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Introduction

Natural language translation is the communication of the meaning of a text in the source
language by means of an equivalent text in the target language. A collection of such
source texts along with their translation is referred to as a bitext or a parallel corpus. The
rich linguistic knowledge embedded in a bitext is valuable for many practical applications
in natural language processing, especially in the era of the Internet, when the body of
multilingual communications and translated texts is growing at a fast pace. While the most
predominant application for bitexts is Statistical Machine Translation (SMT), they are used
in multilingual (and monolingual) lexicography, word sense disambiguation, terminology
extraction, computer-aided language learning and translation studies, to name a few. The
potential of such translated resources is amplified when the hidden translation relation is
revealed, and the correspondence between text units is found. Although each text is typically
represented in a plain form, it possesses an intrinsic hierarchical structure composed of letters,
words, phrases, sentences, paragraphs, etc. While the translation process establishes an
equivalence relation between whole structures, bitext alignment aims to explicit this relation
between smaller text units at various levels of granularity.

The task of building bitexts and aligning them is well-defined only in the context of a
given application. For instance, translation studies or bilingual reading applications require
clean bitexts with known translation directions and other meta information. Alignments
must also be very accurate and cover all the words in the bitext. However, data-driven
applications such as SMT and multilingual information retrieval seek the regularities in large
amounts of parallel data, with focus on frequent words and expressions. Therefore, the
noise in the bitext and its alignment can be easily dealt with. State of the art SMT systems,
including phrase-based (Koehn, Och, and Marcu, 2003) hierarchical-based (Chiang, 2005), and
syntax-based (Galley et al., 2004; Melamed, 2004), learn translation rules from large corpora
of parallel sentences in two steps. First, the parallel sentences are aligned at the sub-sentential
level; translation rules are then extracted and evaluated to build the translation model. Put
informally, learning statistical translation models is made possible by the knowledge of
alignments, since they provide the necessary annotation from which translation decisions
can be learned. Figure 1 shows an example of an Arabic-English parallel sentence and its
alignment. In this dissertation, we will consider the task of automatically obtaining such

Half of what |say is meaningless; but | say it sothat the other half may reach you

NN DK T/

M\ad;ﬂ\dﬂ‘){@u‘dé)\r_ ‘;1\ d_,s\dc Caaill );‘2\ Slalyy

Figure 1: A sub-sentential level alignment for an aphorism from “Sand and Foam” by Khalil
Gibran (1974).
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INTRODUCTION

alignments for arbitrary parallel sentences. While our focus is on improving the translation
quality of a phrase-based system, the improvements obtained in alignment quality would
likely benefit the other applications as well.

Bitext alignment is an arduous task because meaning is not expressed seemingly across
languages. It varies along linguistic properties and cultural backgrounds of different lan-
guages, and also depends on the translation strategy that have been used to produce the
bitext. Therefore, the corresponding units do not necessarily have the same structural role and
position in their own languages. Indeed, a word in a language often matches a morpheme in
another, or contrarily, a whole phrase. This is all the more so true for non-literal translation
styles.

Current practices in bitext alignment

Recent advances in the field of machine learning, accompanied by increased computational
power have contributed to the development of data-driven, statistical approaches to solve
the alignment problem efficiently. At the center of such approaches are statistical models,
learned from the data, and used to evaluate and to select among alternative alignments the
“best” fit for a given bitext. In order to reduce the complexity, alignments at different levels of
granularity are produced separately: in a collection of bitexts, documents are first aligned,
then sentences inside them and finally words and phrases within the parallel sentences. The
focus of this dissertation is the sub-sentential alignments.

The early approaches modeled the alighment as a hidden variable in the translation
process (Brown et al., 1993). These models produce asymmetric, one-to-many alignments,
because each target word is assumed to be generated from one source word. However, this
assumption is over-simplistic since word alignments are in general symmetric and many-to-
many. The current practice to achieve symmetry is to build two one-to-many alignments in
opposite directions, and combine them using a symmetrization heuristic (Och, Tillmann, and
Ney, 1999; Koehn, Och, and Marcu, 2003; Och and Ney, 2003). These word alignments are
used in many applications, including modern phrase-based SMT systems. Typically, word
alignments are computed for large amounts of parallel sentences, then for each of which, a
heuristic is used to extract phrase pairs that are consistent with the word alignment (Koehn,
Och, and Marcu, 2003). The extracted phrase pairs are used then to train the translation
model.

Issues and challenges

The alignment problem is not solved and is currently an active research area. Generative
approaches are widely used in practice. They require a large amount of data to deliver a good
performance, and their computational complexity is one of their major issues. They model one
of the parallel sentences, or both of them, in addition to the alignment variable. This results
in an overhead complexity, which requires strong independence assumptions in order to
cope with. Moreover, incorporating features is prohibitively expensive. The alignment model
must take into consideration the alignment structure and the interaction between alignment
decisions. However, modeling these dependencies adds to the computational complexity
which can rapidly become prohibitive. Compared to alignment produced by human experts,
state of the art alignment systems produce many errors. For example, on an Arabic-English
parallel corpus, IBM model 4 (Brown et al., 1993) produced a 23% error rate, measured by
Alignment Error Rate (AER), which is a combination of precision and recall on word links®. It
is important to improve the alignment quality since it should improve the translation quality:

'The details of these experiments are given in Section 4.9.10



Improving alignments with discriminative techniques

less precision errors enhances the quality of extracted translation rules; and less recall errors
increases the number of such rules.

It is not clear, however, how improvements in alignment quality measured at the level of
words, are reflected in phrase-based translation systems. This is mainly due to the interaction
between the alignment and the translation rule extraction step. The “standard” extraction
heuristic tends to neutralize some improvements and propagate some errors. Furthermore, it
does not enable any control over the number of extracted phrase pairs, and does not take the
difference in their quality into consideration. For example, the phrase pairs extracted from the
English-French Europarl corpus (Koehn, 2005), contains 467 distinct translations for the phrase
“European commission”, and 672 distinct translations for “!”. Many of these translations are
inaccurate, however, the heuristic does not provide any mechanism to differentiate between
them during extraction. The majority of extraction methods are based on the links in the one
best word alignment whereas the other good alignments according to the model are ignored.
This is mainly because computing link posterior probabilities to evaluate individual links
under the entire alignment model is intractable for complicated models. Furthermore, phrase
extraction procedures typically rely only on word or phrase alignment models, which are
error-prone and are trained using objective functions that correlate only indirectly with the
translation task.

Improving alignments with discriminative techniques

In this dissertation we address the problems of word alignment and phrase pairs extraction.
We improve the state of the art in several ways using discriminative learning techniques.
Empirical results show significant improvements in the alignment quality as measured by
AER and the translation quality as measured by Bilingual Evaluation Understudy (BLEU).

Our first objective is to improve the intrinsic alignment quality and see how the improve-
ments correlate with the translation quality. We present a discriminative word alignment
model which recast the problem in a symmetric way. The alignment matrix is modeled
directly, requiring that an alignment decision must be made for every word pair. The discrimi-
native framework enables to model only the alignment variable, which matches the actual use
of the model in alignment prediction. Furthermore, incorporating additional features is less
expensive than for generative models. Discriminative models typically requires training data
annotated with alignment information, which can be helpful to learn what form alignments
are expected to have. Unlike generative models, a relatively small amount of annotated
data is sufficient to achieve state of the art performance. In order to take the interaction
between links into consideration, we find a middle-ground solution, using machine learning
stacking techniques, to model the structure indirectly without additional complexity. This
framework leads to significant improvements in alignment quality as measured by the AER on
an Arabic-English corpus, which carry on to the translation quality when using the standard
phrase pairs extraction method for large-scale Arabic-English NIST o9 data.

Our second objective is to enhance the phrase pair extraction procedure so as to make
a better use of the entire alignment distribution, and not only the “best” alignment. A
key concept to the success of such a method is an accurate estimation of the link posterior
probabilities. In our framework, we model these posteriors directly, in an inexpensive way.
This enables to use an alternative posterior-based extraction method, which is more sensitive
to improvements in alignment quality than the standard heuristic. Using the link posteriors
helps controlling the error propagation from the alignment model to the translation model.
Additionally, a finer control of the number of extracted phrase pairs is made possible so as to
balance the phrase pair precision and recall. This is extremely helpful to adapt the extraction
to the size of the available training data. Applying this method yields further improvements
in translation quality.
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INTRODUCTION

We push this approach one step further in order to incorporate additional useful infor-
mation to the extraction process. Similar to the word alignment, the reformulation of the
problem in a supervised framework offers a principled way to combine several features to
make the procedure more robust to alignment difficulties. However, obtaining annotations
for supervised learning is the main obstacle. To overcome this obstacle, we propose a simple
automatic method to label phrase pairs according to their utility to translation, which enables
incorporating the translation quality into the procedure. Thus, we obtain a set of phrase
pairs, labeled as useful, which we use as input to machine learning techniques that permit
learning from positive data only. The outcome is a model that distinguishes useful phrase
pairs from the others. This method produces enhancements in translation quality, in addition
to a better exploration of the space of possible phrase pairs than the previous extraction
methods. The same approach can be extended straightforwardly to other applications that
use phrase alignments. The only requirement is to be able to identify examples of the desired
category of phrase pairs.

These ideas, along with empirical results, are discussed in this dissertation. It is organized
in two parts. Part I provides an overview of the bitext alignment problem and of its appli-
cations, with a synthetic view of existing methods from the literature. We start in Chapter
1 with a detailed overview of the alignment problem from a linguistic point of view. We
point out its difficulties and present a generic framework to solve it. We also describe and
compare several evaluation methods for alignment quality. In Chapter 2, we provide the
reader with a detailed exposition of the state of the art alignment methods. We start by asym-
metric word-based alignment methods, including unsupervised generative approaches and
supervised discriminative approaches. Then, we describe symmetric word-based approaches
in Section 2.3. Such methods include symmetrization methods which operate on the output
of asymmetric methods, methods that use weighted matrices, and methods that score global
alignment structures. In Section 2.4, we present a different alignment paradigm based on
synchronous grammar and discuss the role of syntax in alignment. Phrase-based alignment
models are described in Section 2.5. This includes bisegmentation models and generalized
model to which the various extraction methods belong. In Section 2.6 we describe several cues
and correlation that may help the alignment algorithm and explain how they can represented
as features. Part I ends with Chapter 3, which describes the various components of a state of
the art phrase-based translation system. It also provides details on how translation models
are typically built from alignments.

Part II presents our original contribution concerning the use of discriminative learning
techniques to improve the alignment quality for statistical machine translation. We present
our discriminative word-based alignment framework in Chapter 4, and provide empirical
evidence of the improvement in alignment quality as measured by AER. In Chapter 5 we study
the impact of our alignment models on translation performance when using the standard
extraction heuristic. We also present an alternative extraction procedure that benefits from
the capability of our model to provide accurate estimates of link posteriors. We provide a set
of experiments showing improvements in translation quality as measured by BLEU using
both methods. In Chapter 6, we reformulate the general phrase alignment problem in the
supervised discriminative framework and show how single class classification techniques can
be used to solve it. The correlated experiments show improvements in translation quality.
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Part 1

Bitext Alignment






CHAPTER

The Alignment Problem: An Overview

Translation alignment aims to reveal the hidden structure of translation and to establish
correspondences between the elements of the translated texts. Such insight to the translation
process allows for a better understanding and exploitation of translated texts in numerous
applications. Translation involves the transfer of a text from one language into another while
conserving its meaning. The alignment task is then to recover the units of text used to perform
the transfer. Issues arise from the non-deterministic nature of translation which results in
many ways to re-express the meaning using translation units of variable granularity, ranging
between individual words and entire texts. While the granularity of translation units in a text
can not be determined beforehand, many applications of alignment and algorithms rely on
some assumptions. One such assumption is that the alignment can be established at the level
of words, which does not always match the reality.

