D. Addari, B. Elsener, and A. Rossi, Electrochemistry and surface chemistry of stainless steels in alkaline media simulating concrete pore solutions, Electrochimica Acta, vol.53, issue.27, p.8078, 2008.
DOI : 10.1016/j.electacta.2008.06.007

G. Gedge and J. Construc, Steel Research, p.1194, 2008.

F. Zhang, J. Pan, and C. Lin, Localized corrosion behaviour of reinforcement steel in simulated concrete pore solution, Corrosion Science, vol.51, issue.9, p.2130, 2009.
DOI : 10.1016/j.corsci.2009.05.044

L. Zhang, Y. Jiang, B. Deng, W. Zhang, J. Xu et al., Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel, Materials Characterization, vol.60, issue.12, p.1522, 2009.
DOI : 10.1016/j.matchar.2009.08.009

L. F. Garfias-mesias, J. M. Sykes, and C. D. Tuck, The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steel in chloride solutions, Corrosion Science, vol.38, issue.8, p.1319, 1996.
DOI : 10.1016/0010-938X(96)00022-4

A. G48-03, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, 2009.

A. Bautista, G. Blanco, F. Velasco, A. Gutiérrez, L. Soriano et al., Changes in the passive layer of corrugated austenitic stainless steel of low nickel content due to exposure to simulated pore solutions, Corrosion Science, vol.51, issue.4, p.785, 2009.
DOI : 10.1016/j.corsci.2009.01.012

G. O. Ilevbare and G. T. Burstein, The inhibition of pitting corrosion of stainless steels by chromate and molybdate ions, Corrosion Science, vol.45, issue.7, p.1545, 2003.
DOI : 10.1016/S0010-938X(02)00229-9

M. Kimura, M. Kaneko, and N. Ohta, In Situ Analysis of Pitting Corrosion in Artificial Crevice of Stainless Steel by X-ray Absorption Fine Structure., ISIJ International, vol.42, issue.12, p.1399, 2002.
DOI : 10.2355/isijinternational.42.1399

R. C. Newman, The dissolution and passivation kinetics of stainless alloys containing molybdenum???1. Coulometric studies of Fe???Cr and Fe???Cr???Mo alloys, Corrosion Science, vol.25, issue.5, p.331, 1985.
DOI : 10.1016/0010-938X(85)90111-8

R. C. Newman, The dissolution and passivation kinetics of stainless alloys containing molybdenum???II. Dissolution kinetics in artificial pits, Corrosion Science, vol.25, issue.5, p.341, 1985.
DOI : 10.1016/0010-938X(85)90112-X

X. Wang, M. Nguyen, M. G. Stewart, M. Syme, and A. Leitch, Analysis of Climate Change Impacts on the Deterioration of Concrete Infrastructure ? Part 1: Mechanisms, Practices, Modelling and Simulations ? A review, p.9780, 2010.

A. M. Neville, Properties of Concrete " -4 th Edition, 2008.

P. Thoft-christensen, What happens with reinforced concrete structures when the reinforcement corrodes?, Maintaining the Safety of Deteriorating Civil Infrastructures " -2 nd International Workshop in Life-Cycle Cost Analysis and Design of Civil Infrastructure Systems

R. P. Khatri and V. Sirivivatnanon, Characteristic service life for concrete exposed to marine environments, Cement and Concrete Research, vol.34, issue.5, p.745, 2004.
DOI : 10.1016/S0008-8846(03)00086-3

A. C1543-, Standard Test Method for Determining the Penetration of Chloride Ion into Concrete by Ponding, p.2, 2002.

D. W. Ho and R. K. Lewis, Carbonation of concrete and its prediction, Cement and Concrete Research, vol.17, issue.3, p.489, 1987.
DOI : 10.1016/0008-8846(87)90012-3

M. Kouril, P. Novák, and M. Bojko, Threshold chloride concentration for stainless steels activation in concrete pore solutions, Cement and Concrete Research, vol.40, issue.3, p.431, 2010.
DOI : 10.1016/j.cemconres.2009.11.005

G. Gedge and J. Construc, Steel Research, p.1194, 2008.

A. Knudsen, F. M. Jensen, O. Klinghoffer, and T. Skovsgaard, Cost-effective Enhancement of Durability of Concrete Structures by Intelligent Use of Stainless Steel, Conference on Corrosions and Rehabilitation of reinforced Concrete Structure, 1998.

