAg(G, D), whose inidene vetor satis�es x(e) = 1. Reall that
Ã(f) denotes the set of ars of G̃ orresponding to f .It is not hard to see that these two families of solutions, toghether with the so-lution indued by the pair (Ã, E), form |E| + |Ã| solutions whose inidene vetorssatisfy x(e) = 1 and are a�nely independant. This yields x(e) ≤ 1 de�nes a faet of
kHNDPAg(G, D).ii) Consider an ar a ∈ Ã and suppose that |V | ≥ k+3. By Lemma 5.5.1, G̃ ontains atleast k+2 ar-disjoint st-dipaths for every {s, t} ∈ D, and G ontains at least k+2 edge-disjoint L-st-paths. Thus for an edge e ∈ E, the pair (Ã\({a}∪Ã(e)), E \{e}) induesa solution of kHNDPAg(G, D). Also, for an ar a′ ∈ Ã \ {a}, the pair (Ã \ {a, a′}, E)indues a solution of kHNDPAg(G, D). These solution toghether with the solution
(Ã\{a}, E) form a family of |Ã|+|E| solutions whose inidene vetors satisfy y(a) = 0and are a�nely independant. Thus, y(a) ≥ 0 de�nes a faet.Now suppose that |V | = k + 2. If a belongs to an st-diut δ+(W̃ ) of k + 1 ars, then
y(a) ≥ 0 is redundant with respet to the inequalities

y(δ+(W̃ )) ≥ k,

− y(a′) ≥ −1, for every ar a′ ∈ δ+(W̃ ) \ {a},and hene annot de�ne a faet. If a does not belong to an st-diut of k + 1 ars,then, the pairs (Ã \ ({a} ∪ Ã(e)), E \ {e}), for all e ∈ E, and (Ã \ {a, a′}, E), for



5.5. THE KHNDP POLYTOPES 123all a′ ∈ Ã \ {a} indue solutions of kHNDPAg(G, D). These solutions toghether withthe solution (Ã \ {a}, E) form a family of |Ã| + |E| solutions whose inidene ve-tors satisfy y(a) = 0 and are a�nely independant. Thus y(a) ≥ 0 de�nes a faet of
kHNDPAg(G, D). �The next theorem gives neessary and su�ient onditions for the direted st-utinequalities to de�ne faets of kHNDPAg(G, D).Theorem 5.5.3 Suppose that G is omplete and |V | ≥ k+2 and let W̃ ⊆ Ṽ be a nodeset suh that there is a demand {s, t} ∈ D with s ∈ SD∩W̃ and t ∈ TD∩(Ṽ \W̃ ) (Reallthat SD (resp. TD) is the set of terminals of G that are soure (resp. destination) inat least one demand). Then the st-diut inequality y(δ+(W̃ )) ≥ k de�nes a faet of
kHNDPAg(G, D) only if the following onditions holdi) W̃ ∩ SD = {s} and (Ṽ \ W̃ ) ∩ TD = {t};ii) s′ ∈ Ṽ \ W̃ , s′′ ∈ W̃ and t′′ ∈ W̃ .Proof. We will only show the �rst ondition of i). The proof for ii) follows the samelines. Suppose on the ontrary that there exists another node s1 6= s in W̃ ∩SD. Sine
s1 ∈ SD, we have that [s, s1] = ∅. Thus, δ+(W̃ \ {s1}) = δ+(W̃ ) \ δ+(s1). Note thatthe edges of G assoiated with those of δ+(s1) are those of δ(s1). As G is omplete,
δ+(s1) 6= ∅. Therefore, the st-diut inequality indued by W̃ is redundant with respetto the inequalities

y(δ+(W̃ \ {s1})) ≥ k,

y(a) ≥ 0 for all a ∈ δ+(s1),and hene, annot de�ne a faet. �

5.5.2 The polytope kHNDPCu(G, D)Now we onsider the Cut formulation. The results of this setion will be given withoutproof. In fat their proofs are similar to those of the previous setion.As before, we denote by E∗ the set of L-st-essential edges of G and Ã∗
st the set of

st-essential ars of G̃st, for every {s, t} ∈ D. The following theorem gives the dimensionof kHNDPCu(G, D).



124 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMTheorem 5.5.4 dim(kHNDPCu(G, D)) = |E| +
∑

{s,t}∈D

|Ãst| − |E∗| −
∑

{s,t}∈D

|Ã∗
st|.Proof. Similar to proof of Theorem 5.5.1. �Lemma 5.5.2 If G is omplete, then for every demand {s, t} ∈ D, there exists at least

|V | − 1 ar-disjoint st-dipaths in G̃st.Proof. Similar to proof of Lemma 5.5.1. �As a onsequene, we have the following orollary.Corollary 5.5.2 If G is omplete and |V | ≥ k + 2, then kHNDPCu(G, D) is fulldimensional.Note that the inequalities yst(a) ≤ 1 and x(e) ≥ 0 are redundant with respet to
yst(a) ≥ 0, x(e) ≤ 1 and yst(a) ≤ x(e). The next theorem gives neessary and su�ientonditions for inequalities (5.8) and (5.9) to de�ne faets.Theorem 5.5.5 If G is omplete and |V | ≥ k + 2, then the following hold.i) Every inequality x(e) ≤ 1 de�nes a faet of kHNDPCu(G, D).ii) An inequality y(a) ≥ 0 de�nes a faet of kHNDPCu(G, D) if and only if either

|V | ≥ k + 3 or |V | = k + 2 and a does not belong to an st-ut of ardinality k + 1.Proof. Similar to proof of Theorem 5.5.2. �In the next setion, we desribe further lasses of valid inequalities for the polytopesdisussed above. We also give for some of them neessary and su�ient onditions forthese inequalities to be faet de�ning.



5.6. VALID INEQUALITIES 1255.6 Valid inequalitiesHere we desribe various lasses of inequalities that are valid for the polytopes kHNDPAg(G, D),
kHNDPCu(G, D), kHNDPNA(G, D) or kHNDPPA(G, D) when L ∈ {2, 3}. But before,we give the following lemma.Lemma 5.6.1 The following inequalities are valid for kHNDPAg(G, D), kHNDPCu(G, D),
kHNDPNA(G, D), kHNDPPA(G, D):

x(δ(W )) ≥ k, for every st-ut δ(W ) and every {s, t} ∈ D,

x(T ) ≥ k, for every L-st-path-ut T and every {s, t} ∈ D.Proof. Easy. �

5.6.1 Aggregated ut inequalitiesHere we introdue a lass of inequalities that are valid for kHNDPAg(G, D) and kHNDPCu(G, D).This lass of inequalities are inspired from those introdued by Dahl [29℄ for the poly-tope of the Survivable Direted Network Design Problem (kDNDP). The kDNDP on-sists, given a direted graph H̃ , a set of demands D and an integer k ≥ 2, in �ndinga minimum weight subgraph of H̃ whih ontains k ar-disjoint st-dipaths for everydemand {s, t} ∈ D. We will �rst desribe these inequalities for kHNDPAg(G, D) andthen extend it to kHNDPCu(G, D).5.6.1.1 Aggregated ut inequalities for kHNDPAg(G, D)Let {W̃1, ..., W̃p}, p ≥ 2, be a family of node sets of Ṽ suh that eah set W̃i indues an
st-diut of G̃, for some {s, t} ∈ D, and F̃ 0

i ⊆ δ+
eG
(W̃i). Let F̃ =

p⋃

i=1

[δ+
eG
(W̃i) \ F̃ 0

i ] and,for an ar a ∈ Ã, let r(a) be the number of sets δ+
eG
(W̃i) \ F̃ 0

i whih ontain the ar a.Note that if a ∈ Ã does not belong to any set δ+
eG
(W̃i) \ F̃ 0

i , then r(a) = 0. For an edge
e ∈ E and an ar subset Ũ ⊆ Ã, we let

r′(e, Ũ) =
∑

a∈ eA(e)∩eU

r(a), for all e ∈ E.
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y(δ+
eG
(W̃i)) ≥ k for i = 1, ..., p,

− y(a) ≥ −1 for all a ∈ F̃ 0
i , i = 1, ..., p.By summing these inequalities, we obtain

∑

a∈ eF

r(a)y(a) ≥ kp −

p∑

i=1

|F̃ 0
i |.If F̃1 (resp. F̃2) denotes the set of ars a ∈ F̃ suh that r(a) is odd (resp. even), thenthe previous inequality an be written as

∑

a∈ eF1

r(a)y(a) +
∑

a∈ eF2

r(a)y(a) ≥ kp −

p∑

i=1

|F̃ 0
i |. (5.26)Let F̃ 2

1 ⊆ F̃1 suh that, for every edge e ∈ E orresponding to an ar of F̃1, r′(e, F̃ 2
1 )is even. Let E2 be the set of edges orresponding to the ars of F̃ 2

1 . By summinginequality (5.26) with the inequalities
r(a)x(e) ≥ r(a)y(a), for all a ∈ F̃ 2

1 and e orresponding to a,we get
∑

e∈E2

r′(e, F̃ 2
1 )x(e) +

∑

a∈ eF1\ eF 2
1

r(a)y(a) +
∑

a∈ eF2

r(a)y(a) ≥ kp −

p∑

i=1

|F̃ 0
i |. (5.27)By dividing by 2 and rounding up the right hand side of inequality (5.27), we obtainthe following inequality

∑

e∈E2

r′(e, F̃ 2
1 )

2
x(e) +

∑

a∈ eF1\ eF 2
1

r(a) + 1

2
y(a) +

∑

a∈ eF2

r(a)

2
y(a) ≥




kp −

p∑

i=1

|F̃ 0
i |

2




. (5.28)
Inequalities of type (5.28) will be alled aggregated ut inequalities. We give thefollowing result whih diretly omes from the above desription.



5.6. VALID INEQUALITIES 127Theorem 5.6.1 Inequalities of type (5.28) are valid for kHNDPAg(G, D) when L ∈

{2, 3}.Inequalities (5.28) are produed by families of st-diuts of G̃ whih may have di�erentforms of on�gurations for the node sets W̃1, ..., W̃p, p ≥ 2, and the ar sets F̃ 0
i ⊆

δ+
eG
(W̃i), i = 1, ..., p. In the following, we disuss a speial ase of these inequalities.Let {W̃1, ..., W̃p}, p ≥ 2, be a family of node sets of Ṽ suh that eah set W̃i,

i = 1, ..., p, indues an st-diut, for some {s, t} ∈ D, and let F̃ 0
i ⊆ δ+

eG
(W̃i) be ar setssuh that 0 ≤ r(a) ≤ 2 for all a ∈ Ã. Let F̃2 (resp. F̃1) be the set of ars suh that

r(a) = 2 (resp. r(a) = 1). Let F̃ 2
1 be the set of ars a ∈ F̃1 for whih there is anotherar a′ ∈ F̃1 whih orresponds to the same edge of E, and let E2 be the set of theorresponding edges. The inequality of type (5.28) assoiated with this on�gurationan be written as

∑

a∈ eF2

y(a) +
∑

e∈E2

x(e) +
∑

a∈ eF1\ eF 2
1

y(a) ≥




kp −

p∑

i=1

|F̃ 0
i |

2




. (5.29)As it will turn out, inequalities (5.29) may de�ne faets under ertain onditions andwill be useful for solving the kHNDP using a Branh-and-Cut algorithm (Chapter 6).5.6.1.2 Aggregated ut inequalities for kHNDPCu(G, D)The aggregated ut inequalities an be de�ned for the polytope kHNDPCu(G, D) ina similar way. Let G̃st = (Ṽst, Ãst), {s, t} ∈ D, be the direted graphs assoiatedwith G and {s, t} ∈ D in Formulation (5.10). Let {{s1, t1}, ..., {sq, tq}} be a subsetof demands. Consider a family of node sets {W̃ s1t1
1 , ..., W̃ s1t1

p1
, ..., W̃

sqtq
1 , ..., W̃

sqtq
pq }, with

pi ≥ 1, for all i ∈ {1, ..., q} and p =

q∑

i=1

pi ≥ 2, where W̃ siti
j , j = 1, ..., pi, indues an

siti-diut in G̃st. Let F̃ siti,0
j ⊆ δ+

eGsiti

(W̃ siti
j ). Let F̃ siti =

pi⋃

i=1

[δ+
eGsiti

(W̃ siti
j ) \ F̃ siti,0

j ] forevery i ∈ {1, ..., q}, and for a given ar a ∈ Ãsiti , i = 1, ..., q, we let rsiti(a) be thenumber of sets δ+
eGsiti

(W̃ siti
j ) \ F̃ siti,0

j ontaining ar a. If a does not belong to any ofthese sets, then rsiti(a) = 0. Given an edge e ∈ E and an ar subset Ũi ⊆ Ãsiti , we let
r′(e, Ũi) =

∑

a∈ eAsiti
(e)∩eUi

rsiti(a).
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ysiti(δ
+
eGsiti

(W̃ siti
j )) ≥ k for j = 1, ..., pi, i = 1, ..., q,

− ysiti(a) ≥ −1 for a ∈ F̃ siti
j , j = 1, ..., pi, i = 1, ..., q,By adding the inequalities, we get

q∑

i=1


 ∑

a∈ eF siti

rsiti(a)ysiti(a)


 ≥ kp −

q∑

i=1

pi∑

j=1

|F̃ siti,0
j |.Let F̃ siti,1 (resp. F̃ siti,2) be the set of ars a ∈ F̃ siti having rsiti(a) odd (resp. even).The inequality above an then be written as

q∑

i=1


 ∑

a∈ eF siti,1

rsiti(a)ysiti(a) +
∑

a∈ eF siti,2

rsiti(a)ysiti(a)


 ≥ kp −

q∑

i=1

pi∑

j=1

|F̃ siti,0
j |. (5.30)Now we let F̃ siti,1

2 ⊆ F̃ siti,1, i = 1, ..., q, be the ar sets suh that, for every edge
e ∈ E assoiated with an ar of F̃ siti,1

2 , q∑

i=1

r′(e, F̃ siti,1
2 ) is even. If E2 denotes the set ofedges orresponding to the ars of F̃ siti,1

2 , i = 1, ..., q, then by adding inequality (5.30)and the inequalities
rsiti(a)x(e) ≥ rsiti(a)ysiti(a) for all a ∈ F̃ siti,1

2 where e orresponds to a,we get
q∑

i=1


 ∑

a∈ eF siti,1\ eF
siti,1
2

rsiti(a)ysiti(a) +
∑

a∈ eF siti,2

rsiti(a)ysiti(a)


+

∑

e∈E2

(

q∑

i=1

r′(e, F̃ siti,1
2 ))x(e) ≥ kp −

q∑

i=1

pi∑

j=1

|F̃ siti,0
j |. (5.31)Finally, by dividing inequality (5.31) by 2 and rounding up the right hand side of the



5.6. VALID INEQUALITIES 129resulting inequality, we obtain
q∑

i=1


 ∑

a∈ eF siti,1\ eF
siti,1
2

rsiti(a) + 1

2
ysiti(a) +

∑

a∈ eF siti,2

rsiti(a)

2
ysiti(a)


+

∑

e∈E2

q∑

i=1

r′(e, F̃ siti,1
2 )

2
x(e) ≥




kp −

q∑

i=1

pi∑

j=1

|F̃ siti
j |

2




. (5.32)
We then have the following result.Theorem 5.6.2 Inequality (5.32) is valid for kHNDPCu(G, D).Inequalities (5.32) will be also alled aggregated ut inequalities.We are also going to speify a speial ase for inequalities (5.32). These inequali-ties will be util in the Branh-and-Cut algorithm based on the Cut formulation (seeChapter 6). Let {W̃ s1t1

1 , ..., W̃ s1t1
p1

, ..., W̃
sqtq
1 , ..., W̃

sqtq
pq }, with pi ≥ 1, for i = 1, ..., q,and p =

q∑

i=1

pi ≥ 2, be a family of node sets suh that W̃ siti
j indues siti-diut of G̃siti ,

i = 1, ..., q. Let F̃ siti,0
j ⊆ δ+

eGsiti

(W̃ siti
j ) be ar sets and F̃ siti =

p⋃

i=1

[δ+
eGsiti

(W̃ siti
j ) \ F̃ siti,0

j ].Suppose that 0 ≤ rsiti(a) ≤ 2 for all a ∈ Ãsiti , i = 1, ..., q. Let F̃ siti,2 be the set of arsof F̃ siti having rsiti(a) = 2 and F̃ siti,1 the set of ars of F̃ siti having rsiti(a) = 1. Let
F̃ siti,1

2 be the subset of ars a ∈ F̃ siti,1 suh that there exists another ar a′ ∈ F̃ siti,1whih orresponds to the same edge of E, and let E2 be the set of the orrespondingedges.Then the inequality (5.32) indued by this on�guration an be written as
q∑

i=1


 ∑

a∈ eF siti,2

ysiti(a) +
∑

a∈ eF siti,1\ eF
siti,1
2

ysiti(a)


 +

∑

e∈E2

x(e) ≥




kp −

q∑

i=1

pi∑

j=1

|F̃ siti
j |

2




.(5.33)



130 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEM5.6.1.3 Lifting proedure for aggregated ut inequalitiesIn what follows we de�ne a lifting proedure for the aggregated ut inequalities forboth Aggregated and Cut formulations, (5.29) and (5.33). This will permit to extendthese inequalities to a more general lass of valid inequalities.Consider �rst the polytope kHNDPAg(G, D). The lifting proedure is given in thefollowing theorem.Theorem 5.6.3 Let G = (V, E) be an undireted graph, D ⊆ V × V and G̃ = (Ṽ , Ã)be the direted graph assoiated with G in the Aggregated formulation. Let
∑

e∈E

α(e)x(e) +
∑

a∈ eA

β(a)y(a) ≥ γbe an inequality of type (5.29) indued by a family of node sets Π = {W̃1, ..., W̃p} andar sets F̃ 0
i ⊆ δ0

i , p ≥ 2, whih is valid for kHNDPAg(G, D). Let G′ = (V, E ∪ E ′)be a graph obtained by adding to G an edge set E and let G̃′ = (Ṽ , Ã ∪ Ã′) be thedireted graph assoiated with G′ in the Aggregated formulation (Ã′ is the set of arsorresponding to the edges of E ′). Then, the inequality
∑

e∈E

α(e)x(e) +
∑

a∈ eA

β(a)y(a) +
∑

a∈ eA′

⌈
q(a)

2

⌉
y(a) ≥ γ, (5.34)is valid for kHNDPAg(G

′, D), where q(a) is the number of diuts δ+
eG′

(W̃i) ontainingthe ar a, for all a ∈ Ã′.Proof. W.l.o.g., we will suppose that E ′ = {e0}. The proof is similar in the ase wheremore than one edge are added to G. Also, for more larity, we will onsider that onlyone ar, say a0, is assoiated with e0 in G̃′, that we will onsider that Ã′ = {a0}.We are going to show that for every solution (x, y) ∈ kHNDPAg(G, D),
∑

e∈E

α(e)x(e) +
∑

a∈ eA

β(a)y(a) +

⌈
q(a0)

2

⌉
y(a0) ≥




kp −

p∑

i=1

|F̃ 0
i |

2




.

First, let ∆(x, y) = αx + βy, that is
∆(x, y) =

∑

a∈ eF2

y(a) +
∑

e∈E2

x(e) +
∑

a∈ eF1\ eF 2
1

y(a),



5.6. VALID INEQUALITIES 131where F̃2, F̃1, F̃ 2
1 and E2 are the ar and edge sets involved in αx + βy ≥ γ. The liftedinequality an hene be written as

∆(x, y) +

⌈
q(a0)

2

⌉
y(a0) ≥




kp −

p∑

i=1

|F̃ 0
i |

2




.

