]. E. Berg-pataki, L. , E. Zapp, A. Eggington, C. Kiang et al., On the effect of impurities on the metastable zone width of phosphoric acid Effect of cationic impurities on solubility and crystal growth processes of ammonium oxalate monohydrate: Role of formation of metal-oxalate complexes Droplet Model and Nucleation of Supersaturated Vapors Near the Critical Point Modern crystallography III. Crystal growth with contributions by, Margolis, Chemical Principles in Calculations of Ionic Equilibria. [5] K. Sangwal et E. Mielniczek-Brzóska 244 figs. Price: Cloth, DM 154.?. Chemical Engineering Research and Design, pp.3316-3325, 1963.

A. S. Myerson and R. Ginde, Crystals, crystal growth, and nucleation Handbook of Industrial Crystallization, pp.33-65, 2002.

W. Dreyer and F. Duderstadt, On the Becker/D??ring Theory of Nucleation of Liquid Droplets in Solids, Journal of Statistical Physics, vol.119, issue.9, pp.55-87, 2006.
DOI : 10.1007/s10955-006-9024-z

Y. Zeldovich, Theory of formation of a new phase, Acta Physicochim, 1943.

T. H. Zhang, X. Y. Liu-liu, K. Tsukamoto, and E. M. Sorai, How Does a Transient Amorphous Precursor Template Crystallization, Journal of the American Chemical Society, vol.129, issue.44, pp.13520-13526, 2000.
DOI : 10.1021/ja073598k

L. Frostman and M. Ward, Nucleation of Molecular Crystals at Guanidinium Alkylsulfonate Langmuir Monolayers, Langmuir, p.330, 1997.

S. J. Bonafede and M. D. Ward, Selective Nucleation and Growth of an Organic Polymorph by Ledge-Directed Epitaxy on a Molecular Crystal Substrate, Journal of the American Chemical Society, vol.117, issue.30, pp.7853-7861, 1995.
DOI : 10.1021/ja00135a001

K. Allen, R. J. Davey, E. Ferrari, C. Towler, G. J. Tiddy et al., The Crystallization of Glycine Polymorphs from Emulsions, Microemulsions, and Lamellar Phases, Crystal Growth & Design, vol.2, issue.6, pp.523-527, 2002.
DOI : 10.1021/cg025568t

J. Denk and G. D. Botsaris, Fundamental studies in secondary nucleation from solution, Journal of Crystal Growth, vol.13, issue.14, pp.13-14, 1972.
DOI : 10.1016/0022-0248(72)90287-4

E. G. Denk and G. D. Botsaris, Mechanism of contact nucleation, Journal of Crystal Growth, vol.15, issue.1, pp.57-60, 1972.
DOI : 10.1016/0022-0248(72)90320-X

G. D. Botsaris, Secondary nucleation-a review, in Industrial crystallization, p.3, 1976.

A. Mersmann, Crystallization Technology Handbook, 2001.

N. Kubota, A unified interpretation of metastable zone widths and induction times measured for seeded solutions, Journal of Crystal Growth, vol.312, issue.4, pp.548-554, 2010.
DOI : 10.1016/j.jcrysgro.2009.11.030

R. Qian and G. D. Botsaris, A new mechanism for nuclei formation in suspension crystallizers: the role of interparticle forces, Chemical Engineering Science, vol.52, issue.20, pp.3429-3440, 1997.
DOI : 10.1016/S0009-2509(97)89691-1

C. Y. Tai, J. Wu, and R. W. Rousseau, Interfacial supersaturation, secondary nucleation, and crystal growth, Journal of Crystal Growth, vol.116, issue.3-4, pp.294-306, 1992.
DOI : 10.1016/0022-0248(92)90636-W

D. Kashchiev, Induction time in crystallization of gas hydrates, Journal of Crystal Growth, vol.250, issue.3-4, pp.499-515, 2003.
DOI : 10.1016/S0022-0248(02)02461-2

P. A. Shamlou, A. Jones, and E. K. Djamarani, Hydrodynamics of secondary nucleation in suspension crystallization, Chemical Engineering Science, vol.45, issue.5, pp.1405-1416, 1990.
DOI : 10.1016/0009-2509(90)87134-E

K. Taguchi, J. Garside, and N. S. Tavare, Nucleation and growth kinetics of barium sulphate in batch precipitation, Journal of Crystal Growth, vol.163, issue.3, pp.318-328, 1996.
DOI : 10.1016/0022-0248(95)00974-4

M. Liiri, T. Koiranen, and E. J. Aittamaa, Secondary nucleation due to crystal-impeller and crystal-vessel 66

C. Gahn and A. Mersmann, Theoretical Prediction and Experimental Determination of Attrition Rates, Chemical Engineering Research and Design, vol.75, issue.2, pp.125-131, 1997.
DOI : 10.1205/026387697523570

A. Mersmann, Design of Crystallizers, Chemical Engineering and Processing: Process Intensification, vol.23, issue.4, pp.213-228, 1988.
DOI : 10.1016/0255-2701(88)85014-1

A. Mersmann and K. Bartosch, How to predict the metastable zone width, Journal of Crystal Growth, vol.183, issue.1-2, pp.240-250, 1998.
DOI : 10.1016/S0022-0248(97)00417-X

A. J. Mahajan and D. J. Kirwan, Nucleation and growth kinetics of biochemicals measured at high supersaturations, Journal of Crystal Growth, vol.144, issue.3-4, pp.281-290, 1994.
DOI : 10.1016/0022-0248(94)90468-5

F. Févotte and G. Févotte, A method of characteristics for solving population balance equations (PBE) describing the adsorption of impurities during crystallization processes, Chemical Engineering Science, vol.65, issue.10, pp.3191-3198, 2010.
DOI : 10.1016/j.ces.2010.02.009

C. Lindenberg and M. Mazzotti, Effect of temperature on the nucleation kinetics of ?? l-glutamic acid, Journal of Crystal Growth, vol.311, issue.4, pp.1178-1184, 2009.
DOI : 10.1016/j.jcrysgro.2008.12.010

J. Schöll, L. Vicum, M. Müller, and E. M. Mazzotti, Precipitation of L-Glutamic Acid: Determination of Nucleation Kinetics, Chemical Engineering & Technology, vol.209, issue.2, pp.257-264, 2006.
DOI : 10.1002/ceat.200500369

K. Sangwal, Recent developments in understanding of the metastable zone width of different solute???solvent systems, Journal of Crystal Growth, vol.318, issue.1
DOI : 10.1016/j.jcrysgro.2010.11.078

J. Nývlt, Nucleation and growth rate in mass crystallization, Progress in Crystal Growth and Characterization, pp.335-370, 1984.
DOI : 10.1016/0146-3535(84)90085-6

N. Kubota, A new interpretation of metastable zone widths measured for unseeded solutions, Journal of Crystal Growth, vol.310, issue.3, pp.629-634, 2008.
DOI : 10.1016/j.jcrysgro.2007.11.123

J. Nývlt, R. Rychlý, J. Gottfried, and E. J. Wurzelová, Metastable zone-width of some aqueous solutions, Journal of Crystal Growth, vol.6, issue.2, pp.151-162
DOI : 10.1016/0022-0248(70)90034-5

R. Boistelle, M. Mathieu, and E. B. Simon, Isothermes d'adsorption en solution aqueuse des ions cadmium sur les formes {100} et {111} du chlorure de sodium, Surface Science, vol.42, issue.2, pp.373-388, 1974.
DOI : 10.1016/0039-6028(74)90026-0

G. Bliznakov and E. Kirkova, A Study of the Effect of Sulfate Ions on the Growth of Sodium Chlorate Crystals, Kristall und Technik, vol.5, issue.3, pp.331-336, 1969.
DOI : 10.1002/crat.19690040303

J. Nvlt and J. Ulrich, Admixtures in Crystallization, 1995.
DOI : 10.1002/9783527615315

A. Derylo-marczewska, M. Jaroniec, J. Os´cik, and E. A. Marczewski, Correlations among parameters of Dubinin-Radushkevich and Langmuir-Freundlich isotherms for adsorption from binary liquid mixtures on solids, Journal of Colloid and Interface Science, vol.117, issue.2, pp.339-346, 1987.
DOI : 10.1016/0021-9797(87)90391-2

