K. Yoshiaki, Anisotropic conductive thermal adhesive, 1993.

H. S. Tekce, D. Kumultas, and I. H. Tavman, Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites, Journal of Reinforced Plastics and Composites, vol.26, issue.1, pp.113-121, 2007.
DOI : 10.1177/0731684407072522

G. Pinto and A. Jiménez?martin, Conducting aluminium?filled Nylon 6 composites, Polymer composites, 2001.

S. K. Kang and S. Purushothaman, Development of conducting adhesive materials for microelectronic applications, Journal of Electronic Materials, vol.27, issue.11, 1999.
DOI : 10.1007/s11664-999-0173-0

L. Xuechun and L. Feng, The improvement on the properties of silver-containing conductive adhesives by the addition of carbon nanotube, Proceedings of the Sixth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (HDP '04), 2004.
DOI : 10.1109/HPD.2004.1346734

G. D. Liang, S. P. Bao, and S. C. Tjong, Microstructure and properties of polypropylene composites filled with silver and carbon nanotube nanoparticles prepared by melt-compounding, Materials Science and Engineering: B, vol.142, issue.2-3, pp.2-3, 2007.
DOI : 10.1016/j.mseb.2007.06.028

K. Sanada, Y. Tada, and Y. Shindo, Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers, Composites Part A: Applied Science and Manufacturing, vol.40, issue.6-7, pp.724-730, 2009.
DOI : 10.1016/j.compositesa.2009.02.024

M. F. Uddin and C. T. Sun, Improved dispersion and mechanical properties of hybrid nanocomposites, Composites Science and Technology, vol.70, issue.2, pp.223-230, 2010.
DOI : 10.1016/j.compscitech.2009.09.017

T. L. Zhou, X. Wang, X. H. Liu, and D. S. Xiong, Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler, Carbon, vol.48, issue.4, pp.1171-1176, 2010.
DOI : 10.1016/j.carbon.2009.11.040

O. Connell, M. J. , C. Nanotubes, ?. Principles, A. Stankovich et al., Production, properties and potential of graphene Is: 8, p. 23. 13 Graphene?based composite materials, Carbon Nature Nature, vol.48, issue.318, pp.6042-162, 1985.

S. Iijima, Helical Microtubules of Graphotoc Carbon, Nature, vol.354, pp.6348-56, 1991.

N. Wang, Z. K. Tang, G. D. Li, and J. S. Chen, Materials science ? Single?walled 4 angstrom carbon nanotube arrays, Nature, vol.408, pp.6808-50, 2000.

Y. Maniwa, R. Fujiwara, H. Kira, H. Tou, E. Nishibori et al., Multiwalled carbon nanotubes grown in hydrogen atmosphere: An x?ray diffraction study Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, pp.1899-1912, 2001.

A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit et al., Crystalline ropes of metallic carbon nanotubes Electronic, Thermal and Mechanical Properties of Carbon Nanotubes, and McEuen, P.L., Scanned Probe Microscopy of Electronic Transport in Carbon Nanotubes Physical Review Letters, 1996.

M. Ahlskog, C. Laurent, M. Baxendale, and M. Huhtala, Electronic Properties and Applications of Carbon Nanotubes, pp.1-23, 2003.

T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi et al., Electrical conductivity of individual carbon nanotubes, Nature, vol.382, issue.6586, p.6586, 1996.
DOI : 10.1038/382054a0

Y. Ando, X. Zhao, H. Shimoyama, G. Sakai, and K. Kaneto, Physical properties of multiwalled carbon nanotubes, International Journal of Inorganic Materials, vol.1, issue.1, 1999.
DOI : 10.1016/S1463-0176(99)00012-5

B. Wei, R. Spolenak, P. Kohler?redlich, M. Rühle, and E. Arzt, Electrical transport in pure and boron-doped carbon nanotubes, Applied Phisics Letters, 1999.
DOI : 10.1063/1.124093