After defining the generic bitext alignment problem in Section 1.1, we present in Section
1.2, a brief discussion regarding some of the inconsistencies between translation and alignment.
In Section 1.3 we define the most frequently used alignment assumptions corresponding to
different level of the text hierarchy including documents, sentence and words. Applications
of these alignment tasks are then discussed in Section 1.4. Sections 1.5 and 1.6 introduce the
generic computational framework in which we propose to consider the alignment problem.
They also provide the reader with an overview of the alignment search space constraints and
the correlations and cues used to guide the search for the best alignment. Finally, several
intrinsic and extrinsic evaluation methods of alignment quality are presented in Section 1.7.

1.1 Bitext Alignment

Translation is the process of transferring a text from a source language to a target language.
Each text is related to a specific socio-cultural context in which it should function properly.
Translation is described in terms of literal rendering of meaning, adherence to form. The
process of translation establishes a relation between a text' in the source language and its
translation in the target language. The source and target texts placed alongside each other are
called a parallel text or a bitext.

A text can be of any length: a document or a sentence or a collection thereof.
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Source Corpus Target Corpus
Document 1 Document 1 —1
Document 2 —==— Document 2 —
Document 3 - Sentence 1

E Sentence 1 / Sentence 2

Sentence 2 Sentence 3

Sentence 3 Sentence 4
Document 4 Document 3 —

Figure 1.1: Hierarchical structure of a bitext and alignments at each level in the hierarchy.

The task of bitext alignment is the identification and linking of corresponding linguistic
units in both halves of the parallel text>. The text on each side of a bitext decomposes
hierarchically into documents, which similarly decompose into sentences and then words3.
The alignment aims, then, to explain the coarse translation equivalence relation, established
at the root level of the bitext structure, in terms of finer units at different levels of granularity,
i.e. documents, sentences and words. Figure 1.1 depicts the hierarchical structures in a bitext
and alignments at the document and sentence levels. Figure 1 describes a word alignment.

1.2 Translation and Alignment

The presence of an alignment at some granularity and the difficulty of obtaining it is charac-
terized by the so called translation unit. The term translation unit refers to “the linguistic level
at which the source text is re-codified in target language ” (Shuttleworth and Cowie, 1997).
In other words, the element used by the translator when working on the source text and the
carrier of the atomic unit of meaning.

In this section, we describe the interaction between the translation unit and the alignment.
Particularly, we show that the translation unit can correspond to any level of the text structure
(documents, sentences or words) depending on many factors, including the type of texts to
be translated, the purpose of the translation, etc. We argue that obtaining alignments at a
finer granularity than the translation unit is difficult; and that the obtained alignments are
strongly context-dependent, and difficult to be reused in other contexts.

1.2.1 Identifying the Translation Unit

Translation units do not always correspond to words for two main reasons: the meaning-
language interface; and the translation strategy. The sentence is usually assumed to be the
“natural” equivalence unit: it is self-contained and meaningful grammatical structure, which
would not normally be divided during translation (Newmark, 1988).

1.2.1.1  Meaning-language interface

Words and concepts Meaning does not always factor into single words, the word is clearly
not the only unit of translation. From a linguistic point of view, Vinay and Darbelnet (1958)
reject the word as a unit of translation since translators focus on the semantic context rather
than on the formal properties of the individual words. For them, the unit is “the smallest
segment of the utterance whose signs are linked in such a way that they should not be
translated individually”. Different languages have different compounding, agglutinativity and
morphological characteristics, which means that expressing the same concept require a variable
number of word tokens. Illustrative examples of such non-correspondence at the word level

2The term “alignment” is a misnomer. In computer science, it technically implies that aligned units
are paired one-to-one and occur in the same order in both objects. This implication does not hold in
anslation. Translation does not preserve word order neither one-to-one relation. Nevertheless the term
alignment has continued to be used for word pairing.
3The detailed hierarchy of a text contains other elements such as paragraphs, phrases, clauses, etc.
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Des de 1912 , el Ferrocarril de Soller uneix les xiutats de Palma i Séller .

Desde 1912 , el Ferrocarril de Soller une las ciudades de Palma y Soller .

Figure 1.2: An example of Catalan to Spanish literal translation. Translation is monotonic and
word-to-word.

abound in translations, for example the French “tout de suite” is translated to English as
“immediately”. The problem is worse for distant language pairs, an example is the classic

Arabic word token & 3& JLT (AnulzimukumouhA) which translates into:
Persian as:  “. 15 cals ol 51 & J& s 51515 o 15 & olgne U1,
French as:  “devrions-nous vous l’imposer ”,

English as:  “shall we constrain you to (accept) it”, and
Turkish as:  “onu size zorla mi kabul ettirecegiz”.

Word lexical ambiguity Without the context, word-to-word matching is under-determined.
Homonyms, such as the pair left (past tense of leave) and left (opposite of right), and polysemes,
such as the pair book (a collection of pages) and book (to register), are two clear situations
where information outside the word itself is needed to prefer one meaning over the others.

The simplest message conveyed by the means of natural language has to be
interpreted because all the words are polysemic and take their actual meaning from
the connection with a given context and a given audience against the background
of a given situation (Ricoeur and Thompson, 1981).

Word order An additional major obstacle is that words representing the same concepts
do not occur in the same positions in input and output sentences. English for example, or
romance languages such as French, are said to have an SVO structure since typical sentence
order is (subject-verb-object); Japanese and Turkish are largely SOV; while classic Arabic
is mainly VSO but admits a free-word-order scheme similar to Latin, where the order of
constituents is not strictly regulated. Consequently, the alignment model has to explicitly
adopt a mechanism for reordering translated words into their final positions in the output.

1.2.1.2 Translation strategy

In addition to the meaning-language interface, the size of the translation unit is directly
related to the translation strategy being literal (formal) or free (dynamic) (Hatim and Munday,
2005).

On the one hand, literal (formal) translation preserves the form with translation units
being very much centered on adherence to the individual word, which makes the translation
units fine-grained and easy to spot. Such formal equivalence attempts to render the text
word-for-word, at the expense of natural expression in the target language. Figure 1.2 shows
an example of a literal translation. Meaning is packaged and transferred in small units. 4

On the other hand, free (dynamic) translation aims at capturing the sense of a longer
stretch of language, resulting in meaning packaged in longer coarse-grained, hard-to-identify

4Notice that such translations are not so common when the languages in question are more distant,
and are usually of a poor quality.
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Arabic: | e A pasl) o lbaall ola oSl (i)l e 4l 4llard Sl a2k
PSSy AL Ol 5 () pume (B aSSlalaa g oSl oy ca Sl Ay gl |
A ol

Literal Faithful ~ Balanced Idiomizing Free

Translation Strategy:

Literal:iThe bank presents the banking services by phone. The!
ﬁTeIebanking System welcomes you by the Islamic greeting§
' «assalamu ‘alaykum», completes your enquiries/transactions
within few seconds and sees you off saying «fi aman allah». ‘

Free: iThe first Islamic bank in the world is pleased to offer you a
“sophisticated service through Automated Teller Machine Cash
| Card. 3

Figure 1.3: An example of literal and free English translation of an Arabic advertisement. A
translation strategy closer to literal is more faithful to the form of the original text
than to its sense.

translation units, usually at the level of phrases and clauses. Such equivalence is called
"“functional’ since it attempts to convey the thought expressed in the source text, at the
expense of literalness, original word order, the source text’s grammatical voice, etc. Figure
1.3 develops an example from an advertisement promoting cash dispensing services given
by Hatim and Munday (2005) to illustrate the difference between free and literal translations
and the alignments they imply. The literal translation does not function in a population with
little or no Arabic skills to appreciate the nuance. Therefore, the alternative translation had
greatly departed from the form of the source text to convey its semantic and take its type
into account, its purpose and its targeted audience and their socio-cultural values. Under a
dynamic translation strategy, translation units can go beyond words, collations and idioms,
such as thematic and information structure, cohesion and pragmatics.

The choice of a translation strategy depends on the focus and the purpose of the translation.
Whether it is the form of the source text or its content (or both); whether it is the target text
form and content or its reader, etc. It also depends on the translator and his preferences,
interests and ideology.

The translation strategy also depends heavily on the text type. A legal text might require
a much closer, more literal translation than a piece of poetry. While the sense can always be
translated (Jakobson, 1959), the form often can not, due to linguistic divergences between
languages including grammatical and syntactic structure. The point where form begins to
contribute to sense is where we approach untranslatability. This clearly is most likely to be in
poetry, song, advertising, punning and so on, where sound and rhyme and double meaning
are unlikely to be recreated in the target language.

The literal versus free divide does not oppose a pair of fixed opposites, but a continuum.
Translations can be positioned at any point between the two ends as reproduced in Figure 1.3.
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French: Tableau de commandes simple et fonctionnel. 3 commandes
“suffisent @ maitriser Compact 3100.

Literal: Simple and functional control panel. 3 controls suffice to master
Compact 3100. |

Free: Technically advanced, simple to use : just (')n, off or pulse'.

Figure 1.4: Literal translation is explained using fine-grain translation units with direct cor-
respondences (“3 commandes” - “3 controls”). Free translation incorporate more
context making re-usability difficult in different context (“3 commandes” - “on, off
or pulse”).

1.2.2 Translation Units and Alignment Difficulty

The exploration of the translation equivalence relation and the finding of the alignments is
naturally done iteratively. Starting from the identification of parallel documents, down to
parallel paragraphs and sentences and finally to parallel words and phrases.

Alignments are hard to identify within a translation unit because it is translated atomically.
This can be clearly seen in examples. In the formal translation in Figure 1.2, the fine-grained
translation units, centered around the words, allow to easily obtain a word-to-word alignment.
Similarly, an easy word-to-word alignment can be obtained for the literal translation of Figure
1.3. However, for the dynamic translation where the translation unit is the sentence, sub-
sentential alignments become harder to obtain, whereas alignments can always be obtained at
a coarser level than the translation units.

In the majority of cases, the translation units lay somewhere between the word and the
sentence, and rarely cross its boundary. Therefore, sub-sentential alignment is difficult, while
sentence alignment is relatively easy; despite the fact that transpositions and rearrangements
may sometimes occur.

1.2.3 Translation Unit and Alignment-Context Bound

Since translation units are usually not decomposable, alignments at a finer grained level are
context-dependent. The interpretation of such alignments is left to the final application.

For example, current machine translation systems use aligned units discovered in bitexts
to automatically translate a new text, and possibly in a different context. Let us consider the
example in Figure 1.4. While aligned translation units: “tableau de commandes - control panel”
is still valid in a different context, “3 commandes - on, off or pulse” is not. In this example, a
strongly context-dependent translation is preferred for the sake of comprehensibility.

The point being made here can be further illustrated with the following example, taken
from two translations of the Arabic absurdist drama by Tawfik Al-Hakeem (1960) shown in
Figure 1.5. Such translations fall somewhere in a spectrum of translation approaches ranging
between dynamic and formal equivalence (Nida and Taber, 2003). Now, what does it mean to

7
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English Arabic
_ Now that | have warned you of this Al sda I clalinl cadl ad oY)
Executioner : . . . i
condition, do you still want me to sing? fe) da
Condemned : Go ahead. " 5
(sing)

Figure 1.5: A sample dynamic translation from an Arabic play by Tawfik Al-Hakeem (1960).

align “ &£ (Sing)” to “Go ahead” is a question that cannot be side-stepped so easily. As Martin
Kay puts it in his preface to Parallel Text Processing (Véronis, 2000): “at the very least, it seems
that it will have to mean different things to people with different purposes”. As an entry in a
bilingual dictionary, it might constitute a source of frustration, but for someone interested in
textual pragmatics or textual salience and dynamism it might stimulate important insights.

1.3 Alignment Granularity

We briefly mentioned in Section 1.2 that equivalence can be decomposed into smaller textual
units, The granularity of such units depending on linguistic properties of the text. Starting
from the bitext aligned only at the root level, finer and finer alignment granularity is obtained
sequentially. In this section we describe the main three levels of granularity of alignment:
document level, sentence level and sub-sentential level (phrase, chunk, word, etc.).

