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Résumé

Cette thèse s'inscrit dans le cadre d'une étude p olyhédrale des problèmes de conception

de réseaux �ables avec forte connexité. En particulier, nous considérons les problèmes

dits du sous-graphe k -arête-connexe et de conception de réseau k -arête-connexe avec

contrainte de b orne lorsque k � 3.

Dans un premier temps, nous étudions le problème du sous-graphe k -arête-connexe.

Etant donné un graphe non orienté et valué G = ( V; E) et un entier p ositif k , le

problème du sous-graphe k -arête-connexe consiste à déterminer un sous-graphe de G
de p oids minimum telle qu'il existe k chaînes arête-disjointes entre chaque paire de

sommets de V . Nous discutons du p olytop e asso cié à ce problème lorsque k � 3. Nous

intro duisons une nouvelle famille d'inégalités valides p our le p olytop e et présentons

plusieurs familles d'inégalités valides. Pour chaque famille d'inégalités, nous étudions

les conditions sous lesquelles ces inégalités dé�nissent des facettes. Nous discutons aussi

du problème de séparation asso cié à chaque famille d'inégalités ainsi que d'op érations

de réduction de graphes. En utilisant ces résultats, nous développ ons un algorithme

de coup es et branchements p our le problème et donnons des résultats exprérimentaux.

Ensuite, nous étudions le problème de conception de réseaux k -arête-connexe avec

contrainte de b orne. Soient G = ( V; E) un graphe valué non orienté, un ensemble de

demandes D � V � V et deux entiers p ositifs k et L . Le problème de conception de

réseaux k -arête-connexe avec contrainte de b orne consiste à déterminer un sous-graphe

de G de p oids minimum telle qu'entre chaque paire de sommets f s; tg 2 D , il existe k
chaînes arête-disjointes de longueur au plus L . Nous étudions ce problème dans le cas

où k � 2 et L 2 f 2; 3g. Nous examinons la structure du p olytop e asso cié et montrons

que, lorsque jD j = 1 , ce p olytop e est complètement décrit par les inégalités dites de

st -coup e et de L -chemin-coup e avec les inégalités triviales. Ce résultat généralise ceux

de Huygens et al. [75] p our k = 2 , L 2 f 2; 3g et Dahl et al. [35] p our k � 2, L = 2 .

En�n, nous nous intéressons au problème de conception de réseau k -arête-connexe

avec contrainte de b orne lorsque k � 2, L 2 f 2; 3g et jD j � 2. Le problème est
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NP-di�cile dans ce cas. Nous intro duisons quatre nouvelles formulations du problème

sous la forme de programmes linéaires en nombres entiers. Celles-ci sont basées sur

la transformation du graphe G en graphes orientés appropriés. Nous discutons du

p olytop e asso cié à chaque formulation et intro duisons plusieurs familles d'inégalités

valides. Pour chacune d'elles, nous décrivons des conditions p our que ces inégalités

dé�nissent des facettes. En utilisant ces résultats, nous développ ons des algorithmes de

coup es et branchements et de coup es, generation de colonnes et branchements p our le

problème. Nous donnons des résultats exp érimentaux et menons une étude comparative

entre les di�érentes formulations.

Mots clés: Réseau �able, graphe k -arête-connexe, chaîne de longueur b ornée, p oly-

top e, facette, séparation, génération de colonnes, algorithme de coup es et branche-

ments.



Abstract

This thesis presents a p olyhedral study of survivable network design problems with

high connectivity requirement. In particular, the k -edge-connected subgraph and the k -

edge-connected hop-constrained network design problems when k � 3 are investigated.

We �rst consider the k -edge-connected subgraph problem. Given a weighted undi-

rected graph G = ( V; E) and a p ositive integer k , the k -edge-connected subgraph

problem is to �nd a minimum weight subgraph of G which contains k -edge-disjoint

paths b etween every pair of no des of V . We discuss the p olytop e asso ciated with that

problem when k � 3. We intro duce a new class of valid inequalities and present several

other classes of valid inequalities. For each class we study the conditions under which

the concerned inequalities are facet de�ning. We also discuss the separation problem

asso ciated with each class of inequalities and consider some graph reduction op erations.

Using these results, we devise a Branch-and-Cut algorithm for the problem and give

some computational results.

We also study the k -edge-connected hop-constrained network design problem. Let

G = ( V; E) b e a weighted undirected graph, a demand set D � V � V , two p ositive

integers k and L . The k -edge-connected hop-constrained network design problem is

to �nd a minimum weight subgraph of G such that for every f s; tg 2 D there exist

at least k -edge-disjoint st -paths of length at most L . We investigate the structure of

the asso ciated p olytop e when k � 2 and L 2 f 2; 3g. We show that, in the case where

jD j = 1 , this p olytop e is completely describ ed by the so-called st -cut and L -path-

cut inequalities toghether with the trivial inequalities. This result generalizes those

obtained by Huygens et al. [75] for k = 2 , L 2 f 2; 3g and Dahl et al. [35] for k � 2,

L = 2 . We show that this complete description yields a p olynomial time algorithm for

the problem when jD j = 1 , k � 2 and L 2 f 2; 3g.

We �nally consider the k -edge-connected hop-constrained network design problem

when k � 2, L = 2; 3 and jD j � 2. The problem is NP-hard in this case. We

intro duce four new integer programming formulations based on the transformation of
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the graph G into appropriate directed graphs. We discuss the p olytop e asso ciated with

each formulation and intro duce several classes of inequalities that are valid for these

p olytop es. We also study conditions for these inequalities to b e facet de�ning. Using

these results, we devise Branch-and-Cut and Branch-and-Cut-and-Price algorithms for

the problem. We provide some computational results and a comparative study b etween

the di�erent formulations we have intro duced for the problem.

Keywords: Survivable network, k -edge-connected graph, hop-constrained path, p oly-

top e, facet, separation, column generation, Branch-and-Cut algorithm.
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Intro duction

Telecommunications have a ma jor imp ortance in the functioning of mo dern so cieties.

They are particularly imp ortant as many transactions are done throughout telecom-

munication networks. The app earance of �b er optic technology in telecommunications

(1984) and the intro duction of new generation network proto cols (SONET/SDH, ATM,

IP, MPLS, GMPLS, etc.) have allowed networks to convey more and more data. As

a consequence, more complex applications such as video conference, Virtual Private

Networks (VPN) and mobile telephony, have b een develop ed and are used in various

domains including �nance, economy, medicine, scienti�c research and scho oling.

Such an imp ortance implies to have robust networks. Whatever the nature of a

network, it must survive after any equipment network failure. In case of an outage

of a network, the loss of money could reach several millions of euros. Survivable

networks must satisfy some connectivity requirements that is, there exist a certain

numb er of disjoint paths b etween some pair of no des of the network. This condition

ensures that the tra�c can still b e routed b etween two no des after the failure of a given

numb er of links or no des, and that the network is still functional. One of the main

ob jectives when designing a telecommunication network is to provide a su�cient degree

of survivability, and this, with a minimum cost of construction and maintainance. Also,

the dimensionning problem is often considered, that is to give the appropriate capacities

to the links of the network in order to convey the tra�c b etween some no des and satisfy

a given quality of service.

A network can b e represented by a graph G = ( V; E) where V is the set of no des

and E , the set of edges. Di�erent top ologies have b een prop osed to design survivable

networks. Each top ology dep ends on the use of the network. However, as p ointed

out in [83] (see also [80]), the top ology that seems to b e very e�cient (and needed in

practice) is the uniform top ology, that is to say that corresp onding to networks that

survive after the failures of k � 1 or fewer links, for some k � 2. The 2-connected

top ology ( k = 2 ) provides an adequate level of survivability since most failure usually

can b e repaired relatively quickly. However, for many applications, a higher level of



2 CHAPTER 0. INTRODUCTION

connectivity may b e necessary.

Another reliability condition concerns the length of the paths used to route the tra�c.

In fact, the alternative paths could b e to o long to guarantee an e�ective routing. In

data networks, such as Internet, the elongation of the route of the information could

cause a strong loss in the transfert sp eed and decrease the quality of service. For other

networks, the signal itself could b e degraded by a longer routing. In such cases, the

L -path requirement (paths of length at most L ), with L � 2, guarantees exactly the

needed quality of the alternative routes.

Network design problems, as well as many combinatorial optimization problems, have

b een studied using di�erent metho ds. Among those metho ds, the p olyhedral approach

has app eared to b e very e�ective in solving di�cult problems. This metho d, intro duced

by Edmonds [45], consists in reducing the resolution of a combinatorial optimization

problem to that of a linear program. This is done thanks to the complete (or even

partial) description of the p olyhedron asso ciated with the problem. The p olyhedral

approach is part of the exact metho ds used to solve combinatorial optimization prob-

lems.

The survivable network design problem has b een widely studied when the connectiv-

ity requirement is low ( k = 2 ). However, the high connectivity requirement case ( k � 3)

has received a little attention. In this thesis, we study the survivable network design

problem with high connectivity requirement. In particular, we fo cus on two variants of

the problem: when k -edge-disjoint paths are required b etween every pair of no des (the

k -edge-connected subgraph problem) and when k -edge-disjoint paths of length at most

L are required b etween certain pairs of no des (the k -edge-connected hop-constrained

network design problem). The study is led using the p olyhedral approach and provides

exact and e�cient algorithms to solve these problems.

This thesis is organized as follows. In Chapter 1, we present the basic notions and

notations that will b e used throughout this thesis. We also present a state-of-the-art on

survivable network design problems. Chapters 2 and 3 deal with the k -edge-connected

subgraph problem when k � 3. We study the p olytop e asso ciated with this problem

and devise a Branch-and-Cut algorithm. Chapters 4, 5 and 6 are dedicated to the

k -edge-connected hop-constrained network design problem. In Chapter 4, we give a

complete description of the p olytop e asso ciated with the problem in the case where

k -edge-disjoint L -paths are required b etween a single pair of no des. We present a

p olynomial time cutting plane algorithm to solve the problem in this case. Chapters 5

and 6 concern the general case where the k -edge-disjoint L -paths are required b etween

more than one pair of no des of the network. We intro duce new integer programming
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formulations for this more general problem and study the asso ciated p olytop es. We

devise Branch-and-Cut and Branch-and-Cut-and-Price algorithms for the problem and

present extensive computational results.



Chapter 1

Preliminary Notions and

State-of-the-Art

In this chapter we give some basic notions of combinatorial optimization, complexity

theory and p olyhedra. We present cutting plane and column generation metho ds as

well as Branch-and-Cut and Branch-and-Cut-and-Price algorithms. We also present

the basic de�nitions of graph theory that will b e used throughout this thesis. Finally

we give a state-of-the-art on the survivable network design problem.

1.1 Preliminary notions

1.1.1 Combinatorial optimization

Combinatorial Optimization is a branch of op erations research and is related to com-

puter science and applied mathematics. It aims to study optimization problems where

the set of feasible solutions is discrete or can b e represented as a discrete one. A

combinatorial optimization problem can b e formulated in the following way. Let

E = f e1; :::; eng b e a �nite set called basic set where each element ei is asso ciated with

a weight w(ei ) . Let F b e a family of subset of E . If F 2 F , then w(F ) =
X

ei 2 F

w(ei ) is

the weight of F . The problem consists in �nding an element F �
of F whose weight is
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minimum (or maximum).

8
<

:

Minimize (or Maximize) w(F )
s:t:
F 2 F:

F is the set of feasible solutions of the problem. The term optimization means that we

are lo oking for the b est p ossible solution. The term combinatorial refers to the discrete

structure of F . Most of the time, this structure is represented by a graph. Also, the

numb er of feasible solutions is generally exp onential, which makes di�uclt or even im-

p ossible to solve a combinatorial optimization problem with an enumerative pro cedure.

Di�erent metho ds exist in the litterature to solve combinatorial optimization problems,

esp ecially graph theory, linear and non-linear programming, integer programming and

p olyhedral approach.

Many real-world problems can b e formulated as combinatorial optimization ones

such as the Knapsack Problem, the Travelling Salesman Problem, telecommunication

network design problems, VLSI circuit design problems, machine sequencing problem,

etc. Some of them are directly applied in everyday life. For example Video On Demand

services (VOD) are studied as a combinatorial optimization problem. The ob jective is

to satisfy the demand of every client (the end users) and such that the total bandwidth

allo cated by the telecommunication op erator for the service is minimum. This way,

the op erator can evaluate the quality of the service he provides and the corresp onding

cost. Another example is the GPS (GPS stands for Global Positioning System) which

helps a driver to �nd the b est way (in terms of distance or in terms of time) to go from

one place to another. This is a direct application of the shortest path problem.

Combinatorial optimization is closely related to algorithm theory and computational

complexity theory. The next section intro duces computational issues of combinatorial

optimization.

1.1.2 Computational and complexity theory

Computational and complexity theory is a branch of computer science whose ob jective

is to classify problems according to their inherent di�culty. We distinguish �easy� and

�di�cult� problems. Computational and complexity theory is based on the works of

Co ok [22], Edmonds [44] and Karp [77]. For more details on this topic, the reader is

referred to [56].
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A problem is a question whose answer is unknown and dep ends on some input pa-

rameters. A problem is sp eci�ed by describing its input parameters and the prop erty

that these parameter must satisfy. An instance of a problem is obtained by giving a

sp eci�c value to all its input parameters. A resolution algorithm is a pro cedure, that is

a succession of elementary op erations, which pro duces a solution for a given instance

of the problem. The numb er of input parameters necessary to describ e an instance of

a problem is the size of that problem.

An algorithm is said to b e polynomial when the numb er of elementary op erations

necessary to solve an instance of size n is b ounded by a p olynomial function in n . A

problem is of class P if there exists a p olynomial algorithm to solve it. We also say

that this problem is easy or can b e solved quickly .

A decision problem is a problem whose answer is either �yes� of �no�. Let P b e a

decision problem and I the set of instances of that problem for which the answer is

�yes�. P is said to b e of class NP (where NP stands for Nondeterministic Polynomial) if

there exists a p olynomial algorithm which can verify that the answer is �yes� for every

instance of I . Clearly, every problem of class P is also of class NP (see Figure 1.1).

NP

NP-complete

P

Figure 1.1: Relation b etween P, NP, NP-complete problems.

It is not known whether every problem in NP can b e solved in p olynomial time but

it has b een conjectured that P = NP . If this conjecture is proved, its consequence will

b e that every problem known as �di�cult� can, in fact, b e solved in p olynomial time.

In the class NP, we distinguish a particular set of problems, the NP-complete prob-

lems. The notion of NP-completeness relies on the notion of p olynomial reduction or

transformation. A decision problem P1 can b e p olynomialy reduced (or transformed)
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into another decision problem P2 if there exists a p olynomial function f such that for

every instance I of P1 , the answer is �yes� if and only if the answer of f (I ) for P2 is �yes�.

A problem P is NP-complete if every problem of class NP can b e p olynomialy reduced

into P. The 3-satis�ability problem is the �rst problem showen to b e NP-complete (see

[22]).

Every combinatorial optimization problem can b e asso ciated with a decision problem.

A combinatorial optimization problem whose decision problem is NP-complete is said to

b e NP-hard . Most of the combinatorial optimization problems are NP-hard. Among

the metho ds used to solve them, the p olyhedral approach has app eared to b e very

e�cient.

1.1.3 Polyhedral approach and Branch-and-Cut metho d

Polyhedral theory has b een intro duced by Edmonds in 1965 [45]. He �rst develop ed

this metho d for the matching problem. Later, further works were done on this topic.

Polyhedral approach has app eared to b e e�ective for solving many problems and slowly

b ecomes a must for the study of combinatorial optimization problems. Here we present

the basic notions of p olyhedral theory. For more details, the reader is referred to

[90, 96]. We also present the applied asp ect of p olyhedra to combinatorial optimization

problems and describ e the so-called Branch-and-Cut metho d.

1.1.3.1 Polyhedral theory

Let n 2 N b e a p ositive integer and x 2 Rn
. We say that x is a linear combination of

x1; :::; xm 2 Rn
if there exist m scalar � 1; :::; � m such that x =

mX

i =1

� i x i . If

mX

i =1

� i = 1 ,

then x is said to b e an a�ne combination of x1; :::; xm . Moreover, if � i � 0 for all

i 2 f 1; :::; mg, we say that x is a convex combination of x1; :::; xm .

Given a set S = f x1; :::; xm g 2 Rn� m
, the convex hul l of S is the set of p oint x 2 Rn

which are convex combination of x1; :::; xm (see Figure 1.2), that is

conv(S) = f x 2 Rn j x is a convex combination of x1; :::; xmg:

The p oints x1; :::; xm 2 Rn
are linearly independant if the unique solution of the

system

mX

i =1

� i x i = 0 is � i = 0 , i = 1; :::; m. They are a�nely independant if the unique
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elements of S

conv(S)

Figure 1.2: A convex hull

solution of the system 8
>>><

>>>:

mX

i =1

� i x i = 0;

mX

i =1

� i = 0;

is � i = 0 , i = 1; :::; m.

A polyhedron P is the set of solutions of a linear system Ax � b, that is P = f x 2
Rn j Ax � bg, where A is a m -lines n -column matrix and b 2 Rm

. A polytope is a

b ounded p olyhedron. A p oint x of P will b e also called a solution of P .

A p olyhedron P � Rn
is said of dimension p if the maximum numb er of solutions of

P that are a�nely indep endant is p + 1 . We denote it by dim(P) = p. We also have

that dim(P) = n � rank (A= ) where A=
is the submatrix of A of inequalities that are

satis�ed with equality by all the solutions of P (implicit equalities). The p olyhedron

P is full dimensional if dim(P) = n .

An inequality ax � � is valid for a p olyhedron P � Rn
if for every solution x 2 P ,

ax � � . This inequality is said to b e tight for a solution x 2 P if ax = � . The inequality

ax � � is violated by x 2 P if ax > � . The set F = f x 2 P j ax = � g is called a face

of P . We also say that F is the face induced by ax � � . If F 6= ; and F 6= P , we say

that F is a proper face of P . If F is a prop er face and dim(F) = dim(P) � 1, then F is

called a facet of P . We also say that ax � � induces a facet of P or is a facet de�ning

inequality.

If P is full dimensional, then ax � � is a facet of P if and only if F is a prop er face
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and there exists a facet bx � � of P and a scalar � 6= 0 such that F � f x 2 P j bx = � g
and b= �a .

An inequality ax � � is essential if it de�nes a facet of P . It is redundant if the

system A0x � b0
obtained by removing this inequality from Ax � b de�nes the same

p olyhedron P . This is the case when ax � � can b e written as a linear combination

of the inequalities of the system A0x � b0
. A complete minimal linear description of a

p olyhedron consists of the system given by its facet de�ning inequalities and its implicit

equalities.

A solution x is an extreme point of a p olyhedron P if and only if it cannot b e written

as the convex combination of two di�erent solutions of P . It is equivalent to say that x
induces a face of dimension 0. The p olyhedron P can also b e describ ed by its extreme

p oints. In fact, every solution of P can b e written as a convex combination of some

extreme p oints of P . Figure 1.3 illustrates the main de�nitions given in this section.

Extreme p oints

Valid inequality

Non valid inequality

facet

Prop er face

but not facet

P

Figure 1.3: Valid inequality, facet and extreme p oints

1.1.4 Polyhedral approach, Branch-and-Cut metho d

Here we present the algorithmic asp ect of p olyhedra and its application to combi-

natorial optimization problems. Let P b e a combinatorial optimization problem, E
its basic set, w(:) the weight function asso ciated with the variables of P and S the

set of feasible solutions. Supp ose that P consists in �nding an element of S whose
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weight is maximum. If F � E , then the 0-1 vector xF 2 RE
such that xF (e) = 1 if

e 2 F and xF (e) = 0 otherwise, is called the incidence vector of F . The p olyhedron

P(S) = convf xS j S 2 Sg is the polyhedron of the solutions of P or polyhedron asso-

ciated with P. P is thus equivalent to the linear program maxf wx j x 2 P(S)g. The

p olyhedron P(S) can b e describ ed by a set of facet de�ning inequalities. When all the

inequalities of this set are known, then solving P reduces to solve a linear program.

The ob jective of the p olyhedral approach for combinatorial optimization problems is

to reduce the resolution of P to that of a linear program. The e�ciency of the metho d

thus relies on a deep study of the p olyhedron asso ciated with the problem.

However, a complete characterization of the p olytop e of a problem is di�cult to

determine. In particular, when the problem is NP-hard there is a little hop e to �nd such

a characterization. Moreover, the numb er of inequalities describing this p olyhedron

is, in general, exp onential. Therefore, even if we know the complete description of

that p olyhedron, its resolution remains a hard task b ecause of the large numb er of

inequalities.

Fortunately, as it has b een shown by Grötschel, Lovász and Schrijver [64], the dif-

�culty for solving a linear program do es not dep end on the numb er of inequalities of

the program, but on which is called the separation problem asso ciated with the in-

equality system of the program. Let Ax � b b e a system of inequalities in Rn
. The

separation problem asso ciated with Ax � b is, given x 2 Rn
, to determine whether

x satis�es Ax � b and, if not, to �nd an inequality ax � � of Ax � b violated by

x . In 1981, Grötschel, Lovász and Schrijver [64] showed that an optimization prob-

lem max f cx; Ax � bg can b e solved in p olynomial time if and only if the separation

problem asso ciated with Ax � b so is. The cutting plane method consists in solving

a linear program having a large numb er of inequalities by using the following steps.

Let LP = max f cx; Ax � bg b e a linear program and LP 0
a linear program obtained

by considering a small numb er of inequalities among Ax � b. Let x �
b e its optimal

solution. We solve the separation problem asso ciated with Ax � b and x �
. This phase

is called the separation phase . If every inequality of Ax � b is satis�ed by x �
, then x �

is also optimal for LP . If not, let ax � � b e an inequality violated by x �
. Then we add

ax � � it to LP 0
and rep eat this pro cess until an optimal solution is found. Algorithm

1 summarizes the di�erent steps of a cutting plane algorithm.
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Algorithm 1 : A cutting plane algorithm

Data : A linear program LP and Ax � b its system of inequalities

Result : Optimal solution x �
of LP

b egin

Consider a linear program LP 0
with a small numb er of inequalities of LP1

Solve LP 0
and let x �

b e an optimal solution2

Solve the separation problem asso ciated with Ax � b and x �
3

if an inequality ax � � of LP is violated by x �
then4

Add ax � � to LP 0
5

Rep eat step 26

else

x �
is optimal for LP7

return x �
8

end

The p olyhedron P(S) is often not completely known b ecause P may b e NP-hard. In

this case, it would not b e p ossible to solve P as a linear program. However, one may b e

able to solve e�ciently the linear relaxation of P(S) . In general, the solution obtained

from the linear relaxation of P(S) is fractional. The resolution of P can then b e done

by combining the cutting plane metho d with a Branch-and-Bound algorithm. Such

algorithm is called a Branch-and-Cut algorithm . Each no de of the Branch-and-Bound

tree (also called Branch-and-Cut tree ) corresp onds to a linear program. Supp ose that P
is equivalent to maxf wx j Ax � b; x 2 f 0; 1gng and that Ax � b has a large numb er of

inequalities. A Branch-and-Cut algorithm starts by creating a Branch-and-Bound tree

whose ro ot no de corresp onds to a linear program LP0 = maxf wx j A0x � b0; x 2 Rng,

where A0x � b0 is a subsystem of Ax � b with a small numb er of inequalities. Then

we solve the linear relaxation of P that is LP = max f cx j Ax � b; x 2 Rng, using a

cutting plane algorithm starting from the program LP0 . Let x �
0 b e its optimal solution

and A0
0x � b0

0 the set of inequalities added to LP0 at the end of the cutting plane phase.

If x �
0 is integral, then it is optimal for P. If x �

0 is fractional, then we start the branching

phase . This consists in cho osing a variable, say x1
, having a fractional value and

adding two no des P1 and P2 in the Branch-and-Cut tree. The no de P1 corresp onds

to the linear program LP1 = maxf wx j A0x � b0; A0
0x � b0

0; x1 = 0; x 2 Rng and

LP2 = maxf wx j A0x � b0; A0
0x � b0

0; x1 = 1; x 2 Rng. We solve the linear program

LP 1 = max f wx j Ax � b; x1 = 0; x 2 Rng ( LP 2 = max f wx j Ax � b; x1 = 1; x 2
Rng) by a cutting plane metho d starting from LP1 ( LP2 ). If the optimal solution of

LP 1 ( LP 2 ) is integral then, it is feasible for P. Its value is thus a lower b ound of the

optimal solution of P and the no de P1 b ecomes a leaf of the Branch-and-Cut tree. If
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this solution is fractional, then we select a variable with a fractional value and add two

children to the no de P1 ( P2 ), and so on.

The linear program corresp onding to a no de of the Branch-and-Cut tree may b e

infeasible, that is the addition of a constraint x i = 0 or x i = 1 makes the linear

program infeasible. Also, even if it is feasible, its optimal solution may b e worse than

the b est known lower b ound of the problem. In b oth cases, we prune that no de from

the Branch-and-Cut tree. The algorithm ends when all the no des have b een explored.

At the end of the algorithm, the optimal solution of P is the b est feasible solution

among the solutions given by the Branch-and-Bound tree. Figure 1.4 illustrates the

algorithm.
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x1
0 = 1

x2
2 = 1

x4 is fractional

may improve the b est lower b ound

b ecomes the b est lower b ound
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Figure 1.4: A Branch-and-Cut tree.

The algorithm can b e improved by computing a go o d lower b ound of the optimal

solution of the problem b efore it starts. This lower b ound can b e used by the algorithm

to prune the no des which will not allow an improvement of this lower b ound. This

would p ermit to reduce the numb er of no des generated in the Branch-and-Cut tree and

hence reduce the time used by the algorithm. Also, this lower b ound can b e improved

by computing at each no de of the Branch-and-Cut tree a feasible solution when the

solution obtained at a no de is fractional. This is done by using a primal heuristic . It



1.1. PRELIMINARY NOTIONS 13

aims to pro duce a feasible solution for P from the solution obtained at a given no de of

the Branch-and-Cut tree, when this later solution is fractional (and hence infeasible for

P). Moreover, the weight of this solution must b e as b est as p ossible. When the solution

computed is b etter than the b est known lower b ound, it can considerably reduce the

numb er of generated no des as well as the CPU time. Moreover, this guarantees to

have an approximation of the optimal solution of P b efore visiting all the no des of the

Branch-and-Cut tree, for example when a CPU time limit has b een reached.

The Branch-and-Cut metho d is widely used to solve combinatorial optimization prob-

lems that are considered di�cult to solve, such as the Travelling Salesman Problem

[4]. Its e�ciency can b e considerably increased by a go o d knowledge of the p olyhedron

asso ciated with the problem and by e�cient separation algorithms. The cutting plane

metho d is e�ective when the numb er of variables is p olynomial. However, when the

numb er of variables is large (for example exp onential), other metho ds, such as the

column generation metho d, are more appropriate to use. In the following section we

brie�y describ e this metho d.

1.1.5 Column generation and Branch-and-Cut-and-Price meth-

o ds

The column generation method is used to solve linear programs with a large numb er of

variables. The metho d aims to solve the linear program by considering a small numb er

of variables. This metho d was intro duced by Dantzig and Wolfe [36] in 1960 in order to

solve linear programs with large numb er of variables by using few ressources (CPU time

and memory consumption). The column generation metho d is used either for problems

which can b e solved using Dantzig-Wolfe decomposition method or for problems with a

large numb er of variables.

The idea of a column generation algorithm is to solve a sequence of linear programs

having a reasonable numb er of variables (also called columns ). The algorithm starts

by solving a linear program having a small numb er of variables and which forms a

feasible basis for the original program. At each iteration of the algorithm, we solve

the so-called pricing problem whose ob jective is to determine the variables which must

enter the current basis. These variables are those having a negative reduced cost. The

reduced cost asso ciated with a variable is computed using the dual variables. We then

solve the linear program obtained by the addition of these variables and rep eat the

pro cedure. The algorithm stops when the pricing algorithm do es not generate new

column to add in the current basis. In this case, the solution obtained from the last

restricted program is optimal for the original one.
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The column generation metho d can b e seen as the dual of the cutting plane metho d

as it adds columns (variables) instead of rows (inequalities) in the linear program. The

pricing problem can b e NP-hard. In this case, one can use heuristic pro cedures to

solve it. For more details on column generation algorithms, the reader is referred to

[85, 86, 102].

In order to solve integer linear programs, the column generation metho d can b e

combined with a Branch-and-Bound algorithm. In this case, the algorithm is called

a Branch-and-Price algorithm . The branching phase happ ens when no variable can

b e added into the current linear program and the solution given by that program is

fractional. Moreover, the algorithm can b e combined with a cutting plane algorithm,

that lo oks for inequalities that are valid for the problem but violated by the current

fractional solution. These can b e added to the current linear program. In this case, we

sp eak of Branch-and-Cut-and-Price algorithm . Barnhart et al. [9] use this technique

to solve large scale integer multicommo dity �ow problems. Barhnart et al. [10] present

huge problems which have b een solved using Branch-and-Price metho d.

1.1.6 Graph theory: notations and de�nitions

In this section, we present some basic de�nitions and notations of graph theory which

will b e frequently used in the subsequent chapters. For more details, the reader is

referred to [15].

The graphs we consider are either directed or undirected, �nite, lo opless and may

contain multiple arcs or edges.

An undirected graph is denoted by G = ( V; E) where V is the set of no des and E
is the set of edges. If e 2 E is an edge with endno des u and v , we also write uv to

denote e. For a no de subset W � V , we denote by W the no de set V n W . Given W
and W 0

, two disjoint subsets of V , [W; W0] denotes the set of edges of G having one

endno de in W and the other one in W 0
. If W 0 = W , then [W; W] is called a cut of

G and denoted by � (W) . A cut � (W) is said to b e proper if jWj � 2 and jWj � 2.

If � = ( V1; :::; Vp) , p � 2, is a partition of V , then we denote by � (� ) the set of edges

having their endno des in di�erent sets. We may also write � (V1; :::; Vp) for � (� ) . Note

that for W � V , � (W) = � (W; W) .

A directed graph is denoted by H = ( U; A) where U is the no de set and A the arc

set. An arc a with origin u and destination v is denoted by (u; v) . Given two no de

subsets W and W 0
of U , [W; W0] denotes the set of arcs whose origins are in W and
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destinations are in W 0
. As b efore, we write [u; W 0] for [f ug; W 0] and W denotes the

no de set U nW . The set of arcs having their origin in W and destination in W is called

a directed cut or dicut of H . This arc set is denoted either by � + (W) or � � (W) . We

also write � + (u) for � + (f ug) and � � (u) for � � (f ug) with u 2 U . If s and t are two

no des of H such that s 2 W and t 2 W , then � + (W) and � � (W) are called an st -dicuts

of H .

Let G0 = ( V 0; E0) (resp. H 0 = ( U0; A0) ) with V 0 � V and E 0 � E (resp. U0 � U and

A0 � A ) b e a subgraph of G (resp. H ). If w(:) is a weight function which asso ciates

with each edge (resp. arc) e 2 E (resp. a 2 A ) the weight w(e) (resp. w(a) ), then the

total weight of G0
(resp. H 0

) is w(E 0) =
X

e2 E 0

w(e) (resp. w(A0) =
X

e2 A 0

w(a) ).

In the notation, we will sp ecify the graph as a subscript (that is, we will write � G(W) ,

� G(� ) , � G(V1; :::; Vp) , � +
H (W) , � �

H (W) , [W; W0]G , [W; W0]H ) whenever the considered

graphs may not b e clearly deduced from the context.

Given an undirected graph G = ( V; E) , for all F � E , V(F ) will denote the set of

no des incident to the edges of F . For W � V , we denote by E(W) the set of edges

of G having b oth endno des in W and G[W] the subgraph induced by W , that is the

graph (W; E(W)) . Given an edge e = uv 2 E , contracting e consists in deleting e,

identifying the no des u and v and in preserving all adjacencies. Contracting a no de

subset W consists in identifying all the no des of W and preserving the adjacencies.

Given a partition � = ( V1; :::; Vp) , p � 2, we will denote by G� the subgraph induced

by � , that is, the graph obtained from G by contracting the sets Vi , for i = 1; :::; p.

Note that the edge set of G� is the set � (V1; :::; Vp) .

A Path P of an undirected graph G is an alternate sequence of no des and edges

(u1; e1; u2; e2; :::; uq� 1; eq� 1; uq) where ei 2 [ui ; ui +1 ] for i = 1; :::; q � 1. We will denote

a path P either by its no de sequence (u1; :::; uq) or its edge sequence (e1; :::; eq� 1) . The

no des u1 and uq are called the endnodes of P , while its other no des are said to b e

internal . A path is simple if it do es not contain the same no de twice. In the sequel,

we will always consider that the paths are simple. By opp osition, a non-simple path is

called a walk . A path whose endno des are s and t will b e called an st -path . A cycle in

G is a path whose endno des coincide, that is u1 = uq . Also, a cycle is simple if it do es

not contain twice the same no de, excepted u1 . We call a chord an edge b etween two

non-adjacent no des of a path.

Similarly, we call a dipath P a path in a directed graph, that is an alternate sequence

of arcs (u1; a1; u2; a2; :::; uq� 1; aq� 1; uq) with ai 2 [ui ; ui +1 ], i = 1; :::; q � 1. A dipath is

denoted either by its no de sequence (u1; :::; uq) or its arc sequence (a1; :::; aq� 1) , and

the no des u1; uq are the endno des of that dipath. A dipath whose endno des coincide
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( u1 = uq) is called a circuit . If u1 = s and uq = t then P is called an st -dipath . A

dipath is simple if it do es not contain twice the same no de.

Given a �xed integer L � 1 and a pair of no des f s; tg 2 V � V , an L - st -path in G
is a path b etween s and t whose length is at most L , where the length is the numb er

of edges of that path. The numb er of edges of a path is also called hops and we also

sp eak of L -hop-constrained paths for paths whose length is at most L .

An undirected (resp. directed) graph is connected if for every pair of no de (u; v) there

is at least one path (resp. dipath) b etween u and v . A connected graph which have

no cycle (resp. circuit) is called a spanning tree . A connected component of a graph G
(resp. H ) is a connected subgraph of G (resp. H ) which is maximal, that is adding a

no de or an edge (resp. arc) to that subgraph gives a non-connected graph.

Given an undirected (resp. directed) graph G = ( V; E) (resp. H = ( U; A) ), two st -

paths (resp. st -dipaths) are edge-disjoint (resp. arc-disjoint ) if they have no edge (resp.

arc) in common. They are node-disjoint if they have no internal no de in common. A

graph is said to b e k -edge-connected (resp. k -arc-connected ) if it contains at least k
edge-disjoint (resp. arc-disjoint) st -paths (resp. st -dipaths) for all pair of no de f s; tg 2
V � V (resp. f s; tg 2 U � U ). It is k -node-connected if it contains at least k no de-

disjoint st -paths or st -dipaths for all pair of no de f s; tg 2 V � V (resp. f s; tg 2 U � U ).

The largest integer k such that the graph G (resp. H ) is k -edge-connected (resp. k -arc-

connected) is the edge-connectivity (resp. arc-connectivity ) of G (resp. H ). Similarly,

the largest integer k such that the graph is k -no de-connected is the node-connectivity of

the graph. We say that a graph is Steiner k -edge-connected ( k -arc-connected) ( k -no de-

connected) if it is k -edge-connected ( k -arc-connected) ( k -no de-connected) relatively to

a certain pair of privileged no des. We ommit the quali�cative Steiner when the required

connectivity is for every pair of no des of the graph. The privileged no des are called

terminal nodes while non-privileged ones are called Steiner nodes .

Given an undirected graph G = ( V; E) , a demand set D � V � V is a subset of pairs

of no des, called demands . For a demand f s; tg 2 D , s is the source of the demand and

t is the destination of that demand. If several demands f s; t1g; :::; f s; tdg have the same

no de s as source no de, then these demands are rooted in s. A no de involved in at least

one demand is said to b e terminal . A no de which do es not b elong to any demand is

called a Steiner node .

A complete graph is a graph in which there is an edge b etween each no de and the

others. A complete graph with n no des is denoted by K n . A bipartite graph G = ( V; E)
is an undirected graph such that V = V1 [ V2 with V1 \ V2 = ; and for every pair of

no des u; v 2 V1 (resp. u; v 2 V2 ), [u; v] = ; . A complete bipartite graph is a bipartite
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graph where there is an edge b etween each no de of V1 and the no des of V2 . A bipartite

complete graph is denoted K m;n where m = jV1j and n = jV2j .

An undirected graph is outerplanar when it can b e drawn in the plane as a cycle with

non crossing chords. A graph is series-paral lel if it can b e obtained from a single edge

by iterative application of the two op erations:

i) addition of a parallel edge;

ii) sub division of an edge.

Observe that a graph is series-parallel (outerplanar) if and only if it is not contractible

to K 4 ( K 4 and K 3;2 ). Therefore, an outerplanar graph is also series-parallel.

A graph G is said to b e a Halin graph if G = ( C [ T; E) where the subgraph of G
induced by T is a tree whose leaves forms the cycle C in G. Figure 1.5 gives an example

of each typ e of graphs describ ed ab ove.

Series-parallel graphOuterplanar graph

Bipartite graph

Complete graph on 5 no des

Halin graph

Figure 1.5: Complete, bipartite, outerplanar, series-parallel and Halin graphs.
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1.2 State-of-the-art on survivable network design prob-

lems

Survivable network design problems have b een intensively studied for several decades.

The �rst studies on the problems aimed to pro duce heuristics and approximation algo-

rithms for these problems. Since the b egining of 90's, studies starts fo cusing on exact

algorithms with, in particular, the use of the p olyhedral approach.

This section is dedicated to the presentation of the previous works in the litterature

related to survivable network design problems. We �rst present the general survivable

network design problem, the related works and main results on this problem. Then we

discuss two variants of the problem, the k -edge-connected subgraph problem and the

k -edge-connected hop-constrained network design problem. These will b e studied in

Chapters 2 and 3 for the �rst one and Chapters 4, 5 and 6 for the second one.

1.2.1 The general survivable network design problem

A network can b e represented by a graph, directed or undirected, where each no de of

the network corresp onds to a no de of the graph and a link b etween two no des of the

network is represented by an edge or an arc of the graph.

Consider an undirected graph G = ( V; E) representing a telecommunication network

and w(:) a weight function which asso ciates the weight w(e) with an edge e 2 E . Each

no de v 2 V is asso ciated with an integer, denoted by r (v) and called connectivity type

of v , which can b e seen as the minimum numb er of edges connecting v to the rest of

the network. The vector (r (v) j v 2 V) is the connectivity typ e vector asso ciated with

the no des of G. We say that a subgraph H = ( U; F) , U � V and F � E , satis�es

the edge-connectivity (resp. node-connectivity ) requirement if for every pair of no des

(s; t) 2 V � V , there exist at least

r (s; t) = min f r (s); r (t)g

edge-disjoint (resp. no de-disjoint) paths b etween s and t . This condition ensures that

the network will b e still functional when certain equipment fails. In fact, the tra�c

can still b e routed b etween two no des s and t when at most r (s; t) � 1 links, in case

of edge-connectivity, and at most r (s; t) � 1 no des, in case of no de-connectivity, fails.

When r (u) = k , for every u 2 V , the subgraph H is k -edge-connected (resp. k -no de-

connected).
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Let rmax = maxf r (u) j u 2 Vg. When rmax � 2 we sp eak of low connectivity

requirement and of high connectivity requirement when rmax � 3.

Grotschel, Monma and Sto er [66] intro duced the general survivable network design

problem which consists in �nding a minimum weight subgraph of G which satis�es the

connectivity requirement. We will denote this problem by ESNDP (resp. NSNDP ) for

edge-connectivity (resp. no de-connectivity) requirement.

The ESNDP (NSNDP) is NP-hard as it contains the Steiner tree problem as a sp ecial

case ( r (u) 2 f 0; 1g for all u 2 V ) which is known to b e NP-hard [56]. However, under

certain conditions the problem can b e solved in p olynomial time. When r (u) = 1 for

all u 2 V , the problem is equivalent to the minimum weight spanning tree problem.

Thus it is solvable in p olynomial time using Kruskal [84] or Prim [95] algorithms. Also

when r (s) = r (t) = 1 for two no des s; t 2 V and r (u) = 0 for all u 2 V n f s; tg, the

problem is nothing but the shortest st -path problem which can b e solved in p olynomial

time with the e�ecient algorithm of Dijkstra [43].

Menger [91] exhibited the relation b etween the numb er of edge-disjoint paths and

the cardinality of cuts in the graph G. This relation is given in the theorem b elow.

Theorem 1.2.1 [91, 96] Let G = ( V; E) be an undirected graph and s; t two nodes of

G. Then, there exist at least k edge-disjoint paths between s and t if and only if every

st -cut of G contains at least k edges.

By Theorem 1.2.1, the ESNDP can b e describ ed as a linear integer program. To this

end let us intro duce �rst some notations.

r (W) = maxf r (u) j u 2 Wg for all W � V;
con(W) = maxf r (u; v) j u 2 W; v 2 Wg

= min f r (W); r (W)g for all W � V;; 6= W 6= V:

The ESNDP is equivalent to the following linear integer program.

Minimize

X

e2 E

c(e)x(e)

x(� (W)) � con(W) for all W 2 V;; 6= W 6= V; (1.1)

x(e) � 0 for all e 2 E; (1.2)

x(e) � 1; for all e 2 E (1.3)

x(e) 2 f 0; 1g (1.4)
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Grötschel and Monma [65] study the p olyhedral asp ects of that mo del. They discuss

the dimension of the asso ciated p olytop e as well as some basic facets. In [66], Grötschel

et al. study further p olyhedral asp ects of that mo del. They devise cutting plane

algorithms and give computational results.

In [57], Go emans and Bertsimas give an approximation algorithm based for the ES-

NDP based on a new analysis of a well-known algorithm for the Steiner tree problem.

A related problem is the so-called augmentation problem. Given an undirected graph

G = ( V; E) and a connectivity vector (r (v) j v 2 V) , the augmentation problem is to

add as few edges as p ossible to G so that the resulting graph satis�es the connectivity

requirements given by r . This problem is equivalent to the general survivable network

design problem on a complete graph where the weight of the edges of E is 0 and that

of the edges that can b e added is 1. Eswaran and Tarjan [47] studied that problem

in the cases where r (u) = 2 for all u 2 V . They gave p olynomial time algorithms

for the cases where edge-disjoint and no de-disjoint paths are required. Watanab e and

Nakamura [103] and Cai and Sun [18] studied the problem when r (u) = k for all u 2 V
and k 2 2. They [18, 103] gave p olynomial time algorithms for the problem in that

case. Cai and Sun [18] also gave a min-max formula for the minimum numb er of edges

that must b e added. Frank [53] considered the problem for an arbitrary connectivity

vector r 2 NV
. Using the splitting theorem of Mader [87], he gave a min-max formula

for the minimum numb er of edges that must b e added to the original graph and devise

a p olynomial time algorithm for the problem. Its results generalize those obtained by

[47] and [18].

1.2.2 The k -edge(no de)-connected subgraph problem

The k -edge-connected subgraph problem has b een extensively studied, esp ecially when

k = 2 (low connectivity requirement) [8, 49, 54, 80, 81, 83, 88, 89, 92]. However, it has

received a little attention in the case where k � 3.

In [21], Chopra studied the problem for k o dd when multiple copies of an edge may

b e used. In particular, he characterized the asso ciated p olyhedron for outerplanar

graphs. This p olyhedron has b een previously studied by Cornuéjols et al. [23]. They

characterized the asso ciated p olytop e when the graph is series-parallel and k = 2 . In

[40], Didi Biha and Mahjoub also studied the problem when the graph is series-parallel

and k � 3, and gave a complete description of the p olytop e in that case. In [49],

Fonlupt and Mahjoub studied the fractional extreme p oints of the linear relaxation

of the 2-edge-connected subgraph p olytop e. They intro duced an ordering on these
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extreme p oints and characterized the minimal extreme p oints with resp ect to that

ordering. As a consequence, they obtained a characterization of the graphs for which

the linear relaxation of that problem is integral. Didi Biha and Mahjoub [39], extended

some of the results of Fonlupt and Mahjoub [49] to the case k � 3 and intro duced some

graph reduction op erations.

Much work has b een done on the problem when k = 2 . In [7], Baïou and Mahjoub

study the Steiner 2-edge-connected subgraph p olytop e. This has b een generalized by

Didi Biha and Mahjoub [41] to the Steiner k -edge-connected subgraph p olytop e for k
even. Mahjoub [88] intro duces a general class of valid inequalities for the p olytop e of

the problem when k = 2 . Boyd and Hao [17] describ e a class of �comb inequalities�

which are valid for 2-edge-connected subgraph p olytop e. This class, as well as that

intro duced by Mahjoub [88], are sp ecial cases of a more general class of inequalities

given by Grötschel et al. [66] for the general survivable network p olytop e. In [8],

Barahona and Mahjoub characterize the 2-edge-connected subgraph p olytop e for the

class of Halin graphs. Kerivin et al. [81] describ e a general class of valid inequalities for

the problem that generalizes the so-called F -partition inequalities intro duced by [88].

They also develop a Branch-and-Cut algorithm for the problem. In [25, 26], Coullard

et al. study the Steiner 2-no de-connected subgraph problem. They devise in [25] a

linear time algorithm for this problem on some sp ecial classes of graphs. Moreover in

[26], they characterize the dominant of the p olytop e asso ciated with this problem on

the graphs which do not have K 4 as a minor.

Monma et al. [92] describ ed some structural prop erties of the optimal solution of

the k -edge-connected subgraph problem when the cost function satis�es the triangle

inequalities ( i.e. , c(e1) � c(e2)+ c(e3 ) for every three edges e1 , e2 , e3 de�ning a triangle).

In particular, they showed that every no de of a minimum weight k -edge-connected

subgraph has degree 2 or 3. They also showed that the cost of an optimal tour solution

of the TSP (Travelling Salesman Problem) is at most

4
3 times the cost of an optimal

solution of the 2-edge-connected subgraph problem. They [92] devised a heuristic based

on these prop erties. Biensto ck et al. [14] extended the result obtained by [92] to the

case where k � 3 and showed that every no de of a minimum cost k -edge-connected

subgraph has degree k or k + 1 . This result also generalizes the result obtained by

Frederickson and Já já [54]. In [82], Khuller and Raghavachari gave an approximation

algorithm for the smallest k -edge-connected subgraph problem ( c(e) = 1 for all e 2 E ).

They proved that the cost of a solution given by their algorithm is at most 1.85 of the

optimal solution for all k � 2. Fernandes [48] showed that the ratio of the algorithm

of [82] is, in fact, 1.75 for all k � 2. The algorithm is the �rst algorithm to achieve a

p erformance ratio less than 2. They [82] also gave an approximation algorithm for the

minimum cost k -no de-connected subgraph problem with k � 2 in the case where the



22 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART

cost function satis�es the triangle inequalities. The p erformance ratio of their algorithm

is 2 + 2(k� 1)
n where n is the numb er of no des of the graph. In [19], Cheriyan et al. gave

an

17
12 -approximation algorithm for the 2-edge-connected subgraph problem. Cheriyan

and Thurimella [20] gave a (1 + 2
k+1 ) -approximation algorithm for the smallest k -edge-

connected subgraph problem with k � 2. Karger [78] gave a randomized algorithm

for the smallest k -edge-connected subgraph problem. He proved that the p erformance

ratio of its algorithm is 1 + O(
q

log n
k ) . Gab ow et al. [55] intro duced a approximation

algorithm for the k -edge-connected subgraph problem based on LP-rounding. They

showed that for undirected graphs the ratio of the LP-rounding algorithm is 1 + 3
k

when k is o dd and 1 + 2
k when k is even.

The directed version of the Steiner k -edge-connected subgraph problem has also b een

studied. This problem is describ ed as follows. Let H = ( U; A) b e a directed graph,

D � U � U b e a set of demands and a weight function w(:) which asso ciates the weight

w(a) with each arc of H . Given an integer k � 2, the Survivable Directed Network

Design Problem ( k DNDP for short) consists in �nding a minimum cost subgraph of

H which contains k -arc-disjoint st -dipaths for all f s; tg 2 D . This problem has b een

studied by Suurballe [100] and So enoka et al. [98]. Suurballe [100] considered the

k DNDP when jD j = 1 . The problem can b e formulated in this case as a network �ow

problem, and hence, can b e solved using for example network simplex. Suurballe [100]

gave a p olynomial combinatorial optimization algorithm for the problem in this case.

In [98], So enoka et al. considered the problem of �nding a directed k -arc-connected

graph with a minimal numb er of arcs and small diameter (the diamater is the largest

among all shortest path lengths, when all the arcs have length 1). Dahl [27, 28, 29] also

studied the problem from a p olyhedral p oint of view. In [29], he describ ed several valid

inequalities for the p olytop e of the problem and devised a cutting plane algorithm.

1.2.3 The k -edge-connected hop-constrained network design prob-

lem

Given an undirected graph G = ( V; E) , a weight function w(:) , a set of demands

D � V � V and two integers k; L greater than 2, the k -edge-connected hop-constrained

network design problem consists in �nding a subgraph of G of minimum weight such

that for every pair f s; tg 2 D , there exist at least k edge-disjoint paths of length at

most L b etween s and t .

This problem takes some imp ortance since the connectivity requierement is often

insu�cient regarding the reliability of a telecommunications network. In fact, the
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alternative paths could b e to o long to guarantee an e�ective routing. In data networks,

such as Internet, the elongation of the route of the information could cause a strong

loss in the transfer sp eed. For other networks, the signal itself could b e degraded by a

longer routing. In such cases, the L -path requirement guarantees exactly the needed

quality of the alternative routes.

The k -edge-connected hop-constrained network design problem is a generalization of

the k -edge-connected subgraph problem. In fact, this later problem corresp onds to the

�rst one in the case where L = jV j � 1 and D = V � V .

The k -edge-connected hop-constrained network design problem has b een studied in

some sp ecial cases. Huygens et al. [75] have investigated the case where k = 2 ,

jD j = 1 and the b ound L on the length of the paths is 2 or 3. They give an integer

programming formulation for the problem and show that the linear relaxation of this

formulation completely describ es the p olytop e asso ciated to the problem in this case.

From this, they obtain a minimal linear description of that p olytop e. They also show

that this formulation is no longer valid when L � 4. In [35], Dahl et al. study the

problem when L = 2 , k � 2 and jD j = 1 . They give a complete description of the

asso ciated p olytop e. There has b een however a considerable amount of research on

many related problems.

In [31], Dahl considers the k -edge-connected hop-constrained path problem, that is

the problem of �nding b etween two distinguished no des s and t a minimum cost path

with no more than L edges when L is �xed. He gives a complete description of the

dominant of the asso ciated p olytop e when L � 3. Thus this hop-constrained path

problem corresp onds to the sp ecial case k = 1 and jD j = 1 of the k -edge-connected

hop-contrained network design problem. Dahl and Gouveia [32] consider the directed

hop-constrained path problem. They describ e valid inequalities and characterize the

asso ciated p olytop e when L � 3. Huygens and Mahjoub [73] study the problem when

L � 4 and jD j = 1 . They also study the variant of the problem where k no de-disjoint

paths of length at most L are requiered b etween two terminals s and t . They give an

integer programming formulation for these two problems in the case k = 2 and L = 4 .

The case where several pairs (s; t) of terminals have to b e linked by L -hop-constrained

paths has also b een studied in the litterature. In [34], Dahl and Johannessen consider

the 2-path network design problem which consists in �nding a minimum cost subgraph

connecting each pair of terminal no des by at least one path of length at most 2. The

problem of �nding a minimum cost spanning tree with hop-constraints is also considered

in [60], [61] and [63]. Here, the hop-constraints limit to a p ositive integer H the

numb er of links b etween the ro ot and any terminal in the network. Dahl [30] studies



24 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART

the problem where H = 2 from a p olyhedral p oint of view and gives a complete

description of the asso ciated p olytop e when the graph is a wheel. Finally, Huygens

et al. [76] consider the problem of �nding a minimum cost subgraph with at least

two edge-disjoint L -hop-constrained paths b etween each given pair of terminal no des.

They give an integer programming formulation of that problem for L = 2; 3 and present

several classes of valid inequalities. They also devise a Branch-and-Cut algorithm, and

discuss some computational results. In [24], Coullard et al. investigate the structure of

the p olyhedron asso ciated with the st -walks of length K of a graph, where a walk is a

path that may go through the same no de more than once. They present an extended

formulation of the problem, and, using pro jection, they give a linear description of the

asso ciated p olyhedron. They also discuss classes facets of that p olyhedron.