Y. H. Li, J. Wei, X. Zhang, C. Xu, D. Wu et al., Mechanical and electrical properties of carbon nanotube ribbons, Chemical Physical Letters, 2002.
DOI : 10.1016/S0009-2614(02)01434-3

M. ?. Tsai, C. ?. Yu, C. ?. Yang, N. ?. Tai, T. ?. Perng et al., Electrical transport properties of individual disordered multiwalled carbon nanotubes, Applied Physics Letters, 2006.
DOI : 10.1063/1.2387875

E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature, Nano Letters, vol.6, issue.1, 2006.
DOI : 10.1021/nl052145f

H. Shioya, T. Iwai, D. Kondo, M. Nihei, and Y. Awano, Evaluation of Thermal Conductivity of a Multi?Walled Carbon Nanotube Using the Delta Vgs Method, Japanese Journal of Applied Physics, 2007.

Q. Li, C. Liu, X. Wang, and S. Fan, Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method, Nanotechnology, vol.20, issue.14, 2009.
DOI : 10.1088/0957-4484/20/14/145702

S. Berber, Y. Kwon, . ?k, and D. Tománek, Unusually High Thermal Conductivity of Carbon Nanotubes, Physical Review Letters, vol.84, issue.20, 2000.
DOI : 10.1103/PhysRevLett.84.4613

B. Mingo, Length Dependence of Carbon Nanotube Thermal Conductivity and the ???Problem of Long Waves???, Nano Letters, vol.5, issue.7, 2005.
DOI : 10.1021/nl050714d

M. Grujicic, G. Cao, and W. N. Roy, Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes, Journal of Materials Science, vol.86, issue.264, 2005.
DOI : 10.1007/s10853-005-1215-5

C. W. Padgett and D. W. Brenner, Influence of Chemisorption on the Thermal Conductivity of Single-Wall Carbon Nanotubes, Nano Letters, vol.4, issue.6, 2004.
DOI : 10.1021/nl049645d

Y. Gu and Y. Chen, Thermal conductivities of single-walled carbon nanotubes calculated from the complete phonon dispersion relations, Physical Review B, vol.76, issue.13, 2007.
DOI : 10.1103/PhysRevB.76.134110

R. Ruoff and D. Lorents, Mechanical and thermal properties of carbon nanotubes, Carbon, vol.33, issue.7, pp.925-930, 1995.
DOI : 10.1016/0008-6223(95)00021-5

M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly et al., Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, vol.287, issue.5453, pp.5453-637, 2000.
DOI : 10.1126/science.287.5453.637

S. Iijima, C. Brabec, A. Maiti, and J. P. Bernholc, Structural flexibility of carbon nanotubes, The Journal of Chemical Physics, vol.104, issue.5, 1996.
DOI : 10.1063/1.470966

S. Barrau, Elaboration et étude du comportement électrique et mécanique de composites nanotubes de carbone ? polyépoxy2004

M. Chevalier, H. Ishida, and Y. Rodriguez, PhD Thesis : Vieillissement hygrothermique d'assemblages structuraux polyépoxy : analyse de la mobilité moléculaire par spectroscopie diélectrique dynamique Curing Kinetics of a New Benzoxazine?Based Phenolic Resin by Differential Scanning Calorimetry, Polymer, vol.49, issue.36, pp.16-3151, 1995.

P. W. Lam, H. P. Plaumann, and T. Tran, An improved kinetic model for the autocatalytic curing of styrene-based thermoset resins, Journal of Applied Polymer Science, vol.41, issue.1112, pp.11-12, 1990.
DOI : 10.1002/app.1990.070411137

S. Sourour and M. R. Kamal, Differential scanning calorimetry of epoxy cure: isothermal cure kinetics, Thermochimica Acta, vol.14, issue.1-2, pp.1-2, 1976.
DOI : 10.1016/0040-6031(76)80056-1

F. Awaja, M. Gilbert, G. Kelly, B. Fox, and P. J. Pigram, Adhesion of polymers, Progress in Polymer Science, vol.34, issue.9, pp.948-968, 2009.
DOI : 10.1016/j.progpolymsci.2009.04.007

C. Bretton and G. Villoutreix, Familles d'adhésifs et caractérisation d'un collage structural, 2008.

N. F. Mott, E. E. Davis, and B. I. Shklovskii, Electronic processes in non crystalline materials Coulomb Gap and Low?Temperature conductivity of Disordered Systems Coulomb gap in disordered systems, Journal of Physics C?Solid State Physics Journal of Physics C?Solid State Physics, vol.8, issue.9 11, pp.2021-2030, 1975.