L. Zhang, Y. Jiang, B. Deng, W. Zhang, J. Xu et al., Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel, Materials Characterization, vol.60, issue.12, p.1522, 2009.
DOI : 10.1016/j.matchar.2009.08.009

F. Zhang, J. Pan, and C. Lin, Localized corrosion behaviour of reinforcement steel in simulated concrete pore solution, Corrosion Science, vol.51, issue.9, p.2130, 2009.
DOI : 10.1016/j.corsci.2009.05.044

L. F. Garfias-mesias, J. M. Sykes, and C. D. Tuck, The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steel in chloride solutions, Corrosion Science, vol.38, issue.8, p.1319, 1996.
DOI : 10.1016/0010-938X(96)00022-4

A. Bautista, G. Blanco, F. Velasco, A. Gutiérrez, L. Soriano et al., Changes in the passive layer of corrugated austenitic stainless steel of low nickel content due to exposure to simulated pore solutions, Corrosion Science, vol.51, issue.4, p.785, 2009.
DOI : 10.1016/j.corsci.2009.01.012

I. N. Bastos, S. M. Tavares, F. Dalard, and R. P. Nogueira, Effect of microstructure on corrosion behavior of superduplex stainless steel at critical environment conditions, Scripta Materialia, vol.57, issue.10, p.913, 2007.
DOI : 10.1016/j.scriptamat.2007.07.037

URL : https://hal.archives-ouvertes.fr/hal-00386386

G. P. Halada, C. R. Clayton, and H. Herman, An X-Ray Photoelectron Spectroscopic Study of the Passive Film Formed on Pure Mo and MoSi[sub 2] in 4M HCl, Journal of The Electrochemical Society, vol.142, issue.1, p.74, 1995.
DOI : 10.1149/1.2043946

Y. C. Lu, C. R. And, and . Clayton, An XPS study of the passive and transpassive behavior of molybdenum in deaerated 0.1 M HCl, Corrosion Science, vol.29, issue.8, p.927, 1989.
DOI : 10.1016/0010-938X(89)90085-1

M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 1974.

W. J. Tobler and S. Virtanen, Effect of Mo species on metastable pitting of Fe18Cr alloys???A current transient analysis, Corrosion Science, vol.48, issue.7, p.1585, 2006.
DOI : 10.1016/j.corsci.2005.05.049

P. Wang, L. L. Wilson, D. J. Wesolowski, J. Rosenqvist, and A. Anderko, Solution chemistry of Mo(III) and Mo(IV): Thermodynamic foundation for modeling localized corrosion, Corrosion Science, vol.52, issue.5, p.1625, 2010.
DOI : 10.1016/j.corsci.2010.01.032

G. O. Ilevbare and G. T. Burstein, The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels, Corrosion Science, vol.43, issue.3, p.485, 2001.
DOI : 10.1016/S0010-938X(00)00086-X

J. N. Wanklyn, The role of molybdenum in the crevice corrosion of stainless steels, Corrosion Science, vol.21, issue.3, p.211, 1981.
DOI : 10.1016/0010-938X(81)90031-7

K. Sugimoto and Y. Sawada, The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions, Corrosion Science, vol.17, issue.5, p.425, 1977.
DOI : 10.1016/0010-938X(77)90032-4

E. Akiyama, A. Kawashima, K. Asami, and K. Hashimoto, The effects of alloying elements on the passivity of sputter-deposited amorphous Al-Cr-Mo alloys in 1M HCl, Corrosion Science, vol.38, issue.8, p.1281, 1996.
DOI : 10.1016/0010-938X(96)00017-0

R. F. Jargelius-petterson and B. G. Pound, Examination of the Role of Molybdenum in Passivation of Stainless Steels Using AC Impedance Spectroscopy, Journal of The Electrochemical Society, vol.145, issue.5, p.1462, 1998.
DOI : 10.1149/1.1838505