R. Dhanasekaran and P. Ramasamy, Variation of interfacial tension with impurity concentration in one-layer adsorption mechanism, Journal of Colloid and Interface Science, vol.81, issue.2, pp.543-545, 1981.
DOI : 10.1016/0021-9797(81)90437-9

E. Mielniczek-brzóska, K. Gielzak-kocwin, and E. K. Sangwal, Effect of Cu(II) ions on the growth of ammonium oxalate monohydrate crystals from aqueous solutions: growth kinetics, segregation coefficient and characterisation of incorporation sites, Journal of Crystal Growth, vol.212, issue.3-4, pp.532-542, 2000.
DOI : 10.1016/S0022-0248(00)00326-2

W. Omar and J. Ulrich, Influence of crystallization conditions on the mechanism and rate of crystal growth of potassium sulphate, Crystal Research and Technology, vol.38, issue.1, pp.34-41, 2003.
DOI : 10.1002/crat.200310004

K. Sangwal, Effect of impurities on the metastable zone width of solute???solvent systems, Journal of Crystal Growth, vol.311, issue.16, pp.4050-4061, 2009.
DOI : 10.1016/j.jcrysgro.2009.06.045

A. S. Myerson and P. Y. Lo, Cluster formation and diffusion in supersaturated binary and ternary amino acid solutions, Journal of Crystal Growth, vol.110, issue.1-2, pp.26-33, 1991.
DOI : 10.1016/0022-0248(91)90862-Y

A. S. Myerson and P. Y. Lo, Diffusion and cluster formation in supersaturated solutions, Journal of Crystal Growth, vol.99, issue.1-4, pp.1048-1052, 1990.
DOI : 10.1016/S0022-0248(08)80079-6

J. Mullin, Nucleation Crystallization (Fourth Edition), pp.181-215, 2001.

N. Cabrera and R. Coleman, The Art and Science of Growing Crystals, 1963.

W. K. Burton, N. Cabrera, and F. C. Frank, The Growth of Crystals and the Equilibrium Structure of their Surfaces, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.243, issue.866, pp.299-358, 1951.
DOI : 10.1098/rsta.1951.0006

O. So and $. Hnel, Precipitation : basic principles and industrial applications, 1992.

M. Ohara and R. C. Reid, Modeling Crystal Growth Rates from Solution, 1973.

M. Hayashi, Improved Theory of the Growth of Perfect Crystals, Journal of the Physical Society of Japan, vol.35, issue.2, pp.614-614, 1973.
DOI : 10.1143/JPSJ.35.614

W. Obretenov and V. Bostanov, Rate of crystal growth by 2D nucleation in the case of electrocrystallization of silver. II, Journal of Crystal Growth, vol.121, issue.3, pp.495-499, 1992.
DOI : 10.1016/0022-0248(92)90160-K

A. A. Chernov, Notes on interface growth kinetics 50 years after Burton, Cabrera and Frank, Journal of Crystal Growth, vol.264, issue.4, pp.499-518, 2004.
DOI : 10.1016/j.jcrysgro.2003.12.076

J. Garside, V. R. Phillips, and M. B. Shah, On Size-Dependent Crystal Growth, Industrial & Engineering Chemistry Fundamentals, vol.15, issue.3, pp.230-233, 1976.
DOI : 10.1021/i160059a018

N. Kubota and J. W. Mullin, A kinetic model for crystal growth from aqueous solution in the presence of impurity, Journal of Crystal Growth, vol.152, issue.3, pp.203-208, 1995.
DOI : 10.1016/0022-0248(95)00128-X

E. Mielniczek-brzóska, K. Gielzak-kocwin, and E. K. Sangwal, Effect of Cu(II) ions on the growth of ammonium oxalate monohydrate crystals from aqueous solutions: growth kinetics, segregation coefficient and characterisation of incorporation sites, Journal of Crystal Growth, vol.212, issue.3-4, pp.532-542, 2000.
DOI : 10.1016/S0022-0248(00)00326-2

N. Kubota, M. Yokota, and J. W. Mullin, Supersaturation dependence of crystal growth in solutions in the presence of impurity, Journal of Crystal Growth, vol.182, issue.1-2, pp.86-94, 1997.
DOI : 10.1016/S0022-0248(97)00328-X

L. Bre?evi?, Crystal growth kinetics and mechanism Encyclopedia of surface and colloid science, pp.1289-1299, 2002.

M. C. Heijna, W. J. Enckevort, and E. E. Vlieg, Growth Inhibition of Protein Crystals: A Study of Lysozyme Polymorphs, Crystal Growth & Design, vol.8, issue.1, pp.270-274, 2008.
DOI : 10.1021/cg0703036

H. Hondoh and T. Nakada, Impurity effect on defect formation of protein crystals, Journal of Crystal Growth, vol.275, issue.1-2, pp.1423-1429, 2005.
DOI : 10.1016/j.jcrysgro.2004.11.236

I. Dobrianov, K. D. Finkelstein, S. G. Lemay, and R. E. Thorne, X-ray Topographic Studies of Protein Crystal Perfection and Growth, Acta Crystallographica Section D Biological Crystallography, vol.54, issue.5, pp.922-937, 1998.
DOI : 10.1107/S090744499800376X

R. J. Davey, The effect of impurity adsorption on the kinetics of crystal growth from solution, Journal of Crystal Growth, vol.34, issue.1, pp.109-119, 1976.
DOI : 10.1016/0022-0248(76)90268-2

W. H. Leung and G. H. Nancollas, A kinetic study of the seeded growth of barium sulfate in the presence of additives, Journal of Inorganic and Nuclear Chemistry, vol.40, issue.11, pp.1871-1875, 1978.
DOI : 10.1016/0022-1902(78)80245-0

P. A. Curreri, G. Onoda, and E. B. Finlayson, A comparative appraisal of adsorption of citrate on whewellite seed crystals, Journal of Crystal Growth, vol.53, issue.1, pp.209-214, 1981.
DOI : 10.1016/0022-0248(81)90067-1

R. J. Davey, Industrial Crystallization'78, p.169, 1979.

A. A. Chernov, THE SPIRAL GROWTH OF CRYSTALS, Soviet Physics Uspekhi, vol.4, issue.1, pp.116-148, 1961.
DOI : 10.1070/PU1961v004n01ABEH003328

P. A. Paufler, E. I. Chernov, K. S. Givargizov, V. A. Bagdasarov, L. N. Kuznetsov et al., Modern crystallography III. Crystal growth with contributions by, 244 figs. Price: Cloth, DM 154.?, pp.274-274, 1984.

N. Cabrera and D. Vermilyea, Growth of crystals from solution. In: Growth and Perfection of Crystals, Proceedings, pp.393-410, 1958.

M. H. Hottenhuis and C. B. Lucasius, The role of impurities on the process of growing potassium hydrogen phthalate crystals from solution; A quantitative approach, Journal of Crystal Growth, vol.91, issue.4, pp.623-631, 1988.
DOI : 10.1016/0022-0248(88)90131-5

K. Sangwal, Effects of impurities on crystal growth processes, Progress in Crystal Growth and Characterization of Materials, pp.3-43, 1996.