P. Sheng and B. Abeles, Voltage-Induced Tunneling Conduction in Granular Metals at Low Temperatures, Physical Review Letters, vol.28, issue.1, pp.34-37, 1971.
DOI : 10.1103/PhysRevLett.28.34

P. Sheng, E. K. Sichel, and J. I. Gittleman, Fluctuation-Induced Tunneling Conduction in Carbon-Polyvinylchloride Composites, Physical Review Letters, vol.40, issue.18, pp.18-1197, 1978.
DOI : 10.1103/PhysRevLett.40.1197

P. Sheng, Fluctuation-induced tunneling conduction in disordered materials, Physical Review B, vol.21, issue.6, pp.2180-2195, 1980.
DOI : 10.1103/PhysRevB.21.2180

. Kirckpatrick, Introduction to Percolation Theory, Nanocomposite Conducteur Polymère/Nanofils Métalliques : Elaboration et Analyse des Propriétés Physiques2010. 64. Balberg and Binenbaum, Percolation Threshold in the Three?Dimensional Sticks Systems Physical Review Letters, p.574, 1973.

I. Balberg, C. H. Anderson, S. Alexander, N. M. Wagner, R. D. Morris et al., Excluded volume and its relation to the onset of percolation, Is: 10. 67. Bauhofer, W. and Kovacs, J., A review and analysis of electrical percolation in carbon nanotube polymer composites Composites Science and Technology, 1984.
DOI : 10.1103/PhysRevB.30.3933

A. Lonjon, L. Laffont, P. Demont, E. Dantras, and C. Lacabanne, New Highly Conductive Nickel Nanowire-Filled P(VDF-TrFE) Copolymer Nanocomposites: Elaboration and Structural Study, Is: 28, p. 12002?12006. 69. Felba, J., Thermally Conductive Nanocomposites, in Nano?Bio Electronic, Photonic and MEMS Packaging, 2009.
DOI : 10.1021/jp901563w

D. Mann, A. Javey, J. Kong, Q. Wang, and H. J. Dai, Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts, Nano Letters, vol.3, issue.11, pp.1541-1544, 2003.
DOI : 10.1021/nl034700o

A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann et al., High-Field Quasiballistic Transport in Short Carbon Nanotubes, Physical Review Letters, vol.92, issue.10, p.10, 2004.
DOI : 10.1103/PhysRevLett.92.106804

H. Y. Chiu, V. V. Deshpande, H. W. Postma, C. N. Lau, C. Miko et al., Ballistic Phonon Thermal Transport in Multiwalled Carbon Nanotubes, Physical Review Letters, vol.95, issue.22, p.22, 2005.
DOI : 10.1103/PhysRevLett.95.226101

N. Mingo and D. A. Broido, Carbon Nanotube Ballistic Thermal Conductance and Its Limits, Physical Review Letters, vol.95, issue.9, p.9, 2005.
DOI : 10.1103/PhysRevLett.95.096105

E. T. Swartz and R. O. Pohl, Thermal boundary resistance, Reviews of Modern Physics, vol.61, issue.3, pp.605-668, 1989.
DOI : 10.1103/RevModPhys.61.605

Z. Xu and M. J. Buehler, Nanoengineering Heat Transfer Performance at Carbon Nanotube Interfaces, ACS Nano, vol.3, issue.9, 2009.
DOI : 10.1021/nn9006237