I. Olefjord, B. Brox, and A. U. Jelvestam, Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA, Journal of The Electrochemical Society, vol.132, issue.12, p.2854, 1985.
DOI : 10.1149/1.2113683

D. Addari, B. Elsener, and A. Rossi, Electrochemistry and surface chemistry of stainless steels in alkaline media simulating concrete pore solutions, Electrochimica Acta, vol.53, issue.27, p.8078, 2008.
DOI : 10.1016/j.electacta.2008.06.007

M. Kimura, M. Kaneko, and N. Ohta, In Situ Analysis of Pitting Corrosion in Artificial Crevice of Stainless Steel by X-ray Absorption Fine Structure., ISIJ International, vol.42, issue.12, p.1399, 2002.
DOI : 10.2355/isijinternational.42.1399

N. J. Laycock and R. C. Newman, Localised dissolution kinetics, salt films and pitting potentials, Corrosion Science, vol.39, issue.10-11, p.1771, 1997.
DOI : 10.1016/S0010-938X(97)00049-8

L. Wegrelius, F. Falkenberg, and I. Olefjord, Passivation of Stainless Steels in Hydrochloric Acid, Journal of The Electrochemical Society, vol.146, issue.4, p.1397, 1999.
DOI : 10.1149/1.1391777

G. O. Ilevbare and G. T. Burstein, The inhibition of pitting corrosion of stainless steels by chromate and molybdate ions, Corrosion Science, vol.45, issue.7, p.1545, 2003.
DOI : 10.1016/S0010-938X(02)00229-9

S. Mattin, S. P. , and G. T. Burstein, Detailed resolution of microscopic depassivation events on stainless steel in chloride solution leading to pitting, Philosophical Magazine Letters, vol.76, issue.5, p.341, 1997.
DOI : 10.1080/095008397178940

G. Berthomé, B. Malki, and B. Baroux, Pitting transients analysis of stainless steels at the open circuit potential, Corrosion Science, vol.48, issue.9, p.2432, 2006.
DOI : 10.1016/j.corsci.2005.09.012

J. Stewart and D. E. Williams, The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions, Corrosion Science, vol.33, issue.3, p.457, 1992.
DOI : 10.1016/0010-938X(92)90074-D

M. Kaneko and H. S. Isaacs, Effects of molybdenum on the pitting of ferritic- and austenitic-stainless steels in bromide and chloride solutions, Corrosion Science, vol.44, issue.8, p.1825, 2002.
DOI : 10.1016/S0010-938X(02)00003-3

H. Baba, T. Kodama, and Y. Katada, Role of nitrogen on the corrosion behavior of austenitic stainless steels, Corrosion Science, vol.44, issue.10, p.2393, 2002.
DOI : 10.1016/S0010-938X(02)00040-9

S. M. Alvarez, A. Bautista, and F. Velasco, Corrosion behaviour of corrugated lean duplex stainless steels in simulated concrete pore solutions, Corrosion Science, vol.53, issue.5, p.1748, 2011.
DOI : 10.1016/j.corsci.2011.01.050

F. Zhang, J. Pan, and C. Lin, Localized corrosion behaviour of reinforcement steel in simulated concrete pore solution, Corrosion Science, vol.51, issue.9, p.2130, 2009.
DOI : 10.1016/j.corsci.2009.05.044

L. Zhang, Y. Jiang, B. Deng, W. Zhang, J. Xu et al., Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel, Materials Characterization, vol.60, issue.12, p.1522, 2009.
DOI : 10.1016/j.matchar.2009.08.009

H. Baba, T. Kodama, and Y. Katada, Role of nitrogen on the corrosion behavior of austenitic stainless steels, Corrosion Science, vol.44, issue.10, p.2393, 2002.
DOI : 10.1016/S0010-938X(02)00040-9

M. Kaneko and H. S. Isaacs, Effects of molybdenum on the pitting of ferritic- and austenitic-stainless steels in bromide and chloride solutions, Corrosion Science, vol.44, issue.8, p.1825, 2002.
DOI : 10.1016/S0010-938X(02)00003-3

G. Berthomé, B. Malki, and B. Baroux, Pitting transients analysis of stainless steels at the open circuit potential, Corrosion Science, vol.48, issue.9, p.2432, 2006.
DOI : 10.1016/j.corsci.2005.09.012