K. Sangwal, J. Torrent-burgues, P. Gorostiza, and E. F. Sanz, AFM Study of the Behaviour of Growth Steps on the (100) Faces of KDP Crystals and the Tapering Phenomenon, Crystal Research and Technology, vol.47, issue.5-6, pp.667-675, 1999.
DOI : 10.1002/(SICI)1521-4079(199906)34:5/6<667::AID-CRAT667>3.0.CO;2-L

T. A. Land, T. L. Martin, S. Potapenko, G. T. Palmore, D. Yoreo et al., Recovery of surfaces from impurity poisoning during crystal growth, Nature, p.442

C. M. Pina, C. V. Putnis, U. Becker, S. Biswas, E. C. Carroll et al., An atomic force microscopy and molecular simulations study of the inhibition of barite growth by phosphonates, Surface Science, vol.553, issue.1-3, pp.61-74, 2004.
DOI : 10.1016/j.susc.2004.01.022

M. R. Anklam and A. Firoozabadi, An interfacial energy mechanism for the complete inhibition of crystal growth by inhibitor adsorption, The Journal of Chemical Physics, vol.123, issue.14, p.144708, 2005.
DOI : 10.1063/1.2060689

T. Vetter, M. Mazzotti, and E. J. Brozio, Slowing the Growth Rate of Ibuprofen Crystals Using the Polymeric Additive Pluronic F127, Crystal Growth & Design, vol.11, issue.9, 2011.
DOI : 10.1021/cg200352u

N. Kubota, H. Otosaka, N. Doki, M. Yokota, and E. A. Sato, Effect of lead(II) impurity on the growth of sodium chloride crystals, Journal of Crystal Growth, vol.220, issue.1-2, pp.135-139, 2000.
DOI : 10.1016/S0022-0248(00)00772-7

P. M. Martins, F. A. Rocha, and E. P. Rein, The Influence of Impurities on the Crystal Growth Kinetics According to a Competitive Adsorption Model, Crystal Growth & Design, vol.6, issue.12, pp.2814-2821, 2006.
DOI : 10.1021/cg060448x

K. Sangwal and E. Mielniczek-brzóska, Effect of Cr(III) ions on the growth kinetics of ammonium oxalate monohydrate crystals from aqueous solutions, Journal of Crystal Growth, vol.242, issue.3-4, pp.421-434, 2002.
DOI : 10.1016/S0022-0248(02)01387-8

S. Jibbouri and J. Ulrich, he influence of impurities on crystallization kinetics of sodium chloride, Cryst. Res. Technol, pp.1365-1375, 2001.

B. Smythe, Sucrose crystal growth. II. Rate of crystal growth in the presence of impurities, Australian Journal of Chemistry, vol.20, issue.6, pp.1097-1114, 1967.
DOI : 10.1071/CH9671097

N. Kanzaki, K. Onuma, G. Treboux, S. Tsutsumi, and A. Ito, Inhibitory Effect of Magnesium and Zinc on Crystallization Kinetics of Hydroxyapatite (0001) Face, The Journal of Physical Chemistry B, vol.104, issue.17, pp.4189-4194, 2000.
DOI : 10.1021/jp9939726

L. A. Guzman, K. Maeda, S. Hirota, M. Yokota, and E. N. Kubota, Unsteady-state impurity effect of chromium (III) on the growth rate of potassium sulfate crystal in aqueous solution, Journal of Crystal Growth, vol.181, issue.3, pp.272-280, 1997.
DOI : 10.1016/S0022-0248(97)00161-9

B. M. Smythe, Sucrose crystal growth.I. Rate of crystal growth in the presence of impurities, Aust. J. Chem, pp.1097-1114, 1967.

K. Sangwal, Additives and crystallization processes : from fundamentals to applications, Chichester England, 2007.
DOI : 10.1002/9780470517833

K. Sangwal, Kinetic effects of impurities on the growth of single crystals from solutions, Journal of Crystal Growth, vol.203, issue.1-2, pp.197-212, 1999.
DOI : 10.1016/S0022-0248(99)00048-2

P. Van-der-putte, W. Van-enckevort, L. Giling, and E. J. Bloem, Surface morphology of HCl etched silicon wafers, Journal of Crystal Growth, vol.43, issue.6, pp.659-675, 1978.
DOI : 10.1016/0022-0248(78)90145-8

N. Kubota, M. Yokota, and J. W. Mullin, The combined influence of supersaturation and impurity concentration on crystal growth, Journal of Crystal Growth, vol.212, issue.3-4, pp.480-488, 2000.
DOI : 10.1016/S0022-0248(00)00339-0

L. A. Guzman and N. Kubota, Growth rate hysteresis of a potassium dihydrogen phosphate (KDP) crystal in the presence of traces of impurity, Journal of Crystal Growth, vol.275, issue.1-2, pp.237-242, 2005.
DOI : 10.1016/j.jcrysgro.2004.11.033

P. M. Martins, F. Rocha, A. M. Damas, and E. P. Rein, Unsteady-state inhibition of crystal growth caused by solution impurities, CrystEngComm, vol.417, issue.4, p.1103, 2011.
DOI : 10.1039/c0ce00107d

M. Kitamura and T. Ishizu, Kinetic effect of L-phenylalanine on growth process of L-glutamic acid polymorph, Journal of Crystal Growth, vol.192, issue.1-2, pp.225-235, 1998.
DOI : 10.1016/S0022-0248(98)00405-9

P. Martins, A. Ferreira, S. Polanco, F. Rocha, A. Damas et al., Unsteady-state transfer of impurities during crystal growth of sucrose in sugarcane solutions, Journal of Crystal Growth, vol.311, issue.15, pp.3841-3848, 2009.
DOI : 10.1016/j.jcrysgro.2009.05.021

N. Sánchez-pastor, C. M. Pina, L. Fernández-díaz, and E. J. Astilleros, The effect of on the growth of barite {001} and {210} surfaces: An AFM study, Surface Science, vol.600, issue.6, pp.1369-1381, 2006.
DOI : 10.1016/j.susc.2006.01.042

K. Sangwal, Growth kinetics and surface morphology of crystals grown from solutions: Recent observations and their interpretations, Progress in Crystal Growth and Characterization of Materials, pp.163-248, 1998.
DOI : 10.1016/S0960-8974(98)00009-6

B. Simon, A. Grassi, and E. R. Boistelle, Cin??tique de croissance de la face (110) de la paraffine C36H74 en solution, Journal of Crystal Growth, vol.26, issue.1, pp.90-96, 1974.
DOI : 10.1016/0022-0248(74)90205-X

K. Sangwal and E. Mielniczek-brzóska, Effect of Fe(III) ions on the growth kinetics of ammonium oxalate monohydrate crystals from aqueous solutions, Journal of Crystal Growth, vol.233, issue.1-2, pp.343-354, 2001.
DOI : 10.1016/S0022-0248(01)01550-0

M. Ohara, Modeling crystal growth rates from solution, 1973.

N. Radenovic, W. Vanenckevort, D. Kaminski, M. Heijna, and E. E. Vlieg, Structure of the {111} NaCl crystal surface grown from solution in the presence of CdCl2, Surface Science, vol.599, issue.1-3, pp.196-206, 2005.
DOI : 10.1016/j.susc.2005.10.004

S. Sandler, Chemical and engineering thermodynamics, 1977.

R. Narang, J. Sherwood, M. Cliff, and E. A. Jones, Crystallization and impurity incorporation in adipic acid, Alternatives to Distillation., " Manchester: IChemE Symposium, pp.267-77, 1978.

C. H. Lin, N. Gabas, J. P. Canselier, and E. G. Pèpe, Prediction of the growth morphology of aminoacid crystals in solution, Journal of Crystal Growth, vol.191, issue.4, pp.791-802, 1998.
DOI : 10.1016/S0022-0248(98)00130-4

B. A. Hendriksen, D. J. Grant, P. Meenan, and D. A. Green, Crystallisation of paracetamol (acetaminophen) in the presence of structurally related substances, Journal of Crystal Growth, vol.183, issue.4, pp.629-640, 1998.
DOI : 10.1016/S0022-0248(97)00488-0

M. Vaida, L. J. Shimon, J. Van-mil, K. Ernst-cabrera, L. Addadi et al., Absolute asymmetric photochemistry using centrosymmetric single crystals. The host/guest system (E)-cinnamamide/E-cinnamic acid, Journal of the American Chemical Society, vol.111, issue.3, pp.1029-1034, 1989.
DOI : 10.1021/ja00185a036

L. Addadi, Z. Berkovitch-yellin, N. Domb, E. Gati, M. Lahav et al., Resolution of conglomerates by stereoselective habit modifications, Nature, vol.102, issue.5852, pp.21-26, 1982.
DOI : 10.1038/296021a0

