T. Gaudin and E. , Vésine, Marchés, emploi et enjeu des activités liées à l'amélioration de l'efficacité énergétique et aux énergies renouvelables : situation, Perspectives Rapport ADEME, 2008.

F. J. Frandsen, Utilizing biomass and waste for power production???a decade of contributing to the understanding, interpretation and analysis of deposits and corrosion products, Fuel, vol.84, issue.10, pp.84-1277, 2005.
DOI : 10.1016/j.fuel.2004.08.026

C. Couhert, Pyrolyse flash à haute température de la biomasse ligno-cellulosique et de ses composés, Thèse soutenue le, 2007.

D. Landolt, Corrosion et chimie de surface des métaux, presses polytechniques et universitaires romandes, 2003.

J. A. Goebel and F. S. Petit, Na 2 SO 4 -induced accelerated oxidation (hot corrosion) of nickel, Metall. Trans. 1, pp.1943-1954, 1970.

N. S. Borstein and M. A. Decrescente, The role of sodium in the accelerated oxidation phenomenon termed sulfidation, Metallurgical Transactions, vol.34, issue.no. 6, pp.2875-2883, 1971.
DOI : 10.1007/BF02813266

N. Eliaz, G. Shemesh, and R. M. Latanision, Hot corrosion in gas turbine components, Engineering Failure Analysis, vol.9, issue.1, pp.31-43, 2002.
DOI : 10.1016/S1350-6307(00)00035-2

J. A. Goebel, F. S. Petit, and G. W. Goward, Mechanisms for the hot corrsosion of nickel-base alloys, Metall. Trans, pp.4-261, 1973.

G. Béranger and H. Mazille, Corrosion des métaux et alliages ? Mécanismes et phénomènes, 2002.

G. R. Holcomb, Hot corrosion in a temperature gradient, Materials and Corrosion, vol.51, issue.8, pp.564-569, 2000.
DOI : 10.1002/1521-4176(200008)51:8<564::AID-MACO564>3.0.CO;2-4

R. A. Rapp, Hot corrosion of materials: a fluxing mechanism?, Corrosion Science, vol.44, issue.2, pp.209-221, 2002.
DOI : 10.1016/S0010-938X(01)00057-9

H. H. Krause, Chlorine corrosion in waste incinerator materials performance in waste incineration systems, pp.1-1, 1987.

Y. Shinata, F. Takahashi, and K. Hashiura, NaCl-induced hot corrosion of stainless steels, Materials Science and Engineering, vol.87, pp.399-405, 1987.
DOI : 10.1016/0025-5416(87)90404-6

F. Lebel, Etude des phénomènes de corrosion haute température en environnement type UVED, 2008.

B. P. Monthy and D. A. Shores, Role of chlorides in hot corrosion of cast Fe-Cr-Ni alloy, Corros. Sci, vol.46, pp.2893-2907, 2004.

C. Chan, Behaviour of metals under the conditions of roasting MSW incinerator fly ash with chlorinating agents, Journal of Hazardous Materials, vol.64, issue.1, pp.75-89, 1999.
DOI : 10.1016/S0304-3894(98)00227-1

N. Otsuka, Effects of fuel impurities on the fireside corrosion of boiler tubes in advanced power generating systems???a thermodynamic calculation of deposit chemistry, Corrosion Science, vol.44, issue.2, pp.265-283, 2002.
DOI : 10.1016/S0010-938X(01)00060-9

G. Sorell, The role of chlorine in high temperature corrosion in waste-to-energy plants, Materials at High Temperatures, vol.64, issue.947, pp.207-220, 1997.
DOI : 10.5006/1.3280466

H. P. Nielsen, F. J. Frandsen, K. Dam-johansen, and L. L. Baxter, The implications of chlorine-associated corrosion on the operation of biomass-fired boilers, Progress in Energy and Combustion Science, vol.26, issue.3, pp.283-298, 2000.
DOI : 10.1016/S0360-1285(00)00003-4

M. A. Uusitalo, P. M. Vuoristo, and T. Mantyla, High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits, Corrosion Science, vol.46, issue.6, pp.46-1311, 2004.
DOI : 10.1016/j.corsci.2003.09.026

H. P. Nielsen, F. J. Frandsen, K. Dam-johansen, and L. L. Baxter, The implications of chlorine-associated corrosion on the operation of biomass-fired boilers, Progress in Energy and Combustion Science, vol.26, issue.3, pp.283-298, 2000.
DOI : 10.1016/S0360-1285(00)00003-4

H. J. Grabke, E. Reese, and M. Spiegel, The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits, Corrosion Science, vol.37, issue.7, pp.1023-1043, 1995.
DOI : 10.1016/0010-938X(95)00011-8

L. L. Baxter, T. R. Miles, and B. M. Jenkins, The behavior of inorganic material in biomass-fired power boilersfield and laboratory experiences Alkali deposits found in biomass power plants, 1996.