Besides hop-constraints, another reliability condition, which is used in order to limit

the length of the routing, requires that each link of the network b elongs to a ring

(cycle) of b ounded length. In [52], Fortz et al. consider the 2-no de connected subgraph

problem with b ounded rings. This problem consists in �nding a minimum cost 2-no de

connected subgraph (V; F) such that each edge of F b elongs to a cycle of length at most

L . They describ e several classes of facet de�ning inequalities for the asso ciated p olytop e

and devise a Branch-and-Cut algorithm for the problem. In [51], Fortz et al. study the

edge version of that problem. They give an integer programming formulation for the

problem in the space of the natural design variables and describ e di�erent classes of

valid inequalities. They study the separation problem of these inequalities and discuss

Branch-and-Cut algorithm.



Chapter 2

The k -Edge-Connected Subgraph

Problem

In this chapter we consider the k -edge-connected subgraph problem from a p olyhedral

p oint of view. We �rst present an integer programming formulation for the problem.

We then intro duce further classes of valid inequalities for the asso ciated p olytop e, and

describ e su�cient conditions for these inequalities to b e facet de�ning. In Chapter 3

we discuss the algorithmic asp ect of this study. We devise separation heuristics for

the valid inequalities and discuss some reduction op erations that can b e used in a

prepro cessing phase for the separation. Then we develop a Branch-and-Cut algorithm

using these results and present some computational results. This work has led to an

article that will b e published in Networks [12].

2.1 Intro duction

Given an undirected graph G = ( V; E) , an integer k � 2 and a weight function w(:)
which asso ciates with each edge e 2 E the weight w(e) 2 R, the k -edge-connected

subgraph problem ( k ECSP for short) is to �nd a subgraph H = ( V; F) of G such thatX

e2 F

w(e) is minimum.

Remind that, given an edge subset F � E , the 0-1 vector xF 2 RE
such that

xF (e) = 1 if e 2 F and 0 if e 2 E nF is called the incidence vector of F . Let k ECSP (G)
b e the convex hull of the incidence vectors of the k -edge-connected subgraphs of G,
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that is

k ECSP (G) = conv f xF 2 RE j F � E and (V; F) is a k -edge-connected subgraph of Gg:

If xF
is the incidence vector of the edge set F of a k -edge-connected subgraph of G,

then xF
satis�es the following inequalities:

x(e) � 0 for all e 2 E; (2.1)

x(e) � 1 for all e 2 E; (2.2)

x(� (W)) � k for all W � V; W 6= V; W 6= ; : (2.3)

Conversely, any integer solution of the system de�ned by inequalities (2.1)-(2.3) is the

incidence vector of the edge set of a k -edge-connected subgraph of G. Constraints (2.1)

and (2.2) are called trivial inequalities and constraints (2.3) are called cut inequalities .

We will denote by P(G; k) the p olytop e given by inequalities (2.1)-(2.3).

2.2 Facets of k ECSP( G)

In this section we present three classes of valid inequalities for k ECSP( G). We describ e

some conditions for these inequalities to b e facet de�ning. But �rst, we give the

following lemmas, which will b e frequently used in this section.

Lemma 2.2.1 If an inequality ax � � is di�erent from the trivial inequalities and

de�nes a facet of k ECSP( G), then a(e) � 0 for al l e 2 E and � > 0.

Pro of. Supp ose that a(e) < 0 for some edge e 2 E . As ax � � is di�erent from the

trivial inequality x(e) � 1, there must exist a solution F � E of the k ECSP which do es

not contain e and such that axF = � . Let F 0 = F [ f eg. Obviously, F 0
also induces a

solution of the k ECSP. However, since a(e) < 0, we have that axF 0
= axF + a(e) < � ,

contradiction.

In consequence, a(e) � 0 for all e 2 E . Moreover, since ax � � is facet de�ning, one

should have a(f ) > 0 for at least one edge f of E . As ax � � is di�erent from x(f ) � 0,

there exists a solution

~F of the k ECSP which contains f and such that ax ~F = � . This

yields � > 0. �
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Lemma 2.2.2 Let G = ( V; E) be a k -edge-connected graph and e0 = u0v0 be an edge

of G such that every cut � (U) of G containing e0 , except eventual ly � (u0) , is such that

j� (U)j � k + 1 . If G0
is a graph obtained from G by deleting e0 and adding an edge f

incident to u0 , then G0
is k -edge-connected.

Pro of. Let � G0(U0) b e a cut of G0
. If � G0(U0) do es not separate u0 and v0 , then,

as G is k -edge-connected, we have that j� G0(U0)j � k . If this is not the case and

U0 6= f u0g, then � G(U0) contains at least k + 1 edges and hence j� G0(U0)j � k . Finally,

if U0 = f u0g, since G is k -edge-connected and � G0(u0) = ( � G(u0) n f e0g) [ f f g, we have

that j� G0(u0)j � k . �

2.2.1 Odd path inequalities

Let G = ( V; E) b e a (k + 1) -edge connected graph and � = ( W1; W2; V1; :::; V2p) a

partition of V with p � 2. Let I 1 = f 4r; 4r + 1; r = 1; :::;
� p

2

�
� 1g and I 2 = f 2; :::; 2p�

1g nI 1 . We say that � induces an odd path con�guration if

1. j[Vi ; Wj ]j = k � 1 for (i; j ) 2 (I 1 � f 1g) [ (I 2 � f 2g) ,

2. j[W1; W2]j � k � 1,

3. � (Vi ) = [ Vi ; W1][ [Vi � 1; Vi ][ [Vi ; Vi +1 ] (resp. � (Vi ) = [ Vi ; W2][ [Vi � 1; Vi ][ [Vi ; Vi +1 ])

if i 2 I 1 (resp. i 2 I 2 ),

4. � (V1) = [ W1; V1] [ [V1; V2] and � (V2p) = [ W1; V2p] [ [V2p� 1; V2p] (resp. � (V2p) =
[W2; V2p] [ [V2p� 1; V2p]) if p is even (resp. o dd) (see Figure 2.1 for k = 3 and p
even).

Note that by conditions 3) and 4), we have that [Vl ; Vt ] = ; for all l; t 2 f 1; :::; 2pg and

jl � t j > 1.

Let C =
2p� 1[

i =1

[Vi ; Vi +1 ]. Thus C can b e seen as an o dd path of extremities V1 and V2p in

the graph G� . With an o dd path con�guration we asso ciate the inequality

x(C) � p: (2.4)

Inequalities of typ e (2.4) will b e called odd path inequalities . We have the following.
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V 1

V 3

V 2

V 4

W 2W 1

V 5 V 6

V 2p V 2p � 1

Figure 2.1: An o dd path con�guration with k = 3 and p even.

Theorem 2.2.1 Inequality (2.4) is valid for k ECSP (G) .

Pro of. As j[Vi ; Wj ]j = k � 1 and x(� (Vi )) � k is valid for k ECSP (G) , for (i; j ) 2
(I 1 � f 1g) [ (I 2 � f 2g) , we have

x([V2s� 1; V2s]) + x([V2s; V2s+1 ]) � 1 for s = 1; :::; p � 1; (2.5)

x([V2s; V2s+1 ]) + x([V2s+1 ; V2s+2 ]) � 1 for s = 1; :::; p � 1: (2.6)

By multiplying each inequality (2.5) (resp. inequality (2.6)) corresp onding to s 2
f 1; :::; p � 1g by

p� s
p (resp.

s
p ) and summing these inequalities, we obtain

X

i 2 I

x([Vi ; Vi +1 ]) +
X

i 2 I

p � 1
p

x([Vi ; Vi +1 ]) � p � 1; (2.7)

where I = f 2; 4; 6; :::; 2p � 2g and I = f 1; :::; 2p � 1g nI .

By considering the cut inequality induced by W1 [ V1 [ (
[

i 2 I 1

Vi ) (resp. W1 [ V1 [ (
[

i 2 I 1

Vi ) [

V2p ) if p is o dd (resp. even) we have

x([W1; W2]) +
X

i 2 I

x([Vi ; Vi +1 ]) � k:

As j[W1; W2]j � k � 1, it follows that
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1
p

X

i 2 I

x([Vi ; Vi +1 ]) �
1
p

: (2.8)

By summing inequalities (2.7) and (2.8) and rounding up the right hand side, we get

inequality (2.4). �

In what follows, we describ e necessary conditions for inequality (2.4) to b e facet

de�ning. For this, we �rst give a technical lemma.

Lemma 2.2.3 Let � = ( W1; W2; V1; :::; V2p) , p � 2, be a partition of V which induces

an odd path con�guration and F a solution of the k ECSP. Let Vr ; :::; Vs , with 2 � r <
s � 2p � 1, be a sequence of node sets of � . Then F must contain at least ds� r +1

2 e
edges from C .

Pro of. As j[W1; Vi ]j = k � 1 for all i 2 f r; :::; sg \ I 1 and j[W2; Vi ]j = k � 1 for all

i 2 f r; :::; sg\ I 2 , F must contain at least one edge from each set � (Vi ) \ C , i 2 f r; :::; sg.

Thus the statement follows. �

Theorem 2.2.2 Inequality (2.4) de�nes a facet for k ECSP( G) only if

a) [V1; W1] 6= ; and [V2p; W1] 6= ; (resp. [V2p; W2] 6= ; ) if p is even (resp. odd),

b) [Vi ; Vi +1 ] 6= ; for i = 1; :::; 2p � 1.

Pro of.

a) Supp ose for instance that p is even and [V1; W1] = ; (the pro of is similar if either

[V2p; W1] = ; or p is o dd and [V2p; W2] = ; ). By contracting the sets V1 , V2 , W2 , we

obtain a smaller o dd path con�guration with 2p elements. Let

x(C0) � p � 1 (2.9)

b e the corresp onding o dd path inequality. As � (V2) = [ V1; V2] [ [V2; V3] [ [V2; W2] and

j[V2; W2]j = k � 1, by the cut constraint on V2 , we have that

x([V1; V2]) + x([V2; V3]) � 1 (2.10)
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is valid for k ECSP( G). By adding (2.9) and (2.10), we get x(C) � p, which implies

that (2.4) cannot b e facet de�ning.

b) Supp ose that [Vi ; Vi +1 ] = ; for some i 2 f 1; :::; 2p� 1g. We will show in the followin-

ing that any solution F of the k ECSP whose the incidence vector xF
satis�es (2.4)

with equality, intersects [Vi � 1; Vi ] in exactly one edge. To this end, we will distinguish

two cases.

Case 1. i; i + 1 2 I 1 (the pro of is similar if i; i + 1 2 I 2 ). By Lemma 2.2.3 the edge

set F 0 = F \ C must cover the no de sets V2; :::; Vi � 2 by at least di � 3
2 e edges and the

sets Vi +1 ; :::V2p� 1 by at least d2p� i � 1
2 e edges. As i; i + 1 2 I 1 , and then i is even, F 0

must use, in consequence, at least ( i
2 � 1) + ( p � i

2) = p � 1 edges from C n [Vi � 1; Vi ].

Since � (Vi ) = [ Vi � 1; Vi ] [ [Vi ; W1] and j[Vi ; W1]j = k � 1, F contains at least one edge

from [Vi � 1; Vi ]. As xF
satis�es (2.4) with equality, it follows that F contains exactly

one edge from [Vi � 1; Vi ].

Case 2. i 2 I 1 and i +1 2 I 2 (the pro of is similar if i 2 I 2 and i +1 2 I 1 ). First note that

in this case i is o dd. By Lemma 2.2.3, F must cover the no de sets V2; :::; Vi � 2 by at least

di � 3
2 e = i � 3

2 edges from C and the no de sets Vi +1 ; :::V2p� 1 by at least d2p� i � 1
2 e = 2p� i � 1

2

edges from C . Hence F uses at least

i � 3
2 + 2p� i � 1

2 = p � 2 edges from C . Moreover,

observe that if exactly p � 2 edges of C are used by F , then these edges should b e

b etween consecutive no de sets of the form [V2s; V2s+1 ], with s 2 f 1; :::; p � 1g n f i � 1
2 g.

However, in this case, in order to satisfy the cut inequality induced by the no de set

W1 [ (
S

r 2 I 1
Vr ) [ V2p (resp. W1 [ (

S
r 2 I 1

Vr ) ) if p is even (resp. o dd), F must contain

at least one more edge from C n [Vi � 1; Vi ] b etween two consecutive sets of the form

[V2s� 1; V2s], with s 2 f 1; :::; p � 1g n f i � 1
2 g. In consequence, F contains at least p � 1

edges from C n[Vi � 1; Vi ]. As jF \ [Vi � 1; Vi ]j � 1 and xF
satis�es (2.4) with equality, we

then have that jF \ [Vi � 1; Vi ]j = 1 .

In consequence, for any solution F � E of the k ECSP, if xF
satis�es (2.4) with equal-

ity, it also satis�es the equation x(� (Vi )) = k . Since k ECSP( G) is full dimensionnal

and (2.4) is not a p ositive multiple of x(� (Vi )) � k , (2.4) cannot de�ne a facet. �

Now we give su�cient conditions for inequality (2.4) to b e facet de�ning. For this, let

us denote by � the set of edges of G which are not in C , that is, � = E nC . Moreover,

if [Vi ; Vi +1 ] 6= ; , we let ei denote a �xed edge of [Vi ; Vi +1 ], for i = 1; :::; 2p � 1.
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Theorem 2.2.3 Inequality (2.4) de�nes a facet for k ECSP (G) if the fol lowing hold.

i) Condition b) of Theorem 2.2.2 holds,

ii) The subgraphs G[W1], G[W2] and G[Vi ], for i = 1; :::; 2p, are (k+1) -edge connected,

iii) j[W1; W2]j = k � 1, j[V1; W1]j = k and j[V2p; W1]j = k (resp. j[V2p; W2]j = k ) if p is

even (resp. odd).

Pro of. We will show the result for p even (the pro of is similar if p is o dd).

Let E0 =
p[

s=1

[V2s� 1; V2s], E1 =
p� 1[

s=1

[V2s; V2s+1 ], E = � (� )n(E0[ E1) ,

~E = E n(E0[ E1[ E) .

Inequality (2.4) can then b e written as

x(E0) + x(E1) � p: (2.11)

Supp ose that conditions 1) - 3) ab ove hold. We �rst give a claim that will b e useful in

the pro of.

Claim. If D is a subset of edges which covers the no de sets V2; :::; V2p� 1 , contains at

least one edge of [Vi 0 ; Vi 0+1 ] for some i0 2 f 1; 3; :::; 2p � 1g and such that D \ � = ; ,

then D [ � induces a k -edge-connected subgraph of G.

Pro of. Let F = D [ � . Let G b e the graph induced by F and G
0

the graph obtained

from G by contracting the no de sets W1; W2; V1; :::; V2p . Let w1; w2; v1; :::; v2p b e the

no des of G
0

where wj (resp. vi ) corresp onding to Wj (resp. Vi ) for j = 1; 2 (resp.

i = 1; :::; 2p). As by condition 2), the subgraphs of G induced by W1; W2; V1; :::; V2p

are (k + 1) -edge connected, to show the claim, it su�ces to show that G
0

is k -edge-

connected. Let � G
0(W) b e a cut of G

0
.

If, say, w1 2 W and w2 2 W , then [w1; w2] � � G
0(W) . If � G

0(W) separates vi 0

and vi 0+1 , as D intersects [Vi 0 ; Vi 0+1 ], and by condition 3), j[W1; W2]j = k � 1, we

have that j� G
0(W)j � k . If vi 0 ; vi 0+1 2 W , then [f vi 0 ; vi 0+1 g; w2] � � G

0(W) . Since

j[f vi 0 ; vi 0+1 g; w2]j � k � 1 � 1, this yields j� G
0(W)j � k .

Now if w1; w2 2 W (or w1; w2 2 W ), then � G
0(W) contains at least two edge sets of

the form [vi ; wj ] with (i; j ) 2 (I 1 � f 1g) [ (I 2 � f 2g) . Since j[vi ; wj ]j = k � 1, we have

that j� G
0(W)j � k .
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�

Let us denote inequality (2.11) by ax � � and F = f x 2 k ECSP (G) j ax = � g.

Let S = � [ f e2s� 1; s = 1; :::; pg. By the claim ab ove, we can see that S induces a

k -edge-connected subgraph of G. Moreover, xS
satis�es (2.11) with equality, which

implies that F is a prop er face of k ECSP (G) . Now supp ose that there exists a non

trivial facet de�ning inequality bx � � such that F � f x 2 k ECSP (G) j bx = � g. By

Lemma 2.2.1, we have that � > 0, and hence we may supp ose that � = � . As G is

(k + 1) -edge connected and thus k ECSP (G) is full dimensional, it su�ces to show that

b= a.

Let e 2 [V2s� 1; V2s] n f e2s� 1g for some s 2 f 1; :::; pg and S1 = ( S n f e2s� 1g) [ f eg. By

the claim ab ove, S1 induces a k -edge-connected subgraph of G. Moreover, axS1 = � .

It then follows that bxS1 = � , implying that

b(e) = � 2s� 1 for all e 2 [V2s� 1; V2s]; for s = 1; :::; p; for some � 2s� 1 2 R; � 2s� 1 6= 0:
(2.12)

Similarly, for an edge e 2 [V2s; V2s+1 ] n f e2sg for some s 2 f 1; :::; p � 1g one can

consider the edge sets S2 = � [ (
p� 1[

i =1

f e2i g) [ f e1g and S3 = ( S2 n f e2sg) [ f eg. We can

see by the claim ab ove that S2 and S3 induce k -edge-connected subgraphs of G. Since,

axS2 = axS3 = � , it follows that bxS2 = bxS3 = � and then

b(e) = � 2s for all e 2 [V2s; V2s+1 ]; for s = 1; :::; p � 1; for some � 2s 2 R; � 2s 6= 0:
(2.13)

Consider the edge sets S4 = ( S2 n f e1g) [ f e2s� 1g and S5 = ( S2 n f e1; e2sg) [
f e2s� 1; e2s+1 g for some s 2 f 1; :::; p � 1g. By the claim ab ove, S4 and S5 induce k -

edge-connected subgraphs of G. Since axS4 = axS5 = � , bxS4 = bxS5 = � and hence

b(e1) = b(e2s) = b(e2s+1 ); for s = 1; :::; p � 1: (2.14)

From (2.12), (2.13) and (2.14), it follows that b(e) is the same for every edge e 2 E0[ E1 .

Since axS = bxS = � , we get b(e) = 1 for all e 2 E0 [ E1 .

Now we are going to show that b(e) = 0 for all e 2 ~E [ E . For this, �rst consider an

edge f 2 ~E . From condition 2), Sf = S n f f g induces a k -edge-connected subgraph of
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G. Moreover, xSf
satis�es (2.11) with equality. Hence axSf = � = bxSf

. This implies

that b(f ) = bxS � bxSf = 0 .

Now let e 2 [Vi ; Wj ] for (i; j ) 2 (I 1 [ f 1; 2pg � f 1g) [ (I 2 � f 2g) and S6 = ( S2 n f e1g) [
f ei � 1g (resp. S6 = ( S2 n f e1g) [ f ei g) if i is even (resp. o dd). From the claim ab ove,

we have that S6 and S0
6 = S6 n f eg induce k -edge-connected subgraphs of G and that

their incidence vectors satisfy ax � � with equality. Hence b(e) = bxS6 � bxS0
6 = 0 .

For all e 2 [W1; W2], by the claim ab ove, the edge set S7 = S n f eg induces a k -

edge-connected subgraph of G. Moreover, xS7
satis�es ax � � with equality. Hence

axS7 = � and bxS7 = bxS = � . Thus we obtain b(e) = 0 for all e 2 [W1; W2].

Consequently, b(e) = 0 for all e 2 E n C , which terminates the pro of of the theorem.

�

2.2.2 Lifting pro cedure for o dd path inequalities

In what follows we are going to describ e a lifting pro cedure for the o dd path inequalities.

This will p ermit to extend these inequalities to a more general class of valid inequalities.

But �rst we give the following lemma which easily follows from the general lifting

pro cedure presented in [93].

Lemma 2.2.4 Let G = ( V; E) be a graph and ax � � a valid inequality for k ECSP (G) .

Let G0 = ( V; E0) be a graph obtained from G by adding an edge e, that is E 0 = E [ f eg.

Then the inequality

ax + a(e)x(e) � � (2.15)

is valid for k ECSP( G0
) where a(e) = � � 
 with 
 = min f ax j x 2 k ECSP (G0) and x(e) =

1g. Moreover, if ax � � is facet de�ning for k ECSP (G) , then inequality (2.15) is also

facet de�ning for k ECSP( G0
). In addition, if edges e1; :::; ek� 1; ek ; :::; et are added to

G in this order and a(ek) is the lifting coe�cient of ek with respect to this order, then

a(ek) � a0(ek) where a0(ek) is the lifting coe�cient of ek in any order ei 1 ; :::; ei k � 1 ; :::; ei t

such that i l = l for l = 1; :::; k � 1 and i s = k for some s � k .

Theorem 2.2.4 Let G = ( V; E) be a graph and � = ( W1; W2; V1; :::; V2p) , p � 2, a

partition of V which induces an odd path con�guration. Let C , I 1 and I 2 be de�ned

as in Section 2.2.1. Let U1 =
[

i 2 I 1

Vi , U2 =
[

i 2 I 2

Vi and W = U2 [ V2p [ W2 (resp.

W = U2 [ W2 ) if p is odd (resp. even). Suppose that conditions 1) - 3) of Theorem
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2.2.3 hold. If G0 = ( V; E [ L) is a graph obtained from G by adding an edge set L , then

the fol lowing inequality

x(C) +
X

e2 L

a(e)x(e) � p; (2.16)

with

a(e) =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

1 if e 2 (
[

j =1 ;2

[Wj ; U1 [ U2]) [ [W1; W2] [ (
[

j =1 ;2p

[Vj ; U1 [ U2]) or

e 2 ([V1; V2p [ W2] [ [V2p; W1 [ W2]) \ � (W);

2 if e 2 [Vi ; Vj ]; i; j 2 f 2; :::; 2p � 1g with j > i + 1 and i even, j odd ;

� if e 2 [Vi ; Vj ] with i; j 2 f 2; :::; 2p � 1g; j > i + 1 and i odd

or i and j have same parity ;

0 otherwise ;

where 1 � � � 2 is the lifting coe�cient obtained using the lifting procedure of Lemma

2.2.4, is facet de�ning for k ECSP( G0
).

Pro of. Let us consider the following edge subsets of L :

L1 = (
[

j =1 ;2

[Wj ; U1 [ U2]) [ [W1; W2] [ (
[

j =1 ;2p

[Vj ; U1 [ U2])[

(([V1; V2p [ W2] [ [V2p; W1 [ W2]) \ � (W));

L2 = f [Vi ; Vj ]; i; j 2 f 2; :::; 2p � 1g; j > i + 1; i even ; j o dd g;

L3 = f [Vi ; Vj ]; i; j 2 f 2; :::; 2p � 1g; j > i + 1; i o dd or ; i and j have the same parity g;

L4 = L n (L1 [ L2 [ L3):

We will �rst show that the lifting co e�cient of the edges of L4 is equal to 0, inde-

p endently of the order in which they are added to G. Let e b e an edge of L4 and let

us denote by a0x � � 0
the lifted inequality obtained on G0

. As, by our assumptions,

(2.4) de�nes a facet of k ECSP( G), a0x � � 0
also de�nes a facet of k ECSP( G0

). Since

a0x � � 0
is di�erent from the trivial inequality x(e) � 0, there must exist a solution

F 0 � E 0
of the k ECSP on G0

such that e 2 F 0
and whose the incidence vector satis�es
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a0x � � 0
with equality. Let h1; :::; hk b e the edges of E b etween V1 and W1 . Note that

a0(h1) = ::: = a0(hk) = 0 . We will distinguish two cases.

Case 1. j[F 0 \ f h1; :::; hkg]j � k � 1. Let hi b e an edge not contained in F 0
. Let

F 00= ( F 0 n f eg) [ f hi g. Since F 0
induces a k -edge-connected subgraph of G0

, F 00
so

is. Hence we have that a0xF 00
= a0xF 0

� a0(e) + a0(hi ) � � 0
. This yields a0(e) � a0(hi ) .

Since a0(hi ) = 0 , and by Lemma 2.2.1, a0(e) � 0, we get a0(e) = 0 .

Case 2. f h1; :::; hkg � F 0
. Here we also have that F 00= F 0 n f eg induces a k -edge-

connected subgraph of G0
. As a0xF 00

= a0xF 0
� a0(e) � � 0

, and thus a0(e) � 0, it follows,

by Lemma 2.2.1, that a0(e) = 0 .

Therefore a(e) = 0 for all e 2 L4 , and this, indep endently of the order in which e is

added to G.

Now we consider the edges of L n L4 . For this, we give the following claim.

Claim. a(e) � 1 if e 2 L1 [ L3 , and a(e) � 2 if e 2 L2 .

Pro of. We will show �rst that if we add one edge e 2 L1 (resp. e 2 L2 ) (resp.

e 2 L3 ) to G, the lifting co e�cient of e in the new graph is 1 (resp. 2) (resp. 1). For

this, let us denote by

~G = ( V; ~E) the graph obtained by adding the edge e, that is,

~E = E [ f eg. Supp ose �rst that e 2 L1 and assume that, for instance, e 2 [Wj 0 ; Vi 0 ],

with i0 2 f 2; :::; 2p � 1g and even, and j 0 2 f 1; 2g (if i0 is o dd, it su�ces to consider

the path V1; :::; V2p in the opp osite way). Note that any solution

~F � ~E of the k ECSP

on

~G must cover the no de sets V2; :::; Vi 0 � 1 and Vi 0+1 ; :::; V2p� 1 by edges from C . By

Lemma 2.2.3,

~F must use at least di 0 � 2
2 e + d2p� i 0 � 1

2 e = p � 1 edges from C . Thus


 � p � 1 where 
 is as de�ned in Lemma 2.2.4. Moreover, b ecause the conditions of

Theorem 2.2.3 are satis�ed, by the claim given in the pro of of that theorem, the edge

set

~F1 = f e2; e4; :::; ei 0 � 2g [ f ei 0 +1 ; ei 0+3 ; :::; e2p� 1g [ � [ f eg induces a k -edge-connected

subgraph of

~G. Since

~F1 contains e and uses exactly p � 1 edges from C , we have that


 = p � 1. By Lemma 2.2.4, it then follows that the lifting co e�cient of e is equal to

1.
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Consider now an edge e 2 L2 and supp ose that e 2 [Vi 0 ; Vj 0 ] with i0; j 0 2 f 2; :::; 2p� 1g,

j 0 > i 0+1 , and i0 is even and j 0 o dd. If

~F is a solution of the k ECSP on

~G, then

~F must

cover the no de sets V2; :::; Vi 0 � 1 , Vi 0+1 ; :::; Vj 0 � 1 and Vj 0+1 ; :::; V2p� 1 . Thus by Lemma

2.2.3,

~F must use di 0 � 2
2 e+ dj 0 � i 0 � 1

2 e+ d2p� j 0 � 1
2 e = p� 2 edges from C . Thus, 
 � p� 2.

Now let

~F2 = f e2; e4; :::; ei 0 � 2g[f ei 0+1 ; ei 0+3 ; :::; ej 0 � 2g[f ej 0+1 ; ej 0+3 ; :::; e2p� 2g[ � [f eg.

We can see as b efore that

~F2 induces a k -edge-connected subgraph of

~G and contains

exactly p � 2 edges from C . Since e 2 ~F2 , we obtain that 
 = p � 2, and therefore the

lifting co e�cient of e equals 2.

Finally, supp ose that e is an edge of L3 b etween two non consecutive no de sets

[Vi 0 ; Vj 0 ] with i0; j 0 2 f 2; :::; 2p � 1g, j 0 > i 0 + 1 , and , say, i0 is o dd and j 0 is

even (the pro of is similar if i0 and j 0 have the same parity). Here observe that

any solution

~F � ~E of the k ECSP on

~G must cover by edges from C the no de sets

V2; :::Vi 0 � 1 , Vi 0+1 ; :::; Vj 0 � 1 and Vj 0+1 ; :::; V2p� 1 . By Lemma 2.2.3,

~F must then use at

least di 0 � 2
2 e+ dj 0 � i 0 � 1

2 e+ d2p� j 0 � 1
2 e = p � 1 edges from C . Thus 
 � p � 1. Moreover,

as the edge set

~F3 = f e1; e3; :::; ei 0 � 2g [ f ei 0+1 ; ei 0+1 ; :::; e2p� 2g [ � [ f eg induces a k -

edge-connected subgraph of

~G and contains exactly p � 1 edges from C , we have that


 = p � 1. Hence the lifting co e�cient of e in

~G is equal to 1.

Consequently the lifting co e�cient of e equals 1 (resp. 2) (resp. 1) if e 2 L1 (resp.

e 2 L2 ) (resp. e 2 L3 ). By Lemma 2.2.4, we then have that a(e) � 1 if e 2 L1 [ L3

and a(e) � 2 if e 2 L2 , which ends the pro of of the claim. �

In what follows, we are going to show that we also have a(e) � 1 (resp. a(e) � 2)

(resp. 1 � a(e) � 2) if e 2 L1 (resp. e 2 L2 ) (resp. e 2 L3 ). For this, let us consider

a sequence f 1; :::; f t , t � 1, of edges of L , and supp ose that f 1; :::; f t are the edges that

are added to G b efore e.

Supp ose �rst that e 2 L1 and let us assume as b efore that e 2 [Wj 0 ; Vi 0 ] with

i0 2 f 2; :::; 2p � 1g and even, and j 0 2 f 1; 2g. Let Ĝ = ( V;Ê ) b e the graph where

Ê = E [ f f 1; :::; f t ; eg. Any solution F̂ � Ê of the k ECSP on Ĝ must cover the no de

sets V2; :::; Vi 0 � 1 and Vi 0+1 ; :::; V2p� 1 by edges from (C [ f f 1; :::; f tg) n L4 . By Lemma

2.2.3, F̂ must use at least di 0 � 2
2 e+ d2p� i 0 � 1

2 e = p � 1 edges from (C [ f f 1; :::; f tg) n L4 .

Since, by the claim ab ove, a(f ) � 1 for every edge f 2 (C [ f f 1; :::; f tg) n L4 , we have

that 
 � p � 1 and hence by Lemma 2.2.4, we have that a(e) � 1. As, by the claim

ab ove a(e) � 1, this implies that a(e) = 1 . Moreover, this holds indep endently on the

order in which e is added to G.
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Now consider an edge e 2 L2 and supp ose that e 2 [Vi 0 ; Vj 0 ], with i0; j 0 2 f 2; :::; 2p �
1g, j 0 > i 0 + 1 , i0 even and j 0 o dd. Any solution F̂ � Ê of the k ECSP on Ĝ
must cover the no de sets V2; :::; Vi 0 � 1 , Vi 0+1 ; :::; Vj 0 � 1 and Vj 0+1 ; :::; V2p� 1 by edges from

(C [f f 1; :::; f tg)nL4 . By Lemma 2.2.3, F̂ must use di 0 � 2
2 e+ dj 0 � i 0 � 1

2 e+ d2p� j 0 � 1
2 e = p� 1

edges of (C [ f f 1; :::; f tg) n L4 . Thus 
 � p � 2 and therefore a(e) � 2. Since, by the

claim ab ove, a(e) � 2, we get a(e) = 2 .

If e is an edge of L3 , we show along the same line that 1 � a(e) � 2.

In consequence, a(e) = 1 if e 2 L1 , a(e) = 2 if e 2 L2 , 1 � a(e) � 2, which ends the

pro of of the theorem.

�

Observe that the lifting co e�cients of the edges other than those b etween two subsets

Vi and Vj such that i; j 2 f 2; :::; 2p � 1g, j > i + 1 , i is o dd or i and j have the same

parity do not dep end on the order of their addition in G. Inequalities (2.16) will b e

called lifted odd path inequalities . As it will turn out, these inequalities are very useful

for our Branch-and-Cut algorithm.

2.2.3 F -partition inequalities

In [88], Mahjoub intro duced a class of valid inequalities for 2ECSP( G) as follows. Let

(V0; V1; :::; Vp) , p � 2, b e a partition of V and F � � (V0) with jF j o dd. By adding the

inequalities

x(� (Vi )) � 2 for i = 1; :::; p; (2.17)

� x(e) � � 1 for e 2 F; (2.18)

x(e) � 0 for e 2 � (V0) n F; (2.19)

we obtain 2x(�) � 2p�j F j where � = � (V0; V1; :::; Vp) nF . Dividing by 2 and rounding

up the right hand side lead to

x(�) � p �
jF j � 1

2
: (2.20)
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Inequalities (2.20) are called F -partition inequalities . Didi Biha [38] extended these

inequalities for all k � 2. He showed that, given a partition (V0; V1; :::; Vp) , p � 2, of V
and F � � (V0) with F 6= ; , the inequality

x(� (V0; V1; :::; Vp) n F ) �
�

kp � j F j
2

�
; (2.21)

is valid for k ECSP (G) . Note here that jF j can b e either o dd or even. Also note that

if kp and jF j have the same parity, then the corresp onding inequality (2.21) is implied

by the cut and the trivial inequalities.

In what follows, we describ e su�cient conditions for inequalities (2.21) to b e facet

de�ning. Theorems 2.2.5 and 2.2.6 describ e these conditions for k o dd and k even,

resp ectively. Note that all the indices we will consider here will b e mo dulo 2l + 1 .

Theorem 2.2.5 Let G = ( V; E) be a graph and k � 3 an odd integer. Let � =
(W; V1; :::; V2l+1 ;
U1; :::; U2l+1 ) , with l � k� 1

2 , be a partition of V such that

i) G[W], G[Vi ], G[Ui ], i = 1; :::; 2l + 1 , are (k + 1) -edge connected,

ii) j[W; Vi ]j � k � 2 for i = 1; :::; 2l + 1 ,

iii) j[Ui ; Ui +1 ]j � k� 1
2 for i = 1; :::; 2l + 1 ,

iv) j[Vi ; Vi +1 ]j � 1 for i = 1; :::; 2l + 1 ,

v) j[Vi ; Ui ]j � 1 and j[Vi ; Ui � 1]j � 1 for i = 1; :::; 2l + 1
(see Figure 2.2 for an il lustration with k = 5 and l = 2 ).

Let Fi be an edge subset of [W; Vi ] such that jFi j = k � 2, i = 1; :::; 2l + 1 and let

F =
2l+1[

i =1

Fi . Then the F -partition inequality

x(� (� ) n F ) � l(k + 2) +
�

k
2

�
+ 1; (2.22)

induced by � and F , de�nes a facet of k ECSP (G) .
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edge of � ( � ) n F

edge of F

U1

V1 V2 U2

V3

W

V5

U3

V4

U4

U5

Figure 2.2: An F -partition con�guration with k = 5

Pro of. First observe that, by conditions 1) - 5), G is (k + 1) -edge connected and

hence k ECSP (G) is full dimensional. Let us denote inequality (2.22) by ax � � and

let F = f x 2 k ECSP (G) j ax = � g. Clearly, F is a prop er face of k ECSP (G) . Now

supp ose that there exists a facet de�ning inequality bx � � such that F � f x 2
k ECSP (G) j bx = � g. We will show that b= a.

Let ei b e an edge of [Vi ; Vi +1 ], i = 1; :::; 2l + 1; and f i and f 0
i b e edges of [Vi ; Ui � 1]

and [Vi ; Ui ], resp ectively, for i = 1; :::; 2l + 1 . Let Ti b e an edge subset of [Ui ; Ui +1 ] of

k� 1
2 edges, for i = 1; :::; 2l + 1 .

Let E0 b e the set of edges not in F and having b oth endno des in the same element

of � . First we will show that b(e) = 0 for all e 2 E0 [ F . Let i0 2 f 1; :::; 2l + 1g and

consider the edge sets

E1 = f ei 0+2 r ; r = 0; :::; lg [ f f 0
i ; i = 1; :::; 2l + 1g [ (

2l+1[

i =1

Ti );

E2 = E1 [ F [ E0:

Claim. E2 induces a k -edge-connected subgraph of G.

Pro of. Let G2 b e the subgraph of G induced by E2 . Since by condition 1) the graphs

induced by the no de sets W and Vi , Ui , i = 1; :::; 2l + 1 , are (k + 1) -edge connected, it

su�ces to show that the graph obtained by contracting W and Vi ; Ui , i = 1; :::; 2l +1 , is
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k -edge-connected. Let G2 = ( V 2; E 2) b e that graph and w , v1; :::; v2l+1 , u1; :::; u2l+1 the

no des of G2 where w corresp onds to W , vi to Vi and ui to Ui , for i = 1; :::; 2l+1 . Let � (U)
b e a cut of G2 and let G

0
2 = ( V

0
2; E

0
2) the subgraph of G2 induced by f w; v1; :::; v2l+1 g

and G
00
2 = ( V

00
2; E

00
2) the graph obtained from G2 by contracting f w; v1; :::; v2l+1 g. Note

that E
0
2 \ E

00
2 = ; and E 2 = E

0
2 [ E

00
2 . Also note that G

0
2 is (k � 1)-edge connected and

that G
00
2 is a k -edge-connected wheel. Thus if U do es not intersect f w; v1; :::; v2l+1 g,

then � (U) is a cut of G
00
2 and hence j� (U)j � k . If U intersects f w; v1; :::; v2l+1 g, then

� (U) contains at least k � 1 edges from E
0
2 . However, in this case � (U) also contains at

least one edge from E
00
2 . Thus we have that j� (U)j � k , and the statement follows. �

Note that there are k + 1 edges incident to Vi 0 in the graph induced by E2 . Now,

observe that for any edge e 2 Fi 0 , one can show in a similar way as in the claim ab ove

that E 0
2 = E2 n f eg also induces a k -edge-connected subgraph of G. As xE2

and xE 0
2

b elong to F , it follows that bxE2 = bxE 0
2 = � , implying that b(e) = 0 for all e 2 Fi 0 .

As i0 is arbitrarily chosen, we obtain that b(e) = 0 for all e 2 F . Moreover, as the

subgraphs induced by W , V1; :::; V2l+1 , U1; :::; U2l+1 are all (k + 1) -edge connected, the

subgraph induced by E2 n f eg, for all e 2 E0 , is also k -edge-connected. This yields as

b efore b(e) = 0 for all e 2 E0 . Thus b(e) = 0 for all e 2 F [ E0 .

Next, we will show that b(e) = a(e) for all e 2 � (� ) n F . Let gi b e a �xed edge of Ti

and let T0
i = Ti n f gi g, for i = 1; :::; 2l + 1 . Consider the edge sets

E3 = f f i ; f 0
i ; i = 1; :::; 2l + 1g [ (

l[

i =1

T2i ) [ T2l+1 [ (
l � 1[

i =0

T0
2i +1 );

E4 = E3 [ F [ E0;

E 0
4 = ( E4 n g2l+1 ) [ f g1g:

Note that g1 =2 T0
1 and thus g1 =2 E4 , and that g2l+1 2 E4 . The edge sets E4 and E 0

4 can

b e obtained from E2 using recursively the edge-swapping op eration of Lemma 2.2.2.

Hence b oth E4 and E 0
4 induce k -edge-connected subgraphs of G. Moreover, we have

that xE4
and xE 0

4
b elong to F . Thus bxE4 = bxE 0

4 = � and therefore b(g2l+1 ) = b(g1) . As

g1 and g2l+1 are arbitrary edges of T1 and T2l+1 , resp ectively, it follows that b(e) = b(e0)
for all e 2 T1 and e0 2 T2l+1 . Moreover, we have that T1 and T2l+1 are arbitrary subsets

of [U1; U2] and [U2l+1 ; U1], resp ectively. This implies that b(e) = b(e0) for all e 2 [U1; U2]
and e0 2 [U2l+1 ; U1]. Consequently, by symmetry, we get

b(e) = � for all e 2 [Ui ; Ui +1 ]; i = 1; :::; 2l + 1; (2.23)

for some � 2 R:
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Now let

E5 = ( E4 n f f 1g) [ f e2l+1 g:

Using Lemma 2.2.2 and the fact that E4 induces a k -edge-connected subgraph of G,

we have that E5 induces a k -edge-connected subgraph of G. Moreover, xE5
b elongs

to F , implying that bxE4 = bxE5 = � . Hence b(f 1) = b(e2l+1 ) . In a similar way,

we can show that b(f 0
2l+1 ) = b(e2l+1 ) . As f 1 , f 0

2l+1 and e2l+1 are arbitrary edges of

[U2l+1 ; V1], [V2l+1 ; U2l+1 ] and [V2l+1 ; V1], resp ectively, we obtain that b(e) is the same for

all e 2 [U2l+1 ; V1] [ [V2l+1 ; U2l+1 ] [ [V2l+1 ; V1]. By exchanging the roles of V2l+1 , V1 , U2l+1

and Vi , Vi +1 , Ui , for i = 1; :::; 2l , we obtain by symmetry that

b(e) = � 0
i for all e 2 [Ui ; Vi ] [ [Vi ; Vi +1 ] [ [Vi +1 ; Ui ]; (2.24)

i = 1; :::; 2l + 1; for some � 0
i 2 R:

Consider the edge set

E 0
5 = ( E4 n f f 1g) [ f e1g:

Similarly, we can show that E 0
5 induces a k -edge-connected subgraph of G. As xE4

and

xE 0
5

b elong to F , it follows in a similar way that b(e1) = b(f 1) . From (2.24), we have

that � 0
1 = � 0

2l+1 . By symmetry, it then follows that � 0
i = � 0

j for i; j = 1; :::; 2l + 1 , i 6= j ,

and therefore

b(e) = � 0
for all e 2 [Ui ; Vi ] [ [Vi ; Vi +1 ] [ [Vi +1 ; Ui ]; (2.25)

for i = 1; :::; 2l + 1; for some � 0 2 R:

Let e 2 ([V2l+1 ; W] nF2l+1 ) [ [V2l+1 ; Vj ], j 2 f 2; :::; 2l � 1g. As b efore, we can observe

that E6 = ( E4nf f 0
2l+1 g)[f eg induces a k -edge-connected subgraph of G. Since xE6 2 F ,

this implies that bxE6 = bxE4 = � and hence b(e) = b(f 0
2l+1 ) . By (2.25), we then obtain

that b(e) = � 0
for all e 2 ([V2l+1 ; W] n F2l+1 ) [ [V2l+1 ; Vi ] for i 2 f 2; :::; 2l � 1g. By

exchanging the roles of V2l+1 and Vi , i = 1; :::; 2l , we obtain by symmetry that b(e) = � 0

for all e 2 ([Vi ; W] nFi ) [ [Vi ; Vj ], i = 1; :::; 2l + 1 and j 2 f 1; :::; 2l + 1g n f i � 1; i; i + 1g.

For any edge e b etween U2l+1 and either W , Uj , j 2 f 1; :::; 2l + 1g n f1; 2l; 2l + 1g, or

Vt , t 2 f 1; :::; 2l + 1g n f1; 2l + 1g, we can show, using Lemma 2.2.2 and the fact that

E4 induces a k -edge-connected subgraph of G, that

E7 = ( E4 n f f 0
2l+1 ; f 1g) [ f e; e2l+1 g

also induces a k -edge-connected subgraph of G. Since xE4
and xE7

b elong to F , we

have that bxE7 = bxE4 = � and b(f 0
2l+1 ) + b(f 1) = b(e) + b(e2l+1 ) . As by (2.25),



42 CHAPTER 2. THE K -EDGE-CONNECTED SUBGRAPH PROBLEM

b(f 0
2l+1 ) = b(f 1) = b(e2l+1 ) = � 0

, we get b(e) = � 0
. Here again, by exchanging the roles

of U2l+1 and Ui , i = 1; :::; 2l , we obtain that b(e) = � 0
for all e 2 [Ui ; W][ [Ui ; Uj ][ [Ui ; Vt ],

i = 1; :::; 2l + 1 , j 2 f 1; :::; 2l + 1g n f i; i + 1g and t 2 f 1; :::; 2l + 1g n f i � 1; i; i + 1g.

As xE2
and xE4

b elong to F , we have that bxE2 = bxE4 = � . Thus from (2.23) and

(2.25), we obtain that � = � 0
, and in consequence, the edges of E n (E0 [ F ) have all

the same co e�cient in bx � � . Since axE2 = bxE2 = � , this yields b(e) = 1 for all

e 2 E n (E0 [ F ) .

Thus we obtain that b= a, which ends the pro of of the theorem. �

We now describ e sp ecial cases in which inequalities (2.21) de�ne facets when k is even.

Consider a graph G = ( V; E) and an even integer k = 2q with q � 1, a generalized odd-

wheel con�guration is given by an integer l � 1, a set of p ositive integers f p1; :::; p2l+1 g
and a partition � = ( V0; V s

i ; i = 1; :::; 2l + 1; s = 0; :::; pi ) of V such that

i) G[V0] and G[V s
i ] are (k + 1) -edge connected, for s = 1; :::; pi and i = 1; :::; 2l + 1 ,

ii) j[V 0
i ; V0

i +1 ]j � 2q for i = 1; :::; 2l + 1 ,

iii) j[V s
i ; V s+1

i ]j � 2q for s = 0; :::; pi and i = 1; :::; 2l + 1 ,

iv) [V s
i ; V t

i ] = ; for s; t 2 f 1; :::; pi g, js � tj > 1 and (s; t) 6= (0 ; pi + 1) , and i =
1; :::; 2l + 1 ,

v) [V s
i ; V t

t ] = ; for s 2 f 1; :::; pi g, t 2 f 1; :::; ptg, i; t 2 f 1; :::; 2l + 1g, i 6= t (see Figure

2.3).

Let F 0
i b e an edge subset of [V0; Vpi

i ] of q (resp. q � 1) edges if q is o dd (resp. even)

and F =
2l+1[

i =1

F 0
i .

With a generalized o dd-wheel con�guration with q o dd (resp. even) we asso ciate the

following F -partition inequality induced by the partition � and F ,

x(� (� ) n F ) � q
2l+1X

i =1

pi + ql +
q+ 1

2
;

( resp. x(� (� ) n F ) � q
2l+1X

i =1

pi + ( q+ 1) l +
q+ 2

2
):

(2.26)
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edges of F

edges of � ( � ) n F

V 0
5

V 0
1

V 1
1

V 2
2

V 1
2

V 0
2

V 2
3V 2

4

V 1
4

V 0
4 V 0

3

V 1
3

V 2
5

V 1
5

V0

Figure 2.3: A generalized o dd-wheel con�guration with k = 4

Inequalities of typ e (2.26) will b e called generalized odd-wheel inequalities . We have

the following theorem given without pro of, since it follows the same line as that of

Theorem 2.2.5

Theorem 2.2.6 Inequalities (2.26) de�ne facets of k ECSP( G).

2.2.4 SP -partition inequalities

In [21], Chopra intro duces a class of valid inequalities for the k ECSP when the graph

G is outerplanar, k is o dd, and each edge can b e used more than once. Let G = ( V; E)
b e an outerplanar graph and k � 1 an o dd integer. He showed that if � = ( V1; :::; Vp) ,

p � 2, is a partition of V , then the inequality

x(� (V1; :::; Vp)) �
�

k
2

�
p � 1; (2.27)

is valid for k ECSP( G).

Didi Biha and Mahjoub [40] extended this result for general graphs and when each

edge can b e used at most once. They showed that if G is a graph and � = ( V1; :::; Vp) ,

p � 2, is a partition of V such that G� is series-parallel and k is o dd, then inequality
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(2.27) is valid for k ECSP( G). They called inequalities (2.27) SP -partition inequalities

(SP stands for series-parallel). They also describ ed necessary conditions for inequality

(2.27) to b e facet de�ning, and showed that if G is series-parallel and k is o dd, then

k ECSP( G) is de�ned by the trivial, cut and SP -partition inequalities. Further con-

ditions for inequalities (2.27) to b e facet de�ning are given in the following theorems.

But b efore, we give the next two lemmas which describ e structural prop erties of the

solutions of the k ECSP which satisfy inequalities (2.27) with equality. Note that, in

the following results, the indices are taken mo dulo p.

Lemma 2.2.5 [40] Let x 2 P(G; k) and � = ( V1; :::; Vp) , p � 2, a partition of V which

induces a series-paral lel graph. If the SP -partition inequality induced by � is tight for

x , then

x([Vi ; Vj ]) �
�

k
2

�
; for al l i; j 2 f 1; :::; pg; i 6= j: (2.28)

Moreover, if (2.28) is tight for x for a given i and j with i < j , then the partition � 0

obtained by contracting Vi and Vj is also tight for x .

Lemma 2.2.6 Let x be an integer solution of P(G; k) and � = ( V1; :::; Vp) , p � 2, be

a partition of V such that G� is series-paral lel. Let also t 2 f 1; :::; pg, such that the

set Vt is adjacent to exactly two elements of � , say Vt � 1 and Vt+1 . Then x satisi�es at

least one of these inequalities

x([Vt ; Vj 0 ]) �
�

k
2

�
with j 0 2 f t � 1; t + 1g: (2.29)

Moreover, if x satisi�es with equality the inequality (2.27) induced by � , then

x([Vt ; Vj 0 ]) =
�

k
2

�
:

Pro of. Let x 2 RE
b e an integer solution of P(G; k) . Supp ose, w.l.o.g., that

x([Vt ; Vt � 1]) � x([Vt ; Vt+1 ]) and that j 0 = t � 1. As x 2 P(G; k) , we have that

x(� (Vt )) = x([Vt ; Vt � 1]) + x([Vt ; Vt+1 ]) � k:

As x is integer, this yields x([Vt ; Vt � 1]) �
�

k
2

�
.

Now if x satis�es with equality the SP -partition inequality induced by � , then, by

Lemma 2.2.5, x([Vt ; Vt � 1]) �
�

k
2

�
, implying, together with the previous result, that

x([Vt ; Vt � 1]) =
�

k
2

�
:
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�

Theorem 2.2.7 Let G = ( V; E) be a (k + 1) -edge connected graph and k � 3 an odd

integer. Let � = ( V1; :::; Vp) , p � 2, be a partition of V such that G� is series-paral lel.

The SP -partition inequality induced by � de�nes a facet of k ECSP( G), di�erent from

the trivial inequalities, only if

i) G� is 2-node-connected,

ii) G� is outerplanar,

iii) j[Vi ; Vi +1 ]j �
�

k
2

�
for i = 1; :::; p.

Pro of.

i) First observe that G� is k -no de-connected with 1 � k � 2. In fact, since G� is

series-parallel, it contains a no de which is adjacent to exactly two other no des. This

implies that the no de-connectivity of G� is at most 2. Moreover, as G is connected,

G� is also connected. Thus k � 1. We will show in the following that in fact k = 2 .

Supp ose, on the contrary, that k = 1 , that is G� is 1-no de-connected. Thus there exists

a no de vi 0 2 V� and two no de sets W1 and W2 of V� such that (f vi 0 g; W1; W2) forms a

partition of V� and [W1; W2] = ; (see Figure 2.4).

vi 0

W1 W2

Figure 2.4: A 1-no de-connected graph

Let pi = jWi j , i = 1; 2, and � 1 (resp. � 2 ) b e the partition obtained by contracting

the sets of � which corresp ond to the no des of W2 (resp. W1 ) toghether with those

corresp onding to vi 0 . Clearly, G� i , i = 1; 2, is series-parallel. Thus, the following

inequalities are valid for k ECSP( G)

x(� (� i )) �
�

k
2

�
(pi + 1) � 1; for i = 1; 2: (2.30)
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As [W1; W2] = ; , by summing the inequalities (2.30), we get

x(� (� )) �
�

k
2

�
(p1 + p2 + 2) � 2 =

�
k
2

�
p � 1 +

�
k
2

�
� 1: (2.31)

As k � 3, we have that

�
k
2

�
� 1 > 0, implying that the inequality (2.27) induced by

� is dominated by those induced by � 1 and � 2 , and hence, cannot de�ne a facet.

ii) Supp ose that G� is series-parallel but not outerplanar, that is one cannot draw G�

in the plane as a cycle with non crossing chords. Thus, there exist two consecutive

sets of � , say Vi and Vi +1 , such that there exist two sets, W 1
i , W 2

i , of elements of �
satisfying the following conditions (see Figure 2.5)

a) [W 1
i ; W 2

i ] = ; ,

b) [W j
i ; Vi ] 6= ; 6= [ W j

i ; Vi +1 ] for j = 1; 2.