F. H. Gojny, M. H. Wichmann, B. Fiedler, I. A. Kinloch, W. Bauhofer et al., Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polymer, vol.47, issue.6, pp.2036-2045, 2006.
DOI : 10.1016/j.polymer.2006.01.029

Q. Li, C. Liu, and S. Fan, Thermal Boundary Resistances of Carbon Nanotubes in Contact with Metals and Polymers, Nano Letters, vol.9, issue.11, 2009.
DOI : 10.1021/nl901988t

P. K. Schelling, S. R. Phillpot, and P. Keblinski, Kapitza conductance and phonon scattering at grain boundaries by simulation, Journal of Applied Physics, vol.95, issue.11, pp.6082-6091, 2004.
DOI : 10.1063/1.1702100

M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Jonhson et al., Carbon nanotube composites for thermal management, Applied Physics Letters, vol.80, issue.15, pp.15-2767, 2002.
DOI : 10.1063/1.1469696

S. Wang, R. Liang, B. Wang, and C. Zhang, Dispersion and thermal conductivity of carbon nanotube composites, Carbon, vol.47, issue.1, pp.53-57, 2009.
DOI : 10.1016/j.carbon.2008.08.024

Y. Yang, M. C. Gupta, J. N. Zalameda, and W. P. Winfree, Dispersion behaviour, thermal and electrical conductivities of carbon nanotube-polystyrene nanocomposites, Micro & Nano Letters, vol.3, issue.2, pp.35-40, 2008.
DOI : 10.1049/mnl:20070073

S. Shenogin, L. P. Xue, R. Ozisik, P. Keblinski, and D. G. Cahill, Role of thermal boundary resistance on the heat flow in carbon-nanotube composites, Journal of Applied Physics, vol.95, issue.12, 2004.
DOI : 10.1063/1.1736328

Y. Hu, J. Shen, N. Li, H. Ma, M. Shi et al., Comparison of the thermal properties between composites reinforced by raw and amino-functionalized carbon materials, Composites Science and Technology, vol.70, issue.15, pp.15-2176, 2010.
DOI : 10.1016/j.compscitech.2010.08.020

J. N. Coleman, U. Khan, and Y. K. Gun-'ko, Mechanical Reinforcement of Polymers Using Carbon Nanotubes, Advanced Materials, vol.36, issue.6, pp.689-706, 2006.
DOI : 10.1002/adma.200501851

F. M. Du, J. E. Fischer, and K. I. Winey, Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites, Physical Review B, vol.72, issue.12, p.12, 2005.
DOI : 10.1103/PhysRevB.72.121404

J. Zhu, H. Q. Peng, F. Rodriguez?macias, J. L. Margrave, V. N. Khabashesku et al., Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes Fundamental aspects of nano?reinforced composites, Advanced Functional Materials Composites Science and Technology, vol.14, issue.66, pp.16-3115, 2004.

T. X. Liu, I. Y. Phang, L. Shen, S. Y. Chow, and W. D. Zhang, Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites, Macromolecules, vol.37, issue.19, pp.19-7214, 2004.
DOI : 10.1021/ma049132t

G. Milad, Surface finishes : metallic coatings over nickel over copper. in Surface Mount International, 1996.

A. K. Jonscher, The 'universal' dielectric response, Nature, vol.267, pp.5613-673, 1977.

B. Hay, J. R. Filtz, J. C. Batsale, D. Bougeard, G. Buntinx et al., Mesure de la diffusivité thermique par la méthode flash Raman spectroscopy of carbon nanotubes, Is. 94. Barbillat, pp.47-99, 2005.

H. J. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert et al., Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chemical Physics Letters, vol.260, issue.3-4, pp.3-4, 1996.
DOI : 10.1016/0009-2614(96)00862-7

A. Peigney, C. Laurent, F. Dobigeon, and A. Rousset, Carbon nanotubes grown in situ by a novel catalytic method, Journal of Materials Research, vol.12, issue.03, pp.613-615, 1997.
DOI : 10.1557/JMR.1997.0092

URL : https://hal.archives-ouvertes.fr/hal-00972028

C. Laurent, E. Flahaut, A. Peigney, A. E. Rousset, R. Bacsa et al., Metal nanoparticles for the catalytic synthesis of carbon nanotubes Gram?scale CCVD synthesis of double? walled carbon nanotubes, New Journal of Chemistry Chemical Communications, vol.22, pp.12-1442, 1998.