C. Pettersson, L. G. Johansson, and J. E. Svensson, The Influence of Small Amounts of KCl(s) on the Initial Stages of the Corrosion of Alloy Sanicro 28 at 600????C, Oxidation of Metals, vol.64, issue.1???2, pp.70-241, 2008.
DOI : 10.1007/s11085-008-9118-x

B. Skrifvars, R. Backman, and M. Hupa, Corrosion of superheater steel materials under alkali salt deposits Part 1: The effect of salt deposit composition and temperature, Corrosion Science, vol.50, issue.5, pp.1274-1282, 2008.
DOI : 10.1016/j.corsci.2008.01.010

Y. Shinata, Accelerated oxidation rate of chromium induced by sodium chloride, Oxidation of Metals, vol.4, issue.5-6, pp.315-332, 1987.
DOI : 10.1007/BF00659274

D. A. Shores and B. P. Mohanty, Role of chlorides in hot corrosion of a cast Fe???Cr???Ni alloy. Part II: thermochemical model studies, Corrosion Science, vol.46, issue.12, pp.2909-2924, 2004.
DOI : 10.1016/j.corsci.2004.04.014

Y. Shinata and Y. Nishi, NaCl-induced accelerated oxidation of chromium, Oxidation of Metals, vol.10, issue.3-4, pp.201-212, 1986.
DOI : 10.1007/BF00659184

S. Henry, Influence de la vapeur d'eau sur l'oxydation à haute température du chrome, 2000.

K. Weulersse-mouturat, Étude de la corrosion à chaud de tubes de surchauffeurs en incinérateurs d'ordures ménagères et en centrales à charbon, contribution à la prévision de la durée de vie, 2003.

Y. N. Chang and F. I. Wei, High-temperature chlorine corrosion of metals and alloys, Journal of Materials Science, vol.39, issue.7, pp.3693-3698, 1991.
DOI : 10.1007/BF01184958

I. G. Wright and H. H. Krause, Assessment of factors affecting boiler tube lifetime in waste-fired steam generators: new opportunities for research and technology development, 1994.

Y. Ihara, H. Ohgame, K. Sakiyama, and K. Hashimoto, The corrosion behaviour of iron in hydrogen chloride gas and gas mixtures of hydrogen chloride and oxygen at high temperatures, Corrosion Science, vol.21, issue.12, pp.805-817, 1981.
DOI : 10.1016/0010-938X(81)90023-8

M. Hupa, P. Backman, R. Backman, and H. Tran, Incinerating municipal and industrial waste, p.161, 1989.

D. Young, High Temperature Oxidation and Corrosion of Metals, 2008.

S. Chevalier, P. Juzon, G. Borchardt, A. Galerie, J. P. Przybylski et al., High-Temperature Oxidation of Fe3Al and Fe3Al???Zr Intermetallics, Oxidation of Metals, vol.13, issue.254, pp.43-64, 2010.
DOI : 10.1007/s11085-009-9168-8

A. Galerie, E. N-'dah, Y. Wouters, and F. Roussel-dherbey, Influence of a TiO2 surface treatment on the growth and adhesion of alumina scales on FeCrAl alloys, Materials and Corrosion, vol.23, issue.464, pp.423-428, 2008.
DOI : 10.1002/maco.200804125

URL : https://hal.archives-ouvertes.fr/hal-00382042

R. E. Lobnig, H. P. Schmidt, K. Ennesen, and H. J. Grabke, Diffusion of cations in chromia layers grown on iron-base alloys, Oxidation of Metals, vol.30, issue.12, pp.81-93, 1992.
DOI : 10.1007/BF00665632

J. Issartel, S. Martoia, V. Parry, A. Galerie, and Y. Wouters, Influence of the atmosphere on the initial oxidation of the ferritic steel AISI 441, publication en cours, Corros. Sci, 2012.