V1

V3V6

V5 V4

V2

W 1
1

W 2
4 W 1

4

W 2
1

Figure 2.5: A partition inducing a series-parallel but not outerplanar graph

Let I = f i 2 f 1; :::; pg j Vi ; Vi +1 2 � and there exist W 1
i ; W 2

i � V� satisfying

Conditions a) and b) g. Hence, I 6= ; . Let � 0
b e the partition obtained by contracting
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together the sets Vi , Vi +1 , W 1
i , W 2

i , for every i 2 I . Clearly, G� 0
is outerplanar. Let

p1
i (resp. p2

i ) b e the numb er of elements of � that are included in W 1
i (resp. W 2

i ), and

pi = p1
i + p2

i . Also let r =
X

i 2 I

pi and � W j
i

, i 2 I , j 2 f 1; 2g, b e the partition obtained

from � by contracting together every set of � which is not in W j
i (see Figure 2.6).

V 2V 1

V 3

V 5 V 4

V 6

partition � 0

V 2V 1

V 6 V 3

V 4V 5

partition � W 2
1

Figure 2.6: Two partitions � 0
and � W j

i

Obviously, the graph G�
W j

i

is series-parallel. Thus, the following inequalities are valid

for k ECSP( G),

x(� (� 0)) �
�

k
2

�
(p � r � j I j) � 1 (inequality (2.27) induced by � 0); (2.32)

x(� (� W 1
i
)) �

�
k
2

�
(p1

i + 1) � 1; for all i 2 I ( inequality (2.27) induced by � W 1
i
);

(2.33)

x(� (� W 2
i
)) �

�
k
2

�
(p2

i + 1) � 1; for all i 2 I ( inequality (2.27) induced by � W 2
i
;

(2.34)

x([Vi ; Vi +1 ]) � 0 (trivial inequalities ): (2.35)

By summing these inequalities, we get

x(� (� )) �
�

k
2

�
p � 1 + jI j(

�
k
2

�
� 2): (2.36)

If k = 3 , the right hand side of (2.36) is the same as that of (2.27) induced by

� . Therefore inequality (2.27) is redundant with resp ect to (2.32), (2.33), (2.34) and

(2.35), and hence cannot de�ne a facet.
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If k � 4, since jI j � 1, the right hand side of (2.36) is greater than that of (2.27).

Therefore, (2.27) is dominated by (2.32), (2.33), (2.34) and (2.35), and hence cannot

de�ne a facet.

iii) Let ax � � denotes the SP -partition inequality induced by � and supp ose that this

inequality de�nes a facet of k ECSP( G) di�erent from the trivial inequalities. Supp ose

that there exists an integer i 2 f 1; :::; pg such that j[Vi ; Vi +1 ]j � k� 1
2 . Let ei b e a �xed

edge of [Vi ; Vi +1 ]. As ax � � is di�erent from inequality x(ei ) � 1, there exists a

solution x 2 k ECSP( G) such that ax = � and x(ei ) = 0 . We distinguish two cases.

Case 1. The set Vi or Vi +1 is exactly adjacent to two elements of � . W.l.o.g. we will

supp ose that Vi is adjacent to Vi � 1 and Vi +1 only. As j[Vi ; Vi +1 ]j � k� 1
2 and x(ei ) = 0 ,

we have x([Vi ; Vi +1 ]) � k� 1
2 � 1 and x([Vi � 1; Vi ]) � k+1

2 + 1 , which contradicts Lemma

2.2.5.

Case 2. The sets Vi and Vi +1 are b oth adjacent to at least three elements of � (see

Figure 2.7).

V2

V3

V6

V5

V1

V7

V4

Figure 2.7: The sets V1 and V2 are b oth adjacent to at least three elements of �

Observe that, as G� is outerplanar and hence series-parallel, one can obtain from � a

two-size partition by applying rep eatidly the following op eration. Let � j = ( V j
1 ; :::; V j

pj
)

b e a SP -partition of G and an element V j
i 0

incident to exactly two elements V j
i 0 � 1 and

V j
i 0+1 of � j . By Lemma 2.2.6, we have either x([V j

i 0
; V j

i 0 � 1]) = k+1
2 or x([V j

i 0
; V j

i 0+1 ]) =
k+1

2 . W.l.o.g., we will supp ose that x([V j
i 0

; V j
i 0 � 1]) = k+1

2 since i0 � 1 and i0 + 1 play

the same role. Then, the op eration consists in contracting the sets V j
i 0 � 1 and V j

i 0
and
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considering the partition � j +1 = ( V j +1
1 ; :::; V j +1

pj +1
) where

V j +1
i = V j

i for i = 1; :::; i0 � 2;

V j +1
i 0 � 1 = V j

i 0 � 1 [ V j
i 0

;

V j +1
i = V j

i +1 for i = i0; :::; pj � 1:

We will say that V j
i 0

is merged with V j
i 0 � 1 . Note that each partition � j

induces an

outerplanar subgraph of G and that we apply p � 2 times the op eration to obtain a

two-size partition from � . Also note that, by Lemma 2.2.5, the SP -partition inequality

induced by each partition � j
is tight for x .

Let � j 0
b e the �rst partition obtained by the application of this pro cedure and such

that there exists a no de set V j 0
r of � j 0

which is adjacent to exactly two elements, say

V j 0
r � 1 and V j 0

r +1 , and such that either Vi � V j 0
r or Vi +1 � V j 0

r . W.l.o.g., we will supp ose

that Vi � V j 0
r and Vi +1 � V j 0

r +1 . Remark that � j 0
is obtained by the application of

the pro cedure to � j 0 � 1
and V j 0 � 1

s , for some s 2 f 1; :::; pj 0 � 1g, with V j 0 � 1
s adjacent to

exactly two elements of � j 0 � 1
.

Since � j 0
is the �rst partition that we have meet during the successive applica-

tions of the pro cedure and which satis�es the ab ove condition, the partition � j 0 � 1 =
(V j 0 � 1

1 ; :::; V j 0 � 1
pj 0 � 1

) is necessarily such that

1. V j 0 � 1
s is adjacent to exactly two elements V j 0 � 1

s� 1 and V j 0 � 1
s+1 ,

2. Vi � V j 0 � 1
s� 1 and Vi +1 � V j 0 � 1

s+2 ,

3. V j 0 � 1
s� 1 is adjacent to exactly three elements and V j 0 � 1

s+2 is adjacent to at least three

elements.

One can supp ose, w.l.o.g., that V j 0 � 1
s has b een merged with V j 0 � 1

s� 1 to obtain � j 0
(see

Figure 2.8).
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V j 0 � 1
s+2 = V j 0

r +1

V j 0 � 1
s+1 = V j 0

r

V j 0 � 1
s

V j 0 � 1
s� 1

V j 0 � 1
s+3 = V j 0

r +2

V j 0 � 1
s+4 = V j 0

r +3

V j 0
r � 1 = V j 0 � 1

s [ V j 0 � 1
s� 1

V2

V3

V6

V5

V4

V1

V7

Figure 2.8: Partitions � j 0 � 1
and � j 0

.

Now, since by assumption Vi � V j 0
r and Vi +1 � V j 0

r +1 , we have that j[V j 0
r ; V j 0

r +1 ]j �
j[Vi ; Vi +1 ]j . We are going to show that in fact j[V j 0

r ; V j 0
r +1 ]j = j[Vi ; Vi +1 ]j . Supp ose the

contrary, that is to say that there exists an edge e 2 [V j 0
r ; V j 0

r +1 ]n[Vi ; Vi +1 ]. Clearly, there

exist two elements Vt and Vt0
of � such that e 2 [Vt ; Vt0] and Vt � V j 0

r and Vt0 � V j 0
r +1 .

Since G� is outerplanar, and hence its no des can b e drawn on a cycle with no crossing

chords, and since Vi and Vi +1 are consecutive on this cycle, the no de set Vt comes b efore

Vi and Vt0
comes after Vi +1 on this cycle (see Figure 2.9 for an illustration).
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V j 0
r � 1 = V j 0 � 1

s [ V j 0 � 1
s� 1

V j 0 � 1
s+3 = V j 0

r +2

V j 0 � 1
s+4 = V j 0

r +3

V j 0 � 1
s+2 = V j 0

r +1

V j 0 � 1
s+1 = V j 0

r

V j 0 � 1
s

V j 0 � 1
s� 1

V2

V3

V6

V5

V4

V1

V7

Figure 2.9: An edge of e 2 [V j 0
r ; V j 0

r +1 ] n [V1; V2]. Here e 2 [Vt ; Vt0] with t = 7 and t0 = 3 .

However, in this situation, any edge e 2 [Vt ; Vt0] is a chord which necessarily crosses

the edges of � (Vi [ Vi +1 ) (see Figure 2.9), contradicting the fact that G� is outerplanar.

Thus j[V j 0
r ; V j 0

r +1 ]j = j[Vi ; Vi +1 ]j . Therefore, as j[Vi ; Vi +1 ]j � k� 1
2 and x(ei ) = 0 , we have

that x([V j 0
r ; V j 0

r +1 ]) � k� 1
2 � 1 and x([V j 0

r ; V j 0
r � 1]) � k+1

2 + 1 , which contradicts Lemma

2.2.5 and ends the pro of. �

The following theorem gives some su�cient conditions for inequalities (2.27) to b e

facet de�ning.

Theorem 2.2.8 Let G = ( V; E) be a graph and k � 3 an odd integer. Let � =
(V1; :::; Vp) , p � 2, be a partition of V such that G� is outerplanar and 2-node-connected.

Then the SP -partition inequality induced by � is facet de�ning for k ECSP( G), if the

fol lowing conditions hold

i) G[Vi ] is (k + 1) -edge connected for i = 1; :::; p,

ii) j[Vi ; Vi +1 ]j �
�

k
2

�
, i = 1; :::; p

(see Figure 2.10 for an il lustration with k = 3 ).
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V1

V2
V6

V4

V3
V5

Figure 2.10: An outerplanar con�guration with k = 3

Pro of. Note that since G� is outerplanar and Conditions 1) and 2) hold, G is

(k + 1) -edge connected. It then follows that k ECSP( G) is full dimensional. Let

us denote by ax � � the SP -partition inequality induced by � and let F = f x 2
k ECSP (G) j ax = � g. Clearly, F is a prop er face of k ECSP( G). Now supp ose that

there exists a facet de�ning inequality bx � � di�erent from the trivial inequalities

such that F � f x 2 k ECSP (G) j bx = � g. We will show as b efore that b= a.

Let Ti b e an edge subset of [Vi ; Vi +1 ], i = 1; :::; p; of

k+1
2 edges and let T0

i = Ti n f gi g,

where gi is a �xed edge of Ti . Consider

E0 =
p[

i =1

E(Vi );

E1 = (
p[

i =1

Ti ) n f gi 0g for some i0 2 f 1; :::; pg;

E2 = E1 [ E0:

Note that gi 0 =2 E2 and gi 0+1 2 E2 . Since by Condition 1) the subgraphs induced by

the no de sets V1; :::; Vp are (k + 1) -edge connected, it is not hard to see that E2 and

E 0
2 = ( E2 n f gi 0+1 g) [ f gi 0 g induce k -edge-connected subgraphs of G. Since xE2

and

xE 0
2

b elong to F , we have that bxE2 = bxE 0
2 = � and hence b(gi 0 ) = b(gi 0+1 ) . As gi 0 and

gi 0+1 are arbitrary edges of Ti 0 and Ti 0+1 , resp ectively, it follows that b(e) = b(e0) for all

e 2 Ti 0 and e0 2 Ti 0+1 . Moreover, since Ti 0 and Ti 0+1 are arbitrary subsets of [Vi 0 ; Vi 0+1 ]
and [Vi 0+1 ; Vi 0+2 ], resp ectively, we obtain that b(e) = b(e0) for all e 2 [Vi 0 ; Vi 0+1 ] and
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e0 2 [Vi 0+1 ; Vi 0+2 ], i0 = 1; :::; p. Consequently, by symmetry, we get

b(e) = b(e0) for all e; e0 2
p[

i =1

[Vi ; Vi +1 ]: (2.37)

Now let e 2 [Vi 0 ; Vj 0 ], i0; j 0 2 f 1; :::; pg with ji0 � j 0j > 1. Note that T0 = Tp ,

T� 1 = Tp� 1 and T0
0 = T0

p . Consider the edge sets

E4 = ( E2 n f gi 0 � 1g) [ f eg;

E 0
4 = ( E4 n f eg) [ f gi 0g:

Using Lemma 2.2.2 and the fact that E2 induces a k -edge-connected subgraph of G,

we can see that E4 and E 0
4 induce k -edge-connected subgraphs of G. Since xE4

and

xE 0
4

b elong to F , it follows that bx4 = bxE 0
4 = � , and hence b(e) = b(gi 0 ) . By (2.37)

this yields

b(e) = b(e0) for all e; e0 2 � (� ):

Since axE2 = bxE2 = � , we obtain that b(e) = 1 for all e 2 � (� ) .

Next, we will show that b(e) = 0 for all e 2 E0 . Consider the edge set

E5 = E2 n f eg for some e 2 E0:

Since G[Vi ], i = 1; :::; p, are (k + 1) -edge connected, E5 induces a k -edge-connected

subgraph of G. As xE2
and xE5

b elong to F , we have that bxE2 = bxE5 = � , and thus

b(e) = 0 for all e 2 E0 .

In consequence we get b= a and the pro of is complete. �

Chopra [21] describ ed a lifting pro cedure for inequalities (2.27) which can b e pre-

sented as follows. Let G = ( V; E) b e a graph and k � 3 an o dd integer. Let

G0 = ( V; E[ L) b e a graph obtained from G by adding an edge set L . Let � = ( V1; :::; Vp)
b e a partition of V such that G� is series-parallel. Then the following inequality is valid

for k ECSP( G0
)

x(� G(V1; :::; Vp)) +
X

e2 L \ � G 0(V1 ;:::;Vp)

a(e)x(e) �
�

k
2

�
p � 1; (2.38)
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where a(e) is the length (in terms of edges) of a shortest path in G� b etween the

endno des of e, for all e 2 L \ � G0(V1; :::; Vp) .

We will call inequalities of typ e (2.38) lifted SP -partition inequalities . Chopra [21]

also showed that, when G is outerplanar, inequality (2.38) de�nes a facet of k ECSP( G0
)

if G is maximal outerplanar, that is to say G is outerplanar and if we add a new edge

in G the new graph is not outerplanar. In the following we show that under the same

conditions, an inequality of typ e (2.38) also de�nes a facet of k ECSP( G).

Before this, we give the following lemma whose pro of can b e found in [21].

Lemma 2.2.7 [21] Let G = ( V; E) be a maximal outerplanar graph which is 2-node

connected. Let u; v be two nodes of G and P1 and P2 two node-disjoint paths between

u and v . Also let U = f u0; :::; ur 1g, r1 � 2 and W = f w0; :::; wr 2g, r2 � 2, the node

sets of P1 and P2 respectively, with u0 = w0 = u and ur 1 = ur 2 = v . Remark that

U \ W = f u; vg and V = U [ W . If l � 2 is the length of a shortest path between u
and v in G, then there exists at least l � 1 egdes e = ui wi such that ui 2 U n f u; vg and

wi 2 W n f u; vg.

Theorem 2.2.9 Let G = ( V; E) be a graph and � = ( V1; :::; Vp) , p � 2, be a partition

of V such that G� = ( V� ; E� ) is outerplanar. Let G = ( V;E) be a graph such that

E = E [ f e1; :::; elg, l � 1. The lifted SP -partition inequality induced by � on G
de�nes a facet of k ECSP( G) if the fol lowing conditions holds.

1. G� is 2-node-connected and maximal outerplanar,

2. j[Vi ; Vi +1 ]j �
�

k
2

�
, i = 1,...,p, (modulo p),

3. G[Vi ] is (k + 1) -edge connected for al l i = 1; :::; p.

Pro of. Note that if Conditions 1)-3) hold, then G and G are b oth (k + 1) -edge

connected. It then follows that k ECSP( G ) is full dimensional.

Let us denote by ax � � , the lifted SP -partition inequality induced by � on G and

F = f x 2 k ECSP( G ) j ax = � g. By Conditions 1)-3), the restriction of ax � � to G
de�nes a facet of k ECSP( G). Thus, F 6= ; and is a prop er face of k ECSP( G ). Now

supp ose that there exists a facet de�ning inequality bx � � di�erent from the trivial

inequalities such that F � f x 2 k ECSP( G ) j bx = � g. We will show that b= a.
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Let V� = f v1; :::; vpg, where vi corresp onds to the set Vi , i = 1; :::; p, and let G� =
(V� ; E � ) b e the subgraph of G induced by � . Note that E � � E � . Since Conditions

1)-3) hold, by Theorem 2.2.8, the SP -partition inequality induced by � on G de�nes a

facet of k ECSP( G). Using a pro of similar to that of Theorem 2.2.8, one can show that

b(e) = 0 , for all e 2 (
p[

i =1

E(Vi )) , and b(e) = 1 , for all e 2 E � . In the following, we are

going to show that b(e) = a(e) for all e 2 f e1; :::; elg. Recall that for all e 2 E � n E � ,

a(e) is the length of a shortest path in G� b etween the endno des of e.

Let Ti b e an edge subset of [Vi ; Vi +1 ], i = 1; :::; p, of

k+1
2 edges and T0

i = Ti n f gi g,

where gi is a �xed edge of Ti . Let e = uv 2 f e1; :::; elg and P1 and P2 b e two paths

in G� b etween u and v . Also let r b e the length of a shortest path b etween u and

v in G� . Let U and W denote the no de sets of P1 and P2 resp ectively. By Lemma

2.2.7, there exist r � 1 edges f i 2 E � , i 2 f 1; :::; r � 1g, whose endno des are in U and

W , resp ectively. We let wi 0 = u and wi 0 ; :::; wi 0+ r � 1 b e the endno des of the edges f i ,

i = 1; :::; r � 1, in W .

Let

E 1 = f f 1; :::; f r � 1g [ (
r � 1[

j =0

T0
i 0+ j ) [ (

i 0 � 1[

i =1

Ti ) [ (
p[

i = i 0+ r

Ti ) [ (
p[

i =1

)E(Vi ):

Obviously, E 1 induces a solution of the k ECSP on G and its incidence vector, xE 1
,

satis�es ax � � with equality. Let gi 2 Ti , for i 2 f 1; :::; pg n f i0; :::; i0 + r � 1g, and

consider the edge set

E 2 = ( E 1 [ f eg) n f gi ; i = i0 � r; :::; i 0 � 1g:

It is not hard to see that E 2 induces a solution of the k ECSP on G. Moreover, xE 2

satis�es ax � � with equality. This implies that bxE 1 = bxE 2 = � . Thus,

bxE 2 = bxE 1 + b(e) �
i 0 � 1X

i = i 0 � r

b(gi ):

Since gi 2 E � , i = i0 � r; :::i 0 � 1, and hence b(gi ) = 1 , we have that b(e) = r .

Therefore, for an edge e 2 f e1; :::; elg, b(e) = a(e) .

From this, we get b(e) = a(e) , for all e 2 E and hence, we have b = a, which ends

the pro of of the theorem. �
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2.2.5 Partition Inequalities

In this section we present a further class of inequalities, valid for k ECSP( G), intro duced

by Grötschel et al. in [66], that generalizes the cut inequalities. These inequalities,

called partition inequalities , are de�ned as follows.

Let � = ( V1; :::; Vp) , p � 3, b e a partition of V . The partition inequality induced by

� is given by

x(� (V1; :::; Vp)) �
�

kp
2

�
: (2.39)

If kp is even, then inequality (2.39) is redundant with resp ect to the cut inequalities.

Grötschel et al. [66] gave su�cient conditions for the partition inequalities (2.39) to

b e facet de�ning.

Note that the partition inequalities are not a sp ecial case of the F -partition in-

equalities. In fact, if we consider a partition � = ( V0; V1; :::; Vp) , p � 2, the partition

inequality induced by � is

x(� (V0; V1; :::; Vp)) �
�

k(p + 1)
2

�
: (2.40)

However the F -partition inequality induced by � and F = ; is given by

x(� (V0; V1; :::; Vp)) �
�

kp
2

�
: (2.41)

One can remark that inequality (2.40) dominates inequality (2.41).

2.3 Reduction op erations

In this section, we are going to describ e some graph reduction op erations which will b e

utile for our Branch-and-Cut algorithm. These op erations are based on the concept of

critical extreme p oints of P(G; k) intro duced by Fonlupt and Mahjoub [49] for k = 2
and extended by Didi Biha and Mahjoub [39] for k � 3.

2.3.1 Description

Before describing these op erations, we shall �rst intro duce some notation and de�nition.

Let G = ( V; E) b e a graph and k � 2 an integer. If x is a solution of P(G; k) , we will
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denote by E0(x) , E1(x) and E f (x) the sets of edges e 2 E such that x(e) = 0 , x(e) = 1
and 0 < x(e) < 1, resp ectively. We also denote by Cd(x) the set of degree tight cuts

� (u) such that � (u) \ E f (x) 6= ; , and by Cp(x) the set of prop er tight cuts � (W) with

� (W) \ E f (x) 6= ; . Let x b e an extreme p oint of P(G; k) . Thus there is a set of cuts

C �
p(x) � Cp(x) such that x is the unique solution of the system

S(x)

8
>>><

>>>:

x(e) = 0 for all e 2 E0(x);
x(e) = 1 for all e 2 E1(x);
x(� (u)) = k for all � (u) 2 Cd(x);
x(� (W)) = k for all � (W) 2 C �

p(x):

Note that the system S(x) cannot contain an equation x(� (W)) = k such that � (W) \
E f (x) = ; . Such an equation is redundant with resp ect to x(e) = 0 , e 2 E0(x) , and

x(e) = 1 , e 2 E1(x) .

Supp ose that x is fractional. Let x0
b e a solution obtained by replacing some (but at

least one) fractional comp onents of x by 0 or 1 (and keeping all the other comp onents

of x unchanged). If x0
is a p oint of P(G; k) , then it can b e written as a convex

combination of extreme p oints of P(G; k) . If y is such an extreme p oint, then y is said

to b e dominated by x , and we write x � y . Note that if x dominates y , then f e 2
E j 0 < y(e) < 1g � f e 2 E j 0 < x(e) < 1g, f e 2 E j x(e) = 0 g � f e 2 E j y(e) = 0 g
and f e 2 E j x(e) = 1 g � f e 2 E j y(e) = 1 g. The relation � de�nes a partial ordering

on the extreme p oints of P(G; k) . The minimal elements of this ordering ( i.e. , the

extreme p oints x for which there is no extreme p oint y such that x � y ) corresp ond

to the integer extreme p oints of P(G; k) . The minimal extreme p oints of P(G; k) are

called extreme p oints of rank 0. An extreme p oint x is said to b e of rank p, if x only

dominates extreme p oints of rank � p� 1 and if it dominates at least one extreme p oint

of rank p � 1. We notice that if x is an extreme p oint of rank 1 and if we replace one

fractional comp onent of x by 1, keeping unchanged the other integral comp onents, we

obtain a feasible solution x0
of P(G; k) which can b e written as a convex combination

of integer extreme p oints of P(G; k) .

Didi Biha and Mahjoub [39] intro duced the following reduction op erations with re-

sp ect to a solution x of P(G; k) .

� 1 : delete an edge e 2 E such that x(e) = 0 ;

� 2 : contract a no de subset W � V such that G[W] is k -edge-connected and x(e) = 1
for all e 2 E(W) ;
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� 3 : contract a no de subset W � V such that jWj � 2, jWj � 2, j� (W)j = k and

E(W) contains at least one edge with fractional value;

� 4 : contract a no de subset W � V such that jWj � 2, jWj � 2, G[W] is

�
k
2

�
-edge

connected, j� (W)j = k + 1 and x(e) = 1 for all e 2 E(W) .

Starting from a graph G and a solution x 2 P(G; k) and applying � 1 , � 2 , � 3 , � 4 , we

obtain a reduced graph G0
and a solution x0 2 P(G0; k) . Didi Biha and Mahjoub [39]

showed that x0
is an extreme p oint of P(G0; k) if and only if x is an extreme p oint of

P(G; k) . Moreover, they showed the following results.

Lemma 2.3.1 [39] x0
is an extreme point of rank 1 of P(G0; k) if and only if x is an

extreme point of rank 1 of P(G; k) .

Lemma 2.3.2 [39] If C �
p(x) = ; , then the graph induced by E f (x) is an odd cycle

C � E such that

i) x(e) = 1
2 for al l e 2 C ,

ii) x(� (u)) = k for al l u 2 V(C) .

An extreme p oint x of P(G; k) will b e said critical if it is of rank 1 and none of the

op erations � 1 , � 2 , � 3 , � 4 can b e applied to it. If such an extreme p oint satis�es the

assumption of Lemma 2.3.2, then it violates the following F -partition inequality

X

e2 C

x(e) �
jCj + 1

2
:

Hence the critical extreme p oints of P(G; k) that satisfy the assumption of Lemma

2.3.2 can b e separated in p olynomial time.

We will use op erations � 1 , � 2 , � 3 , � 4 in our Branch-and-Cut algorithm for the k ECSP.

As we will see, we use them as a prepro cessing for the separation pro cedures.

2.3.2 Reduction op erations and valid inequalities

Given a fractional solution x of P(G; k) , we let G0 = ( V 0; E0) and x0
b e obtained by

rep eated applications of op erations � 1 , � 2 , � 3 , � 4 with resp ect to x .

As p ointed out ab ove, x0
is an extreme p oint of P(G0; k) if and only if x is an extreme

p oint of P(G; k) . Moreover, we have the following lemmas which can b e easily seen.
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Lemma 2.3.3 Let a0x � � be an F -partition inequality (resp. partition inequality)

valid for k ECSP( G0
) induced by a partition � 0 = ( V 0

0; V 0
1; :::; V0

p) , p � 2, (resp. � 0 =
(V 0

1; :::; V0
p) , p � 3) of V 0

. Let � = ( V0; V1; :::; Vp) , p � 2, (resp. � = ( V1; :::; Vp) , p � 3)

be the partition of V obtained by expanding the subsets V 0
i of � 0

. Let ax � � be an

inequality such that

a(e) =

8
<

:

a0(e) for al l e 2 E 0;
1 for al l e 2 (E n E 0) \ � G(� );
0 otherwise :

Then ax � � is valid for k ECSP( G). Moreover, if a0x � � is violated by x0
, then

ax � � is violated by x .

Lemma 2.3.4 Let a0x � � be an odd path inequality (resp. SP -partition inequality)

valid for k ECSP( G0
) induced by a partition � 0 = ( W 0

1; W 0
2; V0

1; :::; V0
2p) , p � 2 (resp.

� = ( V 0
1; :::; V0

p) , p � 3). Let � = ( W1; W2; V1; :::; V2p) , p � 2 (resp. � = ( V1; :::; Vp) ,

p � 3), be the partition of V obtained by expanding the elements of � 0
. Let ax � �

be the corresponding lifted odd path inequality (resp. lifted SP -partition inequality)

obtained from a0x � � by application of the lifting procedure described in Section 2.2.2

(resp. Section 2.2.4) for the edges of E n E 0
. Then ax � � is violated by x , if a0x � �

is violated by x0
.

Lemmas 2.3.3 and 2.3.4 show that lo oking for an o dd path, F -partition, SP -partition

or a partition inequality violated by x reduces to lo oking for such inequality violated by

x0
on G0

. Note that this pro cedure can b e applied for any solution of P(G; k) and may, in

consequence, p ermit to separate fractional solutions which are not necessarily extreme

p oints of P(G; k) . In consequence, for more e�ciency, our separation pro cedures will

b e p erformed on the reduced graph G0
. The violated inequalities generated in G0

with

resp ect to x0
are lifted to violated inequalities in G with resp ect to x using Lemmas

2.3.3 and 2.3.4.



Chapter 3

Branch-and-Cut algorithm for the

k ECSP

In this chapter, we describ e a Branch-and-Cut algorithm for the k ECSP. Our aim is to

address the algorithmic applications of the theoritical results presented in the previous

sections and describ e some strategic choices made in order to solve that problem. So,

let us assume that we are given a graph G = ( V; E) and a weight vector w 2 RE

asso ciated with the edges of G. Let k � 3 b e the connectivity requirement for each

no de of V .

3.1 Branch-and-Cut algorithm

3.1.1 Description

We describ e the framework of our algorithm. To start the optimization we consider

the following linear program given by the degree cuts asso ciated with the vertices of

the graph G together with the trivial inequalities, that is

Min

X

e2 E

w(e)x(e)

x(� (u)) � k for all u 2 V;

0 � x(e) � 1 for all e 2 E:

The optimal solution y 2 RE
of this relaxation of the k ECSP is feasible for the problem

if y is an integer vector that satis�es all the cut inequalities. Usually, the solution y is
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not feasible for the k ECSP, and thus in each iteration of the Branch-and-Cut algorithm,

it is necessary to generate further inequalities that are valid for the k ECSP but violated

by the current solution y . For this, one has to solve the so-called separation problem .

This consists, given a class of inequalities, in deciding whether the current solution

y statis�es all the inequalities of this class, and if not, in �nding an inequality that

is violated by y . An algorithm solving this problem is called a separation algorithm .

The Branch-and-Cut algorithm uses the inequalities previously describ ed and their

separations are p erformed in the following order

1. cut inequalities,

2. SP -partition inequalities,

3. o dd path inequalities,

4. F -partition inequalities,

5. partition inequalities.

We remark that all inequalities are global ( i.e. , valid for all the Branch-and-Cut

tree) and several inequalities may b e added at each iteration. Moreover, we go to

the next class of inequalities only if we haven't found any violated inequalities in the

current class. Our strategy is to try to detect violated inequalities at each no de of the

Branch-and-Cut tree in order to obtain the b est p ossible lower b ound and thus limit

the numb er of generated no des. Generated inequalities are added by sets of 200 or

fewer at a time.

Now we describ e the separation pro cedures used in our Branch-and-Cut algorithm.

These are all heuristic pro cedures except that for the cut inequalities which is p erformed

using an exact p olynomial-time algorithm. The pro cedures are applied on G0
with

weights (y0(e); e 2 E 0) asso ciated with its edges where y0
is the restriction on E 0

of the

current LP-solution y ( G0
and y0

are obtained by rep eated applications of op erations

� 1 , � 2 , � 3 , � 4 ).

3.1.2 Separation of cut inequalities

The separation of the cut inequalities (2.3) can b e p erformed by computing minimum

cuts in G0
. This can b e done in p olynomial time using Gus�eld algorithm [68]. This

algorithm pro duces the so-called Gomory-Hu tree with the prop erty that for all pairs
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of no des s, t 2 V 0
, the minimum (s; t) -cut in the tree is also a minimum (s; t) -cut in the

graph G0
. The algorithm requires jV 0j � 1 maximum �ow computations. The maximum

�ow computations are handled by the e�cient Goldb erg and Tarjan algorithm [58] that

runs in O(m0n0log n02

m0 ) time where m0
and n0

are the numb er of edges and no des of G0
,

resp ectively. Thus our separation algorithm for the cut inequalities is exact and runs

in O(m0n02 log n02

m0 ) time.

3.1.3 Separation of o dd path inequalities

In what follows, we consider the separation of the o dd path inequalities (2.4). For this,

we need the following lemma.

Lemma 3.1.1 Let x 2 RE
be a fractional solution of P(G; k) and � = ( W1; W2; V1; :::; V2p) ,

p � 2, a partition of V , which induces an odd path con�guration. If each edge set

[Vi ; Vi +1 ], i = 1; :::; 2p � 1, contains an edge with fractional value and

x([Vi � 1; Vi ]) + x([Vi ; Vi +1 ]) � 1 for i = 2; :::; 2p � 1;

then the odd path inequality induced by � is violated by x .

Pro of. As x([Vi � 1; Vi ]) + x([Vi ; Vi +1 ]) � 1, i = 2; :::; 2p � 1, we have that

x([V2s� 1; V2s]) + x([V2s; V2s+1 ]) � 1 for s = 1; :::; p � 1; (3.1)

x([V2s; V2s+1 ]) + x([V2s+1 ; V2s+2 ]) � 1 for s = 1; :::; p � 1: (3.2)

By multiplying inequality (3.1) by

p� s
p and inequality (3.2) by

s
p and summing the

resulting inequalities, we obtain

X

i 2 I

x([Vi ; Vi +1 ]) +
X

i 2 I

p � 1
p

x([Vi ; Vi +1 ]) � p � 1; (3.3)

where I = f 2; 4; 6; :::; 2p � 2g and I = f 1; 2; :::; 2p � 1g nI . Because each set [Vi ; Vi +1 ],

i = 1; :::; 2p � 1, contains an edge with fractional value, we have that x([Vi ; Vi +1 ]) < 1
for all i 2 I . Hence

X

i 2 I

x([Vi ; Vi +1 ]) < p: (3.4)
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By multiplying inequality (3.4) by

1
p and summing the resulting inequality and inequal-

ity (3.3), we obtain

2p� 1X

i =1

x([Vi ; Vi +1 ]) < p;

and the result follows. �

Our separation heuristic is based on Lemma 3.1.1. The idea is to �nd a partition

� = ( W 0
1; W 0

2; V 0
1; :::; V0

2p) , p � 2, which induces an o dd path con�guration that satis�es

the conditions of Lemma 3.1.1. The pro cedure works as follows. We �rst lo ok, using

a greedy metho d, for a path � = f e1; :::; e2p� 1g, p � 2, in G0
such that the edges

e1; :::; e2p� 1 have fractional values and y0(ei � 1) + y0(ei ) � 1, for i = 2; :::; 2p � 1. If

v0
1; :::; v0

2p are the no des of � taken in this order when going through � , we let V 0
i = f v0

i g,

i = 1; :::2p, and T1 = (
[

i 2 I 1

V 0
i ) [ V 0

1 (resp. T1 = (
[

i 2 I 1

V 0
i ) [ V 0

1 [ V 0
2p ) if p is o dd (resp.

even), and T2 = (
[

i 2 I 2

V 0
i ) [ V 0

2p (resp. T2 = (
[

i 2 I 2

V 0
i ) ) if p is o dd (resp. even) where I 1

and I 2 are as de�ned in Section 2.2.1. In order to determine W 0
1 and W 0

2 , we compute

a minimum cut separating T1 and T2 . If � (W) is such a cut with T1 � W , we let

W 0
1 = W n T1 and W 0

2 = V 0n (W [ T2) . If the partition � = ( W 0
1; W 0

2; V 0
1; :::; V0

2p) thus

obtained induces an o dd path con�guration, then, by Lemma 3.1.1, the corresp onding

o dd path inequality is violated by y0
. If not, we apply again that pro cedure by lo oking

for an other path. In order to avoid the detection of the same path, we lab el the edges

of the detected paths so that they won't app ear again when searching for a new path.

This pro cedure is iterated until either a violated o dd path inequality is found or all the

edges, having fractional values, are lab eled. The routine that p ermits to lo ok for an

o dd path runs in O(m0n0) time. To compute the minimum cut separating T1 and T2 ,

we use Goldb erg and Tarjan algorithm [58]. Since this algorithm runs in O(m0n0logn02

m0 )
time, our pro cedure is implemented to run in O(m02n0log n02

m0 ) time.

In the lifting pro cedure for inequalities (2.4) given in Section 2.2.2 we have to compute

a co e�cient � for some edges e 2 E n E 0
. Since the computation of this co e�cient is

itself a hard problem, and � � 2, we consider 2 as lifting co e�cient for those edges

rather than � .
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3.1.4 Separation of F -partition inequalities

Now we discuss our separation pro cedure for the F -partition inequalities (2.21). These

inequalities can b e separated in p olynomial time using the algorithm of Baïou et al.

[6] when k is even and the edge set F is �xed. For the general case, we devised three

heuristics to separate them.

Our �rst heuristic is based on Lemma 2.3.2. As p ointed out by that lemma, if x is a

critical extreme p oint of P(G; k) such that C �
p(x) = ; , then the edges having fractional

values with resp ect to x have all a value equal to

1
2 and form an o dd cycle C . Moreover,

x(� (u)) = k for all u 2 V(C) and

X

e2 C

x(e) �
jCj + 1

2
;

is an F -partition inequality violated by x . The heuristic works as follows. It starts

by determining an o dd cycle in G0
whose edges have fractional value and no des are

tight. Let v0
1; :::; v0

p , p � 3, b e the no des involved in this cycle. Then we let V 0
i = f v0

i g,

for i = 1; :::; p, and V 0
0 = V 0 n f v0

1; :::; v0
pg. We cho ose the edges of F among those of

� (V 0
0) having values greater than

1
2 and in such a way that jF j and kp have di�erent

parities (if such an edge set F is empty then we lo ok for an other partition). The cycle

is obtained by a direct lab eling pro cedure. Hence the heuristic runs in a linear time.

Before intro ducing our second heuristic, we �rst give the following lemma.

Lemma 3.1.2 Let x 2 RE
be a fractional solution of P(G; k) and � = ( V0; V1; :::; Vp) ,

p � 2, a partition of V such that x(� (Vi )) = k for i = 1; :::; p. Then an F -partition

inequality, induced by � and an edge set F � � (V0) such that jF j and kp have di�erent

parities is violated by x if the fol lowing inequality holds

jF j � x(F ) + x(� (V0) n F ) < 1: (3.5)

Pro of. As x(� (Vi )) = k , i = 1; :::; p, we have that

pX

i =1

x(� (Vi )) = 2 x(� (V1; :::; Vp)) + x(� (V0)) = kp:

This together with (3.5) yield

� 2x(F ) + 2 x(� (V0)) + 2 x(� (V1; :::; Vp)) < kp � j F j + 1;
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and thus the statement follows. �

The heuristic is based on Lemma 3.1.2. It starts by determining all the no des u of V 0

such that y0(� (u)) = k and � (u) contains at least one edge with fractional value. Let

f v0
1; :::; v0

pg, p � 2, b e the set of such no des. We consider the partition (V 0
0; V 0

1; :::; V0
p)

such that V 0
i = f v0

i g, for i = 1; :::; p, and V 0
0 = V 0nf v1; :::; vpg, and cho ose the edges of F

in a similar way as in the �rst heuristic. If inequality (3.5) holds with resp ect to F and

V 0
0 , then by Lemma 3.1.2 the F -partition inequality corresp onding to (V 0

0; V 0
1; :::; V0

p)
and F is violated by y0

.

Before presenting our last heuristic for the F -partition inequalities, let us �rst remark

that a partition (V 0
0; V0

1; :::; V0
p) and an edge set F � � (V 0

0) may induce a violated F -

partition inequality if y0(� (V 0
0)) is high and the edges of F are among those of � (V 0

0)
with high values. Our heuristic tries to �nd such a partition. For this, we �rst compute

a Gomory-Hu tree in G0
with the weights ( 1 � y0(e) , e 2 E 0

) asso ciated with its edges.

Then from each prop er cut � (W) with V 0n W = f v0
1; :::; v0

pg, p � 2, obtained from the

Gomory-Hu tree, we consider the partition � = ( V 0
0; V0

1; :::; V0
p) such that V 0

i = f v0
i g,

for i = 1; :::; p, and V 0
0 = W . The edge set F is chosen in a similar way as in the

previous heuristics. Since the computation of the Gomory-Hu tree can b e done in

O(m0n02 log n02

m0 ) time, the heuristic runs in O(m0n02 log n02

m0 ) .

These three heuristics are applied in the Branch-and-Cut algorithm in that order.

3.1.5 Separation of SP -partition inequalities

Now we turn our attention to the separation of the SP -partition inequalities (2.27).

These inequalities can b e separated in p olynomial time using the algorithm of Baöu

et al. [6] when G0
is series-parallel. That algorithm uses a reduction of the separation

problem to the minimization of a submo dular function. Recently, Didi Biha et al. [42]

devised a pure combinatorial algorithm for the separation of the SP -partition inequali-

ties when the graph is series-parallel. For our purp ose, we devised a heuristic to separate

inequalities (2.27) in the general case. This heuristic is based on Theorems 2.2.7 and

2.2.8. The main idea of the heuristic is to determine a partition � = ( V 0
1; :::; V0

p) , p � 3,

of V 0
which induces an outerplanar graph such that j[V 0

i ; V0
i +1 ]j �

�
k
2

�
, i = 1; :::; p,

(mo dulo p) (see Figure 2.10), and for every consecutive sets V 0
i and V 0

j , the edge set

[V 0
i ; V0

j ] contains at least one edge with fractional value. To this end, we lo ok in G0
for a
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path � = f v0
1v0

2; v0
2v0

3; :::; v0
p� 2v

0
p� 1g, p � 3, such that j[v0

i ; v0
i +1 ]j �

�
k
2

�
and [v0

i ; v0
i +1 ] con-

tains one edge or more with fractional value, for i = 1; :::; p� 2. We then let V 0
i = f v0

i g,

i = 1; :::; p� 1, and V 0
p = V 0n f v0

1; :::; v0
p� 1g. Afterwards, we check by a simple heuristic

if the graph G0
� is outerplanar. Finally, we check if the SP -partition inequality induced

by � is violated by y0
or not. If either the graph G0

� is not outerplanar or the SP -

partition inequality, induced by � , is not violated by y0
, we apply again this pro cedure

by lo oking for an other path. In order to avoid the detection of the same path, we

lab el the no des we met during the search of the previous ones, so that they won't b e

considered in the search of a new path. This pro cess is iterated until either we �nd a

violated SP -partition inequality or all the no des of V 0
are lab eled. The heuristic can

b e implemented to run in O(m0n0) time.

3.1.6 Separation of partition inequalities

Now we discuss the separation of the partition inequalities (2.39). First observe that

if � = ( V 0
1; :::; V0

p) is a partition of V 0
, with p � 3 and o dd, such that y0(� (V 0

i )) = k ,

for i = 1; :::; p, then the partition inequality induced by � is violated by y0
. Thus

one can devise a heuristic to separate inequalities (2.39) which consists in �nding a

partition � = ( V 0
1; :::; V0

p) , with p � 3 and o dd, such that y0(� (V 0
i )) is as small as

p ossible for i = 1; :::; p. To do this, we compute a Gomory-Hu tree, say T , in G0

with the weights (y0(e); e 2 E 0) asso ciated with its edges. After that, we contract the

disjoint no de subsets that induce prop er tight cuts in T . Let V 0
1; :::; V0

t b e these sets and

f vt+1 ; :::; vpg = V 0n(
t[

i =1

V 0
i ) . We then consider the partition (V 0

1; :::; V0
t ; f vt+1 g; :::; f vpg)

and check whether or not the corresp onding partition inequality is violated by y0
. This

algorithm leads to an O(m0n02 log n02

m0 ) time complexity.

To store the generated inequalities, we create a p o ol whose size increases dynamically.

All the generated inequalities are put in the p o ol and are dynamic, i.e. , they are

removed from the current LP when they are not active. We �rst separate inequalities

from the p o ol. If all the inequalities in the p o ol are satis�ed by the current LP-solution,

we separate the classes of inequalities in the order given ab ove.

3.1.7 Implementation of reduction op erations

As mentioned b efore, the reduction op erations � 1 , � 2 , � 3 , � 4 are applied b efore the sepa-

ration pro cedures. Here we describ e the implementation of these reduction op erations.
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We give only the algorithms for Op erations � 2 , � 3 and � 4 . That of � 1 is trivial since it

consists in deleting every edge e 2 E with y(e) = 0 . Note that Op erations � 2 , � 3 and

� 4 are applied on the supp ort graph G(y) .

3.1.7.1 Implementation of Op eration � 2

Op eration � 2 consists in contracting a no de set W � V such that the subgraph G[W]
induces a k -edge-connected subgraph and y(e) = 1 for all e 2 E(W) .

We apply the following heuristic for Op eration � 2 . First, we consider the graph

G1 obtained by deleting from G(y) all the edges with a fractional value and compute

the connected comp onents of G1 . Let (V1; :::; Vp) , p � 1, b e the set of the connected

comp onents. Note that G1 may b e connected. Then, we apply the following pro cedure

to every connected comp onent of G1 . Consider a stack Q of no de sets, initialized with

the sets Vi , i = 1; :::; p. Remind that to push a no de set W in Q is to put W on the

top of Q. Also to p op an element from Q is to remove from Q the no de set which is

on the top Q. We apply the following algorithm on the sets in Q until Q is empty.

Algorithm 2 : Op eration � 2

Data : Q = f V1; :::; Vpg, G(y) = ( V; E(y))
Result : Reduced graph Gr = ( Vr ; Er )
b egin

while Q is not empty do

Let W b e the top of Q and p op W ;

if jWj � 2 and jV n Wj � 2 then

if the subgraph induced by W in G(y) does not contain edges with

fractional value then

Check if G1[W] is k -edge-connected or not by computing the

minimum capacity cut of G1[W];

if true then

contract W ;

else

Let [W1; W2] denote the minimum capacity cut of G1[W];

Push W1 and W2 on Q;

end

To compute the minimum capacity cut of G1[W], we use Hao and Orlin's algorithm

[69] which runs in O(nm log n2

m ) times. Note that given a set Vi , i = 1; :::; p, the main
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lo op of Algorithm 2 contains a numb er of iterations in O(log(jVi j)) . Each iteration

consists at most in checking if the graph induced by W contains edges with fractional

value and computating of a minimum capacity cut. Thus, the algorithm for Op eration

� 2 runs in O(log (n)(nm log (n2

m ) + m)) . Hence, this pro cedure is p olynomial.

3.1.7.2 Implementation of Op eration � 3

Op eration � 3 consists in contracting a no de set W such that jWj � 2, jV n Wj � 2,

j� (W)j = k and E(V nW) contains edges with fractional values. We devise the following

heuristic for this op eration. First we give 1 as capacity for every edge of G(y) and

compute a Gomory-Hu tree on it. Let T b e the tree obtained. Observe that every

edge of T with weight k induces a cut � (W) of exactly k edges in G(y) . We apply the

pro cedure describ ed b elow on every k -capacity cut � (W) obtained from T until we �nd

a candidate no de set to contract or we explore all the k -capacity cuts obtained from

T . The pro cedure is describ ed as follows. If jWj � 2 and jV n Wj � 2, then we check

if the subgraph induced by V nW in G(y) contains edges with fractional values or not.

If this is the case, then we contract W . If not, then we check if the graph induced by

W in G(y) contains edges with fractional values. If this is the case, then we contract

V n W and terminate the pro cedure.

We rep eat this pro cedure until no contraction is p ossible by the algorithm.

The implementation for Op eration � 3 is summarized by Algorithm 3.



3.1. BRANCH-AND-CUT ALGORITHM 69

Algorithm 3 : Op eration � 3

Data : G(y) = ( V; E(y))
Result : Reduced graph Gr = ( Vr ; Er )
b egin

rep eat

Give 1 as capacity on the edges of G(y) ;

Compute a Gomory-Hu tree T ;

foreach � (W) obtained from T such that j� (W)j = k do

if jWj � 2 and jV n Wj � 2 then

if G(y)[V n W] contains edges with fractional values then

Contract W ;

Break;

else

if G(y)[W] contains edges with fractional values then

Contract V n W ;

Break;

until no contraction is possible;

end

This algorithm contains at most O(log (n)) iterations. Each iteration is comp osed of

the computation of a Gomory-Hu tree and, for every cut � (W) obtained in T , the check

that G(y)[V nW] or G(y)[W] contains edges with fractional values. As the computation

of the Gomory-Hu tree runs in O(mn2 log n2

m ) , each iteration runs in O(mn2 log n2

m + m) .

Thus, the whole algorithm runs in O(log (n)(mn2 log n2

m + m)) and is p olynomial.

3.1.7.3 Implementation of op eration � 4

Op eration � 4 consists in contracting a no de set W such that jWj � 2, jV n Wj � 2,

j� (W)j = k + 1 , G[W] is

�
k
2

�
-edge-connected and y(e) = 1 for all e 2 E(W) . We

prop ose two heuristics for this op eration.

The �rst heuristic is as follows. We give 1 as capacity for every edge of G(y) and

compute a Gomory-Hu tree on G(y) with these capacities. If T denotes this tree, one

can observe that every edge of T with weight k + 1 induces in G(y) a cut � (W) of

exactly k + 1 edges. For every cut � (W) such that j� (W)j = k + 1 obtained from T ,

we check if the subgraph G(y)[W] do es not contain any edge with fractional value.

If this is the case, then we check if G(y)[W] is

�
k
2

�
-edge-connected by computing its
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minimum cut. If G(y)[W] is

�
k
2

�
-edge-connected, then we contract W . If G(y)[W] is

not

�
k
2

�
-edge-connected or it contains edges with fractional values, then we p erform the

same checks on W . If G(y)[W] do es not contain edges with fractional value and is

�
k
2

�
-

edge-connected, then we contract W . We rep eat this algorithm until no contraction is

p ossible.

In the second heuristic, we lo ok for cliques W of G(y) with (
�

k
2

�
+1) no des such that

y(e) = 1 for all E(y)(W) and such that j� (W)j = k + 1 . It is not hard to see that if W
is a clique of (

�
k
2

�
+ 1) no des, then the subgraph induced by W is

�
k
2

�
-edge-connected.

If such clique exists in G(y) with j� (W)j = k+1 and y(e) = 1 for all e 2 E(y)(W) , then

we contract W . One can use a greedy algorithm to compute a clique W of (
�

k
2

�
+ 1)

no des and such that the subgraph induced by W do es not contain edges with fractional

value. As for the previous heuristic, we rep eat this algorithm until no contraction is

p ossible.

These two algorithms are summurized in Algorithms 4 and 5.

Algorithm 4 : Op eration � 4 � 1
Data : G(y) = ( V; E(y))
Result : Reduced graph Gr = ( Vr ; Er )
b egin

rep eat

Give 1 as capacity on the edges of G(y) ;

Compute a Gomory-Hu tree T ;

foreach � (W) obtained from T such that j� (W)j = k + 1 do

if jWj � 2 and jV n Wj � 2 then

if G(y)[W] does not contain edges with fractional value then

Compute the minimum cut of G(y)[W];

if G(y)[W] is

�
k
2

�
-edge-connected then

Contract W ;

Break;

until no contraction is possible;

end
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Algorithm 5 : Op eration � 4 � 2
Data : G(y) = ( V; E(y))
Result : Reduced graph Gr = ( Vr ; Er )
b egin

rep eat

Search a clique W of G(y) on (
�

k
2

�
+ 1) no des and such that y(e) = 1 for all

e 2 E(y)(W) ;

if W exists and jWj � 2 and jV n Wj � 2 then

if j� G(y)(W)j = k + 1 then

Contract W ;

Break;

until no contraction is done;

end

The minimum cut of a subgraph G[W] is computed using Hao and Orlin's algorithm

[69]. As for Op eration � 3 , the �rst heuristic runs in O(log (n)(mn2 log n2

m + m)) . It is

thus p olynomial. For the second algorithm, the greedy algorithm used to �nd cliques

of G(y) runs in O( n2K 3

2 ) where K = maxfj � G(y)(u)j; for all u 2 Vg. Remark that in

most cases, j� G(y)(u)j � 2k , for every u 2 V . We will thus consider that K � 2k . This

implies that the heuristic runs in O(n2k3) in most cases, and is p olynomial.

Figure 3.1 gives an example of application of Op erations � 3 and � 4 on a fractional

extreme p oint of P(G; k) . The dashed edges have value 0.5 and the plain edges have

value 1.
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Figure 3.1: Example of application of Op erations � 3 and � 4 for k = 3

On Figure 3.1, we can easily see that the partitions

� 1 = ( f 1; 8; 9; 10; 11g; f 2g; f 13g; f 3; 4; 5; 6; 7; 12; 14g) and

� 2 = ( f 5; 6; 12g; f 4g; f 7g; f 1; 2; 3; 8; 9; 10; 11; 13; 14g) induce two SP -partition inequali-

ties that are violated by the underlying fractional solution of the example.

3.1.8 Primal heuristic

Another imp ortant issue in the e�ectiveness of the Branch-and-Cut algorithm is the

computation of a go o d upp er b ound at each no de of the Branch-and-Cut tree. To

do this, if the separation pro cedures do not generate any violated inequality and the

current solution y is still fractional, then we transform y into a feasible solution of

the k ECSP, say ŷ , by rounding up to 1 all the fractional comp onents of y . We then

try to reduce the weight of the solution thus obtained by removing from the subgraph
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H = ( V;Ê ) induced by ŷ some unecessary edges, that is to say edges which do not

a�ect the k -edge-connectedness of H . To this end, we remove from Ê each edge e = uv
such that j� (u) \ Ê j � k +1 and j� (v) \ Ê j � k +1 . We then check if the resulting edge

set, say Ê 0
, induces a k -edge-connected subgraph of G by computing a Gomory-Hu

tree. If there exists in Ê 0
a cut � (W) , W � V , containing less than k edges, then we

add in Ê 0
edges of [W; V n W] n � (W) that have b een previously removed from Ê as

many as necessary in order to satisfy the cut � (W) . We do this until the graph (V;Ê 0)
b ecomes k -edge-connected. Note that we add to each violated cut the edges having

the smallest weights.