If y(a0) = 0, then obviously the restrition of (x, y) to E and Ã is in kHNDPAg(G, D).Thus, ∆(x, y) ≥




kp−

p∑

i=1

|F̃ 0
i |

2




, and hene
∆(x, y) +

⌈
q(a0)

2

⌉
y(a0) ≥




kp −

p∑

i=1

|F̃ 0
i |

2




.

Now suppose that y(a0) = 1. We have that
p∑

i=1

y(δ+
eG
(W̃i) \ F̃ 0

i ) =

p∑

i=1

y(δ+
eG
(W̃i)) − y(F̃ 0

i )

= 2
∑

a∈ eF2

y(a) +
∑

a∈ eF 2
1

y(a) +
∑

a∈ eF1\ eF 2
1

y(a)

≤ 2
∑

a∈ eF2

y(a) + 2
∑

e∈E2

x(e) +
∑

a∈ eF1\ eF 2
1

y(a)

= 2∆(x, y) −
∑

a∈ eF1\ eF 2
1

y(a)Thus we get
∆(x, y) ≥

1

2




p∑

i=1

y(δ+
eG
(W̃i)) −

p∑

i=1

y(F̃ 0
i ) +

∑

a∈ eF1\ eF 2
1

y(a)




≥
1

2

[
p∑

i=1

y(δ+
eG
(W̃i)) −

p∑

i=1

y(F̃ 0
i )

]
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∆(x, y) ≥




p∑

i=1

y(δ+
eG
(W̃i)) −

p∑

i=1

|F̃ 0
i |

2




. (5.35)
If W̃i, i = 1, ..., q(a0), are the node sets of Π suh that the diut δ+

eG′
(W̃i) ontains a0,then we have that

y(δ+
eG
(W̃i)) = y(δ+

eG′
(W̃i)) − y(a0), i = 1, ..., q(a0),

y(δ+
eG
(W̃i)) = y(δ+

eG′
(W̃i)), i = q(a0) + 1, ..., p.As (x, y) indues a solution of kHNDPAg on G′, we have that y(δ+

eG′
(W̃i)) ≥ k, i =

1, ..., p. Moreover, sine y(a0) = 1, we have that
y(δ+

eG
(W̃i)) ≥ k − 1, i = 1, ..., q(a0). (5.36)Thus, from (5.35) and (5.36), we obtain

∆(x, y) ≥




k(p − q(a0)) + (k − 1)q(a0) −

p∑

i=1

|F̃ 0
i |

2




,

∆(x, y) ≥




kp −

p∑

i=1

|F̃ 0
i | − q(a0)

2




,

∆(x, y) ≥




kp −

p∑

i=1

|F̃ 0
i |

2




−

⌈
q(a0)

2

⌉
.

Therefore, sine y(a0) = 1, we get
∆(x, y) +

⌈
q(a0)

2

⌉
y(a0) ≥




kp −

p∑

i=1

|F̃ 0
i |

2




,



5.6. VALID INEQUALITIES 133whih ends the proof of the theorem. �Now we give a lifting proedure for aggregated ut inequalities (5.33) when the Cutformulation is onsidered. This proedure is similar to that introdued for inequalities(5.29) for the Aggregated formulation. It is given in the theorem below.Theorem 5.6.4 Let G = (V, E) be an undireted graph, D ⊆ V × V and G̃st be thedireted graph assoiated with G and a demand {s, t} ∈ D in the ut formulation, forall {s, t} ∈ D. Let
∑

e∈E

α(e)x(e) +

q∑

i=1

∑

a∈ eAsiti

βsiti(a)ysiti(a) ≥ γ,be an inequality of type (5.33) indued by a demand set {{s1, t1}, ..., {sq, tq}}, a familyof node sets {W̃ s1t1
1 , ..., W̃ s1t1

p1
, ..., W̃

sqtq
1 , ..., W̃

sqtq
pq }, with pi ≥ 1, for all i ∈ {1, ..., q}and p =

q∑

i=1

pi ≥ 2, and ar sets F̃ siti,0
j ⊆ δ eGsiti

(W̃ siti
j ), j = 1, ..., pi, i = 1, ..., q. Let

G′ = (V, E ∪ E ′) and G̃′
st = (Ṽst, Ãst ∪ Ã′

st) be the direted graph assoiated with G′ inthe Cut formulation, for all {s, t} ∈ D(Ã′
st is the set of ars orresponding to the edgesof E ′).The inequality

∑

e∈E

α(e)x(e) +

q∑

i=1

∑

a∈ eAsiti

βsiti(a)ysiti(a) +

q∑

i=1

∑

a∈ eA′
siti

⌈
qsiti(a)

2

⌉
ysiti(a) ≥ γ (5.37)is valid for kHNDPCu(G

′, D), where qsiti(a) is the number of diuts δ+
eG′

siti

(W̃ siti
j ) on-taining the ar a, for every a ∈ Ã′

siti
, i = 1, ..., p.Proof. Similar to that of Theorem 5.6.3. �The next lasses of inequalities apply only on the variable x ∈ R

E and are valid for
kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D) and kHNDPPA(G, D).5.6.2 Double ut inequalitiesIn the following we introdue a lass of inequalities that are valid for the kHNDPpolytopes for L ≥ 2 and k ≥ 2. They are given by the following theorem.



134 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMTheorem 5.6.5 Let {s, t} be a demand, i0 ∈ {0, ..., L} and
Π = {V0, ..., Vi0−1, V

1
i0
, V 2

i0
, Vi0+1, ..., VL+1} a family of node sets of V suh that

π = (V0, ..., Vi0−1, V
1
i0, V

2
i0 ∪ Vi0+1, Vi0+2, ..., VL+1) indues a partition of V . Suppose that1. V 1

i0 ∪ V 2
i0 indues an sj1tj1-ut of G with {sj1, tj1} ∈ D and sj1 ∈ V 1

i0 or tj1 ∈ V 1
i0(note that sj1 and tj1 annot be simultaneously in V 1

i0
and are not in V 2

i0
. Alsonote that V 2

i0
may be empty);2. Vi0+1 indues an sj2tj2-ut of G with {sj2 , tj2} ∈ D (note that j1 and j2 may beequal);3. π indues an L-st-path-ut of G with s ∈ V0 (resp. t ∈ V0) and t ∈ VL+1 (resp.

s ∈ VL+1).Let E = [Vi0−1, V
1
i0
]∪ [Vi0+2, V

2
i0
∪Vi0+1]∪


 ⋃

k,l/∈{i0,i0+1},|k−l|>1

[Vk, Vl]


 and F ⊆ E suhthat |F | and k have di�erent parities.Let also Ê = (

i0−2⋃

i=0

[Vi, Vi+1]) ∪ (
L⋃

i=i0+2

[Vi, Vi+1]) ∪ F. Then, the inequality
x(δ(π) \ Ê) ≥

⌈
3k − |F |

2

⌉
, (5.38)is valid for kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D) and kHNDPPA(G, D)(reall that δ(π) is the set of edges of the E having their endnodes in di�erent elementsof π).Proof. Let T be the L-st-path-ut of G indued by the partition π. As T is an L-st-path-ut, and V 1

i0 ∪ V 2
i0 and Vi0+1 indue st-ut with {s, t} ∈ {{sj1, tj1}, {sj2, tj2}}, byLemma 5.6.1, the inequalities below are valid for the kHNDP polytopes

x(T ) ≥ k,

x(δ(V 1
i0
∪ V 2

i0
)) ≥ k,

x(δ(Vi0+1)) ≥ k,

− x(e) ≥ −1 for all e ∈ F,

x(e) ≥ 0 for all e ∈ E \ F.



5.6. VALID INEQUALITIES 135By summing these inequalities, dividing by 2 and rounding up the right hand side,we obtain inequality (5.38). �Inequalities of type (5.38) are alled double ut inequalities. They generalize thoseintrodued by Huygens and Mahjoub [73℄ for the kHNDP when k = 2. We disuss in thefollowing speial ases for these inequalities. This onerns the ase where L ∈ {2, 3}and i0 = 0.The set of edges having a positive oe�ient in inequality (5.38) plus the edges of Fis alled a double ut. Figure 5.4 gives an example for L = 3 and i0 = 0.
V2

V3

t

V1

V4

s

V 1

0
V 2

0

s1

edges of the double ut not in Fpossible edge of F

edge not in the double ut

Figure 5.4: A double ut with L = 3 and i0 = 0Let L = 2, {s, t} ∈ D and Π = {V 1
0 , V 2

0 , V1, V2, V3} be a family of node sets of V suhthat π = (V 1
0 , V 2

0 ∪ V1, V2, V3) indues a 2-st-path-ut, and V1 indues a valid s1t1-utin G, for some {s1, t1} ∈ D. If F ⊆ [V 2
0 ∪ V1, V2] is hosen suh that |F | and k havedi�erent parities, then the double ut inequality indued by Π and F in this ase anbe written as

x([V 1
0 , V1 ∪ V2 ∪ V3]) + x([V 2

0 , V1 ∪ V3]) + x([V1, V3])

+ x([V 2
0 ∪ V1, V2] \ F ) ≥

⌈
3k − |F |

2

⌉
. (5.39)Now let L = 3, {s, t} ∈ D and Π = {V 1

0 , V 2
0 , V1, V2, V3, V4} be a family of node setsof V suh that π = (V 1

0 , V 2
0 ∪ V1, V2, V3, V4) indues a 3-st-path-ut, and V1 indues avalid s1t1-ut in G. If F ⊆ [V 2

0 ∪V1∪V4, V2] is hosen suh that |F | and k have di�erent



136 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMparities, then the double ut inequality indued by Π and F an be written as
x([V 1

0 , V1 ∪ V2 ∪ V3 ∪ V4]) + x([V 2
0 , V1 ∪ V3 ∪ V4]) + x([V1, V3 ∪ V4])

+ x([V 2
0 ∪ V1 ∪ V4, V2] \ F ) ≥

⌈
3k − |F |

2

⌉
. (5.40)As it will turn out, inequalities (5.39) and (5.40) are very e�etive in the Branh-and-Cut algorithms we developed for the problem.5.6.3 Triple path-ut inequalitiesHere is a further lass of valid inequalities. They also generalizes inequalities given byHuygens and Mahjoub [73℄. We distinguish the ases where L = 2 and L = 3. Wehave the following theorem.Theorem 5.6.6 i) Let L = 2 and {V0, V1, V2, V

1
3 , V 2

3 , V 1
4 , V 2

4 } be a family of node setsof V suh that (V0, V1, V2, V
1
3 ∪V 2

3 , V 1
4 ∪V 2

4 ) indues a partition of V and there exist twodemands {s1, t1} and {s2, t2} with s1, s2 ∈ V0, t1 ∈ V 2
3 and t2 ∈ V 2

4 . The sets V 1
3 and

V 1
4 may be empty and s1 and s2 may be the same. Let also V3 = V 1

3 ∪V 2
3 , V4 = V 1

4 ∪V 2
4and F ⊆ [V 2

3 , V1 ∪ V 1
4 ]∪ [V 1

3 , V 2
4 ] suh that |F | and k have di�erent parities. Then, theinequality

2x([V0, V2]) + x([V0, V3 ∪ V4]) + x([V 2
4 , V1 ∪ V 2

3 ])+

x(([V 2
3 , V1 ∪ V 1

4 ] ∪ [V 1
3 , V 2

4 ]) \ F ) ≥

⌈
3k − |F |

2

⌉ (5.41)is valid for kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D) and kHNDPPA(G, D).ii) Let L = 3 and (V0, ..., V3, V
1
4 , V 2

4 , V 1
5 , V 2

5 ) be a family of node sets of V suh that
(V0, ..., V3, V

1
4 ∪ V 2

4 , V 1
5 ∪ V 2

5 ) indues a partition of V and there exist two demands
{s1, t1} and {s2, t2} with s1, s2 ∈ V0, t1 ∈ V 2

4 and t2 ∈ V 2
5 . The sets V 1

4 and V 1
5 maybe empty and s1 and s2 may be the same. Let also V4 = V 1

4 ∪ V 2
4 , V5 = V 1

5 ∪ V 2
5and F ⊆ [V2, V

2
4 ] ∪ [V3, V4 ∪ V5] suh that |F | and k have di�erent parities. Then, theinequality

2x([V0, V2]) + 2x([V0, V3]) + 2x([V1, V3]) + x([V0 ∪ V1, V4 ∪ V5]) + x([V4, V5])+

x([V2, V
2
5 ]) + x(([V2, V

2
4 ] ∪ [V3, V4 ∪ V5]) \ F ) ≥

⌈
3k − |F |

2

⌉ (5.42)is valid for kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D) and kHNDPPA(G, D).



5.6. VALID INEQUALITIES 137Proof.i) Let T1 be the 2-s1t1-path-ut indued by the partition (V0, V1 ∪ V4, V2 ∪ V 1
3 , V 2

3 ) and
T2 and T3 the 2-s2t2-path-uts indued by the partitions (V0, V1 ∪ V3, V2 ∪ V 1

4 , V 2
4 ) and

(V0, V1, V2 ∪ V3 ∪ V 1
4 , V 2

4 ), respetively. By Lemma 5.6.1, the following inequalities arevalid for the kHNDP polytopes
x(T1) ≥ k,

x(T2) ≥ k,

x(T3) ≥ k,

− x(e) ≥ −1, for all e ∈ F,

x(e) ≥ 0, for all e ∈ ([V 2
3 , V1 ∪ V 1

4 ] ∪ [V 1
3 , V 2

4 ]) \ F.By adding these inequalities, dividing by 2 and rounding up the right hand side, weget inequality (5.41).ii) Let T1 be the 3-s1t1-path-ut indued by the partition (V0, V1 ∪ V5, V2, V3 ∪ V 1
4 , V 2

4 ),and T2 and T3 be the 3-s2t2-path-uts indued by the partitions (V0, V1 ∪ V4, V2, V3 ∪

V 1
5 , V 2

5 ) and (V0, V1, V2, V3 ∪ V4 ∪ V 1
5 , V 2

5 ), respetively. By Lemma 5.6.1, the followinginequalities are valid for the kHNDP polytopes
x(T1) ≥ k,

x(T2) ≥ k,

x(T3) ≥ k,

− x(e) ≥ −1, for all e ∈ F,

x(e) ≥ 0, for all e ∈ ([V2, V
2
4 ] ∪ [V3, V4 ∪ V5]) \ F.By adding these inequalities, dividing by 2 and rounding up the right hand side, weget inequality (5.42). �Inequalities of type (5.41) and (5.42) will be alled triple path-ut inequalities. Theset of edges having a positive oe�ient in inequality (5.41) ((5.42)) plus the edges of

F will be alled a triple path-ut (see Figure 5.5 for an example with L = 2).In the next two setions, we desribe two more lasses of inequalities.5.6.4 Steiner-partition inequalitiesLet (V0, V1, ..., Vp), p ≥ 2, be a partition of V suh that V0 ⊆ V \ RD, where RD is theset of terminal nodes of G, and for all i ∈ {1, ..., p} there is a demand {s, t} ∈ D suh
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V 1

0

s2

s1 t1 t1

V1 V 1

3 V 2

3

V 1

4

V 2

4

V2

possible edge of F

edge not in the double utedge of the triple path ut not in F

Figure 5.5: A triple path-ut with L = 2that Vi indues an st-ut of G. Note that V0 may be empty. Suh a partition is alleda Steiner-partition. With a Steiner-partition, we assoiate the inequality
x(δ(V0, V1, ..., Vp)) ≥

⌈
kp

2

⌉
. (5.43)Inequalities of type (5.43) will be alled Steiner-partition inequalities. We have thefollowing result.Theorem 5.6.7 Inequality (5.43) is valid for kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D)and kHNDPPA(G, D).Proof. By Lemma 5.6.1, the inequalities below are valid for the kHNDP polytopes

x(δ(Vi)) ≥ k, for i = 1, ..., p,

x(e) ≥ 0, for all e ∈ δ(V0).By adding them, we obtain
2x(δ(V0, ..., Vp)) ≥ kp.By dividing by 2 and rounding up the right hand side, we get inequality (5.43). �Inequality (5.43) expresses the fat that, in a solution of the kHNDP, the multiutindued by a Steiner-partition (V0, V1, ..., Vp), p ≥ 2, must ontain at least ⌈

kp
2

⌉ edges,sine there must exist k edge-disjoint paths between every pair of nodes {s, t} ∈ D.



5.6. VALID INEQUALITIES 1395.6.5 Steiner-SP -partition inequalitiesLet π = (V1, ..., Vp), p ≥ 3, be a partition of V suh that the graph Gπ = (Vπ, Eπ) isseries-parallel (Gπ is the subgraph of G indued by π). Suppose that Vπ = {v1, ..., vp}where vi is the node of Gπ orresponding to the set Vi, i = 1, ..., p. The partition π issaid to be a Steiner-SP -partition if and only if π is a Steiner-partition and either1. p = 3 or2. p ≥ 4 and there exists a node vi0 ∈ Vπ inident to exatly two nodes vi0−1 and vi0+1suh that the partitions π1 and π2 obtained from π by ontrating respetivelythe sets Vi0, Vi0−1 and Vi0, Vi0+1 are themselves Steiner-SP -partitions.The proedure to hek if a partition is a Steiner-SP -partition is reursive. It stopswhen the partition obtained after the di�erent ontrations is either a Steiner-partitionand of size three or it is not a Steiner-partition.In the following theorem, we give neessary and su�ient ondition for a Steiner-partition to be a Steiner-SP -partition. Remind that the demand graph is denoted by
GD = (RD, ED), where RD is the set of terminal nodes of G. The edge set ED isobtained by adding an edge between two nodes of RD if and only if {u, v} ∈ D.Theorem 5.6.8 Let π = (V1, ..., Vp), p ≥ 3, be a partition of V suh that Gπ is series-parallel. The partition π is a Steiner-SP -partition of G if and only if the subgraph of
GD indued by π is onneted.Proof. First observe that, as π is a SP -partition of G, one an obtain from π a two-size partition by applying repeatidly the following operation. Let πj = (V j

1 , ..., V j
pj

) bea SP -partition of G. Suppose that V j
i0
, for some i0, is inident to exatly two elements

V j
i0−1 and V j

i0+1. Then, the operation onsists in ontrating the sets V j
i0−1 and V j

i0
andonsider the partition πj+1 = (V j+1

1 , ..., V j+1
pj+1

) where
V j+1

i = V j
i for i = 1, ..., i0 − 2,

V j+1
i0−1 = V j

i0−1 ∪ V j
i0
,

V j+1
i = V j

i+1 for i = i0, ..., pj − 1.Note that the new partition πj+1 indues a SP -partition of G and that we have p−2iterations to obtained a two-size partition from π.