E. Flahaut, C. Laurent, and A. Peigney, Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation, Carbon, vol.43, issue.2, pp.375-383, 2005.
DOI : 10.1016/j.carbon.2004.09.021

URL : https://hal.archives-ouvertes.fr/hal-00474904

E. Flahaut, A. Peigney, C. Laurent, and A. Rousset, Synthesis of single-walled carbon nanotube???Co???MgO composite powders and extraction of the nanotubes, Journal of Materials Chemistry, vol.10, issue.2, pp.249-252, 2000.
DOI : 10.1039/a908593i

URL : https://hal.archives-ouvertes.fr/hal-00942779

E. Flahaut, A. Peigney, and C. Laurent, Double-Walled Carbon Nanotubes in Composite Powders, Journal of Nanoscience and Nanotechnology, vol.3, issue.1, pp.151-158, 2003.
DOI : 10.1166/jnn.2003.177

D. Lu, C. P. Wong, and Q. K. Tong, A Fundamental Study on Silver Flakes for Conductive Adhesives, 1998 International Symposium on Advanced Packaging Materials, 1998.

D. Q. Lu, Q. K. Tong, and C. P. Wong, A study of lubricants on silver flakes for microelectronics conductive adhesives, Ieee Transactions on Components and Packaging Technologies, 1999.

D. Lu and C. P. Wong, Characterization of silver flake lubricants, Journal of Thermal Analysis and Calorimetry, vol.59, issue.3, pp.729-740, 2000.
DOI : 10.1023/A:1010193402130

D. Lu and C. P. Wong, Thermal decomposition of silver flake lubricants, Journal of Thermal Analysis and Calorimetry, vol.61, issue.1, pp.3-12, 2000.
DOI : 10.1023/A:1010112318648

D. L. Markley, Q. K. Tong, D. J. Magliocca, and T. D. Hahn, Characterization of silver flakes utilized for isotropic conductive adhesives, Proceedings International Symposium on Advanced Packaging Materials. Processes, Properties and Interfaces (IEEE Cat. No.99TH8405), 1999.
DOI : 10.1109/ISAPM.1999.757280

F. T. Tan, X. L. Qiao, and J. G. Chen, Removal of chemisorbed lubricant on the surface of silver flakes by chemicals, Applied Surface Science, vol.253, issue.2, pp.703-707, 2006.
DOI : 10.1016/j.apsusc.2005.12.163

Y. H. Liao, O. Marietta?tondin, Z. Liang, C. Zang, and B. Wang, Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites, Materials Science and Engineering A, vol.385, issue.1-2, pp.1-2, 2004.
DOI : 10.1016/S0921-5093(04)00857-3

H. Chen, O. Jacobs, W. Wu, G. , R. Schädel et al., Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites, Polymer Testing, vol.26, issue.3, pp.351-360, 2007.
DOI : 10.1016/j.polymertesting.2006.11.004

S. Barrau, P. Demont, E. Perez, A. Peigney, C. Laurent et al., Effect of Palmitic Acid on the Electrical Conductivity of Carbon Nanotubes???Epoxy Resin Composites, Macromolecules, vol.36, issue.26, pp.26-9678, 2003.
DOI : 10.1021/ma030399m

URL : https://hal.archives-ouvertes.fr/hal-00920397

A. Yousefi, P. G. Lafleur, and R. Gauvin, Kinetic studies of thermoset cure reactions: A review, Polymer Composites, vol.27, issue.2, pp.157-168, 1997.
DOI : 10.1002/pc.10270