3.2 Computational results

The Branch-and-Cut algorithm describ ed in the previous section has b een implemented

in C++, using ABACUS 2.4 alpha [1, 101] to manage the Branch-and-Cut tree, and

CPLEX 9.0 [2] as LP-solver. It was tested on a Pentium IV 3.4 Ghz with 1 Gb of

RAM, running under Linux. We �xed the maximum CPU time to 5 hours. The test

problems were obtained by taking TSP test problems from the TSPLIB library [3].

The test set consists in complete graphs whose edge weights are the rounded euclidian

distance b etween the edge's vertices. The tests were p erformed for k = 3; 4; 5. In

all our exp eriments, we have used the reduction op erations describ ed in the previous

sections, unless otherwise sp eci�ed. Each instance is given by its name followed by

an extension representing the numb er of no des of the graph. The other entries of the

various tables are:
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NCut : numb er of generated cut inequalities;

NSP : numb er of generated SP -partition inequalities;

NOP : numb er of generated o dd path inequalities;

NFP : numb er of generated F -partition inequalities;

NP : numb er of generated partition inequalities;

COpt : weight of the optimal solution obtained;

Gap1 : the relative error b etween the b est upp er b ound

(the optimal solution if the problem has b een solved

to optimality) and the lower b ound obtained at the

ro ot no de of the Branch-and-Cut tree using only the

cut and the trivial inequalities;

Gap2 : the relative error b etween the b est upp er b ound

(the optimal solution if the problem has b een solved

to optimality) and the lower b ound obtained at the

ro ot no de of the Branch-and-Cut tree;

NSub : numb er of subproblems in the Branch-and-Cut tree;

TT : total CPU time in hours:min:sec.

The instances indicated with "*" are those whose CPU time exceeded 5 hours. For

these instances, the gap is indicated in italic.

Our �rst series of exp eriments concerns the k ECSP for k = 3 . The instances we

have considered have graphs with 14 up to 318 no des. The results are summarized

in Table 3.1. It app ears from Table 3.1 that all the instances have b een solved to

optimality within the time limit except the last �ve instances. Also we have that

four instances (burma14, gr21, fri26, brazil58) have b een solved in the cutting plane

phase ( i.e. , no branching is needed). For most of the other instances, the relative error

b etween the lower b ound at the ro ot no de of the Branch-and-Cut tree and the b est

upp er b ound (Gap2) is less than 1%. We also observe that our separation pro cedures

detect a large enough numb er of SP -partition and F -partition inequalities and seem

to b e quite e�cient.

Our second series of exp eriments concerns the k ECSP with k = 4; 5. The results

are given in Table 3.2 for k = 4 and Table 3.3 for k = 5 . The instances considered

have graphs with 52 up to 561 no des. Note that for k = 4 , the SP -partition and

partition inequalities are redundant with resp ect to the cut inequalities (2.3). Thus

these inequalities are not considered in the resolution pro cess for k = 4 , and therefore

do not app ear in Table 3.2.
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Instance NCut NSP NOP NFP NP COpt Gap1 Gap2 NSub TT

burma14 4 3 0 0 4 5530 4.67 0.00 1 0:00:01

ulysses16 5 7 1 15 7 11412 1.17 0.39 3 0:00:11

gr21 5 6 1 0 2 4740 1.65 0.00 1 0:00:01

fri26 9 5 0 0 0 1543 1.30 0.00 1 0:00:01

bayg29 14 16 2 33 2 2639 1.76 0.19 7 0:00:01

dantzig42 41 31 6 90 18 1210 2.27 0.68 71 0:00:07

att48 34 34 5 60 9 17499 1.83 0.56 61 0:00:06

b erlin52 36 31 12 97 6 12601 1.66 0.45 33 0:00:03

brazil58 46 42 2 36 29 42527 2.67 0.00 1 0:00:05

eil76 9 12 3 298 2 876 0.63 0.06 7 0:00:03

pr76 130 207 72 2231 54 187283 3.9 1.50 6767 0:35:32

rat99 41 26 13 341 23 2029 1.26 0.38 41 0:00:47

kroA100 170 197 31 1207 57 36337 4.64 0.97 4201 0:54:06

kroB100 130 114 37 830 47 37179 2.61 0.73 723 0:08:00

rd100 101 74 11 418 18 13284 1.91 0.43 171 0:03:37

eil101 86 72 21 3604 15 1016 1.06 0.55 1109 0:17:41

lin105 179 198 47 829 68 25530 3.66 0.69 1031 0:22:39

pr107 201 190 34 674 114 70852 2.48 0.84 2071 1:26:49

gr120 50 45 6 588 17 11442 1.12 0.19 99 0:11:15

bier127 46 59 4 276 13 198184 1.50 0.15 11 0:01:55

ch130 121 132 30 1355 40 10400 2.27 0.55 1693 1:05:05

ch150 92 93 19 588 22 11027 2.04 0.41 193 0:20:31

kroA150 155 143 41 845 47 44718 2.27 0.53 1205 1:16:35

kroB150 130 110 16 952 48 43980 2.26 0.31 437 0:38:43

rat195 24 19 3 514 1 3934 0.48 0.06 7 0:08:21

d198 171 105 23 617 59 25624 2.00 0.21 159 1:04:19

gr202 77 69 14 558 22 65729 1.02 0.11 69 0:13:16

*pr226 364 248 35 162 41 - 11.05 9.02 261 5:00:00

*gr229 179 245 23 1568 94 - 2.43 1.00 1219 5:00:00

*pr264 275 181 145 668 62 - 12.56 12.29 69 5:00:00

*a280 142 84 56 2539 59 - 3.73 2.69 459 5:00:00

*lin318 189 147 15 610 58 - 6.5 4.94 25 5:00:00

Table 3.1: Results for k = 3 with reduction op erations.



76 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE K ECSP

First observe that for k = 4 , the CPU time for all the instances is relatively small and

most of the instances have b een solved in less than 1 minute. We can also observe that

23 instances over 27 are solved in the cutting plane phase. Moreover, a few numb er

of o dd path inequalities are generated. However a large enough numb er of F -partition

inequalities is detected. Thus these latter inequalities seem to b e very e�ective for

solving the k ECSP when k is even. This also shows that the k ECSP is easier to solve

when k is even, what is also con�rmed by the results of Table 3.3 for k = 5 . In fact, the

instance pr264 has b een solved for k = 4 in 1 second, whereas it could not b e solved to

optimality for k = 5 after 5 hours. The same observation can b e done for pr439. Also,

we can remark that the CPU time for all the instances when k = 5 is higher than that

when k = 4 . For instance, the test problem d198 has b een solved in 1h 50mn when

k = 5 , whereas only 16 seconds were needed to solve it for k = 4 .

Compared to Table 3.1, Tables 3.2 and 3.3 also show that, for the same parity of k ,

the k ECSP b ecomes easier to solve when k increases. In fact, with k = 3 , we could not

solve to optimality instances with more than 202 no des, whereas for k = 5 , we could

solve larger instances.

The results for k = 3; 4; 5 can also b e compared to those obtained by Kerivin et al.

[81] for the 2ECSP. It turns out that for the same instances, the problem has b een

easier to solve for k = 2 than for k = 3 . However, for k = 4 the problem app eared

to b e easier to solve than for k = 2 . This shows again that the case when k is o dd is

harder to solve than that when k is even and that the problem b ecomes easier when k
increases with the same parity.

In order to evaluate the impact of the reduction op erations � 1 , � 2 , � 3 , � 4 on the

separation pro cedures, we tried to solve the k ECSP, for k = 3 , without using them.

The results are given in Table 3.4.

As it app ears from Tables 3.1 and 3.4, the CPU time increased for the ma jority of the

instances when the reduction op erations are not used. In particular, for the instance

pr107, without the reduction op erations, we could not reach the optimal solution after

5 hours, whereas with the reduction op erations, it has b een solved to optimality after

1h 26mn. Also, the CPU time for the instances ch130 and d198 increased from 1 hour

to more than 4 hours. Moreover, we remark that when using the reduction op erations,

we generate more SP -partition, F -partition and partition inequalities and fewer no des

in the Branch-and-Cut tree. This implies that our separation heuristics are less e�cient

without the reduction op erations. It seems then that the reduction op erations play an

imp ortant role in the resolution of the problem. They p ermit to strengthen much more

the linear relaxation of the problem and accelerate its resolution.
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We also tried to measure the e�ect of the di�erent non-basic classes of inequalities

( i.e. , inequalities other than cut and trivial inequalities). For this, we have �rst con-

sidered a Branch-and-Cut algorithm for the k ECSP with k = 3 using only the cut

constraints in addition to the trivial ones. As it app ears from Table 3.1, for all the

instances we have that Gap1 is greater than Gap2. For example, for the instances

KroA100 and rat195, the gap is increased by almost 3%.

Furthermore, in this case, we could not solve any of the instances with more than

52 no des. Even more, after less than 10 minutes of CPU time, the Branch-and-Cut

tree got a very big size and the resolution pro cess stops. To illustrate this, take for

example the instance brazil58. For this instance, the Branch-and-Cut tree contained

11769 no des after 10 minutes when the Branch-and-Cut algorithm used only the cut

and trivial inequalities, whereas it has b een solved without branching when using the

other classes of inequalities.

Finally, we tried to evaluate separately the e�ciency of each class of the non-basic

inequalities. For this, we also considered the case when k = 3 . We have seen that

all the classes of inequalities have a big e�ect on the resolution of the problem. In

particular, the SP -partition inequalities seem to play a central role. This can b e seen

by considering the instance d198. This instance has b een solved in 1h 04mn using all

the constraints. However, without the SP -partition inequalities, we could not reach

the optimal solution after 5 hours. We also remarked that the gap2 increased when

one of these classes of inequalities is not used in the Branch-and-Cut algorithm.

3.3 Concluding remarks

In this chapter, we have studied the k -edge-connected subgraph problem with high

connectivity requirement, that is, when k � 3. We have presented some classes of valid

inequalities and describ ed some conditions for these inequalities to b e facet de�ning for

the asso ciated p olytop e. We also discussed separation heuristics for these inequalities.

Using these results, we have devised a Branch-and-Cut algorithm for the problem. This

algorithm uses some reduction op erations.

Our computational results have shown that the o dd path, the F -partition, the SP -

partition and the partition inequalities are very e�ective for the problem when k is

o dd. They have also shown the imp ortance of the F -partition inequalities for the even

case. We could also see the imp ortance of our separation heuristics. In particular,

our heuristics to separate the SP -partition and F -partition inequalities have app eared



78 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE K ECSP

to b e very e�cient. In addition, the reduction op erations have b een essential for

having a go o d p erformance of the Branch-and-Cut algorithm. In fact, they p ermitted

to considerably reduce the size of the graph supp orting a fractional solution and to

accelerate the separation pro cess.

These exp eriments also showed that the k ECSP is easier to solve when k is even and

that, for the same parity of k , the problem b ecomes easier to solve when k increases.

One of the separation heuristic devised for the F -partition inequalities is based on

a partial characterization of the critical extreme p oints of the linear relaxation of the

k -edge-connected subgraph p olytop e. It would b e very interesting to have a complete

characterization of these p oints. This may yield the identi�cation of new facet de�ning

inequalities for the problem. It may also p ermit to devise more appropriate separation

heuristics for the inequalities given in this chapter.

In many real instances, we may consider no de-connectivity instead of edge-connectivity.

The study presented in this chapter may b e very usefull for the k -no de-connected sub-

graph problem for which we require k no de-disjoint paths b etween every pair of no des.

In addition to the survivability asp ect, one can consider the capacity dimensioning

of the network. These issues have b een mostly treated separately in the literature. It

would b e interesting to extend the study develop ed in this chapter to the more general

capacitated survivable network design mo del.
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Instance NCut NOP NFP COpt Gap2 NSub TT

b erlin52 5 0 2 18295 0.00 1 0:00:01

pr76 3 0 4 266395 0.00 1 0:00:01

kroA100 10 0 11 51221 0.00 1 0:00:47

kroB100 9 5 123 53597 0.08 21 0:00:09

rd100 10 1 91 19130 0.00 1 0:00:05

eil101 0 0 60 1453 0.00 1 0:00:02

lin105 20 1 5 36353 0.00 1 0:00:01

pr107 29 0 0 98381 0.00 1 0:00:01

gr120 6 0 36 16400 0.00 1 0:00:02

bier127 16 0 0 282207 0.00 1 0:00:01

ch130 12 0 132 14854 0.00 1 0:00:05

ch150 12 2 70 15854 0.00 1 0:00:02

kroA150 13 0 27 64249 0.00 1 0:00:02

kroB150 20 0 4 62710 0.00 1 0:00:01

rat195 0 0 37 5750 0.00 1 0:00:13

d198 43 0 71 35404 0.01 3 0:00:16

gr202 13 3 220 94841 0.02 3 0:01:28

pr226 91 0 6 183537 0.00 1 0:00:04

gr229 24 2 15 318565 0.00 1 0:00:03

pr264 59 1 7 122941 0.00 1 0:00:06

a280 3 0 180 6317 0.00 1 0:01:00

pr299 30 0 427 117559 0.00 1 0:00:20

lin318 28 0 2 105000 0.00 1 0:00:06

rd400 21 2 232 36676 0.00 1 0:07:39

pr439 78 3 61 264975 0.02 19 0:02:52

si535 0 0 4 53604 0.00 1 0:00:39

pa561 10 1 306 6724 0.00 1 0:08:37

Table 3.2: Results for k = 4 .
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Instance NCut NSP NOP NFP NP COpt Gap2 NSub TT

b erlin52 5 2 2 26 2 24845 0.00 1 0:00:01

pr76 2 0 0 52 1 372392 0.00 1 0:00:01

kroA100 5 1 5 76 6 71422 0.04 11 0:00:06

kroB100 6 1 2 83 5 74241 0.01 3 0:00:06

rd100 6 2 6 193 5 26168 0.01 5 0:00:24

eil101 1 0 0 309 0 1938 0.00 1 0:01:10

lin105 9 1 3 119 3 50711 0.00 1 0:00:26

pr107 92 40 57 680 33 132870 0.41 381 0:14:45

gr120 2 0 3 93 3 22024 0.11 27 0:00:17

bier127 22 2 12 450 8 383165 0.09 25 0:04:25

ch130 1 0 0 45 0 20508 0.01 3 0:00:05

ch150 5 0 7 58 1 21791 0.01 37 0:00:50

kroA150 9 0 5 141 3 87950 0.07 11 0:00:19

kroB150 14 1 7 462 6 85583 0.02 11 0:15:39

rat195 1 0 0 508 0 7773 0.00 1 0:20:54

d198 56 9 6 1093 32 47614 0.15 337 1:50:40

gr202 0 0 0 64 0 128990 0.00 1 0:00:31

pr226 142 34 20 661 50 260878 0.58 103 2:38:50

gr229 18 1 11 679 9 434422 0.06 43 0:31:58

*pr264 105 12 38 1327 28 - 1.78 43 5:00:00

a280 2 0 2 302 0 8643 0.02 7 0:05:05

pr299 11 3 2 637 1 161576 0.00 1 0:05:12

lin318 24 3 11 1548 11 144341 0.02 7 4:34:39

rd400 11 1 15 691 6 49893 0.01 17 1:29:09

*pr439 46 2 8 746 0 - 3.46 1 5:00:00

si535 0 0 0 0 0 79115 0.00 1 0:00:19

pa561 1 0 2 286 1 9161 0.00 1 3:26:58

Table 3.3: Results for k = 5 .
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Instance NCut NSP NOP NFP NP COpt Gap2 NSub TT

b erlin52 31 28 19 44 4 12601 0.44 15 0:00:04

brazil58 50 27 1 28 31 42527 0.22 3 0:00:07

eil76 9 6 3 102 2 876 0.00 1 0:00:01

pr76 103 168 65 1378 37 187283 1.60 3483 0:38:46

rat99 41 19 10 223 17 2029 0.32 61 0:01:29

kroA100 193 234 47 1765 70 36337 1.42 7575 4:13:38

kroB100 141 142 36 899 38 37179 0.98 1337 0:45:34

rd100 103 84 15 445 21 13284 0.40 233 0:11:40

eil101 77 58 26 2527 12 1016 0.38 801 0:18:50

lin105 161 158 50 569 53 25530 0.61 547 0:34:25

*pr107 218 221 136 1101 104 - 0.81 4447 5:00:00

gr120 42 38 6 252 15 11442 0.18 93 0:05:38

bier127 58 56 9 240 12 198184 0.16 17 0:04:43

ch130 141 147 38 1590 45 10400 0.52 2459 4:10:31

ch150 90 76 15 391 23 11027 0.39 107 0:21:07

kroA150 155 135 23 705 56 44718 0.55 1107 3:08:37

kroB150 150 141 22 1006 43 43980 0.31 535 1:55:20

rat195 23 18 7 898 1 3934 0.01 19 0:19:23

d198 192 118 25 720 50 25624 0.27 585 5:03:16

gr202 73 62 13 278 23 65729 0.05 37 0:37:31

Table 3.4: Results for k = 3 without reduction op erations.



Chapter 4

The k -Edge-Disjoint Hop-Constrained

Paths Problem

Given a graph G = ( V; E) and two no des s; t 2 V , and a p ositive integer L � 2, an

L - st -path in G is a path b etween s and t of length at most L , where the length is the

numb er of its edges. Given a function c : E ! R which asso ciates a cost c(e) to each

edge e 2 E and an integer k � 2, the k -Edge-Disjoint Hop-Constrained Paths problem

( k HPP for short) is to �nd a minimum cost subgraph such that b etween s and t there

exist at least k edge-disjoint L - st -paths.

In this chapter, we consider the k HPP from a p olyhedral p oint of view. In particular,

we give a complete description of the asso ciated p olytop e in the case L = 3 . We give

an integer programming formulation for the problem in this case. In particular, we

show that for L = 3 , the k HPP p olytop e is given by the so-called st -cut and L -

path-cut inequalities together with the trivial inequalities. We also describ e necessary

and su�cient conditions for these inequalities to b e facet de�ning and show that the

k HPP p olytop e is completely describ ed by the st -cut and L -path-cut toghether with

the trivial inequalities. These results generalize those obtained by [75] who give a

complete description of the k HPP p olytop e in the case k = 2 and L = 2; 3 and by [35]

who completely characterize the k HPP p olytop e when k � 2 and L = 2 . This work has

led to a technical rep ort submitted for p ossible publication in Discrete Optimization

[13].

The chapter is organized as follows. In next section, we give some preliminary results

we will use along this chapter. In Section 4.2, we describ e necessary and su�cient

conditions for the so-called st -cut and L -path-cut inequalities to b e facet de�ning.
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Our main result, which is a complete description of the k HPP p olytop e for L = 3 , is

presented in Section 4.3. In Section 4.4, we give some concluding remarks.

4.1 Preliminary results

4.1.1 Valid inequalities for the k HPP p olytop e

Given a graph G = ( V; E) , two no des s; t of V and a p ositive integer k � 2, we will

denote by k HPP (G) the k HPP p olytop e that is the convex hull of the incidence vectors

of the solutions of the k HPP on G.

If xF
is the incidence vector of the edge set F of a solution of the k HPP, then clearly

xF
statis�es the following inequalities:

x(� (W)) � k; for all st � cut � (W); (4.1)

0 � x(e) � 1; for all e 2 E: (4.2)

Inequalities (4.1) will b e called st -cut inequalities and inequalities (4.2) trivial inequal-

ities .

In [31], Dahl considers the problem of �nding a minimum cost path b etween two given

terminal no des s and t of length at most L . He describ es a class of valid inequalities for

the problem and gives a complete characterization of the asso ciated L -path p olyhedron

when L � 3. In particular he intro duces a class of valid inequalities as follows.

Let V0 , V1 , ..., VL +1 b e a partition of V such that s 2 V0 and t 2 VL +1 , and Vi 6= ; for

all i = 1; :::; L . Let T b e the set of edges e = uv , where u 2 Vi , v 2 Vj , and ji � j j > 1.

Then the inequality

x(T) � 1

is valid for the L -path p olyhedron.

Using the same partition, this inequality can b e generalized in a straightforward way

to the k HPP p olytop e as

x(T) � k: (4.3)
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V2 V3 V4

ts

V1V0

Figure 4.1: Supp ort graph of a 3-path-cut inequality.

The set T is called an L -path-cut, and a constraint of typ e (4.3) is called an L -path-cut

inequality. See Figure 4.1 for an example of a 3-path-cut inequality with V0 = f sg and

V4 = f tg. Note that T intersects every 3- st -path in at least one edge and each st -cut

� (W) intersects every st -path. We denote by Pk(G) the p olytop e given by inequalities

(4.1)-(4.3).

4.1.2 Formulation

In this subsection, we give an integer programming formulation for the k HPP. We will

show that the st -cut, 3-path-cut and trivial inequalities, together with the integrality

constraints su�ce to formulate the k HPP as a 0-1 linear program. To this end, we �rst

give a lemma. Its pro of can b e found in [75].

Lemma 4.1.1 [75] Let G = ( V; E) be an undirected graph and s and t two nodes of

V . Suppose that there do not exist k edge-disjoint 3- st -paths in G, with k � 2. Then

there exists a set of at most k � 1 edges that intersects every 3- st -path.

Theorem 4.1.1 Let G = ( V; E) be a graph and k � 2. Then the k HPP is equivalent

to the integer program

Min

�
cx; x 2 Pk(G); x 2 f 0; 1gE

	
:

Pro of. To prove the theorem, it is su�cient to show that every 0-1 solution x of Pk(G)
induces a solution of the k HPP. Let us assume the contrary and supp ose that x do es

not induce a solution of the k HPP but satsi�es the st -cut and trivial inequalities. We
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will show that x necessarily violates at least one 3-path-cut inequality. Let G(x) b e

the subgraph of G induced by x , that is the graph obtained from G by deleting every

edge e 2 E such that x(e) = 0 . As x is not a solution of the problem, G(x) do es not

contain k edge-disjoint 3- st -paths. By Lemma 4.1.1, it follows that there exist at most

k � 1 edges in G(x) that intersect every 3- st -path. Consider the graph G0(x) obtained

from G(x) by deleting these edges. Obviously, G0(x) do es not contain any 3- st -path.

We claim that G0(x) contains at least one st -path of length at least 4. In fact, as x is

a 0-1 solution and satis�es the st -cut inequalities, G(x) contains at least k edge-disjoint

st -paths. Since at most k � 1 edges were removed from G(x) , at least one path remains

b etween s and t . However, since G0(x) do es not contain a 3- st -path, that st -path must

b e of length at least 4.

Now consider the partition (V0; :::; V4) of V with V0 = f sg, Vi the set of no des at

distance i from s in G0(x) for i = 1; 2; 3, and V4 = V n (
3[

i =0

Vi ) , where the distance

b etween two no des is the length of a shortest path b etween these no des. Since there

do es not exist a 3- st -path in G0(x) , it is clear that t 2 V4 . Moreover, as by the

claim ab ove, G0(x) contains an st -path of length at least 4, the sets V1 , V2 and V3

are nonempty. Futhermore, no edge of G0(x) is a chord of the partition (that is an

edge b etween two sets Vi an Vj where ji � j j > 1). In fact, if there exists an edge

e = vi vj 2 [Vi ; Vj ] with ji � j j > 1 and i < j , then vj is at distance i + 1 < j , from s, a

contradiction.

Thus, the edges deleted from G0(x) are the only edges that may b e chords of the

partition G(x) . In consequence, if T is the set of chords of the partition in G, then

x(T) � k � 1. But this implies that the corresp onding 3-path-cut inequality is violated

by x . �

4.1.3 Disjoint st -paths in directed graphs

Here we will intro duce known results related to disjoint st -paths in directed graphs

which will b e very useful in the following sections.

Given a directed graph D = ( V; A) , two no des s; t 2 V , an integer k � 2 and a

weight function c(:) on the arcs of D , the k arc-disjoint st -paths problem ( k ADPP for

short) consists in �nding a minimum weight subgraph of D which contains at least k
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arc-disjoint paths from s to t . Let k ADPP (D) b e the convex hull of the solutions of

the k ADPP on D .

If B is an arc subset of A which induces a solution of the k ADPP, then its incidence

vector xB
satis�es the following inequalities:

x(� + (W)) � k; for all W � V; s 2 W and t 2 W ; (4.4)

0 � x(a) � 1; for all a 2 A: (4.5)

Conversely, any integral solution of the system given by inequalities (4.4) and (4.5)

induces a solution of the k ADPP. Inequalities (4.4) are called st -dicut inequalities and

constraints (4.5) are called trivial inequalities . Thus, the k ADPP is equivalent to

min f cx j x satis�es (4:4); (4:5); x 2 f 0; 1gA g:

Theorem 4.1.2 [96]

The polytope k ADPP( D ) is ful l dimensional if and only if every st -dicut � + (W) of D
contains at least k + 1 arcs.

Theorem 4.1.3 An inequality (4.4), induced by a node set W � V , de�nes a facet

of k ADPP( D ) if and only if the corresponding st -dicut is minimal inclusionwise and

contains at least k + 1 arcs.

The following theorem shows that the st -dicut and the trivial inequalities su�ce to

describ e the p olytop e k ADPP( G).

Theorem 4.1.4 [96]

The polytope k ADPP (G) is completely described by inequalities (4.4) and (4.5).

The following theorem indicates that two no de subsets W1 and W2 of V that induce

tight st -dicut inequalities for a solution y 2 k ADPP (D) , can b e seen as emb edded

no de sets. This comes from the fact that the sets inducing st -dicuts in a graph form a

laminar family.

Theorem 4.1.5 [96]

Let W1 and W2 be two node subsets of V that induce st -dicuts of D such that W1 \ W2 6=
; 6= ( V n W1) \ W2 . If the st -dicut inequalities, induced by W1 and W2 , are tight for

a solution x of k ADPP (G) , then there exists a node set di�erent from W1 and W2

contained either in W1 or in W1 [ W2 which induces a tigh st -dicut inequality for x .
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These results will b e utile in the rest of the chapter for exhibiting some facets of the

k HPP p olytop e, and for proving our main result.

4.2 Facets of k HPP (G)

In this section, we give necessary and su�cient conditions for inequalities (4.1)-(4.3)

to de�ne facets. These will b e useful in the sequel.

Let G = ( V; E) b e an undirected graph, s and t two no des of G and k a p ositive

integer � 2. An edge e 2 E is said to b e 3- st -essential if e b elongs to an st -cut or a

3-path-cut of cardinality k . Let E �
b e the set of the 3- st -essential edges. We have the

following results that can b e easily seen to b e true.

Theorem 4.2.1 dim(k HPP (G)) = jE j � j E � j .

An immediate consequence of Theorem 4.2.1 is the following.

Corollary 4.2.1 If G = ( V; E) is a complete graph such that jV j � k + 2 , then

k HPP( G) is ful l dimensional.

In the rest of the chapter, we will consider that G = ( V; E) is a complete graph

with jV j � k + 2 , and which may contain multiple edges. Thus, by Corollary 4.2.1,

k HPP (G) is full dimensional.

Lemma 4.2.1 Let ax � � be an inequality which de�nes a facet of k HPP (G) , di�erent

from (4.2). Then a(e) � 0 for al l e 2 E .

Pro of. Let f 2 E . As ax � � is di�erent from facets induced by the trivial inequalities,

it is di�erent from x(f ) � 1. Thus, there exists a solution x 2 k HPP (G) such that

ax = � and x(f ) = 0 . Let x0
b e the solution de�ned by

x0(e) =
�

x(e); for all e 2 E n f f g;
1 if e = f:

Clearly, x0
is a solution of k HPP (G) . Hence, ax0 = ax + a(f ) � � , yielding a(f ) � 0. �

The following theorems show when inequalities (4.1)-(4.3) de�ne facets for k HPP (G) .
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Theorem 4.2.2 1. Inequality x(e) � 1 de�nes a facet of k HPP (G) for al l e 2 E .

2. Inequality x(e) � 0 de�nes a facet of k HPP (G) if and only if either jV j � k + 3
or jV j = k + 2 and e does not belong neither to an st -cut nor to a 3-path-cut

containing exactly k + 1 edges.

Pro of. 1) As jV j � k + 2 and G is complete, the edge set E f = E n f f g is a solution

of k HPP, for all f 2 E n f eg. Hence, the sets E and E f , for all f 2 E n f eg, constitute

a set of jE j solutions of the k HPP. Moreover, their incidence vectors satisfy x(e) = 1
and are a�nelly indep endant.

2) Supp ose that jV j � k+3 . Then G contains k+2 no de-disjoint st -paths (an edge of

[s; t] and k +1 paths of the form (s; u; t) , u 2 V n f s; tg). Hence any edge set E nf f; g g,

f; g 2 E , contains k edge-disjoint 3- st -paths among these 3- st -paths.

Consider the jE j edge sets E n f eg and E f = E n f e; f g for all f 2 E n f eg. There-

fore, these sets induce solutions of the k HPP. Moreover the incidence vectors of these

solutions satisfy x(e) = 0 and are a�nelly indep endant.

Now supp ose that jV j = k + 2 . If e b elongs to an st -cut � (W) (resp. a 3-path-cut T )

with k + 1 edges, then x(e) � 0 is redundant with resp ect to the inequalities

x(� (W)) � k ( resp. x(T) � k);

� x(f ) � � 1 for all f 2 � (W) n f eg( resp. f 2 T n f eg);

and cannot hence b e facet de�ning. If e do es not b elong neither to an st -cut nor to a

3-path-cut with k +1 edges, then the edge sets E nf eg and E f , f 2 E nf eg, intro duced

ab ove, are still solutions of k HPP. Moreover, their incidence vectors satisfy x(e) = 0
and are a�nelly indep endant. �

Theorem 4.2.3 Every st -cut inequality de�nes a facet of k HPP (G) .

Pro of. Let W � V such that s 2 W and t 2 W . Observe that [s; t] � � (W) . Let us de-

note by ax � � the st -cut inequality induced by W and let Fa = f x 2 k HPP (G) j ax =
� g. We �rst show that Fa is a prop er face of k HPP (G) . As jV j � k + 2 , there exist

W1 � W n f sg and W2 � W n f tg such that jW1j + jW2j = k . Note that W1 and W2
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may b e empty but not b oth. Let F1 = f sv; v 2 W2g [ f ut; u 2 W1g and E1 = F1 [ E0

where E0 = E(W) [ E(W) . It is not hard to see that E1 is a solution of the k HPP

whose incidence vector satis�es ax � � with equality. Hence, Fa 6= ; and, therefore, is

a prop er face of k HPP( G).

Now supp ose that there exists a facet de�ning inequality bx � � such that Fa � f x 2
k HPP (G) j bx = � g. We will show that there exists a scalar � such that b= �a .

Consider an edge e 2 F1 . Clearly, the edge set E2 = ( E1 n f eg) [ f stg is a solution

of the k HPP and its incidence vector satis�es ax � � with equality. It then follows

that bxE2 = bxE1 � b(e) + b(st) . Since xE1 2 Fa , we obtain that b(e) = b(st) . As e is

arbitrary in F1 , this implies that

b(e) = b(st) = � for all e 2 F1: (4.6)

Now let f = uv 2 � (W) n F1 , with u 2 W n f sg and v 2 W n f tg. If u 2 W1

and v 2 W2 , then let E3 = ( E1 n f sv; utg) [ f f; st g. Clearly, E3 is a solution of the

k HPP and its incidence vector satis�es ax � � with equality. Hence, we have that

bxE3 = bxE1
. This implies that b(sv) + b(ut) = b(f ) + b(st) . From (4.6), it follows that

b(f ) = � .

If u 2 W1 [ f sg (resp. u 2 W n(W1 [ f sg) ) and v 2 W n(W2 [ f tg) (resp. v 2 W2 [ f tg),

by considering the edge set E4 = ( E1 n f utg) [ f f g (resp. E4 = ( E1 n f svg) [ f f g), we

similarly obtain that b(f ) = � .

If u =2 W1 and v =2 W2 , then one can consider the solution E5 = ( E1 n f eg) [ f f g, where

e is an edge of F1 , and obtain along the same lines that b(f ) = � .

Thus, toghether with (4.6), this yields

b(e) = � for all e 2 � (W):

Now let e 2 E0 , and supp ose, w.l.o.g., that e 2 E(W) . If e do es not b elong to a

3- st -path of E1 , then the edge set E6 = E1 n f eg also induces a solution of the k HPP

and satis�es ax � � with equality. We then have that bxE6 = bxE1
implying b(e) = 0 .

If e b elongs to a 3- st -path of E1 , say (su; ut) , then the edge set E7 = ( E1 nf su; utg) [
f stg induces a solution of the k HPP and its incidence vector satis�es ax � � with

equality. It then follows that bxE7 = bxE1
and hence b(st) = b(su) + b(ut) . As by (4.6),

b(ut) = b(st) , we get b(e) = 0 .
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Consequently, we have that

b(e) =
�

� for all e 2 � (W);
0 if not :

Thus, b= �a with � 2 R, and the result follows. �

The next theorem describ es necessary and su�cient conditions for L -path-cut in-

equalities to de�ne facets. But b efore, we give the following lemma.

Lemma 4.2.2 Let T be an L -path-cut induced by a partition � = ( V0; :::; V4) with

s 2 V0 and t 2 V4 . If an edge set F � E induces a solution of the k HPP such that

xF (T) = k , then F \ ([s; V1] [ [V3; t] [ [s; t]) � k . Moreover, if F \ [V1; V3] 6= ; , then

F \ ([s; V1] [ [V3; t] [ [s; t]) � k + 1 .

Pro of. Let A = [ s; V1] [ [V3; t] [ [s; t]. Since each 3- st -path of F intersects T at

least once and jF \ Tj = k , F necessarily contains exactly k edge-disjoint 3- st -paths.

Moreover, each of these paths intersects T only once. This implies that every 3- st -path

of F is of the form

i) (su1; u1u2; u2t) , (su2; u2u3; u3t) , (su1; u1t) , (su3; u3t) , (st) or

ii) (su1; u1u3; u3t) .

If P is one of these st -paths, then jP \ Aj = 1 (resp. jP \ Aj = 2 ) if P is of typ e i)

(resp. ii)). Thus, jF \ Aj � k .

Now if F \ [V1; V3] 6= ; , then F contains at least one path of typ e ii) and therefore

jF \ Aj � k + 1 . �

Theorem 4.2.4 An inequality (4.3), induced by a partition � = ( V0; :::; V4) with s 2 V0

and t 2 V4 , de�nes a facet of k HPP (G) , di�erent from a trivial inequality, if and only

if

1. jV0j = jV4j = 1 ;

2. j[s; V1]j + j[V3; t]j + j[s; t]j � k + 1 .
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Pro of. Let T b e the 3-path-cut induced by � . Let ax � � denote the 3-path-cut

inequality pro duced by T and F = f x 2 k HPP (G) j ax = � g.

Necessity.

1) We will show that if jV0j � 2, inequality x(T) � k do es not de�ne a facet. The case

where jV4j � 2 follows by symmetry. Supp ose that jV0j � 2 and consider the partition

� 0 = ( V 0
0; :::; V0

4) given by

V 0
0 = f sg;

V 0
1 = V1 [ (V0 n f sg);

V 0
i = Vi ; i = 2; 3; 4:

The partition � 0
pro duces a 3-path-cut inequality x(T0) � k , where T0 = Tn[V0nf sg; V2].

Since G is complete, [V0 nf sg; V2] 6= ; and T0
is strictly contained in T . Thus, x(T) � k

is redundant with resp ect to the inequalities

x(T0) � k;
x(e) � 0 for all e 2 [V0 n f sg; V2];

and hence cannot de�ne a facet of k HPP (G) .

2) Supp ose that condition 1) holds. Let A = [ s; V1] [ [V3; t] [ [s; t] and let ui b e a �xed

no de of Vi , i = 1; 2; 3. Let us supp ose that F is a facet of k HPP( G) di�erent from a

trivial inequality. Thus there exists a solution F of the k HPP such that xF 2 F and

F \ [V1; V3] 6= ; . If this is not the case, then F would b e equivalent to a facet de�ned by

any of the inequalities x(e) � 0, e 2 [V1; V3]. Hence, as F \ [V1; V3] 6= ; , from Lemma

4.2.2, we have that jF \ Aj � k + 1 .

Su�ciency .

Supp ose that conditions 1) and 2) hold. First we show that F 6= ; . As j[s; V1] [ [V3; t] [
[s; t]j � k + 1 , there exist no de sets U1 � V1 , U3 � V3 , and an edge set E0 � [s; t] n f stg
such that jU1j + jU3j + jE0j = k . Consider the st -paths (su; ut) , u 2 U1 [ U3 and (e) ,

e 2 E0 . Clearly, these st -paths form a set of k edge-disjoint 3- st -paths. Moreover,

each of these paths intersects T only once. Thus they induce a solution, say E1 , of the

k HPP whose incidence vector b elongs to F . Therefore F 6= ; .

Now supp ose that there exists a facet de�ning inequality bx � � such that F � f x 2
k HPP (G) j bx = � g. As b efore, we will show that there exists a scalar � 6= 0 such that

b= �a .

Let e 2 E1\ T (where E1 is the solution intro duced ab ove). Let E2 = ( E1nf eg)[f stg.

Since E2 is a solution of the k HPP whose incidence vector b elongs to F , we have
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bxE2 = bxE1 = � , implying that b(e) = b(st) . As e is an arbitrary edge, we then obtain

that

b(e) = � for all e 2 (E1 \ T) [ f stg; for some � 2 R: (4.7)

Now let e 2 E n T . If e =2 E1 , then let E3 = E1 [ f eg is a solution of the k HPP.

Moreover, its incidence vector b elongs to F . Hence, b(e) = bxE3 � bxE1 = 0 . If

e 2 E1 n T , then e is either of the form su, u 2 U1 , or vt , v 2 V3 . Supp ose, w.l.o.g.,

that e = su, the case where e = vt is similar. Note that, by the de�nition of E1 , ut also

b elongs to E1 . Let E 0
3 = ( E1 n f su; utg) [ f stg. We have that E 0

3 induces of the k HPP

and xE 0
3 2 F . Hence, bxE 0

3 = bxE1 = � and, in consequence, b(su) + b(ut) = b(st) . As,

by (4.7), b(ut) = b(st) , we have that b(su) = 0 . Thus, we obtain that

b(e) = 0 for all e 2 E n T: (4.8)

Consider now an edge e 2 T n E1 . If e 2 [s; t] n f stg, then clearly, the edge set

(E1 n f gg) [ f eg induces a solution of the k HPP and its incidence vector b elongs to F
where g is an edge of E1 . Hence, as b efore, b(e) = b(g) = � .

Now if e = sv (resp. e = vt ) with v 2 V2 , then the edge set E4 = ( E1 nf su3g) [ f e; vu3g
(resp. E4 = ( E1 n f u1tg) [ f u1v; eg) induces a solution of the k HPP. Moreover, its

incidence vector b elongs to F . Thus, bxE4 � bxE1 = b(e) + b(vu3) � b(su3) = 0 (resp.

bxE4 � bxE1 = b(u1v) + b(e) � b(u1t) = 0 ). From (4.7) and (4.8) we get b(e) = � .

Let e = sv with v 2 V3 . The case where e 2 [V1; t] is similar. If v 2 U3 , then the edge set

E5 = ( E1 n f f g) [ f eg, where f is the edge of E1 b etween s and v , induces a solution of

the k HPP whose incidence vector b elongs to F . Hence bxE5 � bxE1 = b(e) � b(su3) = 0 .

By (4.7), we get b(e) = � . If v =2 U3 , then we have that E 0
5 = ( E1 n f f 0g) [ f e; vtg,

where f 0 2 E1 \ [s; U3], also induces a solution of the k HPP and its incidence vector

b elongs to F . Thus, bxE 0
5 � bxE1 = b(e) + b(u3t) � b(f ) = 0 . By (4.7) and (4.8), we get

b(e) = � .

Now supp ose that e = uv 2 [V1; V3]. If u 2 U1 and v 2 U3 , then by considering the

edge set E6 = ( E1 n f ut; svg) [ f e; stg, we get b(e) + b(st) = b(sv) + b(ut) . From (4.7)

and (4.8), we have that b(e) = � . If u =2 U1 and v 2 U3 , then by considering the

edge set E7 = ( E1 n f gg) [ f su; eg, where g is the edge of E1 b etween s and v , we get

b(e) + b(su) = b(g) . By (4.7) and (4.8), we have b(e) = � . If u 2 U1 and v =2 U3 , then

we show in a similar way that b(e) = � . If u =2 U1 and v =2 U3 , then by considering the

edge set E8 = ( E1 n f stg) [ f su; e; vtg, we get b(e) = � . Thus, we obtain

b(e) = � for all e 2 T n (E1 [ f stg): (4.9)
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From (4.7), (4.8) and (4.9), we have

b(e) =
�

� for all e 2 T;
0 if not :

Therefore, b = �a . Moreover � 6= 0 since bx � � de�nes a facet which ends the pro of

of the theorem. �

As it will turn out in the next section, the conditions given for inequalities (4.1)-(4.3)

to de�ne facets will b e useful for characterizing the k HPP p olytop e.

4.3 Complete description of k HPP (G)

In this section, we will present our main result, that is the p olytop e Pk(G) , given by

the st -cut, the 3-path-cut and the trivial inequalities, is integral, which implies that

k HPP (G) is completely describ ed by these inequalities.

To this end, consider an undirected graph G = ( V; E) . Let N = V n f s; tg, N 0
b e a

copy of N and

eV = N [ N 0 [ f s; tg. The copy in N 0
of a no de u 2 N will b e denoted

by u0
. Let

eG = ( eV ; eA) b e the directed graph such that

eV = N [ N 0 [ f s; tg and

eA is

obtained from as follows. To each edge e 2 [s; t], we asso ciate an arc from s to t in

eG.

To each edge su 2 E (resp. vt 2 E ), we asso ciate in

eG the arc (s; u) , u 2 N (resp.

(v0; t) , v0 2 N 0
). To each edge uv 2 E , with u; v =2 f s; tg, we asso ciate two arcs (u; v0)

and (v; u0) , with u; v 2 N and u0; v0 2 N 0
. Finally, to each no de u 2 V n f s; tg, we

asso ciate in

eG k arcs (u; u0) (see Figure 4.2 for an illustration for k = 3 ).

Remark that any st -dipath in

eG is of length no more than 3. Also note that each

3- st -path in G corresp onds to an st -path in

eG and vice-versa. In fact, a 3- st -path

� = ( s; u; v; t) , with u 6= v , u; v =2 f s; tg, corresp onds to an st -path in

eG of the form

(s; u; v0; t) with u 2 N and v0 2 N 0
, and a 3- st -path L = ( s; u; t) , u =2 f s; tg corresp onds

to an st -path in

eG of the form (s; u; u0; t) .

The main idea of the pro of is to show that each solution of Pk(G) corresp onds to a

solution of k ADPP(

eG ) and vice versa. We will use this corresp ondance together with

Theorem 4.1.4 to achieve the pro of.

Given a solution x of RE
, we let y b e the solution of R eA

obtained from x as follows.
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u1

u2

u3

u4

u5 u0
5

u0
4

u0
3

u0
2

u0
1

ts

u1

u4

u2

u3

u5

ts

G ~G

Figure 4.2: Construction of

eG

y(a) =

8
>>>>><

>>>>>:

x(su) if a = ( s; u); u 2 N;
x(vt) if a = ( v0; t); v0 2 N 0;
x(uv) if a 2 f (u; v0); (v0; u)g; u; v 2 N; u0; v0 2 N 0; u 6= v; u0 6= v0;
x(st) if a = ( s; t);
1 if a = ( u; u0); u 2 N; u0 2 N 0:

We will say that the solutions x and y are associated .

In what follows we will show that any st -cut and 3-path-cut of G corresp onds to

an st -dicut in

eG. Indeed, let us consider an edge set C � E and an arc set

eC � eA
obtained from C as follows.

i) For an edge st 2 C , add (s; t) in

eC ;

ii) for an edge su 2 C , add (s; u) in

eC , u 2 N ;

iii) for an edge vt 2 C , add (v0; t) in

eC , v0 2 N 0
;

iv) for an edge uv 2 C , u 6= v , u; v 2 N ,

iv.1) if su 2 C or vt 2 C , then add (v; u0) in

eC , with v 2 N and u0 2 N 0
;
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iv.2) if su =2 C and vt =2 C , then add (u; v0) in

eC .

Observe that

eC do es not contain any arc of the form (u; u0) with u 2 N and u0 2 N 0
.

Also note that

eC do es not contain at the same time two arcs (u; v0) and (v; u0) , for an

edge uv 2 E with u; v 2 V n f s; tg.

Conversly, an arc subset

eC of

eA can b e obtained from an edge set C � E if

eC do es

not contain simultaneously two arcs (u; v0) and (v; u0) , u; v 2 N , u0; v0 2 N 0
, and do es

not contain any arc of the form (u; u0) with u 2 N , u0 2 N 0
.

As each arc of C corresp onds to a single arc of

eC and vice versa, b oth sets have the

same weight, that is x(C) = y( eC) .

Lemma 4.3.1 Let C � E be an edge set of G which is an st -cut or a 3-path-cut

induced by a partition (V0; :::; V4) such that jV0j = jV4j = 1 . Then the arc set obtained

from C by the procedure given above is an st -dicut of

eG. Moreover, x(C) = y( eC)

Pro of. Supp ose �rst that C is an st -cut � (W) for some W � V with s 2 W and t 2 W .

Let

fW � eV such that

fW = W [ f u0 j u 2 W n f sgg. We will show that

eC = � + (fW) .

We �rst show that

eC � � + (fW) . Observe that any arc f of

eC is of the form (s; t) , (s; u) ,

u 6= t , (v0; t) , (u; v0) or (v; u0) , u; v 2 N , u0; v0 2 N 0
. In fact, if f = ( s; u) 2 eC , with

u 2 N [ f tg, then su 2 C . Thus, u 2 W and therefore, (s; u) 2 � + (fW) .

If f = ( v0; t) for v0 2 N 0
, this implies that vt 2 C . Thus, v 2 W and hence (v0; t) 2

� + (fW) .

If f = ( v; u0) for v 2 N , u0 2 N 0
, then by step iv.a) of the construction of

eC , we

should have su and vt in C . Hence, v 2 W and u 2 W . Therefore, v 2 fW and

u0 2 eV n fW . Hence (v; u0) 2 � + (fW) . If f = ( u; v0) , it similarly follows that f 2 � + (fW) .

Consequeltly, we have that

eC � � + (fW) .

Next, we show that � + (fW) � eC . Let g b e an arc of � + (fW) . If g = ( s; u) for u 2 N ,

then u 2 eV n fW and hence su 2 � (W)(= C) . This implies that (s; u) 2 eC .

If g = ( v0; t) for v0 2 N 0
, then v0

and hence v b elongs to

fW . Thus, vt 2 � (W) and

therefore (v0; t) 2 eC . If g = ( v; u0) with v 2 N and u0 2 N 0
, then v 2 fW , and

u; u0 2 eV n fW . This implies that v 2 W and u 2 W . In consequence, su 2 � (W) and

vt 2 � (W) , and thus (v; u0) 2 eC .

If g = ( u; v0) with u 2 N and v0 2 N 0
, we similarly show that g 2 eC .
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We thus obtain that � + (fW) � eC , and hence � + (fW) = eC .

Now supp ose that C is a 3-path-cut induced by a partition (V0; V1; V2; V3; V4) such

that V0 = f sg and V4 = f tg. By considering

fW = V1 [ f u0 j u 2 V1 [ V2g, we can show

as b efore that

eC = � + (fW) . �

Note that for an edge set C which is a 3-path-cut of G, induced by a partition

(V0; :::; V4) such that jV0j � 2 or jV4j � 2, the corresp onding arc set

eC may not b e

an st -dicut of

eG. In fact,

eC may simultaneously contain two arcs (s; u); (u; v0) or

(u; v0); (v0; t) . In the example of Figure 4.3,

eC simultaneously contains the arcs (s; u2)
and (u2; u0

0) . If there exists a no de subset

fW � eV such that

eC = � + (fW) , we would

have u2 2 fW and u2 2 eV n fW , a contradiction.

Also note that by Theorem 4.2.4, the L -path-cut inequalities induced by such parti-

tions do not de�ne facets of k HPP( G).

t

V0 V1 V2 V3

u2

u0
s

V4

u0
0

t

u2 u0
2

s

u0

Figure 4.3: A 3-path-cut in G which do es not induce an st -dicut in

eG.

The following lemma shows that an st -dicut in

eG which do es not contain any arc of

the form (u; u0) , u 2 V n f s; tg corresp onds to either an st -cut or a 3-path-cut in G
with a lower weight.

Lemma 4.3.2 Let

eC be an st -dicut of

eG such that

eC does not contain an arc of the
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form (u; u0) , u 2 V n f s; tg. Then there exists an st -cut or a 3-path-cut C � E in G
such that x(C) � y( eC) .

Pro of. Let

eC = � + (fW) with

fW � eV . Since

eC do es not contain any arc of the form

(u; u0) , u 2 N ,

eC may contain arcs of the form either (u; v0) or (v; u0) or none of them

but not b oth.

If

eC contains an arc of the form (u; v0) with u 2 N , v0 2 N 0
, since

eC is an st -dicut in

eG, the arcs (s; u) and (v0; t) are not in

eC . If

eC contains an arc (v; u0) , as

eC do es not

contain arcs of the form (z; z0) , z 2 N , we should have u 2 eV n fW and v0 2 fW . Hence

(s; u) and (v0; t) are in

eC . Therefore

eC can b e obtained from an edge set C � E of G.

Moreover x(C) = y( eC) .

Futhermore, C intersects all the 3- st -paths of G. In fact, if there exists a 3- st -path

� = ( su; uv; vt) which do es not intersect C , then the arcs (s; u) , (u; v0) , (v; u0) and (v0; t)
of

eG are not in

eC . Thus, the st -path ((s; u); (u; v0); (v0; t)) of

eG do es not intersect

eC ,

contradicting the fact that

eC is an st -dicut of

eG. Thus C intersects all the 3- st -paths

of G.

If C is an st -cut then the result holds. If this is not the case, then we will show that

there exists a 3-path-cut T such that T � C . Consider the graph G0
obtained from

G by deleting all the edges of C . G0
do es not contain any 3- st -path since C intersets

all these paths. Let � = ( V0; :::; V4) b e a partition of V in G0
such that V0 = f sg, Vi ,

for i = 1; 2; 3, is the set of no des of G0
at distance (in terms of edges) i from s and

V4 = V n (
3[

i =0

Vi ) . As C intersects all the 3- st -paths of G, all the st -paths in G0
are of

length at least 4 and hence, t 2 V4 . Moreover, the subgraph G0
� induced by � in G0

do es not contain any chord, that is an edge uv with u 2 Vi , v 2 Vj , and ji � j j > 1. In

fact, if uv is a chord, then v is at distance i + 1 < j of s, a contradiction. Therefore,

if T is the 3-path-cut induced by � , we have that T � C . As x(e) � 0, for all e 2 E ,

this implies x(T) � x(C) = y( eC) . �

In what follows, we will show that Pk(G) is integral. To this end, we give some

lemmas.

Lemma 4.3.3 Let x 2 Pk(G) and y be its associated solution. Then y 2 k ADPP ( eG) .
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Pro of. Clearly, y satis�es inequalities 0 � y(a) � 1, for all a 2 eA . Now supp ose

that there exists an st -dicut inequality, say y(� + (fW)) � k with

fW � eV , such that

y(� + (fW)) < k .

First note that � + (fW) do es not contain any arc of the form (u; u0) , u 2 N . In fact,

if (u; u0) 2 � + (fW) , for some u 2 N , then one would have that [u; u0] � � + (fW) . Since

j[u; u0]j = k and y(a) = 1 for all a 2 [u; u0], one would have y(� + (fW)) � k , a contra-

diction. Hence, from Lemma 4.3.2, there exists either an st -cut or a 3-path-cut C � E
of G such that x(C) � y(� + (fW)) and therefore x(C) < k . But this is imp ossible since

x 2 Pk(G) . �

Lemma 4.3.4 Let e = uv be an edge of G such that u; v 2 V n f s; tg, and y 2 R eA
a

solution of k ADPP(

eG). If there exists an st -dicut

eC of

eG which does not contain any

arc of the form (z; z0) , z 2 V n f s; tg, and such that (u; v0) 2 eC and y( eC) = k , then

y( eC0) > k for al l st -dicut

eC0
of

eG containing the arc (v; u0) .