140 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMNow, we have that π is not a Steiner-SP -partition if and only if there exists an in-teger q ≤ p − 2 suh that the partition πq = (V q
1 , ..., V q

pq
), obtained by appliation ofthe above operation, is not a Steiner-partition, that is the node set V q

i0
of πq obtainedby the ontration proedure to the partition πq−1 is suh that δGD

(V q
i0
) = ∅. Thus, if

Vi1 , ..., Vir , r ≥ 2, are the node sets of π that have been redued to V q
i0
during the di�er-ent steps of the ontration proedure, then we have that δGD

(

r⋃

i=1

Vir) = ∅. Therefore,the subgraph of Gd indued by π is not onneted, whih ends the proof. �As a onsequene of Theorem 5.6.8, if the demand graph is onneted (this is the asewhen, for instane, all the demands are rooted in the same node), then every Steiner-partition of V induing a series-parallel subgraph of G is a Steiner-SP -partition of
V .With a Steiner-SP -partition (V1, ..., Vp), p ≥ 3, we assoiate the following inequality

x(δ(V1, ..., Vp)) ≥

⌈
k

2

⌉
p − 1. (5.44)Inequalities of type (5.44) will be alled Steiner-SP -partition inequalities. We havethe following.Theorem 5.6.9 Inequality (5.44) is valid for kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D)and kHNDPPA(G, D).Proof. Let π = (V1, ..., Vp), p ≥ 3 be a Steiner-SP -partition. The proof is by indutionon p. If p = 3, then, as π is a Steiner-partition, the inequality

x(δ(V1, V2, V3)) ≥

⌈
3k

2

⌉
= 3

⌈
k

2

⌉
− 1is valid.Now suppose that every inequality (5.44) indued by a Steiner-SP -partition of pelements, p ≥ 3, is valid for the kHNDP polytopes and onsider a Steiner-SP -partition

π = (V1, ..., Vp, Vp+1). As Gπ is series-parallel, there exists a node set Vi0 of π whih isinident to exatly two elements of π, say Vi0−1 and Vi0+1. We let F1 = [Vi0, Vi0−1] and
F2 = [Vi0, Vi0+1]. Sine π is a Steiner-SP -partition and hene is a Steiner-partition, by



5.6. VALID INEQUALITIES 141Lemma 5.6.1, Vi0 indues a valid st-ut inequality, for some {s, t} ∈ D. Hene we havethat
x(F1) + x(F2) ≥ k.W.l.o.g., we will suppose that

x(F1) ≥

⌈
k

2

⌉
. (5.45)Consider the partition π′ = (V1, ..., Vi0−2, Vi0−1 ∪ Vi0, Vi0+1, ..., Vp+1). As π is a Steiner-

SP -partition ontaining more than three elements, π′ is also a Steiner-SP -partitionwhih ontains p elements. Thus, by the indution hypothesis, the Steiner-SP -partitioninequality indued by π′, that is
x(δ(V1, ..., Vi0−2, Vi0−1 ∪ Vi0, Vi0+1, ..., Vp+1)) ≥

⌈
k

2

⌉
p − 1 (5.46)is valid. By summing the inequalities (5.45) and (5.46), we get

x(δ(V1, ..., Vp, Vp+1)) ≥

⌈
k

2

⌉
(p + 1) − 1,whih ends the proof of the theorem. �Inequality (5.44) expresses the fat that in a solution of the kHNDP the multiutindued by a Steiner-SP -partition ontains at least ⌈

k
2

⌉
p− 1 edges, sine this solutionontains k edge-disjoint paths between every pair of nodes {s, t} ∈ D.Chopra [21℄ desribed a lifting proedure for inequalities (2.27) for the kECSP. Thisproedure an be easily extended, for the kHNDP, to inequalities of type (5.44). Itis desribed as follows. Let G = (V, E) be a graph and k ≥ 3 an odd integer. Let

G′ = (V, E ∪ E ′) be a graph obtained from G by adding an edge set E ′. Let π =

(V1, ..., Vp) be a Steiner-SP -partition of G. Then the following inequality is valid for
kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D) and kHNDPPA(G, D)

x(δG(V1, ..., Vp)) +
∑

e∈E′∩δG′ (V1,...,Vp)

a(e)x(e) ≥

⌈
k

2

⌉
p − 1, (5.47)where a(e) is the length (in terms of edges) of a shortest path in Gπ between theendnodes of e, for all e ∈ E ′ ∩ δG′(V1, ..., Vp).We will all inequalities of type (5.47) lifted Steiner-SP -partition inequalities.In the next setion, we investigate onditions under whih aggregated ut, doubleut and triple path-ut inequalities de�ne faets of the kHNDP polytopes.



142 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEM5.7 FaetsThroughout this setion, we onsider a omplete graph G = (V, E) and suppose that
|V | ≥ k + 2.The �rst result onerns neessary onditions for the aggregated ut inequalities(5.29) to de�ne faets for kHNDPAg(G, D). To this end, we �rst give the followinglemma.Lemma 5.7.1 Consider an inequality of type (5.29) indued by a family of node sets
Π = {W̃1, ..., W̃p}, p ≥ 2, and ar subsets F̃ 0

i ⊆ δ+
eG
(W̃i), i = 1, ..., p. Let F̃2, F̃1, F̃ 2

1and E2 be the ar and edge sets involved in this inequality. Then (5.29) an be writtenas
p∑

i=1

y(δ+(W̃i)) + 2
∑

e∈E2

x(e) −
∑

a∈ eF 2
1

y(a) +

p∑

i=1

(|F̃ 0
i | − y(F̃ 0

i )) +
∑

a∈ eF1\ eF 2
1

y(a) ≥ kp + 1.(5.48)Moreover, (5.29) is tight for a solution (x0, y0) ∈ kHNDPAg(G, D) if and only if oneof the following onditions holdsi)
2

∑

e∈E2

x0(e) −
∑

a∈ eF 2
1

y0(a) +

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i )) +

∑

a∈ eF1\ eF 2
1

y0(a) = 1 (5.49)and y0(δ
+(W̃i)) = k, for i = 1, ..., p;ii)

2
∑

e∈E2

x0(e) −
∑

a∈ eF 2
1

y0(a) +

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i )) +

∑

a∈ eF1\ eF 2
1

y0(a) = 0 (5.50)and there exists i0 ∈ {1, ..., p} suh that y0(δ
+(W̃i)) = k, for i ∈ {1, ..., p} \ {i0}and y0(δ

+(W̃i0)) = k + 1.



5.7. FACETS 143Proof. First we show that αx + βy ≥ γ is equivalent to (5.48). As kp and p∑

i=1

|F̃ 0
i |have di�erent parities, αx + βy ≥ γ is equivalent to

2
∑

e∈E2

x(e) + 2
∑

a∈ eF2

y(a) + 2
∑

a∈ eF1\ eF 2
1

y(a) ≥ kp −

p∑

i=1

|F̃ 0
i | + 1. (5.51)From the st-diuts indued by the sets W̃i, we have that

p∑

i=1

y(δ+(W̃i) \ F̃ 0
i ) = 2

∑

a∈ eF2

y(a) +
∑

a∈ eF 2
1

y(a) +
∑

a∈ eF1\ eF 2
1

y(a),

= 2
∑

a∈ eF2

y(a) + 2
∑

e∈E2

x(e) − 2
∑

e∈E2

x(e) +
∑

a∈ eF 2
1

y(a) +
∑

a∈ eF1\ eF 2
1

y(a).Toghether with (5.51), we get
p∑

i=1

y(δ+(W̃i) \ F̃ 0
i ) + 2

∑

e∈E2

x(e) −
∑

a∈ eF 2
1

y(a) +
∑

a∈ eF1\ eF 2
1

y(a) ≥ kp −

p∑

i=1

|F̃ 0
i | + 1.(5.52)By ombining (5.52) and y(δ+(W̃i) \ F̃ 0

i ) = y(δ+(W̃i)) − y(F̃ 0
i ), i = 1, ..., p, we get(5.48).Now onsider a solution (x0, y0) ∈ kHNDPAg(G, D) satisfying (5.29) with equality.By the previous result, we have that

p∑

i=1

y0(δ
+(W̃i)) +

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i )) + 2

∑

e∈E2

x0(e) −
∑

a∈ eF 2
1

y0(a) +
∑

a∈ eF1\ eF 2
1

y0(a) = kp + 1.(5.53)As (x0, y0) indues a solution of the kHNDP, we have that y0(δ
+(W̃i)) ≥ k, i = 1, ..., p.Therefore, p∑

i=1

y0(δ
+(W̃i)) ≥ kp, and hene,

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i )) + 2

∑

e∈E2

x0(e) −
∑

a∈ eF 2
1

y0(a) +
∑

a∈ eF1\ eF 2
1

y0(a) ≤ 1. (5.54)



144 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMIf (5.54) is satis�ed with equality, then, learly y0(δ
+(W̃i)) = k, i = 1, ..., p. Ifnot, then, as y0(δ

+(W̃i)) ≥ k, i = 1, ..., p, this yields y0(δ
+(W̃i0)) = k + 1 for some

i0 ∈ {1, ..., p} and y0(δ
+(W̃i)) = k, for i ∈ {1, ..., p} \ {i0}.Conversely, if (5.54) is tight for (x0, y0) and y0(δ

+(W̃i)) = k for all i ∈ {1, ..., p}, thenlearly, (5.48) is tight for (x0, y0) and hene αx + βy ≥ γ is tight for (x0, y0). If (5.54)is not tight for (x0, y0), that is
p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i )) + 2

∑

e∈E2

x0(e) −
∑

a∈ eF 2
1

y0(a) +
∑

a∈ eF1\ eF 2
1

y0(a) = 0,and y0(δ
+(W̃i0)) = k + 1 for some i0 ∈ {1, ..., p} and y0(δ

+(W̃i0)) = k for i ∈

{1, ..., p} \ {i0}, then learly, (5.48) is also tight for (x0, y0). Thus, αx + βy ≥ γ istight for (x0, y0). �Corollary 5.7.1 Consider an inequality of type (5.29) indued by a family of nodesets {W̃1, ..., W̃p}, p ≥ 2, and ar subsets F̃ 0
i ⊆ δ+

eG
(W̃i), i = 1, ..., p. Let F̃2, F̃1, F̃ 2

1 and
E2 be the ar and edge sets involved in this inequality. If (5.29) is tight for a solution
(x0, y0) of kHNDPAg(G, D) then,

2
∑

e∈E2

x0(e) −
∑

a∈ eF 2
1

y0(a) +

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i )) +

∑

a∈ eF1\ eF 2
1

y0(a) ≤ 1. (5.55)Theorem 5.7.1 Let Π = {W̃1, ..., W̃p}, p ≥ 2, be a family of node sets of Ṽ suhthat eah set W̃i, i = 1, ..., p, indues an siti-diut of G̃, for some {si, ti} ∈ D, and
F̃ 0

i ⊆ δ+
eG
(W̃i). Suppose that every ar of Ã belongs to at most two sets δ+

eG
(W̃i) \ F̃ 0

i .Then, the aggregated ut inequality (5.29) indued by Π and F̃ 0
i , i = 1, ..., p, de�nesa faet of kHNDPAg(G, D) di�erent from the trivial and siti-diut inequalities, only iffor all i ∈ {1, ..., p}, one of the following onditions holds1. |W̃i ∩ SD| = |(Ṽ \ W̃i) ∩ TD| = 1;2. |W̃i ∩ SD| ≥ 2 and for all s ∈ (W̃i \ {si}) ∩ SD, [s, Ṽ \ W̃i] = ∅;3. |(Ṽ \ W̃i) ∩ TD| ≥ 2 and for all t ∈ [(Ṽ \ W̃i) \ {ti}] ∩ TD, [W̃i, t] = ∅.



5.7. FACETS 145Proof. Let us denote by αx + βy ≥ γ the inequality (5.29) indued by Π and F̃ 0
i ,

i = 1, ..., p, and suppose that it de�nes a faet of kHNDPAg(G, D). We will show that
|W̃i ∩SD| = 1, for i = 1, ..., p. The proof follows the same lines for |(Ṽ \ W̃i)∩TD| = 1.Also the proof for 2) and 3) is similar.Suppose on the ontrary that there exists i0 ∈ {1, ..., p} suh that W̃i0 indues an
st-diut of G̃ and that (W̃i0 \ {s}) ∩ SD 6= ∅. Let s′ be a node of (W̃i0 \ {s}) ∩ SD andsuppose that [s′, Ṽ \ W̃i0 ] 6= ∅ (see Figure 5.6).

W̃i0

t

s′

Ṽ \ W̃i0

s

Figure 5.6: A set W̃i0 ontaining two nodes of SFirst observe that δ eG(W̃ ′
i0
) = δ eG(W̃ ′

i0
) \ [s′, Ṽ \ W̃i0 ] and that two ars of [s′, Ṽ \ W̃i0 ]do not orrespond to the same edge of E.Let H̃0 = F̃2 ∩ [s′, Ṽ \ W̃i0 ] and H̃1 = (F̃1 \ F̃ 2

1 ) ∩ [s′, Ṽ \ W̃i0 ]. Also let H̃2 =

F̃ 2
1 ∩ [s′, Ṽ \ W̃i0 ], H̃3 be the set of ars of F̃ 2

1 orresponding to the same edges as thears of H̃2. Let E0 be edge set orresponding to the ars of H̃2 and H̃3. Considernow the aggregated ut inequality indued by {W̃ ′
1, ..., W̃

′
p} and F̃ 0′

i , i = 1, ..., p, where
W̃ ′

i = W̃i, F̃ 0′

i = F̃ 0
i , for i ∈ {1, ..., p}\{i0}, and W̃ ′

i0
= W̃i0\{s

′}, F̃ 0′

i = F̃ 0
i \[s′, Ṽ \W̃i0].Let F̃ ′

2, F̃ ′
1, F̃ 2′

1 and E ′
2 be the set of ars and edges involved in this inequality. Bythe above observation, as the ars of H̃3 orrespond to those of H̃2, we have that

H̃3 ∩ [s′, Ṽ \ W̃i0 ] = ∅. Also, by the same observation, no ar of H̃0 may orrespond to
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F̃ ′

2 = F̃2 \ H̃0,

F̃ 2′

1 = F̃ 2
1 \ (H̃2 ∪ H̃3),

F̃ ′
1 \ F̃ 2′

1 = [(F̃1 \ F̃ 2
1 ) \ H̃1] ∪ H̃0 ∪ H̃3.

E ′
2 = E2 \ E0.Therefore, the inequality (5.29) indued by {W̃ ′

1, ..., W̃
′
p} and F̃ 0′

i , i = 1, ..., p, an bewritten as
∑

a∈ eF2\ eH0

y(a) +
∑

e∈E2\E0

x(e) +
∑

a∈( eF1\ eF 2
1 )\ eH1

+
∑

a∈ eH0

y(a) +
∑

a∈ eH3

y(a) ≥




kp −

p∑

i=1

|F̃ 0′

i |

2




.(5.56)By summing up inequality (5.56) and the inequalities
x(e) ≥ y(a), for all a ∈ H̃3,where e is the edge of E0 orresponding to a. (5.57)
y(a) ≥ 0, for all a ∈ H̃1, (5.58)we get

∑

a∈ eF2

y(a) +
∑

e∈E2

x(e) +
∑

a∈ eF1\ eF 2
1

y(a) ≥




kp −

p∑

i=1

|F̃ 0′

i |

2




. (5.59)Clearly if F̃i0 ∩ [s′, Ṽ \ W̃i0] = ∅, then F̃ ′
i0

= F̃i0 and inequality (5.59) is the same as
αx + βy ≥ γ. Thus αx + βy ≥ γ is redundant with respet to (5.56)-(5.58), and heneannot de�ne a faet of kHNDPAg(G, D). If F̃i0 ∩ [s′, Ṽ \ W̃i0] 6= ∅, then the right handside of inequality (5.59) is greater than that of αx + βy ≥ γ. Thus, αx + βy ≥ γ isdominated by (5.56)-(5.58), and hene annot de�ne a faet of kHNDPAg(G, D). �The next theorems give neessary onditions for the double ut and triple path-utinequalities to de�ne faets of the kHNDP polytopes. Before eah theorem, we willgive a tehnial lemma whih will be useful to prove the theorem.



5.7. FACETS 147Lemma 5.7.2 Let αx ≥ γ be a double ut inequality indued by a family of node sets
Π = (V 1

0 , V 2
0 , V1, ..., VL+1) of V , F ⊆ E and {s, t} ∈ D with s ∈ V 1

0 and t ∈ VL+1 (here
i0 = 0). Then, αx ≥ γ an be written as

x(T ) + x(δ(V 1
0 ∪ V 2

0 )) + x(δ(V1)) + x(E \ F ) + |F | − x(F ) ≥ 3k + 1, (5.60)where T is the L-st-path-ut indued by the partition (V 1
0 , V 2

0 ∪ V1, V2, ..., VL+1).Moreover, αx ≥ γ is tight for a solution x0 of kHNDPAg, kHNDPCut, kHNDPNA,
kHNDPPA, where x0 ∈ R

E, if and only if one of the following onditions holds.i) x0(E \ F ) + |F | − x0(F ) = 1 and x0(T ) = x0(δ(V
1
0 ∪ V 2

0 )) = x0(V1) = k;ii) x0(E \ F ) + |F | − x0(F ) = 0 anda) x0(T ) = k + 1, x0(δ(V
1
0 ∪ V 2

0 )) = k and x0(V1) = k;b) x0(T ) = k, x0(δ(V
1
0 ∪ V 2

0 )) = k + 1 and x0(V1) = k;) x0(T ) = k, x0(δ(V
1
0 ∪ V 2

0 )) = k and x0(V1) = k + 1;Proof. W.l.o.g., we will onsider the polytope kHNDPAg(G, D). The proof is similarfor The proof is similar for kHNDPCut(G, D), kHNDPNA(G, D) and kHNDPPA(G, D).Let H denote the double ut indued by Π. The inequality αx ≥ γ is equivalent to
x(H \ E) + x(E \ F ) ≥

3k − |F | + 1

2
.This implies that

2x(H \ E) + 2x(E) − 2x(F ) ≥ 3k − |F | + 1. (5.61)From the L-st-path-ut T and uts δ(V 1
0 ∪ V 2

0 ) and δ(V1), we have that
x(T ) + x(δ(V 1

0 ∪ V 2
0 )) + x(δ(V1)) = 2x(H \ E) + x(E). (5.62)By ombining (5.61) and the (5.62), we get

x(T ) + x(δ(V 1
0 ∪ V 2

0 )) + x(δ(V1)) + x(E) − 2x(F ) ≥ 3k − |F | + 1,and hene
x(T ) + x(δ(V 1

0 ∪ V 2
0 )) + x(δ(V1)) + x(E \ F ) + |F | − x(F ) ≥ 3k + 1.