S. Seal, S. C. Kuiry, and L. Bracho, Surface chemistry of oxide scale on IN-738LC superalloy : effect of long-term exposure in air at 1173K, Oxidation of Metals, vol.57, issue.3/4, pp.297-322, 2002.
DOI : 10.1023/A:1014878402960

X. J. Zhang, Y. Niu, and F. Guesmundo, Oxidation of the three-phase Cu???20Ni???30Cr and Cu???20Ni???40Cr alloys at 700???800 ??C in 1 atm O2, Corrosion Science, vol.46, issue.11, pp.46-2837, 2004.
DOI : 10.1016/j.corsci.2004.03.018

P. Berthod, Influence of Chromium Carbides on the High Temperature Oxidation Behavior and on Chromium Diffusion in Nickel-Base Alloys, Oxidation of Metals, vol.121, issue.7, pp.77-96, 2007.
DOI : 10.1007/s11085-007-9062-1

W. P. Stroud and R. A. Rapp, High temperature metal halide chemistry, p.547, 1978.

P. D. Jose, D. K. Gupta, and R. A. Rapp, Solubility of ??-Al[sub 2]O[sub 3] in Fused Na[sub 2]SO[sub 4] at 1200 K, Journal of The Electrochemical Society, vol.132, issue.3, p.735, 1985.
DOI : 10.1149/1.2113944

M. A. Usitalo, P. M. Vuoristo, and T. A. Mantyla, High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits, Corrosion Science, vol.46, issue.6, pp.46-1311, 2004.
DOI : 10.1016/j.corsci.2003.09.026

A. Zahs, M. Spiegel, and H. J. Grabke, Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400???700??C, Corrosion Science, vol.42, issue.6, pp.42-1093, 2000.
DOI : 10.1016/S0010-938X(99)00142-0

S. Henry, Influence de la vapeur d'eau sur l'oxydation à haute temperature du chrome et quelques aciers inoxydables ferritiques stabilizes, Thèse INPG, 2000.

V. P. Deodeshmukh and S. K. Srivastava, Long-Term Cyclic-Oxidation Behavior of Selected High Temperature Alloys, Superalloys 2008 (Eleventh International Symposium), 2008.
DOI : 10.7449/2008/Superalloys_2008_689_698

V. P. Deodeshmukh, S. J. Matthews, and D. L. Klarstrom, High-temperature oxidation performance of a new alumina-forming Ni???Fe???Cr???Al alloy in flowing air, International Journal of Hydrogen Energy, vol.36, issue.7, pp.36-4580, 2011.
DOI : 10.1016/j.ijhydene.2010.04.099

T. Horita, Y. Xiong, K. Yamaji, H. Kishimoto, N. Sakai et al., Imaging of mass transports around the oxide scale/Fe?Cr alloy interfaces, Solid State Ionics, vol.174, issue.1-4, pp.41-48, 2004.
DOI : 10.1016/j.ssi.2004.07.040

R. A. Rapp, Hot corrosion of materials: a fluxing mechanism?, Corrosion Science, vol.44, issue.2, pp.209-221, 2002.
DOI : 10.1016/S0010-938X(01)00057-9

G. M. Liu, F. Yu, J. H. Tian, and J. H. Ma, Influence of pre-oxidation on the hot corrosion of M38G superalloy in the mixture of Na2SO4???NaCl melts, Materials Science and Engineering: A, vol.496, issue.1-2, pp.40-44, 2008.
DOI : 10.1016/j.msea.2008.04.046

S. Zhao, X. Xie, and G. D. Smith, The oxidation behavior of the new nickel-based superalloy Inconel 740 with and without Na2SO4 deposit, Surface and Coatings Technology, vol.185, issue.2-3, pp.185-178, 2004.
DOI : 10.1016/j.surfcoat.2003.12.003

C. Wagner, Theoretical Analysis of the Diffusion Processes Determining the Oxidation Rate of Alloys, Journal of The Electrochemical Society, vol.99, issue.10, p.369, 1952.
DOI : 10.1149/1.2779605

G. Strehl, D. Naumenko, H. Al-badairy, L. M. Lobo, G. Borchardt et al., The effect of aluminium depletion on the oxidation behaviour of FeCrAl foils, Materials at High Temperatures, vol.17, issue.1, pp.17-87, 2000.
DOI : 10.1016/0167-2738(92)90005-A

M. K. Hossain and S. R. Saunders, A microstructural study of the influence of NaCl vapor on the oxidation of a Ni-Cr-Al alloy at 850???C, Oxidation of Metals, vol.122, issue.1, pp.12-13, 1978.
DOI : 10.1007/BF00609972