1.3.1 Document Alignment

The first alignment problem we consider is the construction of parallel corpora by aligning
documents. Building such a corpus from a multilingual data collection comprised of several
documents, requires preprocessing the text into words and sentences and then performing
the alignment.

Data collection of parallel documents that can be aligned at the document level are
provided by multilingual governments and agencies such as the Canadian Hansard and the
United Nations. Mining the web for parallel documents from multilingual websites is also a
potential source.

An example of a simple technique for automatic identification of parallel web sites is
STRANDS (Resnik, 1999; Resnik and Smith, 2003) which first locates possibly parallel web
sites; then generates candidate pairs of parallel web pages; and finally applies a structural
filter to the candidate set. An alternative to build parallel corpora is to extract them from
comparable corpora as done in (Fung and Cheung, 2004a; Fung and Cheung, 2004b).

1.3.2 Sentence Alignment

Sentence alignment is of ever-increasing utility with the advancement of corpus-based com-
putational linguistics. Many applications nowadays rely on parallel sentences as input to
their processing toolchain. Text is not always translated sentence by sentence. Long sentences
may be broken up, or short sentences may be merged. There are even some languages where
the clear indication of a sentence end is not part of the writing system (for instance, Thai).
Figure 1.6 shows an example of sentence aligned bitext.

Many sentence alignment methods have been proposed in the literature. Some are based
on the length of sentences (Brown, Lai, and Mercer, 1991; Gale and Church, 1993). Kay and
Roscheisen (1993) propose an iterative algorithm that uses basic features such as spelling

8



1.3. Alignment Granularity

English Arabic
1 She woke up at midnight. 0\. gl Julll ot vie 1
She always woke up then without
having to rely on an alarm clock. S AL S (e gl 1A 8 dadans o caalie ] adl
el (e slads (RVg o ol ddie e dilaind 2
A wish that had taken root in her Al 5 38 3 Lelaliy) e (il 53 Lgale el

awoke her with great accuracy.

Figure 1.6: A bitext aligned at the sentence level. (N. Mahfouz (Bayn al-Qasrayn) Palace Walk
(1962)).

similarity and word co-occurrences. Geometric (Melamed, 1996a) and pattern recognition
(Melamed, 1999) approaches have also been used to identify the alignments. Chang and Chen
(1997a); Melamed (1997) apply line detection methods from image processing. In addition
to basic statistics, lexical information proved helpful (Chen, 1993; Dagan, Church, and Gale,
1993; Utsuro et al., 1994; Wu, 1994; Langlais, 1997) and in more recent work of (Kueng and Su,
2002; Moore, 2002). Singh and Husain (2005) present a comparison between different sentence
alignment methods.

Since sentence alighment is dominated by one-to-one mappings without crossing links
(monotonic), simple cues such as length correlations, and incomplete lexical constraints are
often sufficient to perform reasonably well. However, in many cases, a previous alignment of
larger textual units (paragraphs, sections, chapters) is useful to improve alignment quality
and speed. Sentence alignment may also benefit from alignment of smaller units such as
word alignment (Kay and Roscheisen, 1993).

1.3.3 Sub-sentential Alignment

The focus of this dissertation is on alignment at a sub-sentential level: words, phrases clauses
and expressions. The input bitext to the alignment algorithm is a set of parallel sentences?,
generally aligned one-to-one. The output is a sub-sentential alignment®.

The first processing step is to tokenize the sentence into a sequence of distinct tokens (or
words?). Such tokenization must be adapted to the translation direction and to the language
pair at hand. The input parallel sentence is then represented as (f, e), where the vector
f = (fy,...,fNn) represents a source language sentence composed of N words and the vector
e = (eq,...,epn) similarly represents a target language sentence composed of M words.

The output alignment falls in one of two major categories: word and phrase alignment,
depending on the size of the sub-sentential units involved in the alignment. Phrases may be
restricted to match some linguistic definition as in chunk alignment.

1.3.3.1 Word alignment

A word alignment between two parallel sentences (f, e), of lengths N and M respectively,
refers to the set of links (pairing) between single word positions between the two sentences.
Let N ={i: 1 <1 < N} be the set of source positions and M = {j : 1 < j < M} be the set of

50r parallel text chunks, depending on the application in mind (Deng, Kumar, and Byrne, 2007)

®From now on, the term “alignment” refers to a sub-sentential alignment unless it is stated otherwise.

7In this context a word is stripped of its linguistic meaning and only represents a sequence of
non-blank characters.
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Thiago
habite
pas

ici

Thiago .

does Thiago n’ habite pas ici

- XX

. Thiago does not live here
here

Figure 1.7: Example of word alignment. Two equivalent representations of a word alignment are
given: matrix (left) and links (right).

target positions. The word alignment is defined as:
A ={(i,j):ieNandj e M}. (1.1)

A link (i,j) € A represents a translation relation between the associated words at the given
positions. Matching is only possible between single word positions, meaning that only single
words can be explicitly put in a translation relation.

Word alignment is typically non monotonic with crossing links, and not bijective, including
many-to-many associations. Unaligned words are authorized: not all positions should be
covered by a link®. Figure 1.7 gives an example of word alignment.

1.3.3.2 Phrase alignment

The word alignment can be generalized and instead of allowing only single words to be
linked, a phrase alignment allows for multiple words to be grouped together and linked
as if they would represent a single text unit called a segment or a phrase®. Phrases may be
contiguous or may contain gaps as in the French ‘‘ne * pas’’, hence called gappy phrases.

A segment can be represented by a coverage set containing the corresponding word indices.
The set p characterizes a source segment and r a target segment. A segment pair (p, r) is an
association between a source and a target segment. Unlike links in word alignment, a segment
pair can explicitly represent a many-to-many translation relation. A phrase alignment is then
defined as:

A={(p,r):p<CNandr C M} (1.2)

Alternatively, and in many cases more conveniently than coverage sets, segments can
be identified by their spans instead of their index sets, such that span(p) = (s,t) where
s = min(p) is the start position and t = max(r) is the end position. Excluded indices
(gaps) are kept in a separate set g. span(p) bounds the sentence words (fs, ..., fi) where
1 < s <t < N. The target segment can be defined similarly.

Segments can contain gaps and overlap arbitrarily or in some nested structure. However,
contiguous or disjoint segments might be required by some applications and such constraints
might be necessary. In the literature, the term “phrase alignment” typically refers to a disjoint
segment alignment. Figure 1.8 gives an example of phrase alignment.

8 Alternatively, unaligned words can be linked to a special null token, added to both sentences at

position o
9A phrase in this context does not necessarily correspond to any linguistic definition.
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Il a cassé sa pipe

He - e i
Il a cassé ses pipes

kicked ‘_’_'
the

——

bucket He kicked the bucket

Figure 1.8: Example of phrase alignment.

1.3.3.3 Structure and tree alignment

Structure alignment produces a matching between grammatical constituents of a sentence
pair. The segments to be aligned are obtained from constituent analysis of the sentences.
Tree alignment is a special case where the output must be strictly compositional, hierarchical
alignment, i. e. segments within two linked sub-trees align only to each other. The difference
between word and phrase alignment and structure alignment is that the input in the former
is only the sentence pair, while the input in the later is the sentence pair with its structural
annotation. These alignment can be viewed as phrase alignments with additional structure
constraints as we will describe in Section 1.6.1.3.

1.4 Applications

Bitext alignments at different levels of granularities have been exploited in a wide range of
applications in corpus based linguistics (Véronis, 2000).

Aligned text was used to compute cross-indexing for bilingual concordances (Warwick and
Russell, 1992), help language learners and bilingual readers, improve automatic translation
checking tools (Macklovitch, 1994), and provide better interfaces for lexicographers, annotators
and translators (Klavans and Tzoukermann, 1990). Other computer-aided translation tools
and translation memories have benefited from alignment for the extraction of domain-specific
translation of terminology (Gaussier and Langé, 1995; Langlais and Véronis, 1998; Langlais,
Foster, and Lapalme, 2000; Kwong et al., 2002; Bourdaillet et al., 2009; Espla, Sdnchez-Martinez,
and Forcada, 2011).

Alignments were used in automatic acquisition of word dictionaries from parallel corpora
(Melamed, 1996b), query expansion in monolingual information retrieval (Xu, Fraser, and
Weischedel, 2002; Riezler et al., 2007), cross-language information retrieval (Wang, 2005),
cross-lingual syntactic learning (Yarowsky, Ngai, and Wicentowski, 2001; Smith and Smith,
2004; Hwa et al,, 2005), synonym acquisition (Plas and Tiedemann, 2006), WordNet-like
lexico-semantic relation extraction (Diab, 2004; Sagot and Fiser, 2008), paraphrases (Pang,
Knight, and Marcu, 2003; Quirk, Brockett, and Dolan, 2004; Bannard and Callison-Burch, 2005),
word sense disambiguation (Resnik and Yarowsky, 1997). Even limitations of word alignment
models turned out to be helpful in identifying non-compositional idiomatic expressions
(Villada Moirén and Tiedemann, 2006).

In machine translation, alignment use is not reserved to statistical approaches, it can be
used in Example-Based Machine Translation (EBMT) (Nagao, 1984) for chunk alignment and
building translation bilexica, and even in non-statistical approaches for lexicon extraction and
rule induction. Alignments of various granularity can be exploited by different applications
as reproduced in Figure 1.9 (adapted from (Tiedemann, 2011)).

11
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Computer-aided translation / Example-based Rule-based Statistical WSD / Lexico-
Translation memories MT MT MT semantic relations
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N, * Preprocessing
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Figure 1.10: A framework for solving the alignment problem.

Alignments can also be used in “interlingual” translation where the source and target texts
belong to the same language; this includes rewording and paraphrase, and in intersemiotic
translation from verbal to non-verbal sign as music or image. Moreover, many alignment
algorithms can be straightforwardly generalized to non-linguistic applications where words,
phrases and sentences can be substituted by other kinds of tokens, segments and sequences.
Alignment algorithms are found in bioinformatics, for pairwise and multiple DNA and
RNA sequence alignment for genomes annotation (Sharma, 2008), in handwritten recognition
systems to align text images and their transcripts (Fischer et al., 2011). Similarly, alignment
techniques are used in ontology and XML schema matching (Euzenat and Shvaiko, 2007).

1.5 A Generic Framework for Alignment

We have described the bitext alignment problem from a linguistic angle, and discussed its
main characteristics and difficulties. We now turn our attention to applied computational
linguistics and present a framework in which a solution to the alignment problem can be
described. This framework is depicted in Figure 1.10. A generic representation of statistical
modeling in NLP is discussed in (Nivre, 2002).
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1.5. A Generic Framework for Alignment

The alignment method contains a model M which is simply a set of rules that represents
the facts of the world relevant to the alignment problem. The model is accompanied by an
algorithm which, given an instance of the problem, consults the model to find a solution
efficiently. The model can be “rule-based” or “statistical” where the rules are probabilized.
The algorithm is typically deterministic but can be stochastic, especially when computing
exact solutions to the alignment problem is intractable.

The acquisition method part is the factory where the model is constructed. The application
model M is instantiated in this factory from a parameterized model Mg by providing values
to the parameters 6.

At last, the evaluation method is concerned with assessing the performance of the compo-
nents of the framework. Each alignment approach is characterized by a set of decisions made
at different points in the framework. Such decisions vary along five axes:

e Input and output spaces. Both the input and the output of the framework are structured
objects. The input is for instance a pair of sentences x = (f,e) € Z* x A* where £ and A
are the vocabularies of the two languages. The input may be more complex than plain
sentences. Alignment may be required between nodes in the linguistic structures of the
sentences and not only between their units.