B. R. Thomas, A. A. Chernov, P. G. Vekilov, and D. C. Carter, Distribution coefficients of protein impurities in ferritin and lysozyme crystals Self-purification in microgravity, Journal of Crystal Growth, vol.211, issue.1-4, pp.149-156, 2000.
DOI : 10.1016/S0022-0248(99)00813-1

K. Sangwal, Effect of impurities on the metastable zone width of solute???solvent systems, Journal of Crystal Growth, vol.311, issue.16, pp.4050-4061, 2009.
DOI : 10.1016/j.jcrysgro.2009.06.045

F. Rosenberger and H. Riveros, Segregation in alkali halide crystallization from aqueous solutions, The Journal of Chemical Physics, vol.60, issue.2, pp.668-673
DOI : 10.1063/1.1681091

K. Weiser, Theoretical calculation of distribution coefficients of impurities in germanium and silicon, heats of solid solution, Journal of Physics and Chemistry of Solids, vol.7, issue.2-3, pp.118-126, 1958.
DOI : 10.1016/0022-3697(58)90252-X

J. Rimstidt, A. Balog, and E. J. Webb, Distribution of trace elements between carbonate minerals and aqueous solutions, Geochimica et Cosmochimica Acta, vol.62, issue.11, pp.1851-1863, 1998.
DOI : 10.1016/S0016-7037(98)00125-2

J. A. Burton, R. C. Prim, and W. P. Slichter, The Distribution of Solute in Crystals Grown from the Melt. Part I. Theoretical, The Journal of Chemical Physics, vol.21, issue.11, pp.1987-1991
DOI : 10.1063/1.1698728

L. O. Wilson, A new look at the Burton, Prim, and Slichter model of segregation during crystal growth from the melt, Journal of Crystal Growth, vol.44, issue.4, pp.371-376, 1978.
DOI : 10.1016/0022-0248(78)90001-5

F. Rosenberger, Inorganic and protein crystal growth - similarities and differences, Journal of Crystal Growth, vol.76, issue.3, pp.618-636, 1986.
DOI : 10.1016/0022-0248(86)90179-X

K. Sangwal and T. Palczynska, On the supersaturation and impurity concentration dependence of segregation coefficient in crystals grown from solutions, Journal of Crystal Growth, vol.212, issue.3-4, pp.522-531, 2000.
DOI : 10.1016/S0022-0248(00)00325-0

K. Sangwal, E. Mielniczek-brzóska, and E. J. Borc, Study of segregation coefficient of cationic impurities in ammonium oxalate monohydrate crystals during growth from aqueous solutions, Journal of Crystal Growth, vol.244, issue.2, pp.183-193, 2002.
DOI : 10.1016/S0022-0248(02)01612-3

J. D. Wright, Molecular crystals, 1995.

P. Slaminko and A. S. Myerson, The effect of crystal size on occlusion formation during crystallization from solution, AIChE Journal, vol.27, issue.6, pp.1029-1031, 1981.
DOI : 10.1002/aic.690270624

G. G. Zhang and D. J. Grant, Incorporation mechanism of guest molecules in crystals: solid solution or inclusion?, International Journal of Pharmaceutics, vol.181, issue.1, pp.61-70, 1999.
DOI : 10.1016/S0378-5173(98)00419-0

D. Brune, Surface characterization : a user's sourcebook, [Oslo] ;Weinheim, Scandinavian Science Publisher, 1997.
DOI : 10.1002/9783527612451

J. A. Last, A. C. Hillier, D. E. Hooks, J. B. Maxson, and M. D. Ward, Epitaxially Driven Assembly of Crystalline Molecular Films on Ordered Substrates, Chemistry of Materials, vol.10, issue.1, p.422, 1998.
DOI : 10.1021/cm970582s

V. Marinkovic, Scanning tunneling microscopy of surface structures, pp.1039-1052, 1996.

C. M. Yip, M. L. Brader, B. H. Frank, M. R. Defelippis, and M. D. Ward, Structural Studies of a Crystalline Insulin Analog Complex with Protamine by Atomic Force Microscopy, Biophysical Journal, vol.78, issue.1, pp.466-473, 2000.
DOI : 10.1016/S0006-3495(00)76609-4

F. Lewiner, J. P. Klein, and F. Puel, On-line ATR FTIR measurement of supersaturation during solution crystallization processes. Calibration and applications on three solute/solvent systems, Chemical Engineering Science, vol.56, issue.6, pp.2069-2084, 2001.
DOI : 10.1016/S0009-2509(00)00508-X

URL : https://hal.archives-ouvertes.fr/hal-01270722

F. Lewiner, G. Févotte, J. P. Klein, and E. F. Puel, Improving batch cooling seeded crystallization of an organic weed-killer using on-line ATR FTIR measurement of supersaturation, Journal of Crystal Growth, vol.226, issue.2-3, pp.2-3, 2001.
DOI : 10.1016/S0022-0248(01)01395-1

URL : https://hal.archives-ouvertes.fr/hal-01270726

B. Menczel, A. Apelblat, and E. E. Korin, The molar enthalpies of solution and solubilities of ammonium, sodium and potassium oxalates in water, The Journal of Chemical Thermodynamics, vol.36, issue.1, pp.41-44, 2004.
DOI : 10.1016/j.jct.2003.09.012

L. Derdour, G. Févotte, and F. Puel, Real-time evaluation of the concentration of impurities during organic solution crystallization, Powder Technology, vol.129, issue.1-3, pp.1-3, 2003.
DOI : 10.1016/S0032-5910(02)00283-8

URL : https://hal.archives-ouvertes.fr/hal-01270735

D. D. Dunuwila, L. B. Carroll, and K. A. Berglund, An investigation of the applicability of attenuated total reflection infrared spectroscopy for measurement of solubility and supersaturation of aqueous citric acid solutions, Journal of Crystal Growth, vol.137, issue.3-4, pp.3-4, 1994.
DOI : 10.1016/0022-0248(94)90999-7

T. Togkalidou, M. Fujiwara, S. Patel, and R. D. Braatz, Solute concentration prediction using chemometrics and ATR-FTIR spectroscopy, Journal of Crystal Growth, vol.231, issue.4, pp.534-543, 2001.
DOI : 10.1016/S0022-0248(01)01518-4

K. Pöllänen, A. Häkkinen, S. Reinikainen, M. Louhi-kultanen, and E. L. Nyström, ATR-FTIR in monitoring of crystallization processes: comparison of indirect and direct OSC methods, pp.25-35, 2005.

V. M. Profir-;-e, . G. Furusjo-;-l, . C. Danielsson-;-a, and . Rasmuson, « Study of the crystallization of mandelic acid in water using in situ ATR-IR spectroscopy », Crystal growth & design, pp.273-279, 2002.

E. Furusjö, L. Danielsson, E. Könberg, and M. Rentsch-jonas, Evaluation Techniques for Two-Way Data from in Situ Fourier Transform Mid-Infrared Reaction Monitoring in Aqueous Solution, Analytical Chemistry, vol.70, issue.9, pp.1726-1734, 1998.
DOI : 10.1021/ac9711403

D. D. Dunuwila and K. A. Berglund, ATR FTIR spectroscopy for in situ measurement of supersaturation, Journal of Crystal Growth, vol.179, issue.1-2, pp.1-2, 1997.
DOI : 10.1016/S0022-0248(97)00119-X

L. Feng and K. A. Berglund, ATR-FTIR for Determining Optimal Cooling Curves for Batch Crystallization of Succinic Acid, Crystal Growth & Design, vol.2, issue.5, pp.449-452, 2002.
DOI : 10.1021/cg025545e

C. L. Lin, Y. K. Yen, and J. D. Miller, Plant-site evaluations of the OPSA system for on-line particle size measurement from moving belt conveyors, Minerals Engineering, vol.13, issue.8-9, pp.8-9, 2000.
DOI : 10.1016/S0892-6875(00)00077-7

M. Boukerche, ;. Mangin, ;. Monnier, C. Hoff, and J. P. Klein, Monitoring of polymorphs crystallization using in situ FTIR ATRspectroscopy coupled with in situ image acquisition », presented at the Chemical Engineering Transactions, pp.659-664, 2002.