C. Gabrielli, Identification des processus électrochimiques par analyse de leur réponse en fréquence, 1980.

J. Mc-breen and E. Gannon, Electrodeposition of Zinc on Glassy Carbon from ZnCl[sub 2] and ZnBr[sub 2] Electrolytes, Journal of The Electrochemical Society, vol.130, issue.8, p.1667, 1983.
DOI : 10.1149/1.2120059

M. U. Macdolnald and D. D. Macdonald, Theoretical Analysis of the Effects of Alloying Elements on Distribution Functions of Passivity Breakdown, Journal of The Electrochemical Society, vol.136, issue.4, p.961, 1989.
DOI : 10.1149/1.2096894

I. Epelboin, M. Joussellin, and R. Wiart, Impedance measurements for nickel deposition in sulfate and chloride electrolytes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.119, issue.1, p.61, 1981.
DOI : 10.1016/S0022-0728(81)80124-6

M. Chemla, V. Bertagna, R. Erre, F. Rouelle, S. Petitdidier et al., R and C Impedance Components Equivalent to the Charge Distribution within Si-Substrate Depletion Layer, Electrochemical and Solid-State Letters, vol.6, issue.1, p.7, 2003.
DOI : 10.1149/1.1524752

J. F. Mccann and S. P. Badwal, Equivalent Circuit Analysis of the Impedance Response of Semiconductor/Electrolyte/Counterelectrode Cells, Journal of The Electrochemical Society, vol.129, issue.3, p.551, 1982.
DOI : 10.1149/1.2123907

G. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori et al., Scanning electron microscopy and x-ray microanalysis, 1981.

T. E. Everhart and R. F. Thornley, Wide-band detector for micro-microampere lowenergy electron currents, Journal of Scientific Instruments, vol.246, p.37, 1960.
DOI : 10.1088/0950-7671/37/7/307

URL : http://authors.library.caltech.edu/12086/1/EVEjsi60.pdf

C. Vittoz, Etude de l'acido-basicité des surfaces par mouillabilité et XPS. Application aux aciers inoxydables, Thèse -INPG, 1997.

M. Mantel and J. P. Wightman, Influence of the surface chemistry on the wettability of stainless steel, Surface and Interface Analysis, vol.58, issue.9, p.595, 1994.
DOI : 10.1002/sia.740210902

K. Sasaki and G. T. Burstein, Observation of a threshold impact energy required to cause passive film rupture during slurry erosion of stainless steel, Philosophical Magazine Letters, vol.80, issue.7, p.489, 2000.
DOI : 10.1080/09500830050057198

D. Landolt, Corrosion and Surface Chemistry of Metals, Lausanne Switzerland, vol.227, 2007.
DOI : 10.1201/9781439807880

K. Sugimoto and Y. Sawada, The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions, Corrosion Science, vol.17, issue.5, p.425, 1977.
DOI : 10.1016/0010-938X(77)90032-4

K. Hashimoto, K. Asami, A. Kawashima, H. Habazaki, and E. Akiyama, The role of corrosion-resistant alloying elements in passivity, Corrosion Science, vol.49, issue.1, p.42, 2007.
DOI : 10.1016/j.corsci.2006.05.003

A. Bautista, G. Blanco, F. Velasco, A. Gutiérrez, L. Soriano et al., Changes in the passive layer of corrugated austenitic stainless steel of low nickel content due to exposure to simulated pore solutions, Corrosion Science, vol.51, issue.4, p.785, 2009.
DOI : 10.1016/j.corsci.2009.01.012

B. Baroux, The kinetics of pit generation on stainless steels, Corrosion Science, vol.28, issue.10, p.969, 1988.
DOI : 10.1016/0010-938X(88)90015-7

M. Kimura, M. Kaneko, and N. Ohta, In Situ Analysis of Pitting Corrosion in Artificial Crevice of Stainless Steel by X-ray Absorption Fine Structure., ISIJ International, vol.42, issue.12, p.1399, 2002.
DOI : 10.2355/isijinternational.42.1399