The output is an alignment representing translational correspondences between source
and target units. An alignment is denoted by'® A € A, where A is the set of all possible
alignments for the input x. The alignment space is huge and usually needs to be
restricted according to a set of constraints. A model of translational equivalence between a
pair of sentences implements such constraints and enumerates all possible alignment
structures.

e Search. The alignment predictor h € H,h : &* x A* — A maps the input space onto
the output space. For a given pair of sentences x, the predictor outputs their alignment
h(x) = A. The predictor usually uses an internal cost function w : Z* x A* x A — R,
used to rank the alignment candidates in the output space. Finding the best alignment
is then formulated as a search problem in the alignment space:

A =h(x) = gneiﬂ w(x, A). (1.3)

The search space A is typically very large. It includes all possible subsets of the Cartesian
product between the source and the target sentences. Therefore, an exhaustive brute-
force enumeration of all alignment is not tractable. However, under some independence
assumptions, such as the alignment of each word depends only on its neighbors, the
minimization can be performed efficiently using dynamic programming (DP). In many
cases the size of the search space is prohibitively large which implies the use of heuristic
search. A detailed discussion of the search space follows in Section 1.6.

e Model and parameterization. The cost function is defined according to a model M.
The model is parameterized with a set of parameters 6 € RY which are often learned
from the data. The model is a set of rules used to compute the cost function.

e Training data. The majority of statistical alignment techniques rely on a parallel corpus
for parameter estimation. Unsupervised learning is required if the the parallel corpus

is aligned only at the sentence level D = {&, £}l . Supervised learning can be
used if the training corpus is augmented with sub-sentential alighment annotation

D = {(&y, fx, Ak)}]]:j:1- A mid-ground scenario is the semi-supervised learning where
some training examples in the corpus are annotated while others are not.

oIt is worth noticing that an alignment A of x may have different definitions depending on the
alignment granularity (word, phrase, ... ). See Section 1.3 for examples.
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1. THE ALIGNMENT PROBLEM: AN OVERVIEW

e Parameter estimation. Learning parameters from the data is usually cast as a mini-
mization problem of a loss function. The loss is approximated by the empirical risk
estimated using the sample distribution of the training data:

N
N 1 ~
0 = min — E loss(Xi,Ai; hg). 1.
geRA Ni:1 (Xi,Ai; hg) (1.4)

The loss function loss(x, A; hg) measures how bad is the alignment predictor, param-
eterized by 0, for an input x given that the correct alignment is A. This implies that
parameter estimation naturally involves a search in the alignment space since the output
of the predictor has to be computed for each training instance as in Equation 1.3.

1.6 Alignment Space and Constraints

The set of alternative alignments is called the search space or the hypothesis space. An automatic
alignment algorithm has to include a mechanism to explore the search space and to decide
which alignment is best. If B is the set of all segment pairs that can be defined on a parallel sen-
tence, then the search space is its power set denoted A = P(B). Therefore, the size of the search
space is 2!2!, with |B| = the number of source segments x the number of target segments.
The size of B changes according to the constraints applied on the alignable segments.
In the case of word alignment, segmentation is fixed and possible source (target) segments
correspond to source (target) words. Hence, the size of the word alignment search space is
restricted to 2N*M. While in unconstrained phrase alignment we have 2N source segments

and 2M target segments, meaning that the size of the search space is 2

In order to select one alternative, the algorithm should be able to quantitatively evaluate
and compare alignments. This is usually done via a cost function w : A — R. How such
scoring function is actually calculated to reflect properly the translation relation is decided by
the alignment model that is chosen for a particular task. Alignment scores are typically derived
from distributional features, correlations and interactions between individual links.

Several problems require to explore the alignment search space. For instance, the alignment
problem itself which consists of the search in the hypothesis space for the optimal, “Viterbi”
alignment A in the sense of the cost function, as described in Equation 1.3. Another problem
is the computation of a weighted count for a specific segment pair under all alignments that
permit it, called the expectation problem:

epr= Y wkA). (1.5)

{AcA:(pr) €A}

Constraints on the hypothesis space of alighment are necessary for two main reasons.
First, the unrestricted search space is prohibitively too large to be exhaustively explored
efficiently. Therefore, a set of constraints is used to shrink the size of this space. Second,
constraints represent prior knowledge about the correspondence structure, and bias the
alignment towards some desired properties.

Constraints are expressed as limitations on segments (segmentations) and on their align-
ments (segment matching). A detailed discussion can be found in (Wu, 2010; Tiedemann,
2011).

1.6.1 Segment Constraints

Segment constraints restrict the set of source and target segments that can be aligned,
independently from each another and from the set of matchings that can be established
between them afterwords. For instance, only segments that correspond to linguistically

14



1.6. Alignment Space and Constraints

motivated units may be allowed. Without any restrictions, there are 5N

sentence of length N.

segments in a

1.6.1.1 Contiguity constraints

Segments can be constrained to a maximum number of gaps and gap size. For example, in
the English sentence "I do not want to play anymore", the segment indexed by p = {1, 3,7}
corresponding to "I * not *** anymore" has two gaps, the first is of size one and the second is
of size three. A segment p is contiguous when it has no gap, that is when: Vi s.t. min(p) <
i < max(p) : i € p. The contiguous segment constraint reduces the number of segments in a
sentence of length N from 2™ to ZN(N + 1), thereby pruning much of the search space.

1.6.1.2 Length constraints

Length constraints specify the maximum number of source and target word tokens in allowed
in a segment pairs. Such constraints are applied to reduce the size of the hypothesis space.
If no segment can exceed the length of n, the number of segment extracted from a sentence
of length N becomes (n + 1) (]:) Using the length constraint in conjunction with using
only contiguous segment is widely used in applications such as machine translation. The
number of contiguous segments of maximum size n in a sentence of length N shrinks down
to ;(m+1)(2N —n).

While long segments capture wider context that short segments, they tend to be much
less frequent, and can be decomposed into shorter, and typically more frequent segments.
Therefore the length constraint forces the alignment algorithm to focus on short segments.

1.6.1.3 Structural constraints

Structure constraints provide ways to control the overlap between segments. Many alignment
algorithms consider one fixed disjoint segmentation of each monolingual sentence. A disjoint
segmentation of a sentence contains segments that cover the entire sentence and do not
overlap.

Authorized segments can be enriched with compositional (hierarchical) ones that result
from joining neighbor disjoint phrases to form a tree. Monolingual syntactic parsers can be
used to produce a grammatical tree where segments correspond to the grammatical phrases.

Word alignment implies disjoint fixed segmentation (at word boundaries) while alignment
with structural constraints on both sides are referred to as tree alignment.

1.6.2 Alignment Constraints

Alignment constraints are applied on the set of links between authorized segments.

1.6.2.1 Structural constraints

In tree alignment, the tree structures of the the input sentences are pre-computed using
parsers, then the alignment algorithm matches the nodes of these trees. Alternatively, the
parsing steps may be omitted, and it is up to the alignment algorithm to explore the possible
structures and output the structures and the alignments. Therefore, instead of using segment
constraints to pre-selecting the structure, a structural constraint on the output alignment
is applied. Similarly, the alignment algorithm may be constrained to output a disjoint
segmentation along with the alignment instead of fixing the segmentation a priori.
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Figure 1.11: Guiding alignment.

1.6.2.2 Range constraint

Range constraints include several types of constraints of which the main idea is to restrict the
permissible alignment links to some confined region in the hypothesis space.

One such example is the monotonicity constraints which require paired source and target
segments to occur in the same order in both aligned sentences. Monotonicity constraints are
rooted in automatic speech recognition applications where acoustic waveforms need to be
aligned monotonically to transcriptions. Similarly, Optical Character Recognition (OCR) to
text alignment and genome sequence alignment are monotonic.

Since crossings between links are not allowed under these constraints, choosing to match
two particular segments, as an anchor constraint, divides the parallel sentence into two disjoint
ones that could be aligned separately in a recursive way. Monotonicity and anchoring
constraints are more helpful for document and sentence alignment than for sub-sentence
alignment where the assumptions behind them become unreasonable.

Guiding constraints are applicable when a rough alignment already exists. A window
of given size around “guide links” specify the region of allowed links in the alignment
matrix, in which more accurate alignment can be looked for. This is shown in Figure 1.11.
Guiding constraints are suitable for iterative algorithms which start with a first estimate of
the alignment and use it to seek enhancement in subsequent iterations.

Distortion constraints are also frequently used to limit the maximum distance between
the positions of the aligned segments, calculated as the distance from the diagonal of the
alignment matrix.

1.6.2.3 Functional constraints

Alignment relation can be represented as a function mapping elements between the two sets
of source and target segments, by designating one set as the domain and the other as the
co-domain. In light of such representation, some alignment constraints can be expressed as
function properties. Three such constraints are represented in Figure 1.12.

Function representation imposes that every source segment should be aligned to exactly
one target segment, resulting in many-to-one constraints, or similarly one-to-many by exchang-
ing the domain and the co-domain. Naturally, these constraints lead to asymmetric models in
which the alignment direction is important. Injective, or one-to-one constraints require that
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Onto Bijective Many-to-one

Figure 1.12: Some of the alignment functional constrains.

each target segment is mapped to at most one source segment. Surjective constraints guaranty
that all target segments are aligned.

1.6.2.4 Bijectivity constraints

Bijectivity means that the alignment is one-to-one between disjoint segments that cover the
sentences. Many alignment algorithms, as well as the phrase-based'* decoding framework
(Och and Ney, 2004) operate under bijective constraints.

Bijective constraints yield a bisegmentation (Garcia-Varea et al., 2005; Wu, 2010). The space
of bijective alignment is sometimes called the permutation space (Cherry and Lin, 2006a) as
the number of possible alignments is reduced to s!, where s corresponds to the number of
segments.

In many cases, aligning all segments is an unrealistic assumption and we may wish that
some segments remain unmatched. Partial mapping can also be achieved by adding artificial
empty units (or null tokens), to algorithms that require a full mapping.

1.7 Evaluation Methods

At the end, an evaluation method is needed to assess the performance of the alignment system.
After applying the acquisition algorithm (Mg, A,) to some corpus C to construct the model
M, the application algorithm (M, A,) is used to align some bitext. These alignments are
then evaluated either intrinsically by comparison to a manual alignment or extrinsically by
evaluating their performance when plugged into an external application.

Quantitative evaluation of alignment quality is a difficult task, basically for the same
reasons that make the task of alignment itself difficult.

1.7.1 Intrinsic Measures

These methods estimate how much an alignment succeeds in accomplishing the task set by its
definition, namely finding all bilingual correspondences between source and target phrases.

1.7.1.1 Alignment Error Rate (AER)

For this purpose, gold alignments are established by human annotators on a test set, and used
as a reference for comparison. In order to simplify the annotation task, only word-level links
are typically used.

Alignment Error Rate (AER) (Och and Ney, 2003), thus, measures the quality of automatic
word alignments against these gold alignments. To confront the alignment difficulties,

TWe use the wording “segment” to refer to the same entity referred to by “phrase” in phrase-based
translation.
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1. THE ALIGNMENT PROBLEM: AN OVERVIEW

annotators are instructed to follow strict guidelines that provide conventional solutions
(Melamed, 1998). For example, annotators may be asked to never align functional words that
do not have counterparts instead of taking arbitrary decisions about them.

Although non-compositional phrases cannot be aligned on the word-level, it is the only
level on which the AER can be calculated. To resolve this mismatch, annotators are allowed to
produce two sets of links. The set S that contains sure points aligned with no ambiguity; and
the set P that contains in addition to sure points, probable points used where no one-to-one
correspondence is possible. For a given alignment A, precision, recall and AER are defined as:

Precision(A, P) = ‘A|2|P| if |A| > o, and 1 otherwise; (1.6)
A
Recall(A, S) = | ‘;S‘ if |S| > o, and 1 otherwise; (1.7)
ANP|+|A
AER(A,P,S)=1— ADPI+]AN S| if |A| +1S] > o, and o otherwise. (1.8)

|A] +|S]

Precision measures the overlap between the set of hypothesized links and the set of links
annotated as “possible” in the gold alignment. Precision is at its maximum when no links
are hypothesized (A = (), and decreases only when links that are not neither “possible” nor
“sure” are added.