B. Presles, J. Debayle, A. Rivoire, G. Févotte, and J. C. Pinoli, Monitoring the particle size distribution using image analysis during batch crystallization processes, 9th IEEE/SPIE Int. Conf. on Quality Control by Artificial Vision (QCAV), 2009.

B. Presles, J. Debayle, G. Fevotte, and J. C. Pinoli, Novel image analysis method for <italic>in situ</italic> monitoring the particle size distribution of batch crystallization processes, Journal of Electronic Imaging, vol.19, issue.3, pp.1-7, 2010.
DOI : 10.1117/1.3462800

O. S. Ahmad, J. Debayle, and J. C. Pinoli, A geometric-based method for recognizing overlapped polygonalshaped and semi-transparent particles in gray level images

O. Ahmad, J. Debayle, N. Gherras, B. Presles, G. Févotte et al., Recognizing overlapped particles during a crystallization process from in-situ video images for measuring their size distributions, 10th SPIE International Conference on Quality Control by Artificial Vision (QCAV). Saint-Etienne, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00656653

K. Sangwal and K. Wójcik, Investigation of metastable zone width of ammonium oxalate aqueous solutions, Crystal Research and Technology, vol.3, issue.4, pp.363-372, 2009.
DOI : 10.1002/crat.200800545

K. Sangwal, A. Zdyb, and D. Chocyk, Effect of Supersaturation and Temperature on the Growth Morphology of Ammonium Oxalate Monohydrate Crystals Obtained from Aqueous Solutions, Crystal Research and Technology, vol.106, issue.3, pp.267-273, 1996.
DOI : 10.1002/crat.2170310302

K. Sangwal, Effect of impurities on the metastable zone width of solute???solvent systems, Journal of Crystal Growth, vol.311, issue.16, pp.4050-4061, 2009.
DOI : 10.1016/j.jcrysgro.2009.06.045

K. Sangwal and E. Mielniczek-brzóska, Effect of Fe(III) ions on the growth kinetics of ammonium oxalate monohydrate crystals from aqueous solutions, Journal of Crystal Growth, vol.233, issue.1-2, pp.1-2, 2001.
DOI : 10.1016/S0022-0248(01)01550-0

K. Sangwal and E. Mielniczek-brzóska, Effect of Cr(III) ions on the growth kinetics of ammonium oxalate monohydrate crystals from aqueous solutions, Journal of Crystal Growth, vol.242, issue.3-4, pp.3-4, 2002.
DOI : 10.1016/S0022-0248(02)01387-8

K. Sangwal and E. Mielniczek-brzóska, Study of segregation coefficient of Mn(II) impurity in ammonium oxalate monohydrate crystals and the relationship between segregation coefficient and growth kinetics, Journal of Crystal Growth, vol.257, issue.1-2, pp.1-2, 2003.
DOI : 10.1016/S0022-0248(03)01428-3

K. Sangwal and E. Mielniczek-brzóska, Effect of impurities on metastable zone width for the growth of ammonium oxalate monohydrate crystals from aqueous solutions, Journal of Crystal Growth, vol.267, pp.3-4, 2004.

K. Sangwal and E. Mielniczek-brzóska, Effect of cationic impurities on solubility and crystal growth processes of ammonium oxalate monohydrate: Role of formation of metal-oxalate complexes, Crystal Research and Technology, vol.196, issue.6, pp.531-543, 2007.
DOI : 10.1002/crat.200610861

K. Sangwal and E. Mielniczek-brzóska, Study of copper complexes in saturated and unsaturated aqueous ammonium oxalate solutions containing Cu(II) impurity », Fluid Phase Equilibria, pp.199-205, 2007.

K. Sangwal and T. Palczynska, On the supersaturation and impurity concentration dependence of segregation coefficient in crystals grown from solutions, Journal of Crystal Growth, vol.212, issue.3-4, pp.3-4, 2000.
DOI : 10.1016/S0022-0248(00)00325-0

A. De-robertis, $. Stefano, $. S. Sammartano, and $. R. Scarcella, Formation and stability of some dicarboxylate-NH4+ complexes in aqueous solution at 25°C, J.Chem.Research, pp.322-323, 1985.

B. Menczel, A. Apelblat, and E. E. Korin, The molar enthalpies of solution and solubilities of ammonium, sodium and potassium oxalates in water, The Journal of Chemical Thermodynamics, vol.36, issue.1, pp.41-44, 2004.
DOI : 10.1016/j.jct.2003.09.012

A. Myerson, Handbook of industrial crystallization, 2 e éd, 2002.

J. Nývlt, R. Rychlý, J. Gottfried, and E. J. Wurzelová, Metastable zone-width of some aqueous solutions, Journal of Crystal Growth, vol.6, issue.2, pp.151-162
DOI : 10.1016/0022-0248(70)90034-5

N. Kubota, A new interpretation of metastable zone widths measured for unseeded solutions, Journal of Crystal Growth, vol.310, issue.3, pp.629-634, 2008.
DOI : 10.1016/j.jcrysgro.2007.11.123

S. Teychené, Control of polymorphism in pharmaceutical crystallization process$: application to the crystallization of Eflucimibe drug, 2004.

K. Kim and A. Mersmann, Estimation of metastable zone width in different nucleation processes, Chemical Engineering Science, vol.56, issue.7, pp.2315-2324, 2001.
DOI : 10.1016/S0009-2509(00)00450-4

N. Kubota and «. A. , A unified interpretation of metastable zone widths and induction times measured for seeded solutions, Journal of Crystal Growth, vol.312, issue.4, pp.548-554, 2010.
DOI : 10.1016/j.jcrysgro.2009.11.030

M. Kobari, N. Kubota, and E. I. Hirasawa, Simulation of metastable zone width and induction time for a seeded aqueous solution of potassium sulfate, Journal of Crystal Growth, vol.312, issue.19, pp.2734-2739, 2010.
DOI : 10.1016/j.jcrysgro.2010.05.042

M. Kobari, N. Kubota, and E. I. Hirasawa, Computer simulation of metastable zone width for unseeded potassium sulfate aqueous solution, Journal of Crystal Growth, vol.317, issue.1, pp.64-69, 2011.
DOI : 10.1016/j.jcrysgro.2010.12.069

M. Cadene and A. Fournel, Phonons optiques de l'oxalate d'ammonium hydrat????295 K et 10 K, Journal of Molecular Structure, vol.37, issue.1, pp.35-57, 1977.
DOI : 10.1016/0022-2860(77)87004-X

H. Küppers, The crystal structure of ammonium hydrogen oxalate hemihydrate, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.29, issue.2, pp.318-327, 1973.
DOI : 10.1107/S0567740873002402

H. Küppers, Abstract, Zeitschrift f??r Kristallographie - Crystalline Materials, vol.140, issue.5-6, pp.5-6, 1974.
DOI : 10.1524/zkri.1974.140.5-6.393

J. H. Robertson, Ammonium oxalate monohydrate: structure refinement at 30??K, Acta Crystallographica, vol.18, issue.3, pp.410-417, 1965.
DOI : 10.1107/S0365110X65000919

K. Sangwal, Additives and crystallization processes: from fundamentals to applications, Chichester England$, 2007.
DOI : 10.1002/9780470517833

K. Sangwal, A. Zdyb, and D. Chocyk, Effect of Supersaturation and Temperature on the Growth Morphology of Ammonium Oxalate Monohydrate Crystals Obtained from Aqueous Solutions, Crystal Research and Technology, vol.106, issue.3, pp.267-273, 1996.
DOI : 10.1002/crat.2170310302

E. Mielniczek-brzóska and K. Sangwal, Study of the Growth Morphology of Ammonium Oxalate Monohydrate Crystals Obtained from Aqueous Solutions, Crystal Research and Technology, vol.106, issue.6, pp.807-811, 1995.
DOI : 10.1002/crat.2170300616

S. X. Boerrigter, H. M. Cuppen, R. I. Ristic, J. N. Sherwood, and P. Bennema, Explanation for the Supersaturation-Dependent Morphology of Monoclinic Paracetamol, Crystal Growth & Design, vol.2, issue.5, pp.357-361, 2002.
DOI : 10.1021/cg020012r

S. D. Finnie, R. I. Ristic, J. N. Sherwood, and A. M. , Morphological and growth rate distributions of small self-nucleated paracetamol crystals grown from pure aqueous solutions, Journal of Crystal Growth, vol.207, issue.4, pp.308-318, 1999.
DOI : 10.1016/S0022-0248(99)00381-4

N. Kubota and J. W. Mullin, A kinetic model for crystal growth from aqueous solution in the presence of impurity, Journal of Crystal Growth, vol.152, issue.3, pp.203-208, 1995.
DOI : 10.1016/0022-0248(95)00128-X

N. Cabrera and D. Vermilyea, « Growth of crystals from solution, Growth and Perfection of Crystals », Proceedings, pp.393-410, 1958.