Pro of. Supp ose that there exists an st -dicut

eC = � + (fW) of

eG which do es not contain

arcs of the form (z; z0) , z 2 V n f s; tg and such that (u; v0) 2 eC and y( eC) = k . Supp ose

also, on the contrary, that there exists an st -dicut

eC0 = � + (fW 0) containing the arc

(v; u0) and such that y( eC0) = k . From Theorem 4.1.5,

fW and

fW 0
can b e chosen so

that either

fW 0 � fW or

fW � fW 0
. As (u; v0) 2 eC , we have that u 2 fW and v0 2 eV n fW .

Since (z; z0) =2 eC , for all z 2 V n f s; tg, it follows that u; u0 2 fW , and v; v0 2 eV n fW .

Similarly, as (v; u0) 2 eC0
, we have that v; v0 2 fW 0

and u; u0 2 eV n fW 0
.

If

fW 0 � fW , then one would have v 2 fW . But this contradicts the fact that v 2 eV nfW .

If

fW � fW 0
, then we would obtain that u 2 fW 0

. As u 2 eVnfW 0
, this is a contradiction. �

Now we are ready to state our main result.

Theorem 4.3.1 The polytope k HPP (G) is completely described by inequalities (4.1)-

(4.3).

Pro of. We will show that the p olytop e Pk(G) is integral. For this, let us supp ose, on

the contrary, that there exists a fractional extreme p oint x of Pk(G) . Then there exists

a set of st -cuts C � (x) and a set of 3-path-cuts T � (x) such that x is the unique solution

of the system
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S(x)

8
>>><

>>>:

x(e) = 0 ; for all e 2 E0(x);
x(e) = 1 ; for all e 2 E1(x);
x(C) = k; for all C 2 C � (x);
x(T) = k; for all T 2 T � (x);

where E0(x) (resp. E1(x) ) is the set of edges such that x(e) = 0 (resp. x(e) = 1 ) and

jE0(x)j + jE1(x)j + jC � (x)j + jT � (x)j = jE j .

We will show that there exists a solution x0
1 of Pk(G) di�erent from x which is also

a solution of S(x) , yielding a contradiction.

Clearly, the solution y , asso ciated with x , is fractional and, by Lemma 4.3.3, is a

solution of k ADPP ( eG) . Let

eA0(y) = f (u; v) 2 eA j x(uv) = 0 g and

eA1(y) = f (u; v) 2
eA j x(uv) = 1 g [ f (u; u0); u 2 N; u0 2 N 0g. By Lemma 4.3.1, each st -cut C 2 C � (x)

and 3-path-cut T 2 T � (x) corresp onds to an st -dicut

eC of

eG having the same weight,

that is y( eC) = k . We denote by C � (y) the set of the corresp onding st -dicuts. It then

follows that y is solution (not necessarily unique) of the system S(y) given by

S(y)

8
><

>:

y(a) = 0 ; for all a 2 eA0(y);
y(a) = 1 ; for all a 2 eA1(y);
y( eC) = k; for all

eC 2 C � (y):

Since y is fractional and hence, by Theorem 4.1.4, cannot b e an extreme p oint of

k ADPP(

eG ), y can b e written as a convexe combination of integral extreme p oints of

k ADPP(

eG ). Let y1 b e one of these extreme p oints. Clearly, y1 is also a solution of S(y) .

In the following, we show that there exists an integer solution y0
1 of k ADPP(

eG ) which

is a solution of S(y) and such that y0
1(u; v0) = y0

1(v; u0) for all pair of arcs ((u; v0); (v; u0))
of

eG, corresp onding to an edge uv 2 E with u; v 2 V n f s; tg and u 6= v . If such a

solution exists, then y0
1 can b e asso ciated with a solution x0

1 2 Pk(G) satisfying S(x)
and di�erent from x .

If for all pair of arcs ((u; v0); (v; u0)) of

eG, with u; v 2 N , u0; v0 2 N 0
, y1(u; v0) =

y1(v; u0) , then we can take y0
1 = y1 . So supp ose that there exist two no des u; v 2

V n f s; tg, such that uv 2 E and y1(u; v0) 6= y1(v; u0) . As y1 is integral, we can supp ose,

w.l.o.g., that y1(u; v0) = 1 and y1(v; u0) = 0 . It follows that y(u; v0) , y(v; u0) , x(uv)
are fractional. Note that x(uv) = y(u; v0) = y(v; u0) . Also note that any st -dicut of

eG inducing a tight st -dicut inequality for y or y1 do es not contain arcs of the form

(z; z0) , z 2 V n f s; tg. If there is an st -dicut

eC of

eG which contains (u; v0) , and such

that y1( eC) = k , then, by Lemma 4.3.4, every st -dicut containing (v; u0) is not tight for
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y1 . Let y0
1 b e the solution given by

y0
1(a) =

(
y1(a); for all a 2 eA n f (v; u0)g;
1; for a = ( v; u0):

Clearly, y0
1 is a solution of k ADPP(

eG) with y0
1(u; v0) = y0

1(v0; u) = 1 , and satis�es with

equality every st -dicut inequality which is tight for y1 . In particular, the st -dicuts

inequalities of

eC � (y) are also tight for y0
1 . Hence, y0

1 is a solution of S(y) .

If there is an st -dicut

eC which contains (v; u0) and such that y1( eC) = k , then, by

Lemma 4.3.4, every st -dicut

eR � eA containing (u; v0) is such that y1( eR) � k + 1 .

Hence, the solution y0
1 given by

y0
1(a) =

(
y1(a); for all a 2 eA n f (u; v0)g;
0; for a = ( u; v0);

is a solution of k ADPP(

eG) such that y0
1(u; v0) = y0

1(v
0; u) = 0 , and every st -dicut in-

equality which is tight for y1 is also tight for y0
1 . Thus y0

1 is also a solution of S(y) .

Consequently, there exists an integer solution y0
1 2 k ADPP ( eG) which is a solution

of S(y) and such that y0
1(u; v0) = y0

1(u0; v) for all arcs (u; v0); (v; u0) 2 eA corresp onding

to an edge uv 2 E . Thus, y0
1 can b e asso ciated with a solution x0

1 of Pk(G) . As y0
1

is integral, x0
1 is also integral. Moreover, x0

1 is a solution of S(x) . In fact, it is not

hard to see that, as y0
1 is a solution of S(y) , and y0

1(a) = 0 for all a 2 eA0(y) and

y0
1(a) = 1 for all a 2 eA1(y) . Hence x0

1(e) = 0 for all e 2 E0(x) and x0
1(e) = 1 for

all e 2 E1(x) . Supp ose that there is an st -cut (resp. 3-path-cut) inequality in C � (x)
(resp. T � (x) ) which is not tight for x0

1 , say x0
1(C0) > k . Then by Lemma 4.3.2, we have

that x0
1(C0) � y1( eC0) , where

eC0 is the st -dicut of

eC � (y) corresp onding to C0 . We thus

obtain that y0
1( eC0) > k . Hence y0

1 is not a solution of S(y) , a contradiction. Thus, x0
1

is a solution of S(x) . Since x0
1 is integral and x is fractional, x0

1 6= x . In consequence,

x is not the unique solution of S(x) , contradicting the fact that x is an extreme p oint

of Pk(G) . Therefore, x cannot b e fractional, which ends the pro of of the theorem. �

A direct consequence of Theorems 4.2.2, 4.2.3, 4.2.4 and 4.3.1 is the following.

Corollary 4.3.1 If G = ( V; E) is a complete graph and jV j � k + 2 , a minimal
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complete linear description of k HPP (G) is given by

x(� (W)) � k for al l st � cut � (W);

x(T) � k for al l 3-path-cut T induced by a partition satisfying

conditions 1) and 2) of Theorem 4.2.4 ;

x(e) � 0 for al l e 2 E;

x(e) � 1 for al l e 2 E:

As mentionned in Section 4.1.1, the separation problem for the st -cut and 3-path-

cut inequalities can b e solved in p olynomial time. Thus, the k HPP can b e solved in

p olynomial time using a cutting plane algorithm.

4.4 Concluding remarks

In this chapter we have given a complete description of the p olytop e asso ciated with the

k edge-disjoint hop-constrained paths problem when L = 3 and k � 2. We have pre-

sented valid inequalites for the problem and given an integer programming formulation.

We have also describ ed necessary and su�cient conditions for the trivial inequalities,

the st -cut and L -path-cut inequalities to de�ne facets of the p olytop e. Using these

results together with a transformation of the k HPP in G into the k ADPP in a di-

rected graph

eG, we have shown that the p olytop e k HPP( G) is completely describ ed

by the trivial, st -cut and 3-path cut inequalities. As the separation problem for these

inequalities can b e solved in p olynomial time, this yields a p olynomial time cutting

plane algorithm to solve the problem.

These results generalize those obtained by Huygens et al. [75] and Dahl et al. [35]

for k = 2 and L = 2; 3 and for k � 2 and L = 2 , resp ectively. Unfortunately the

linear description of the k HPP is no longer valid when L � 4. As shown by Huygens

and Mahjoub [73], further inequalities are even needed for an integer programming

formulation of the problem when k = 2 and L = 4 .

The k HPP can also b e seen as a minimum cost �ow problem in the graph

eG by

asso ciated with its arcs unit capacities and appropriate weights. In fact, an arc of

eG which corresp onds to an edge of G takes the same weight as this edge while the

arcs of the form (u; u0) , u 2 V n f s; tg (which do not corresp ond to any edge in G)

are given the weight 0. By the corresp ondance b etween the 3- st -paths of G and the
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st -paths in

eG, a minimum weight subgraph of G which contains k edge-disjoint 3- st -

paths corresp onds to a subgraph of

eG containing k arc-disjoint st -paths of the same

weight. Moreover, the weight of this subgraph is minimum. The k HPP is thus equiva-

lent to �nding a minimum cost �ow from s to t of value k in

eG. This implies that the

problem can also b e solved in p olynomial time using any minimum cost �ow algorithm.

The integer programming formulation for the k HPP can b e easily extended to the

more general case where more than pair of terminals are considered. However, as

p ointed out in [74], the cut inequalities toghether with the L -path-cut and trivial in-

equalities do not su�ce to completely describ e the k HPP p olytop e even when only two

pair of terminals are considered L � 3 and k = 2 .

The results of this chapter can b e exploited in a Branch-and-Cut algorithm for that

general case. Also the transformation of the k HPP into the k ADPP in an appropriate

directed graph intro duced and exploited here, can b e used to give based �ow formula-

tions. It would also b e interesting to investigate this typ e of approach for L � 4. This

is our aim in the next chapter.



Chapter 5

The k -Edge-Connected

Hop-Constrained Network Design

Problem

Let G = ( V; E) b e an undirected graph, a set of demands D � V � V , a cost function

c : E ! R, which asso ciates the cost c(e) with each edge e 2 E . The k -Edge-

Connected Hop-Constrained Network Design Problem ( k HNDP for short) consists in

�nding a minimum cost subgraph of G such that there exist k edge-disjoint L - st -paths

b etween the terminals of each demand f s; tg of D .

In this chapter, we consider the k HNDP with L = 2; 3 and k � 2 and intro duce

four new integer programming formulations for the problem. In Section 5.1, we give

a formulation of the k HNDP using the design variables. In Sections 5.2 and 5.3,

we intro duced four new integer programming formulations. These formulations use

transformations of the initial undirected graph into directed graphs.

5.1 Integer programming formulation for the k HNDP

using the design variables

Let G = ( V; E) b e an undirected graph, L � 2 and D = ff s1; t1g; :::; f sd; tdgg, d � 2, b e

the set of demands. We will denote by RD the set of terminal no des of G, that is those

no des of G which are involved in at least one demand. It is clear that the incidence
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vector xF
of any solution (V; F) of the k HNDP satis�es the following inequalities.

x(� (W)) � k for all st -cut ; f s; tg 2 D; (5.1)

x(T) � k for all L - st -path-cut ; f s; tg 2 D; (5.2)

x(e) � 0 for all e 2 E; (5.3)

x(e) � 1 for all e 2 E; (5.4)

Conversely, any integer solution of the system de�ned by inequalities (5.1)-(5.4) is

the incidence vector of a solution of the k HNDP when L = 2; 3.

Recall that inequalities (5.1), (5.2) and (5.3)-(5.4) are called resp ectively st -cut in-

equalities , L - st -path-cut inequalities and trivial inequalities .

It is not hard to see that the k HNDP can b e formulated as a linear integer program

similarly to the case of a single demand (Chapter 4). The following lemma and theorem

give this result. Their pro of are similar to those of Lemma 4.1.1 and Theorem 4.1.1.

Lemma 5.1.1 Let G = ( V; E) be an undirected graph and s and t two nodes of V .

Suppose that there do not exist k edge-disjoint L - st -paths in G, with k � 2. Then there

exists a set of at most k � 1 edges that intersects every L - st -path.

Theorem 5.1.1 Let G = ( V; E) be a graph, k � 2 and L 2 f 2; 3g. Then the k HNDP

is equivalent to the fol lowing inter program

min f cx; subject to (5:1) � (5:4); x 2 ZE g: (5.5)

Formulation (5.5) will b e called Natural formulation . We will denote it by k HNDP Nat .

It only uses the design variables.

In the next sections, we give new integer programming formulations for the k HNDP

in the case where k � 2 and L = 2; 3.

5.2 Separated formulations for the k HNDP

In this section we intro duce three integer programming formulations for the k HNDP.

Let G = ( V; E) b e an undirected graph, L 2 f 2; 3g, k � 2, two integers, and D a set

of demands. Before giving these formulations, we intro duce a graph transformation

which pro duces jD j directed graphs from the graph G.
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5.2.1 Graph transformation

Let f s; tg 2 D and

eGst = ( eVst ; eAst) b e the directed graph obtained from G using the

following pro cedure.

Let Nst = V n f s; tg, N 0
st b e a copy of Nst and

eVst = Nst [ N 0
st [ f s; tg. The copy in

N 0
st of a no de u 2 Nst will b e denoted by u0

. To each edge e = st 2 E , we asso ciate an

arc (s; t) in

eGst with capacity 1. With each edge su 2 E (resp. vt 2 E ), we asso ciate

in

eGst the arc (s; u) , u 2 Nst (resp. (v0; t) , v0 2 N 0
st ) with capacity 1. With each no de

u 2 V n f s; tg, we asso ciate in

eGst one arc (u; u0) with an in�nit capacity. Finally, if

L = 3 we asso ciate with each edge uv 2 E n f s; tg, two arcs (u; v0) and (v; u0) , with

u; v 2 Nst and u0; v0 2 N 0
st with capacity 1 (see Figure 5.1 for an illustration with

L = 3 ).

Graph

eG s 1 ;t 2 Graph

eG s 1 ;t 2 Graph

eG s 3 ;t 3

s1 t 1

t 2s3

u t 3

Graph G

t 3

s3

t 2

u u 0

t 0
2

s0
3

t 0
3

t 1s1

t 1

t 3

u

s3 s0
3

t 0
1

t 0
3

u 0

s1 t 2

s1

t 1

u

t 2

t 0
1

s0
1

u 0

t 0
2

s3 t 3

Figure 5.1: Construction of graphs

eGst with D = ff s1; t1g; f s1; t2g; f s3; t3gg for L = 3

Note that each graph

eGst contains j eVst j = 2 jV j � 2 ( = jNst [ N 0
st [ f s; tgj ) no des and

j eAst j = j� (s)j + j� (t)j � j [s; t]j + jV j � 2 arcs if L = 2 and j eAst j = 2 jE j � j � (s)j � j � (t)j +
j[s; t]j + jV j � 2 arcs if L = 3 , for all f s; tg 2 D .

Given a demand f s; tg, the asso ciated graph

eGst = ( eVst ; eAst) , and an edge e 2 E , we

denote by

eAst(e) the set of arcs of

eGst corresp onding to the edge e.

It is not hard to see that

eGst do es not contain any circuit. Also, observe that any

st -dipath in

eGst is of length no more than 3. Moreover each L - st -path in G corresp onds

to an st -dipath in

eGst and conversely. In fact, if L 2 f 2; 3g, every 3- st -path (s; u; v; t) ,
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with u 6= v , u; v 2 V n f s; tg, corresp onds to an st -dipath in

eGst of the form (s; u; v0; t)
with u 2 Nst and v0 2 N 0

st . Every 2- st -path (s; u; t) , u 2 V n f s; tg, corresp onds to an

st -dipath in

eGst of the form (s; u; u0; t) .

We have the following lemma.

Lemma 5.2.1 Let L 2 f 2; 3g and f s; tg 2 D .

i) If two L - st -paths of G are edge-disjoint, then the corresponding st -dipaths in

eGst

are arc-disjoint.

ii) If two st -dipaths of

eGst are arc-disjoint, then the corresponding st -paths in G
contain two edge-disjoint L - st -paths.

Pro of. We will supp ose, w.l.o.g., that L = 3 . The pro of is similar for L = 2 .

i) Let P1 and P2 b e two edge-disjoint 3- st -paths of G. Let

eP1 and

eP2 b e the two st -

dipaths of

eGst corresp onding to P1 and P2 , resp ectively. We will show that

eP1 and

eP2

are arc-disjoint. Let us assume that this is not the case. Then they intersect on an arc

a of the form either (s; t) , (s; u) , (v0; t) , (u; v0) or (u; u0) , with u 2 Nst and v0 2 N 0
st .

If a is of the form (s; t) , (s; u) , (v0; t) or (u; v0) , then it corresp onds to an edge e of

G of the form either st , su, vt or uv . This implies that P1 and P2 contain b oth the

edge e, a contradiction. Thus,

eP1 and

eP2 intersect on an arc of the form (u; u0) , with

u 2 Nst . As the st -dipaths of

eGst contain at most 3 arcs,

eP1 and

eP2 are of the form

(s; u; u0; t) . But this implies that P1 and P2 contain simulataneously the edges su and

ut , a contradiction.

ii) Now consider two arc-disjoint st -dipaths

eP1 and

eP2 of

eGst and let P1 and P2 b e the

corresp onding 3- st -paths of G. Supp ose that P1 \ P2 6= ; . If P1 and P2 intersect on an

edge e = st , then

eP1 and

eP2 also contain the arc (s; t) , a contradiction. If P1 and P2

intersect on an edge of the form su, u 2 V n f s; tg (resp. vt , v 2 V n f s; tg), then, as

b efore, b oth

eP1 and

eP2 contain the arc (s; u) (resp. (v0; t )), yielding a contradiction.

Now if P1 and P2 intersect on an edge of the form uv , u; v 2 V n f s; tg, then

eP1 and

eP2 contain the arcs (u; v0) and (v; u0) of

eGst . Since

eP1 and

eP2 are arc-disjoint,

eP1 con-

tains say (u; v0) and

eP2 (v; u0) . Thus they are resp ectively of the form (s; u; v0; t) and

(s; v; u0; t) . This implies that P1 = ( su; uv; vt) and P2 = ( sv; vu; ut) . Let P0
1 = ( su; ut)

and P0
2 = ( sv; vt) . Clearly P0

1 and P0
2 are edge-disjoint and of length 2. Thus, we

asso ciate

eP1 and

eP2 with them, which ends the pro of of the lemma. �
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As a consequence of Lemma 5.2.1, for L 2 f 2; 3g and every demand f s; tg 2 D , a set

of k edge-disjoint L - st -paths of G corresp onds to a set of k arc-disjoint st -dipaths of

eGst , and k arc-disjoint st -dipaths of

eGst corresp ond to k edge-disjoint L - st -paths of G.

Therefore we have the following corollary.

Corollary 5.2.1 Let H be a subgraph of G and

eHst , f s; tg 2 D , the subgraph of

eGst

obtained by considering al l the arcs of

eGst corresponding to an edge of H , plus the arcs of

the form (u; u0) , u 2 V nf s; tg. Then H induces a solution of the k HNDP if

eHst contains

k arc-disjoint st -dipaths, for every f s; tg 2 D . Conversly, given a set of subgraphs

eHst

of

eGst , f s; tg 2 D , if H is the subgraph of G obtained by considering al l the edges of

G associated with at least one arc in a subgraph

eHst , then H induces a solution of the

k HNDP only if

eHst contains k arc-disjoint st -dipaths, for every f s; tg 2 D .

Remark that a graph

eGst will contain k arc-disjoint st -dipaths if and only if every

st -dicut contains at least k arcs. This implies, by the Max �ow - Min cut Theorem,

that

eGst contains k arc-disjoint st -dipaths if and only if there exists a feasible �ow of

value � k where every arc of

eGst has capacity 1. Given a demand f s; tg and a feasible

�ow f of value � k on

eGst , we will denote by

eH f
st the set of arcs of

eGst having a p ositive

value of �ow with resp ect to f .

In what follows, we will give three integer programming formulations for the k HNDP

using graphs

eGst , f s; tg 2 D . These formulations will b e called separated formulations .

5.2.2 Cut formulation

The �rst formulation is based on cuts in the graphs

eGst , f s; tg 2 D . Given a subgraph

eHst of

eGst , we let y
eH st

st 2 R eA st
b e the incidence vector of

eHst , that is to say y
eH st

st (a) = 1
if a 2 eHst and y

eH st
st (a) = 0 if not. By Corollary 5.2.1, if a subgraph H of G induces

a solution of the k HNDP, then the subgraph

eHst contains at least k arc-disjoint st -

dipaths, for all f s; tg 2 D , and conversely. Thus, for any solution H of the k HNDP,

the following inequalities are satis�ed by y
eH st

st , for all f s; tg 2 D ,

yst(� + (fW)) � k; for all st -dicut � + (fW) of

eGst ; (5.6)

yst(a) � x(e); for all a 2 eAst(e); e 2 E; (5.7)

yst(a) � 0; for all a 2 eAst ; (5.8)

x(e) � 1; for all e 2 E: (5.9)
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where yst 2 R eA st
for all f s; tg 2 D and x 2 RE

.

Inequalities (5.6) will b e called directed st-cut inequalities or st -dicut inequalities and

inequalities (5.7) linking inequalities . Inequalities (5.7) indicate that an arc a 2 eAst

corresp onding to an edge e is not in

eHst if e is not taken in H . Inequalities (5.8) and

(5.9) are called trivial inequalities .

We have the following result which is given without pro of since it easily follows from

the ab ove results.

Theorem 5.2.1 The k HNDP for L = 2; 3 is equivalent to the fol lowing integer pro-

gram

min f cx; subject to (5:6) � (5:9); x 2 ZE
+ ; yst 2 Z

eA st
+ ;

for al l f s; tg 2 Dg: (5.10)

This formulation is called Cut formulation and denoted by k HNDP Cu . It contains

jE j +
X

f s;tg2D

j eAst j = jE j + d(n � 2) +
X

f s;tg2D

j� (s)j +
X

f s;tg2D

j� (t)j �
X

f s;tg2D

j[s; t]j

variables if L = 2 and

jE j +
X

f s;tg2D

j eAst j = jE j + 2djE j + d(n � 2) �
X

f s;tg2D

j� (s)j �
X

f s;tg2D

j� (t)j +
X

f s;tg2D

j[s; t]j

variables if L = 3 (remind that d = jD j ).

However, the numb er of constraints is exp onential since the directed st -cuts are in

exp onential numb er in

eGst , for all f s; tg 2 D . As it will turn out in Chapter 6, its

linear relaxation can b e solved in p olynomial time using a cutting plane algorithm.

5.2.3 No de-Arc formulation

Let H � E b e a subgraph of G and xH
its incidence vector. Given a demand f s; tg,

we let f st 2 R eA st
b e an integer �ow vector on

eGst of value k . Then f st
satis�es the

�ow conservation constraints , given by
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X

a2 � + (u)

f st
a �

X

a2 � � (u)

f st
a =

8
><

>:

k if u = s;
0 if u 2 eVst n f s; tg;

� k if u = t;

9
>=

>;
;

for all u 2 eVst : (5.11)

Also xH
and (f st)f s;tg2D satisfy the following inequalities

f st
a � x(e); for all a 2 eAst (e); f s; tg 2 D; e 2 E; (5.12)

f st
a � 0; for every a 2 eAst and f s; tg 2 D; (5.13)

x(e) � 1; for all edge e 2 E: (5.14)

Inequalities (5.12) are also called linking inequalities . They indicate that if an edge

e 2 E is not in the solution, then the �ow on every arc corresp onding to e is 0.

Inequalities (5.13)-(5.14) are called trivial inequalities .

We have the following theorem which will b e given without pro of.

Theorem 5.2.2 The k HNDP for L = 2; 3 is equivalent to the fol lowing integer pro-

gram

min f cx; subject to (5:11) � (5:14); x 2 ZE
+ ; f st 2 Z eA st

+ ;

for al l f s; tg 2 Dg: (5.15)

This formulation will b e called Node-Arc formulation and denoted by k HNDP NA . It

contains

jE j +
X

f s;tg2D

j eAst j = jE j + d(n � 2) +
X

f s;tg2D

j� (s)j +
X

f s;tg2D

j� (t)j �
X

f s;tg2D

j[s; t]j

variables if L = 2 and

jE j +
X

f s;tg2D

j eAst j = jE j + 2djE j + d(n � 2) �
X

f s;tg2D

j� (s)j �
X

f s;tg2D

j� (t)j +
X

f s;tg2D

j[s; t]j

variables if L = 3 .

The numb er of constraints is

djV j +
X

f s;tg2D

j� (s)j +
X

f s;tg2D

j� (t)j �
X

f s;tg2D

j[s; t]j
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if L = 2 and

djV j + 2djE j �
X

f s;tg2D

j� (s)j �
X

f s;tg2D

j� (t)j +
X

f s;tg2D

j[s; t]j

if L = 3 .

Clearly the numb er of variables and the numb er of constraints are b oth p olynomial.

Hence, the linear relaxation of Formulation (5.15) can b e solved in p olynomial time

using a linear programming metho d.

5.2.4 Path-Arc formulation

The k HNDP can also b e formulated using a path-based mo del. Every solution of the

problem is represented by a collection of directed st -paths in graphs

eGst , f s; tg 2 D .

Let f s; tg 2 D and Pst b e the set of st -dipaths in

eGst . Given a directed path

eP 2 Pst ,

we denote by � st
eP

= ( 
 st
eP ;a

)a2 eA st
the incidence vector of

eP that is the vector given by


 st
eP ;a

= 1 if a 2 eP and 
 st
eP ;a

= 0 otherwise. Given a subgraph H of G and a set

of subgraphs

eHst of

eGst , f s; tg 2 D , we let � st
eH st

2 RPst
b e the 0-1 vector such that

� st
eH st

( eP) = 1 if

eP 2 Pst is in

eHst and � st
eH st

( eP) = 0 otherwise.

If H induces a solution of the k HNDP, then xH
and (� st

eH st
)f s;tg2D satisfy the following

inequalities.

X

eP 2 Pst

� st( eP) � k; (5.16)

X

eP 2 Pst


 st
eP ;a

� st( eP) � x(e); for all a 2 eAst(e); f s; tg 2 D; e 2 E; (5.17)

x(e) � 1; for all edge e 2 E; (5.18)

� st( eP) � 0; for every

eP 2 Pst ; f s; tg 2 D; (5.19)

where � st 2 RPst
and x 2 RE

.

Inequalities (5.16) express the fact that the subgraph

eGst must contain at least k
st -dipaths. Inequalities (5.17) indicate that the st -dipaths are arc-disjoint.

The following theorem gives an integer programming formulation for the k HNDP

using the path-based mo del describ ed ab ove.
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Theorem 5.2.3 The k HNDP for L = 2; 3 is equivalent to the fol lowing inter program

min f cx; subject to (5:17) � (5:19); x 2 ZE
+ ; � st 2 ZPst

+ ;

for al l f s; tg 2 Dg: (5.20)

Formulation (5.20) is called Path-Arc formulation and denoted by k HNDP P A . Re-

mark that this formulation contains an exp onential numb er of variables while the num-

b er of non trivial inequalities is

X

f s;tg2D

j� (s)j +
X

f s;tg2D

j� (t)j �
X

f s;tg2D

j[s; t]j � d(n � 3)

if L = 2 and

2djE j �
X

f s;tg2D

j� (s)j �
X

f s;tg2D

j� (t)j +
X

f s;tg2D

j[s; t]j � d(n � 3)

if L = 3 , which is p olynomial. To solve the linear relaxation of Formulation (5.20), it

is necessary to use appropriate metho d such as column generation.

In the next section we intro duce a further formulation for the k HNDP also based

on directed graphs. However, unlike the separated formulations, this formulation is

supp orted by only one directed graph.

5.3 Aggregated formulation for the k HNDP

Let G = ( V; E) b e an undirected graph, L 2 f 2; 3g, k � 2 b e two integers, and D
b e the demand set. We denote by SD and TD resp ectively the sets of source and

destination no des of D . In the case where two demands f s1; t1g and f s2; t2g are such

that s1 = t2 = s, we keep a copy of s in b oth SD and TD .

In this section, we will intro duce a new formulation for the k HNDP which is supp orted

by a directed graph

eG = ( eV ; eA) obtained from G as follows. Let N 0
and N 00

b e two

copies of V . We denote by u0
and u00

the no des of N 0
and N 00

corresp onding to a no de

u 2 V . Let

eV = SD [ N 0[ N 00[ TD . For every no de u 2 V , we add in

eG an arc (u0; u00) .

For each f s; tg 2 D , with s 2 SD and t 2 TD , we apply the following pro cedure.

i) For an edge e = st , we add in

eG an arc (s; t0) and an arc (t0; t) ;

ii) For an edge su 2 E , u 2 V n f s; tg, we add an arc (s; u0) in

eG;
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iii) For an edge vt 2 E , v 2 V n f s; tg, we add an arc (v00; t) .

If L = 3 , for each edge e = uv 2 E , we also add two arcs (u0; v00) and (v0; u00) (see

Figures 5.2 and 5.3 for examples with L = 2 and L = 3 ).

s0
1

s0
3

u0

t 0
3

t 0
1

t 0
2

s00
1

s00
3

u00

t 00
1

t 00
2

t 00
3

s1

t 1

s1 t 1

t 2s3

u t 3

t 3

t 2

s3

Graph

eG

Graph G

Figure 5.2: Construction of graph

eG with D = ff s1; t1g; f s1; t2g; f s3; t3gg and L = 2 .
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s0
1

s0
3

u0

t 0
3

t 0
1

t 0
2

s00
1

s00
3

u00

t 00
1

t 00
2

t 00
3

s1

t 1

s1 t 1

t 2s3

u t 3

t 3

t 2

s3

Graph

eG

Graph G

Figure 5.3: Construction of graph

eG with D = ff s1; t1g; f s1; t2g; f s3; t3gg and L = 3 .

eG contains j eV j = 2 jV j + jSj + jTj no des and j eAj = jV j +
X

s2 S

j� (s)j +
X

t2 T

j� (t)j arcs if

L = 2 and j eAj = 2 jE j + jV j +
X

s2 S

j� (s)j +
X

t2 T

j� (t)j arcs if L = 3 .

If

eG = ( eV ; eA) is the graph asso ciated with G, then for an edge e 2 E , we denote by

eA(e) the set of arcs of

eG corresp onding to e.

Observe that

eG is circuitless. Also note that for a given demand f s; tg 2 D , every

st -dipath in

eG contains at most 3 arcs. An L - st -path P = ( s; u; v; t) of G, where u
and v may b e the same, corresp onds to an st -dipath

eP = ( s; u0; v00; t) in

eG. Conversely,

every st -dipath

eP = ( s; u0; v00; t) of

eG, where u0
and v00

may corresp ond to the same

no de of V , correp onds to an L - st -path P = ( s; u; v; t) , where u and v may b e the same.

Moreover

eG do es not contain any arc of the form (s; s0) and (t00; t) , for every s 2 SD

and t 2 TD . If a no de t 2 TD app ears in exactly one demand f s; tg, then [s00; t] = ; . In

the remain of this chapter we will supp ose w.l.o.g. that each no de of TD is involved,

as destination, in only one demand. In fact, in general, if a no de t 2 TD is involved, as

destination, in more than one demand, say f s1; tg; :::; f sp; tg, with p � 2, then one may

replace in TD t by p no des t1; :::; tp and in D each demand f si ; tg by f si ; t i g, i = 1; :::; p.

We have the following result.
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Lemma 5.3.1 Let L 2 f 2; 3g. If each node t 2 TD appears in exacly one demand,

then for every f s; tg 2 D ,

i) if two L - st -paths of G are edge-disjoint, then the corresponding st -dipaths of

eG
are arc-disjoint.

ii) if two st -dipaths of

eG are arc-disjoint, then the corresponding st -paths in G con-

tain two edge-disjoint L - st -paths.

Pro of. The pro of will b e given for L = 3 . It follows the same lines for L = 2 .

i) Let f s; tg 2 D and let P1 and P2 b e two edge-disjoint 3- st -paths and

eP1 and

eP2 b e

the two st -dipaths of

eG corresp onding to P1 and P2 . We will show that

eP1 and

eP2 are

arc-disjoint. Supp ose the contrary that is

eP1 and

eP2 intersect on an arc a 2 eA of the

form either (s; t0) , (s; u0) , (v00; t) , (u0; v00) or (u0; u00) , with u0 2 N 0
and v002 N 00

. If a is

of the form (s; t0) , (s; u0) , (v00; t) or (u0; v00) , then it corresp onds to an edge e of G of

the form either st , su, vt or uv . It then follows that P1 and P2 b oth contain edge e,

a contradiction. If

eP1 and

eP2 intersect on an arc of the form (u0; u00) , then they also

contain arcs of the form (s; u0) and (u00; t) . Thus, P1 and P2 also contain simultaneously

the edges su and ut , a contradiction. Thus,

eP1 and

eP2 are arc-disjoint.

ii) Let

eP1 and

eP2 b e two arc-disjoint st -dipaths of

eG and supp ose that P1 and P2 , the

3- st -paths of G corresp onding to

eP1 and

eP2 , are not edge-disjoint. Thus P1 and P2

intersect on edges of the form either st , su, vt or uv , with u; v 6= s; t .

If P1 and P2 intersect edge st , then each path

eP1 and

eP2 contains at least one arc

among those corresp onding to st in

eG, that is (s; t0) , (s0; t00) or (t0; s00) . If

eP1 and

eP2 contain (s0; t00) , then they should also contain arc (s; s0) . Since [s; s0] = ; , this is

imp ossible. In a similar way, we show that

eP1 and

eP2 cannot contain (t0; s00) . Hence,

eP1 and

eP2 b oth contain arc (s; t0) , a contradiction.

If P1 and P2 intersect on su, then each path

eP1 and

eP2 contains either (s; u0) , (s0; u00) or

(u0; s00) . Since [s; s0] = ; = [ s00; t],

eP1 and

eP2 should b oth use arc (s; u0) , a contradiction.

If P1 and P2 intersect on vt , then

eP1 and

eP2 contain either (v0; t00) , (t0; v00) or (v00; t) . As

[t00; t] = ; ,

eP1 and

eP2 cannot use arc (v0; t00) . Moreover, if

eP1 or

eP2 contains (t0; v00) , then

it also contains arc (v00; t) . Hence,

eP1 and

eP2 b oth contain arc (v00; t) , a contradiction.

In consequence, P1 \ P2 = f uvg, u; v 6= s; t . This implies that

eP1 and

eP2 are re-

sp ectively of the form (su0; u0v00; v00t) and (sv0; v0u00; u00t) , and P1 = ( su; uv; vt) and

P2 = ( su; vu; ut) . Let P0
1 = ( su; ut) and P0

2 = ( sv; vt) . Clearly P0
1 and P0

2 are edge-

disjoint. Since they are of length 2, we simply asso ciate

eP1 and

eP2 with them, which
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ends the pro of of the lemma. �

As a consequence of Lemma 5.3.1, the graph G contains k edge-disjoint L - st -paths

for a demand f s; tg if and only if

eG contains at least k arc-disjoint st -dipaths. Thus

we have the following corrollary.

Corollary 5.3.1 Let H be a subgraph of G and

eH the subgraph of

eG obtained by

considering al l the arcs of

eG corresponding to the edges of H toghether with the arcs

of the form (u0; u00) , u 2 V , and (t0; t) , for every t 2 TD . Then H induces a solution

of the k HNDP if

eH is a solution of the Survivable Directed Network Design Problem

( k DNDP). Conversely, if

eH is a subgraph of

eG and H is the subgraph of G obtained

by considering al l the edges which correspond to at least one arc of

eH , then H induces

a solution of the k HNDP only if

eH is a solution of the k DNDP.

By Menger's Theorem,

eG contains k arc-disjoint st -dipaths if and only if every st -

dicut of

eG contains at least k arcs. Let x 2 RE
and y 2 R eA

. If

eH is a solution of the

k DNDP and H is the subgraph of G whose edges corresp ond to the arcs of

eH , then

xH
and y eH

, the incidence vectors of H and

eH , satisfy the following inequalities

y(� + (fW)) � k; for all st -dicut � + (fW); f s; tg 2 D; (5.21)

y(a) � x(e); for all a 2 eA(e); e 2 E; (5.22)

y(a) � 0; for all a 2 eA; (5.23)

x(e) � 1; for all e 2 E: (5.24)

We have the following theorem, which easily follows from Corollary 5.3.1.

Theorem 5.3.1 The k HNDP for L = 2; 3 is equivalent to the fol lowing integer pro-

gram

min f cx; subject to (5:21) � (5:24); x 2 ZE
+ ; y 2 Z

eA
+ g: (5.25)

Formulation (5.25) will b e called Aggregated formulation and denoted by k HNDP Ag .

Inequalities (5.21) will b e called directed st-cut inequalities or st -dicut inequalities and

(5.22) will b e called linking inequalities . The latter inequalities indicate that an arc a,

corresp onding to an edge e, is not in

eH if e is not taken in H . Inequalities (5.23) and

(5.24) are called trivial inequalities .
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This formulation contains jE j + j eAj = jE j + jV j +
X

s2 SD

j� (s)j +
X

t2 TD

j� (t)j variables

if L = 2 and jE j + j eAj = 3 jE j + jV j +
X

s2 SD

j� (s)j +
X

t2 TD

j� (t)j variables if L = 3 . The

numb er of constraints is exp onential since the st -dicuts are in exp onential numb er.

But, as it will turn out, the separation problem of inequalities (5.21) can b e solved in

p olynomial time and hence, the linear relaxation of (5.25) so is.

In the next section, we present a comparitive study of di�erent formulations presented

in the last section. In particular, we will show that the values of the linear relaxations

of the separated and Aggregated formulations are greater than that of the Natural

formulation and thus, these formulations are as strong as the Natural formulation.

5.4 Separated and Aggregated formulations versus Nat-

ural formulation

Here we show that the values of the linear relaxations of Formulations (5.10)-(5.25),

are greater than that of the Natural formulation of the k HNDP. For this, we show that

a solution x of the linear relaxation of any of these four formulations is also a solution

of the linear relaxation of Formulation (5.5).

5.4.1 Separated formulations versus Natural formulation

We �rst consider the Cut, No de-Arc and Path-Arc formulations. We will examine

the No de-Arc formulation, the pro of for the Cut and Path-Arc formulations is along

the same lines. We will show that, if a vector x 2 RE
and jD j �ow vectors f

st
2

R eA st
, f s; tg 2 D , induce a solution of the linear relaxation of (5.15), then x also

satis�es inequalities (5.1)-(5.4). To this end, we �rst asso ciate with each digraph

eGst

a solution yst 2 R eA st
obtained from x . Then we intro duce a pro cedure which p ermits

to asso ciate with every st -cut and L - st -path-cut of G an st -dicut of

eGst with the same

value regarding yst .

For all f s; tg 2 D , let yst 2 R eA st
b e the vector given by
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yst (a) =

8
>>>>>>><

>>>>>>>:

x(su) if a is of the form (s; u); u 2 Nst ;
x(vt) if a is of the form (v0; t); v0 2 N 0

st ;
x(uv) if a is of the form (u; v0) or (v0; u);

u; v 2 Nst ; u0; v0 2 N 0
st ; u 6= v; u0 6= v0;

x(st) if a is of the form (s; t);
1 if a is of the form (u; u0); u 2 Nst ; u0 2 N 0

st :

Note that, since f
st

is of value � k , for all f s; tg 2 D , by inequalities (5.12), it follows

that yst (�
+ (fW)) � k for all st -dicut � + (fW) of

eGst .

Now we intro duce a pro cedure, called Procedure A , which, for a demand f s; tg and

an edge set C � E , pro duces an arc subset

eC of

eGst .

i) For an edge st 2 C , add the arc (s; t) in

eC ;

ii) for an edge su 2 C , add the arc (s; u) in

eC , u 2 Nst ;

iii) for an edge vt 2 C , add the arc (v0; t) in

eC , v0 2 N 0
st ;

iv) for an edge uv 2 C , u 6= v , u; v 2 V n f s; tg,

iv.1) if su 2 C or vt 2 C , then add (v; u0) in

eC , with v 2 Nst and u0 2 N 0
st ;

iv.2) if su =2 C and vt =2 C , then add the arc (u; v0) in

eC .

Observe that

eC do es not contain any arc of the form (u; u0) with u 2 Nst and u0 2 N 0
st .

Also note that

eC do es not contain at the same time two arcs (u; v0) and (v; u0) , for an

edge uv 2 E with u; v 2 V n f s; tg.

Conversely, an arc subset

eC of

eAst can b e obtained from an edge set C � E , using

Pro cedure A, if

eC do es not contain simultaneously two arcs (u; v0) and (v; u0) , u; v 2 Nst ,

u0; v0 2 N 0
st , and do es not contain any arc of the form (u; u0) with u 2 Nst , u0 2 N 0

st .

As each arc of C corresp onds to a single arc of

eC and vice versa, C and

eC have the

same weight with resp ect to x and y , that is x(C) = yst ( eC) .

Lemma 5.4.1 Let (x; f
s1 t1 ; :::; f

sd td ) be a solution of the linear relaxation of Formu-

lation (5.15). Let C � E be an edge set of G which is an st -cut or a L - st -path-cut

induced by a partition (V0; :::; VL +1 ) such that jV0j = jVL +1 j = 1 , with L 2 f 2; 3g. Also

let yst 2 R eA st
be the solution obtained from x and

eGst . Then the arc set

eC obtained

from C by Procedure A is an st -dicut of

eGst . Moreover, x(C) = yst ( eC) .
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Pro of. Similar to that of Lemma 4.3.1. �

By Lemma 5.4.1, every st -cut and L - st -path-cut C of G, induced by a partition

(V0; :::; VL +1 ) such that jV0j = jVL +1 j = 1 , corresp onds to an st -dicut

eC of

eGst of the

same weight, that is x(C) = yst ( eC) . As by the remark ab ove, yst ( eC) � k , for every

st -dicut of

eGst , we have that x(C) � k . Therefore, x satis�es inequalities (5.1)-(5.4).

This result implies that if a vector x and a set of �ow vectors (f
st

)f s;tg2D inducing

an optimal solution of the linear relaxation of Formulation (5.15), then x is a solution

of the linear relaxation of (5.5). This yields the theorem b elow.

Theorem 5.4.1 If Z �
NA (resp. Z �

Cut ) (resp. Z �
P A ) is the value of the linear relaxation

of Formulation (5.15) (resp. (5.10)) (resp. (5.20)) and Z �
nat is that of Formulation

(5.5), then Z �
nat � Z �

NA (resp. Z �
nat � Z �

Cut ) (resp. Z �
nat � Z �

P A ).

In the next section we show that this result also holds for the Aggregated formulation.

5.4.2 The linear relaxation of the Aggregated formulation

Consider the Aggregated formulation (5.25) and let

eG = ( eV ; eA) b e the directed graph

asso ciated with G. Let also (x; y) 2 RE � R eA
b e a pair of vectors which induces a

solution of the linear relaxation of Formulation (5.25). As for the No de-Arc formulation,

we are going to asso ciate with every edge set C � E and demand f s; tg 2 D , an arc

set

eC of

eG, and show that if C is an st -cut or an L - st -path-cut induced by a partition

(V0; :::; VL +1 ) with jV0j = jVL +1 j = 1 , then

eC is an st -dicut of

eG.

For this, we give the following pro cedure called Procedure B . Let C � E and f s; tg 2
D , and let

eC b e the arc set of

eG obtained as follows.

i) For an edge st 2 C , add the arc (s; t0) in

eC ;

ii) for an edge su 2 C , add the arc (s; u0) in

eC , u0 2 N 0
;

iii) for an edge vt 2 C , add the arc (v00; t) in

eC , v002 N 00
;

iv) for an edge uv 2 C , u 6= v , u; v 2 V n f s; tg,

iv.1) if su 2 C or vt 2 C , then add (v0; u00) in

eC , with v0 2 N 0
and u002 N 00

;
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iv.2) if su =2 C and vt =2 C , then add the arc (u0; v00) in

eC .

Observe that

eC do es not contain any arc neither of the form (u0; u00) with u0 2 N 0

and u002 N 00
, nor of the form (t0; t) for t 2 TD . Also note that

eC do es not contain at

the same time two arcs (u0; v00) and (v0; u00) , for an edge uv 2 E .

Conversely, an arc subset

eC of

eA can b e obtained by Pro cedure B from an edge set

C � E if

eC do es not contain simultaneously two arcs (u0; v00) and (v0; u00) , u0; v0 2 N 0
,

u00; v002 N 00
, and any arc of the form (u0; u00) with u0 2 N 0

, u002 N 00
and (t0; t) , t 2 TD .

As each arc of C corresp onds to an arc of

eC and vice versa, and (x; y) satis�es

inequalities (5.22), we have that x(C) � y( eC) . We then have the following result given

without pro of since its pro of is similar to that of Lemma 4.3.1.

Lemma 5.4.2 Let (x; y) be a solution of the linear relaxation of Formulation (5.25).

Let C � E be an edge set of G which is an st -cut or a L - st -path-cut induced by a

partition (V0; :::; VL +1 ) such that jV0j = jVL +1 j = 1 , with L 2 f 2; 3g. Then the arc set

obtained from C and f s; tg by Procedure B is an st -dicut of

eG. Moreover, x(C) � y( eC) .

Pro of. The pro of is similar to that of Lemma 4.3.1. �

By Lemma 5.4.2, every st -cut and L - st -path-cut C of G corresp onds to an st -dicut

eC of

eG such that x(C) � y( eC) . As (x; y) , induces a solution of the linear relaxation

of Formulation (5.25), and hence, y( eC) � k , for every st -dicut

eC of

eG, we have that

x(C) � k . Therefore, x satis�es inequalities (5.1)-(5.4), yielding the theorem b elow.

Theorem 5.4.2 If Z �
Ag is the optimal solution of Formulation (5.25) and Z �

nat is the

optimal solution of Formulation (5.5), then Z �
nat � Z �

Ag .

The next section is devoted to a p olyhedral study of the di�erent formulations in-

tro duced b efore. For the p olytop e asso ciated with each formulation we describ e some

classes of valid inequalities and give some conditions under which these inequalities

de�ne facets.
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5.5 The k HNDP p olytop es

Let G = ( V; E) b e an undirected graph, L 2 f 2; 3g and k � 2 two integers, and

D = ff s1; t1g; :::; f sd; tdgg, d � 2, the set of demands.

We will denote by k HNDP Ag (G; D) (resp. k HNDP Cu (G; D) ) (resp. k HNDP NA (G; D) )

(resp. k HNDP P A (G; D) ) the p olytop e asso ciated with the Aggregated formulation

(resp. Cut formulation), (resp. No de-Arc formulation), (resp. Path-Arc formulation).

5.5.1 The p olytop e k HNDP Ag(G; D)

We �rst consider the p olytop e k HNDP Ag (G; D) . Let

eG = ( eV ; eA) b e the directed graph

asso ciated with G and D in the case of the Aggregated formulation. Let E �
b e the

set of edges e 2 E such that there exists a demand f s; tg 2 D such that G n f eg
do es not contain k edge-disjoint L - st -paths. Such an edge is said to b e L - st -essential .

Also consider an arc a 2 eA such that there exists a demand f s; tg 2 D such that the

graph

eG n f ag do es not contain k arc-disjoint st -dipaths. Such an arc a is said to b e

st -essential . We will denote by

eA �
the set of st -essential arcs of

eG.

The following theorem characterizes the dimension of k HNDP Ag (G; D) .

Theorem 5.5.1 dim(k HNDP Ag (G; D)) = jE j + j eAj � j E � j � j eA � j .

Pro of. Obviously, we have that dim(k HNDP Ag (G; D)) � j E j + j eAj � j E � j � j eA � j . Now

we show that dim(k HNDP Ag (G; D)) � j E j + j eAj � j E � j � j eA � j . For this, we show that

the maximum numb er of a�nely indep endant solutions of k HNDP Ag (G; D) is greater

than or equal to jE j + j eAj � j E � j � j eA � j + 1 . Recall that a solution of k HNDP Ag (G; D)
is describ ed by a pair ( eF ; F ) where

eF � eA and F � E is the asso ciated edge set.

Also note that an edge set F induces a solution of the k HNDP if and only if the

asso ciated arc set

eF induces a subgraph of

eG containing k arc-disjoint st -dipaths for

every f s; tg 2 D .

Consider the pairs ( eA n f ag; E) , for all a 2 eA n eA �
. As a =2 eA �

, these pairs induce

solutions of k HNDP Ag (G; D) .

For every edge e 2 E n E �
, consider the pair ( eA n eA(e); E n f eg) . Remind that,

for all e 2 E ,

eA(e) is the set of arcs of

eA corresp onding to e. As e 2 E n E �
, the

subgraph induced by E n f eg contains k edge-disjoint L - st -paths for every f s; tg 2 D
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and the subgraph of

eG induced

eA n eA(e) also contains k arc-disjoint st -dipaths for every

f s; tg 2 D . Hence this pair induces a solution of k HNDP Ag (G; D) .

One can easily observe that these solutions, toghether with the solution given by the

pair ( eA; E ) , form a family of jE n E � j + j eA n eA � j + 1 solutions of the k HNDP Ag that

are a�nely indep endant. Therefore, dim(k HNDP Ag (G; D)) � j E j + j eAj � j E � j � j eA � j ,

which ends the pro of of the theorem. �

Consequently, k HNDP Ag (G; D) is full dimensional if and only if E � = ; = eA �
.

The next theorem shows that if G is complete and jV j � k + 2 , then E � = ; = eA �
,

implying that k HNDP Ag (G; D) is full dimensional. But b efore, we give the following

lemma.

Lemma 5.5.1 If G is complete, then for every f s; tg 2 D , there exist at least jV j � 1
arc-disjoint st -dipaths in

eG.

Pro of. Supp ose that G is complete. Consider a demand f s; tg 2 D and the arc set

eH = [ s; N 0] [ [N 0; N 00] [ [N 00; t] [ [t0; t]. Clearly, since G is complete, j[s; N 0]j = jV j � 1,

j[N 00; t]j = jV j � 2. Moreover, by the construction of

eG, j[N 0; N 00]j = jV j and j[t0; t]j � 1.

Thus, the subgraph induced by

eH contains jV j � 1 arc-disjoint st -dipaths in

eG. �

A consequence of Lemma 5.5.1 is that for a complete graph G with jV j � k + 2 ,

the graph

eG contains at least k + 1 arc-disjoint st -dipaths for every f s; tg 2 D . This

implies that E � = ; = eA �
. We thus have the following.

Corollary 5.5.1 If G is complete and jV j � k + 2 , then k HNDP Ag (G; D) is ful l di-

mensional.

In what follows, we give necessary and su�cient conditions for the trivial inequalities

to de�ne facets of k HNDP Ag (G; D) . Remark that the inequalities y(a) � 1, for all

a 2 eA , and x(e) � 0, for all e 2 E , are redundant with resp ect to the inequalities

y(a) � 0 for all a 2 eA;

x(e) � 1 for all e 2 E;

y(a) � x(e) for all arc a 2 eA(e);

and hence, do not de�ne facets.
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Theorem 5.5.2 If G is complete and jV j � k + 2 , then the fol lowing hold.

i) Every inequality x(e) � 1 de�nes a facet of k HNDP Ag (G; D) ;

ii) An inequality y(a) � 0 de�nes a facet of k HNDP Ag (G; D) if and only either jV j �
k + 3 or jV j = k + 2 and a does not belong to an st -dicut of

eG of cardinality k + 1 .

Pro of. First note that, as G is complete and jV j � k + 2 , by Corollary 5.5.1,

k HNDP Ag (G; D) is full dimensional.

i) Let a 2 eA . Since G is complete and jV j � k + 2 , the subgraph induced by

eA n f ag
contains k arc-disjoint st -dipaths for every f s; tg 2 D . Thus, the pair ( eA n f ag; E)
induces a solution of k HNDP Ag (G; D) . Moreover, its incidence vector satis�es x(e) = 1 .