Recall measures the percentage of “sure” links that are found in the hypothesized align-
ment. Recall is at its maximum when the alighment contains all possible links, and decreases
only when “sure” links are removed.

When no distinction between “sure” and “possible” links is made (S = P), 1-AER reduces
to to the standard F-measure.

It is argued in (Fraser and Marcu, 2007b) that when such distinction is present (S C P),
AER does not penalize unbalanced precision and recall contrarily to the F-measure. Therefore
it is possible to maximize AER by favoring precision over recall, which can be done by simply
guessing very few alignment links. This mathematical formulation of AER leads to strong
biases which questions its use as the reference metric for alignment quality. The same was
previously observed in (Goutte, Yamada, and Gaussier, 2004).

1.7.1.2 Balanced F-measure

An F-measure without the “sure” and “possible” distinction is presented in (Fraser and
Marcu, 2007b):

1

F-measure(A, S, «) = ) (1.9)

x + (1—«)
Precision (A, S) Recall(A,S)

where 0 < « < 1 controls the trade-off between precision and recall, which can be fine-tuned
for a specific task by varying o.. They show that this measure has a better ability to capture
intrinsic alignment quality, and is also reflected by better extrinsic prediction of alignment
performance in external applications such as translation.

1.7.1.3 Other word-level measures

Several efforts have been made along this research axis where alignment are compared against
word-level gold standards using some distance metric. The focus of these approaches was to
find weighting schemes of word links that reflect the many-to-many word correspondence
in non-compositional translations. The distinction between “sure” and “possible” links in
AER is introduced by (Och and Ney, 2003) to help properly evaluate non-compositional links,
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which is criticized in (Fraser and Marcu, 2007b). In (Melamed, 2000; Davis, 2002) the sum
of weights of all links to a word should be a constant to avoid overweighting such links. A
simple link precision/recall metric is developed in (Ahrenberg et al., 2000) to evaluate the
alignment of multiple English words to the large compound words in Germanic languages.

These various methods of comparisons are based solely on one aspect of the alignments,
namely the present links. Additional characteristics of the alignment are investigated in
(Guzman, Gao, and Vogel, 2009), and compared against those of hand-aligned gold standards.
The idea is to use a richer representation of the compared alignments, so as to get a deeper
understanding of their differences and similarities. These characteristics have the form of
summary information concerning either present links, such as the total number of links in
an alignment and its average link density; or missing links such as the number of unaligned
words and nonalignment rate. While these statistics characterize different aspects of an
alignment, there exists no measure that uses them quantitatively.

All these evaluation metrics share the need for gold alignments. This can be avoided
by working out a confidence measure (Huang, 2009) by simple combination of posterior
probabilities of individual links, under some alignment model. This confidence measure is
showed to be correlated with the standard F-measure, which makes it useful when no gold
alignments are available.

The main issue with word-level evaluation metrics is the difficulty to deal with non-
compositional phrase alignment. A single non-compositional correspondences are usually
annotated with many-to-many alignments. However, word-level metrics treat these links
individually as in one-to-one correspondence. This mismatch is addressed in phrase-level
measures.

1.7.1.4 Phrase-level measures

In order to solve the non-compositional phrase evaluation problem some measures consider
gold standards that include linked units at the phrase-level.

Some approaches to measure the alignment quality do not involve using a gold standard
word alignment, but instead build a translation lexicon from the whole alignment. Wu and
Xia (1995) sample the translation lexicon built from the alignment and uses both manual
and automatic filters to measure precision. Melamed (2000) measures probability weighted
precision manually, that is then used to estimate probability weighted recall. Alignments
can be compared to entries in a dictionary as in (Koehn and Knight, 2002), or to reference
bilingual lexicon (Lardilleux, Gosme, and Lepage, 2010). The disadvantage of these methods is
that phrase-level gold standards are not easily obtainable; and that phrase pairs are evaluated
out of the context from which they were extracted.

A measure proposed in (Ayan and Dorr, 2006b) called Phrase Consistency Error Rate
(PCER) attempts to remedy both of these problems, and avoids overweighting links in non-
compositional units. Similar to F-measure, PCER incorporates sentence-level context and
equally weights precision and recall over phrases extracted from the hypothesized alignment
with respect to phrases extracted from the gold alignment.

As in the word-level case, phrase pairs can be compared to reference ones according
to additional characteristics (Guzman, Gao, and Vogel, 2009). Interesting statistics would
characterize the singleton phrase pairs, length of the involved phrases, and unaligned words
inside them, called gaps.

1.7.2 Extrinsic Measures

The final judgment of the quality of a given alignment is made in the context of its final
application. Instead of comparing alignment to hand-aligned data, extrinsic metrics measure
the impact of the alignment on the output quality of the application. This is done by holding
all the components of the application unchanged, and varying only the alignments.
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In statistical machine translation as an application of word alignment, any translation
quality metric can be used as an extrinsic alignment quality measure. Most widely used in
practice are n-gram matching metrics such as BLEU (Papineni et al., 2002), NIST (Doddington,
2002), METEOR (Banerjee and Lavie, 2005), or TER (Snover et al., 2006a).

Finding an automatic approach for evaluating the translation quality that is correlated with
human judgment is a highly active research field. A comprehensive discussion of different
categories of such approaches can be found in (Koehn, 2010).

1.7.3 Correlation

In order for any alignment quality measure to be useful for some external application, it ought
to be a good predictor of the performance of the final application. Therefore, high correlation
between an intrinsic and an extrinsic measure guarantees that any improvement in quality
measured by the former carries to the later. This is important for many applications, such
as machine translation, since calculating the intrinsic measure is much less expensive than
calculating the translation quality measure. Such correlation allows the alignment algorithm
to use scoring functions that predict translation quality without involving the irrelevant
components of the external translation system.

Unfortunately, the existence of such correlated measures in machine translation is a
highly debatable subject, and completely contradictory conclusions can be drawn in varying
circumstances. This is not surprising since intrinsic measures that compare alignments to
gold standards lack the flexibility to consider different alignment properties for different
translation tasks (e.g. different language pairs and different training corpora sizes), and
different downstream translation approaches (Fraser, 2007; Lopez, 2008b).

1.8 Summary

Bitext alignment is the problem of finding correspondences between a text in the source
language and its translation in the target language. The goal is to explain the coarse translation
relation in the bitext, in terms of finer units at different levels of granularity, such as documents,
sentences and words. Translation, and therefore the alignment, is rarely monotonic or word-
for-word. This is mainly due to two reasons. First, languages differ in many ways, including
morphology, syntax, semantics and pragmatics. Therefore, concepts may be conveyed using
variable number of words and with different order across languages. Second, the translation
strategy varies from literal, which preserves the form of the original text and its meaning;
to free which is concerned only with meaning. For distant languages, and free translation,
alignments become coarse-grained with large differences in relative word order. Typically,
alignment is performed separately for each level of granularity, starting from the document
level down to the sub-sentential level. The focus of this dissertation is the word and phrase
alignment.

Nowadays, the body of translated texts is increasing steadily and many applications of
bitext alignment are emerging. For such applications, the presence of reliable automatic
alignment methods is vital. For this purpose, we described a data-driven approach based on
statistical modeling, and discussed several particularities of the alignment task. The number
of possible alignments of a bitext is typically very large. Therefore, constrains are applied
on the ways of segmenting each text, for instance, the number of words per segment may be
constrained, or segments may have to conform to a hierarchical structure; and the ways of
linking these segments, for instance only monotonic alignments may be allowed or crossing
within a certain range, the number of links per segment may also be constrained, etc. We
have also discussed an important aspect of the alignment framework which is the existence of
automatic quality metrics. Widely used intrinsic metrics compare the output of the alignment
framework to manual alignments, and combine recall and precision criteria as in AER and
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F-measures. However, most of such metrics function on the word level and may not be capable
of capturing equivalence for larger segments. Moreover, the alignment quality is ultimately
evaluated in the context of an external application such as machine translation using extrinsic
metrics such as BLEU, which is not necessarily correlated with the intrinsic quality. This
is a problem, because extrinsic metrics are typically more computationally expensive than
intrinsic metrics.
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CHAPTER

Alignment Models

In Chapter 1 we have described several aspects of the bitext alignment task and have presented
a generic framework for solving the alignment problem. We also have briefly described
document and sentence alignments as they are useful for many applications. They also
constitute a starting point for the task of sub-sentential alignment which is the focus of
this chapter. We divide the sub-sentential alignment models into word-based based and
phrase-based. Word-based models use a strict constraint on the length of the alignable units
and only consider words. This constraint reduces the alignment search space. However,
it does not match well the nature of translation for many language pairs and translation
strategies. Therefore, phrase-based models allow groups of words, called phrases, to align
as a whole. For each of word and phrase models, we explore the literature for concrete
instantiations of the alignment framework and discuss advantages and weaknesses of each
approach and how they relate to each other.

The first word-based approaches (Brown et al., 1993) modeled the alignment as hidden
variable in the translation process, using a generative joint model. The model explains how
the words on one side of a parallel sentence are generated from the words on the other
side. Since each target word is generated from one source word, this modeling results in
asymmetric, one-to-many alignments. Under such a generative model, the word alignments
are obtained as a by-product of training the translation models. However, modeling the
alignment variable directly is more advantageous, if the model is to be used only for alignment
prediction. This is the case for discriminative approaches that emerged later, which kept
the same asymmetric formulation but modeled only the alignment. Discriminative models
facilitate the incorporation of additional features and allow to benefit from available manual
alignments. Separating the alignment from the generative translation model opened the door
to many alternative parameterization of the model, including non-probabilistic linear models
and heuristic approaches.

The major limitation shared by all these models is their asymmetry and restriction to
one-to-many alignments. The shift from word- to phrase-based translation models as well
as new emerging applications requires symmetric alignments. This motivated the work on
symmetrization methods of two directional models, including heuristics and model-based
approaches. However, a more direct and principled way is to reformulate the problem and
to consider a symmetric representation of the alignment. Such symmetric models started to
appear in the late nineties. Wu (1997) proposed to represents the translation equivalence in
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Figure 2.1: Possible instantiation of the alignment framework.

J

a parallel sentence using Inversion Transduction Grammar (ITG) which is a special case of
Synchronous Context-Free Grammar (SCFG)*. The ITG is used to jointly parse the parallel
sentence and the terminal production rules determine the aligned segments. The original
formulation used a generative model to score a parallel sentence and its parse tree.Beside not
being able to capture all plausible alignment patterns, the main drawback of ITG models is
their computational complexity, in of the order of O(n®) where n is the length of the longest
sentence, which makes pruning techniques almost inevitable. The original formulation of the
ITG model allows for aligned segments to span several words, resulting in many-to-many
alignments. However, this comes at the price of a huge increase in the number of parameters
(terminal productions) which causes difficulties for learning the model. While this model can
be used for translation (transduction), later alternatives use a discriminative model to directly
score the alignment. Under such models, the ITG formalism can be seen as merely a way to
constrain the space of possible alignments. More flexibility can be gained by generalizing
this framework and alternative scoring functions and different constraints and pruning
techniques. This is what is done in matrix modeling approaches. The alignment variable is a
matrix in which each element represents the association between a source word and a target
word. Obtaining the alignment consists of making a binary decision for each matrix element
whether to align the corresponding words or not. This is a structured prediction problem in
which all the alignment decisions are potentially influenced by one another. Since there are
exponentially many configurations of the matrix, either strong independence assumptions or
aggressive pruning of the space of possible alignments is required.

This chapter is organized as follows. After recalling the definition of word-based align-
ments in Section 2.1, we survey in Section 2.2 models that cast the alignment problem as
sequence labeling problem, in which words in one sentence are labeled with the positions
of their counterpart in the other sentence. Under this formulation, the simple heuristics of
Section 2.2.1 have been used in the early days of alignment, before they were taken over by
approaches based on machine learning techniques. This includes unsupervised generative
models described in Section 2.2.2 and supervised discriminative models described in Section
2.2.3.