A. Wells, Structural inorganic chemistry, 5 e éd, 1984.

N. V. Plyasunova, M. Wang, Y. Zhang, and E. M. Muhammed, Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions II. Hydrolysis and hydroxo-complexes of Cu2+ at 298.15 K, Hydrometallurgy, vol.45, issue.1-2, pp.1-2, 1997.
DOI : 10.1016/S0304-386X(96)00073-4

K. Sangwal and E. Mielniczek-brzóska, Effect of cationic impurities on solubility and crystal growth processes of ammonium oxalate monohydrate: Role of formation of metal-oxalate complexes, Crystal Research and Technology, vol.196, issue.6, pp.531-543, 2007.
DOI : 10.1002/crat.200610861

E. W. Berg, Physical and Chemical Methods of Separation, 1963.

L. Erdey, Thermoanalytical properties of analytical-grade reagents, Talanta, vol.11, issue.6, pp.913-940, 1964.
DOI : 10.1016/0039-9140(64)80128-4

N. Kubota, J. Fukazawa, H. Yashiro, and J. W. Mullin, Pseudo-solubilities of potassium sulfate caused by traces of chromium(III) salts under controlled pHs, Journal of Crystal Growth, vol.143, issue.3-4, pp.3-4, 1994.
DOI : 10.1016/0022-0248(94)90069-8

N. Kubota, J. Fukazawa, H. Yashiro, and J. W. Mullin, Impurity effect of chromium(III) on the growth and dissolution rates of potassium sulfate cyrstals, Journal of Crystal Growth, vol.149, issue.1-2, pp.1-2, 1995.
DOI : 10.1016/0022-0248(94)01007-2

A. Mersmann, Crystallization Technology Handbook, 2001.

K. Sangwal, On the nature of supersaturation barriers observed during the growth of crystals from aqueous solutions containing impurities, Journal of Crystal Growth, vol.242, issue.1-2, pp.1-2, 2002.
DOI : 10.1016/S0022-0248(02)01326-X

V. I. Bredikhin, V. P. Ershov, V. V. Korolikhin, V. N. Lizyakina, S. Y. Potapenko et al., Mass transfer processes in KDP crystal growth from solutions, Mass transfer processes in KDP crystal growth from solutions, pp.509-514, 1987.
DOI : 10.1016/0022-0248(87)90283-1

J. Nývlt, Kinetics of nucleation in solutions, Journal of Crystal Growth, vol.3, issue.4, pp.377-383, 1968.
DOI : 10.1016/0022-0248(68)90179-6

I. Owczarek and K. Sangwal, Effect of impurities on the growth of KDP crystals: On the mechanism of adsorption on {100} faces from tapering data, Journal of Crystal Growth, vol.99, issue.1-4, pp.1-4, 1990.
DOI : 10.1016/S0022-0248(08)80034-6

I. Owczarek and K. Sangwal, Effect of impurities on the growth of KDP crystals: Mechanism of adsorption on (101) faces, Journal of Crystal Growth, vol.102, issue.3, pp.574-580, 1990.
DOI : 10.1016/0022-0248(90)90416-I

E. Mielniczek-brzóska and K. Sangwal, Growth kinetics of ammonium oxalate monohydrate single crystals from aqueous solutions containing Co(II) and Ni(II) impurities, Crystal Research and Technology, vol.212, issue.11, pp.993-1005, 2004.
DOI : 10.1002/crat.200410284

H. Teng, P. Dove, and J. Deyoreo, Kinetics of calcite growth: surface processes and relationships to macroscopic rate laws, Geochimica et Cosmochimica Acta, vol.64, issue.13, pp.2255-2266
DOI : 10.1016/S0016-7037(00)00341-0

L. Erdey, S. Gál, and E. G. Liptay, Thermoanalytical properties of analytical-grade reagents, Talanta, vol.11, issue.6, pp.913-940, 1964.
DOI : 10.1016/0039-9140(64)80128-4

P. M. Martins, A. Ferreira, S. Polanco, F. Rocha, and A. M. Damas, Unsteady-state transfer of impurities during crystal growth of sucrose in sugarcane solutions, Journal of Crystal Growth, vol.311, issue.15, pp.3841-3848, 2009.
DOI : 10.1016/j.jcrysgro.2009.05.021

J. Denk and G. D. Botsaris, Fundamental studies in secondary nucleation from solution, Journal of Crystal Growth, vol.13, issue.14, pp.13-14, 1972.
DOI : 10.1016/0022-0248(72)90287-4

A. E. Van-der-heijden, J. P. Van-der-eerden, and G. M. Van-rosmalen, The secondary nucleation rate: a physical model, Chemical Engineering Science, vol.49, issue.18, pp.3103-3113, 1994.
DOI : 10.1016/0009-2509(94)E0122-7

A. E. Flood, Feedback between crystal growth rates and surface roughness, CrystEngComm, vol.91, issue.2, p.313, 2010.
DOI : 10.1039/B914913A

K. Sangwal, A. Zdyb, D. Chocyk, and E. Mielniczek-brzóska, Effect of Supersaturation and Temperature on the Growth Morphology of Ammonium Oxalate Monohydrate Crystals Obtained from Aqueous Solutions, Crystal Research and Technology, vol.106, issue.3, pp.267-273, 1996.
DOI : 10.1002/crat.2170310302

E. Mielniczek-brzóska and K. Sangwal, Study of growth kinetics of ammonium oxalate monohydrate crystals from aqueous solutions, Crystal Research and Technology, vol.79, issue.4, pp.1027-1035, 1994.
DOI : 10.1002/crat.2170290802

B. Presles, J. Debayle, G. Fevotte, and E. J. Pinoli, Novel image analysis method for <italic>in situ</italic> monitoring the particle size distribution of batch crystallization processes, Journal of Electronic Imaging, vol.19, issue.3, pp.31207-31214, 2010.
DOI : 10.1117/1.3462800

H. Griffiths, Mechanical Crystallization, J. Soc. Chem. Ind, 1925.

A. Myerson, Handbook of industrial crystallization, 2002.

J. Mullin, Nucleation Crystallization (Fourth Edition), pp.181-215, 2001.

A. Mersmann, Crystallization technology handbook, 1995.

A. Mersmann, Design of Crystallizers, Chemical Engineering and Processing: Process Intensification, vol.23, issue.4, pp.213-228, 1988.
DOI : 10.1016/0255-2701(88)85014-1

K. Sangwal, Additives and crystallization processes : from fundamentals to applications, Chichester England, 2007.
DOI : 10.1002/9780470517833

X. Y. Liu, K. Maiwa, and E. K. Tsukamoto, Heterogeneous two-dimensional nucleation and growth kinetics, The Journal of Chemical Physics, vol.106, issue.5, p.1870, 1997.
DOI : 10.1063/1.473325

P. Walstra, Secondary nucleation in triglyceride crystallization, The Colloid Science of Lipids Lindman et B. W. Ninham, Éd. Darmstadt: Steinkopff, pp.4-8, 1998.
DOI : 10.1007/BFb0117954