M. Moayed and R. C. Newman, Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature, Corrosion Science, vol.48, issue.4, p.1004, 2006.
DOI : 10.1016/j.corsci.2005.03.002

W. J. Tobler and S. Virtanen, Effect of Mo species on metastable pitting of Fe18Cr alloys???A current transient analysis, Corrosion Science, vol.48, issue.7, p.1585, 2006.
DOI : 10.1016/j.corsci.2005.05.049

L. Zhang, Y. Jiang, B. Deng, W. Zhang, J. Xu et al., Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel, Materials Characterization, vol.60, issue.12, p.1522, 2009.
DOI : 10.1016/j.matchar.2009.08.009

M. Moreno, W. Morris, M. G. Alvarez, and G. S. Duffó, Corrosion of reinforcing steel in simulated concrete pore solutions, Corrosion Science, vol.46, issue.11, p.2681, 2004.
DOI : 10.1016/j.corsci.2004.03.013

T. Sourisseau, E. Chauveau, and B. Baroux, Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media, Corrosion Science, vol.47, issue.5, p.1097, 2005.
DOI : 10.1016/j.corsci.2004.05.024

W. D. Callister-jr, Materials Science and Engineering -An Introduction

I. N. Bastos, S. M. Tavares, F. Dalard, and R. P. Nogueira, Effect of microstructure on corrosion behavior of superduplex stainless steel at critical environment conditions, Scripta Materialia, vol.57, issue.10, p.913, 2007.
DOI : 10.1016/j.scriptamat.2007.07.037

URL : https://hal.archives-ouvertes.fr/hal-00386386

F. Zhang, J. Pan, and C. Lin, Localized corrosion behaviour of reinforcement steel in simulated concrete pore solution, Corrosion Science, vol.51, issue.9, p.2130, 2009.
DOI : 10.1016/j.corsci.2009.05.044

B. Deng, Y. Jiang, J. Gong, C. Zhong, J. Gao et al., Application of the modified electrochemical potentiodynamic reactivation method to detect susceptibility to intergranular corrosion of a newly developed lean duplex stainless steel LDX2101, Corrosion Science, vol.52, issue.3, p.969, 2010.
DOI : 10.1016/j.corsci.2009.11.020

B. Deng, Z. Wang, Y. Jiang, T. Sun, J. Xu et al., Effect of thermal cycles on the corrosion and mechanical properties of UNS S31803 duplex stainless steel, Corrosion Science, vol.51, issue.12, p.2969, 2009.
DOI : 10.1016/j.corsci.2009.08.015

B. Baroux, The kinetics of pit generation on stainless steels, Corrosion Science, vol.28, issue.10, p.969, 1988.
DOI : 10.1016/0010-938X(88)90015-7

T. Sourisseau, E. Chauveau, and B. Baroux, Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media, Corrosion Science, vol.47, issue.5, p.1097, 2005.
DOI : 10.1016/j.corsci.2004.05.024

J. Stewart and D. E. Williams, The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions, Corrosion Science, vol.33, issue.3, pp.457-463, 1992.
DOI : 10.1016/0010-938X(92)90074-D

G. O. Ilevbare and G. T. Burstein, The inhibition of pitting corrosion of stainless steels by chromate and molybdate ions, Corrosion Science, vol.45, issue.7, p.1545, 2003.
DOI : 10.1016/S0010-938X(02)00229-9

N. J. Laycock and R. C. Newman, Localised dissolution kinetics, salt films and pitting potentials, Corrosion Science, vol.39, issue.10-11, p.1771, 1997.
DOI : 10.1016/S0010-938X(97)00049-8

E. Akiyama, A. Kawashima, K. Asami, and K. Hashimoto, The effects of alloying elements on the passivity of sputter-deposited amorphous Al-Cr-Mo alloys in 1M HCl, Corrosion Science, vol.38, issue.8, p.1281, 1996.
DOI : 10.1016/0010-938X(96)00017-0

K. Hashimoto, K. Asami, A. Kawashima, H. Habazaki, and E. Akiyama, The role of corrosion-resistant alloying elements in passivity, Corrosion Science, vol.49, issue.1, p.42, 2007.
DOI : 10.1016/j.corsci.2006.05.003