Symmetric approaches are discussed in Section 2.3. Sections 2.3.1 presents methods
that combine two or more asymmetric alignments to obtain a symmetric one. Hence, they
benefit from the advantages of sequence labeling approaches. Another class of methods
which we discuss in Section 2.3.2, is based on building an alignment matrix populated with
individual link costs, and then applying some algorithm on the matrix to obtain the alignment.
The main issue with these methods is the difficulty to model link interactions inside the
alignment. As a remedy, global discriminative models, which we discuss in Section 2.3.4,

TAlso called “Syntax-Directed Translation Schemata (SDTS)”
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Figure 2.2: Examples of different alignment models presented in this chapter, and how they can
be used to extract translation rules for phrase-based systems called bilexica. The
number of the corresponding section for each approach is shown.

score entire alignment structures and use a search guided by this score to make predictions.
Approximations are often needed to cope with the computational complexity stemming from
the modeling of link interactions.

At last, in Section 2.4 we discuss syntactic and hierarchical alignment models which rely on
the SCFG formalism which seems to be a good fit to model linguistic phenomena. The main
advantage of these models is their ability to account for long-distance reordering without
blowing up the alignment search space. Phrase-based models are discuss in Section 2.5. We
distinguish between bisegmentation models (Section 2.5.1), which produce an alignment
between non-overlapping phrases that covers the parallel sentence; and general phrase
alignment models (Section 2.5.2) which dispense with such constraints. Section 2.6 comprises
a general view of how good indicators and cues of alignment are encoded into meaningful
features.

Figure 2.2 show instances of various alignment approaches presented in this chapter, and
show how they can be used to extract translation rules for phrase-based systems.

2.1 Word-Based Alignment Models

Let us first recall the definition of a word alignment from Chapter 1. A word alignment
between two parallel sentences (e, f), of respective length M and N, is the set of links between
single word positions in the two sentences. Let N = {i : 1 < i < N} be the set of source
positions and M = {j : 1 <j < M} be the set of target positions. A word alignment A € A is
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2. ALIGNMENT MODELS

defined as:
A ={(i,j):ieNandje M} (2.1)

A link (i,j) € A represents a translation relation between the associated words at the given
positions. Coupling is only possible between single word positions, meaning that only single
words can be explicitly put in a translation relation. Word alignments use fixed segmentation
constraints on the output space. Additional constraints are applied further by different
approaches in the literature.

A word alignment is usually represented by a function A : N x M — {o, 1} mapping the
cells (1,j) in the alignment matrix to a binary value A; j indicating whether the corresponding
words are aligned or not. We should note that the number of distinct word alignments in A is
2NXM which is way too large to allow exhaustive enumeration for long sentences.

2.2 Asymmetric One-to-Many Methods

A first family of word alignment models recasts the problem as a sequence labeling task.
Each target? word e; is labeled with a source position i € N. We denote such alignment as
a to differentiate it from the unconstrained word alignment A. Formally, a is a sequence of
length M of source positions. Similarly to the general case, this alignment can be seen as a
function, but this time mapping positions in one sentence to positions in the other a : M — N.
The number of different possible label sequences is MN where M is the length of the target
sentence and N is the size of the label set (the source sentence positions). While this number
is smaller than the general case for unconstrained alignments (2N*M), it is still too large to
allow for exhaustive enumeration of all possible alignments.

General sequence labeling (functional, non-injective and non-surjective constraints) means
that each target word is aligned to exactly one source word position, resulting in one-to-many
alignments. Additional injectivity or bijectivity constraints result in one-to-one alignments.
In order to allow target words not to be linked to any particular source word, the codomain
of the function is usually augmented with a special null token at position (0). Linking a target
word to this particular source position implies unalignment. A source position can be linked
to zero or more target positions. No restriction on the distortion of the alignment is imposed,
so arbitrary crossing links are permitted.

Sequence labeling constraints thus result in directional, asymmetric, many-to-one align-
ments. Obtaining many-to-many alignments then requires exchanging the roles of the
sentences and recombining two directional alignments. Figure 2.3 show examples of two
alignments in opposite directions.

2.2.1 Heuristic Alignments

The simplest method makes the alighment decisions only depend on the similarity between
the words of the languages (Smadja, McKeown, and Hatzivassiloglou, 1996; Ker and Chang,
1997; Melamed, 2000). The Dice coefficient (Dice, 1945), log-likelihood ratio (Dunning, 1993)
and p-value resulting from statistical significance tests are used to populate the alignment
matrix with association scores c; j. From this association score matrix, the word alignment
is obtained by applying a sequence labeling heuristic. For instance, each target word e; is
aligned to the source word with the highest association score: a; = argmax; cy j.

The advantage of these heuristic approaches is their simplicity. However, the choice of the
scoring function is arbitrary. Furthermore, the strength of the association is overestimated
unless careful adjustment are taken as pointed out by Moore (2004b). Another problem is that
alignment decisions are made completely independently from one another, which is clearly

2Source and target are interchangeable.
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Figure 2.3: Two directional, one-to-many word alignments for a sentence pair.

unsuitable for many cases found in real alignments. This happens for instance when two
words co-occur frequently without being translations of one another, which is called indirect
associations (Melamed, 2000). Examples includes frequent words “le / and”; poly lexematic
“prendre la fuite / escape”; and named entities “Los Angeles / Los Angeles”, in this
example, co-occurrence information is not sufficient to decide whether Los should be aligned
with Los or with Angeles. Many arguments favor the use of more principled statistical
alignment methods.

2.2.2 Unsupervised Generative Sequence Models

Originating from statistical machine translation (Brown et al., 1993), unsupervised translation
models define the conditional lexical probability distribution p(elf) in terms of a hidden
structure representing the alignment between words in e and f. The probability is re-written
with the hidden alignment variable a = (a4,..., am) as follows:

plelf) = ) ple,alf). (2.2)

Adding the hidden alignment variable simplifies the structure of the model of e given f.
However, learning a model that incorporates a hidden variable is far from trivial.

We are going to consider two alternative representations, namely a Conditional Bayesian
Network (CBN) and a Conditional Random Field (CRF).

2.2.2.1  Conditional Bayesian networks

The joint distribution of e and a is often decomposed using a Bayesian network, which is
represented as a directed graph. Each vertex in the graph represents a random variable and
each arc encodes a dependency. The network models the joint distribution of the variables in
e and a conditionally on f which is not modeled, and therefore is referred to as a conditional
Bayesian network (Koller and Friedman, 2009).
The joint distribution is used in decoding to find the best alignment a*, sometimes called
the Viterbi alignment, given a sentence pair:
x ple, alf)
a argarlnaxp(ale,f) arg:nax plelf) (2.3)
where p(e|f) is not used for decoding since it is the same for all values of a. The joint
distribution is parameterized with a d-dimensional vector of numerical parameters 6 € R9.
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The chain rule can be applied to the joint distribution p(e, a|f) which can then be rewritten
in terms of individual words Conditional Probability Distribution (CPD):

M
ple,alf) =p(MIf) [ [ plajlel ™", al ", 1) plejlel ", o), V). (2.4)

j=1

e} ' is the sequence of target words from position 1 to the position j — 1. The dependencies
in each CPD can be greatly simplified by making independence assumptions.

Using this decomposition we obtain three probabilities: a length probability p(M|f)
which predicts the number of words in the target given the source; an alignment probability
plaj le) ™" a) ", fN) for each position in e, which predicts the aligned source position for a
given target position given a history of all generated target words and alignments, in addition
to the source; and a lexicon probability pleile ', dl, fll\l) which predicts the target word
given its alignment, a history of all generated target words and alignments, and the source
sentence.

Parameter estimation Estimation procedures vary depending on the actual parameteriza-
tion, data observability, the objective function and the optimization methods. A multinomial
parameterization of the CPDs is usually used in the alignment literature. Nevertheless, an
alternative log-linear based parameterization is sometimes considered. The log-likelihood
objective is widely used in practice and we will now present briefly the Maximum Likelihood
Estimation (MLE) method in the supervised and the unsupervised cases.

e Supervised learning. If the training data contains the alignment annotations in addition
to the parallel sentences {(&, fy, ik)}}:’:ﬂ the optimization problem is the following:

N
0" = argmax Z log p (&, axfy ), (2.5)
GE]RCI k=1

which has, for the multinomial parameterization, a closed-form solution computed
using relative frequencies of joint and marginal assignment of the random variables
involved within each CPD. Other type of parameterizations, log-linear for instance, do
not admit a closed form solution. When annotated data is available, discriminative
supervised models are more popular since they do not model variables that are not
used for alignment prediction.

e Unsupervised learning. A more frequent scenario is to have a large corpus of parallel
sentences without alignment information {&, fk}}:]: ;- In this case the hidden alignment
variable is marginalized and we optimize the log-likelihood of the observable sentences.
Assuming that all training sentence pairs X = (fy, &) are independent and identically
distributed and they sufficiently represent the entire population of translated sentences,
we can write:

K
0 :argmaxZIOg Z p(@y, alfy). (2.6)
OER? k=1  acAg,

which is not convex in many cases.

The likelihood now does not decompose and the problem requires optimizing a highly
nonlinear and multimodal function over a high-dimensional space which consists of
parameter assignments to all CPDs. To perform this optimization, one could use a
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generic optimization method such as gradient descent; or a more specialized iterative
algorithm called Expectation-Maximization (EM) (Dempster, Laird, and Rubin, 1977),
which is tailored to optimize likelihood functions. The challenge in the unsupervised
case is the non-convexity of the objective function with respect to the parameters 6.

Expectation-Maximization (EM) EM iterates between calculating the posterior distributions
over the hidden variables for the entire corpus {ax}}_, and updating the parameters 6.

Starting from initial parameter settings 8(°), the algorithm repeatedly executes the following
computations for t =o,1,...:

e Expectation (E-step): Given the parameters 8(*) compute the posterior distribution over
the alignment space for each training example X; which requires to perform inference
step3:

Pov (a, & [fi)
2 seas, Pow (@ &l

Va € As,, 9\ (@) = pyu (alk) = (2.7)

e Maximization (M-step): Knowing the posterior distribution of the training sentences

and the alignments derive a new set of parameters §(*+1).

N
6'**1) = arg max Z Z qi(a)logpg(a, &y|fy ). (2.8)
0 k=1 aEA;(k

The expectation step is more difficult than the maximization step, since it includes inference
over the set of all possible alignments. EM hill-climbs the likelihood function and is guaran-
teed, under some conditions, to converge to a local maximum. The quality of the obtained
local maximum greatly depends on the initialization.

IBM model 1 The model in Equation (2.4) has many dependencies and cannot be reliably
estimated from data. Independence assumptions are required to simplify its structures. Och
and Ney (2003) presents a systematic comparison of different independence assumptions
as presented in the very influential IBM models introduced by Brown et al. (1993) and the
hidden Markov model introduced by Vogel, Ney, and Tillmann (1996). In the following, we
discuss briefly these models which are now well known. Starting from Equation (2.4), Brown
et al. (1993) consider models of increasing complexity. The first model (IBM1) makes the
strongest independence assumptions and it is entirely based on lexical translations:

MIN) 5
ple,alf) = (1111(+7|1)734 Hp(ejlfa’.). (2.9)
j=1

The length model p(M|f) is simplified as p(M|N): the length of the target depends only on the

length of the source sentence. The alignment model p(aq; ‘61_1, ai_l, fN) is uniform W,

and the translation model p(e; le) ™" a), fN) is simplified as p(e;j|fq;) where the dependency
on all previous words is dropped. The parameters of IBM1 are 8 = {p(elf),V(e,f) € A x I},
where source and target vocabularies are restricted to the words encountered in the training
corpus. Note that this already corresponds to a large number of parameters |A| x |Z].

3For the sake of clarity, we make the parameters explicit in the notation of the distribution pgt).
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Inference and EM Even though enumerating all possible alignments is intractable, the
strong independence assumptions of IBM1 make inference very efficient. Since alignment
decisions are independent from one another, the best alignment is found my maximizing the
probability of each alignment link: Vi, ai = argmax, .4 p(eilfa;).