Now let f 2 E n f eg. As b efore, the subgraph induced by E n f f g contains k edge-

disjoint L - st -paths, for every f s; tg 2 D . Thus, the pair ( eA n eA(f ); E n f f g) induces

a solution of k HNDP Ag (G; D) , whose incidence vector satis�es x(e) = 1 . Recall that

eA(f ) denotes the set of arcs of

eG corresp onding to f .

It is not hard to see that these two families of solutions, toghether with the so-

lution induced by the pair ( eA; E ) , form jE j + j eAj solutions whose incidence vectors

satisfy x(e) = 1 and are a�nely indep endant. This yields x(e) � 1 de�nes a facet of

k HNDP Ag (G; D) .

ii) Consider an arc a 2 eA and supp ose that jV j � k+3 . By Lemma 5.5.1,

eG contains at

least k+2 arc-disjoint st -dipaths for every f s; tg 2 D , and G contains at least k+2 edge-

disjoint L - st -paths. Thus for an edge e 2 E , the pair ( eA n(f ag[ eA(e)); E nf eg) induces

a solution of k HNDP Ag (G; D) . Also, for an arc a0 2 eA n f ag, the pair ( eA n f a; a0g; E)
induces a solution of k HNDP Ag (G; D) . These solution toghether with the solution

( eA nf ag; E) form a family of j eAj + jE j solutions whose incidence vectors satisfy y(a) = 0
and are a�nely indep endant. Thus, y(a) � 0 de�nes a facet.

Now supp ose that jV j = k + 2 . If a b elongs to an st -dicut � + (fW) of k + 1 arcs, then

y(a) � 0 is redundant with resp ect to the inequalities

y(� + (fW)) � k;

� y(a0) � � 1; for every arc a0 2 � + (fW) n f ag;

and hence cannot de�ne a facet. If a do es not b elong to an st -dicut of k + 1 arcs,

then, the pairs ( eA n (f ag [ eA(e)); E n f eg) , for all e 2 E , and ( eA n f a; a0g; E) , for



5.5. THE K HNDP POLYTOPES 123

all a0 2 eA n f ag induce solutions of k HNDP Ag (G; D) . These solutions toghether with

the solution ( eA n f ag; E) form a family of j eAj + jE j solutions whose incidence vec-

tors satisfy y(a) = 0 and are a�nely indep endant. Thus y(a) � 0 de�nes a facet of

k HNDP Ag (G; D) . �

The next theorem gives necessary and su�cient conditions for the directed st -cut

inequalities to de�ne facets of k HNDP Ag (G; D) .

Theorem 5.5.3 Suppose that G is complete and jV j � k +2 and let

fW � eV be a node

set such that there is a demand f s; tg 2 D with s 2 SD \ fW and t 2 TD \ ( eV nfW) (Recal l

that SD (resp. TD ) is the set of terminals of G that are source (resp. destination) in

at least one demand). Then the st -dicut inequality y(� + (fW)) � k de�nes a facet of

k HNDP Ag (G; D) only if the fol lowing conditions hold

i)

fW \ SD = f sg and ( eV n fW) \ TD = f tg;

ii) s0 2 eV n fW , s002 fW and t002 fW .

Pro of. We will only show the �rst condition of i). The pro of for ii) follows the same

lines. Supp ose on the contrary that there exists another no de s1 6= s in

fW \ SD . Since

s1 2 SD , we have that [s; s1] = ; . Thus, � + (fW n f s1g) = � + (fW) n � + (s1) . Note that

the edges of G asso ciated with those of � + (s1) are those of � (s1) . As G is complete,

� + (s1) 6= ; . Therefore, the st -dicut inequality induced by

fW is redundant with resp ect

to the inequalities

y(� + (fW n f s1g)) � k;

y(a) � 0 for all a 2 � + (s1);

and hence, cannot de�ne a facet. �

5.5.2 The p olytop e k HNDP Cu(G; D)

Now we consider the Cut formulation. The results of this section will b e given without

pro of. In fact their pro ofs are similar to those of the previous section.

As b efore, we denote by E �
the set of L - st -essential edges of G and

eA �
st the set of

st -essential arcs of

eGst , for every f s; tg 2 D . The following theorem gives the dimension

of k HNDP Cu (G; D) .
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Theorem 5.5.4 dim(k HNDP Cu (G; D)) = jE j +
X

f s;tg2D

j eAst j � j E � j �
X

f s;tg2D

j eA �
st j .

Pro of. Similar to pro of of Theorem 5.5.1. �

Lemma 5.5.2 If G is complete, then for every demand f s; tg 2 D , there exists at least

jV j � 1 arc-disjoint st -dipaths in

eGst .

Pro of. Similar to pro of of Lemma 5.5.1. �

As a consequence, we have the following corollary.

Corollary 5.5.2 If G is complete and jV j � k + 2 , then k HNDP Cu (G; D) is ful l

dimensional.

Note that the inequalities yst(a) � 1 and x(e) � 0 are redundant with resp ect to

yst(a) � 0, x(e) � 1 and yst(a) � x(e) . The next theorem gives necessary and su�cient

conditions for inequalities (5.8) and (5.9) to de�ne facets.

Theorem 5.5.5 If G is complete and jV j � k + 2 , then the fol lowing hold.

i) Every inequality x(e) � 1 de�nes a facet of k HNDP Cu (G; D) .

ii) An inequality y(a) � 0 de�nes a facet of k HNDP Cu (G; D) if and only if either

jV j � k + 3 or jV j = k + 2 and a does not belong to an st -cut of cardinality k + 1 .

Pro of. Similar to pro of of Theorem 5.5.2. �

In the next section, we describ e further classes of valid inequalities for the p olytop es

discussed ab ove. We also give for some of them necessary and su�cient conditions for

these inequalities to b e facet de�ning.
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5.6 Valid inequalities

Here we describ e various classes of inequalities that are valid for the p olytop es k HNDP Ag (G; D) ,

k HNDP Cu (G; D) , k HNDP NA (G; D) or k HNDP P A (G; D) when L 2 f 2; 3g. But b efore,

we give the following lemma.

Lemma 5.6.1 The fol lowing inequalities are valid for k HNDP Ag (G; D) , k HNDP Cu (G; D) ,

k HNDP NA (G; D) , k HNDP P A (G; D) :

x(� (W)) � k; for every st -cut � (W) and every f s; tg 2 D;

x(T) � k; for every L - st -path-cut T and every f s; tg 2 D:

Pro of. Easy. �

5.6.1 Aggregated cut inequalities

Here we intro duce a class of inequalities that are valid for k HNDP Ag (G; D) and k HNDP Cu (G; D) .

This class of inequalities are inspired from those intro duced by Dahl [29] for the p oly-

top e of the Survivable Directed Network Design Problem ( k DNDP). The k DNDP con-

sists, given a directed graph

eH , a set of demands D and an integer k � 2, in �nding

a minimum weight subgraph of

eH which contains k arc-disjoint st -dipaths for every

demand f s; tg 2 D . We will �rst describ e these inequalities for k HNDP Ag (G; D) and

then extend it to k HNDP Cu (G; D) .

5.6.1.1 Aggregated cut inequalities for k HNDP Ag (G; D)

Let f fW1; :::; fWpg, p � 2, b e a family of no de sets of

eV such that each set

fWi induces an

st -dicut of

eG, for some f s; tg 2 D , and

eF 0
i � � +

eG
(fWi ) . Let

eF =
p[

i =1

[� +
eG
(fWi ) n eF 0

i ] and,

for an arc a 2 eA , let r (a) b e the numb er of sets � +
eG
(fWi ) n eF 0

i which contain the arc a.

Note that if a 2 eA do es not b elong to any set � +
eG
(fWi ) n eF 0

i , then r (a) = 0 . For an edge

e 2 E and an arc subset

eU � eA , we let

r 0(e; eU) =
X

a2 eA(e)\ eU

r (a); for all e 2 E:
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The inequalities b elow are valid for k HNDP Ag

y(� +
eG
(fWi )) � k for i = 1; :::; p;

� y(a) � � 1 for all a 2 eF 0
i ; i = 1; :::; p:

By summing these inequalities, we obtain

X

a2 eF

r (a)y(a) � kp �
pX

i =1

j eF 0
i j:

If

eF1 (resp.

eF2 ) denotes the set of arcs a 2 eF such that r (a) is o dd (resp. even), then

the previous inequality can b e written as

X

a2 eF1

r (a)y(a) +
X

a2 eF2

r (a)y(a) � kp �
pX

i =1

j eF 0
i j: (5.26)

Let

eF 2
1 � eF1 such that, for every edge e 2 E corresp onding to an arc of

eF1 , r 0(e; eF 2
1 )

is even. Let E2 b e the set of edges corresp onding to the arcs of

eF 2
1 . By summing

inequality (5.26) with the inequalities

r (a)x(e) � r (a)y(a); for all a 2 eF 2
1 and e corresp onding to a;

we get

X

e2 E2

r 0(e; eF 2
1 )x(e) +

X

a2 eF1n eF 2
1

r (a)y(a) +
X

a2 eF2

r (a)y(a) � kp �
pX

i =1

j eF 0
i j: (5.27)

By dividing by 2 and rounding up the right hand side of inequality (5.27), we obtain

the following inequality

X

e2 E2

r 0(e; eF 2
1 )

2
x(e) +

X

a2 eF1n eF 2
1

r (a) + 1
2

y(a) +
X

a2 eF2

r (a)
2

y(a) �

2

6
6
6
6
6
6
6

kp �
pX

i =1

j eF 0
i j

2

3

7
7
7
7
7
7
7

: (5.28)

Inequalities of typ e (5.28) will b e called aggregated cut inequalities . We give the

following result which directly comes from the ab ove description.
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Theorem 5.6.1 Inequalities of type (5.28) are valid for k HNDP Ag (G; D) when L 2
f 2; 3g.

Inequalities (5.28) are pro duced by families of st -dicuts of

eG which may have di�erent

forms of con�gurations for the no de sets

fW1; :::; fWp , p � 2, and the arc sets

eF 0
i �

� +
eG
(fWi ) , i = 1; :::; p. In the following, we discuss a sp ecial case of these inequalities.

Let f fW1; :::; fWpg, p � 2, b e a family of no de sets of

eV such that each set

fWi ,

i = 1; :::; p, induces an st -dicut, for some f s; tg 2 D , and let

eF 0
i � � +

eG
(fWi ) b e arc sets

such that 0 � r (a) � 2 for all a 2 eA . Let

eF2 (resp.

eF1 ) b e the set of arcs such that

r (a) = 2 (resp. r (a) = 1 ). Let

eF 2
1 b e the set of arcs a 2 eF1 for which there is another

arc a0 2 eF1 which corresp onds to the same edge of E , and let E2 b e the set of the

corresp onding edges. The inequality of typ e (5.28) asso ciated with this con�guration

can b e written as

X

a2 eF2

y(a) +
X

e2 E2

x(e) +
X

a2 eF1n eF 2
1

y(a) �

2

6
6
6
6
6
6
6

kp �
pX

i =1

j eF 0
i j

2

3

7
7
7
7
7
7
7

: (5.29)

As it will turn out, inequalities (5.29) may de�ne facets under certain conditions and

will b e useful for solving the k HNDP using a Branch-and-Cut algorithm (Chapter 6).

5.6.1.2 Aggregated cut inequalities for k HNDP Cu(G; D)

The aggregated cut inequalities can b e de�ned for the p olytop e k HNDP Cu (G; D) in

a similar way. Let

eGst = ( eVst ; eAst) , f s; tg 2 D , b e the directed graphs asso ciated

with G and f s; tg 2 D in Formulation (5.10). Let ff s1; t1g; :::; f sq; tqgg b e a subset

of demands. Consider a family of no de sets f fW s1 t1
1 ; :::; fW s1t1

p1
; :::; fW sqtq

1 ; :::; fW sqtq
pq g, with

pi � 1, for all i 2 f 1; :::; qg and p =
qX

i =1

pi � 2, where

fW si t i
j , j = 1; :::; pi , induces an

si t i -dicut in

eGst . Let

eF si t i ;0
j � � +

eGsi t i
(fW si t i

j ) . Let

eF si t i =
pi[

i =1

[� +
eGsi t i

(fW si t i
j ) n eF si t i ;0

j ] for

every i 2 f 1; :::; qg, and for a given arc a 2 eAsi t i , i = 1; :::; q, we let r si t i (a) b e the

numb er of sets � +
eGsi t i

(fW si t i
j ) n eF si t i ;0

j containing arc a. If a do es not b elong to any of

these sets, then r si t i (a) = 0 . Given an edge e 2 E and an arc subset

eUi � eAsi t i , we let

r 0(e; eUi ) =
X

a2 eA si t i (e)\ eUi

r si t i (a) .
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The inequalities b elow are valid for k HNDP Cu (G; D)

ysi t i (�
+
eGsi t i

(fW si t i
j )) � k for j = 1; :::; pi ; i = 1; :::; q;

� ysi t i (a) � � 1 for a 2 eF si t i
j ; j = 1; :::; pi ; i = 1; :::; q;

By adding the inequalities, we get

qX

i =1

0

@
X

a2 eF si t i

r si t i (a)ysi t i (a)

1

A � kp �
qX

i =1

piX

j =1

j eF si t i ;0
j j:

Let

eF si t i ;1
(resp.

eF si t i ;2
) b e the set of arcs a 2 eF si t i

having r si t i (a) o dd (resp. even).

The inequality ab ove can then b e written as

qX

i =1

0

@
X

a2 eF si t i ;1

r si t i (a)ysi t i (a) +
X

a2 eF si t i ;2

r si t i (a)ysi t i (a)

1

A � kp �
qX

i =1

piX

j =1

j eF si t i ;0
j j: (5.30)

Now we let

eF si t i ;1
2 � eF si t i ;1

, i = 1; :::; q, b e the arc sets such that, for every edge

e 2 E asso ciated with an arc of

eF si t i ;1
2 ,

qX

i =1

r 0(e; eF si t i ;1
2 ) is even. If E2 denotes the set of

edges corresp onding to the arcs of

eF si t i ;1
2 , i = 1; :::; q, then by adding inequality (5.30)

and the inequalities

r si t i (a)x(e) � r si t i (a)ysi t i (a) for all a 2 eF si t i ;1
2 where e corresp onds to a;

we get

qX

i =1

0

@
X

a2 eF si t i ;1n eF si t i ;1
2

r si t i (a)ysi t i (a) +
X

a2 eF si t i ;2

r si t i (a)ysi t i (a)

1

A +

X

e2 E2

(
qX

i =1

r 0(e; eF si t i ;1
2 ))x(e) � kp �

qX

i =1

piX

j =1

j eF si t i ;0
j j: (5.31)

Finally, by dividing inequality (5.31) by 2 and rounding up the right hand side of the
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resulting inequality, we obtain

qX

i =1

0

@
X

a2 eF si t i ;1n eF
si t i ;1
2

r si t i (a) + 1
2

ysi t i (a) +
X

a2 eF si t i ;2

r si t i (a)
2

ysi t i (a)

1

A +

X

e2 E2

qX

i =1

r 0(e; eF si t i ;1
2 )

2
x(e) �

2

6
6
6
6
6
6
6

kp �
qX

i =1

piX

j =1

j eF si t i
j j

2

3

7
7
7
7
7
7
7

: (5.32)

We then have the following result.

Theorem 5.6.2 Inequality (5.32) is valid for k HNDP Cu (G; D) .

Inequalities (5.32) will b e also called aggregated cut inequalities .

We are also going to sp ecify a sp ecial case for inequalities (5.32). These inequali-

ties will b e util in the Branch-and-Cut algorithm based on the Cut formulation (see

Chapter 6). Let f fW s1 t1
1 ; :::; fW s1t1

p1
; :::; fW sqtq

1 ; :::; fW sqtq
pq g, with pi � 1, for i = 1; :::; q,

and p =
qX

i =1

pi � 2, b e a family of no de sets such that

fW si t i
j induces si t i -dicut of

eGsi t i ,

i = 1; :::; q. Let

eF si t i ;0
j � � +

eGsi t i
(fW si t i

j ) b e arc sets and

eF si t i =
p[

i =1

[� +
eGsi t i

(fW si t i
j ) n eF si t i ;0

j ].

Supp ose that 0 � r si t i (a) � 2 for all a 2 eAsi t i , i = 1; :::; q. Let

eF si t i ;2
b e the set of arcs

of

eF si t i
having r si t i (a) = 2 and

eF si t i ;1
the set of arcs of

eF si t i
having r si t i (a) = 1 . Let

eF si t i ;1
2 b e the subset of arcs a 2 eF si t i ;1

such that there exists another arc a0 2 eF si t i ;1

which corresp onds to the same edge of E , and let E2 b e the set of the corresp onding

edges.

Then the inequality (5.32) induced by this con�guration can b e written as

qX

i =1

0

@
X

a2 eF si t i ;2

ysi t i (a) +
X

a2 eF si t i ;1n eF si t i ;1
2

ysi t i (a)

1

A +
X

e2 E2

x(e) �

2

6
6
6
6
6
6
6

kp �
qX

i =1

piX

j =1

j eF si t i
j j

2

3

7
7
7
7
7
7
7

:

(5.33)
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5.6.1.3 Lifting pro cedure for aggregated cut inequalities

In what follows we de�ne a lifting pro cedure for the aggregated cut inequalities for

b oth Aggregated and Cut formulations, (5.29) and (5.33). This will p ermit to extend

these inequalities to a more general class of valid inequalities.

Consider �rst the p olytop e k HNDP Ag (G; D) . The lifting pro cedure is given in the

following theorem.

Theorem 5.6.3 Let G = ( V; E) be an undirected graph, D � V � V and

eG = ( eV ; eA)
be the directed graph associated with G in the Aggregated formulation. Let

X

e2 E

� (e)x(e) +
X

a2 eA

� (a)y(a) � 


be an inequality of type (5.29) induced by a family of node sets � = f fW1; :::; fWpg and

arc sets

eF 0
i � � 0

i , p � 2, which is valid for k HNDP Ag (G; D) . Let G0 = ( V; E [ E 0)
be a graph obtained by adding to G an edge set E and let

eG0 = ( eV ; eA [ eA0) be the

directed graph associated with G0
in the Aggregated formulation (

eA0
is the set of arcs

corresponding to the edges of E 0
). Then, the inequality

X

e2 E

� (e)x(e) +
X

a2 eA

� (a)y(a) +
X

a2 eA 0

�
q(a)

2

�
y(a) � 
; (5.34)

is valid for k HNDP Ag (G0; D) , where q(a) is the number of dicuts � +
eG0(fWi ) containing

the arc a, for al l a 2 eA0
.

Pro of. W.l.o.g., we will supp ose that E 0 = f e0g. The pro of is similar in the case where

more than one edge are added to G. Also, for more clarity, we will consider that only

one arc, say a0 , is asso ciated with e0 in

eG0
, that we will consider that

eA0 = f a0g.

We are going to show that for every solution (x; y) 2 k HNDP Ag (G; D) ,

X

e2 E

� (e)x(e) +
X

a2 eA

� (a)y(a) +
�

q(a0)
2

�
y(a0) �

2

6
6
6
6
6
6
6

kp �
pX

i =1

j eF 0
i j

2

3

7
7
7
7
7
7
7

:

First, let �( x; y) = �x + �y , that is

�( x; y) =
X

a2 eF2

y(a) +
X

e2 E2

x(e) +
X

a2 eF1n eF 2
1

y(a);
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where

eF2 ,

eF1 ,

eF 2
1 and E2 are the arc and edge sets involved in �x + �y � 
 . The lifted

inequality can hence b e written as

�( x; y) +
�

q(a0)
2

�
y(a0) �

2

6
6
6
6
6
6
6

kp �
pX

i =1

j eF 0
i j

2

3

7
7
7
7
7
7
7

:

If y(a0) = 0 , then obviously the restriction of (x; y) to E and

eA is in k HNDP Ag (G; D) .

Thus, �( x; y) �

2

6
6
6
6
6
6
6

kp�

pX

i =1

j eF 0
i j

2

3

7
7
7
7
7
7
7

, and hence

�( x; y) +
�

q(a0)
2

�
y(a0) �

2

6
6
6
6
6
6
6

kp �
pX

i =1

j eF 0
i j

2

3

7
7
7
7
7
7
7

:

Now supp ose that y(a0) = 1 . We have that

pX

i =1

y(� +
eG
(fWi ) n eF 0

i ) =
pX

i =1

y(� +
eG
(fWi )) � y( eF 0

i )

= 2
X

a2 eF2

y(a) +
X

a2 eF 2
1

y(a) +
X

a2 eF1n eF 2
1

y(a)

� 2
X

a2 eF2

y(a) + 2
X

e2 E2

x(e) +
X

a2 eF1n eF 2
1

y(a)

= 2�( x; y) �
X

a2 eF1n eF 2
1

y(a)

Thus we get

�( x; y) �
1
2

2

4
pX

i =1

y(� +
eG
(fWi )) �

pX

i =1

y( eF 0
i ) +

X

a2 eF1n eF 2
1

y(a)

3

5

�
1
2

"
pX

i =1

y(� +
eG
(fWi )) �

pX

i =1

y( eF 0
i )

#
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�( x; y) �

2

6
6
6
6
6
6
6

pX

i =1

y(� +
eG
(fWi )) �

pX

i =1

j eF 0
i j

2

3

7
7
7
7
7
7
7

: (5.35)

If

fWi , i = 1; :::; q(a0) , are the no de sets of � such that the dicut � +
eG0(fWi ) contains a0 ,

then we have that

y(� +
eG
(fWi )) = y(� +

eG0(fWi )) � y(a0); i = 1; :::; q(a0);

y(� +
eG
(fWi )) = y(� +

eG0(fWi )) ; i = q(a0) + 1 ; :::; p:

As (x; y) induces a solution of k HNDP Ag on G0
, we have that y(� +

eG0(fWi )) � k , i =
1; :::; p. Moreover, since y(a0) = 1 , we have that

y(� +
eG
(fWi )) � k � 1; i = 1; :::; q(a0): (5.36)

Thus, from (5.35) and (5.36), we obtain

�( x; y) �

2

6
6
6
6
6
6
6

k(p � q(a0)) + ( k � 1)q(a0) �
pX

i =1

j eF 0
i j

2

3

7
7
7
7
7
7
7

;

�( x; y) �

2

6
6
6
6
6
6
6

kp �
pX

i =1

j eF 0
i j � q(a0)

2

3

7
7
7
7
7
7
7

;

�( x; y) �

2

6
6
6
6
6
6
6

kp �
pX

i =1

j eF 0
i j

2

3

7
7
7
7
7
7
7

�
�

q(a0)
2

�
:

Therefore, since y(a0) = 1 , we get

�( x; y) +
�

q(a0)
2

�
y(a0) �

2

6
6
6
6
6
6
6

kp �
pX

i =1

j eF 0
i j

2

3

7
7
7
7
7
7
7

;
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which ends the pro of of the theorem. �

Now we give a lifting pro cedure for aggregated cut inequalities (5.33) when the Cut

formulation is considered. This pro cedure is similar to that intro duced for inequalities

(5.29) for the Aggregated formulation. It is given in the theorem b elow.

Theorem 5.6.4 Let G = ( V; E) be an undirected graph, D � V � V and

eGst be the

directed graph associated with G and a demand f s; tg 2 D in the cut formulation, for

al l f s; tg 2 D . Let

X

e2 E

� (e)x(e) +
qX

i =1

X

a2 eA si t i

� si t i (a)ysi t i (a) � 
;

be an inequality of type (5.33) induced by a demand set ff s1; t1g; :::; f sq; tqgg, a family

of node sets f fW s1 t1
1 ; :::; fW s1 t1

p1
; :::; fW sqtq

1 ; :::; fW sq tq
pq g, with pi � 1, for al l i 2 f 1; :::; qg

and p =
qX

i =1

pi � 2, and arc sets

eF si t i ;0
j � � eGsi t i

(fW si t i
j ) , j = 1; :::; pi , i = 1; :::; q. Let

G0 = ( V; E [ E 0) and

eG0
st = ( eVst ; eAst [ eA0

st ) be the directed graph associated with G0
in

the Cut formulation, for al l f s; tg 2 D (

eA0
st is the set of arcs corresponding to the edges

of E 0
).

The inequality

X

e2 E

� (e)x(e) +
qX

i =1

X

a2 eA si t i

� si t i (a)ysi t i (a) +
qX

i =1

X

a2 eA 0
si t i

�
qsi t i (a)

2

�
ysi t i (a) � 
 (5.37)

is valid for k HNDP Cu (G0; D) , where qsi t i (a) is the number of dicuts � +
eG0

si t i

(fW si t i
j ) con-

taining the arc a, for every a 2 eA0
si t i

, i = 1; :::; p.

Pro of. Similar to that of Theorem 5.6.3. �

The next classes of inequalities apply only on the variable x 2 RE
and are valid for

k HNDP Ag (G; D) , k HNDP Cu (G; D) , k HNDP NA (G; D) and k HNDP P A (G; D) .

5.6.2 Double cut inequalities

In the following we intro duce a class of inequalities that are valid for the k HNDP

p olytop es for L � 2 and k � 2. They are given by the following theorem.
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Theorem 5.6.5 Let f s; tg be a demand, i0 2 f 0; :::; Lg and

� = f V0; :::; Vi 0 � 1; V1
i 0

; V 2
i 0

; Vi 0+1 ; :::; VL +1 g a family of node sets of V such that

� = ( V0; :::; Vi 0 � 1; V1
i 0

; V2
i 0

[ Vi 0+1 ; Vi 0+2 ; :::; VL +1 ) induces a partition of V . Suppose that

1. V 1
i 0

[ V 2
i 0

induces an sj 1 t j 1 -cut of G with f sj 1 ; t j 1g 2 D and sj 1 2 V 1
i 0

or t j 1 2 V 1
i 0

(note that sj 1 and t j 1 cannot be simultaneously in V 1
i 0

and are not in V 2
i 0

. Also

note that V 2
i 0

may be empty);

2. Vi 0+1 induces an sj 2 t j 2 -cut of G with f sj 2 ; t j 2g 2 D (note that j 1 and j 2 may be

equal);

3. � induces an L - st -path-cut of G with s 2 V0 (resp. t 2 V0 ) and t 2 VL +1 (resp.

s 2 VL +1 ).

Let E = [ Vi 0 � 1; V1
i 0

] [ [Vi 0+2 ; V2
i 0

[ Vi 0+1 ] [

0

@
[

k;l =2f i 0 ;i 0+1 g;jk� l j> 1

[Vk ; Vl ]

1

A
and F � E such

that jF j and k have di�erent parities.

Let also Ê = (
i 0 � 2[

i =0

[Vi ; Vi +1 ]) [ (
L[

i = i 0+2

[Vi ; Vi +1 ]) [ F: Then, the inequality

x(� (� ) n Ê ) �
�

3k � j F j
2

�
; (5.38)

is valid for k HNDP Ag (G; D) , k HNDP Cu (G; D) , k HNDP NA (G; D) and k HNDP P A (G; D)
(recal l that � (� ) is the set of edges of the E having their endnodes in di�erent elements

of � ).

Pro of. Let T b e the L - st -path-cut of G induced by the partition � . As T is an L - st -

path-cut, and V 1
i 0

[ V 2
i 0

and Vi 0+1 induce st -cut with f s; tg 2 ff sj 1 ; t j 1g; f sj 2 ; t j 2 gg, by

Lemma 5.6.1, the inequalities b elow are valid for the k HNDP p olytop es

x(T) � k;

x(� (V 1
i 0

[ V 2
i 0

)) � k;

x(� (Vi 0+1 )) � k;

� x(e) � � 1 for all e 2 F;

x(e) � 0 for all e 2 E n F:
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By summing these inequalities, dividing by 2 and rounding up the right hand side,

we obtain inequality (5.38). �

Inequalities of typ e (5.38) are called double cut inequalities . They generalize those

intro duced by Huygens and Mahjoub [73] for the k HNDP when k = 2 . We discuss in the

following sp ecial cases for these inequalities. This concerns the case where L 2 f 2; 3g
and i0 = 0 .

The set of edges having a p ositive co e�cient in inequality (5.38) plus the edges of F
is called a double cut . Figure 5.4 gives an example for L = 3 and i0 = 0 .

V2 V3

t

V1
V4

s

V 1
0 V 2

0

s1

edges of the double cut not in F

p ossible edge of F

edge not in the double cut

Figure 5.4: A double cut with L = 3 and i0 = 0

Let L = 2 , f s; tg 2 D and � = f V 1
0 ; V2

0 ; V1; V2; V3g b e a family of no de sets of V such

that � = ( V 1
0 ; V2

0 [ V1; V2; V3) induces a 2- st -path-cut, and V1 induces a valid s1t1 -cut

in G, for some f s1; t1g 2 D . If F � [V 2
0 [ V1; V2] is chosen such that jF j and k have

di�erent parities, then the double cut inequality induced by � and F in this case can

b e written as

x([V 1
0 ; V1 [ V2 [ V3]) + x([V 2

0 ; V1 [ V3]) + x([V1; V3])

+ x([V 2
0 [ V1; V2] n F ) �

�
3k � j F j

2

�
: (5.39)

Now let L = 3 , f s; tg 2 D and � = f V 1
0 ; V 2

0 ; V1; V2; V3; V4g b e a family of no de sets

of V such that � = ( V 1
0 ; V2

0 [ V1; V2; V3; V4) induces a 3- st -path-cut, and V1 induces a

valid s1t1 -cut in G. If F � [V 2
0 [ V1 [ V4; V2] is chosen such that jF j and k have di�erent
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parities, then the double cut inequality induced by � and F can b e written as

x([V 1
0 ; V1 [ V2 [ V3 [ V4]) + x([V 2

0 ; V1 [ V3 [ V4]) + x([V1; V3 [ V4])

+ x([V 2
0 [ V1 [ V4; V2] n F ) �

�
3k � j F j

2

�
: (5.40)

As it will turn out, inequalities (5.39) and (5.40) are very e�ective in the Branch-

and-Cut algorithms we develop ed for the problem.

5.6.3 Triple path-cut inequalities

Here is a further class of valid inequalities. They also generalizes inequalities given by

Huygens and Mahjoub [73]. We distinguish the cases where L = 2 and L = 3 . We

have the following theorem.

Theorem 5.6.6 i) Let L = 2 and f V0; V1; V2; V1
3 ; V2

3 ; V1
4 ; V2

4 g be a family of node sets

of V such that (V0; V1; V2; V1
3 [ V 2

3 ; V 1
4 [ V 2

4 ) induces a partition of V and there exist two

demands f s1; t1g and f s2; t2g with s1; s2 2 V0 , t1 2 V 2
3 and t2 2 V 2

4 . The sets V 1
3 and

V 1
4 may be empty and s1 and s2 may be the same. Let also V3 = V 1

3 [ V 2
3 , V4 = V 1

4 [ V 2
4

and F � [V 2
3 ; V1 [ V 1

4 ] [ [V 1
3 ; V2

4 ] such that jF j and k have di�erent parities. Then, the

inequality

2x([V0; V2]) + x([V0; V3 [ V4]) + x([V 2
4 ; V1 [ V 2

3 ])+

x(([V 2
3 ; V1 [ V 1

4 ] [ [V 1
3 ; V2

4 ]) n F ) �
�

3k � j F j
2

�
(5.41)

is valid for k HNDP Ag (G; D) , k HNDP Cu (G; D) , k HNDP NA (G; D) and k HNDP P A (G; D) .

ii) Let L = 3 and (V0; :::; V3; V 1
4 ; V2

4 ; V1
5 ; V 2

5 ) be a family of node sets of V such that

(V0; :::; V3; V1
4 [ V 2

4 ; V1
5 [ V 2

5 ) induces a partition of V and there exist two demands

f s1; t1g and f s2; t2g with s1; s2 2 V0 , t1 2 V 2
4 and t2 2 V 2

5 . The sets V 1
4 and V 1

5 may

be empty and s1 and s2 may be the same. Let also V4 = V 1
4 [ V 2

4 , V5 = V 1
5 [ V 2

5

and F � [V2; V2
4 ] [ [V3; V4 [ V5] such that jF j and k have di�erent parities. Then, the

inequality

2x([V0; V2]) + 2 x([V0; V3]) + 2 x([V1; V3]) + x([V0 [ V1; V4 [ V5]) + x([V4; V5])+

x([V2; V2
5 ]) + x(([V2; V2

4 ] [ [V3; V4 [ V5]) n F ) �
�

3k � j F j
2

�
(5.42)

is valid for k HNDP Ag (G; D) , k HNDP Cu (G; D) , k HNDP NA (G; D) and k HNDP P A (G; D) .
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Pro of.

i) Let T1 b e the 2- s1t1 -path-cut induced by the partition (V0; V1 [ V4; V2 [ V 1
3 ; V 2

3 ) and

T2 and T3 the 2- s2t2 -path-cuts induced by the partitions (V0; V1 [ V3; V2 [ V 1
4 ; V2

4 ) and

(V0; V1; V2 [ V3 [ V 1
4 ; V 2

4 ) , resp ectively. By Lemma 5.6.1, the following inequalities are

valid for the k HNDP p olytop es

x(T1) � k;

x(T2) � k;

x(T3) � k;

� x(e) � � 1; for all e 2 F;

x(e) � 0; for all e 2 ([V 2
3 ; V1 [ V 1

4 ] [ [V 1
3 ; V2

4 ]) n F:

By adding these inequalities, dividing by 2 and rounding up the right hand side, we

get inequality (5.41).

ii) Let T1 b e the 3- s1t1 -path-cut induced by the partition (V0; V1 [ V5; V2; V3 [ V 1
4 ; V2

4 ) ,

and T2 and T3 b e the 3- s2t2 -path-cuts induced by the partitions (V0; V1 [ V4; V2; V3 [
V 1

5 ; V2
5 ) and (V0; V1; V2; V3 [ V4 [ V 1

5 ; V2
5 ) , resp ectively. By Lemma 5.6.1, the following

inequalities are valid for the k HNDP p olytop es

x(T1) � k;

x(T2) � k;

x(T3) � k;

� x(e) � � 1; for all e 2 F;

x(e) � 0; for all e 2 ([V2; V2
4 ] [ [V3; V4 [ V5]) n F:

By adding these inequalities, dividing by 2 and rounding up the right hand side, we

get inequality (5.42). �

Inequalities of typ e (5.41) and (5.42) will b e called triple path-cut inequalities . The

set of edges having a p ositive co e�cient in inequality (5.41) ((5.42)) plus the edges of

F will b e called a triple path-cut (see Figure 5.5 for an example with L = 2 ).

In the next two sections, we describ e two more classes of inequalities.

5.6.4 Steiner-partition inequalities

Let (V0; V1; :::; Vp) , p � 2, b e a partition of V such that V0 � V n RD , where RD is the

set of terminal no des of G, and for all i 2 f 1; :::; pg there is a demand f s; tg 2 D such
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V 1
0

s2

s1 t 1 t 1

V1 V 1
3 V 2

3
V 1

4

V 2
4

V2

p ossible edge of F

edge not in the double cut

edge of the triple path cut not in F

Figure 5.5: A triple path-cut with L = 2

that Vi induces an st -cut of G. Note that V0 may b e empty. Such a partition is called

a Steiner-partition . With a Steiner-partition, we asso ciate the inequality

x(� (V0; V1; :::; Vp)) �
�

kp
2

�
: (5.43)

Inequalities of typ e (5.43) will b e called Steiner-partition inequalities . We have the

following result.

Theorem 5.6.7 Inequality (5.43) is valid for k HNDP Ag (G; D) , k HNDP Cu (G; D) , k HNDP NA (G; D)
and k HNDP P A (G; D) .

Pro of. By Lemma 5.6.1, the inequalities b elow are valid for the k HNDP p olytop es

x(� (Vi )) � k; for i = 1; :::; p;

x(e) � 0; for all e 2 � (V0):

By adding them, we obtain

2x(� (V0; :::; Vp)) � kp:

By dividing by 2 and rounding up the right hand side, we get inequality (5.43). �

Inequality (5.43) expresses the fact that, in a solution of the k HNDP, the multicut

induced by a Steiner-partition (V0; V1; :::; Vp) , p � 2, must contain at least

� kp
2

�
edges,

since there must exist k edge-disjoint paths b etween every pair of no des f s; tg 2 D .
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5.6.5 Steiner- SP -partition inequalities

Let � = ( V1; :::; Vp) , p � 3, b e a partition of V such that the graph G� = ( V� ; E� ) is

series-parallel ( G� is the subgraph of G induced by � ). Supp ose that V� = f v1; :::; vpg
where vi is the no de of G� corresp onding to the set Vi , i = 1; :::; p. The partition � is

said to b e a Steiner- SP -partition if and only if � is a Steiner-partition and either

1. p = 3 or

2. p � 4 and there exists a no de vi 0 2 V� incident to exactly two no des vi 0 � 1 and vi 0+1

such that the partitions � 1 and � 2 obtained from � by contracting resp ectively

the sets Vi 0 , Vi 0 � 1 and Vi 0 , Vi 0+1 are themselves Steiner- SP -partitions.

The pro cedure to check if a partition is a Steiner- SP -partition is recursive. It stops

when the partition obtained after the di�erent contractions is either a Steiner-partition

and of size three or it is not a Steiner-partition.

In the following theorem, we give necessary and su�cient condition for a Steiner-

partition to b e a Steiner- SP -partition. Remind that the demand graph is denoted by

GD = ( RD ; ED ) , where RD is the set of terminal no des of G. The edge set ED is

obtained by adding an edge b etween two no des of RD if and only if f u; vg 2 D .

Theorem 5.6.8 Let � = ( V1; :::; Vp) , p � 3, be a partition of V such that G� is series-

paral lel. The partition � is a Steiner- SP -partition of G if and only if the subgraph of

GD induced by � is connected.

Pro of. First observe that, as � is a SP -partition of G, one can obtain from � a two-

size partition by applying rep eatidly the following op eration. Let � j = ( V j
1 ; :::; V j

pj
) b e

a SP -partition of G. Supp ose that V j
i 0

, for some i0 , is incident to exactly two elements

V j
i 0 � 1 and V j

i 0+1 . Then, the op eration consists in contracting the sets V j
i 0 � 1 and V j

i 0
and

consider the partition � j +1 = ( V j +1
1 ; :::; V j +1

pj +1
) where

V j +1
i = V j

i for i = 1; :::; i0 � 2;

V j +1
i 0 � 1 = V j

i 0 � 1 [ V j
i 0

;

V j +1
i = V j

i +1 for i = i0; :::; pj � 1:

Note that the new partition � j +1
induces a SP -partition of G and that we have p� 2

iterations to obtained a two-size partition from � .
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Now, we have that � is not a Steiner- SP -partition if and only if there exists an in-

teger q � p � 2 such that the partition � q = ( V q
1 ; :::; Vq

pq
) , obtained by application of

the ab ove op eration, is not a Steiner-partition, that is the no de set V q
i 0

of � q
obtained

by the contraction pro cedure to the partition � q� 1
is such that � GD (V q

i 0
) = ; . Thus, if

Vi 1 ; :::; Vi r , r � 2, are the no de sets of � that have b een reduced to V q
i 0

during the di�er-

ent steps of the contraction pro cedure, then we have that � GD (
r[

i =1

Vi r ) = ; . Therefore,

the subgraph of Gd induced by � is not connected, which ends the pro of. �

As a consequence of Theorem 5.6.8, if the demand graph is connected (this is the case

when, for instance, all the demands are ro oted in the same no de), then every Steiner-

partition of V inducing a series-parallel subgraph of G is a Steiner- SP -partition of

V .

With a Steiner- SP -partition (V1; :::; Vp) , p � 3, we asso ciate the following inequality

x(� (V1; :::; Vp)) �
�

k
2

�
p � 1: (5.44)

Inequalities of typ e (5.44) will b e called Steiner- SP -partition inequalities . We have

the following.

Theorem 5.6.9 Inequality (5.44) is valid for k HNDP Ag (G; D) , k HNDP Cu (G; D) , k HNDP NA (G; D)
and k HNDP P A (G; D) .

Pro of. Let � = ( V1; :::; Vp) , p � 3 b e a Steiner- SP -partition. The pro of is by induction

on p. If p = 3 , then, as � is a Steiner-partition, the inequality

x(� (V1; V2; V3)) �
�

3k
2

�
= 3

�
k
2

�
� 1

is valid.

Now supp ose that every inequality (5.44) induced by a Steiner- SP -partition of p
elements, p � 3, is valid for the k HNDP p olytop es and consider a Steiner- SP -partition

� = ( V1; :::; Vp; Vp+1 ) . As G� is series-parallel, there exists a no de set Vi 0 of � which is

incident to exactly two elements of � , say Vi 0 � 1 and Vi 0+1 . We let F1 = [ Vi 0 ; Vi 0 � 1] and

F2 = [ Vi 0 ; Vi 0+1 ]. Since � is a Steiner- SP -partition and hence is a Steiner-partition, by
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Lemma 5.6.1, Vi 0 induces a valid st -cut inequality, for some f s; tg 2 D . Hence we have

that

x(F1) + x(F2) � k:

W.l.o.g., we will supp ose that

x(F1) �
�

k
2

�
: (5.45)

Consider the partition � 0 = ( V1; :::; Vi 0 � 2; Vi 0 � 1 [ Vi 0 ; Vi 0+1 ; :::; Vp+1 ) . As � is a Steiner-

SP -partition containing more than three elements, � 0
is also a Steiner- SP -partition

which contains p elements. Thus, by the induction hyp othesis, the Steiner- SP -partition

inequality induced by � 0
, that is

x(� (V1; :::; Vi 0 � 2; Vi 0 � 1 [ Vi 0 ; Vi 0+1 ; :::; Vp+1 )) �
�

k
2

�
p � 1 (5.46)

is valid. By summing the inequalities (5.45) and (5.46), we get

x(� (V1; :::; Vp; Vp+1 )) �
�

k
2

�
(p + 1) � 1;

which ends the pro of of the theorem. �

Inequality (5.44) expresses the fact that in a solution of the k HNDP the multicut

induced by a Steiner- SP -partition contains at least

�
k
2

�
p � 1 edges, since this solution

contains k edge-disjoint paths b etween every pair of no des f s; tg 2 D .

Chopra [21] describ ed a lifting pro cedure for inequalities (2.27) for the k ECSP. This

pro cedure can b e easily extended, for the k HNDP, to inequalities of typ e (5.44). It

is describ ed as follows. Let G = ( V; E) b e a graph and k � 3 an o dd integer. Let

G0 = ( V; E [ E 0) b e a graph obtained from G by adding an edge set E 0
. Let � =

(V1; :::; Vp) b e a Steiner- SP -partition of G. Then the following inequality is valid for

k HNDP Ag (G; D) , k HNDP Cu (G; D) , k HNDP NA (G; D) and k HNDP P A (G; D)

x(� G(V1; :::; Vp)) +
X

e2 E 0\ � G 0(V1 ;:::;Vp)

a(e)x(e) �
�

k
2

�
p � 1; (5.47)

where a(e) is the length (in terms of edges) of a shortest path in G� b etween the

endno des of e, for all e 2 E 0 \ � G0(V1; :::; Vp) .

We will call inequalities of typ e (5.47) lifted Steiner- SP -partition inequalities .

In the next section, we investigate conditions under which aggregated cut, double

cut and triple path-cut inequalities de�ne facets of the k HNDP p olytop es.
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5.7 Facets

Throughout this section, we consider a complete graph G = ( V; E) and supp ose that

jV j � k + 2 .

The �rst result concerns necessary conditions for the aggregated cut inequalities

(5.29) to de�ne facets for k HNDP Ag (G; D) . To this end, we �rst give the following

lemma.

Lemma 5.7.1 Consider an inequality of type (5.29) induced by a family of node sets

� = f fW1; :::; fWpg, p � 2, and arc subsets

eF 0
i � � +

eG
(fWi ) , i = 1; :::; p. Let

eF2 ,

eF1 ,

eF 2
1

and E2 be the arc and edge sets involved in this inequality. Then (5.29) can be written

as

pX

i =1

y(� + (fWi )) + 2
X

e2 E2

x(e) �
X

a2 eF 2
1

y(a) +
pX

i =1

(j eF 0
i j � y( eF 0

i )) +
X

a2 eF1n eF 2
1

y(a) � kp + 1:

(5.48)

Moreover, (5.29) is tight for a solution (x0; y0) 2 k HNDP Ag (G; D) if and only if one

of the fol lowing conditions holds

i)

2
X

e2 E2

x0(e) �
X

a2 eF 2
1

y0(a) +
pX

i =1

(j eF 0
i j � y0( eF 0

i )) +
X

a2 eF1n eF 2
1

y0(a) = 1 (5.49)

and y0(� + (fWi )) = k , for i = 1; :::; p;

ii)

2
X

e2 E2

x0(e) �
X

a2 eF 2
1

y0(a) +
pX

i =1

(j eF 0
i j � y0( eF 0

i )) +
X

a2 eF1n eF 2
1

y0(a) = 0 (5.50)

and there exists i0 2 f 1; :::; pg such that y0(� + (fWi )) = k , for i 2 f 1; :::; pg n f i0g
and y0(� + (fWi 0 )) = k + 1 .
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Pro of. First we show that �x + �y � 
 is equivalent to (5.48). As kp and

pX

i =1

j eF 0
i j

have di�erent parities, �x + �y � 
 is equivalent to

2
X

e2 E2

x(e) + 2
X

a2 eF2

y(a) + 2
X

a2 eF1n eF 2
1

y(a) � kp �
pX

i =1

j eF 0
i j + 1: (5.51)

From the st -dicuts induced by the sets

fWi , we have that

pX

i =1

y(� + (fWi ) n eF 0
i ) = 2

X

a2 eF2

y(a) +
X

a2 eF 2
1

y(a) +
X

a2 eF1n eF 2
1

y(a);

= 2
X

a2 eF2

y(a) + 2
X

e2 E2

x(e) � 2
X

e2 E2

x(e) +
X

a2 eF 2
1

y(a) +
X

a2 eF1n eF 2
1

y(a):

Toghether with (5.51), we get

pX

i =1

y(� + (fWi ) n eF 0
i ) + 2

X

e2 E2

x(e) �
X

a2 eF 2
1

y(a) +
X

a2 eF1n eF 2
1

y(a) � kp �
pX

i =1

j eF 0
i j + 1:

(5.52)

By combining (5.52) and y(� + (fWi ) n eF 0
i ) = y(� + (fWi )) � y( eF 0

i ) , i = 1; :::; p, we get

(5.48).

Now consider a solution (x0; y0) 2 k HNDP Ag (G; D) satisfying (5.29) with equality.

By the previous result, we have that

pX

i =1

y0(� + (fWi )) +
pX

i =1

(j eF 0
i j � y0( eF 0

i )) + 2
X

e2 E2

x0(e) �
X

a2 eF 2
1

y0(a) +
X

a2 eF1n eF 2
1

y0(a) = kp + 1:

(5.53)

As (x0; y0) induces a solution of the k HNDP, we have that y0(� + (fWi )) � k , i = 1; :::; p.

Therefore,

pX

i =1

y0(� + (fWi )) � kp, and hence,

pX

i =1

(j eF 0
i j � y0( eF 0

i )) + 2
X

e2 E2

x0(e) �
X

a2 eF 2
1

y0(a) +
X

a2 eF1n eF 2
1

y0(a) � 1: (5.54)
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If (5.54) is satis�ed with equality, then, clearly y0(� + (fWi )) = k , i = 1; :::; p. If

not, then, as y0(� + (fWi )) � k , i = 1; :::; p, this yields y0(� + (fWi 0 )) = k + 1 for some

i0 2 f 1; :::; pg and y0(� + (fWi )) = k , for i 2 f 1; :::; pg n f i0g.

Conversely, if (5.54) is tight for (x0; y0) and y0(� + (fWi )) = k for all i 2 f 1; :::; pg, then

clearly, (5.48) is tight for (x0; y0) and hence �x + �y � 
 is tight for (x0; y0) . If (5.54)

is not tight for (x0; y0) , that is

pX

i =1

(j eF 0
i j � y0( eF 0

i )) + 2
X

e2 E2

x0(e) �
X

a2 eF 2
1

y0(a) +
X

a2 eF1n eF 2
1

y0(a) = 0 ;

and y0(� + (fWi 0 )) = k + 1 for some i0 2 f 1; :::; pg and y0(� + (fWi 0 )) = k for i 2
f 1; :::; pg n f i0g, then clearly, (5.48) is also tight for (x0; y0) . Thus, �x + �y � 
 is

tight for (x0; y0) . �

Corollary 5.7.1 Consider an inequality of type (5.29) induced by a family of node

sets f fW1; :::; fWpg, p � 2, and arc subsets

eF 0
i � � +

eG
(fWi ) , i = 1; :::; p. Let

eF2 ,

eF1 ,

eF 2
1 and

E2 be the arc and edge sets involved in this inequality. If (5.29) is tight for a solution

(x0; y0) of k HNDP Ag (G; D) then,

2
X

e2 E2

x0(e) �
X

a2 eF 2
1

y0(a) +
pX

i =1

(j eF 0
i j � y0( eF 0

i )) +
X

a2 eF1n eF 2
1

y0(a) � 1: (5.55)

Theorem 5.7.1 Let � = f fW1; :::; fWpg, p � 2, be a family of node sets of

eV such

that each set

fWi , i = 1; :::; p, induces an si t i -dicut of

eG, for some f si ; t i g 2 D , and

eF 0
i � � +

eG
(fWi ) . Suppose that every arc of

eA belongs to at most two sets � +
eG
(fWi ) n eF 0

i .

Then, the aggregated cut inequality (5.29) induced by � and

eF 0
i , i = 1; :::; p, de�nes

a facet of k HNDP Ag (G; D) di�erent from the trivial and si t i -dicut inequalities, only if

for al l i 2 f 1; :::; pg, one of the fol lowing conditions holds

1. j fWi \ SD j = j( eV n fWi ) \ TD j = 1 ;

2. j fWi \ SD j � 2 and for al l s 2 (fWi n f si g) \ SD , [s; eV n fWi ] = ; ;

3. j( eV n fWi ) \ TD j � 2 and for al l t 2 [( eV n fWi ) n f t i g] \ TD , [fWi ; t] = ; .
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Pro of. Let us denote by �x + �y � 
 the inequality (5.29) induced by � and

eF 0
i ,

i = 1; :::; p, and supp ose that it de�nes a facet of k HNDP Ag (G; D) . We will show that

j fWi \ SD j = 1 , for i = 1; :::; p. The pro of follows the same lines for j( eV n fWi ) \ TD j = 1 .

Also the pro of for 2) and 3) is similar.

Supp ose on the contrary that there exists i0 2 f 1; :::; pg such that

fWi 0 induces an

st -dicut of

eG and that (fWi 0 n f sg) \ SD 6= ; . Let s0
b e a no de of (fWi 0 n f sg) \ SD and

supp ose that [s0; eV n fWi 0 ] 6= ; (see Figure 5.6).

fWi 0

t

s0

eV n fWi 0

s

Figure 5.6: A set

fWi 0 containing two no des of S

First observe that � eG(fW 0
i 0

) = � eG(fW 0
i 0

) n [s0; eV n fWi 0 ] and that two arcs of [s0; eV n fWi 0 ]
do not corresp ond to the same edge of E .

Let

eH0 = eF2 \ [s0; eV n fWi 0 ] and

eH1 = ( eF1 n eF 2
1 ) \ [s0; eV n fWi 0 ]. Also let

eH2 =
eF 2

1 \ [s0; eV n fWi 0 ],

eH3 b e the set of arcs of

eF 2
1 corresp onding to the same edges as the

arcs of

eH2 . Let E0 b e edge set corresp onding to the arcs of

eH2 and

eH3 . Consider

now the aggregated cut inequality induced by f fW 0
1; :::; fW 0

pg and

eF 00

i , i = 1; :::; p, where

fW 0
i = fWi ,

eF 00

i = eF 0
i , for i 2 f 1; :::; pgnf i0g, and

fW 0
i 0

= fWi 0 nf s0g,

eF 00

i = eF 0
i n[s0; eV nfWi 0 ].