R. Bender and M. Schütze, The role of alloying elements in commercial alloys for corrosion resistance in oxidizing-chloridizing atmospheres. Part I: Literature evaluation and thermodynamic calculations on phase stabilities, Materials and Corrosion, vol.54, issue.8, pp.567-586, 2003.
DOI : 10.1002/maco.200390129

K. M. Prasanna, A. S. Khanna, R. Chandra, and W. J. Quadakkers, Effect of?-alumina formation on the growth kinetics of alumina-forming superalloys, Oxidation of Metals, vol.131, issue.5-6, pp.46-465, 1996.
DOI : 10.1007/BF01048641

D. J. Baxter and K. Natesan, Mechanical considerations in the degradation of structural materials in aggressive environments at high temperature, Reviews on high temperature materials, pp.5-149, 1983.

T. J. Nijdam, L. P. Jeurgens, and W. G. Sloof, Promoting exclusive ??-Al2O3 growth upon high-temperature oxidation of NiCrAl alloys: experiment versus model predictions, Acta Materialia, vol.53, issue.6, pp.1643-1653, 2005.
DOI : 10.1016/j.actamat.2004.12.014

X. Liu, L. Huang, Z. B. Bao, H. Wei, X. F. Sun et al., Oxidation Behavior of Graded NiCrAlYRe Coatings at 900, 1000 and 1100????C, Oxidation of Metals, vol.51, issue.164, pp.71-125, 2009.
DOI : 10.1007/s11085-008-9131-0

C. Badiniu and F. Laurella, Oxidation of FeCrAl alloy: influence of temperature and atmosphere on scale growth rate and mechanism, Surface and Coatings Technology, vol.135, issue.2-3, pp.291-298, 2001.
DOI : 10.1016/S0257-8972(00)00989-0

S. R. Saunders, M. Monteiro, and F. Rizzo, The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review, Progress in Materials Science, vol.53, issue.5, pp.775-837, 2008.
DOI : 10.1016/j.pmatsci.2007.11.001

H. W. Hsu and W. T. Tsai, High temperature corrosion behavior of siliconized 310 stainless steel, Materials Chemistry and Physics, vol.64, issue.2, pp.147-155, 2000.
DOI : 10.1016/S0254-0584(99)00264-3

S. Jianian, Z. Longjiang, and L. Tiefan, High-temperature oxidation of Fe-Cr alloys in wet oxygen, Oxidation of Metals, vol.116, issue.3-4, pp.449-469, 1997.
DOI : 10.1007/BF01670507

H. Konno, I. Saeki, and R. Furuichi, Film breakaway in 430 stainless steel in water vapor/oxygen atmospheres at elevated temperatures, Corrosion Engineering, pp.37-287, 1988.

S. Valette, A. Denoirjean, D. Tétard, and P. Lefort, C40E steel oxidation under CO2: Kinetics and reactional mechanism, Journal of Alloys and Compounds, vol.413, issue.1-2, pp.222-231, 2006.
DOI : 10.1016/j.jallcom.2005.04.213

I. Kvernes, M. Oliveira, and . Kofstad, High temperature oxidation of Fe-13Cr-xAl alloys in air/H 2 O vapour mixtures, Corros. Sci, pp.17-237, 1977.

. Da, I. Kim, . Sah, . Do, W. Kim et al., High temperature oxidation behavior of alloy 617 and Haynes 230 in impurety-controlled helium environments, Oxid. Met, pp.75-103, 2011.

T. J. Nijdam, L. P. Jeurgens, and W. G. Sloof, Promoting exclusive ??-Al2O3 growth upon high-temperature oxidation of NiCrAl alloys: experiment versus model predictions, Acta Materialia, vol.53, issue.6, pp.1643-1653, 2005.
DOI : 10.1016/j.actamat.2004.12.014

J. Pettersson, J. Svensson, and L. Johansson, KCl-induced corrosion of a 304-type austenitic stainless steel in O 2 and in O 2 + H 2 O environment: the influence of temperature, Oxid. Met, pp.72-159, 2009.

S. Mrowec, The problem of sulfur in high-temperature corrosion, Oxidation of Metals, vol.36, issue.182, pp.109-117, 1995.
DOI : 10.1007/BF01046727

J. J. Rameau, C. Duret, R. Morbioli, and P. Steinmetz, Corrosion des matériaux métalliques par les gaz en présence de phases condensées, 1985.