. Lorsque-t-n-«-t-g, le temps d'induction est régi par la croissance des nuclei jusqu'à une taille détectable. t ind est alors déduit de l'intégration des expressions cinétiques de la vitesse linéaire de croissance entre le rayon critique des germes et le rayon visible des germes

. La-pente-de-la-droite-obtenue-permet-de-discriminer-le-mécanisme-de-croissance, Elle sera égale à -1 pour une croissance normale et à -2 pour une croissance en spirale. Si la pente est inférieure à - 2, on suppose que le mécanisme de croissance est de type B+S. Pour la croissance bidimensionnelle, la courbe ln

E. B. Gutoff, The kinetics of industrial crystallization by, AIChE Journal, vol.6725, issue.32, pp.1231-1231, 1985.

K. Kim and A. Mersmann, Estimation of metastable zone width in different nucleation processes, Chemical Engineering Science, vol.56, issue.7, pp.2315-2324, 2001.
DOI : 10.1016/S0009-2509(00)00450-4

J. Nývlt, Nucleation and growth rate in mass crystallization, Progress in Crystal Growth and Characterization, pp.335-370, 1984.
DOI : 10.1016/0146-3535(84)90085-6

K. Sangwal, Recent developments in understanding of the metastable zone width of different solute???solvent systems, Journal of Crystal Growth, vol.318, issue.1
DOI : 10.1016/j.jcrysgro.2010.11.078

A. Mersmann and K. Bartosch, How to predict the metastable zone width, Journal of Crystal Growth, vol.183, issue.1-2, pp.240-250, 1998.
DOI : 10.1016/S0022-0248(97)00417-X

K. Sangwal and K. Wójcik, Investigation of metastable zone width of ammonium oxalate aqueous solutions, Crystal Research and Technology, vol.3, issue.4, pp.363-372, 2009.
DOI : 10.1002/crat.200800545

A. Mersmann, Crystallization Technology Handbook, 2001.

N. Kubota, A unified interpretation of metastable zone widths and induction times measured for seeded solutions, Journal of Crystal Growth, vol.312, issue.4, pp.548-554, 2010.
DOI : 10.1016/j.jcrysgro.2009.11.030

A. Mersmann and K. Bartosch, How to predict the metastable zone width, Journal of Crystal Growth, vol.183, issue.1-2, pp.240-250, 1998.
DOI : 10.1016/S0022-0248(97)00417-X

N. Hiquily, N. Gabas, and C. Laguerie, On the interpretation of the metastable zone width in relation with crystallization kinetics, pp.60-165, 1988.

O. Sohnel and J. W. Mullin, Precipitation of calcium carbonate, Journal of Crystal Growth, vol.60, issue.2, pp.239-250
DOI : 10.1016/0022-0248(82)90095-1

O. Söhnel and J. W. Mullin, Interpretation of crystallization induction periods, Journal of Colloid and Interface Science, vol.123, issue.1, pp.43-50, 1988.
DOI : 10.1016/0021-9797(88)90219-6

O. So and $. Hnel, Precipitation : basic principles and industrial applications, 1992.

S. Toschev, A. Milchev, and E. S. Stoyanov, On some probabilistic aspects of the nucleation process, Journal of Crystal Growth, vol.13, issue.14, pp.13-14, 1972.
DOI : 10.1016/0022-0248(72)90073-5

O. Söhnel, J. Garside, and S. J. Jancic, Crystallization from solution and the thermodynamics of electrolytes, Journal of Crystal Growth, vol.39, issue.2, pp.307-314, 1977.
DOI : 10.1016/0022-0248(77)90280-9

D. Kashchiev, Induction time, pp.413-427, 2000.
DOI : 10.1016/B978-075064682-6/50030-5

G. Ans-par, D. Pepe, and . Siri, Il permet de générer, d'optimiser et d'analyser des molécules et des systèmes moléculaires pouvant atteindre 10 5 atomes de 96 types différents. Automatisé pour la construction de peptides, d'acides nucléiques, GenMol, vol.17

L. Rappels, étude des caractères géométriques des polyèdres cristallins constitue la cristallographie morphologique. La forme extérieure des cristaux, lorsqu'elle est observable, obéit à de lois que l

L. J. Clé-de-la-correspondance-structure-morphologie-est-extrêmement-simple-]-r, S. N. Davey, D. Black, S. J. Logan, J. E. Maginn et al., un cristal sont des plans réticulaires particulièrement denses en noeuds, donc appartenant à des familles où la distance inter réticulaire est grande. Par conséquent les arrêtes sont des rangées denses du réseau (loi d'observation) Il est utile de faire remarquer que les faces qui se développent dans un cristal, sont celles dont la croissance est lente (vitesse de croissance dans la direction de la normale à la face) Si une face croît lentement c'est que les plans réticulaires qui la Structural and kinetic features of crystal growth inhibition: adipic acid growing in the presence of n-alkanoic acids, Journal of the Chemical Society Faraday Transactions, vol.88, issue.23, p.3461, 1992.

K. J. Roberts, J. N. Sherwood, C. S. Yoon, and E. R. Docherty, Understanding the Solvent-Induced Habit Modification of Benzophenone in Terms of Molecular Recognition at the Crystal/Solution Interface., Chemistry of Materials, vol.6, issue.8, pp.1099-1102, 1994.
DOI : 10.1021/cm00044a005

D. S. Coombes, C. R. Catlow, J. D. Gale, A. L. Rohl, and S. L. Price, Calculation of Attachment Energies and Relative Volume Growth Rates As an Aid to Polymorph Prediction, Crystal Growth & Design, vol.5, issue.3, pp.879-885, 2005.
DOI : 10.1021/cg049707d

S. L. Price, The computational prediction of pharmaceutical crystal structures and polymorphism, Advanced Drug Delivery Reviews, vol.56, issue.3, pp.301-319, 2004.
DOI : 10.1016/j.addr.2003.10.006

M. Brunsteiner and S. L. Price, Morphologies of Organic Crystals:??? Sensitivity of Attachment Energy Predictions to the Model Intermolecular Potential, Morphologies of Organic Crystals: Sensitivity of Attachment Energy Predictions to the Model Intermolecular Potential, pp.447-453, 2001.
DOI : 10.1021/cg015541u

V. Bisker-leib and M. F. Doherty, Modeling the Crystal Shape of Polar Organic Materials:??? Prediction of Urea Crystals Grown from Polar and Nonpolar Solvents, Crystal Growth & Design, vol.1, issue.6, pp.455-461, 2001.
DOI : 10.1021/cg010014w

J. Van-suchtelen, Morphology of crystals, 1988.

I. Sunagawa and J. Van-suchtelen, Morphology of crystals, 1995.

O. Pino-garcía and Å. C. Rasmuson, Influence of Additives on Nucleation of Vanillin:??? Experiments and Introductory Molecular Simulations, Crystal Growth & Design, vol.4, issue.5, pp.1025-1037, 2004.
DOI : 10.1021/cg049955+

D. Winn and M. F. Doherty, A new technique for predicting the shape of solution-grown organic crystals, AIChE Journal, vol.71, issue.11, pp.2501-2514, 1998.
DOI : 10.1002/aic.690441117

G. Pfeffer, R. Sabbah, and R. Boistelle, Half-Crystal Energy and Enthalpy of Sublimation of Diuron: 3-(3,4-Dichlorophenyl)-1,1-dimethylurea, Journal of Applied Crystallography, vol.30, issue.5, p.527, 1997.
DOI : 10.1107/S0021889896014501

N. Rodriguez-hornedo and D. Murphy, Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems, Journal of Pharmaceutical Sciences, vol.88, issue.7, pp.651-660, 1999.
DOI : 10.1021/js980490h

G. Clydesdale, G. B. Thomson, E. M. Walker, K. J. Roberts, P. Meenan et al., A Molecular Modeling Study of the Crystal Morphology of Adipic Acid and Its Habit Modification by Homologous Impurities, Crystal Growth & Design, vol.5, issue.6, pp.2154-2163, 2005.
DOI : 10.1021/cg049720y