J. Bae, J. Jang, and S. H. Yoon, Cure Behavior of the Liquid-Crystalline Epoxy/Carbon Nanotube System and the Effect of Surface Treatment of Carbon Fillers on Cure Reaction, Macromolecular Chemistry and Physics, vol.203, issue.15, pp.15-2196, 2002.
DOI : 10.1002/1521-3935(200211)203:15<2196::AID-MACP2196>3.0.CO;2-U

W. J. Choi, R. L. Poweii, and D. S. Kim, Curing behavior and properties of epoxy nanocomposites with amine functionalized multiwall carbon nanotubes, Polymer Composites, vol.62, issue.15, pp.415-421, 2009.
DOI : 10.1002/pc.20571

H. F. Xie, B. H. Liu, Z. R. Yuan, J. Y. Shen, and R. S. Cheng, Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry, Journal of Polymer Science Part B: Polymer Physics, vol.29, issue.20, pp.20-3701, 2004.
DOI : 10.1002/polb.20220

J. Sumfleth, X. C. Adroher, and K. Schulte, Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black, Journal of Materials Science, vol.91, issue.12, pp.12-3241, 2009.
DOI : 10.1007/s10853-009-3434-7

A. P. Yu, P. Ramesh, X. B. Sun, E. Bekyarova, M. E. Itkis et al., Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet - Carbon Nanotube Filler for Epoxy Composites, Advanced Materials, vol.76, issue.24, pp.24-4740, 2008.
DOI : 10.1002/adma.200800401

D. Y. Cai, M. Song, and C. X. Xu, Highly Conductive Carbon-Nanotube/Graphite-Oxide Hybrid Films, Advanced Materials, vol.10, issue.9, p.1706, 2008.
DOI : 10.1002/adma.200702602

S. Kumar, L. L. Sun, S. Caceres, B. Li, W. Wood et al., Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites, Nanotechnology, vol.21, issue.10, p.10, 2010.
DOI : 10.1088/0957-4484/21/10/105702

T. Wei, L. P. Song, C. Zheng, K. Wang, J. Yan et al., The synergy of a three filler combination in the conductivity of epoxy composites, Materials Letters, vol.64, issue.21, pp.21-2376, 2010.
DOI : 10.1016/j.matlet.2010.07.061

E. Fortunati, F. Angelo, S. Martino, A. Orlacchio, J. M. Kenny et al., Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites, Carbon, vol.49, issue.7, pp.7-2370, 2011.
DOI : 10.1016/j.carbon.2011.02.004

W. Jia, R. Tchoudakov, R. Joseph, and M. Narkis, The role of a third component on the conductivity behavior of ternary epoxy/Ag conductive composites, Polymer Composites, vol.8, issue.4, pp.510-519, 2002.
DOI : 10.1002/pc.10452

G. W. Lee, M. Park, J. Kim, J. I. Lee, and H. G. Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Composites Part A: Applied Science and Manufacturing, vol.37, issue.5, pp.727-734, 2006.
DOI : 10.1016/j.compositesa.2005.07.006

F. H. Gojny and K. Schulte, Functionalisation effect on the thermo?mechanical behaviour of multi?wall carbon nanotube/epoxy?compo sites, Composites Science and Technology, 2004.

A. Hernandez?perez, F. Aviles, A. May?pat, A. Valadez?gonzalez, P. J. Herrera?franco et al., Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes, Composites Science and Technology, vol.68, issue.6, pp.1422-1431, 2008.
DOI : 10.1016/j.compscitech.2007.11.001

S. N. Goyanes, P. G. Konig, and J. D. Marconi, Dynamic mechanical analysis of particulate-filled epoxy resin, Journal of Applied Polymer Science, vol.13, issue.4, pp.883-892, 2003.
DOI : 10.1002/app.11678

Y. L. Guan, X. Chen, F. Q. Li, and H. Gao, Study on the curing process and shearing tests of die attachment by Ag-epoxy electrically conductive adhesive, International Journal of Adhesion and Adhesives, vol.30, issue.2, pp.80-88, 2010.
DOI : 10.1016/j.ijadhadh.2009.09.003