Let

eF 0
2 ,

eF 0
1 ,

eF 20

1 and E 0
2 b e the set of arcs and edges involved in this inequality. By

the ab ove observation, as the arcs of

eH3 corresp ond to those of

eH2 , we have that

eH3 \ [s0; eV n fWi 0 ] = ; . Also, by the same observation, no arc of

eH0 may corresp ond to
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an arc of

eH2 and

eH3 . Thus, we have that

eF 0
2 = eF2 n eH0;

eF 20

1 = eF 2
1 n ( eH2 [ eH3);

eF 0
1 n eF 20

1 = [( eF1 n eF 2
1 ) n eH1] [ eH0 [ eH3:

E 0
2 = E2 n E0:

Therefore, the inequality (5.29) induced by f fW 0
1; :::; fW 0

pg and

eF 00

i , i = 1; :::; p, can b e

written as

X

a2 eF2n eH 0

y(a) +
X

e2 E2nE0

x(e) +
X

a2 ( eF1n eF 2
1 )n eH 1

+
X

a2 eH 0

y(a) +
X

a2 eH 3

y(a) �

2

6
6
6
6
6
6
6

kp �
pX

i =1

j eF 00

i j

2

3

7
7
7
7
7
7
7

:

(5.56)

By summing up inequality (5.56) and the inequalities

x(e) � y(a); for all a 2 eH3 ,

where e is the edge of E0 corresp onding to a: (5.57)

y(a) � 0; for all a 2 eH1; (5.58)

we get

X

a2 eF2

y(a) +
X

e2 E2

x(e) +
X

a2 eF1n eF 2
1

y(a) �

2

6
6
6
6
6
6
6

kp �
pX

i =1

j eF 00

i j

2

3

7
7
7
7
7
7
7

: (5.59)

Clearly if

eFi 0 \ [s0; eV n fWi 0 ] = ; , then

eF 0
i 0

= eFi 0 and inequality (5.59) is the same as

�x + �y � 
 . Thus �x + �y � 
 is redundant with resp ect to (5.56)-(5.58), and hence

cannot de�ne a facet of k HNDP Ag (G; D) . If

eFi 0 \ [s0; eV n fWi 0 ] 6= ; , then the right hand

side of inequality (5.59) is greater than that of �x + �y � 
 . Thus, �x + �y � 
 is

dominated by (5.56)-(5.58), and hence cannot de�ne a facet of k HNDP Ag (G; D) . �

The next theorems give necessary conditions for the double cut and triple path-cut

inequalities to de�ne facets of the k HNDP p olytop es. Before each theorem, we will

give a technical lemma which will b e useful to prove the theorem.



5.7. FACETS 147

Lemma 5.7.2 Let �x � 
 be a double cut inequality induced by a family of node sets

� = ( V 1
0 ; V 2

0 ; V1; :::; VL +1 ) of V , F � E and f s; tg 2 D with s 2 V 1
0 and t 2 VL +1 (here

i0 = 0 ). Then, �x � 
 can be written as

x(T) + x(� (V 1
0 [ V 2

0 )) + x(� (V1)) + x(E n F ) + jF j � x(F ) � 3k + 1; (5.60)

where T is the L - st -path-cut induced by the partition (V 1
0 ; V2

0 [ V1; V2; :::; VL +1 ) .

Moreover, �x � 
 is tight for a solution x0 of k HNDP Ag , k HNDP Cut , k HNDP NA ,

k HNDP P A , where x0 2 RE
, if and only if one of the fol lowing conditions holds.

i) x0(E n F ) + jF j � x0(F ) = 1 and x0(T) = x0(� (V 1
0 [ V 2

0 )) = x0(V1) = k ;

ii) x0(E n F ) + jF j � x0(F ) = 0 and

a) x0(T) = k + 1 , x0(� (V 1
0 [ V 2

0 )) = k and x0(V1) = k ;

b) x0(T) = k , x0(� (V 1
0 [ V 2

0 )) = k + 1 and x0(V1) = k ;

c) x0(T) = k , x0(� (V 1
0 [ V 2

0 )) = k and x0(V1) = k + 1 ;

Pro of. W.l.o.g., we will consider the p olytop e k HNDP Ag (G; D) . The pro of is similar

for The pro of is similar for k HNDP Cut (G; D) , k HNDP NA (G; D) and k HNDP P A (G; D) .

Let H denote the double cut induced by � . The inequality �x � 
 is equivalent to

x(H n E) + x(E n F ) �
3k � j F j + 1

2
:

This implies that

2x(H n E) + 2 x(E) � 2x(F ) � 3k � j F j + 1: (5.61)

From the L - st -path-cut T and cuts � (V 1
0 [ V 2

0 ) and � (V1) , we have that

x(T) + x(� (V 1
0 [ V 2

0 )) + x(� (V1)) = 2 x(H n E) + x(E): (5.62)

By combining (5.61) and the (5.62), we get

x(T) + x(� (V 1
0 [ V 2

0 )) + x(� (V1)) + x(E) � 2x(F ) � 3k � j F j + 1;

and hence

x(T) + x(� (V 1
0 [ V 2

0 )) + x(� (V1)) + x(E n F ) + jF j � x(F ) � 3k + 1:



148

CHAPTER 5. THE K -EDGE-CONNECTED HOP-CONSTRAINED NETWORK

DESIGN PROBLEM

Therefore, �x � 
 is equivalent to (5.60).

Now supp ose that �x � 
 is tight for (x0; y0) . From the development ab ove, we have

that inequality (5.60) is also tight for (x0; y0) , that is

x0(T) + x0(� (V 1
0 [ V 2

0 )) + x0(� (V1)) + x0(E n F ) + jF j � x0(F ) = 3 k + 1:

Since by Lemma 5.6.1, x0(T) � k , x0(� (V 1
0 [ V 2

0 )) � k and x0(� (V1)) � k , it is clear

that x0(E nF ) + jF j � x0(F ) � 1. Hence, if x0(E nF ) + jF j � x0(F ) = 1 , we have that

x0(T) = x0(� (V 1
0 [ V 2

0 )) = x0(� (V1)) = k . If x0(E nF ) + jF j � x0(F ) = 0 , then, clearly,

either x0(T) , x0(� (V 1
0 [ V 2

0 )) or x0(� (V1)) is equal to k + 1 and the others are equal to

k .

Consider now a solution (x0; y0) 2 k HNDP Ag (G; D) such that x0(E n F ) + jF j �
x0(F ) = 1 and x0(T) = x0(� (V 1

0 [ V 2
0 )) = x0(� (V1)) = k . Then, clearly, inequality

(5.60) is satis�ed with equality, and hence, �x � 
 is tight for (x0; y0) . Similarly, if

x0(E n F ) + jF j � x0(F ) = 0 and either x0(T) , x0(� (V 1
0 [ V 2

0 )) or x0(� (V1)) is equal to

k + 1 with the others equal to k , then (5.60) is satis�ed with equality by x0 and hence,

�x � 
 is tight for (x0; y0) , which ends the pro of of the lemma. �

Theorem 5.7.2 Suppose that L � 2 and k � 2, and let f s; tg 2 D .

Let � = f V 1
0 ; V2

0 ; V1; :::; VL +1 g be a family of node sets of V and F � E which induce a

double cut of G with respect to f s; tg, s 2 V 1
0 and t 2 VL +1 (here i0 = 0 ). Then,

the double cut inequality induced by � and F de�nes a facet of k HNDP Ag (G; D) ,

k HNDP Cu (G; D) , k HNDP NA (G; D) , k HNDP P A (G; D) di�erent from the trivial in-

equalities and inequalities (5.1)-(5.2) only if the fol lowing conditions hold

i) jV 1
0 j = jVL +1 j = 1 ;

ii) if L = 3 , then j[V 1
0 ; V 2

0 [ V1] [ [V3; V4] [ [V 1
0 ; V4]j � k .

Pro of. The pro of will b e done for k HNDP Ag (G; D) as it is similar for k HNDP Cu (G; D) ,

k HNDP NA (G; D) and k HNDP P A (G; D) . We will denote by �x � 
 the double cut

inequality induced by � and F . Let F = f (x; y) 2 k HNDP Ag (G; D) such that �x = 
 g
and let T denote the L - st -path-cut induced by the partition (V 1

0 ; V 2
0 [ V1; V2; :::; VL +1 ) .

i) Let us denote by H the double cut induced by � and F . Supp ose �rst that jV 1
0 j � 2.

By considering the family of no de sets � 0 = ff sg; V2
0 [ V 1

0 nf sg; V1; :::; VL +1 g, the double



5.7. FACETS 149

cut H 0
induced by � 0

and F is such that H = H 0[ [V 1
0 n f sg; V1]. Thus, the double cut

inequality induced by H is redundant with resp ect to

x(H 0n F ) �
�

3k � j F j
2

�

x(e) � ; for all e 2 [V 1
0 n f sg; V1]; (5.63)

and hence, cannot de�ne a facet.

ii) We will show that F 6= ; only if ii) holds. As F de�nes a facet di�erent from

x(� (V 1
0 [ V 2

0 )) � k , there exists a solution (x; y) 2 F such that x(� (V 1
0 [ V 2

0 )) � k + 1 .

Thus, by Lemma 5.7.2, x(T) = k . Therefore, the graph induced by x contains exactly

k edge-disjoint L - st -paths. Moreover, each L - st -path intersects T only once. Thus, by

Lemma 4.2.2, we have that j[V 1
0 ; VL +1 ]j + j[V 1

0 ; V2
0 [ V1]j + j[VL ; VL +1 ]j � k . �

Lemma 5.7.3 Let �x � 
 be a triple path-cut inequality induced by a family of node

set � = f V0; :::; VL ; V1
L +1 ; V2

L +1 ; V 1
L +2 ; V 2

L +2 g and F � E . Then �x � 
 can be written

as

x(T1) + x(T2) + x(T3) + x(E n F ) + jF j � x(F ) � 3k + 1 (5.64)

where T1 , T2 and T3 are the triple path-cuts induced by the partitions (V0; V1 [ V4; V2 [
V 1

3 ; V2
3 ) , (V0; V1 [ V3; V2 [ V 1

4 ; V 2
4 ) and (V0; V1; V2 [ V3 [ V 1

4 ; V2
4 ) , respectively, and E =

[V 2
3 ; V1 [ V 1

4 ] [ [V 1
3 ; V2

4 ] (resp. E = [ V2; V2
4 ] [ [V3; V4 [ V5]) if L = 2 (resp. L = 3 ).

Moreover, �x � 
 is tight for a solution x0 of the k HNDP, where x0 2 RE
, if and

only if one of the fol lowing inequalities holds

i) x0(E n F ) + jF j � x0(F ) = 1 and x0(T1) = x0(T2) = x0(T3) = k ;

ii) x0(E n F ) + jF j � x0(F ) = 0 and, for some i0 2 f 1; 2; 3g, x0(Ti 0 ) = k + 1 and

x0(Ti ) = k for i 2 f 1; 2; 3g n f i0g.

Pro of. Similar to that of Lemma 5.7.2. �

Theorem 5.7.3 Let L 2 f 2; 3g and consider � = f V0; :::; VL ; V1
L +1 ; V2

L +1 ; V1
L +2 ; V2

L +2 g
be a family of node sets of V and F � E which induce a triple path-cut of G with

respect to demands f s1; t1g and f s2; t2g. Then, the triple path-cut inequality induced

by � and F de�nes a facet of k HNDP Ag (G; D) , k HNDP Cu (G; D) , k HNDP NA (G; D) ,

k HNDP P A (G; D) only if the fol lowing conditions hold
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i) V0 n f s1; s2g = ; ;

ii) jV 2
L +1 j = 1 ;

iii) jV 2
L +2 j = 1 ;

iv) if L = 3 , then

a) j[f s1; s2g; V1 [ V 1
5 [ f t2g]j + j[V3 [ V 1

4 ; t1]j + j[f s1; s2g; t1]j � k ;

b) j[f s1; s2g; V1 [ V 1
4 [ f t1g]j + j[V3 [ V 1

5 ; t2]j + j[f s1; s2g; t2]j � k ;

c) j[f s1; s2g; V1]j + j[V3 [ V 1
4 [ f t1g [ V 1

5 ; t2]j + j[f s1; s2g; t2]j � k .

Pro of. For the pro of of Conditions i)-iii), we will consider, w.l.o.g., that L = 3 . We

will denote by �x � 
 the triple-cut inequality induced by � and F .

i) Supp ose that V0 nf s1; s2g 6= ; and denote by H the triple path-cut induced by � and

F . Consider the family of no de sets � 0 = ff s1; s2g; V0nf s1; s2g[ V1; V2; V3; V1
4 ; V2

4 ; V 1
5 ; V2

5 g
and F 0 = F . If H 0

denotes the triple path-cut induced by � 0
and F 0

, we have that

H 0 = H n [V0 n f s1; s2g; V2]. Thus, as V0 n f s1; s2g 6= ; , inequality (5.42) induced by �
and F is redundant with resp ect to the inequalities

2x([f s1; s2g; V2]) + 2 x([f s1; s2g; V3]) + 2 x([V1 [ (V0 n f s1; s2g); V3])+

x([f s1; s2g [ V1 [ (V0 n f s1; s2g); V4 [ V5]) + x([V4; V5]) + x([V2; V 2
5 ])+

x(([V2; V2
4 ] [ [V3; V4 [ V5]) n F ) �

�
3k � j F j

2

�
;

x(e) � 0; for all e 2 [V0 n f s1; s2g; V2]:

Therefore, the triple path-cut inequality induced by � and F cannot de�ne a facet

of the k HNDP p olytop es.

ii) Now we show that jV 2
4 j = 1 . Supp ose on the contrary that jV 2

4 j � 2 and let �x � 

denote the triple path-cut inequality induced by � and F . Let � 0 = f V0; :::; V3; V 1

4 [
V 2

4 n f t1g; f t1g; V1
5 ; V2

5 g. First supp ose that F \ [V2; V2
4 n f t1g] = ; and let H 0

b e

the triple path-cut induced by � 0
and F . As F \ [V2; V2

4 n f t1g] = ; , we have that

H 0 = H n [V2; V2
4 n f t1g]. If � 0x � 
 0

denotes the triple path-cut inequality induced by

� 0
and F , then it is not hard to see that � 0(e) = � (e) , for all e 2 H 0 n F , and that


 0 = 
 . Thus, �x � 
 is redundant with resp ect to the following inequalities

� 0x � 
;

x(e) � 0; for all e 2 [V2; V2
4 n f t1g];
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and hence, cannot de�ne a facet of the k HNDP p oytop es.

If F \ [V2; V 2
4 n f t1g] 6= ; , then we consider F 0 = F n (F \ [V2; V2

4 n f t1g]) and let

� 0x � 
 0
b e the triple path-cut inequality induced by � 0

and F 0
. Also let H 0

denotes

this triple path-cut. As b efore, we have that H 0 = H n [V2; V2
4 n f t1g] and, for all

e 2 H 0n F 0
, � 0(e) = � (e) . Moreover, 
 =

l
3k�j F j

2

m
and 
 0 =

l
3k�j F j+ jF \ [V2;V 2

4 nf t1g]j
2

m
. As

jF \ [V2; V2
4 n f t1g]j � 1, we have that 
 0 � 
 . This implies that �x � 
 is dominated

by the inequalities

� 0x � 
 0;

x(e) � 0; for all e 2 [V2; V2
4 n f t1g] n F:

Thus, it cannot de�ne a facet of the k HNDP p oytop es.

iii) Supp ose that jV 2
5 j � 2. Consider � 0 = f V0; :::; V3; V1

4 ; V2
4 ; V 1

5 [ V 2
5 nf t2g; f t2gg and let

H and H 0
denote the triple path-cuts induced by � and F , and by � 0

and F resp ectively.

If F \ [V3; V2
5 nf t2g] = ; , then, clearly, H 0 = H n[V2; V 2

5 nf t2g]. If F \ [V3; V2
5 nf t2g] 6= ; ,

then it is also not hard to see that, as b efore, H 0 = H n [V2; V2
5 n f t2g].

This implies that the triple path-cut inequality induced by H is redundant with

resp ect to that induced by H 0
and the inequalities x(e) � 0, for all e 2 [V2; V2

5 n f t2g].

Thus, it cannot de�ne a facet.

iv) To show that conditions iv) are necessary for �x � 
 to de�ne a facet, we show that

the sets Fi = f x 2 RE
such that x induces a solution of the k HNDP and x(Ti ) = kg,

i = 1; 2; 3, are non empty only if conditions iv) are satis�ed. As F is di�erent from the

inequality x(e) � 0 for some e 2 F , there exists a solution (x; y) 2 F such that x(e) = 0 .

Thus, jF j � x(F ) � 1. By Lemma 5.7.3, this implies that x(E n F ) + jF j � x(F ) = 1
and hence, x(Ti ) = k , for i = 1; 2; 3. Therefore, from Lemma 4.2.2, we obtain that

j[f s1; s2g; V1 [ V 1
5 [ f t2g]j + j[V3 [ V 1

4 ; t1]j + j[f s1; s2g; t1]j � k;

j[f s1; s2g; V1 [ V 1
4 [ f t1g]j + j[V3 [ V 1

5 ; t2]j + j[f s1; s2g; t2]j � k;

j[f s1; s2g; V1]j + j[V3 [ V 1
4 [ f t1g [ V 1

5 ; t2]j + j[f s1; s2g; t2]j � k;

which ends the pro of of the theorem. �

In the following chapter, we use all the results presented in this chapter to devise

Branch-and-Cut and Branch-and-Cut-and-Price algorithms for the k HNDP. As it will

turn out, these results will b e particularly useful to develop e�ecient separation algo-

rithms for the various inequalities we have presented here.



Chapter 6

Branch-and-Cut and

Branch-and-Cut-and-Price Algorithms

for the k HNDP

In this chapter we present Branch-and-Cut and Branch-and-Cut-and-Price algorithms

we have devised to solve the k HNDP. In Sections 6.1 and 6.2, we will describ e the

framework of these algorithms. In Section 6.4, we will present some computational

results and in Section 6.5 we give some concluding remarks.

In order to solve the k HNDP using Aggregated, Cut and No de-Arc formulations,

we use a Branch-and-Cut algorithm. These formulations use a p olynomial numb er of

variables. For the Path-Arc formulation, we use a Branch-and-Cut-and-Price algorithm

since this formulation uses an exp onential numb er of variables. These algorithms are

describ ed in Sections 6.1 and 6.2. Section 6.3 describ es the various separation routines

used in b oth Branch-and-Cut and Branch-and-Cut-and-Price algorithms.

Here we recall some notations that will b e used all along this chapter. Given an

undirected graph G = ( V; E) and a demand set D � V � V , the set of terminal no des

involved in a demand as source (resp. destination) no de is denoted by SD (resp. TD ).

The set of terminal no des is denoted by RD . The demand graph GD = ( RD ; ED ) is

the undirected graph whose no des are those of RD and, for every demand f u; vg 2 D ,

we add an edge uv in GD . The directed graph asso ciated with G in the Aggregated

formulation is denoted by

eG = ( eV ; eA) and the directed graphs asso ciated with G in

the separated formulations (Cut, No de-Arc and Path-Arc formulations) are denoted

by

eGst = ( eVst ; eAst) , f s; tg 2 D .
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Given a solution x 2 [0; 1]E , the support graph G(x) = ( V; E(x)) is the subgraph

of G obtained by removing from G all the edges e 2 E such that x(e) = 0 , that is

E(x) = f e 2 E j x(e) > 0g. Also, we let

E0(x) = f e 2 E j x(e) = 0 g;

E1(x) = f e 2 E j x(e) = 1 g;

E f (x) = f e 2 E j 0 < x (e) < 1g:

In a similar way, given a solution y 2 [0; 1]eA
, the supp ort graph

eG(y) = ( eV ; eA(y)) is

the subgraph of

eG obtained by removing from

eG all the arcs a 2 eA such that y(a) = 0 ,

that is

eA(y) = f a 2 eA j y(a) = 0 g. Also, we let

eA0(x) = f a 2 eA j y(e) = 0 g;

eA1(x) = f a 2 eA j y(e) = 1 g;

eA f (x) = f a 2 eA j 0 < y (e) < 1g:

Finally, for a demand f s; tg 2 and a solution yst 2 [0; 1]eA st
, the supp ort graph is the

graph

eGst(yst) = ( eVst ; eAst(yst)) , is the graph such that

eAst(yst ) = f a 2 eAst j yst(a) > 0g.

We let

eA0
st (yst) = f a 2 eAst j yst(a) = 0 g;

eA1
st (yst) = f a 2 eAst j yst(a) = 1 g;

eA f
st (yst) = f a 2 eAst j 0 < y st(a) < 1g:

6.1 Branch-and-Cut algorithms for Aggregated, Cut

and No de-Arc formulations

We �rst describ e a Branch-and-Cut algorithm for the Aggregated formulation. To start

the optimization, we consider the linear program given by the st -dicut inequalities

induced by the no de sets f sg, f sg [ N 0
and f sg [ N 0 [ N 00

, for all s 2 SD , toghether
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with the linking and trivial inequalities. That is to say, we consider the program

Min

X

e2 E

c(e)x(e)

y(� +
eG
(s)) � k;

y(� +
eG
(f sg [ V1)) � k;

y(� +
eG
(f sg [ V1 [ V2)) � k;

9
>=

>;
for all s 2 SD ;

y(a) � x(e); for all a 2 eA(e); e 2 E;

y(a) � 0; for all a 2 eA;

x(e) � 1; for all e 2 E:

The optimal solution (x; y) of this LP is feasible for k HNDP Ag if and only if (x; y) is

integral and satis�es every st -dicut inequality, for all f s; tg 2 D . If (x; y) is not feasible

for the problem, then we generate further valid inequalities for k HNDP Ag (G; D) that

are violated by (x; y) . To do this, the algorithm tries to add in the current LP the

following inequalities, in this order,

1. st -dicut inequalities,

2. aggregated cut inequalities,

3. double cut inequalities,

4. triple path-cut inequalities,

5. Steiner-partition inequalities,

6. Steiner- SP -partition inequalities.

For the Cut formulation, the optimization starts by considering the following linear

program

Min

X

e2 E

c(e)x(e)

yst(� +
eGst

(s)) � k;

yst(� +
eGst

(f sg [ Nst )) � k;

yst(� +
eGst

(f sg [ Nst [ N 0
st )) � k;

yst(a) � x(e); for all a 2 eAst(e); e 2 E;
yst(a) � 0; for all a 2 eAst ;

9
>>>>>>=

>>>>>>;

for all f s; tg 2 D;

x(e) � 1; for all e 2 E:
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Here also, the optimal solution (x; ys1 t1
; :::; ysd td

) is feasible for k HNDP Cu if (x; ys1 t1
; :::; ysd td

)
is integral and satis�es every st -dicut inequality, for all f s; tg 2 D . If (x; ys1 t1

; :::; ysd td
)

is not feasible for the problem, then we generate, as b efore, further valid inequalities

for k HNDP Cu (G; D) that are violated by (x; ys1 t1
; :::; ysd td

) . For this, we lo ok for the

following inequalities, in this order,

1. st -dicut inequalities,

2. aggregated cut inequalities,

3. double cut inequalities,

4. triple path-cut inequalities,

5. Steiner-partition inequalities,

6. Steiner- SP -partition inequalities.

Now we describ e the Branch-and-Cut algorithm for the No de-Arc formulation. The

optimization starts by solving the linear relaxation of Formulation (5.15). As this

formulation contains a p olynomial numb er of variables and constraints, its linear re-

laxation can b e solved using only one linear program,

Min

X

e2 E

c(e)x(e)

sujected to

(5:11) � (5:14):

The optimal solution (x; f
s1 t1 ; :::; f

sd td ) of this LP is feasible for k HNDP NA if it is

integral. If this is not the case, we then try to add further inequalities that are valid for

k HNDP NA (G; D) and violated by this solution. The inequalities that are considered

here are the following, generated in this order,

1. double cut inequalities,

2. triple path-cut inequalities,

3. Steiner-partition inequalities,

4. Steiner- SP -partition inequalities.
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6.2 A Branch-and-Cut-and-Price algorithm for Path-

Arc formulation

The Branch-and-Cut-and-Price algorithm for the k HNDP starts by solving the linear

relaxation of Formulation (5.20). As this formulation uses an exp onential numb er of

variables but a p olynomial numb er of constraints, we use a column generation algorithm

to solve its linear relaxation.

6.2.1 Column generation algorithm

Remind that the column generation algorithm starts by solving a linear program ob-

tained from the linear relaxation of the Path-Arc formulation by considering a subset

of variables which induce a feasible basis for the initial problem. For our purp ose, we

consider �rst the sets of st -dipaths Bst � Pst , f s; tg 2 D , such that jBst j � k and the

paths of Bst are arc-disjoint. Note that the subgraph of

eGst induced by the paths of

Bst contains k arc-disjoint st -dipaths. By Corollary 5.2.1, the edge set corresp onding

to the arcs involved in the paths of Bst , f s; tg 2 D , induces a solution of the k HNDP,

and, toghether with the sets Bst , f s; tg 2 D , induces a feasible solution for the linear

relaxation of Formulation (5.20). Hence, we consider as initial set of variables those

induced by the edge set E and the sets Bst , f s; tg 2 D . The �rst the linear program

solved in the column generation algorithm is, therefore, the one obtained from the

linear relaxation of Formulation (5.20) and these variables. This linear program is

Min

X

e2 E

c(e)x(e)

X

eP 2 B st

� st( eP) � k; (6.1)

X

eP 2 B st


 st
eP ;a

� st( eP) � x(e); for all a 2 eAst (e); e 2 E; (6.2)

� st( eP) � 0; for every

eP 2 Bst ; and every f s; tg 2 D; (6.3)

x(e) � 1; for all edge e 2 E: (6.4)

At each iteration, the algorithm tries to generate new columns, that is to add to Bst ,

f s; tg 2 D , directed paths

eP 2 Pst n Bst such that the variable � st( eP) has a negative

reduced cost. This is done by solving the so-called satel lite problem which consists in

�nding, for all f s; tg 2 D , a path

eP �
such that cr ( eP � ) = min f cr ( eP) j eP 2 Pstg and

cr ( eP � ) < 0, where cr ( eP) is the reduced cost of the variable � st( eP) .
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The reduced cost cr ( eP) is computed using the dual optimal solution. Let � st
0 and � st

a ,

a 2 eAst , b e the dual variables asso ciated with inequalities (6.1) and (6.2), resp ectively.

Then, given a path

eP 2 Pst , for some f s; tg 2 D , the reduced cost of the variable

� st( eP) is given by

cr ( eP) = � st
0 +

X

a2 eA st


 st
eP ;a

� st
a = � st

0 +
X

a2 eP

� st
a :

Thus, the satellite problem reduces to �nd a shortest st -dipath in the graph

eGst , for

all f s; tg 2 D , with resp ect to lengths � st
a on arc a 2 eAst . If a shortest st -dipath of

eGst ,

say

eP �
, is such that

X

a2 eP �

� st
a < � � st

0 , then cr ( eP � ) < 0. If not, then cr ( eP) � 0 for every

st -dipath

eP 2 Pst . Since � st
a � 0, for all a 2 eAst , the satellite problem can b e solved in

p olynomial time. As the graphs

eGst are circuitless, the shortest paths b etween s and t
can b e computed using for instance Bellman algorithm [11].

If cr ( eP) � 0 for all

eP 2 Pst , f s; tg 2 D , then the optimal solution of the current

linear program is optimal for the linear relaxation of Formulation (5.20).

The initial sets Bst are chosen in the following way. For all f s; tg 2 D , we add in

Bst k st -dipaths of the form (s; t) or (s; u; u0; t) . To improve the convergence of the

column generation algorithm, at each iteration we add to a set Bst all the dipaths of

eGst having a negative reduced cost, that is having length < � � st
0 . This can b e done

in p olynomial time using Epstein [46] or Hershb erger et al. algorithms [70]. For our

purp ose, we devise an algorithm which relies on the layered structure of the graph

eGst .

The algorithm works as follows for a pair f s; tg 2 D . First, we compute, using Bellman

algorithm [11], the shortest paths from s to every other no de of

eVst n f sg, and let lst(u)
denote the length of the shortest path from s to u , u 2 eVst n f sg. If lst(t) � � � st

0 , then,

for every st -dipath

eP 2 Pst , cr ( eP) � 0. If lst (t) < � � st
0 , then at least one st -dipath

will b e added to Bst . We �rst lo ok for a path (s; t) . If � st
(s;t ) < � � st

0 , then we add

the path (s; t) to Bst . Afterwards, we lo ok for a st -dipath of the form (s; u; v0; t) , with

u 2 Nst and v0 2 N 0
st . In fact, every st -dipath of

eGst di�erent from (s; t) is of the form

(s; u; v0; t) . For every no de v0 2 N 0
st , if lst (v0) + � st

(v0;t ) < � � st
0 , then we add the st -path

(s; u; v0; t) to Bst . We rep eat this pro cedure for every f s; tg 2 D . The algorithm is

exact and runs in p olynomial time.

6.2.2 Branch-and-Cut-and-Price algorithm

The optimal solution of the linear relaxation of Formulation (5.20) is feasible for For-

mulation (5.20) if it is integral. If this is not the case, then we add further valid
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inequalities for k HNDP P A (G; D) that are violated by this solution. The inequalities

that are considered are the following, in this order,

1. double cut inequalities,

2. triple path-cut inequalities,

3. Steiner-partition inequalities,

4. Steiner- SP -partition inequalities.

For our di�erent Branch-and-Cut and Branch-and-Cut-and-Price algorithms, all the

inequalities that are considered are global, that is valid for all the Branch-and-Cut

tree, and several inequalities may b e added at each iteration of the Branch-and-Cut

and Branch-and-Cut-and-Price algorithms. These inequalities are lifted b efore their

intro duction in the current LP. We go to the next class of inequalities only if we have

not found any violated inequality in the current class.

In the following section, we describ e the di�erent pro cedures we use to detect the

violated inequalities.

6.3 Separation pro cedures

6.3.1 Separation of st -dicut inequalities

The separation of st -dicut inequalities (5.6) and (5.21) can b e p erformed in p olynomial

time by computing, for every f s; tg 2 D , a minimum weight st -dicut in

eGst(yst ) (resp.

eG(y) ) with weights (yst (a); a 2 eAst(yst )) (resp. (y(a); a 2 eA(y)) ) for inequalities (5.6)

(resp. (5.21)). By minimum cut - maximum �ow relationship, computing a minimum

weight st -dicut of

eGst (yst ) (resp.

eG(y) ) is equivalent to computing a maximum �ow

separating s and t . We use, for computing maximum �ows, the e�cient algorithm of

Goldb erg and Tarjan [58] which runs in O(j eVst jj eAst j log j eVst j2

j eA st j
) , for all f s; tg 2 D (resp.

O(j eVjj eAj log j eV j2

j eA j
) ). As this op eration is rep eated jD j times, the whole algorithm runs

in O(jD jj eVst jj eAst j log j eVst j2

j eA st j
) , for all f s; tg 2 D (resp. O(jD jj eVjj eAj log j eV j2

j eA j
) ), and hence

is p olynomial time.
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6.3.2 Separation of aggregated cut inequalities

To separate the aggregated cut inequalities, we consider the inequalities of typ e (5.29)

and (5.33) and devise an heuristic to separate them. In particular, we consider the

inequalities describ ed in the following two lemmas. The separation pro cedure relies

on a sp ecial graph (intro duced later) de�ned with resp ect to

eG (

eGst , f s; tg 2 D )

and a fractional solution. Recall that these inequalities are valid for the p olytop es

k HNDP Ag (G; D) and k HNDP Cu (G; D) .

Lemma 6.3.1 Consider an inequality �x + �y � 
 of type (5.29) induced by a node set

family � = f fW1; :::; fWpg, p � 2, and arc subsets

eF 0
i � � +

eG
(fWi ) such that j eF 0

i j = k � 1.

Let

eF =
p[

i =1

(� +
eG
(fWi ) n eF 0

i ) ,

eF2 be the set of arcs of

eA which appear twice in

eF and

eF1

those which appear once in

eF . Suppose that for al l arc a 2 eF1 there is another arc

a0 2 eF1 which corresponds to the same edge of G as a. Let E2 be the set of edges of G
corresponding to the arcs of

eF1 .

If (x; y) 2 RE � R eA
is a fractional solution of k HNDP Ag (G; D) such that y(� +

eG
(fWi )) =

k and y(a) = 1 , for al l a 2 eF 0
i , i = 1; :::; p, then �x + �y � � is violated by (x; y) if

and only if

2
X

e2 E2

x(e) �
X

a2 eF1

y(a) < 1: (6.5)

Pro of. First observe that inequality �x + �y � � is violated by (x; y) if and only if

X

a2 eF2

y(a) +
X

e2 E2

x(e) <
p + 1

2
: (6.6)

Since y(� +
eG
(fWi )) = k , j eF 0

i j = k � 1 and y(a) = 1 for all a 2 eF 0
i , we have that

y(� +
eG
(fWi ) n eF 0

i ) = 1 for i = 1; :::; p:

Thus,

pX

i =1

y(� +
eG
(fWi ) n eF 0

i ) = 2
X

a2 eF2

y(a) +
X

a2 eF1

y(a) = p and hence,

X

a2 eF2

y(a) =
p
2

�
1
2

X

a2 eF1

y(a): (6.7)
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From (6.6) and (6.7), we get

p �
X

a2 eF1

y(a) + 2
X

e2 E2

x(e) < p + 1:

and the result follows. �

Lemma 6.3.2 Consider an inequality �x +
X

f s;tg2D

yst � st � 
 of type (5.33) induced by

a family of node sets � = f fW s1t1
1 ; :::; fW s1t1

p1
; :::; fW sq tq

1 ; :::; fW sqtq
pq g, with pi � 1, for i =

1; :::; q, and p =
qX

i =1

pi � 2, and arc subsets

eF si t i ;0
j � � +

eGsi t i
(fW si t i

j ) such that j eF si t i ;0
j j =

k � 1, j = 1; :::; pi , i = 1; :::; q. Let

eF si t i =
pi[

j =1

[� +
eGsi t i

(fW si t i
j ) n eF si t i ;0

j ], i = 1; :::; q. Also

let

eF si t i ;2
be the set of arcs of

eAsi t i which appear twice in

eF si t i
and

eF si t i ;1
those which

appear once in

eF si t i
. Suppose that for al l arc a 2 eF si t i ;1

, there exists a unique arc

a0 2 eF si 0t i 0;1
for some i0 2 f 1; :::; qg which corresponds to the same edge of G as a. Let

E2 be the set of edges of G corresponding to these arcs.

If (x; ys1 t1
; :::; ysd td

) is a fractional solution of k HNDP Cu (G; D) such that

ysi t i
(� +

eGsi t i
(fWsi t i )) = k and ysi t i

(a) = 1 , for al l a 2 eF si t i ;0
, i = 1; :::; q, then

�x +
X

f s;tg2D

yst � st � 
 is violated by (x; ys1 t1
; :::; ysd td

) if and only if

2
X

e2 E2

x(e) �
qX

i =1

X

a2 eF si t i

ysi t i
(a) < 1: (6.8)

Pro of. Similar to the pro of of Lemma 6.3.1. �

In the following, we are going to discuss the separation of the aggregated cut inequal-

ities (5.29) for k HNDP Ag . After that, we will describ e the separation pro cedure for the

aggregated cut inequalities (5.33) related to k HNDP Cu .

We are going to intro duce an undirected graph, denoted by H (x; y) , obtained from

eG and de�ned with resp ect to (x; y) . As we will see in the following, the main prop erty

of this graph is that there is a matching b etween some particular cycles of H (x; y) and

inequalities of typ e (5.29), describ ed as in Lemma 6.3.1. The graph H (x; y) is obtained

as follows.
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For each arc of

eA having a fractional value with resp ect to y , we add a no de in

H (x; y) . For convenience, we will denote by a the no de of H (x; y) corresp onding to

an arc a of

eG. We add an edge in H (x; y) b etween two no des a1 and a2 if one of the

conditions b elow is satis�ed.

1. There exists an st -dicut of

eG(y) , say � +
eG(y)

(fW) , for some f s; tg 2 D , which contains

a1 and a2 , and such that y(� +
eG(y)

(fW)) = k , j� +
eG(y)

(fW) \ eA1(y)j = k � 1 and

� +
eG(y)

(fW) \ eA f (y) = f a1; a2g.

2. The arcs a1 and a2 corresp ond to the same edge of G.

The edges added by Condition 1 will b e said of type 1 and those added by Condition

2 will b e said of type 2 . Figures 6.1 and 6.2 give resp ectively the supp ort graph

eG(y) of

a fractional solution (x; y) of k HNDP Ag (G; D) and the graph H (x; y) asso ciated with

that solution.
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Arc with value 1

Arc with value 0.5

12'

10

4'

3

21'

3'

2'

15'

15�

2�

3�

21�

4�

12�

1�

2

4

1

Figure 6.1: The supp ort graph

eG(y) of a fractional solution (x; y) for L = 3 and k = 3
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Edge of type 1
Edge of type 2

21�,2

15�,22',21� 3',15�

12',3�

21',2� 2',15�4',21�12',4�

15',2�

3,15'

3,12'

12�,4

21�,43',12�

21',4�

4',12�

Figure 6.2: Graph H (x; y) obtained from

eG(y)
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Note that in the case where there is an edge of typ e 1 in H (x; y) b etween two no des

a1 and a2 , we have that y(a1) + y(a2) = 1 . Also, if there is an edge of typ e 2 b etween

two no des a1 and a2 , then x(e) > 0 where e is the edge of G corresp onding to a1 and

a2 . Also it is not hard to see that, if in H (x; y) there are two edges of typ e 2 of the

form a1a2 and a2a3 , then there is also an edge of typ e 2 b etween a1 and a3 ( a1 , a2 and

a3 form a triangle).

Now we give the main prop erty of H (x; y) .

Lemma 6.3.3 Let C = f a1a2; a2a3; :::; ajC ja1g be a cycle of H (x; y) and f ai 1 aj 1 ; :::; ai p aj p g
the set of edges of C of type 1. Also, let V1 be the set of nodes of C incident to two

consecutive edges of type 1. Suppose that p � 2 and that C does not contain two

consecutive edges of type 2. Then, C yields an inequality of type (5.29) de�ned by

� = f fW1; :::; fWpg and

eF 0
r = � eG(y)(fWr ) n f ai r ; aj r g, r = 1; :::; p, where

fWr is the node set

of

eG associated with the edge ai r aj r in the construction of H (x; y) .

Pro of. First observe that the arcs of

eA(y) which app ear twice in

eF =
p[

i =1

[� eG(y)(fWr ) n eF 0
i ]

are those of

eG(y) corresp onding to the no des of V1 , while the arcs which app ear once

in

eF are those of

eA(y) corresp onding to the no des of f a1; :::; ajC jg nV1 . Thus we let

eF2

and

eF1 b e these two sets of arcs, resp ectively. Since every no de a 2 f a1; :::; ajC jg nV1

is incident to one edge of C of typ e 2, say aa0
, the arcs a and a0

are in

eF1 and corre-

sp ond to the same edge of G. Thus, the aggregated cut inequality asso ciated with this

con�guration can b e written as

X

a2 eF2

y(a) +
X

e2 E2

x(e) �
l p

2

m
;

where E2 is the edge set of G corresp onding to the arcs of

eF1 . �

To illustrate that lemma, on Figure 6.2, the cycle

C = f (3; 150)(3; 120); (3; 120)(2100; 4); (2100; 4)(40; 2100); (40; 2100)(30; 1500); (30; 1500)(3; 150)g

contains three edges of typ e 1, (3; 150)(3; 120) , (3; 120)(2100; 4) and (40; 2100)(30; 1500) , and

two edges of typ e 2, (2100; 4)(40; 2100) and (30; 1500)(3; 150) , that are not incident. One

can see on Figure 6.1 that the no de sets

fW1 = f 3g,

fW2 = f 3; 20; 150; 2100; 300; 200; 1500; 2g
and

fW3 = f 1; 120; 30; 40; 100; 1200; 400; 300; 200; 4g induce two 3� 4-dicuts and one 1� 2-dicut

of

eG(y) , and that these dicuts contain resp ectively the pairs of arcs f (3; 150); (3; 120)g,
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f (3; 120); (2100; 4)g and f (40; 2100); (30; 1500)g. Moreover, they are such that y(� +
eG(y)

(fWi )) =

k and j� +
eG(y)

(fWi ) \ eA1(y)j = k � 1, i 2 f 1; 2; 3g. Finally, it obviously follows that � =

f fW1; fW2; fW3g and

eF 0
1 = f (3; 10); (3; 20)g,

eF 0
2 = f (3; 10); (200; 4)g and

eF 0
3 = f (400; 2); (300; 2)g

induce an aggregated cut inequality of typ e (5.29). Furthermore, this inequality is vi-

olated by (x; y) .

Before describing the construction pro cedure for H (x; y) , we give the following lemma.

Lemma 6.3.4 Let (x; y) be a fractional solution of k HNDP Ag (G; D) , and let a1 and

a2 be two arcs of

eG with fractional values and f s; tg 2 D . If there exists a minimum

weight st -dicut of

eG(y) , say � +
eG(y)

(fW ) , such that f a1; a2g � � +
eG(y)

(fW ) and � +
eG(y)

(fW ) n

f a1; a2g � eA1(y) , then � +
eG(y)

(fW ) can be considered in such a way that every arc a 2

� +
eG(y)

(fW ) n f a1; a2g is either in � +
eG(y)

(s) or in � �
eG(y)

(t) n [t0; t] eG(y) .

Pro of. Let � +
eG(y)

(fW) b e a minimum weight st -dicut of

eG(y) containing a1 and a2

and such that � +
eG(y)

(fW) n f a1; a2g � eA1(y) . Supp ose also that there is an arc a 2

� +
eG(y)

(fW) n f a1; a2g which is not in � +
eG(y)

(s) [ [� �
eG(y)

(t) n f (t0; t)g]. Hence, a is either of

the form (u0; v00) , with u0 2 N 0
, v00 2 N 00

and u and v may b e the same, or of the

form (t0; t) . If a = ( u0; v00) , then u0 2 fW and the no de set

fW 0 = fW n f u0g induces an

st -dicut. Since � +
eG(y)

(fW) is a minimum weight st -dicut, [s; u0] eG(y) 6= ; and therefore,

� +
eG(y)

(fW 0) = ( � +
eG(y)

(fW) n f (u0; v00)g) [ f (s; u0)g. Since � +
eG(y)

(fW) is of minimum weight

with resp ect to y , we have that y(s; u0) � y(u0; v00) . As y(u0; v00) = 1 , we also have

that y(s; u0) = 1 and that � +
eG(y)

(fW 0) is a minimum weight st -dicut. If a = ( t0; t) , then

since � +
eG(y)

(fW) is of minimum weight in

eG(y) , there is an arc of the form (s; t0) . Thus,

fW 0 = fW n f t0g induces an st -dicut of

eG(y) . Moreover, as the weight of � +
eG(y)

(fW) is

minimum with resp ect to y , we have that y(s; t0) � y(t0; t) = 1 . Hence, y(s; t0) = 1 and

� +
eG(y)

(fW 0) is also of minimum weight.

By rep eating this op eration until � +
eG(y)

(fW) do es not contain any arc of the form

(u0; v00) or (t0; t) , we obtain a minimum weight st -dicut of

eG(y) which contains a1 and

a2 , such that � +
eG(y)

(fW) n f a1; a2g � eA1(y) and such that every arc of � +
eG(y)

(fW) n f a1; a2g

is either in � +
eG(y)

(s) or in � �
eG(y)

(t) n [t0; t] eG(y) , which ends the pro of of the Lemma. �

A consequence of Lemma 6.3.4 is that an st -dicut � +
eG(y)

(fW) of

eG(y) containing two

arcs a1 and a2 with fractional values, such that y(� +
eG(y)

(fW)) = k and � +
eG(y)

(fW)\ eA f (y) =
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f a1; a2g can b e obtained by computing st -dicuts of

eG(y) containing a1 and a2 and such

that � +
eG(y)

(fW) n f a1; a2g �
h
� +

eG(y)
(s) [ (� �

eG(y)
(t) n f (t0; t))g

i
.

The construction of the graph H (x; y) is p erformed by computing �rst the edges of

typ e 2. For every pair of arcs (a; a0) 2 eA(y) � eA(y) , corresp onding to the same edge of

E and having a fractional value, we add an edge of typ e 2 b etween the corresp onding

no des in H (x; y) . To compute the edges of typ e 1, we use a pro cedure based on Lemma

6.3.4. The idea is to compute a maximum �ow in

eG(y) with resp ect to appropriate

capacities separating s and t . Given two arcs a1 and a2 such that y(a1) + y(a2) = 1
and a pair f s; tg 2 D , we �rst give 0 as capacity to a1 and a2 . Then, we give an in�nit

capacity to every other arc of

eG(y) having a fractional value. This ensures that a1 and

a2 are the only arcs of fractional values present in the st -dicut we will obtain. We give

an in�nit capacity to every arc of � +
eG(y)

(s) and � �
eG(y)

(t) indicent to a1 and a2 and having

value 1. We also give an in�nit capacity to every arc of [t0; t] eG(y) . For all other arc

a, we give y(a) as capacity (note that for these arcs, y(a) = 1 ). Then, we compute a

maximum �ow b etween s and t with resp ect to these capacities. Let � +
eG(y)

(fW) denote

the st -dicut thus obtained. By Lemma 6.3.4, we have that � +
eG(y)

n f a1; a2g � eA1(y) .

We then check if y(� +
eG(y)

(fW)) = k and j� +
eG(y)

(fW) n f a1; a2gj = k � 1. If this is the case,

then we add an edge of typ e 1 b etween the no des of H (x; y) corresp onding to a1 and

a2 . We rep eat this pro cedure for all pair of arcs (a1; a2) having fractional value and

such that y(a1) + y(a2) = 1 , and for all demand f s; tg 2 D .

Now we describ e the separation pro cedure of the aggregated cut inequalities. The

pro cedure is based on Lemma 6.3.1. Thus we generate inequalities of typ e (5.29) which

satisfy the conditions of that lemma. First, we compute H (x; y) as describ ed ab ove.

Then we compute one or more cycles of H (x; y) which contain an o dd numb er of edges

of typ e 1 and which do es not contain two consecutive edges of typ e 2. By Lemma 6.3.3,

every cycle satisfying these conditions yields an aggregated cut inequality of typ e (5.29).

We then check if for each inequality thus obtained, (x; y) satis�es inequality (6.5). If

this is the case, then by Lemma 6.3.1, this inequality is violated by (x; y) and added

to the set of violated inequalities. If no cycle is found or if for every inequality of typ e

(5.29) obtained, (x; y) do es not satisfy inequality (6.5), then the pro cedure ends with

failure.

To detect cycles of H (x; y) satisfying the conditions of Lemma 6.3.3, we use a pro ce-

dure in which we compute shortest paths in an auxiliary graph obtained from H (x; y) .

Let Hb b e the undirected graph obtained as follows. The no de set of Hb is comp osed

of two copies, denoted by V 0
b and V 00

b , of the no de set of H (x; y) . The copies of a no de

a of H (x; y) are denoted by a0
and a00

with a0 2 V 0
b and a002 V 00

b . For every edge a1a2
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of H (x; y) of typ e 1, we add in Hb two edges of the form a0
1a00

2 and a0
2a00

1 and give them

1 as length. For every edge a1a2 of H (x; y) of typ e 2, we add in Hb two edges of the

form a0
1a

0
2 and a00

1a00
2 and give them a length M su�ciently large. Figure 6.3 shows an

example of graph Hb obtained from a subgraph of H (x; y) given in Figure 6.2. It is not

hard to see that a path b etween two no des a0
and a00

of Hb corresp onds to a cycle of

H (x; y) containing no de a and an o dd numb er of edges of typ e 1, and do es not contain

two consecutive edges of typ e 2, and vice versa.

Edge of type 1

Edge of type 2

1 1

1 1

1 1

1

Graph H b

1
1

1

Subgraph of H (x; y )

(21�,4)

(3',15�)

(4',21�)�

(3',15�)�

(21�,4)�

(3,12')�

(21�,4)'

(3',15�)'

(4',21�)'

(3,12')'

(3,15')'

(3,12')

(3,15')

(4',21�)

(3,15')�

Figure 6.3: Graph Hb obtained from a subgraph of H (x; y)

For our separation pro cedure, we compute the shortest paths b etween each pair of

no des (a0; a00) of Hb, for every no de a of H (x; y) .

Now we turn to the aggregated cut inequalities for the Cut formulation. The separa-

tion pro cedure for these inequalities is similar to that describ ed ab ove for k HNDP Ag .

Given a fractional solution (x; ys1 t1
; :::; ysd td

) of k HNDP Cu (G; D) , we construct the

graph H (x; ys1 t1
; :::; ysd td

) in a similar way as H (x; y) , that is for all f s; tg 2 D , and

for every arc a 2 eA f
st (yst ) we asso ciate a no de in H (x; ys1 t1

; :::; ysd td
) . We add an edge,

said of typ e 1, b etween two no des a1 and a2 if they b elong to the same graph

eGst ,

yst (a1) + yst (a2) = 1 and there exists an st -dicut � +
eGst (yst )

(fW) containing a1 and a2 and

such that � +
eGst (yst )

(fW) \ eA f
st (yst ) = f a1; a2g and j(� +

eGst (yst )
(fW) n f a1; a2g) \ eA1

st (yst )j =

k � 1. We also add an edge, said of typ e 2, b etween two no des a1 2 eA f
si t i

(ysi t i
) and

a2 2 eA f
si 0t i 0(ysi 0t i 0

) if the arcs a1 and a2 corresp ond to the same edge of G.
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The st -dicut � +
eGst (yst )

(fW) used to set edges of typ e 1 can b e computed with the

pro cedure used for k HNDP Ag . As b efore, every cycle of H (x; ys1 t1
; :::; ysd td

) which

contains an o dd numb er of edges of typ e 1 and which do es not contain two consecutive

edges of typ e 2 yields an inequality of typ e (5.33). These cycles are computed by lo oking

for shortest paths in a graph Hb obtained in a similar way as for k HNDP Ag . Finally,

for each cycle thus obtained, we check if (x; ys1 t1
; :::; ysd td

) satis�es or not inequality

(6.8) with resp ect to the sets E2 and

eF si t i ;1
obtained from that cycle. If this is the

case, then by Lemma 6.3.2, the corresp onding inequality of typ e (5.33) is violated by

(x; ys1 t1
; :::; ysd td

) and hence added to the set of violated inequalities.

6.3.3 Separation of double cut inequalities

The separation of double cut inequalities is p erformed by lo oking for inequalities of

typ e (5.39) for L = 2 and of typ e (5.40) for L = 3 that are violated by the current

solution. We describ e the pro cedure for the k HNDP Ag . We will present later how this

can b e extended to the other formulations.

The idea of the pro cedure is to �nd a partition � = ( V0; :::; VL ; VL +1 ) , L 2 f 2; 3g, of G
and an edge set F � E , with jV0j = jV1j = 1 and [V0; V1] 6= ; , which induces a double

cut, with i0 = 0 , and whose weight is minimum with resp ect to x . The pro cedure

works as follows. For all f s; tg 2 D , we compute the st -cut � G(s) . If x(� G(s)) = k ,

then for every terminal s0 2 RD such that x([s; s0]) > 0 and x(� G(s0)) = k , we compute

an L - st -path-cut T of G induced by a partition � = ( V0; :::; VL ; VL +1 ) with V0 = f sg
and V1 = f s0g. For this, we use the corresp ondance b etween L - st -path-cuts in G and

st -dicuts in

eG, given by Lemma 5.4.1. Since the desired partition � must b e such that

V0 = f sg and V1 = f s0g, we must have T \ [s; s0] = ; and � G(s) n [s; s0] � T . Thus,

any st -dicut of

eG corresp onding to T must contain arcs corresp onding to the edges of

� G(s) n [s; s0] and no arcs corresp onding to the edges of [s; s0]. Also remark that this

st -dicut do es not contain any arc of the form (u0; u00) , u 2 V and of the form (t0; t) ,

t 2 TD . Therefore, to compute an st -dicut of

eG corresp onding to the desired L - st -path-

cut, we start by giving the arcs corresp onding to the edges of [s; s0] an in�nit capacity

and removing all the arcs corresp onding to the edges of � G(s) n[s; s0]. Then, we give to

every arc of the form (u0; u00) , u 2 V and (t0; t) , t 2 TD , an in�nit capacity. Afterwards,

we compute a maximum �ow b etween s and t with resp ect to these capacities. Let

� +
eG
(fW) denote the st -dicut thus obtained.

To check that this dicut corresp onds to an L - st -path-cut of G, we apply the following

pro cedure. We �rst remove from G all the edges corresp onding to the arcs of � +
eG
(fW) .
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Then, we compute the shortest paths b etween s and every no de of V nf sg with resp ect

to length 1 on the remaining edges. Let l (u) denotes the length of a shortest path

b etween s and u , u 2 V n f sg. If l (t) is �nite, then � +
eG
(fW) corresp onds to an L - st -

path-cut of G. In this case, we construct the partition � such that V0 = f sg, V1 = f s0g,

Vi = f u 2 V n f s; s0; tg j l(u) = ig, i = 2; :::; L , and VL +1 = V n (
L[

i =0

Vi ) .