I. Weissbuch, L. Addadi, and E. L. Leiserowitz, Molecular Recognition at Crystal Interfaces, Molecular Recognition at Crystal Interfaces, pp.637-645, 1991.
DOI : 10.1126/science.253.5020.637

M. D. Ward, Organic crystal surfaces: Structure, properties and reactivity, Current Opinion in Colloid & Interface Science, vol.2, issue.1, p.51, 1997.
DOI : 10.1016/S1359-0294(97)80008-8

G. Pèpe and $. D. Siri, « In Modeling of Molecular Structure and properties, pp.93-100, 1990.

. La-sonde-d, situ peut fournir des informations quantitatives sur la distribution en taille des particules. Par ailleurs, d'un point de vue qualitatif, elle permet de mettre en évidence les mécanismes de cristallisation. La Figure 3-9 montre l'évolution des images obtenues au cours d'une cristallisation par refroidissement non ensemencée de l'oxalate d'ammonium monohydrate. On peut y observer par exemple les cristaux issus de la nucléation primaire homogène, puis l'apparition de fines particules caractéristiques d'un mécanisme de nucléation secondaire (non représentées ici) (a) (b)

F. Lewiner, J. P. Klein, and F. Puel, On-line ATR FTIR measurement of supersaturation during solution crystallization processes. Calibration and applications on three solute/solvent systems, Chemical Engineering Science, vol.56, issue.6, pp.2069-2084, 2001.
DOI : 10.1016/S0009-2509(00)00508-X

URL : https://hal.archives-ouvertes.fr/hal-01270722

F. Lewiner, G. Févotte, J. P. Klein, and E. F. Puel, Improving batch cooling seeded crystallization of an organic weed-killer using on-line ATR FTIR measurement of supersaturation, Journal of Crystal Growth, vol.226, issue.2-3, pp.348-362, 2001.
DOI : 10.1016/S0022-0248(01)01395-1

URL : https://hal.archives-ouvertes.fr/hal-01270726

R. J. Clark, S. Firth, and . Raman, Raman, infrared and force field studies of K212C2O4????????H2O and K213C2O4????????H2O in the solid state and in aqueous solution, and of (NH4)212C2O4????????H2O and (NH4)213C2O4????????H2O in the solid state, NH4)212C2O4.H2O and (NH4)213C2O4.H2O in the solid state, pp.1731-1746, 2002.
DOI : 10.1016/S1386-1425(01)00635-7

D. D. Dunuwila, L. B. Carroll, and K. A. Berglund, An investigation of the applicability of attenuated total reflection infrared spectroscopy for measurement of solubility and supersaturation of aqueous citric acid solutions, Journal of Crystal Growth, vol.137, issue.3-4, pp.3-4, 1994.
DOI : 10.1016/0022-0248(94)90999-7

D. D. Dunuwila and K. A. Berglund, ATR FTIR spectroscopy for in situ measurement of supersaturation, Journal of Crystal Growth, vol.179, issue.1-2, pp.185-193, 1997.
DOI : 10.1016/S0022-0248(97)00119-X

J. Lagarde, Initiationàl'analysedesdonnées,!3e!éd.!nouvelle!présentation!1998. éd. Paris: Dunod, 1998.

B. Menczel, A. Apelblat, and E. E. Korin, The molar enthalpies of solution and solubilities of ammonium, sodium and potassium oxalates in water, The Journal of Chemical Thermodynamics, vol.36, issue.1, pp.41-44, 2004.
DOI : 10.1016/j.jct.2003.09.012

T. Togkalidou, M. Fujiwara, S. Patel, and R. D. Braatz, Solute concentration prediction using chemometrics and ATR-FTIR spectroscopy, Journal of Crystal Growth, vol.231, issue.4, pp.534-543, 2001.
DOI : 10.1016/S0022-0248(01)01518-4

O. Ahmad, J. Debayle, N. Gherras, B. Presles, G. Févotte et al., Recognizing overlapped particles during a crystallization process from in-situ video images for measuring their size distributions, 10th SPIE International Conference on Quality Control by Artificial Vision (QCAV). Saint-Etienne, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00656653

B. Presles, J. Debayle, A. Rivoire, G. Févotte, and J. C. Pinoli, Monitoring the particle size distribution using image analysis during batch crystallization processes, 9th IEEE/SPIE Int. Conf. on Quality Control by Artificial Vision (QCAV), 2009.

V. Spectres-raman, raies AO pur Rouge : raies AO+ 0.25 % (0.0008 mol/L) de NiSO 4 _Rampe -10°C/h Spectres Raman Rouge : raies AO pur Vert : raies, pp.4-30

S. Enfin and . Le, solvant de cristallisation est l'eau, il est généralement admis que les limitations de type « thermiques

A. Mersmann, Crystallization technology handbook, 2001.

O. Söhnel, Precipitation : basic principles and industrial applications, 1992.

J. Garside, The concept of effectiveness factors in crystal growth, Chemical Engineering Science, vol.26, issue.9, pp.1425-1431, 1971.
DOI : 10.1016/0009-2509(71)80062-3

A. D. Randolph and M. A. Larson, Transient and steady state size distributions in continuous mixed suspension crystallizers, AIChE Journal, vol.8, issue.5, pp.639-645, 1962.
DOI : 10.1002/aic.690080515

D. Ramkrishna and A. W. Mahoney, Population balance modeling. Promise for the future, Chemical Engineering Science, vol.57, issue.4, pp.595-606, 2002.
DOI : 10.1016/S0009-2509(01)00386-4

D. Ramkrishna, « The Solution of Population Balance Equations, Population Balances, pp.117-195, 2000.

A. Mersmann, B. Braun, and E. M. Löffelmann, Prediction of crystallization coefficients of the population balance, Chemical Engineering Science, vol.57, issue.20, pp.4267-4275, 2002.
DOI : 10.1016/S0009-2509(02)00343-3

A. W. Mahoney and D. Ramkrishna, Efficient solution of population balance equations with discontinuities by finite elements, Chemical Engineering Science, vol.57, issue.7, pp.1107-1119, 2002.
DOI : 10.1016/S0009-2509(01)00427-4

Y. Liao and D. Lucas, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chemical Engineering Science, vol.64, issue.15, pp.3389-3406, 2009.
DOI : 10.1016/j.ces.2009.04.026

S. Kumar and D. Ramkrishna, « On the solution of population balance equations by discretization--III

H. Briesen, Simulation of crystal size and shape by means of a reduced two-dimensional population balance model, Chemical Engineering Science, vol.61, issue.1, pp.104-112, 2006.
DOI : 10.1016/j.ces.2004.11.062

S. Qamar and G. Warnecke, Numerical solution of population balance equations for nucleation, growth and aggregation processes, Computers & Chemical Engineering, vol.31, issue.12, pp.1576-1589, 2007.
DOI : 10.1016/j.compchemeng.2007.01.006

S. Qamar and G. Warnecke, Solving population balance equations for two-component aggregation by a finite volume scheme, Chemical Engineering Science, vol.62, issue.3, pp.679-693, 2007.
DOI : 10.1016/j.ces.2006.10.001

S. Qamar, A. Ashfaq, G. Warnecke, I. Angelov, and M. P. Elsner, Adaptive high-resolution schemes for multidimensional population balances in crystallization processes, Computers & Chemical Engineering, vol.31, issue.10, pp.1296-1311, 2007.
DOI : 10.1016/j.compchemeng.2006.10.014

S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretization???II. A moving pivot technique, Chemical Engineering Science, vol.51, issue.8, pp.1333-1342, 1996.
DOI : 10.1016/0009-2509(95)00355-X

S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretization???I. A fixed pivot technique, Chemical Engineering Science, vol.51, issue.8, pp.1311-1332, 1996.
DOI : 10.1016/0009-2509(96)88489-2

F. Févotte and G. Févotte, A method of characteristics for solving population balance equations (PBE) describing the adsorption of impurities during crystallization processes, Chemical Engineering Science, vol.65, issue.10, pp.3191-3198, 2010.
DOI : 10.1016/j.ces.2010.02.009