The simplicity of the model structure allows for efficient computation of the posteriors in
the E-step of EM. The computational complexity of the summation over the alignment space
can be reduced from O(MN) to quadratic O(MN). Furthermore, Brown et al. (1993) show
that the log-likelihood function is concave, which guarantees obtaining a global maximum
with EM. In a recent paper, Toutanova and Galley (2011) show that IBM1 it is not strictly
convex, and there is a large space of parameter values that achieve the same optimal value of
the objective. They perform several experiments to study the achieved variance in parameters
resulting from different random initialization in EM, and the impact of initialization on test
set log-likelihood and alignment error rate. Their experiments suggest that initialization does
matter in practice, contrary to the views of (Brown et al., 1993).

Limitations The only information that IBM1 uses is the word co-occurrence which makes
it similar to the alignment heuristic presented in 2.2.1. The heuristic alignment methods of
section 2.2.1 and the IBM1 model both have shortcomings related the bag-of-word assumption.
There is no model of distortion, the information about word positions is discarded. There
is no possible way to control the number of target words aligned to some source word.
These problems cannot be remedied without significantly altering the structure of the model,
as discussed later. However, two other limitations of IBM1 are not deeply structural and
are addressed by Moore (2004a) by merely changing the parameter estimation. These non-
structural problems are:

e Garbage collectors. Due to the maximization of the likelihood during EM, it is some-
times beneficial to align many words in the target to some rare source word. Such rare
words act as “garbage collectors” (Brown et al., 1993; Och and Ney, 2004). This problem
is not specific to IBM1 but it is worst that in other models because of its simple structure.
Moore (2004a) suggests that smoothing lexical probability limits this effect.

e null alignment. Too few target words get aligned to the source null word. This is
because the model has only one such token. Adding multiple null words improve the
alignment. null alignments are useful to account for corpus quality and translation
phenomena corresponding to deletion/insertion of words.

IBM Model 2 IBM2 extends the previous model with a distortion model, which introduces a
dependency on the absolute position of the source word. This dependency encodes preference
for some alignment patterns, helping, for instance, to select source positions that are close to
the diagonal of the alignment matrix.

M
ple,alf) = p(MIN) ] [ p(ajli,N,M)p(ejlfa;). (2.10)

j=1

pla; e~ a7 fl\') is no longer uniform and is simplified as p(a;[j, N,M). The dependency
on M is usually dropped to further reduce the number of parameters.

Similar to IBM1, the simple structure still allows for efficient computation of the summation
over all possible alignments. Nevertheless, unlike IBM1, the likelihood objective is no longer
concave and EM is guaranteed to converge only to a local maximum. The parameters obtained
from training IBM1 are often used to initialize the lexical parameters of IBM2. This helps EM
find a better point of the likelihood function.

30



2.2. Asymmetric One-to-Many Methods

a=(ay..as) €{0,..,4)° a=(a,..as) €{0,..,4)°
nll@ o o o @ o o null (0)
das(1) @ o o o o o das (1)
Buch) o @ @ o o o Buch (2)
vom@3 O O O O O O vom (3)
Buchladen(4) o o o o @ @ Buchladen(4) o© ©o ©O O
the book from the book store the book from the book store
e=(e; ..eg) EA° e=(e; ..es) EN°

Figure 2.4: Sequence labeling with bi-gram alignment dependencies.

Hidden Markov Model (HMM) alignment Preference to monotonic alignment as reflected
by the structure of IBM2 can be refined by modeling interactions between alignment decisions.

Translation is generally monotonic, hence the translations of two consecutive words in
one language are probably placed near each other in the other language. Another example of
dependency is linguistic patterns. When translating the Arabic pattern verb noun to English,
word positions are inverted. This dependency can be captured by modeling the distortion of
the translation, in this case aj —qj_; = —1.

Dagan, Church, and Gale (1993); Vogel, Ney, and Tillmann (1996) propose to model the
alignment as first-order Hidden Markov Model (Baum and Petrie, 1966). The translation
probability factors according to this model as:

M
ple,alf) = p(MIN) | [ plajlaj 1, N)p(ejlfa)- (2.11)

j=1

The transition probability depends only on the jump width in (Vogel, Ney, and Tillmann,
1996): p(ajlaj—_;, N) = p(aj; — aj_;). Models parameters are then the emission (same as for
IBM1) and transition probabilities. Figure 2.4 illustrates the added dependency. Several
approaches to enhance the integration of the null word in the model have been proposed in
the literature (Och and Ney, 2003; Liang, Taskar, and Klein, 2006).

The HMM model has attractive properties which make the basis for many extensions.
Toutanova, Ilhan, and Manning (2002) propose several models based on the HMM to address
different problems. These extensions aim to boost lexical translation probabilities with part-of-
speech (POS) tags; better modeling of the null alignments; and incorporating the notion of
fertility that we explain in the following IBM models.

Inference and EM The first-order HMM encodes dependencies between consecutive
labels and satisfies the optimal substructure requirement for dynamic programming. The best
alignment sequence can therefore be found using the Viterbi algorithm (Viterbi, 1967) with
computational complexity quadratic in the sequence length.

Parameter estimation is similar in principle to the IBM models. However, the log-likelihood
function in HMM models is not concave and EM is capable of finding only a local maximum.
EM is therefore initialized with the parameters of a trained IBM1 model to ensure a good
starting point. Summing over all possible alignment sequences in order to compute the
posterior probabilities can be done efficiently using the Baum-Welch algorithm (Baum et al.,
1970). Once the posteriors are computed, count expectations are accumulated over the entire
training corpus and the M-step is performed as before.

IBM model 3 Languages express meaning using different number of words per concept.
The English word “potatoes” for example, translates to “pommes de terre”. Hence the
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Figure 2.5: Generative story: starts with a fertility step (1), followed by a lexical substitution
step (2) and ends with a distortion step (3).

tendency of some source words to align with more target words than others is an important
phenomena. Yet, word fertility (Brown et al., 1993) is not accounted for in the models
presented previously. Each source word is said to have a fertility ¢ = o, 1, 2, ... equals to the
number of corresponding target words. So in the previous example, the alignment model
has no explicit preference to align the three French words “pommes de terre” to the same
English word “potatoes”. It leaves the decision entirely to lexical probabilities.

With IBM3, Brown et al. (1993) propose to enrich the IBM model 2 by adding for each
source word f;, a probability distribution over possible fertilities p(¢|f;). One the one hand, if
the distribution p(¢[potatoes) is peaked at ¢ = 3, the model will assign a higher probability
to alignment containing three links involving “potatoes”. Similarly, the tendency of some
source words, such as the English auxiliary do, to remain unaligned can be reinforced. On the
other hand, the number of target words to be aligned with the source null can be controlled
by setting its fertility. Brown et al. (1993) define the null fertility distribution p(¢,) as a
function of the sentence target length and a parameter p, representing the a priori probability
of a null alignment.

In IBM3, like in all generative models, the probability p(e, alf) factorizes according to the
model generative story. A pictorial example of the generative story of IBM3 is represented in
Figure 2.5. Each step in the model admits several alternatives, each of which is associated
with a parameter in generative modeling. Computing the probability of a given structure
amounts to multiplying the parameters as prescribed by the generative story. In Figure 2.5

one of the parameters is p($ = 2|4 53?) A useful way to enumerate all possible structures
and to compute their probabilities is to use a cascade of finite-state transducers (FSTs) (Mohri,
1997) as described in (Knight and Al-Onaizan, 1998).

Inference and EM Modeling fertility comes at the price of an increased complexity. A
new set of Fax parameters are needed for each source word f € I to represent the fertility
distribution. More importantly, due to the added dependencies, the search for the most
probable alignment under IBM3 is NP-hard (Udupa and Maji, 2006) and can not be performed
exactly. One technique for finding good solutions is to use alignments produced by IBM2
as a starting point for heuristic hill-climbing techniques, and to explore their neighboring
alignments by applying local modifications on the alignment. Other techniques are possible
as well (Brown et al., 1993; Och and Ney, 2003; Koehn, 2010). Such heuristics are also used
to sample the search space and to construct a set of high-probability alignments used as
an approximation of the search space which is used by Expectation-Maximization (EM) to
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compute the required statistics.

IBM model 4 and beyond Although IBM3 already covers many essential properties of align-
ments, it still makes a lot of assumptions. Its parameters are still independent of surrounding
contexts and interactions between alignment decisions are not explicitly considered.

IBM model 4 brings several improvements to IBM3:

e Distortion is modeled with relative positions instead of absolute ones, which helps
achieve a better generalization and reduce the effect of data sparsity.

e A first-order dependency between alignment decisions is introduced, which captures
the tendency of chunks of words to move together.

e A dependency on word classes for distortion models, which incorporate lexical knowl-
edge while dealing with data sparsity. Word classes are computed automatically in an
unsupervised way (Brown et al., 1993).

As with IBM model 3, training this model is very expensive and exhaustive count collection
is impossible. Hill-climbing techniques, based on model 3 alignments, are used in the same
manner as training is performed for IBM3.

Fertility-based models 3 and 4 are deficient in the sense that they waste probability mass
on impossible alignment structures. This is because they ignore whether or not a source
position has been chosen; and probability mass is reserved for source positions outside the
sentence boundaries (Brown et al., 1993; Och and Ney, 2003). A fix is proposed in IBM model
5 Brown et al. (1993) at the expense of additional training complexity and of an increase in
the number of parameters. Such additional complexity is not accompanied with visible gains
in model performance and hence IBM4 is more used in practice.

Local log-linear parameterization All the models described so far use a multinomial-based
parameterization of the CPDs. A Log-linear parameterization can be applied in two ways.
The first is to define a single globally normalized log-linear model (Markov field) for the joint
distribution i.e. over the entire space A* x A:

exp 0 'gle,a,f)

Z00.9 (2.12)

ple,alf) =

The resulting partition function (Z(6, f)) must sum over a very large space, and approxima-
tions are often required.

The second way to use a log-linear parameterization in the generative setting is to use
log-linear distributions over derivation steps in the generative process. In this view, Berg-
Kirkpatrick et al. (2010) propose to re-parameterize the emission model in IBM1 and HMM
with a log-linear model instead of a multinomial. The motivation for this parameterization is
two-fold:

e It enables to use hand-designed features to declaratively integrate domain knowledge
into a model without having to worry about their dependencies. An example of such
feature would be testing whether the source and target words are both capitalized.

e Simple training in the unsupervised setting due to the locality of the feature functions.
Optimizing the likelihood objective does not require to compute expectations over the
joint distribution as in globally normalized Markov field. EM can still be applied with
the E-step unchanged, and the M-step involving standard gradient-based optimization.
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Berg-Kirkpatrick et al. (2010) obtain improvement in performance over IBM1 and HMM by
using simple features functions of the involved words, including: edit distance, stem, prefixes,
appearance in a dictionary, etc. The same log-linear parameterization of the HMM has been
proposed in (Varea et al., 2001) but it was trained using supervised estimation techniques.
In fact, using rich features in log-linear parameterization is more widely used in globally
normalized conditional models, trained with supervised methods (See Section 2.2.3).

Discussion Word-based unsupervised generative models are widely used in practice since
they only require a sentence-aligned parallel corpus to train. However, they have several
drawbacks. Incorporating additional features is not straightforward. Additionally, large
amount of training data is required in order to obtain reasonable results.

2.2.2.2 Conditional Random Fields

The models previously described for lexical distribution are locally normalized. While the
CPDs of the joint models may be parameterized with log-linear models (Berg-Kirkpatrick
et al., 2010) (cf. 2.2.2.1), the requirement that models factorize according to a particular
generative process imposes a considerable restriction on the kinds of features that can be
incorporated?.