Let Ê b e the edge set [V1; V2] (resp. [V1 [ V4; V2]) if L = 2 (resp. L = 3 ) having a

p ositive value with resp ect to x . We cho ose the edges of F among those of Ê having

the highest value and such that jF j and k have di�erent parities. If jÊ j � k � 1, then

F consists of the k � 1 edges having the highest value. If jÊ j < k � 1 and jÊ j has a

parity di�erent from that of k , then we let F = Ê . If jÊ j < k � 1 and jÊ j has the same

parity as k , then we let F = Ê n f e0g where e0 is the edge of Ê having the smallest

value.

Finally, we check if the inequality (5.39) (resp. (5.40)) for L = 2 (resp. L = 3 )

induced by � and F is violated or not.

We rep eat this pro cedure for every demand f s; tg 2 D , and the violated inequalities

found are added to the constraint p o ol. To compute the maximum �ow in

eG we use

the algorithm of Goldb erd and Tarjan [58] which runs in O(j eAjj eV j log j eV j2

j eA j
) time. If G

is complete and L = 3 , we have that j eV j = 2 jV j + jSD j + jTD j and j eAj = ( jV j � 1)(jV j +
jSD j+ jTD j) . Thus, the maximum �ow algorithm runs in O(jVj3 log (2jV j+ jSD j+ jTD j)2

(jV j� 1)( jV j+ jSD j+ jTD j) ) .

To compute the shortest paths in G b etween s and the other no des of V , we use the

algorithm of Dijkstra [43] which is implemented to run is O(jVjjE j log(jV j)) time. As

the computation of a cut in the graph G requires at most jE j iterations, our separation

pro cedure runs in O(jV j3 logjV j (2jV j+ jSD j+ jTD j)2

(jV j� 1)( jV j+ jSD j+ jTD j) )) time, and hence is p olynomial. If

L = 2 , the algorithm is also p olynomial.

For the case of the separated formulations (Cut, Path-Arc and No de-Arc formula-

tions), the pro cedure is the same except that the computation of the L - st -path-cut,

induced by the partition � , is p erformed using the directed graph

eGst asso ciated with

the demand f s; tg. We remove from

eGst all the arcs corresp onding to the edges of

� G(s) n [s; s0], and those corresp onding to the edges of [s; s0] are given an in�nit capac-

ity. In the same way, we give an in�nit capacity to every arc of the form (u; u0) , with

u 2 eVst . Then, we compute a maximum �ow b etween s and t in

eGst . Also, for these

formulations, the algorithm remains p olynomial.
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6.3.4 Separation of triple path-cut inequalities

To separate triple path-cut inequalities, we devise a heuristic. This heuristic is based

on Theorem 5.7.3. The pro cedure is given for L = 3 . It is similar for L = 2 .

The main idea is to compute, given two demands f s; t1g and f s; t2g, a family � =
f V0; V1; V2; V3; V1

4 ; V2
4 ; V 1

5 ; V2
5 g of no de sets from a 3- st1 -path-cut T induced by a par-

tition of the form (V0; V1 [ V 1
4 [ V 2

4 ; V2; V3 [ V 1
5 ; V2

5 ) . In fact, from this latter partition,

one can obtain a whole triple path-cut by �xing the sets V 1
4 , V 2

4 , V 1
5 and V 2

5 . In our

pro cedure, we will lo ok for those triple path-cuts such that V 1
4 = ; , V 2

4 = f t2g, V 1
5 = ;

and V 2
5 = f t1g.

The pro cedure works as follows. For each source s 2 SD , we apply the following

steps. Let f s; t1g and f s; t2g b e two demands asso ciated with s. We �rst lo ok for a

partition � = ( V 0
0; V0

1; V0
2; V0

3; V 0
4) which induces an L - st1 -path-cut of G, denoted by T ,

and such that V 0
0 = f sg and t2 2 V 0

1 . For this, we use the corresp ondance b etween the

L - st1 -path-cuts in G and st1 -dicuts in

eG. Since t2 2 V 0
1 and V 0

0 = f sg, we have that

T \ [s; t2] = ; and any arc of

eG, corresp onding to the edges of [s; t2], do es not app ear

in an st1 -dicut of

eG corresp onding to T . Thus, computing T reduces to compute a

minimum weight st1 -dicut in

eG. To do this, we compute a maximum �ow in

eG b etween

s and t1 with resp ect to the following capacities:

� for every arc of

eA([s; t2]) or of the form (u0; u00) or (t0; t) , with u 2 N and t 2 TD ,

we give an in�nit capacity;

� for every arc of

eA(e) , with e 2 E n [s; t2], we give the capacity x(e) .

Let � +
eG
(fW) denote the directed cut thus obtained. We check if it corresp onds to an

L - st1 -path-cut by p erforming the following steps. First, we remove from G all the

edges corresp onding to the arcs of � +
eG
(fW) and compute all the shortest paths b etween

s and the other no des of G with resp ect to the length 1 on the remaining edges. Let

l (u) denote the length of the shortest path b etween s and u , for all u 2 V n f sg. If l (t1)
is �nite, then � +

eG
(fW) corresp onds to an L - st1 -path-cut, denoted by T . In this case, we

construct the partition � such that V 0
0 = f sg, V 0

i = f u 2 V j l(u) = ig, for i 2 f 1; 2; 3g,

and for all the no des u 2 V n f t1g such that l (u) � 4 or l (u) = + 1 , we assign them

alternatively to V 0
1 and V 0

3 . Finally, V 0
4 = V n (

3[

i =0

V 0
i ) . Note that t1 2 V 0

4 as l (t1) > 3

and t2 2 V 0
1 . Now the family of no de sets � is such that V0 = V 0

0 = f sg, V1 = V 0
1 n f t2g,

V2 = V 0
2; V3 = V 0

3 , V 1
4 = ; , V 2

4 = f t2g, V 1
5 = ; and V 2

5 = f t1g.
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Let Ê b e the set of edges of [V 2
3 ; V1 [ V 1

4 ] [ [V 1
3 ; V2

4 ] having a p ositive value with

resp ect to x . We cho ose the edges of F among those of Ê having the highest value and

such that jF j and k have di�erent parities. If jÊ j � k � 1, then F consists of the k � 1
edges having the highest value. If jÊ j < k � 1 and jÊ j has a parity di�erent from that

of k , then we let F = Ê . If jÊ j < k � 1 and jÊ j has the same parity as k , then we let

F = Ê n f e0g where e0 is the edge of Ê having the smallest value.

Finally, we check if the triple path cut inquality induced by � and F is violated or

not.

Our algorithm runs in p olynomial time, as it consists, for every pair ff s; t1g, f s; t2gg
of demands, in computing a maximum �ow and shortest paths b etween s and the

other no des of G. In our implementation, we use the algorithm of Goldb erg and

Tarjan [58] for the maximum �ow and the algorithm of Dijkstra [43] for the shortest

paths which run rep esctively in O(jVj3 log (2jV j+ jSD j+ jTD j)2

(jV j� 1)( jV j+ jSD j+ jTD j) ) and O(jVj3 logjV j) time,

resp ectively. Thus, the pro cedure runs in O(jD j2(jV j3 logjV j (2jV j+ jSD j+ jTD j)2

(jV j� 1)( jV j+ jSD j+ jTD j) )) time,

and thus, is p olynomial.

For the case of the separated formulations, the pro cedure is the same except that

the computation of the L - st -path-cut inducing the partition � is p erformed using the

directed graph

eGst1 asso ciated with the demand f s; t1g. All the arcs corresp onding to

the edges of [s; t2] are given an in�nit capacity. In the same way, we give an in�nit

capacity to every arc of the form (u; u0) , with u 2 eVst and all the arcs corresp onding to

an edge e 2 E n [s; t2] is given the capacity x(e) . Then, we compute a maximum �ow

b etween s and t1 in

eGst1 .

6.3.5 Separation of Steiner-partition inequalities

Now we discuss the separation of Steiner-partition inequalities. The separation problem

of inequalities (5.43) is NP-hard (see [99]). To separate them, we devise the following

heuristic. Note that we lo ok for Steiner-partition inequalities when k is o dd. The idea

of the pro cedure is to �nd a partition � = ( V0; V1; :::; Vp) , p � 3 and o dd, such that

V0 � V n RD and x(� (V0; :::; Vp)) is minimum.

Our heuristic b egins by contracting every pair of no des t and u , where t is a terminal

no de and u a Steiner no de, and x(� G(x)(u) n f utg) � x(ut) . The no de resulting from

that contraction will considered as a terminal. Let G(x)0 = ( V 0; E0) b e the reduced

graph thus obtained and let f u0
1; :::; u0

pg b e the set of terminals of G(x)0
. If p is o dd,

we let � 0 = ( V 0
0; V0

1; :::; V0
p) , where V 0

i = f u0
i g, i = 1; :::; p, and V 0

0 = V 0 n f u0
1; :::; u0

pg.
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Then, we let Vi , i = 0; :::; p, b e the no de sets of G(x) corresp onding to the no de sets

V 0
i , i = 0; :::; p, of G(x)0

.

If p is even, we lo ok for two no des u0
i 0

and u0
j 0

, i0; j 0 2 f 1; :::; pg, of G(x)0
such

that x([u0
i 0

; u0
j 0

]) is maximum and there is a demand b etween u0
i 0

and u0
j 0

, that is

j� GD (f u0
i 0

; u0
j 0

g)j � 1. This later condition ensures that the partition we will obtain is

admissible. We let

V 0
i = f u0

i g; i = 1; :::; i0 � 1;
V 0

i 0
= f u0

i 0
; u0

j 0
g;

V 0
i = f u0

i g; i = i0 + 1; :::; j 0 � 1;
V 0

i � 1 = f u0
i g; i = j 0 + 1; :::; p;

V 0
0 = V 0n f u0

1; :::; u0
pg:

Then, we let Vi b e the no de set of G(x) corresp onding to the no de set V 0
i , i = 0; :::; p� 1,

of G(x)0
. After that, we check if the Steiner-partition inequality induced by � is violated

by x or not.

The computation of the graph G(x)0
runs in O(jVjjE j) while the computation of the

no des u0
i 0

; u0
j 0

, when p is even, requires O(jRD j2(jE 0j + jD j)) op erations. Thus, our

separation algorithm runs, in the worst case, in O(jVjjE j + jRD j2(jE 0j + jD j)) time and

thus, is p olynomial.

6.3.6 Separation of Steiner- SP -partition inequalities

Now we turn our attention to the separation of the Steiner- SP -partition inequalities.

We devise the following heuristic to separate inequalities (5.44). The main idea is to

determine a Steiner-partition � = ( V1; :::; Vp) , p � 3, of V which induces an outerplanar

subgraph of G(x) and such that the subgraph of GD (the demand graph) induced by

� is connected. By Theorem 5.6.8, such a partition is a Steiner- SP -partition. Also,

the partitions we are lo oking for are such that j[Vi ; Vi +1 ]j �
�

k
2

�
, i = 1; :::; p, (mo dulo

p) and for every consecutive sets Vi and Vj , the edge set [Vi ; Vj ] contains at least one

edge with fractional value.

The heuristic works as follows. We �rst contract every pair of no des t and u , where

t is a terminal no de, u is a steiner no de and x(� G(x)(u) n f utg) � x(ut) . The no de

resulting from that contraction is said to b e terminal. Let G(x)0 = ( V 0; E0) b e the

reduced graph thus obtained.

We lo ok in G(x)0
for a path � = f v0

1v
0
2; v0

2v
0
3; :::; v0

p� 2v
0
p� 1g, p � 3, such that v0

1; :::; v0
p� 1

are terminal no des, j[v0
i ; v0

i +1 ]j �
�

k
2

�
and [v0

i ; v0
i +1 ] contains one edge or more with frac-
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tional value, for i = 1; :::; p� 2. The partition � = ( V1; :::; Vp) , p � 3, is constructed such

that Vi is the no de set of G corresp onding to v0
i , i = 1; :::; p � 1, and Vp = V n (

p� 1[

i =1

Vi ) .

Afterwards, we check by a simple heuristic if the graph G� (x)0
is outerplanar and

if the subgraph of GD induced by � is connected. If it is connected, then, we check

if the Steiner- SP -partition inequality induced by � is violated. If this subgraph is

not connected, we compute from � new partitions � i = ( Vi ; Vi +1 ; V n (Vi [ Vi +1 )) ,

i = 1; :::; p � 2. Clearly, these new partitions are Steiner-partitions and since they are

of size 3, they induce Steiner- SP -partitions. We then check if the Steiner- SP -partition

inequality induced by � i is violated, for i = 1; :::; p � 2.

If none of these inequalities is violated by x , we apply again the pro cedure by lo oking

for another path. In order to avoid the detection of the same path, we lab el the no des

we met during the search of the previous ones, so that they won't b e considered in

the search of the new path. This pro cess is iterated until either we �nd a violated

Steiner- SP -partition inequality or all the no des of V 0
are lab eled. The heuristic can

b e implemented to run in O(jE 0jjV 0j + jD j) time.

To store the generated inequalities, we create a p o ol whose size increases dynamically.

All the generated inequalities are put in the p o ol and are dynamic, that is, they are

removed from the current LP when they are not active. We �rst separate inequalities

from the p o ol. If all the inequalities in the p o ol are satis�ed by the current LP-solution,

we separate the classes of inequalities in the order given b efore.

6.3.7 Primal heuristic

An imp ortant issue in the e�ciency of the Branch-and-Cut and Branch-and-Cut-and-

Price algorithms is to compute a go o d upp er b ound at each no de of the Branch-and-Cut

tree. To do this, when the separation pro cedures do not generate any violated inequality

and the current solution is still fractional, we transform it into a feasible one. We

describ e the pro cedure we have devised for k HNDP Ag with a fractional solution (x; y) .

It is similar for k HNDP Cu , k HNDP P A and k HNDP NA . The main idea is to construct

a graph obtained by removing from

eG(y) every arc corresp onding to an edge of G(x)
having a fractional value and add arcs in that graph until the numb er of arc-disjoint

st -dipaths reaches k , for all f s; tg 2 D . Note that since (x; y) is fractional and is an

optimal solution for the current LP, the restriction of

eG(y) to

eA1(y) cannot contain k
arc-disjoint st -dipaths for all f s; tg 2 D . Otherwise, (x; y) would b e integral or would

not b e optimal for the current LP.



174

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE

ALGORITHMS FOR THE K HNDP

The pro cedure relies on the computation of a maximum �ow b etween s and t for

every pair f s; tg 2 D . The capacities of the arcs of

eG(y) are up dated at each iteration

of the pro cedure. At the end of the pro cedure, we remove from

eG(y) every arc whose

capacity is null.

Let Ci = ( Ci (a))a2 eA(y) b e a capacity vector obtained at the end of the i

th
iteration,

i = 0; :::; d, with C0 = ( C0(a))a2 eA(y) , where C0(a) = 1 for all a 2 eA1(y) and C0(a) = 0
otherwise. Note that the capacity vector Ci , i 2 f 1; :::; dg, is asso ciated with demand

f si ; t i g. For a demand f si ; t i g, i 2 f 1; :::; dg, we �rst compute a maximum si t i -�ow

with resp ect to capacity vector Ci � 1 . Let f = ( f (a))a2 eA(y) b e the corresp onding �ow

vector and f 0 the value of this �ow. If f 0 � k , then there is nothing to do for this

demand. Thus we let Ci (a) = Ci � 1(a) for all a 2 eA(y) and go to the next demand

f si +1 ; t i +1 g. If f 0 < k , then we compute k � f 0 arc-disjoint augmenting si t i -paths with

resp ect to capacity 1 on every arc of

eG(y) and f (a) as initial �ow value. Remark that

the �ow is null for all arc a having Ci � 1(a) = 0 . Then, we set to 1 the �ow on every

arc involved in the k � f 0 augmenting paths computed b efore and up date the capacity

vector Ci in the following way:

� Ci (a) = 1 , for all a 2 eA(y) such that Ci � 1(a) = 1 ;

� Ci (a) = 1 , if Ci � 1(a) = 0 and a is involved in an augmenting path computed

b efore;

� Ci (a) = 0 otherwise.

We rep eat this op eration for every demand f si ; t i g, i = 1; :::; d. At the end of the

pro cedure, we remove from

eG(y) every arc such that Cd(a) = 0 . Afterwards, we

construct the graph Ĝ = ( V;Ê ) , where Ê is the set of edges asso ciated with an arc

remaing in

eG(y) , that is having Cd(a) = 1 . Since the remaining graph

eG(y) contains k
arc-disjoint st -paths for all f s; tg 2 D , the graph Ĝ contains k edge-disjoint L - st -paths,

for all f s; tg 2 D , and hence, induces a feasible solution of the k HNDP.

If the weight of this solution is lower than b est known upp er b ound, then we up date

this upp er b ound with the weight of the solution we have just computed.

6.4 Computational results

The Branch-and-Cut and Branch-and-Cut-and-Price algorithms describ ed in the pre-

vious sections have b een implemented in C++, using ABACUS 3.0 [1, 101] to manage
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the Branch-and-Cut tree, and CPLEX 11.0 [2] as LP-solver. It was tested using a ma-

chine equip ed with a pro cessor Intel Centrino Duo and 2 Go of RAM, running under

Linux. The maximum CPU time has b een �xed to 5 hours. The test problems we have

considered are complete euclidian graphs from TSPLIB library [3]. The demands used

in these tests are randomly generated. Each set of demand is either ro oted in a no de

s, or is such that there is no demand having the same destination no de as another

demand. The tests have b een p erformed for L = 2; 3 and k = 3; 4; 5.

Each instance is given by the numb er of no des of the graph preceded by the typ e of

demand, indicated by 'r' for ro oted demands and 'a' for arbitrary demands. The other

entries of the various tables are:

jV j : numb er of no des of the graph;

jD j : numb er of demands,

NC : numb er of generated cut inequalities;

NAC : numb er of generated aggregated cut inequalities;

NDC : numb er of generated double cut inequalities;

NTC : numb er of generated triple path-cut inequalities;

NP : numb er of generated Steiner-partition inequalities;

NSP : numb er of generated Steiner- SP -partition inequalities;

COpt : weight of the b est upp er b ound obtained;

Gap : the relative error b etween the b est upp er b ound

(the optimal solution if the problem has b een solved

to optimality) and the lower b ound obtained at the

ro ot no de of the Branch-and-Cut tree;

NSub : numb er of subproblems in the Branch-and-Cut tree;

TT : total CPU time in hours:min:sec.

The instances indicated with "*" are those for which the algorithm has not �nished

the computation of the ro ot no de of the Branch-and-Cut tree after the CPU time limit.

The entries in the tables for these instances are given in italic. Also, for some instances,

the algorithm runs out of ressources (lack memory). For these instances, we give the

results we have obtained during the time the algorithm runned. These instances are

indicated with "**".

The main ob jective of these exp eriments is to check the e�eciency of the di�erent

formulations intro duced b efore for solving the k HNDP. It also aims to compare each

formulation with the others and compare the algorithms dep ending on the connectivity

requirement. Obviously, we have used the same test problems with each formulation

and each value of L .
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Our �rst series of exp eriments concerns k HNDP Ag with k = 3 and L = 2; 3. The

instances we have considered have graphs with 21 up to 52 no des and a numb er of

demands up to 50. The results are summurized in Tables 6.1 and 6.2.

jV j jD j NC NAC NDC NTC NP NSP COpt Gap NSub TT

r 21 15 1963 0 0 24 0 0 7138 9.5 151 0:00:15

r 21 17 2463 2 0 25 0 0 7790 9.34 359 0:00:35

r 21 20 4076 12 0 73 0 0 8762 11.6 2195 0:06:10

a 21 10 358 51 87 0 0 0 8313 3.19 57 0:00:08

r 30 15 3482 15 0 11 0 0 12512 5.56 435 0:01:22

r 30 20 7084 138 0 31 0 0 14215 6.84 4567 0:26:55

r 30 25 8379 27 0 70 0 0 15610 8.57 3845 0:34:07

a 30 10 518 566 0 0 0 0 12124 4.96 375 0:01:16

a 30 15 862 1141 0 0 0 0 15868 3.36 1193 0:13:54

r 48 20 12780 0 0 38 0 0 21586 8.16 267 0:08:23

r 48 30 46392 0 0 5 0 0 34144 27.18 1581 5:00:00

r 48 40 42461 0 0 6 0 0 49698 37.23 1131 5:00:00

a 48 15 3514 365 2562 0 0 0 32097 2.68 891 0:28:42

a 48 20 11990 640 3754 0 0 0 46967 8.9 3993 5:00:00

a 48 24 12417 210 820 0 0 0 57865 12.59 3453 5:00:00

r 52 20 22656 19 0 2 0 0 14093 6.21 2283 0:35:50

r 52 30 67301 7 0 304 0 0 18957 16.9 3289 5:00:00

r 52 40 51484 12 0 91 0 0 24780 26.04 1703 5:00:00

r 52 50 38633 0 0 49 0 0 31541 32.36 1981 5:00:00

a 52 20 2168 1434 0 0 0 0 18480 3.24 5281 2:33:47

a 52 26 5054 780 265 0 0 0 24131 3.37 5699 5:00:00

Table 6.1: Results for Aggregated formulation with L = 2 and k = 3 .

It app ears from that 6.1 that for L = 2 , 14 instances over 22 have b een solved to

optimality within the time limit. The CPU time for these instances, except the last

one, is less than 35 minutes. All the instances of the table have required a branching

phase and, for most of them, the relative error b etween the lower b ound at the ro ot

no de of the Branch-and-Cut tree and the b est upp er b ound (Gap) is less than 10%.

We also observe that our separation pro cedures have detected a large enough numb er

of aggregated cut inequalities and a fewer numb er of double cut and triple path-cut

inequalities. We observe from Table 6.2 that for L = 3 only 2 instances over 22 have

b een solved to optimality within the time limit. They have b een solved resp ectively

in 49mn and 2h34mn. Except for the previous instances, the gap b etween the lower
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jV j jD j NC NAC NDC NTC NP NSP COpt Gap NSub TT

r 21 15 23423 45 0 24 0 7 5472 8.33 975 0:49:54

r 21 17 35364 32 0 61 0 5 5864 8.24 1745 2:34:13

r 21 20 33934 5 0 58 0 0 8874 34.08 2389 5:00:00

a 21 10 51099 0 142 0 0 0 9934 38.58 347 5:00:00

a 21 11 43858 0 121 0 2 0 11390 44.6 333 5:00:00

r 30 15 55589 144 0 4 0 22 10901 13.56 2009 5:00:00

r 30 20 51627 24 0 1 0 18 15944 35.45 1835 5:00:00

r 30 25 45492 3 0 11 0 6 20379 45.53 917 5:00:00

a 30 10 39785 0 3 0 0 2 12365 21.82 1127 5:00:00

a 30 15 44901 12 43 0 0 0 23481 47.64 353 5:00:00

r 48 20 61029 0 0 11 0 19 25605 41.22 387 5:00:00

r 48 30 68969 0 0 12 0 2 40871 55.61 205 5:00:00

r 48 40 67303 0 0 0 0 1 59513 62.81 133 5:00:00

a 48 15 72110 0 22 0 0 1 62557 66.8 29 5:02:34

a 48 20 75449 0 3 0 0 0 90253 70.32 11 5:00:00

a 48 24 101539 0 3 0 0 0 121740 74.18 3 5:00:00

r 52 20 63033 0 0 0 0 15 17474 41.9 543 5:00:00

r 52 30 79985 0 0 0 0 3 23345 48.06 263 5:00:00

r 52 40 86116 0 0 0 0 4 28743 51.28 143 5:00:00

r 52 50 80976 0 0 0 0 0 37051 57.46 125 5:00:00

a 52 20 76055 0 32 0 0 2 30939 53.26 19 5:00:00

a 52 26 116481 0 20 0 0 0 51870 65.45 9 5:00:00

Table 6.2: Results for Aggregated formulation with L = 3 and k = 3 .
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b ound at the ro ot no de of the Branch-and-Cut tree and the b est upp er b ound is more

than 10%. It even reaches in some cases 70%. We also have that our separation

pro cedures have detected a few numb er of aggregated cut, double cut, triple path-cut

and Steiner- SP -partition inequalities.

Our second series of exp eriments concerns k HNDP Cu with k = 3 and L = 2; 3. The

results are given in Tables 6.3 and 6.4 for L = 2 and L = 3 resp ectively.

jV j jD j NC NAC NDC NTC NP NSP COpt Gap NSub TT

r 21 15 22047 0 0 24 0 0 7138 9.5 151 1:18:44

r 21 17 42621 22208 0 6 0 0 8584 17.73 63 5:00:00

r 21 20 49283 0 0 0 0 0 10444 25.84 31 5:00:00

a 21 10 231 150 70 0 0 0 8313 3.22 71 0:00:05

a 21 11 330 163 14 0 1 0 8677 3.11 99 0:00:06

r 30 15 11437 35413 0 0 0 0 13114 9.89 43 5:00:00

r 30 20 47879 0 0 0 0 0 16488 19.68 31 5:00:00

* r 30 25 61391 0 0 0 0 0 - - 1 5:00:00

a 30 10 450 2074 0 0 0 0 12124 4.96 359 0:02:38

a 30 15 698 2527 0 0 0 0 15868 3.33 947 0:17:20

r 48 20 34042 0 0 0 0 0 25112 21.06 27 5:00:00

* r 48 30 75649 0 0 0 0 0 - - 1 5:00:00

* r 48 40 25240 0 0 0 0 0 - - 1 5:00:00

a 48 15 1604 1402 830 0 0 0 32097 2.7 491 0:30:03

a 48 20 3284 3641 887 0 0 0 47449 9.95 2793 5:00:00

a 48 24 3567 2134 404 0 0 0 57308 11.48 3019 5:00:00

r 52 20 56127 0 0 0 0 0 17039 22.43 3 5:00:00

* r 52 30 38286 0 0 0 0 0 - - 1 5:00:00

* r 52 40 24510 0 0 0 0 0 - - 1 5:00:00

* r 52 50 24644 0 0 0 0 0 - - 1 5:00:00

a 52 20 1474 4513 0 0 0 0 18480 3.24 3185 4:13:36

a 52 26 2656 2894 142 0 0 0 24416 4.51 3669 5:00:00

Table 6.3: Results for Cut formulation with L = 2 and k = 3 .

We observe that for L = 2 (Table 6.3), 6 instances over 22 have b een solved to

optimality within the time limit. Also, for 6 instances, the algorithm has not b een able

to �nish within 5 hours the resolution of the ro ot no de of the Branch-and-Cut tree. A

large enough numb er of aggregated cut inequalities has b een detected. However only

a few numb er of double cut inequalities has b een used. For L = 3 (Table 6.4), no
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jV j jD j NC NAC NDC NTC NP NSP COpt Gap NSub TT

r 21 15 20526 1344 0 12 0 3 7801 35.7 287 5:00:00

r 21 17 20852 95 0 1 0 1 7688 30.01 169 5:00:00

r 21 20 15636 0 0 11 0 0 10183 42.55 407 5:00:00

a 21 10 24143 0 0 0 0 0 10808 43.55 395 5:00:00

a 21 11 23988 0 1 0 1 0 9970 36.71 317 5:00:00

r 30 15 6854 0 0 0 0 7 18349 48.65 21 5:00:00

r 30 20 11332 0 0 0 0 2 21552 52.25 21 5:00:00

r 30 25 14842 0 0 0 0 0 22829 51.38 7 5:00:00

a 30 10 17955 0 0 0 0 1 12365 21.82 567 5:00:00

a 30 15 14218 66 1 0 0 0 24360 49.53 171 5:00:00

* r 48 20 2729 0 0 0 0 0 - - 1 5:00:00

* r 48 30 3833 0 0 0 0 0 - - 1 5:00:00

r 48 40 5772 0 0 0 0 0 67381 67.15 3 5:00:00

* a 48 15 3600 0 0 0 0 0 - - 1 5:00:00

* a 48 20 2700 0 0 0 0 0 - - 1 5:00:00

* a 48 24 2928 0 0 0 0 0 - - 1 5:00:00

* r 52 20 2338 0 0 0 0 0 - - 1 5:00:00

* r 52 30 3358 0 0 0 0 0 - - 1 5:00:00

* r 52 40 3743 0 0 0 0 0 - - 1 5:00:00

* r 52 50 5332 0 0 0 0 0 - - 1 5:00:00

* a 52 20 3657 0 0 0 0 0 - - 1 5:00:00

a 52 26 7437 0 0 0 0 0 52501 65.93 3 5:00:00

Table 6.4: Results for Cut formulation with L = 3 and k = 3 .
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instance has b een solved to optimality within the time limit and for 9 instances over

22, the ro ot no de of the Branch-and-Cut tree has b een solved after 5 hours. The gap

b etween the lower b ound at the ro ot no de of Branch-and-Cut tree and the b est upp er

b ound, when they exist, is b etween 30% and 50% in general. However, in some cases

it reaches 67%.

The third series of exp eriments concerns the k HNDP P A with k = 3 and L = 2; 3.

The results are given in Tables 6.5 for L = 2 and 6.6 for L = 3 . Recall that for

this formulation, we have used a Branch-and-Cut-and-Price algorithm and that the

aggregated cut inequalities are not valid. Thus, they don't app ear in Tables 6.5 and

6.6.

jV j jD j NDC NTC NP NSP COpt Gap NSub TT

r 21 15 0 24 0 0 7138 9.5 151 0:00:10

r 21 17 0 19 0 0 7790 9.34 309 0:01:13

r 21 20 0 91 0 0 8762 11.6 2491 0:04:07

a 21 10 74 0 0 0 8313 3.43 85 0:00:03

a 21 11 14 0 0 0 8677 3.38 103 0:00:06

r 30 15 0 3 0 0 12512 5.56 303 0:00:49

r 30 20 0 24 0 0 14215 6.84 4731 0:28:50

** r 30 25 0 94 0 0 15896 10.22 8226 3:12:00

a 30 10 0 0 0 0 12124 5.2 335 0:00:31

a 30 15 0 0 0 0 15868 3.68 943 0:02:27

r 48 20 0 46 0 0 21586 8.16 265 0:07:17

** r 48 30 0 100 0 0 32284 22.99 6779 4:37:00

r 48 40 0 29 0 0 47331 34.09 7167 5:00:00

a 48 15 0 2 0 0 17626 6.15 215 0:01:27

** a 48 20 1762 0 0 0 46446 8.10 8599 3:57:00

** a 48 24 776 0 0 0 55877 8.51 7583 3:52:00

r 52 20 0 3 0 0 14093 6.21 2807 0:43:36

** r 52 30 0 501 0 0 18497 14.84 5431 4:48:00

r 52 40 0 207 0 0 24626 25.58 6145 5:00:00

r 52 50 0 79 0 0 31541 32.36 3931 5:00:00

a 52 20 0 0 0 0 18480 3.43 6547 3:02:08

a 52 26 231 0 0 0 24125 4.11 9825 5:00:00

Table 6.5: Results for Path-Arc formulation with L = 2 and k = 3 .

When L = 2 , we can see that 13 instances over 22 have b een solved to optimality

within a CPU time which do es not exceed 43 minutes except for the last one which
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jV j jD j NDC NTC NP NSP COpt Gap NSub TT

r 21 15 0 65 0 10 5472 8.33 867 0:36:25

r 21 17 0 92 0 9 5864 8.24 1855 1:53:37

r 21 20 0 130 0 0 8445 30.73 3627 5:00:00

a 21 10 138 0 0 0 - - - 3:35:00

a 21 11 38 0 1 0 6770 6.8 4155 1:46:36

r 30 15 0 45 0 23 10114 6.68 2185 5:00:00

r 30 20 0 13 0 14 15767 34.73 1553 5:00:00

r 30 25 0 21 0 5 20511 45.88 675 5:00:00

a 30 10 0 0 0 15 10254 5.73 4833 5:00:00

a 30 15 18 0 0 0 19420 36.7 2853 5:00:00

r 48 20 0 22 0 34 26721 43.68 69 5:00:00

r 48 30 0 44 0 8 40197 54.87 49 5:00:00

r 48 40 0 38 0 1 59762 62.97 19 5:00:00

a 48 15 2 0 0 0 49102 57.73 101 5:00:00

a 48 20 2 0 0 0 70272 61.88 55 5:00:00

a 48 24 2 0 0 0 85625 63.29 13 5:00:00

r 52 20 0 6 0 12 17894 43.27 83 5:00:00

r 52 30 0 12 0 4 24970 51.44 49 5:00:00

r 52 40 0 12 0 5 28530 50.92 19 5:00:00

r 52 50 0 46 0 0 38734 59.31 1 5:00:00

a 52 20 27 0 0 2 27739 47.89 45 5:00:00

a 52 26 15 0 0 0 41535 56.92 13 5:00:00

Table 6.6: Results for Path-Arc formulation with L = 3 and k = 3 .
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has b een solved in 3 hours. For most of the instances, the gap b etween the lower

b ound at the ro ot no de of the Branch-and-Cut tree and the b est upp er b ound is less

than 32%. The separation pro cedures have detected a few numb er of double cut and

triple path-cut inequalities. Also we have observed that in most cases, after the ro ot

no de of the Branch-and-Cut tree, the column generation algorithm has not added new

variables in the current basis. When L = 3 , 3 instances over 22 have b een solved to

optimality. The CPU time used to solve them is b etween 36 minutes and near 2 hours.

A few numb er of double cut, triple path-cut and Steiner- SP -partition inequalities have

b een detected. The gap b etween the b est lower and upp er b ounds is less than 62%.

Our next series of exp eriments concerns the k HNDP NA with k = 3 and L = 2 (Table

6.7) and for L = 3 (Table 6.8). Here also, the aggregated cut inequalities are not valid

for k HNDP NA and do not app ear in the table.

jV j jD j NDC NTC NP NSP COpt Gap NSub TT

r 21 15 0 21 0 0 7138 9.5 203 0:00:11

r 21 17 0 19 0 0 7790 9.34 333 0:00:27

r 21 20 0 88 0 0 8762 11.6 2621 0:03:38

a 21 10 74 0 0 0 8313 3.43 85 0:00:02

a 21 11 12 0 1 0 8677 3.11 107 0:00:05

r 30 15 0 9 0 0 12512 5.56 337 0:00:54

r 30 20 0 20 0 0 14215 6.84 4993 0:32:46

r 30 25 0 84 0 0 15610 8.57 5087 1:07:49

a 30 10 0 0 0 0 12124 5.2 335 0:00:26

a 30 15 0 0 0 0 15868 3.68 947 0:02:30

r 48 20 0 38 0 0 21586 8.16 259 0:06:37

** r 48 30 0 0 0 0 33114 24.92 3147 3:38:00

** r 48 40 0 0 0 0 47464 34.28 2399 4:14:00

a 48 15 867 0 0 0 32097 2.85 351 0:08:23

** a 48 20 1508 0 0 0 46118 7.53 4409 2:43:00

** a 48 24 603 0 0 0 55623 9.19 3817 2:44:00

r 52 50 0 67 0 0 31541 32.36 3149 5:00:00

r 52 10 0 0 0 0 8299 2.35 15 0:00:02

r 52 20 0 1 0 0 14093 6.21 1541 0:40:35

a 52 20 0 0 0 0 18480 3.43 5969 2:41:04

** a 52 26 193 0 0 0 24364 5.06 3231 3:19:00

Table 6.7: Results for No de-Arc formulation with L = 2 and k = 3 .

From Table 6.7 we can see that, for L = 2 , 14 instances over 22 have b een solved to
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jV j jD j NDC NTC NP NSP COpt Gap NSub TT

r 21 12 0 0 11 7 4658 3.53 107 0:02:45

r 21 15 0 28 0 5 5472 8.33 1033 0:29:01

r 21 17 0 53 0 7 5864 8.24 1885 1:27:58

** a 21 10 83 0 0 0 6886 11.40 5041 3:35:00

a 21 11 22 0 1 0 6770 6.8 4269 1:18:48

r 30 15 0 10 0 24 10142 7.1 2857 5:24:33

r 30 20 0 1 0 11 16157 36.3 1377 5:09:22

r 30 25 0 6 0 2 21330 47.96 439 5:00:00

a 30 10 0 0 0 13 10254 5.73 4937 4:35:04

** a 30 15 10 0 0 0 - - - 3:35:00

r 48 20 0 1 0 9 27126 44.52 71 5:00:00

r 48 30 0 0 0 0 41350 56.12 27 5:00:00

r 48 40 0 0 0 1 60165 63.21 11 5:00:00

a 48 15 0 0 0 0 67328 69.17 107 5:00:00

a 48 20 0 0 0 0 86553 69.05 51 5:00:00

a 48 24 0 0 0 0 113754 72.37 33 5:00:00

r 52 20 0 0 0 7 19713 48.5 45 5:00:00

r 52 30 0 0 0 0 25870 53.13 17 5:00:00

r 52 40 0 0 0 0 28530 50.92 9 5:00:00

r 52 50 0 0 0 0 37933 58.45 7 5:00:00

a 52 20 13 0 0 2 27870 48.14 35 5:00:00

a 52 26 2 0 0 0 45709 60.85 13 5:00:00

Table 6.8: Results for No de-Arc formulation with L = 3 and k = 3 .
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optimality. The maximum CPU time for these instances is 2h41mn and most of them

are solved in less than 6 minutes. The gap b etween the b est lower and upp er b ounds

is, in general, less than 10%. The separation algorithms have generated a few numb er

of double cut and triple path-cut inequalities. For L = 3 (Table 6.8), 7 instances have

b een solved to optimality. For most of the instances, the gap b etween the b est lower

and upp er b ounds is less than 60% but reaches in some cases 72%. We can see that a

few numb er of double cut, triple path-cut and Steiner SP -Partition have b een detected

during the resolution.

When comparing, for each table, the results obtained for L = 2 and L = 3 when

k = 3 , we observe that the numb er of instances solved to optimality when L = 2 is

greater than that when L = 3 . Also the gap b etween the b est lower and upp er b ounds,

is in most cases, b etter when L = 2 than when L = 3 . This let us b elieve that the

k HNDP is easier when L = 2 than when L = 3 .

Also, when comparing Tables 6.1, 6.3, 6.5 and 6.7 for L = 2 , and Tables 6.2, 6.4, 6.6

and 6.8 for L = 3 , we observe that the e�eciency of the di�erent algorithms for solving

the problem is not the same. We observe that the results for k HNDP Ag , k HNDP P A

and k HNDP NA are b etter than those of k HNDP Cu for b oth L = 2 and L = 3 . In fact

the numb er of instances solved to optimality for this later formulation is less than that

of the others and, in most cases, the gaps b etween the b est lower and upp er b ounds

are greater for this formulation than those of the other formulations. Moreover, for

6 instances for L = 2 and 9 instances for L = 3 , the algorithm for k HNDP Cu has

not b een able to �nish the resolution of the ro ot no de of the Branch-and-Cut tree

whereas the other algorithms have solved the problem for the same instances with a

branching phase. Hence, for these instances, the algorithm for k HNDP Cu do es not

pro duce an upp er b ound of the optimal solution. Comparing Tables 6.1 to 6.5 for

L = 2 , and Tables 6.2 and 6.6 for L = 3 , we observe that the numb er of instances

solved to optimality is quite the same for the two formulations, and the CPU times

are generally closer. However, for L = 2 , the gap b etween the b est lower and upp er

b ounds is, in most cases, b etter for the Aggregated formulation than for those of the

Path-Arc formulation. Also, for L = 3 , we notice that the gap is in general b etter for

the Path-Arc formulation. In fact, for this latter formulation, the gap is up to 63.29%

whereas it reaches 74.18% for the Aggregated formulation. The comparison b etween

Tables 6.7 and 6.8 on the one hand and Tables 6.1, 6.2, 6.5 and 6.6 on the other hand

shows that more instances have b een solved to optimality by the No de-Arc formulation

for b oth L = 2 and L = 3 . The CPU time is slightly b etter with this formulation and

the gaps b etween the b est lower and upp er b ounds are b etter in some cases than those

obtained for the Aggregated and Path-Arc formulation.
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As a conclusion, these observations show that the Aggregated, Path-Arc and No de-

Arc formulations are more e�cient than the Cut formulation. Also, the No de-Arc

formulation solves more instances to optimality while the Aggregated formulation pro-

duces b etter upp er b ounds when L = 2 and the Path-Arc formulation gives b etter ones

when L = 3 . Also, the problem is easier to solve when L = 2 .

Our last series of exp eriments concerns the k HNDP with k = 4; 5 and L = 3 (Tables

6.9 and 6.10). It aims to observe the easiness of the problem when the connectivity

requirement increases. The instances used have graphs with 48 and 52 no des and up

to 50 demands. Note that when k = 4 the Steiner-partition and Steiner- SP -partition

inequalities are redundant with resp ect to the st -cut inequalities. Thus, they do not

app ear in Table 6.9.
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Aggregated formulation

jV j jD j NC NAC NDC NTC COpt Gap NSub TT

r 48 30 56483 0 0 0 48899 49.32 249 5:00:00

r 48 40 60857 0 0 0 60090 49.87 123 5:00:00

a 48 20 57931 0 1 0 112414 68.11 11 5:00:00

a 48 24 79543 0 1 0 157063 73.26 3 5:00:00

r 52 40 74438 0 0 0 34100 44.03 131 5:00:00

r 52 50 75463 0 0 0 41894 48.00 91 5:00:00

a 52 20 64736 0 32 0 39863 50.35 21 5:00:00

a 52 26 77734 0 11 0 66306 63.02 9 5:00:00

Cut formulation

jV j jD j NC NAC NDC NTC COpt Gap NSub TT

* r 48 30 3684 0 0 0 - - 1 5:00:00

48 40 5788 0 0 0 69349 56.56 3 5:00:00

* a 48 20 2760 0 0 0 - - 1 5:00:00

* a 48 24 3408 0 0 0 - - 1 5:00:00

* r 52 40 3995 0 0 0 - - 1 5:00:00

r 52 50 6619 0 0 0 45587 52.21 3 5:00:00

* a 52 20 5832 0 0 0 - - 1 5:00:00

a 52 26 10303 0 0 0 59807 59.01 3 5:00:00

Path-Arc formulation

jV j jD j NDC NTC COpt Gap NSub TT

r 48 30 0 0 49758 50.2 47 5:00:00

r 48 40 0 0 64253 53.12 19 5:00:00

a 48 20 1 0 92597 61.29 53 5:00:00

a 48 24 0 0 111039 62.18 15 5:00:00

r 52 40 0 0 32552 41.37 15 5:00:00

* r 52 50 0 0 - - 1 5:00:00

a 52 20 32 0 34525 42.67 39 5:00:00

a 52 26 9 0 54694 55.17 13 5:00:00

No de-Arc formulation

jV j jD j NDC NTC COpt Gap NSub TT

r 48 30 0 0 50894 51.31 25 5:00:00

r 48 40 0 0 64495 53.29 11 5:00:00

a 48 20 0 0 111168 67.75 51 5:00:00

a 48 24 0 0 135650 69.04 31 5:00:00

r 52 40 0 0 35724 46.57 9 5:00:00

r 52 50 0 0 45536 52.16 5 5:00:00

a 52 20 1 0 39347 49.71 35 5:00:00

a 52 26 0 0 57370 57.26 13 5:00:00

Table 6.9: Results for Aggregated formulation with L = 3 and k = 4 .
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Aggregated formulation

jV j jD j NC NAC NDC NTC NP NSP COpt Gap NSub TT

r 48 30 57487 0 0 21 0 0 54677 41.45 259 5:00:00

r 48 40 51981 0 0 13 0 0 67290 42.72 157 5:00:00

a 48 20 46889 0 0 0 0 0 140927 68.02 15 5:00:00

a 48 24 64629 0 0 0 0 0 207928 74.64 3 5:00:00

r 52 40 62674 0 0 0 0 0 38257 36.11 163 5:00:00

r 52 50 75568 0 0 9 0 0 48095 41.52 93 5:00:00

a 52 20 55999 0 28 0 0 0 46728 45.57 25 5:00:00

a 52 26 63377 0 2 0 0 0 83433 62.1 11 5:00:00

Cut formulation

jV j jD j NC NAC NDC NTC NP NSP COpt Gap NSub TT

* r 48 30 3789 0 0 0 0 0 - - 1 5:00:00

r 48 40 5073 0 0 0 0 0 76132 49.37 3 5:00:00

* a 48 20 2619 0 0 0 0 0 - - 1 5:00:00

* a 48 24 4824 0 0 0 0 0 - - 1 5:00:00

* r 52 40 3868 0 0 0 0 0 - - 1 5:00:00

r 52 50 8412 0 0 0 0 0 53997 47.91 3 5:00:00

a 52 20 7292 0 0 0 0 0 47687 46.67 3 5:00:00

a 52 26 9314 0 0 0 0 0 84578 62.61 3 5:00:00

Path-Arc formulation

jV j jD j NDC NTC NP NSP COpt Gap NSub TT

r 48 30 0 37 0 0 56700 43.54 41 5:00:00

r 48 40 0 19 0 0 70057 44.98 15 5:00:00

a 48 20 3 0 0 0 106719 57.77 49 5:00:00

a 48 24 2 0 0 0 130029 59.45 7 5:00:00

r 52 40 0 3 0 0 39933 38.79 15 5:00:00

* r 52 50 0 12 0 0 - - 1 5:00:00

a 52 20 8 0 0 0 42615 40.33 39 5:00:00

a 52 26 5 0 0 0 63315 50.06 9 5:00:00

No de-Arc formulation

jV j jD j NDC NTC NP NSP COpt Gap NSub TT

r 48 30 0 3 0 0 58514 45.29 25 5:00:00

r 48 40 0 0 0 0 72125 46.56 13 5:00:00

a 48 20 0 0 0 0 133820 66.32 47 5:00:00

a 48 24 0 0 0 0 170278 69.03 33 5:00:00

r 52 40 0 0 0 0 40081 39.02 9 5:00:00

r 52 50 0 0 0 0 53997 47.91 5 5:00:00

a 52 20 0 0 0 0 46318 45.09 35 5:00:00

a 52 26 0 0 0 0 70195 54.96 15 5:00:00

Table 6.10: Results for Aggregated formulation with L = 3 and k = 5 .
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First, we remark that for k = 4 and k = 5 , the instances in Tables 6.9 and 6.10

have not b een solved to optimality after 5 hours. The Cut formulation has not b een

able to solve after 5 hours the linear relaxation of the problem at the ro ot no de of the

Branch-and-Cut tree for 5 (resp. 4) instances when k = 4 (resp. k = 5 ).

We notice that for the Aggregated formulation, the gap b etween the b est lower and

upp er b ound is b etter when k = 4 than when k = 5 . For example, when k = 4 , the

gaps are b etween 44.03% and 73.26% while for k = 5 the gaps are b etween 36.11% and

74.64%. Also, except one instance, the gap is b etter when k = 4 than when k = 5 . This

shows that the k HNDP is easier when k = 4 than when k = 5 . The same observation

can b e done for the other formulations. In particular, for the Cut formulation, we see

that the instance r 52 with jD j = 20 has not reached the branching phase for k = 4
while 3 no des have b een generated in the Branch-and-Cut tree for k = 5 . Moreover,

for k = 4 the primal heuristic do es not pro duce a feasible, and hence no upp er b ound

for the optimal solution, while for k = 5 the algorithm pro duces an upp er b ound and

a gap of 46.67%.

Also these results can b e compared to those obtained for k = 3 and L = 3 . We can

remark that, for every formulation, the gaps b etween the b est lower and upp er b ounds

are b etter when k = 4; 5 than when k = 3 . From these observations, we conjecture

that the k HNDP b ecomes easier when the connectivity requirement k increases.

6.5 Concluding remarks

In this chapter, we have studied the k -edge-connected hop-constrained network design

problem when k � 3 and L = 2; 3. We have presented four integer programming for-

mulations based on the transformation of the initial graph into appropriated directed

graphs. We have also intro duced some classes of valid inequalities and given conditions

under which these inequalities de�ne facet of the asso ciated p olytop e. We have also dis-

cussed separation pro cedures for these inequalities and a column generation algorithm.

Using these results, we have devised Branch-and-Cut and Branch-and-Cut-and-Price

algorithms to solve the problem.

The computational results have shown that the Aggregated, Path-Arc and No de-Arc

formulations are e�ective in solving the problem and pro ducing go o d upp er b ound for

the problem and that the Cut formulation is less e�cient. Also, it has b een shown that

the No de-Arc formulation is more e�cient in solving the problem to optimality and

that Aggregated and Path-Arc formulation pro duces go o d upp er b ound when L = 2
and when L = 3 , resp ectively.
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Also our heuristics to separate the aggregated, double cut and triple path-cut in-

equalities have app eared to b e very e�cient.

These exp eriments showed that the k HNDP is easier when L = 2 than when L = 3 .

It also showed that the problem b ecomes easier when the connectivity requirement

increases.

In some cases, we may consider that L � 4. Few works have b een done for this

case in the literature. In particular, Huygens and Mahjoub [73] studied this case and

showed that st -cut inequalities (5.1) and L - st -path-cut inequalities (5.2) toghether

with integrality constraints are no more su�cient to formulate the problem as an

integer program. They [73] intro duced new classes of inequalities and showed that

these inequalities toghether with integrity constraints and inequalities (5.1) and (5.2)

formulate the problem in the space of the design variables. One can try to extend

the approach develop ed in the previous chapters to study the problem when L � 4
and devise e�cient Branch-and-Cut or Branch-and-Cut-and-Price algorithms for the

problem in this case.



Conclusion

In this thesis, we have studied, within a p olyhedral context, two survivable network

design problems, the k -edge-connected subgraph ( k ECSP) and the k -edge-connected

hop-constrained network design ( k HNDP) problems. In particular, we have considered

these problems in the case where a high level of connectivity is required, that is when

k � 3. These two problems are NP-hard when k � 2.

First, we have discussed the p olytop e of the k ECSP. We have intro duced a new class

of valid inequalities and given conditions for these inequalities to b e facet de�ning. We

have also studied further valid inequalities and given conditions under which they de�ne

facets. Moreover, we have studied the reduction op erations intro duced by Didi Biha

and Mahjoub [39] (see also [38]). These allow to p erform the separation of the valid

inequalities in a reduced graph. Using these results, we have devised a Branch-and-Cut

algorithm for the problem and given computational results for k = 3; 4; 5.

We have also studied the k HNDP when k � 3 and L 2 f 2; 3g. We have �rst

investigated the problem when a single demand is considered and shown that the

asso ciated p olytop e is completely describ ed by the st -cut and L -path-cut inequalities

toghether with the trivial inequalities. We showed that this complete description yields

a p olynomial cutting plane algorithm for the problem, generalizing at the same time

the results of Huygens et al. [75] and Dahl et al. [35].

Finally, we have considered the k HNDP when more than one demand are considered.

We have intro duced four new integer programming formulations for the problem in this

case. These formulations rely on the transformation of the initial undirected graph G
into appropriate directed graphs and the equivalence b etween edge-disjoint L - st -paths

in G and arc-disjoint paths in these directed graphs. We have intro duced several

classes of valid inequalities for the p olytop es asso ciated with each formulation and

studied conditions under which these inequalities de�ne facets. Using this, we have

devised Branch-and-Cut and Branch-and-Cut-and-Price algorithms for the problem.

Computational results have b een given for k = 3; 4; 5 and L = 2; 3, and a comparative
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study has b een done in order to compare the e�ciency of the di�erent formulations we

have intro duced.

The exp erimental studies presented throughout this thesis have shown that the two

problems are easier to solve when the connectivity requirement k increases. It also

app eared that the problems are more di�cult to solve when k is o dd. Our exp eri-

ments for the k ECSP also showed that reduction op erations, when prop erly designed

and implemented, can signi�cantly improve a Branch-and-Cut algorithm. It would b e

interesting to extend the use of such op erations for other combinatorial optimization

problems.

The exp eriments we have p erformed for the k HNDP for k = 3; 4; 5 and L = 2; 3
gave gaps (relative error b etween the b est lower and upp er b ounds) relativety high, in

particular when a large numb er of demand is considered. It would b e interesting to

pursue the approach used here for the k HNDP when L 2 f 2; 3g. One may lead a deep er

investigation of the p olytop e of the problem by using the appropriate directed graphs

and exploiting the known results on arc-disjoint paths problems in directed graphs.

This may help to provide new facet de�ning inequalities. It would also b e interesting,

from an algorithmic p oint of view, to improve the separation pro cedures provided for

the various inequalities we have intro duced in this work, esp ecially for the aggregated

cut inequalities.

The same kind of study can also b e used for the k HNDP when L � 4. If p ossible,

this may provide an integer programming formulation for the problem as well as a

Branch-and-Cut algorithm for all L � 4 and k � 2.
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