148 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMTherefore, αx ≥ γ is equivalent to (5.60).Now suppose that αx ≥ γ is tight for (x0, y0). From the development above, we havethat inequality (5.60) is also tight for (x0, y0), that is
x0(T ) + x0(δ(V

1
0 ∪ V 2

0 )) + x0(δ(V1)) + x0(E \ F ) + |F | − x0(F ) = 3k + 1.Sine by Lemma 5.6.1, x0(T ) ≥ k, x0(δ(V
1
0 ∪ V 2

0 )) ≥ k and x0(δ(V1)) ≥ k, it is learthat x0(E \F ) + |F | −x0(F ) ≤ 1. Hene, if x0(E \F ) + |F | −x0(F ) = 1, we have that
x0(T ) = x0(δ(V

1
0 ∪V 2

0 )) = x0(δ(V1)) = k. If x0(E \F )+ |F | −x0(F ) = 0, then, learly,either x0(T ), x0(δ(V
1
0 ∪ V 2

0 )) or x0(δ(V1)) is equal to k + 1 and the others are equal to
k.Consider now a solution (x0, y0) ∈ kHNDPAg(G, D) suh that x0(E \ F ) + |F | −

x0(F ) = 1 and x0(T ) = x0(δ(V
1
0 ∪ V 2

0 )) = x0(δ(V1)) = k. Then, learly, inequality(5.60) is satis�ed with equality, and hene, αx ≥ γ is tight for (x0, y0). Similarly, if
x0(E \ F ) + |F | − x0(F ) = 0 and either x0(T ), x0(δ(V

1
0 ∪ V 2

0 )) or x0(δ(V1)) is equal to
k +1 with the others equal to k, then (5.60) is satis�ed with equality by x0 and hene,
αx ≥ γ is tight for (x0, y0), whih ends the proof of the lemma. �Theorem 5.7.2 Suppose that L ≥ 2 and k ≥ 2, and let {s, t} ∈ D.Let Π = {V 1

0 , V 2
0 , V1, ..., VL+1} be a family of node sets of V and F ⊆ E whih indue adouble ut of G with respet to {s, t}, s ∈ V 1

0 and t ∈ VL+1 (here i0 = 0). Then,the double ut inequality indued by Π and F de�nes a faet of kHNDPAg(G, D),
kHNDPCu(G, D), kHNDPNA(G, D), kHNDPPA(G, D) di�erent from the trivial in-equalities and inequalities (5.1)-(5.2) only if the following onditions holdi) |V 1

0 | = |VL+1| = 1;ii) if L = 3, then |[V 1
0 , V 2

0 ∪ V1] ∪ [V3, V4] ∪ [V 1
0 , V4]| ≥ k.Proof. The proof will be done for kHNDPAg(G, D) as it is similar for kHNDPCu(G, D),

kHNDPNA(G, D) and kHNDPPA(G, D). We will denote by αx ≥ γ the double utinequality indued by Π and F . Let F = {(x, y) ∈ kHNDPAg(G, D) suh that αx = γ}and let T denote the L-st-path-ut indued by the partition (V 1
0 , V 2

0 ∪ V1, V2, ..., VL+1).i) Let us denote by H the double ut indued by Π and F . Suppose �rst that |V 1
0 | ≥ 2.By onsidering the family of node sets Π′ = {{s}, V 2

0 ∪V 1
0 \{s}, V1, ..., VL+1}, the double



5.7. FACETS 149ut H ′ indued by Π′ and F is suh that H = H ′∪ [V 1
0 \ {s}, V1]. Thus, the double utinequality indued by H is redundant with respet to

x(H ′ \ F ) ≥

⌈
3k − |F |

2

⌉

x(e) ≥, for all e ∈ [V 1
0 \ {s}, V1], (5.63)and hene, annot de�ne a faet.ii) We will show that F 6= ∅ only if ii) holds. As F de�nes a faet di�erent from

x(δ(V 1
0 ∪ V 2

0 )) ≥ k, there exists a solution (x, y) ∈ F suh that x(δ(V 1
0 ∪ V 2

0 )) ≥ k + 1.Thus, by Lemma 5.7.2, x(T ) = k. Therefore, the graph indued by x ontains exatly
k edge-disjoint L-st-paths. Moreover, eah L-st-path intersets T only one. Thus, byLemma 4.2.2, we have that |[V 1

0 , VL+1]| + |[V 1
0 , V 2

0 ∪ V1]| + |[VL, VL+1]| ≥ k. �Lemma 5.7.3 Let αx ≥ γ be a triple path-ut inequality indued by a family of nodeset Π = {V0, ..., VL, V 1
L+1, V

2
L+1, V

1
L+2, V

2
L+2} and F ⊆ E. Then αx ≥ γ an be writtenas

x(T1) + x(T2) + x(T3) + x(E \ F ) + |F | − x(F ) ≥ 3k + 1 (5.64)where T1, T2 and T3 are the triple path-uts indued by the partitions (V0, V1 ∪ V4, V2 ∪

V 1
3 , V 2

3 ), (V0, V1 ∪ V3, V2 ∪ V 1
4 , V 2

4 ) and (V0, V1, V2 ∪ V3 ∪ V 1
4 , V 2

4 ), respetively, and E =

[V 2
3 , V1 ∪ V 1

4 ] ∪ [V 1
3 , V 2

4 ] (resp. E = [V2, V
2
4 ] ∪ [V3, V4 ∪ V5]) if L = 2 (resp. L = 3).Moreover, αx ≥ γ is tight for a solution x0 of the kHNDP, where x0 ∈ R

E, if andonly if one of the following inequalities holdsi) x0(E \ F ) + |F | − x0(F ) = 1 and x0(T1) = x0(T2) = x0(T3) = k;ii) x0(E \ F ) + |F | − x0(F ) = 0 and, for some i0 ∈ {1, 2, 3}, x0(Ti0) = k + 1 and
x0(Ti) = k for i ∈ {1, 2, 3} \ {i0}.Proof. Similar to that of Lemma 5.7.2. �Theorem 5.7.3 Let L ∈ {2, 3} and onsider Π = {V0, ..., VL, V 1

L+1, V
2
L+1, V

1
L+2, V

2
L+2}be a family of node sets of V and F ⊆ E whih indue a triple path-ut of G withrespet to demands {s1, t1} and {s2, t2}. Then, the triple path-ut inequality induedby Π and F de�nes a faet of kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D),

kHNDPPA(G, D) only if the following onditions hold



150 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMi) V0 \ {s1, s2} = ∅;ii) |V 2
L+1| = 1;iii) |V 2
L+2| = 1;iv) if L = 3, thena) |[{s1, s2}, V1 ∪ V 1

5 ∪ {t2}]| + |[V3 ∪ V 1
4 , t1]| + |[{s1, s2}, t1]| ≥ k;b) |[{s1, s2}, V1 ∪ V 1

4 ∪ {t1}]| + |[V3 ∪ V 1
5 , t2]| + |[{s1, s2}, t2]| ≥ k;) |[{s1, s2}, V1]| + |[V3 ∪ V 1

4 ∪ {t1} ∪ V 1
5 , t2]| + |[{s1, s2}, t2]| ≥ k.Proof. For the proof of Conditions i)-iii), we will onsider, w.l.o.g., that L = 3. Wewill denote by αx ≥ γ the triple-ut inequality indued by Π and F .i) Suppose that V0 \{s1, s2} 6= ∅ and denote by H the triple path-ut indued by Π and

F . Consider the family of node sets Π′ = {{s1, s2}, V0\{s1, s2}∪V1, V2, V3, V
1
4 , V 2

4 , V 1
5 , V 2

5 }and F ′ = F . If H ′ denotes the triple path-ut indued by Π′ and F ′, we have that
H ′ = H \ [V0 \ {s1, s2}, V2]. Thus, as V0 \ {s1, s2} 6= ∅, inequality (5.42) indued by Πand F is redundant with respet to the inequalities

2x([{s1, s2}, V2]) + 2x([{s1, s2}, V3]) + 2x([V1 ∪ (V0 \ {s1, s2}), V3])+

x([{s1, s2} ∪ V1 ∪ (V0 \ {s1, s2}), V4 ∪ V5]) + x([V4, V5]) + x([V2, V
2
5 ])+

x(([V2, V
2
4 ] ∪ [V3, V4 ∪ V5]) \ F ) ≥

⌈
3k − |F |

2

⌉
,

x(e) ≥ 0, for all e ∈ [V0 \ {s1, s2}, V2].Therefore, the triple path-ut inequality indued by Π and F annot de�ne a faetof the kHNDP polytopes.ii) Now we show that |V 2
4 | = 1. Suppose on the ontrary that |V 2

4 | ≥ 2 and let αx ≥ γdenote the triple path-ut inequality indued by Π and F . Let Π′ = {V0, ..., V3, V
1
4 ∪

V 2
4 \ {t1}, {t1}, V

1
5 , V 2

5 }. First suppose that F ∩ [V2, V
2
4 \ {t1}] = ∅ and let H ′ bethe triple path-ut indued by Π′ and F . As F ∩ [V2, V

2
4 \ {t1}] = ∅, we have that

H ′ = H \ [V2, V
2
4 \ {t1}]. If α′x ≥ γ′ denotes the triple path-ut inequality indued by

Π′ and F , then it is not hard to see that α′(e) = α(e), for all e ∈ H ′ \ F , and that
γ′ = γ. Thus, αx ≥ γ is redundant with respet to the following inequalities

α′x ≥ γ,

x(e) ≥ 0, for all e ∈ [V2, V
2
4 \ {t1}],



5.7. FACETS 151and hene, annot de�ne a faet of the kHNDP poytopes.If F ∩ [V2, V
2
4 \ {t1}] 6= ∅, then we onsider F ′ = F \ (F ∩ [V2, V

2
4 \ {t1}]) and let

α′x ≥ γ′ be the triple path-ut inequality indued by Π′ and F ′. Also let H ′ denotesthis triple path-ut. As before, we have that H ′ = H \ [V2, V
2
4 \ {t1}] and, for all

e ∈ H ′ \ F ′, α′(e) = α(e). Moreover, γ =
⌈

3k−|F |
2

⌉ and γ′ =
⌈

3k−|F |+|F∩[V2,V 2
4 \{t1}]|

2

⌉. As
|F ∩ [V2, V

2
4 \ {t1}]| ≥ 1, we have that γ′ ≥ γ. This implies that αx ≥ γ is dominatedby the inequalities

α′x ≥ γ′,

x(e) ≥ 0, for all e ∈ [V2, V
2
4 \ {t1}] \ F.Thus, it annot de�ne a faet of the kHNDP poytopes.iii) Suppose that |V 2

5 | ≥ 2. Consider Π′ = {V0, ..., V3, V
1
4 , V 2

4 , V 1
5 ∪V 2

5 \{t2}, {t2}} and let
H and H ′ denote the triple path-uts indued by Π and F , and by Π′ and F respetively.If F ∩ [V3, V

2
5 \{t2}] = ∅, then, learly, H ′ = H \ [V2, V

2
5 \{t2}]. If F ∩ [V3, V

2
5 \{t2}] 6= ∅,then it is also not hard to see that, as before, H ′ = H \ [V2, V

2
5 \ {t2}].This implies that the triple path-ut inequality indued by H is redundant withrespet to that indued by H ′ and the inequalities x(e) ≥ 0, for all e ∈ [V2, V

2
5 \ {t2}].Thus, it annot de�ne a faet.iv) To show that onditions iv) are neessary for αx ≥ γ to de�ne a faet, we show thatthe sets Fi = {x ∈ R

E suh that x indues a solution of the kHNDP and x(Ti) = k},
i = 1, 2, 3, are non empty only if onditions iv) are satis�ed. As F is di�erent from theinequality x(e) ≤ 0 for some e ∈ F , there exists a solution (x, y) ∈ F suh that x(e) = 0.Thus, |F | − x(F ) ≥ 1. By Lemma 5.7.3, this implies that x(E \ F ) + |F | − x(F ) = 1and hene, x(Ti) = k, for i = 1, 2, 3. Therefore, from Lemma 4.2.2, we obtain that

|[{s1, s2}, V1 ∪ V 1
5 ∪ {t2}]| + |[V3 ∪ V 1

4 , t1]| + |[{s1, s2}, t1]| ≥ k,

|[{s1, s2}, V1 ∪ V 1
4 ∪ {t1}]| + |[V3 ∪ V 1

5 , t2]| + |[{s1, s2}, t2]| ≥ k,

|[{s1, s2}, V1]| + |[V3 ∪ V 1
4 ∪ {t1} ∪ V 1

5 , t2]| + |[{s1, s2}, t2]| ≥ k,whih ends the proof of the theorem. �In the following hapter, we use all the results presented in this hapter to deviseBranh-and-Cut and Branh-and-Cut-and-Prie algorithms for the kHNDP. As it willturn out, these results will be partiularly useful to develop e�eient separation algo-rithms for the various inequalities we have presented here.



Chapter 6
Branh-and-Cut andBranh-and-Cut-and-Prie Algorithmsfor the kHNDP
In this hapter we present Branh-and-Cut and Branh-and-Cut-and-Prie algorithmswe have devised to solve the kHNDP. In Setions 6.1 and 6.2, we will desribe theframework of these algorithms. In Setion 6.4, we will present some omputationalresults and in Setion 6.5 we give some onluding remarks.In order to solve the kHNDP using Aggregated, Cut and Node-Ar formulations,we use a Branh-and-Cut algorithm. These formulations use a polynomial number ofvariables. For the Path-Ar formulation, we use a Branh-and-Cut-and-Prie algorithmsine this formulation uses an exponential number of variables. These algorithms aredesribed in Setions 6.1 and 6.2. Setion 6.3 desribes the various separation routinesused in both Branh-and-Cut and Branh-and-Cut-and-Prie algorithms.Here we reall some notations that will be used all along this hapter. Given anundireted graph G = (V, E) and a demand set D ⊆ V × V , the set of terminal nodesinvolved in a demand as soure (resp. destination) node is denoted by SD (resp. TD).The set of terminal nodes is denoted by RD. The demand graph GD = (RD, ED) isthe undireted graph whose nodes are those of RD and, for every demand {u, v} ∈ D,we add an edge uv in GD. The direted graph assoiated with G in the Aggregatedformulation is denoted by G̃ = (Ṽ , Ã) and the direted graphs assoiated with G inthe separated formulations (Cut, Node-Ar and Path-Ar formulations) are denotedby G̃st = (Ṽst, Ãst), {s, t} ∈ D.



6.1. BRANCH-AND-CUT ALGORITHMS FOR AGGREGATED, CUT ANDNODE-ARC FORMULATIONS 153Given a solution x ∈ [0, 1]E, the support graph G(x) = (V, E(x)) is the subgraphof G obtained by removing from G all the edges e ∈ E suh that x(e) = 0, that is
E(x) = {e ∈ E | x(e) > 0}. Also, we let

E0(x) = {e ∈ E | x(e) = 0},

E1(x) = {e ∈ E | x(e) = 1},

Ef (x) = {e ∈ E | 0 < x(e) < 1}.In a similar way, given a solution y ∈ [0, 1]
eA, the support graph G̃(y) = (Ṽ , Ã(y)) isthe subgraph of G̃ obtained by removing from G̃ all the ars a ∈ Ã suh that y(a) = 0,that is Ã(y) = {a ∈ Ã | y(a) = 0}. Also, we let

Ã0(x) = {a ∈ Ã | y(e) = 0},

Ã1(x) = {a ∈ Ã | y(e) = 1},

Ãf (x) = {a ∈ Ã | 0 < y(e) < 1}.Finally, for a demand {s, t} ∈ and a solution yst ∈ [0, 1]
eAst , the support graph is thegraph G̃st(yst) = (Ṽst, Ãst(yst)), is the graph suh that Ãst(yst) = {a ∈ Ãst | yst(a) > 0}.We let

Ã0
st(yst) = {a ∈ Ãst | yst(a) = 0},

Ã1
st(yst) = {a ∈ Ãst | yst(a) = 1},

Ãf
st(yst) = {a ∈ Ãst | 0 < yst(a) < 1}.6.1 Branh-and-Cut algorithms for Aggregated, Cutand Node-Ar formulationsWe �rst desribe a Branh-and-Cut algorithm for the Aggregated formulation. To startthe optimization, we onsider the linear program given by the st-diut inequalitiesindued by the node sets {s}, {s} ∪ N ′ and {s} ∪ N ′ ∪ N ′′, for all s ∈ SD, toghether



154 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPwith the linking and trivial inequalities. That is to say, we onsider the programMin∑

e∈E

c(e)x(e)

y(δ+
eG
(s)) ≥ k,

y(δ+
eG
({s} ∪ V1)) ≥ k,

y(δ+
eG
({s} ∪ V1 ∪ V2)) ≥ k,





for all s ∈ SD,

y(a) ≤ x(e), for all a ∈ Ã(e), e ∈ E,

y(a) ≥ 0, for all a ∈ Ã,

x(e) ≤ 1, for all e ∈ E.The optimal solution (x, y) of this LP is feasible for kHNDPAg if and only if (x, y) isintegral and satis�es every st-diut inequality, for all {s, t} ∈ D. If (x, y) is not feasiblefor the problem, then we generate further valid inequalities for kHNDPAg(G, D) thatare violated by (x, y). To do this, the algorithm tries to add in the urrent LP thefollowing inequalities, in this order,1. st-diut inequalities,2. aggregated ut inequalities,3. double ut inequalities,4. triple path-ut inequalities,5. Steiner-partition inequalities,6. Steiner-SP -partition inequalities.For the Cut formulation, the optimization starts by onsidering the following linearprogram Min∑

e∈E

c(e)x(e)

yst(δ
+
eGst

(s)) ≥ k,

yst(δ
+
eGst

({s} ∪ Nst)) ≥ k,

yst(δ
+
eGst

({s} ∪ Nst ∪ N ′
st)) ≥ k,

yst(a) ≤ x(e), for all a ∈ Ãst(e), e ∈ E,

yst(a) ≥ 0, for all a ∈ Ãst,





for all {s, t} ∈ D,

x(e) ≤ 1, for all e ∈ E.



6.1. BRANCH-AND-CUT ALGORITHMS FOR AGGREGATED, CUT ANDNODE-ARC FORMULATIONS 155Here also, the optimal solution (x, ys1t1 , ..., ysdtd
) is feasible for kHNDPCu if (x, ys1t1 , ..., ysdtd

)is integral and satis�es every st-diut inequality, for all {s, t} ∈ D. If (x, ys1t1 , ..., ysdtd
)is not feasible for the problem, then we generate, as before, further valid inequalitiesfor kHNDPCu(G, D) that are violated by (x, ys1t1 , ..., ysdtd

). For this, we look for thefollowing inequalities, in this order,1. st-diut inequalities,2. aggregated ut inequalities,3. double ut inequalities,4. triple path-ut inequalities,5. Steiner-partition inequalities,6. Steiner-SP -partition inequalities.Now we desribe the Branh-and-Cut algorithm for the Node-Ar formulation. Theoptimization starts by solving the linear relaxation of Formulation (5.15). As thisformulation ontains a polynomial number of variables and onstraints, its linear re-laxation an be solved using only one linear program,Min∑

e∈E

c(e)x(e)sujeted to
(5.11) − (5.14).The optimal solution (x, f

s1t1
, ..., f

sdtd
) of this LP is feasible for kHNDPNA if it isintegral. If this is not the ase, we then try to add further inequalities that are valid for

kHNDPNA(G, D) and violated by this solution. The inequalities that are onsideredhere are the following, generated in this order,1. double ut inequalities,2. triple path-ut inequalities,3. Steiner-partition inequalities,4. Steiner-SP -partition inequalities.



156 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDP6.2 A Branh-and-Cut-and-Prie algorithm for Path-Ar formulationThe Branh-and-Cut-and-Prie algorithm for the kHNDP starts by solving the linearrelaxation of Formulation (5.20). As this formulation uses an exponential number ofvariables but a polynomial number of onstraints, we use a olumn generation algorithmto solve its linear relaxation.6.2.1 Column generation algorithmRemind that the olumn generation algorithm starts by solving a linear program ob-tained from the linear relaxation of the Path-Ar formulation by onsidering a subsetof variables whih indue a feasible basis for the initial problem. For our purpose, weonsider �rst the sets of st-dipaths Bst ⊆ Pst, {s, t} ∈ D, suh that |Bst| ≥ k and thepaths of Bst are ar-disjoint. Note that the subgraph of G̃st indued by the paths of
Bst ontains k ar-disjoint st-dipaths. By Corollary 5.2.1, the edge set orrespondingto the ars involved in the paths of Bst, {s, t} ∈ D, indues a solution of the kHNDP,and, toghether with the sets Bst, {s, t} ∈ D, indues a feasible solution for the linearrelaxation of Formulation (5.20). Hene, we onsider as initial set of variables thoseindued by the edge set E and the sets Bst, {s, t} ∈ D. The �rst the linear programsolved in the olumn generation algorithm is, therefore, the one obtained from thelinear relaxation of Formulation (5.20) and these variables. This linear program isMin ∑

e∈E

c(e)x(e)

∑

eP∈Bst

µst(P̃ ) ≥ k, (6.1)
∑

eP∈Bst

γst
eP,a

µst(P̃ ) ≤ x(e), for all a ∈ Ãst(e), e ∈ E, (6.2)
µst(P̃ ) ≥ 0, for every P̃ ∈ Bst, and every {s, t} ∈ D, (6.3)
x(e) ≤ 1, for all edge e ∈ E. (6.4)At eah iteration, the algorithm tries to generate new olumns, that is to add to Bst,

{s, t} ∈ D, direted paths P̃ ∈ Pst \ Bst suh that the variable µst(P̃ ) has a negativeredued ost. This is done by solving the so-alled satellite problem whih onsists in�nding, for all {s, t} ∈ D, a path P̃ ∗ suh that cr(P̃
∗) = min{cr(P̃ ) | P̃ ∈ Pst} and

cr(P̃
∗) < 0, where cr(P̃ ) is the redued ost of the variable µst(P̃ ).