M. Kaneko and H. S. Isaacs, Effects of molybdenum on the pitting of ferritic- and austenitic-stainless steels in bromide and chloride solutions, Corrosion Science, vol.44, issue.8, p.1825, 2002.
DOI : 10.1016/S0010-938X(02)00003-3

Y. C. Lu and C. R. Clayton, An XPS study of the passive and transpassive behavior of molybdenum in deaerated 0.1 M HCl, Corrosion Science, vol.29, issue.8, p.927, 1989.
DOI : 10.1016/0010-938X(89)90085-1

R. C. Newman, The dissolution and passivation kinetics of stainless alloys containing molybdenum???1. Coulometric studies of Fe???Cr and Fe???Cr???Mo alloys, Corrosion Science, vol.25, issue.5, p.331, 1985.
DOI : 10.1016/0010-938X(85)90111-8

R. C. Newman, The dissolution and passivation kinetics of stainless alloys containing molybdenum???II. Dissolution kinetics in artificial pits, Corrosion Science, vol.25, issue.5, p.341, 1985.
DOI : 10.1016/0010-938X(85)90112-X

M. K. Umarakhunov, U. A. Sadykova, and G. A. Khodzhaeva, The sorption of molybdenum(VI) by ionites from solutions in hydrochloric acid, Russian Journal of Physical Chemistry A, vol.84, issue.5, p.889, 2010.
DOI : 10.1134/S0036024410050316

J. N. Wanklyn, The role of molybdenum in the crevice corrosion of stainless steels, Corrosion Science, vol.21, issue.3, p.211, 1981.
DOI : 10.1016/0010-938X(81)90031-7

C. R. Clayton and Y. C. Lu, A Bipolar Model of the Passivity of Stainless Steel: The Role of Mo Addition, Journal of The Electrochemical Society, vol.133, issue.12, p.2465, 1986.
DOI : 10.1149/1.2108451

M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 1974.

M. Kimura, M. Kaneko, and N. Ohta, In Situ Analysis of Pitting Corrosion in Artificial Crevice of Stainless Steel by X-ray Absorption Fine Structure., ISIJ International, vol.42, issue.12, p.1399, 2002.
DOI : 10.2355/isijinternational.42.1399

G. O. Ilevbare and G. T. Burstein, The inhibition of pitting corrosion of stainless steels by chromate and molybdate ions, Corrosion Science, vol.45, issue.7, p.1545, 2003.
DOI : 10.1016/S0010-938X(02)00229-9

W. J. Tobler and S. Virtanen, Effect of Mo species on metastable pitting of Fe18Cr alloys???A current transient analysis, Corrosion Science, vol.48, issue.7, p.1585, 2006.
DOI : 10.1016/j.corsci.2005.05.049

W. D. Callister-jr, Materials Science and Engineering -An Introduction

K. Sugimoto and Y. Sawada, The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions, Corrosion Science, vol.17, issue.5, p.425, 1977.
DOI : 10.1016/0010-938X(77)90032-4

E. Maccafferty, Ferrara (It) 1985, 6th European Syrup. on Corr. Inhibitors, p.533, 1985.

H. H. Strehblow and B. Titze, Pitting potentials and inhibition potentials of iron and nickel for different aggressive and inhibiting anions, Corrosion Science, vol.17, issue.6, p.461, 1977.
DOI : 10.1016/0010-938X(77)90002-6

L. Zhang, Y. Jiang, B. Deng, W. Zhang, J. Xu et al., Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel, Materials Characterization, vol.60, issue.12, p.1522, 2009.
DOI : 10.1016/j.matchar.2009.08.009

M. Moreno, W. Morris, M. G. Alvarez, and G. S. Duffó, Corrosion of reinforcing steel in simulated concrete pore solutions, Corrosion Science, vol.46, issue.11, p.2681, 2004.
DOI : 10.1016/j.corsci.2004.03.013

Y. C. Lu and C. R. Clayton, An XPS study of the passive and transpassive behavior of molybdenum in deaerated 0.1 M HCl, Corrosion Science, vol.29, issue.8, p.927, 1989.
DOI : 10.1016/0010-938X(89)90085-1