R. S. Rorgren and J. Liu, Reliability assessment of isotropically conductive adhesive joints in surface mount applications, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, vol.18, issue.2, pp.305-312, 1995.
DOI : 10.1109/96.386266

P. Matkowski, K. U. Falat, J. Felba, Z. Zaluk, R. Zwierta et al., Application of FPGA units in combined temperature cycle and vibration reliability tests of lead-free interconnections, 2008 2nd Electronics Systemintegration Technology Conference
DOI : 10.1109/ESTC.2008.4684556

P. Matkowski, R. Zawierta, and J. Felba, Vibration response of printed circuit board in wide range of temperature. Characterization of PCB materials, 2009 32nd International Spring Seminar on Electronics Technology, 2009.
DOI : 10.1109/ISSE.2009.5207026

P. Matkowski and J. Felba, Influence of solder joint constitution and aging process duration on reliability of lead-free solder joints under vibrations combined with thermal cycling, 3rd Electronics System Integration Technology Conference ESTC, p.3, 2010.
DOI : 10.1109/ESTC.2010.5642836

S. G. Prolongo, G. Del-rosario, and A. Urena, Comparative study on the adhesive properties of different epoxy resins, International Journal of Adhesion and Adhesives, vol.26, issue.3, pp.125-132, 2006.
DOI : 10.1016/j.ijadhadh.2005.02.004

L. Guadagno, L. Vertuccio, A. Sorrentino, M. Raimondo, C. Naddeo et al., Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes, Carbon, vol.47, issue.10, pp.10-2419, 2009.
DOI : 10.1016/j.carbon.2009.04.035

O. Rusanen and J. Lenkkeri, Reliability issues of replacing solder with conductive adhesives in power modules, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, vol.18, issue.2, pp.320-325, 1995.
DOI : 10.1109/96.386268

J. C. Jagt, Reliability of electrically conductive adhesive joints for surface mount applications: a summary of the state of the art, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, vol.21, issue.2, pp.215-225, 1998.
DOI : 10.1109/95.705467

H. J. Jiang, K. S. Moon, Y. Li, and C. P. Wong, Surface Functionalized Silver Nanoparticles for Ultrahigh Conductive Polymer Composites, Chemistry of Materials, vol.18, issue.13, pp.13-2969, 2006.
DOI : 10.1021/cm0527773

R. W. Zhang, W. Lin, K. S. Moon, and C. P. Wong, Fast Preparation of Printable Highly Conductive Polymer Nanocomposites by Thermal Decomposition of Silver Carboxylate and Sintering of Silver Nanoparticles, ACS Applied Materials & Interfaces, vol.2, issue.9, pp.2637-2645, 2010.
DOI : 10.1021/am100456m

R. W. Zhang, K. S. Moon, W. Lin, and C. P. Wong, Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles, Journal of Materials Chemistry, vol.29, issue.10, pp.10-2018, 2010.
DOI : 10.1039/b921072e

K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt et al., Thermal behavior of silver nanoparticles for low-temperature interconnect applications, Journal of Electronic Materials, vol.63, issue.2, pp.168-175, 2005.
DOI : 10.1007/s11664-005-0229-8

Y. Li, K. S. Moon, and C. P. Wong, Enhancement of electrical properties of anisotropically conductive adhesive joints via low temperature sintering, Journal of Applied Polymer Science, vol.63, issue.4, pp.1665-1673, 2006.
DOI : 10.1002/app.22509

Y. Ukita, K. Tateyama, M. Segawa, Y. Tojo, Y. Gotoh et al., Lead Free Die Mount Adhesive Using Silver Nanoparticles Applied To Power Discrete Package, Journal of Microelectronics and Electronic Packaging, vol.2, issue.3, pp.217-222, 2005.
DOI : 10.4071/1551-4897-2.3.217

T. Hartman, S. Anagnostopoulos, and P. Crudele, Adhesives with thermal conductivity enhanced by mixed silver fillers, 2007.