6.2. A BRANCH-AND-CUT-AND-PRICE ALGORITHM FOR PATH-ARCFORMULATION 157The redued ost cr(P̃ ) is omputed using the dual optimal solution. Let λst
0 and λst

a ,
a ∈ Ãst, be the dual variables assoiated with inequalities (6.1) and (6.2), respetively.Then, given a path P̃ ∈ Pst, for some {s, t} ∈ D, the redued ost of the variable
µst(P̃ ) is given by

cr(P̃ ) = λst
0 +

∑

a∈ eAst

γst
eP,a

λst
a = λst

0 +
∑

a∈ eP

λst
a .Thus, the satellite problem redues to �nd a shortest st-dipath in the graph G̃st, forall {s, t} ∈ D, with respet to lengths λst

a on ar a ∈ Ãst. If a shortest st-dipath of G̃st,say P̃ ∗, is suh that ∑

a∈ eP ∗

λst
a < −λst

0 , then cr(P̃
∗) < 0. If not, then cr(P̃ ) ≥ 0 for every

st-dipath P̃ ∈ Pst. Sine λst
a ≥ 0, for all a ∈ Ãst, the satellite problem an be solved inpolynomial time. As the graphs G̃st are iruitless, the shortest paths between s and tan be omputed using for instane Bellman algorithm [11℄.If cr(P̃ ) ≥ 0 for all P̃ ∈ Pst, {s, t} ∈ D, then the optimal solution of the urrentlinear program is optimal for the linear relaxation of Formulation (5.20).The initial sets Bst are hosen in the following way. For all {s, t} ∈ D, we add in

Bst k st-dipaths of the form (s, t) or (s, u, u′, t). To improve the onvergene of theolumn generation algorithm, at eah iteration we add to a set Bst all the dipaths of
G̃st having a negative redued ost, that is having length < −λst

0 . This an be donein polynomial time using Epstein [46℄ or Hershberger et al. algorithms [70℄. For ourpurpose, we devise an algorithm whih relies on the layered struture of the graph G̃st.The algorithm works as follows for a pair {s, t} ∈ D. First, we ompute, using Bellmanalgorithm [11℄, the shortest paths from s to every other node of Ṽst \ {s}, and let lst(u)denote the length of the shortest path from s to u, u ∈ Ṽst \ {s}. If lst(t) ≥ −λst
0 , then,for every st-dipath P̃ ∈ Pst, cr(P̃ ) ≥ 0. If lst(t) < −λst

0 , then at least one st-dipathwill be added to Bst. We �rst look for a path (s, t). If λst
(s,t) < −λst

0 , then we addthe path (s, t) to Bst. Afterwards, we look for a st-dipath of the form (s, u, v′, t), with
u ∈ Nst and v′ ∈ N ′

st. In fat, every st-dipath of G̃st di�erent from (s, t) is of the form
(s, u, v′, t). For every node v′ ∈ N ′

st, if lst(v
′) + λst

(v′,t) < −λst
0 , then we add the st-path

(s, u, v′, t) to Bst. We repeat this proedure for every {s, t} ∈ D. The algorithm isexat and runs in polynomial time.6.2.2 Branh-and-Cut-and-Prie algorithmThe optimal solution of the linear relaxation of Formulation (5.20) is feasible for For-mulation (5.20) if it is integral. If this is not the ase, then we add further valid



158 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPinequalities for kHNDPPA(G, D) that are violated by this solution. The inequalitiesthat are onsidered are the following, in this order,1. double ut inequalities,2. triple path-ut inequalities,3. Steiner-partition inequalities,4. Steiner-SP -partition inequalities.For our di�erent Branh-and-Cut and Branh-and-Cut-and-Prie algorithms, all theinequalities that are onsidered are global, that is valid for all the Branh-and-Cuttree, and several inequalities may be added at eah iteration of the Branh-and-Cutand Branh-and-Cut-and-Prie algorithms. These inequalities are lifted before theirintrodution in the urrent LP. We go to the next lass of inequalities only if we havenot found any violated inequality in the urrent lass.In the following setion, we desribe the di�erent proedures we use to detet theviolated inequalities.6.3 Separation proedures6.3.1 Separation of st-diut inequalitiesThe separation of st-diut inequalities (5.6) and (5.21) an be performed in polynomialtime by omputing, for every {s, t} ∈ D, a minimum weight st-diut in G̃st(yst) (resp.
G̃(y)) with weights (yst(a), a ∈ Ãst(yst)) (resp. (y(a), a ∈ Ã(y))) for inequalities (5.6)(resp. (5.21)). By minimum ut - maximum �ow relationship, omputing a minimumweight st-diut of G̃st(yst) (resp. G̃(y)) is equivalent to omputing a maximum �owseparating s and t. We use, for omputing maximum �ows, the e�ient algorithm ofGoldberg and Tarjan [58℄ whih runs in O(|Ṽst||Ãst| log |eVst|2

| eAst|
), for all {s, t} ∈ D (resp.

O(|Ṽ ||Ã| log |eV |2

| eA|
)). As this operation is repeated |D| times, the whole algorithm runsin O(|D||Ṽst||Ãst| log |eVst|2

| eAst|
), for all {s, t} ∈ D (resp. O(|D||Ṽ ||Ã| log |eV |2

| eA|
)), and heneis polynomial time.



6.3. SEPARATION PROCEDURES 1596.3.2 Separation of aggregated ut inequalitiesTo separate the aggregated ut inequalities, we onsider the inequalities of type (5.29)and (5.33) and devise an heuristi to separate them. In partiular, we onsider theinequalities desribed in the following two lemmas. The separation proedure relieson a speial graph (introdued later) de�ned with respet to G̃ (G̃st, {s, t} ∈ D)and a frational solution. Reall that these inequalities are valid for the polytopes
kHNDPAg(G, D) and kHNDPCu(G, D).Lemma 6.3.1 Consider an inequality αx+βy ≥ γ of type (5.29) indued by a node setfamily Π = {W̃1, ..., W̃p}, p ≥ 2, and ar subsets F̃ 0

i ⊆ δ+
eG
(W̃i) suh that |F̃ 0

i | = k − 1.Let F̃ =

p⋃

i=1

(δ+
eG
(W̃i) \ F̃ 0

i ), F̃2 be the set of ars of Ã whih appear twie in F̃ and F̃1those whih appear one in F̃ . Suppose that for all ar a ∈ F̃1 there is another ar
a′ ∈ F̃1 whih orresponds to the same edge of G as a. Let E2 be the set of edges of Gorresponding to the ars of F̃1.If (x, y) ∈ R

E×R
eA is a frational solution of kHNDPAg(G, D) suh that y(δ+

eG
(W̃i)) =

k and y(a) = 1, for all a ∈ F̃ 0
i , i = 1, ..., p, then αx + βy ≥ δ is violated by (x, y) ifand only if
2

∑

e∈E2

x(e) −
∑

a∈ eF1

y(a) < 1. (6.5)Proof. First observe that inequality αx + βy ≥ δ is violated by (x, y) if and only if
∑

a∈ eF2

y(a) +
∑

e∈E2

x(e) <
p + 1

2
. (6.6)Sine y(δ+

eG
(W̃i)) = k, |F̃ 0

i | = k − 1 and y(a) = 1 for all a ∈ F̃ 0
i , we have that

y(δ+
eG
(W̃i) \ F̃ 0

i ) = 1 for i = 1, ..., p.Thus, p∑

i=1

y(δ+
eG
(W̃i) \ F̃ 0

i ) = 2
∑

a∈ eF2

y(a) +
∑

a∈ eF1

y(a) = p and hene,
∑

a∈ eF2

y(a) =
p

2
−

1

2

∑

a∈ eF1

y(a). (6.7)



160 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPFrom (6.6) and (6.7), we get
p −

∑

a∈ eF1

y(a) + 2
∑

e∈E2

x(e) < p + 1.and the result follows. �Lemma 6.3.2 Consider an inequality αx +
∑

{s,t}∈D

ystβst ≥ γ of type (5.33) indued bya family of node sets Π = {W̃ s1t1
1 , ..., W̃ s1t1

p1
, ..., W̃

sqtq
1 , ..., W̃

sqtq
pq }, with pi ≥ 1, for i =

1, ..., q, and p =

q∑

i=1

pi ≥ 2, and ar subsets F̃ siti,0
j ⊆ δ+

eGsiti

(W̃ siti
j ) suh that |F̃ siti,0

j | =

k − 1, j = 1, ..., pi, i = 1, ..., q. Let F̃ siti =

pi⋃

j=1

[δ+
eGsiti

(W̃ siti
j ) \ F̃ siti,0

j ], i = 1, ..., q. Alsolet F̃ siti,2 be the set of ars of Ãsiti whih appear twie in F̃ siti and F̃ siti,1 those whihappear one in F̃ siti. Suppose that for all ar a ∈ F̃ siti,1, there exists a unique ar
a′ ∈ F̃ si′ ti′ ,1 for some i′ ∈ {1, ..., q} whih orresponds to the same edge of G as a. Let
E2 be the set of edges of G orresponding to these ars.If (x, ys1t1 , ..., ysdtd

) is a frational solution of kHNDPCu(G, D) suh that
ysiti

(δ+
eGsiti

(W̃siti)) = k and ysiti
(a) = 1, for all a ∈ F̃ siti,0, i = 1, ..., q, then

αx +
∑

{s,t}∈D

ystβst ≥ γ is violated by (x, ys1t1 , ..., ysdtd
) if and only if

2
∑

e∈E2

x(e) −

q∑

i=1

∑

a∈ eF siti

ysiti(a) < 1. (6.8)Proof. Similar to the proof of Lemma 6.3.1. �In the following, we are going to disuss the separation of the aggregated ut inequal-ities (5.29) for kHNDPAg. After that, we will desribe the separation proedure for theaggregated ut inequalities (5.33) related to kHNDPCu.We are going to introdue an undireted graph, denoted by H(x, y), obtained from
G̃ and de�ned with respet to (x, y). As we will see in the following, the main propertyof this graph is that there is a mathing between some partiular yles of H(x, y) andinequalities of type (5.29), desribed as in Lemma 6.3.1. The graph H(x, y) is obtainedas follows.



6.3. SEPARATION PROCEDURES 161For eah ar of Ã having a frational value with respet to y, we add a node in
H(x, y). For onveniene, we will denote by a the node of H(x, y) orresponding toan ar a of G̃. We add an edge in H(x, y) between two nodes a1 and a2 if one of theonditions below is satis�ed.1. There exists an st-diut of G̃(y), say δ+

eG(y)
(W̃ ), for some {s, t} ∈ D, whih ontains

a1 and a2, and suh that y(δ+
eG(y)

(W̃ )) = k, |δ+
eG(y)

(W̃ ) ∩ Ã1(y)| = k − 1 and
δ+

eG(y)
(W̃ ) ∩ Ãf(y) = {a1, a2}.2. The ars a1 and a2 orrespond to the same edge of G.The edges added by Condition 1 will be said of type 1 and those added by Condition2 will be said of type 2. Figures 6.1 and 6.2 give respetively the support graph G̃(y) ofa frational solution (x, y) of kHNDPAg(G, D) and the graph H(x, y) assoiated withthat solution.
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Arc with value 1

Arc with value 0.5

12'1′

4'
3

21'3'2'15' 15�2�3�
21�4�12�
1�

2
4

1

Figure 6.1: The support graph G̃(y) of a frational solution (x, y) for L = 3 and k = 3
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Edge of type 1
Edge of type 2

21�,2 15�,22',21� 3',15�
12',3� 21',2� 2',15�4',21�12',4� 15',2�

3,15'3,12'
12�,4 21�,43',12�

21',4�
4',12�

Figure 6.2: Graph H(x, y) obtained from G̃(y)



164 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPNote that in the ase where there is an edge of type 1 in H(x, y) between two nodes
a1 and a2, we have that y(a1) + y(a2) = 1. Also, if there is an edge of type 2 betweentwo nodes a1 and a2, then x(e) > 0 where e is the edge of G orresponding to a1 and
a2. Also it is not hard to see that, if in H(x, y) there are two edges of type 2 of theform a1a2 and a2a3, then there is also an edge of type 2 between a1 and a3 (a1, a2 and
a3 form a triangle).Now we give the main property of H(x, y).Lemma 6.3.3 Let C = {a1a2, a2a3, ..., a|C|a1} be a yle of H(x, y) and {ai1aj1 , ..., aipajp

}the set of edges of C of type 1. Also, let V1 be the set of nodes of C inident to twoonseutive edges of type 1. Suppose that p ≥ 2 and that C does not ontain twoonseutive edges of type 2. Then, C yields an inequality of type (5.29) de�ned by
Π = {W̃1, ..., W̃p} and F̃ 0

r = δ eG(y)(W̃r) \ {air , ajr
}, r = 1, ..., p, where W̃r is the node setof G̃ assoiated with the edge airajr

in the onstrution of H(x, y).Proof. First observe that the ars of Ã(y) whih appear twie in F̃ =

p⋃

i=1

[δ eG(y)(W̃r) \ F̃ 0
i ]are those of G̃(y) orresponding to the nodes of V1, while the ars whih appear onein F̃ are those of Ã(y) orresponding to the nodes of {a1, ..., a|C|} \ V1. Thus we let F̃2and F̃1 be these two sets of ars, respetively. Sine every node a ∈ {a1, ..., a|C|} \ V1is inident to one edge of C of type 2, say aa′, the ars a and a′ are in F̃1 and orre-spond to the same edge of G. Thus, the aggregated ut inequality assoiated with thison�guration an be written as

∑

a∈ eF2

y(a) +
∑

e∈E2

x(e) ≥
⌈p

2

⌉
,where E2 is the edge set of G orresponding to the ars of F̃1. �To illustrate that lemma, on Figure 6.2, the yle

C = {(3, 15′)(3, 12′), (3, 12′)(21′′, 4), (21′′, 4)(4′, 21′′), (4′, 21′′)(3′, 15′′), (3′, 15′′)(3, 15′)}ontains three edges of type 1, (3, 15′)(3, 12′), (3, 12′)(21′′, 4) and (4′, 21′′)(3′, 15′′), andtwo edges of type 2, (21′′, 4)(4′, 21′′) and (3′, 15′′)(3, 15′), that are not inident. Onean see on Figure 6.1 that the node sets W̃1 = {3}, W̃2 = {3, 2′, 15′, 21′′, 3′′, 2′′, 15′′, 2}and W̃3 = {1, 12′, 3′, 4′, 1′′, 12′′, 4′′, 3′′, 2′′, 4} indue two 3−4-diuts and one 1−2-diutof G̃(y), and that these diuts ontain respetively the pairs of ars {(3, 15′), (3, 12′)},
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{(3, 12′), (21′′, 4)} and {(4′, 21′′), (3′, 15′′)}. Moreover, they are suh that y(δ+

eG(y)
(W̃i)) =

k and |δ+
eG(y)

(W̃i) ∩ Ã1(y)| = k − 1, i ∈ {1, 2, 3}. Finally, it obviously follows that Π =

{W̃1, W̃2, W̃3} and F̃ 0
1 = {(3, 1′), (3, 2′)}, F̃ 0

2 = {(3, 1′), (2′′, 4)} and F̃ 0
3 = {(4′′, 2), (3′′, 2)}indue an aggregated ut inequality of type (5.29). Furthermore, this inequality is vi-olated by (x, y).Before desribing the onstrution proedure for H(x, y), we give the following lemma.Lemma 6.3.4 Let (x, y) be a frational solution of kHNDPAg(G, D), and let a1 and

a2 be two ars of G̃ with frational values and {s, t} ∈ D. If there exists a minimumweight st-diut of G̃(y), say δ+
eG(y)

(W̃ ), suh that {a1, a2} ⊆ δ+
eG(y)

(W̃ ) and δ+
eG(y)

(W̃ ) \

{a1, a2} ⊆ Ã1(y), then δ+
eG(y)

(W̃ ) an be onsidered in suh a way that every ar a ∈

δ+
eG(y)

(W̃ ) \ {a1, a2} is either in δ+
eG(y)

(s) or in δ−
eG(y)

(t) \ [t′, t] eG(y).Proof. Let δ+
eG(y)

(W̃ ) be a minimum weight st-diut of G̃(y) ontaining a1 and a2and suh that δ+
eG(y)

(W̃ ) \ {a1, a2} ⊆ Ã1(y). Suppose also that there is an ar a ∈

δ+
eG(y)

(W̃ ) \ {a1, a2} whih is not in δ+
eG(y)

(s) ∪ [δ−
eG(y)

(t) \ {(t′, t)}]. Hene, a is either ofthe form (u′, v′′), with u′ ∈ N ′, v′′ ∈ N ′′ and u and v may be the same, or of theform (t′, t). If a = (u′, v′′), then u′ ∈ W̃ and the node set W̃ ′ = W̃ \ {u′} indues an
st-diut. Sine δ+

eG(y)
(W̃ ) is a minimum weight st-diut, [s, u′] eG(y) 6= ∅ and therefore,

δ+
eG(y)

(W̃ ′) = (δ+
eG(y)

(W̃ ) \ {(u′, v′′)}) ∪ {(s, u′)}. Sine δ+
eG(y)

(W̃ ) is of minimum weightwith respet to y, we have that y(s, u′) ≥ y(u′, v′′). As y(u′, v′′) = 1, we also havethat y(s, u′) = 1 and that δ+
eG(y)

(W̃ ′) is a minimum weight st-diut. If a = (t′, t), thensine δ+
eG(y)

(W̃ ) is of minimum weight in G̃(y), there is an ar of the form (s, t′). Thus,
W̃ ′ = W̃ \ {t′} indues an st-diut of G̃(y). Moreover, as the weight of δ+

eG(y)
(W̃ ) isminimum with respet to y, we have that y(s, t′) ≥ y(t′, t) = 1. Hene, y(s, t′) = 1 and

δ+
eG(y)

(W̃ ′) is also of minimum weight.By repeating this operation until δ+
eG(y)

(W̃ ) does not ontain any ar of the form
(u′, v′′) or (t′, t), we obtain a minimum weight st-diut of G̃(y) whih ontains a1 and
a2, suh that δ+

eG(y)
(W̃ ) \ {a1, a2} ⊆ Ã1(y) and suh that every ar of δ+

eG(y)
(W̃ ) \ {a1, a2}is either in δ+

eG(y)
(s) or in δ−

eG(y)
(t) \ [t′, t] eG(y), whih ends the proof of the Lemma. �A onsequene of Lemma 6.3.4 is that an st-diut δ+

eG(y)
(W̃ ) of G̃(y) ontaining twoars a1 and a2 with frational values, suh that y(δ+

eG(y)
(W̃ )) = k and δ+

eG(y)
(W̃ )∩Ãf (y) =
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{a1, a2} an be obtained by omputing st-diuts of G̃(y) ontaining a1 and a2 and suhthat δ+

eG(y)
(W̃ ) \ {a1, a2} ⊆

[
δ+

eG(y)
(s) ∪ (δ−

eG(y)
(t) \ {(t′, t))}

].The onstrution of the graph H(x, y) is performed by omputing �rst the edges oftype 2. For every pair of ars (a, a′) ∈ Ã(y)× Ã(y), orresponding to the same edge of
E and having a frational value, we add an edge of type 2 between the orrespondingnodes in H(x, y). To ompute the edges of type 1, we use a proedure based on Lemma6.3.4. The idea is to ompute a maximum �ow in G̃(y) with respet to appropriateapaities separating s and t. Given two ars a1 and a2 suh that y(a1) + y(a2) = 1and a pair {s, t} ∈ D, we �rst give 0 as apaity to a1 and a2. Then, we give an in�nitapaity to every other ar of G̃(y) having a frational value. This ensures that a1 and
a2 are the only ars of frational values present in the st-diut we will obtain. We givean in�nit apaity to every ar of δ+

eG(y)
(s) and δ−

eG(y)
(t) indient to a1 and a2 and havingvalue 1. We also give an in�nit apaity to every ar of [t′, t] eG(y). For all other ar

a, we give y(a) as apaity (note that for these ars, y(a) = 1). Then, we ompute amaximum �ow between s and t with respet to these apaities. Let δ+
eG(y)