G. O. Ilevbare and G. T. Burstein, The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels, Corrosion Science, vol.43, issue.3, p.485, 2001.
DOI : 10.1016/S0010-938X(00)00086-X

K. Sugimoto and Y. Sawada, The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions, Corrosion Science, vol.17, issue.5, p.425, 1977.
DOI : 10.1016/0010-938X(77)90032-4

I. Olefjord, B. Brox, and A. U. Jelvestam, Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA, Journal of The Electrochemical Society, vol.132, issue.12, p.2854, 1985.
DOI : 10.1149/1.2113683

I. Betova, M. Bojinov, T. Laitinen, K. Mäkelä, P. Pohjanne et al., The transpassive dissolution mechanism of highly alloyed stainless steels, Corrosion Science, vol.44, issue.12, p.2675, 2002.
DOI : 10.1016/S0010-938X(02)00073-2

R. C. Newman, The dissolution and passivation kinetics of stainless alloys containing molybdenum???1. Coulometric studies of Fe???Cr and Fe???Cr???Mo alloys, Corrosion Science, vol.25, issue.5, p.331, 1985.
DOI : 10.1016/0010-938X(85)90111-8

R. C. Newman, The dissolution and passivation kinetics of stainless alloys containing molybdenum???II. Dissolution kinetics in artificial pits, Corrosion Science, vol.25, issue.5, p.341, 1985.
DOI : 10.1016/0010-938X(85)90112-X

V. Vignal, O. Delrue, O. Heintz, and J. Peultier, Influence of the passive film properties and residual stresses on the micro-electrochemical behavior of duplex stainless steels, Electrochimica Acta, vol.55, issue.23, pp.7118-7125
DOI : 10.1016/j.electacta.2010.06.050

M. Kimura, M. Kaneko, and N. Ohta, In Situ Analysis of Pitting Corrosion in Artificial Crevice of Stainless Steel by X-ray Absorption Fine Structure., ISIJ International, vol.42, issue.12, p.1399, 2002.
DOI : 10.2355/isijinternational.42.1399

L. Freire, X. R. Nóvoa, M. F. Montemor, and M. J. Carmezim, Study of passive films formed on mild steel in alkaline media by the application of anodic potentials, Materials Chemistry and Physics, vol.114, issue.2-3, p.962, 2009.
DOI : 10.1016/j.matchemphys.2008.11.012

C. O. Olsson and D. Landolt, Passive films on stainless steels???chemistry, structure and growth, Electrochimica Acta, vol.48, issue.9, p.1093, 2003.
DOI : 10.1016/S0013-4686(02)00841-1

M. Mantel, J. P. And, and . Wightman, Influence of the surface chemistry on the wettability of stainless steel, Surface and Interface Analysis, vol.58, issue.9, p.595, 1994.
DOI : 10.1002/sia.740210902

A. Bautista, G. Blanco, F. Velasco, A. Gutiérrez, L. Soriano et al., Changes in the passive layer of corrugated austenitic stainless steel of low nickel content due to exposure to simulated pore solutions, Corrosion Science, vol.51, issue.4, p.785, 2009.
DOI : 10.1016/j.corsci.2009.01.012

N. P. Ramasubramanian and R. D. Davidson, Analysis of Passive Films on Stainless Steel by Cyclic Voltammetry and Auger Spectroscopy, Journal of The Electrochemical Society, vol.132, issue.4, p.793, 1985.
DOI : 10.1149/1.2113959

V. Guiñón-pina, A. Igual-muñoz, and J. García-antón, Influence of pH on the electrochemical behaviour of a duplex stainless steel in highly concentrated LiBr solutions, Corrosion Science, vol.53, issue.2, pp.575-581
DOI : 10.1016/j.corsci.2010.09.066

S. S. El-egamy and A. W. Badaway, Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions, Journal of Applied Electrochemistry, vol.39, issue.11, p.1153, 2004.
DOI : 10.1007/s10800-004-1709-x

M. E. Orazem, N. Pébère, and B. Tribollet, Enhanced Graphical Representation of Electrochemical Impedance Data, Journal of The Electrochemical Society, vol.153, issue.4, p.129, 2006.
DOI : 10.1149/1.2168377