C. J. Wang and J. Lin, The oxidation of MAR M247 superalloy with Na 2 SO 4 coating, Mater. Chem. Phys, pp.76-123, 2002.

H. Ackermann, G. Teneva-kosseva, H. Köhne, and K. Lucka, Oxide scale formation on Al containing Ni???Cr-based high temperature alloys during application as flame tube material in recirculation oil burners, Materials and Corrosion, vol.1, issue.5, pp.59-380, 2008.
DOI : 10.1002/maco.200804119

M. A. Usitalo, P. M. Vuoristo, and T. A. Mantyla, High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits, Corrosion Science, vol.46, issue.6, pp.46-1311, 2004.
DOI : 10.1016/j.corsci.2003.09.026

T. S. Sidhu, S. Prakash, and R. D. , Hot corrosion and performance of nickel-based coatings, Curr. Sci, pp.90-131, 2006.

S. Chevalier, Traitements de surface et nouveaux matériaux : quelles solutions pour lutter contre la dégradation des matériaux à haute température ? Dijon : Éd Collection Sciences, 2007.

J. Zurek, G. H. Meier, E. Essuman, M. Hänsel, L. Singheiser et al., Effect of specimen thickness on the growth rate of chromia scales on Ni-base alloys in high- and low-pO2 gases, Journal of Alloys and Compounds, vol.467, issue.1-2, pp.450-458, 2009.
DOI : 10.1016/j.jallcom.2007.12.015

S. Nijdam, qui ont étudiés la nature de la couche d'oxyde formé sur un alliage ?-Ni-27Cr-9Al à 1100°C sous atmosphère oxydante et peu oxydante, certaines conditions favorisent la formation d'un film d'?- Al 2 O 3 au profit de Cr 2 O 3 ou NiO : -Une augmentation du flux d'aluminium diffusant du métal vers l

. De-même, un autre alliage aluminoformeur où la synthèse d'un film continu, homogène et adhérent d'alumine alpha assurerait également une excellente perspective. Le nouvel alliage Haynes 224 semble avoir été développé à cette fin [1] en limitant la teneur en aluminium (3, 8% au lieu de 4,1% pour l'alliage 214) et en augmentant la concentration en fer, p.1

V. P. Deodeshmukh, S. J. Matthews, and D. L. Klarstrom, High-temperature oxidation performance of a new alumina-forming Ni???Fe???Cr???Al alloy in flowing air, International Journal of Hydrogen Energy, vol.36, issue.7, pp.36-4580, 2011.
DOI : 10.1016/j.ijhydene.2010.04.099

F. S. Pettit and C. S. Giggings, Hot Corrosion. Superalloys II Sims, pp.327-358, 1987.

T. J. Nijdam, L. P. Jeurgens, and W. G. Sloof, Promoting exclusive ??-Al2O3 growth upon high-temperature oxidation of NiCrAl alloys: experiment versus model predictions, Acta Materialia, vol.53, issue.6, pp.1643-1653, 2005.
DOI : 10.1016/j.actamat.2004.12.014

K. F. Mccarty and D. R. Boehme, A Raman study of the systems Fe 3?x Cr x O 4 and Fe 2?x Cr x O 3, J. Solid State Chem, pp.79-98, 1989.

J. P. Bortolozzi, E. D. Banús, V. G. Milt, L. B. Gutierrez, and M. A. Ulla, The significance of passivation treatments on AISI 314 foam pieces to be used as substrates for catalytic applications, Applied Surface Science, vol.257, issue.2, pp.495-502, 2010.
DOI : 10.1016/j.apsusc.2010.07.019

E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. Nielsen, D. F. Johnson et al., (g), Theoretical and experimental investigation of the thermochemistry of CrO 2 (OH) 2(g), pp.1971-1980, 2007.
DOI : 10.1021/jp0647380

. Supplémentaires, Il serait ainsi intéressent de confirmer le rôle bénéfique jouer par le silicium sur la corrosion de l'alliage HR-120 en présence de sulfate de sodium. Ainsi, l'étude de Na 2 SO 4 sous atmosphère faiblement oxydante pour différents alliages de composition proche de celle du HR-120 mais dont la teneur en silicium varie

. Enfin, En effet, on a observé que la cinétique d'oxydation était sensible à la quantité du dépôt (plus le dépôt est important et plus la cinétique augmente) De même, le mode d'introduction du sel, son approvisionnement régulier ou l'ajout successif de composés de nature différente constituerait tout