(W̃ ) denotethe st-diut thus obtained. By Lemma 6.3.4, we have that δ+
eG(y)

\ {a1, a2} ⊆ Ã1(y).We then hek if y(δ+
eG(y)

(W̃ )) = k and |δ+
eG(y)

(W̃ ) \ {a1, a2}| = k − 1. If this is the ase,then we add an edge of type 1 between the nodes of H(x, y) orresponding to a1 and
a2. We repeat this proedure for all pair of ars (a1, a2) having frational value andsuh that y(a1) + y(a2) = 1, and for all demand {s, t} ∈ D.Now we desribe the separation proedure of the aggregated ut inequalities. Theproedure is based on Lemma 6.3.1. Thus we generate inequalities of type (5.29) whihsatisfy the onditions of that lemma. First, we ompute H(x, y) as desribed above.Then we ompute one or more yles of H(x, y) whih ontain an odd number of edgesof type 1 and whih does not ontain two onseutive edges of type 2. By Lemma 6.3.3,every yle satisfying these onditions yields an aggregated ut inequality of type (5.29).We then hek if for eah inequality thus obtained, (x, y) satis�es inequality (6.5). Ifthis is the ase, then by Lemma 6.3.1, this inequality is violated by (x, y) and addedto the set of violated inequalities. If no yle is found or if for every inequality of type(5.29) obtained, (x, y) does not satisfy inequality (6.5), then the proedure ends withfailure.To detet yles of H(x, y) satisfying the onditions of Lemma 6.3.3, we use a proe-dure in whih we ompute shortest paths in an auxiliary graph obtained from H(x, y).Let Hb be the undireted graph obtained as follows. The node set of Hb is omposedof two opies, denoted by V ′

b and V ′′
b , of the node set of H(x, y). The opies of a node

a of H(x, y) are denoted by a′ and a′′ with a′ ∈ V ′
b and a′′ ∈ V ′′

b . For every edge a1a2



6.3. SEPARATION PROCEDURES 167of H(x, y) of type 1, we add in Hb two edges of the form a′
1a

′′
2 and a′

2a
′′
1 and give them1 as length. For every edge a1a2 of H(x, y) of type 2, we add in Hb two edges of theform a′

1a
′
2 and a′′

1a
′′
2 and give them a length M su�iently large. Figure 6.3 shows anexample of graph Hb obtained from a subgraph of H(x, y) given in Figure 6.2. It is nothard to see that a path between two nodes a′ and a′′ of Hb orresponds to a yle of

H(x, y) ontaining node a and an odd number of edges of type 1, and does not ontaintwo onseutive edges of type 2, and vie versa.
Edge of type 1

Edge of type 2

1 1

1 1

1 1

∞

Graph Hb

∞
∞

∞

Subgraph of H(x, y)

(21�,4)(3',15�) (4',21�)�(3',15�)�(21�,4)�(3,12')�(21�,4)'(3',15�)'(4',21�)'
(3,12')'(3,15')'(3,12')(3,15')

(4',21�)
(3,15')�

Figure 6.3: Graph Hb obtained from a subgraph of H(x, y)For our separation proedure, we ompute the shortest paths between eah pair ofnodes (a′, a′′) of Hb, for every node a of H(x, y).Now we turn to the aggregated ut inequalities for the Cut formulation. The separa-tion proedure for these inequalities is similar to that desribed above for kHNDPAg.Given a frational solution (x, ys1t1 , ..., ysdtd
) of kHNDPCu(G, D), we onstrut thegraph H(x, ys1t1 , ..., ysdtd

) in a similar way as H(x, y), that is for all {s, t} ∈ D, andfor every ar a ∈ Ãf
st(yst) we assoiate a node in H(x, ys1t1 , ..., ysdtd

). We add an edge,said of type 1, between two nodes a1 and a2 if they belong to the same graph G̃st,
yst(a1) + yst(a2) = 1 and there exists an st-diut δ+

eGst(yst)
(W̃ ) ontaining a1 and a2 andsuh that δ+

eGst(yst)
(W̃ ) ∩ Ãf

st(yst) = {a1, a2} and |(δ+
eGst(yst)

(W̃ ) \ {a1, a2}) ∩ Ã1
st(yst)| =

k − 1. We also add an edge, said of type 2, between two nodes a1 ∈ Ãf
siti(ysiti) and

a2 ∈ Ãf
si′ ti′

(ysi′ ti′
) if the ars a1 and a2 orrespond to the same edge of G.



168 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPThe st-diut δ+
eGst(yst)

(W̃ ) used to set edges of type 1 an be omputed with theproedure used for kHNDPAg. As before, every yle of H(x, ys1t1 , ..., ysdtd
) whihontains an odd number of edges of type 1 and whih does not ontain two onseutiveedges of type 2 yields an inequality of type (5.33). These yles are omputed by lookingfor shortest paths in a graph Hb obtained in a similar way as for kHNDPAg. Finally,for eah yle thus obtained, we hek if (x, ys1t1 , ..., ysdtd

) satis�es or not inequality(6.8) with respet to the sets E2 and F̃ siti,1 obtained from that yle. If this is thease, then by Lemma 6.3.2, the orresponding inequality of type (5.33) is violated by
(x, ys1t1 , ..., ysdtd

) and hene added to the set of violated inequalities.6.3.3 Separation of double ut inequalitiesThe separation of double ut inequalities is performed by looking for inequalities oftype (5.39) for L = 2 and of type (5.40) for L = 3 that are violated by the urrentsolution. We desribe the proedure for the kHNDPAg. We will present later how thisan be extended to the other formulations.The idea of the proedure is to �nd a partition π = (V0, ..., VL, VL+1), L ∈ {2, 3}, of Gand an edge set F ⊆ E, with |V0| = |V1| = 1 and [V0, V1] 6= ∅, whih indues a doubleut, with i0 = 0, and whose weight is minimum with respet to x. The proedureworks as follows. For all {s, t} ∈ D, we ompute the st-ut δG(s). If x(δG(s)) = k,then for every terminal s′ ∈ RD suh that x([s, s′]) > 0 and x(δG(s′)) = k, we omputean L-st-path-ut T of G indued by a partition π = (V0, ..., VL, VL+1) with V0 = {s}and V1 = {s′}. For this, we use the orrespondane between L-st-path-uts in G and
st-diuts in G̃, given by Lemma 5.4.1. Sine the desired partition π must be suh that
V0 = {s} and V1 = {s′}, we must have T ∩ [s, s′] = ∅ and δG(s) \ [s, s′] ⊆ T . Thus,any st-diut of G̃ orresponding to T must ontain ars orresponding to the edges of
δG(s) \ [s, s′] and no ars orresponding to the edges of [s, s′]. Also remark that this
st-diut does not ontain any ar of the form (u′, u′′), u ∈ V and of the form (t′, t),
t ∈ TD. Therefore, to ompute an st-diut of G̃ orresponding to the desired L-st-path-ut, we start by giving the ars orresponding to the edges of [s, s′] an in�nit apaityand removing all the ars orresponding to the edges of δG(s) \ [s, s′]. Then, we give toevery ar of the form (u′, u′′), u ∈ V and (t′, t), t ∈ TD, an in�nit apaity. Afterwards,we ompute a maximum �ow between s and t with respet to these apaities. Let
δ+

eG
(W̃ ) denote the st-diut thus obtained.To hek that this diut orresponds to an L-st-path-ut of G, we apply the followingproedure. We �rst remove from G all the edges orresponding to the ars of δ+

eG
(W̃ ).



6.3. SEPARATION PROCEDURES 169Then, we ompute the shortest paths between s and every node of V \{s} with respetto length 1 on the remaining edges. Let l(u) denotes the length of a shortest pathbetween s and u, u ∈ V \ {s}. If l(t) is �nite, then δ+
eG
(W̃ ) orresponds to an L-st-path-ut of G. In this ase, we onstrut the partition π suh that V0 = {s}, V1 = {s′},

Vi = {u ∈ V \ {s, s′, t} | l(u) = i}, i = 2, ..., L, and VL+1 = V \ (
L⋃

i=0

Vi).Let Ê be the edge set [V1, V2] (resp. [V1 ∪ V4, V2]) if L = 2 (resp. L = 3) having apositive value with respet to x. We hoose the edges of F among those of Ê havingthe highest value and suh that |F | and k have di�erent parities. If |Ê| ≥ k − 1, then
F onsists of the k − 1 edges having the highest value. If |Ê| < k − 1 and |Ê| has aparity di�erent from that of k, then we let F = Ê. If |Ê| < k−1 and |Ê| has the sameparity as k, then we let F = Ê \ {e0} where e0 is the edge of Ê having the smallestvalue.Finally, we hek if the inequality (5.39) (resp. (5.40)) for L = 2 (resp. L = 3)indued by π and F is violated or not.We repeat this proedure for every demand {s, t} ∈ D, and the violated inequalitiesfound are added to the onstraint pool. To ompute the maximum �ow in G̃ we usethe algorithm of Goldberd and Tarjan [58℄ whih runs in O(|Ã||Ṽ | log |eV |2

| eA|
) time. If Gis omplete and L = 3, we have that |Ṽ | = 2|V |+ |SD|+ |TD| and |Ã| = (|V |−1)(|V |+

|SD|+|TD|). Thus, the maximum �ow algorithm runs in O(|V |3 log (2|V |+|SD|+|TD|)2

(|V |−1)(|V |+|SD|+|TD|)
).To ompute the shortest paths in G between s and the other nodes of V , we use thealgorithm of Dijkstra [43℄ whih is implemented to run is O(|V ||E| log(|V |)) time. Asthe omputation of a ut in the graph G requires at most |E| iterations, our separationproedure runs in O(|V |3 log |V | (2|V |+|SD|+|TD|)2

(|V |−1)(|V |+|SD|+|TD|)
)) time, and hene is polynomial. If

L = 2, the algorithm is also polynomial.For the ase of the separated formulations (Cut, Path-Ar and Node-Ar formula-tions), the proedure is the same exept that the omputation of the L-st-path-ut,indued by the partition π, is performed using the direted graph G̃st assoiated withthe demand {s, t}. We remove from G̃st all the ars orresponding to the edges of
δG(s) \ [s, s′], and those orresponding to the edges of [s, s′] are given an in�nit apa-ity. In the same way, we give an in�nit apaity to every ar of the form (u, u′), with
u ∈ Ṽst. Then, we ompute a maximum �ow between s and t in G̃st. Also, for theseformulations, the algorithm remains polynomial.



170 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDP6.3.4 Separation of triple path-ut inequalitiesTo separate triple path-ut inequalities, we devise a heuristi. This heuristi is basedon Theorem 5.7.3. The proedure is given for L = 3. It is similar for L = 2.The main idea is to ompute, given two demands {s, t1} and {s, t2}, a family Π =

{V0, V1, V2, V3, V
1
4 , V 2

4 , V 1
5 , V 2

5 } of node sets from a 3-st1-path-ut T indued by a par-tition of the form (V0, V1 ∪ V 1
4 ∪ V 2

4 , V2, V3 ∪ V 1
5 , V 2

5 ). In fat, from this latter partition,one an obtain a whole triple path-ut by �xing the sets V 1
4 , V 2

4 , V 1
5 and V 2

5 . In ourproedure, we will look for those triple path-uts suh that V 1
4 = ∅, V 2

4 = {t2}, V 1
5 = ∅and V 2

5 = {t1}.The proedure works as follows. For eah soure s ∈ SD, we apply the followingsteps. Let {s, t1} and {s, t2} be two demands assoiated with s. We �rst look for apartition π = (V ′
0 , V

′
1 , V

′
2 , V

′
3 , V

′
4) whih indues an L-st1-path-ut of G, denoted by T ,and suh that V ′

0 = {s} and t2 ∈ V ′
1 . For this, we use the orrespondane between the

L-st1-path-uts in G and st1-diuts in G̃. Sine t2 ∈ V ′
1 and V ′

0 = {s}, we have that
T ∩ [s, t2] = ∅ and any ar of G̃, orresponding to the edges of [s, t2], does not appearin an st1-diut of G̃ orresponding to T . Thus, omputing T redues to ompute aminimum weight st1-diut in G̃. To do this, we ompute a maximum �ow in G̃ between
s and t1 with respet to the following apaities:

• for every ar of Ã([s, t2]) or of the form (u′, u′′) or (t′, t), with u ∈ N and t ∈ TD,we give an in�nit apaity;
• for every ar of Ã(e), with e ∈ E \ [s, t2], we give the apaity x(e).Let δ+

eG
(W̃ ) denote the direted ut thus obtained. We hek if it orresponds to an

L-st1-path-ut by performing the following steps. First, we remove from G all theedges orresponding to the ars of δ+
eG
(W̃ ) and ompute all the shortest paths between

s and the other nodes of G with respet to the length 1 on the remaining edges. Let
l(u) denote the length of the shortest path between s and u, for all u ∈ V \{s}. If l(t1)is �nite, then δ+

eG
(W̃ ) orresponds to an L-st1-path-ut, denoted by T . In this ase, weonstrut the partition π suh that V ′

0 = {s}, V ′
i = {u ∈ V | l(u) = i}, for i ∈ {1, 2, 3},and for all the nodes u ∈ V \ {t1} suh that l(u) ≥ 4 or l(u) = +∞, we assign themalternatively to V ′

1 and V ′
3 . Finally, V ′

4 = V \ (

3⋃

i=0

V ′
i ). Note that t1 ∈ V ′

4 as l(t1) > 3and t2 ∈ V ′
1 . Now the family of node sets Π is suh that V0 = V ′

0 = {s}, V1 = V ′
1 \ {t2},

V2 = V ′
2 , V3 = V ′

3 , V 1
4 = ∅, V 2

4 = {t2}, V 1
5 = ∅ and V 2

5 = {t1}.



6.3. SEPARATION PROCEDURES 171Let Ê be the set of edges of [V 2
3 , V1 ∪ V 1

4 ] ∪ [V 1
3 , V 2

4 ] having a positive value withrespet to x. We hoose the edges of F among those of Ê having the highest value andsuh that |F | and k have di�erent parities. If |Ê| ≥ k − 1, then F onsists of the k− 1edges having the highest value. If |Ê| < k − 1 and |Ê| has a parity di�erent from thatof k, then we let F = Ê. If |Ê| < k − 1 and |Ê| has the same parity as k, then we let
F = Ê \ {e0} where e0 is the edge of Ê having the smallest value.Finally, we hek if the triple path ut inquality indued by Π and F is violated ornot.Our algorithm runs in polynomial time, as it onsists, for every pair {{s, t1},{s, t2}}of demands, in omputing a maximum �ow and shortest paths between s and theother nodes of G. In our implementation, we use the algorithm of Goldberg andTarjan [58℄ for the maximum �ow and the algorithm of Dijkstra [43℄ for the shortestpaths whih run repestively in O(|V |3 log (2|V |+|SD|+|TD|)2

(|V |−1)(|V |+|SD|+|TD|)
) and O(|V |3 log |V |) time,respetively. Thus, the proedure runs in O(|D|2(|V |3 log |V | (2|V |+|SD|+|TD|)2

(|V |−1)(|V |+|SD|+|TD|)
)) time,and thus, is polynomial.For the ase of the separated formulations, the proedure is the same exept thatthe omputation of the L-st-path-ut induing the partition π is performed using thedireted graph G̃st1 assoiated with the demand {s, t1}. All the ars orresponding tothe edges of [s, t2] are given an in�nit apaity. In the same way, we give an in�nitapaity to every ar of the form (u, u′), with u ∈ Ṽst and all the ars orresponding toan edge e ∈ E \ [s, t2] is given the apaity x(e). Then, we ompute a maximum �owbetween s and t1 in G̃st1.6.3.5 Separation of Steiner-partition inequalitiesNow we disuss the separation of Steiner-partition inequalities. The separation problemof inequalities (5.43) is NP-hard (see [99℄). To separate them, we devise the followingheuristi. Note that we look for Steiner-partition inequalities when k is odd. The ideaof the proedure is to �nd a partition π = (V0, V1, ..., Vp), p ≥ 3 and odd, suh that

V0 ⊆ V \ RD and x(δ(V0, ..., Vp)) is minimum.Our heuristi begins by ontrating every pair of nodes t and u, where t is a terminalnode and u a Steiner node, and x(δG(x)(u) \ {ut}) ≤ x(ut). The node resulting fromthat ontration will onsidered as a terminal. Let G(x)′ = (V ′, E′) be the reduedgraph thus obtained and let {u′
1, ..., u

′
p} be the set of terminals of G(x)′. If p is odd,we let π′ = (V ′

0 , V
′
1 , ..., V

′
p), where V ′

i = {u′
i}, i = 1, ..., p, and V ′

0 = V ′ \ {u′
1, ..., u

′
p}.



172 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPThen, we let Vi, i = 0, ..., p, be the node sets of G(x) orresponding to the node sets
V ′

i , i = 0, ..., p, of G(x)′.If p is even, we look for two nodes u′
i0 and u′

j0, i0, j0 ∈ {1, ..., p}, of G(x)′ suhthat x([u′
i0
, u′

j0
]) is maximum and there is a demand between u′

i0
and u′

j0
, that is

|δGD
({u′

i0
, u′

j0
})| ≥ 1. This later ondition ensures that the partition we will obtain isadmissible. We let

V ′
i = {u′

i}, i = 1, ..., i0 − 1,

V ′
i0

= {u′
i0
, u′

j0
},

V ′
i = {u′

i}, i = i0 + 1, ..., j0 − 1,

V ′
i−1 = {u′

i}, i = j0 + 1, ..., p,

V ′
0 = V ′ \ {u′

1, ..., u
′
p}.Then, we let Vi be the node set of G(x) orresponding to the node set V ′

i , i = 0, ..., p−1,of G(x)′. After that, we hek if the Steiner-partition inequality indued by π is violatedby x or not.The omputation of the graph G(x)′ runs in O(|V ||E|) while the omputation of thenodes u′
i0, u

′
j0, when p is even, requires O(|RD|

2(|E ′| + |D|)) operations. Thus, ourseparation algorithm runs, in the worst ase, in O(|V ||E|+ |RD|
2(|E ′|+ |D|)) time andthus, is polynomial.6.3.6 Separation of Steiner-SP -partition inequalitiesNow we turn our attention to the separation of the Steiner-SP -partition inequalities.We devise the following heuristi to separate inequalities (5.44). The main idea is todetermine a Steiner-partition π = (V1, ..., Vp), p ≥ 3, of V whih indues an outerplanarsubgraph of G(x) and suh that the subgraph of GD (the demand graph) indued by

π is onneted. By Theorem 5.6.8, suh a partition is a Steiner-SP -partition. Also,the partitions we are looking for are suh that |[Vi, Vi+1]| ≥
⌈

k
2

⌉, i = 1, ..., p, (modulo
p) and for every onseutive sets Vi and Vj , the edge set [Vi, Vj] ontains at least oneedge with frational value.The heuristi works as follows. We �rst ontrat every pair of nodes t and u, where
t is a terminal node, u is a steiner node and x(δG(x)(u) \ {ut}) ≤ x(ut). The noderesulting from that ontration is said to be terminal. Let G(x)′ = (V ′, E′) be theredued graph thus obtained.We look in G(x)′ for a path Γ = {v′

1v
′
2, v

′
2v

′
3, ..., v

′
p−2v

′
p−1}, p ≥ 3, suh that v′

1, ..., v
′
p−1are terminal nodes, |[v′

i, v
′
i+1]| ≥

⌈
k
2

⌉ and [v′
i, v

′
i+1] ontains one edge or more with fra-



6.3. SEPARATION PROCEDURES 173tional value, for i = 1, ..., p−2. The partition π = (V1, ..., Vp), p ≥ 3, is onstruted suhthat Vi is the node set of G orresponding to v′
i, i = 1, ..., p − 1, and Vp = V \ (

p−1⋃

i=1

Vi).Afterwards, we hek by a simple heuristi if the graph Gπ(x)′ is outerplanar andif the subgraph of GD indued by π is onneted. If it is onneted, then, we hekif the Steiner-SP -partition inequality indued by π is violated. If this subgraph isnot onneted, we ompute from π new partitions πi = (Vi, Vi+1, V \ (Vi ∪ Vi+1)),
i = 1, ..., p − 2. Clearly, these new partitions are Steiner-partitions and sine they areof size 3, they indue Steiner-SP -partitions. We then hek if the Steiner-SP -partitioninequality indued by πi is violated, for i = 1, ..., p − 2.If none of these inequalities is violated by x, we apply again the proedure by lookingfor another path. In order to avoid the detetion of the same path, we label the nodeswe met during the searh of the previous ones, so that they won't be onsidered inthe searh of the new path. This proess is iterated until either we �nd a violatedSteiner-SP -partition inequality or all the nodes of V ′ are labeled. The heuristi anbe implemented to run in O(|E ′||V ′| + |D|) time.To store the generated inequalities, we reate a pool whose size inreases dynamially.All the generated inequalities are put in the pool and are dynami, that is, they areremoved from the urrent LP when they are not ative. We �rst separate inequalitiesfrom the pool. If all the inequalities in the pool are satis�ed by the urrent LP-solution,we separate the lasses of inequalities in the order given before.6.3.7 Primal heuristiAn important issue in the e�ieny of the Branh-and-Cut and Branh-and-Cut-and-Prie algorithms is to ompute a good upper bound at eah node of the Branh-and-Cuttree. To do this, when the separation proedures do not generate any violated inequalityand the urrent solution is still frational, we transform it into a feasible one. Wedesribe the proedure we have devised for kHNDPAg with a frational solution (x, y).It is similar for kHNDPCu, kHNDPPA and kHNDPNA. The main idea is to onstruta graph obtained by removing from G̃(y) every ar orresponding to an edge of G(x)having a frational value and add ars in that graph until the number of ar-disjoint
st-dipaths reahes k, for all {s, t} ∈ D. Note that sine (x, y) is frational and is anoptimal solution for the urrent LP, the restrition of G̃(y) to Ã1(y) annot ontain kar-disjoint st-dipaths for all {s, t} ∈ D. Otherwise, (x, y) would be integral or wouldnot be optimal for the urrent LP.