D. Addari, B. Elsener, and A. Rossi, Electrochemistry and surface chemistry of stainless steels in alkaline media simulating concrete pore solutions, Electrochimica Acta, vol.53, issue.27, p.8078, 2008.
DOI : 10.1016/j.electacta.2008.06.007

G. Gedge and J. Construc, Steel Research, p.1194, 2008.

F. Zhang, J. Pan, and C. Lin, Localized corrosion behaviour of reinforcement steel in simulated concrete pore solution, Corrosion Science, vol.51, issue.9, p.2130, 2009.
DOI : 10.1016/j.corsci.2009.05.044

L. Zhang, Y. Jiang, B. Deng, W. Zhang, J. Xu et al., Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel, Materials Characterization, vol.60, issue.12, p.1522, 2009.
DOI : 10.1016/j.matchar.2009.08.009

L. F. Garfias-mesias, J. M. Sykes, and C. D. Tuck, The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steel in chloride solutions, Corrosion Science, vol.38, issue.8, p.1319, 1996.
DOI : 10.1016/0010-938X(96)00022-4

A. G48-03, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, 2009.

A. Bautista, G. Blanco, F. Velasco, A. Gutiérrez, L. Soriano et al., Changes in the passive layer of corrugated austenitic stainless steel of low nickel content due to exposure to simulated pore solutions, Corrosion Science, vol.51, issue.4, p.785, 2009.
DOI : 10.1016/j.corsci.2009.01.012

G. O. Ilevbare and G. T. Burstein, The inhibition of pitting corrosion of stainless steels by chromate and molybdate ions, Corrosion Science, vol.45, issue.7, p.1545, 2003.
DOI : 10.1016/S0010-938X(02)00229-9

M. Kimura, M. Kaneko, and N. Ohta, In Situ Analysis of Pitting Corrosion in Artificial Crevice of Stainless Steel by X-ray Absorption Fine Structure., ISIJ International, vol.42, issue.12, p.1399, 2002.
DOI : 10.2355/isijinternational.42.1399

R. C. Newman, The dissolution and passivation kinetics of stainless alloys containing molybdenum???1. Coulometric studies of Fe???Cr and Fe???Cr???Mo alloys, Corrosion Science, vol.25, issue.5, p.331, 1985.
DOI : 10.1016/0010-938X(85)90111-8

R. C. Newman, The dissolution and passivation kinetics of stainless alloys containing molybdenum???II. Dissolution kinetics in artificial pits, Corrosion Science, vol.25, issue.5, p.341, 1985.
DOI : 10.1016/0010-938X(85)90112-X

K. Sugimoto and Y. Sawada, The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions, Corrosion Science, vol.17, issue.5, p.425, 1977.
DOI : 10.1016/0010-938X(77)90032-4

M. Kimura, M. K. , and N. Ohta, In Situ Analysis of Pitting Corrosion in Artificial Crevice of Stainless Steel by X-ray Absorption Fine Structure., ISIJ International, vol.42, issue.12, p.1399, 2002.
DOI : 10.2355/isijinternational.42.1399

C. Lebouin, Y. Soldo-olivier, E. Sibert, M. De-santis, F. Maillard et al., Evidence of the Substrate Effect in Hydrogen Electroinsertion into Palladium Atomic Layers by Means of in Situ Surface X-ray Diffraction, Langmuir, vol.25, issue.8, p.4251, 2009.
DOI : 10.1021/la803913e

URL : https://hal.archives-ouvertes.fr/hal-00384872

J. R. Macdonald, I. Spectroscopy, A. Lasia, R. E. White, B. E. Conway et al., Modern Aspects of Electro-chemistry, J. Electroanal. Chem. Electrochim. Acta Electrochim. Acta Electrochim. Acta, vol.32, issue.30, pp.143-1533, 1985.

B. Sapoval, R. Gutfraind, P. Meakin, M. Keddam, H. Takenouti et al., Advances in, C81. [20] C89. [21]. [49] M.E. Orazem, N. Pébère, B. Tribollet Electrochemical Methods: Fundamentals and applications51] C. Gabrielli, F. Huet, R. P. Nogueira, pp.329-2405, 1045.