174 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPThe proedure relies on the omputation of a maximum �ow between s and t forevery pair {s, t} ∈ D. The apaities of the ars of G̃(y) are updated at eah iterationof the proedure. At the end of the proedure, we remove from G̃(y) every ar whoseapaity is null.Let Ci = (Ci(a))a∈ eA(y) be a apaity vetor obtained at the end of the ith iteration,
i = 0, ..., d, with C0 = (C0(a))a∈ eA(y), where C0(a) = 1 for all a ∈ Ã1(y) and C0(a) = 0otherwise. Note that the apaity vetor Ci, i ∈ {1, ..., d}, is assoiated with demand
{si, ti}. For a demand {si, ti}, i ∈ {1, ..., d}, we �rst ompute a maximum siti-�owwith respet to apaity vetor Ci−1. Let f = (f(a))a∈ eA(y) be the orresponding �owvetor and f0 the value of this �ow. If f0 ≥ k, then there is nothing to do for thisdemand. Thus we let Ci(a) = Ci−1(a) for all a ∈ Ã(y) and go to the next demand
{si+1, ti+1}. If f0 < k, then we ompute k − f0 ar-disjoint augmenting siti-paths withrespet to apaity 1 on every ar of G̃(y) and f(a) as initial �ow value. Remark thatthe �ow is null for all ar a having Ci−1(a) = 0. Then, we set to 1 the �ow on everyar involved in the k− f0 augmenting paths omputed before and update the apaityvetor Ci in the following way:

• Ci(a) = 1, for all a ∈ Ã(y) suh that Ci−1(a) = 1;
• Ci(a) = 1, if Ci−1(a) = 0 and a is involved in an augmenting path omputedbefore;
• Ci(a) = 0 otherwise.We repeat this operation for every demand {si, ti}, i = 1, ..., d. At the end of theproedure, we remove from G̃(y) every ar suh that Cd(a) = 0. Afterwards, weonstrut the graph Ĝ = (V, Ê), where Ê is the set of edges assoiated with an arremaing in G̃(y), that is having Cd(a) = 1. Sine the remaining graph G̃(y) ontains kar-disjoint st-paths for all {s, t} ∈ D, the graph Ĝ ontains k edge-disjoint L-st-paths,for all {s, t} ∈ D, and hene, indues a feasible solution of the kHNDP.If the weight of this solution is lower than best known upper bound, then we updatethis upper bound with the weight of the solution we have just omputed.6.4 Computational resultsThe Branh-and-Cut and Branh-and-Cut-and-Prie algorithms desribed in the pre-vious setions have been implemented in C++, using ABACUS 3.0 [1, 101℄ to manage



6.4. COMPUTATIONAL RESULTS 175the Branh-and-Cut tree, and CPLEX 11.0 [2℄ as LP-solver. It was tested using a ma-hine equiped with a proessor Intel Centrino Duo and 2 Go of RAM, running underLinux. The maximum CPU time has been �xed to 5 hours. The test problems we haveonsidered are omplete eulidian graphs from TSPLIB library [3℄. The demands usedin these tests are randomly generated. Eah set of demand is either rooted in a node
s, or is suh that there is no demand having the same destination node as anotherdemand. The tests have been performed for L = 2, 3 and k = 3, 4, 5.Eah instane is given by the number of nodes of the graph preeded by the type ofdemand, indiated by 'r' for rooted demands and 'a' for arbitrary demands. The otherentries of the various tables are:
|V | : number of nodes of the graph;
|D| : number of demands,NC : number of generated ut inequalities;NAC : number of generated aggregated ut inequalities;NDC : number of generated double ut inequalities;NTC : number of generated triple path-ut inequalities;NP : number of generated Steiner-partition inequalities;NSP : number of generated Steiner-SP -partition inequalities;COpt : weight of the best upper bound obtained;Gap : the relative error between the best upper bound(the optimal solution if the problem has been solvedto optimality) and the lower bound obtained at theroot node of the Branh-and-Cut tree;NSub : number of subproblems in the Branh-and-Cut tree;TT : total CPU time in hours:min:se.The instanes indiated with "*" are those for whih the algorithm has not �nishedthe omputation of the root node of the Branh-and-Cut tree after the CPU time limit.The entries in the tables for these instanes are given in itali. Also, for some instanes,the algorithm runs out of ressoures (lak memory). For these instanes, we give theresults we have obtained during the time the algorithm runned. These instanes areindiated with "**".The main objetive of these experiments is to hek the e�eieny of the di�erentformulations introdued before for solving the kHNDP. It also aims to ompare eahformulation with the others and ompare the algorithms depending on the onnetivityrequirement. Obviously, we have used the same test problems with eah formulationand eah value of L.



176 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPOur �rst series of experiments onerns kHNDPAg with k = 3 and L = 2, 3. Theinstanes we have onsidered have graphs with 21 up to 52 nodes and a number ofdemands up to 50. The results are summurized in Tables 6.1 and 6.2.
|V | |D| NC NAC NDC NTC NP NSP COpt Gap NSub TTr 21 15 1963 0 0 24 0 0 7138 9.5 151 0:00:15r 21 17 2463 2 0 25 0 0 7790 9.34 359 0:00:35r 21 20 4076 12 0 73 0 0 8762 11.6 2195 0:06:10a 21 10 358 51 87 0 0 0 8313 3.19 57 0:00:08r 30 15 3482 15 0 11 0 0 12512 5.56 435 0:01:22r 30 20 7084 138 0 31 0 0 14215 6.84 4567 0:26:55r 30 25 8379 27 0 70 0 0 15610 8.57 3845 0:34:07a 30 10 518 566 0 0 0 0 12124 4.96 375 0:01:16a 30 15 862 1141 0 0 0 0 15868 3.36 1193 0:13:54r 48 20 12780 0 0 38 0 0 21586 8.16 267 0:08:23r 48 30 46392 0 0 5 0 0 34144 27.18 1581 5:00:00r 48 40 42461 0 0 6 0 0 49698 37.23 1131 5:00:00a 48 15 3514 365 2562 0 0 0 32097 2.68 891 0:28:42a 48 20 11990 640 3754 0 0 0 46967 8.9 3993 5:00:00a 48 24 12417 210 820 0 0 0 57865 12.59 3453 5:00:00r 52 20 22656 19 0 2 0 0 14093 6.21 2283 0:35:50r 52 30 67301 7 0 304 0 0 18957 16.9 3289 5:00:00r 52 40 51484 12 0 91 0 0 24780 26.04 1703 5:00:00r 52 50 38633 0 0 49 0 0 31541 32.36 1981 5:00:00a 52 20 2168 1434 0 0 0 0 18480 3.24 5281 2:33:47a 52 26 5054 780 265 0 0 0 24131 3.37 5699 5:00:00Table 6.1: Results for Aggregated formulation with L = 2 and k = 3.It appears from that 6.1 that for L = 2, 14 instanes over 22 have been solved tooptimality within the time limit. The CPU time for these instanes, exept the lastone, is less than 35 minutes. All the instanes of the table have required a branhingphase and, for most of them, the relative error between the lower bound at the rootnode of the Branh-and-Cut tree and the best upper bound (Gap) is less than 10%.We also observe that our separation proedures have deteted a large enough numberof aggregated ut inequalities and a fewer number of double ut and triple path-utinequalities. We observe from Table 6.2 that for L = 3 only 2 instanes over 22 havebeen solved to optimality within the time limit. They have been solved respetivelyin 49mn and 2h34mn. Exept for the previous instanes, the gap between the lower
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|V | |D| NC NAC NDC NTC NP NSP COpt Gap NSub TTr 21 15 23423 45 0 24 0 7 5472 8.33 975 0:49:54r 21 17 35364 32 0 61 0 5 5864 8.24 1745 2:34:13r 21 20 33934 5 0 58 0 0 8874 34.08 2389 5:00:00a 21 10 51099 0 142 0 0 0 9934 38.58 347 5:00:00a 21 11 43858 0 121 0 2 0 11390 44.6 333 5:00:00r 30 15 55589 144 0 4 0 22 10901 13.56 2009 5:00:00r 30 20 51627 24 0 1 0 18 15944 35.45 1835 5:00:00r 30 25 45492 3 0 11 0 6 20379 45.53 917 5:00:00a 30 10 39785 0 3 0 0 2 12365 21.82 1127 5:00:00a 30 15 44901 12 43 0 0 0 23481 47.64 353 5:00:00r 48 20 61029 0 0 11 0 19 25605 41.22 387 5:00:00r 48 30 68969 0 0 12 0 2 40871 55.61 205 5:00:00r 48 40 67303 0 0 0 0 1 59513 62.81 133 5:00:00a 48 15 72110 0 22 0 0 1 62557 66.8 29 5:02:34a 48 20 75449 0 3 0 0 0 90253 70.32 11 5:00:00a 48 24 101539 0 3 0 0 0 121740 74.18 3 5:00:00r 52 20 63033 0 0 0 0 15 17474 41.9 543 5:00:00r 52 30 79985 0 0 0 0 3 23345 48.06 263 5:00:00r 52 40 86116 0 0 0 0 4 28743 51.28 143 5:00:00r 52 50 80976 0 0 0 0 0 37051 57.46 125 5:00:00a 52 20 76055 0 32 0 0 2 30939 53.26 19 5:00:00a 52 26 116481 0 20 0 0 0 51870 65.45 9 5:00:00Table 6.2: Results for Aggregated formulation with L = 3 and k = 3.



178 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPbound at the root node of the Branh-and-Cut tree and the best upper bound is morethan 10%. It even reahes in some ases 70%. We also have that our separationproedures have deteted a few number of aggregated ut, double ut, triple path-utand Steiner-SP -partition inequalities.Our seond series of experiments onerns kHNDPCu with k = 3 and L = 2, 3. Theresults are given in Tables 6.3 and 6.4 for L = 2 and L = 3 respetively.
|V | |D| NC NAC NDC NTC NP NSP COpt Gap NSub TTr 21 15 22047 0 0 24 0 0 7138 9.5 151 1:18:44r 21 17 42621 22208 0 6 0 0 8584 17.73 63 5:00:00r 21 20 49283 0 0 0 0 0 10444 25.84 31 5:00:00a 21 10 231 150 70 0 0 0 8313 3.22 71 0:00:05a 21 11 330 163 14 0 1 0 8677 3.11 99 0:00:06r 30 15 11437 35413 0 0 0 0 13114 9.89 43 5:00:00r 30 20 47879 0 0 0 0 0 16488 19.68 31 5:00:00* r 30 25 61391 0 0 0 0 0 - - 1 5:00:00a 30 10 450 2074 0 0 0 0 12124 4.96 359 0:02:38a 30 15 698 2527 0 0 0 0 15868 3.33 947 0:17:20r 48 20 34042 0 0 0 0 0 25112 21.06 27 5:00:00* r 48 30 75649 0 0 0 0 0 - - 1 5:00:00* r 48 40 25240 0 0 0 0 0 - - 1 5:00:00a 48 15 1604 1402 830 0 0 0 32097 2.7 491 0:30:03a 48 20 3284 3641 887 0 0 0 47449 9.95 2793 5:00:00a 48 24 3567 2134 404 0 0 0 57308 11.48 3019 5:00:00r 52 20 56127 0 0 0 0 0 17039 22.43 3 5:00:00* r 52 30 38286 0 0 0 0 0 - - 1 5:00:00* r 52 40 24510 0 0 0 0 0 - - 1 5:00:00* r 52 50 24644 0 0 0 0 0 - - 1 5:00:00a 52 20 1474 4513 0 0 0 0 18480 3.24 3185 4:13:36a 52 26 2656 2894 142 0 0 0 24416 4.51 3669 5:00:00Table 6.3: Results for Cut formulation with L = 2 and k = 3.We observe that for L = 2 (Table 6.3), 6 instanes over 22 have been solved tooptimality within the time limit. Also, for 6 instanes, the algorithm has not been ableto �nish within 5 hours the resolution of the root node of the Branh-and-Cut tree. Alarge enough number of aggregated ut inequalities has been deteted. However onlya few number of double ut inequalities has been used. For L = 3 (Table 6.4), no
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|V | |D| NC NAC NDC NTC NP NSP COpt Gap NSub TTr 21 15 20526 1344 0 12 0 3 7801 35.7 287 5:00:00r 21 17 20852 95 0 1 0 1 7688 30.01 169 5:00:00r 21 20 15636 0 0 11 0 0 10183 42.55 407 5:00:00a 21 10 24143 0 0 0 0 0 10808 43.55 395 5:00:00a 21 11 23988 0 1 0 1 0 9970 36.71 317 5:00:00r 30 15 6854 0 0 0 0 7 18349 48.65 21 5:00:00r 30 20 11332 0 0 0 0 2 21552 52.25 21 5:00:00r 30 25 14842 0 0 0 0 0 22829 51.38 7 5:00:00a 30 10 17955 0 0 0 0 1 12365 21.82 567 5:00:00a 30 15 14218 66 1 0 0 0 24360 49.53 171 5:00:00* r 48 20 2729 0 0 0 0 0 - - 1 5:00:00* r 48 30 3833 0 0 0 0 0 - - 1 5:00:00r 48 40 5772 0 0 0 0 0 67381 67.15 3 5:00:00* a 48 15 3600 0 0 0 0 0 - - 1 5:00:00* a 48 20 2700 0 0 0 0 0 - - 1 5:00:00* a 48 24 2928 0 0 0 0 0 - - 1 5:00:00* r 52 20 2338 0 0 0 0 0 - - 1 5:00:00* r 52 30 3358 0 0 0 0 0 - - 1 5:00:00* r 52 40 3743 0 0 0 0 0 - - 1 5:00:00* r 52 50 5332 0 0 0 0 0 - - 1 5:00:00* a 52 20 3657 0 0 0 0 0 - - 1 5:00:00a 52 26 7437 0 0 0 0 0 52501 65.93 3 5:00:00Table 6.4: Results for Cut formulation with L = 3 and k = 3.



180 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPinstane has been solved to optimality within the time limit and for 9 instanes over22, the root node of the Branh-and-Cut tree has been solved after 5 hours. The gapbetween the lower bound at the root node of Branh-and-Cut tree and the best upperbound, when they exist, is between 30% and 50% in general. However, in some asesit reahes 67%.The third series of experiments onerns the kHNDPPA with k = 3 and L = 2, 3.The results are given in Tables 6.5 for L = 2 and 6.6 for L = 3. Reall that forthis formulation, we have used a Branh-and-Cut-and-Prie algorithm and that theaggregated ut inequalities are not valid. Thus, they don't appear in Tables 6.5 and6.6.
|V | |D| NDC NTC NP NSP COpt Gap NSub TTr 21 15 0 24 0 0 7138 9.5 151 0:00:10r 21 17 0 19 0 0 7790 9.34 309 0:01:13r 21 20 0 91 0 0 8762 11.6 2491 0:04:07a 21 10 74 0 0 0 8313 3.43 85 0:00:03a 21 11 14 0 0 0 8677 3.38 103 0:00:06r 30 15 0 3 0 0 12512 5.56 303 0:00:49r 30 20 0 24 0 0 14215 6.84 4731 0:28:50** r 30 25 0 94 0 0 15896 10.22 8226 3:12:00a 30 10 0 0 0 0 12124 5.2 335 0:00:31a 30 15 0 0 0 0 15868 3.68 943 0:02:27r 48 20 0 46 0 0 21586 8.16 265 0:07:17** r 48 30 0 100 0 0 32284 22.99 6779 4:37:00r 48 40 0 29 0 0 47331 34.09 7167 5:00:00a 48 15 0 2 0 0 17626 6.15 215 0:01:27** a 48 20 1762 0 0 0 46446 8.10 8599 3:57:00** a 48 24 776 0 0 0 55877 8.51 7583 3:52:00r 52 20 0 3 0 0 14093 6.21 2807 0:43:36** r 52 30 0 501 0 0 18497 14.84 5431 4:48:00r 52 40 0 207 0 0 24626 25.58 6145 5:00:00r 52 50 0 79 0 0 31541 32.36 3931 5:00:00a 52 20 0 0 0 0 18480 3.43 6547 3:02:08a 52 26 231 0 0 0 24125 4.11 9825 5:00:00Table 6.5: Results for Path-Ar formulation with L = 2 and k = 3.When L = 2, we an see that 13 instanes over 22 have been solved to optimalitywithin a CPU time whih does not exeed 43 minutes exept for the last one whih
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|V | |D| NDC NTC NP NSP COpt Gap NSub TTr 21 15 0 65 0 10 5472 8.33 867 0:36:25r 21 17 0 92 0 9 5864 8.24 1855 1:53:37r 21 20 0 130 0 0 8445 30.73 3627 5:00:00a 21 10 138 0 0 0 - - - 3:35:00a 21 11 38 0 1 0 6770 6.8 4155 1:46:36r 30 15 0 45 0 23 10114 6.68 2185 5:00:00r 30 20 0 13 0 14 15767 34.73 1553 5:00:00r 30 25 0 21 0 5 20511 45.88 675 5:00:00a 30 10 0 0 0 15 10254 5.73 4833 5:00:00a 30 15 18 0 0 0 19420 36.7 2853 5:00:00r 48 20 0 22 0 34 26721 43.68 69 5:00:00r 48 30 0 44 0 8 40197 54.87 49 5:00:00r 48 40 0 38 0 1 59762 62.97 19 5:00:00a 48 15 2 0 0 0 49102 57.73 101 5:00:00a 48 20 2 0 0 0 70272 61.88 55 5:00:00a 48 24 2 0 0 0 85625 63.29 13 5:00:00r 52 20 0 6 0 12 17894 43.27 83 5:00:00r 52 30 0 12 0 4 24970 51.44 49 5:00:00r 52 40 0 12 0 5 28530 50.92 19 5:00:00r 52 50 0 46 0 0 38734 59.31 1 5:00:00a 52 20 27 0 0 2 27739 47.89 45 5:00:00a 52 26 15 0 0 0 41535 56.92 13 5:00:00Table 6.6: Results for Path-Ar formulation with L = 3 and k = 3.



182 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPhas been solved in 3 hours. For most of the instanes, the gap between the lowerbound at the root node of the Branh-and-Cut tree and the best upper bound is lessthan 32%. The separation proedures have deteted a few number of double ut andtriple path-ut inequalities. Also we have observed that in most ases, after the rootnode of the Branh-and-Cut tree, the olumn generation algorithm has not added newvariables in the urrent basis. When L = 3, 3 instanes over 22 have been solved tooptimality. The CPU time used to solve them is between 36 minutes and near 2 hours.A few number of double ut, triple path-ut and Steiner-SP -partition inequalities havebeen deteted. The gap between the best lower and upper bounds is less than 62%.Our next series of experiments onerns the kHNDPNA with k = 3 and L = 2 (Table6.7) and for L = 3 (Table 6.8). Here also, the aggregated ut inequalities are not validfor kHNDPNA and do not appear in the table.
|V | |D| NDC NTC NP NSP COpt Gap NSub TTr 21 15 0 21 0 0 7138 9.5 203 0:00:11r 21 17 0 19 0 0 7790 9.34 333 0:00:27r 21 20 0 88 0 0 8762 11.6 2621 0:03:38a 21 10 74 0 0 0 8313 3.43 85 0:00:02a 21 11 12 0 1 0 8677 3.11 107 0:00:05r 30 15 0 9 0 0 12512 5.56 337 0:00:54r 30 20 0 20 0 0 14215 6.84 4993 0:32:46r 30 25 0 84 0 0 15610 8.57 5087 1:07:49a 30 10 0 0 0 0 12124 5.2 335 0:00:26a 30 15 0 0 0 0 15868 3.68 947 0:02:30r 48 20 0 38 0 0 21586 8.16 259 0:06:37** r 48 30 0 0 0 0 33114 24.92 3147 3:38:00** r 48 40 0 0 0 0 47464 34.28 2399 4:14:00a 48 15 867 0 0 0 32097 2.85 351 0:08:23** a 48 20 1508 0 0 0 46118 7.53 4409 2:43:00** a 48 24 603 0 0 0 55623 9.19 3817 2:44:00r 52 50 0 67 0 0 31541 32.36 3149 5:00:00r 52 10 0 0 0 0 8299 2.35 15 0:00:02r 52 20 0 1 0 0 14093 6.21 1541 0:40:35a 52 20 0 0 0 0 18480 3.43 5969 2:41:04** a 52 26 193 0 0 0 24364 5.06 3231 3:19:00Table 6.7: Results for Node-Ar formulation with L = 2 and k = 3.From Table 6.7 we an see that, for L = 2, 14 instanes over 22 have been solved to
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|V | |D| NDC NTC NP NSP COpt Gap NSub TTr 21 12 0 0 11 7 4658 3.53 107 0:02:45r 21 15 0 28 0 5 5472 8.33 1033 0:29:01r 21 17 0 53 0 7 5864 8.24 1885 1:27:58** a 21 10 83 0 0 0 6886 11.40 5041 3:35:00a 21 11 22 0 1 0 6770 6.8 4269 1:18:48r 30 15 0 10 0 24 10142 7.1 2857 5:24:33r 30 20 0 1 0 11 16157 36.3 1377 5:09:22r 30 25 0 6 0 2 21330 47.96 439 5:00:00a 30 10 0 0 0 13 10254 5.73 4937 4:35:04** a 30 15 10 0 0 0 - - - 3:35:00r 48 20 0 1 0 9 27126 44.52 71 5:00:00r 48 30 0 0 0 0 41350 56.12 27 5:00:00r 48 40 0 0 0 1 60165 63.21 11 5:00:00a 48 15 0 0 0 0 67328 69.17 107 5:00:00a 48 20 0 0 0 0 86553 69.05 51 5:00:00a 48 24 0 0 0 0 113754 72.37 33 5:00:00r 52 20 0 0 0 7 19713 48.5 45 5:00:00r 52 30 0 0 0 0 25870 53.13 17 5:00:00r 52 40 0 0 0 0 28530 50.92 9 5:00:00r 52 50 0 0 0 0 37933 58.45 7 5:00:00a 52 20 13 0 0 2 27870 48.14 35 5:00:00a 52 26 2 0 0 0 45709 60.85 13 5:00:00Table 6.8: Results for Node-Ar formulation with L = 3 and k = 3.



184 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPoptimality. The maximum CPU time for these instanes is 2h41mn and most of themare solved in less than 6 minutes. The gap between the best lower and upper boundsis, in general, less than 10%. The separation algorithms have generated a few numberof double ut and triple path-ut inequalities. For L = 3 (Table 6.8), 7 instanes havebeen solved to optimality. For most of the instanes, the gap between the best lowerand upper bounds is less than 60% but reahes in some ases 72%. We an see that afew number of double ut, triple path-ut and Steiner SP -Partition have been detetedduring the resolution.When omparing, for eah table, the results obtained for L = 2 and L = 3 when
k = 3, we observe that the number of instanes solved to optimality when L = 2 isgreater than that when L = 3. Also the gap between the best lower and upper bounds,is in most ases, better when L = 2 than when L = 3. This let us believe that the
kHNDP is easier when L = 2 than when L = 3.Also, when omparing Tables 6.1, 6.3, 6.5 and 6.7 for L = 2, and Tables 6.2, 6.4, 6.6and 6.8 for L = 3, we observe that the e�eieny of the di�erent algorithms for solvingthe problem is not the same. We observe that the results for kHNDPAg, kHNDPPAand kHNDPNA are better than those of kHNDPCu for both L = 2 and L = 3. In fatthe number of instanes solved to optimality for this later formulation is less than thatof the others and, in most ases, the gaps between the best lower and upper boundsare greater for this formulation than those of the other formulations. Moreover, for6 instanes for L = 2 and 9 instanes for L = 3, the algorithm for kHNDPCu hasnot been able to �nish the resolution of the root node of the Branh-and-Cut treewhereas the other algorithms have solved the problem for the same instanes with abranhing phase. Hene, for these instanes, the algorithm for kHNDPCu does notprodue an upper bound of the optimal solution. Comparing Tables 6.1 to 6.5 for
L = 2, and Tables 6.2 and 6.6 for L = 3, we observe that the number of instanessolved to optimality is quite the same for the two formulations, and the CPU timesare generally loser. However, for L = 2, the gap between the best lower and upperbounds is, in most ases, better for the Aggregated formulation than for those of thePath-Ar formulation. Also, for L = 3, we notie that the gap is in general better forthe Path-Ar formulation. In fat, for this latter formulation, the gap is up to 63.29%whereas it reahes 74.18% for the Aggregated formulation. The omparison betweenTables 6.7 and 6.8 on the one hand and Tables 6.1, 6.2, 6.5 and 6.6 on the other handshows that more instanes have been solved to optimality by the Node-Ar formulationfor both L = 2 and L = 3. The CPU time is slightly better with this formulation andthe gaps between the best lower and upper bounds are better in some ases than thoseobtained for the Aggregated and Path-Ar formulation.



6.4. COMPUTATIONAL RESULTS 185As a onlusion, these observations show that the Aggregated, Path-Ar and Node-Ar formulations are more e�ient than the Cut formulation. Also, the Node-Arformulation solves more instanes to optimality while the Aggregated formulation pro-dues better upper bounds when L = 2 and the Path-Ar formulation gives better oneswhen L = 3. Also, the problem is easier to solve when L = 2.Our last series of experiments onerns the kHNDP with k = 4, 5 and L = 3 (Tables6.9 and 6.10). It aims to observe the easiness of the problem when the onnetivityrequirement inreases. The instanes used have graphs with 48 and 52 nodes and upto 50 demands. Note that when k = 4 the Steiner-partition and Steiner-SP -partitioninequalities are redundant with respet to the st-ut inequalities. Thus, they do notappear in Table 6.9.



186 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPAggregated formulation
|V | |D| NC NAC NDC NTC COpt Gap NSub TTr 48 30 56483 0 0 0 48899 49.32 249 5:00:00r 48 40 60857 0 0 0 60090 49.87 123 5:00:00a 48 20 57931 0 1 0 112414 68.11 11 5:00:00a 48 24 79543 0 1 0 157063 73.26 3 5:00:00r 52 40 74438 0 0 0 34100 44.03 131 5:00:00r 52 50 75463 0 0 0 41894 48.00 91 5:00:00a 52 20 64736 0 32 0 39863 50.35 21 5:00:00a 52 26 77734 0 11 0 66306 63.02 9 5:00:00Cut formulation
|V | |D| NC NAC NDC NTC COpt Gap NSub TT* r 48 30 3684 0 0 0 - - 1 5:00:0048 40 5788 0 0 0 69349 56.56 3 5:00:00* a 48 20 2760 0 0 0 - - 1 5:00:00* a 48 24 3408 0 0 0 - - 1 5:00:00* r 52 40 3995 0 0 0 - - 1 5:00:00r 52 50 6619 0 0 0 45587 52.21 3 5:00:00* a 52 20 5832 0 0 0 - - 1 5:00:00a 52 26 10303 0 0 0 59807 59.01 3 5:00:00Path-Ar formulation

|V | |D| NDC NTC COpt Gap NSub TTr 48 30 0 0 49758 50.2 47 5:00:00r 48 40 0 0 64253 53.12 19 5:00:00a 48 20 1 0 92597 61.29 53 5:00:00a 48 24 0 0 111039 62.18 15 5:00:00r 52 40 0 0 32552 41.37 15 5:00:00* r 52 50 0 0 - - 1 5:00:00a 52 20 32 0 34525 42.67 39 5:00:00a 52 26 9 0 54694 55.17 13 5:00:00Node-Ar formulation
|V | |D| NDC NTC COpt Gap NSub TTr 48 30 0 0 50894 51.31 25 5:00:00r 48 40 0 0 64495 53.29 11 5:00:00a 48 20 0 0 111168 67.75 51 5:00:00a 48 24 0 0 135650 69.04 31 5:00:00r 52 40 0 0 35724 46.57 9 5:00:00r 52 50 0 0 45536 52.16 5 5:00:00a 52 20 1 0 39347 49.71 35 5:00:00a 52 26 0 0 57370 57.26 13 5:00:00Table 6.9: Results for Aggregated formulation with L = 3 and k = 4.



6.4. COMPUTATIONAL RESULTS 187Aggregated formulation
|V | |D| NC NAC NDC NTC NP NSP COpt Gap NSub TTr 48 30 57487 0 0 21 0 0 54677 41.45 259 5:00:00r 48 40 51981 0 0 13 0 0 67290 42.72 157 5:00:00a 48 20 46889 0 0 0 0 0 140927 68.02 15 5:00:00a 48 24 64629 0 0 0 0 0 207928 74.64 3 5:00:00r 52 40 62674 0 0 0 0 0 38257 36.11 163 5:00:00r 52 50 75568 0 0 9 0 0 48095 41.52 93 5:00:00a 52 20 55999 0 28 0 0 0 46728 45.57 25 5:00:00a 52 26 63377 0 2 0 0 0 83433 62.1 11 5:00:00Cut formulation
|V | |D| NC NAC NDC NTC NP NSP COpt Gap NSub TT* r 48 30 3789 0 0 0 0 0 - - 1 5:00:00r 48 40 5073 0 0 0 0 0 76132 49.37 3 5:00:00* a 48 20 2619 0 0 0 0 0 - - 1 5:00:00* a 48 24 4824 0 0 0 0 0 - - 1 5:00:00* r 52 40 3868 0 0 0 0 0 - - 1 5:00:00r 52 50 8412 0 0 0 0 0 53997 47.91 3 5:00:00a 52 20 7292 0 0 0 0 0 47687 46.67 3 5:00:00a 52 26 9314 0 0 0 0 0 84578 62.61 3 5:00:00Path-Ar formulation

|V | |D| NDC NTC NP NSP COpt Gap NSub TTr 48 30 0 37 0 0 56700 43.54 41 5:00:00r 48 40 0 19 0 0 70057 44.98 15 5:00:00a 48 20 3 0 0 0 106719 57.77 49 5:00:00a 48 24 2 0 0 0 130029 59.45 7 5:00:00r 52 40 0 3 0 0 39933 38.79 15 5:00:00* r 52 50 0 12 0 0 - - 1 5:00:00a 52 20 8 0 0 0 42615 40.33 39 5:00:00a 52 26 5 0 0 0 63315 50.06 9 5:00:00Node-Ar formulation
|V | |D| NDC NTC NP NSP COpt Gap NSub TTr 48 30 0 3 0 0 58514 45.29 25 5:00:00r 48 40 0 0 0 0 72125 46.56 13 5:00:00a 48 20 0 0 0 0 133820 66.32 47 5:00:00a 48 24 0 0 0 0 170278 69.03 33 5:00:00r 52 40 0 0 0 0 40081 39.02 9 5:00:00r 52 50 0 0 0 0 53997 47.91 5 5:00:00a 52 20 0 0 0 0 46318 45.09 35 5:00:00a 52 26 0 0 0 0 70195 54.96 15 5:00:00Table 6.10: Results for Aggregated formulation with L = 3 and k = 5.



188 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPFirst, we remark that for k = 4 and k = 5, the instanes in Tables 6.9 and 6.10have not been solved to optimality after 5 hours. The Cut formulation has not beenable to solve after 5 hours the linear relaxation of the problem at the root node of theBranh-and-Cut tree for 5 (resp. 4) instanes when k = 4 (resp. k = 5).We notie that for the Aggregated formulation, the gap between the best lower andupper bound is better when k = 4 than when k = 5. For example, when k = 4, thegaps are between 44.03% and 73.26% while for k = 5 the gaps are between 36.11% and74.64%. Also, exept one instane, the gap is better when k = 4 than when k = 5. Thisshows that the kHNDP is easier when k = 4 than when k = 5. The same observationan be done for the other formulations. In partiular, for the Cut formulation, we seethat the instane r 52 with |D| = 20 has not reahed the branhing phase for k = 4while 3 nodes have been generated in the Branh-and-Cut tree for k = 5. Moreover,for k = 4 the primal heuristi does not produe a feasible, and hene no upper boundfor the optimal solution, while for k = 5 the algorithm produes an upper bound anda gap of 46.67%.Also these results an be ompared to those obtained for k = 3 and L = 3. We anremark that, for every formulation, the gaps between the best lower and upper boundsare better when k = 4, 5 than when k = 3. From these observations, we onjeturethat the kHNDP beomes easier when the onnetivity requirement k inreases.6.5 Conluding remarksIn this hapter, we have studied the k-edge-onneted hop-onstrained network designproblem when k ≥ 3 and L = 2, 3. We have presented four integer programming for-mulations based on the transformation of the initial graph into appropriated diretedgraphs. We have also introdued some lasses of valid inequalities and given onditionsunder whih these inequalities de�ne faet of the assoiated polytope. We have also dis-ussed separation proedures for these inequalities and a olumn generation algorithm.Using these results, we have devised Branh-and-Cut and Branh-and-Cut-and-Priealgorithms to solve the problem.The omputational results have shown that the Aggregated, Path-Ar and Node-Arformulations are e�etive in solving the problem and produing good upper bound forthe problem and that the Cut formulation is less e�ient. Also, it has been shown thatthe Node-Ar formulation is more e�ient in solving the problem to optimality andthat Aggregated and Path-Ar formulation produes good upper bound when L = 2and when L = 3, respetively.



189Also our heuristis to separate the aggregated, double ut and triple path-ut in-equalities have appeared to be very e�ient.These experiments showed that the kHNDP is easier when L = 2 than when L = 3.It also showed that the problem beomes easier when the onnetivity requirementinreases.In some ases, we may onsider that L ≥ 4. Few works have been done for thisase in the literature. In partiular, Huygens and Mahjoub [73℄ studied this ase andshowed that st-ut inequalities (5.1) and L-st-path-ut inequalities (5.2) toghetherwith integrality onstraints are no more su�ient to formulate the problem as aninteger program. They [73℄ introdued new lasses of inequalities and showed thatthese inequalities toghether with integrity onstraints and inequalities (5.1) and (5.2)formulate the problem in the spae of the design variables. One an try to extendthe approah developed in the previous hapters to study the problem when L ≥ 4and devise e�ient Branh-and-Cut or Branh-and-Cut-and-Prie algorithms for theproblem in this ase.



Conlusion
In this thesis, we have studied, within a polyhedral ontext, two survivable networkdesign problems, the k-edge-onneted subgraph (kECSP) and the k-edge-onnetedhop-onstrained network design (kHNDP) problems. In partiular, we have onsideredthese problems in the ase where a high level of onnetivity is required, that is when
k ≥ 3. These two problems are NP-hard when k ≥ 2.First, we have disussed the polytope of the kECSP. We have introdued a new lassof valid inequalities and given onditions for these inequalities to be faet de�ning. Wehave also studied further valid inequalities and given onditions under whih they de�nefaets. Moreover, we have studied the redution operations introdued by Didi Bihaand Mahjoub [39℄ (see also [38℄). These allow to perform the separation of the validinequalities in a redued graph. Using these results, we have devised a Branh-and-Cutalgorithm for the problem and given omputational results for k = 3, 4, 5.We have also studied the kHNDP when k ≥ 3 and L ∈ {2, 3}. We have �rstinvestigated the problem when a single demand is onsidered and shown that theassoiated polytope is ompletely desribed by the st-ut and L-path-ut inequalitiestoghether with the trivial inequalities. We showed that this omplete desription yieldsa polynomial utting plane algorithm for the problem, generalizing at the same timethe results of Huygens et al. [75℄ and Dahl et al. [35℄.Finally, we have onsidered the kHNDP when more than one demand are onsidered.We have introdued four new integer programming formulations for the problem in thisase. These formulations rely on the transformation of the initial undireted graph Ginto appropriate direted graphs and the equivalene between edge-disjoint L-st-pathsin G and ar-disjoint paths in these direted graphs. We have introdued severallasses of valid inequalities for the polytopes assoiated with eah formulation andstudied onditions under whih these inequalities de�ne faets. Using this, we havedevised Branh-and-Cut and Branh-and-Cut-and-Prie algorithms for the problem.Computational results have been given for k = 3, 4, 5 and L = 2, 3, and a omparative



191study has been done in order to ompare the e�ieny of the di�erent formulations wehave introdued.The experimental studies presented throughout this thesis have shown that the twoproblems are easier to solve when the onnetivity requirement k inreases. It alsoappeared that the problems are more di�ult to solve when k is odd. Our experi-ments for the kECSP also showed that redution operations, when properly designedand implemented, an signi�antly improve a Branh-and-Cut algorithm. It would beinteresting to extend the use of suh operations for other ombinatorial optimizationproblems.The experiments we have performed for the kHNDP for k = 3, 4, 5 and L = 2, 3gave gaps (relative error between the best lower and upper bounds) relativety high, inpartiular when a large number of demand is onsidered. It would be interesting topursue the approah used here for the kHNDP when L ∈ {2, 3}. One may lead a deeperinvestigation of the polytope of the problem by using the appropriate direted graphsand exploiting the known results on ar-disjoint paths problems in direted graphs.This may help to provide new faet de�ning inequalities. It would also be interesting,from an algorithmi point of view, to improve the separation proedures provided forthe various inequalities we have introdued in this work, espeially for the aggregatedut inequalities.The same kind of study an also be used for the kHNDP when L ≥ 4. If possible,this may provide an integer programming formulation for the problem as well as aBranh-and-Cut algorithm for all L ≥ 4 and k ≥ 2.
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