Instead of locally normalized models, we will now describe a globally normalized log-linear
model, also called a CRF (Lafferty, McCallum, and Pereira, 2001). The idea is to score each
input-output pair with a linear score which is normalized to a well-formed probability:

exp HTg(x, y)
yev, &P 07 g(x,¥)

plylx) = 5 (2.13)

The independence assumptions made by such models are usually represented using a an
undirected graph called a Markov Network. The linear score factors according to the network
structure into local parts called cligue potentials. The structure of these cliques is important for
efficient exact decoding. However, the probability does not necessarily factor according to
derivation steps or to a generative process.

Dyer et al. (2011) use such a model for the distribution p(e, alf) over the target sentence
and the hidden alignment variable. It can incorporate arbitrary, overlapping features, and it
can be used to infer word alignments>:

M 16|
1
p(e)alMa f) = Z(H,f) exp§ E ehgh(aj)aj—l)ej)ej—I»M)f)- (2-14)
j=1 h=1

The model enjoys the usual benefits of discriminative modeling, but is trained entirely
from parallel sentences without gold-standard word alignments. Figure 2.6, borrowed from
(Dyer et al., 2011) compares the CRF and the CBN structure for the IBM models.

For a given source sentence f € I*, the model defines a distribution over all possible
translations e € A* and all possible alignments that can be built for (e,f). The feature
functions used in this model perform many tests including word association measures,
positional information, lexical features similar to previous models, Hidden Markov Model
(HMM)-like path features, etc. The families of features used in the literature will be discussed
in Section 2.6.

4We refer the reader to (Koller and Friedman, 2009) for a full discussion of these alternative

representations.
5Blunsom and Cohn (2006); Allauzen and Wisniewski (2010) describes a similar model which encodes

the distribution p(ale, f) directly (cf. Section 2.2.3)
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2.2. Asymmetric One-to-Many Methods

Figure 2.6: On left is the conditional Bayesian network that encode dependencies in locally
normalized models (Brown et al., 1993; Berg-Kirkpatrick et al., 2010). On the right
is the conditional random field used by (Dyer et al., 2011) from which the figure is
adopted.

Inference The more dependencies the structure encodes, the harder exact inference is. As
can be seen from Equation (2.14), Dyer et al. (2011) design their features so as to keep
the width of the tree-decomposition of the graphical model sufficiently low to allow exact
inference. Under their independence assumptions, exact inference is tractable using dynamic
programming.

Unsupervised parameter estimation In the absence of alignment annotations, the parame-
ters 0* are selected to maximize the marginal conditional log-likelihood:

N
0" = arg maxZ log Z Pole,alf). (2.15)
0 i=1 acA

This objective is usually augmented with a regularization term in order to avoid overfitting
which leads to Maximum a posteriori Estimation (MAP estimation) of the parameters. Norms
of the parameter vector, such as ¢, = ||6]|, or {, = ||0]|3 or a combination thereof, are widely
used in practice. Regularization strength can be tuned to optimize some quality measure,
AER for instance.

Due to the presence of a hidden variable, the above objective is non-convex in the model
parameters 0. Therefore, algorithms that find a local optimum have to be used. Dyer et al.
(2011) use an online method that approximates {, regularization and only depends on the
gradient of the unregularized objective (Tsuruoka, Tsujii, and Ananiadou, 2009).

2.2.3 Supervised Discriminative Sequence Models

Models presented in Section 2.2.2 define the joint probability distribution p(e,alf) and use
it to infer the alignment. They are all trained in an unsupervised way. In this section we
consider supervised models for sequence structure prediction.

2.2.3.1  Maximum entropy models

The simplest approach is to directly estimate, for each target word, the probability the
alternative alignment decisions which range over the source positions. This can be done using
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2. ALIGNMENT MODELS

a popular multi-class classification framework called MaxEnt, of which CRF is a generalization
to more complex structures.

Ittycheriah and Roukos (2005) propose to model the conditional alignment distribution
using a log-linear model:

M

g P D_oplajlaj) + (1 —aplajlel £ (2.16)

1
p(ale,f) = W

j=1

The second term p(ajle]fi,f) is an observation model which measures the strength of
association between a source word and a target word, using a set of feature functions
extracted from the words and their context. The parameters of this model learned from an
annotated parallel corpus. Inference in the observation model is performed in polynomial
time since each word is labeled separately. The first term p(aj|aj_,) is a transition model, in
which each alignment link depends on the previous one. Therefore, Beam search is used to
find the alignment that maximizes the overall model p(ale, f). One problem of this model is
that in order to take advantage of the transition model, a large beam must be maintained,
which slows down the inference. Additionally, the parameter « is fixed to 0.5 by hand and
not learned from data.

The next model combine both the transition and the observation into a single model in
straightforward way using a CRF.

2.2.3.2 Conditional Random Fields

Blunsom and Cohn (2006) describe a discriminative sequence labeling model that directly
encodes the distribution p(ale, f) using a linear-chain CRF. With a structure similar to a HMM
exact inference and efficient learning algorithms are available through adaptations of the
Viterbi and forward-backward algorithms (Sutton and Mccallum, 2007). The model is given

a56 :

M 0]

1
plalef) = 75— expj; h;ehgh(aj, a1, f). (217)

The output variable of this model is significantly less complex than the model described
in Section 2.2.2.2: for a given sentence pair from the input space (e, f) € Z* x A* the model
defines a distribution over all possible alignments that can be built for (e, f) under the
constraints of the model. Conditioning on both sentences allows for wider range of cheap
features than in the model in (Dyer et al., 2011). However, this requires the availability of
alignment information during training as we will see next. Again, discussion of feature
functions choice is differed to Section 2.6. The best alignment is found using the Viterbi
algorithm, similar to inference with HMMs.

Supervised parameter estimation As with generative models, the parameters can be se-
lected to maximize the conditional log-likelihood. Since the only modeled variable is the
alignment, MLE requires a corpus annotated with alignment information for training

{(&1, B, @) 1R,

N
0" = argmax% Z 0" g(&y, fi, Ax) —log Z(0, e, f). (2.18)
0 k=1

6 A artificial start token is added to the sentence at position a, since the index of a sentence starts at
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2.3. Symmetric Many-to-Many Methods

Unlike joint models based on multinomial distributions, MLE for conditional log-linear
models does not have a closed-form solution. This is the price to be paid for allowing arbitrary
features. However, Equation 2.18 defines an unconstrained optimization problem of a function
that is smooth, differentiable and globally concave. Its global maximum can be obtained
using numerical optimization methods such as L-BFGS (L-BFGS) (Liu and Nocedal, 1989).

Blunsom and Cohn (2006) perform MAP estimation of the parameters, which can be
done efficiently for their model: the partition function and expected feature values can be
computed efficiently with DP. Instead of ¢, regularization, Blunsom and Cohn (2006) include
a Gaussian prior over the parameters’.

2.2.3.3 Large-Margin methods

Similarly to the MaxEnt model described in Section 2.2.3.1, Ma et al. (2008) propose to label
each target word with the source position having the maximal association score, where the
score is computed as:

score(ey, fj) = HTg(e,f,A). (2.19)

This multi-class classification problem is solved using Support Vector Machines (SVM) (Cris-
tianini and Shawe-Taylor, 2000), incorporating predictions of generative alignment models
(like IBM and HMM) as features, in addition to various syntactic and linguistic features.

In linear methods, such as perceptron and large-margin algorithms, the goal is to learn a
function which score each input-output pair with a linear combination of features functions.

Training considers the point g(Xi, yi) and all competing points g(Xi,y) for y # ¥;. The
goal is to choose a direction (encoded in the weight vector 8) along which the point g(xi, yi)
has a high score. Furthermore, the alternative points g(xi,y) should all receive scores that
are inversely proportional to the amount of error incurred in labeling X; with y when the
true answer is ¥;. This is naturally encoded in the cost function cost(Xi,y, ¥i; h), which now
becomes an abstract component of the learner. For a detailed discussion on large margin
methods we refer the reader to Taskar (2004).

Despite this different interpretation, the SVM cost-augmented objective is very similar to
the {,-regularized maximum a posteriori objective of the previous model (Gimpel and Smith,
2010). However, large margin methods are purely discriminative: they aim to perform well
on the task defined by their cost function. In other words, if we know how a model is to be
evaluated at decoding time, a cost function can be defined for use at training time, providing
an opportunity to better inform the learner about its real goals.

2.3 Symmetric Many-to-Many Methods

Sequence labeling approaches studied in Section 2.2 produce asymmetric one-to-many align-
ments. However, the one-to-many assumption is over-simplistic and relies on an arbitrary
choice of the alignment direction®.

A different approach that does not suffer from asymmetry is to predict the binary alignment
matrix. The problem is reformulated as follows:

e Input is a pair of sentences (e, f) € Z* x A*.

e The output is an unrestricted many-to-many word alignment A € A. This alignment is
usually represented by enumerating the functions A : N x M — {o, 1} which map the
cells (i,j) in the alignment matrix to a binary value A; ; indicating whether corresponding
words are aligned or not: where 1 indicates an active link and o an inactive link.

7Zero-mean Gaussian prior with uniform covariance matrix is equivalent to the {, regularization
(Chen and Goodman, 1996).
8Unless it is used for translation.
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Figure 2.7: Combination of two directional alignments. Colored points represent the union while
the red point represents the intersection. null alignment are ignored.

2.3.1 Symmetrization and Alignment Combination

An increase in alignment model’s expressivity usually comes at the price of intractability,
implying approximate heuristic learning and inference prone to search errors. Going beyond
IBM model 2 or HMM is an example. An alternative is to combine several simple alignments
to obtain a more expressive one.

2.3.1.1 Symmetrization heuristics

The simplest approach is to merge the two directional alignment functions using a symmetriza-
tion heuristic (Och, Tillmann, and Ney, 1999; Koehn, Och, and Marcu, 2003; Och and Ney,
2003).

One such heuristic is to take the infersection of the two alignment sets as follows?:
A = as . Naef Intersection alignments matrices are sparse and encode only one-to-
one relationship between words. However the alignment are usually of high precision due to
the agreement of both models.

An alternative assumption is that the two alignments contain complementary information
and their union is therefore considered instead of their intersection. Many-to-many relation-
ship can be expressed this time and the resulting matrices tend to be highly populated. A
higher recall can be achieved at the price of losing in precision.

Figure 2.7 depicts the space of possible links considered by the heuristic.

There exists any number of mid-ground solutions which aim to balance precision and
recall. One could start from high precision intersection points, and gradually add reliable
links from the union to increase recall, or go the other way around, starting from the high
recall union points and remove unreliable links to increase precision. Growing heuristics which
iteratively add links from the neighborhood of reliable links until no word is left unaligned,
generally achieve good performance. The most famous heuristic in this family is called
grow-diag-final-and (Koehn, Och, and Marcu, 2003).

Grow-diag-final-and (GDFA) GDFA is a simple heuristic which performs very well in
practice, and is widely used in state of the art translation systems. We use this heuristic in
Part II as one of the baselines to which we compare our models.

GDFA starts from the intersection of two directional alignments. The “grow-diag” step
considers the neighborhood {(1,))} of each point (i,j) in the intersection, where the neigh-
borhood contains the points, the source index of which is in the range [i — 1,1+ 1] and the

9Equivalently, Aj; =1 <= (i,j) € ag_e Nae_sf, andA; j = o otherwise.
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2.3. Symmetric Many-to-Many Methods

target index is in the range [j — 1,j + 1]. Points in this neighborhood are progressively added
to the alignment if neither the source word nor the target word is already aligned and the
corresponding point exists in the union as ,e Ua._,s. At the end, the “final” step aligns
whatever source and target words that remained unaligned if an appropriate point exists in
the union.

Generalizing the symmetrization While the main reason for using such heuristic is to
symmetrize the 1-to-many alignments, they can be easily generalized to more than two
alignments {a;, a,, ..., an} that are not necessarily asymmetric. This is done simply by taking
their union Ji;_, ak (the intersection is analogous)™®.

Additional clues can be encoded to the heuristic constraints. External linguistic knowledge
for instance is incorporated by (Crego and Habash, 2008) based on the intuition that words
inside the same chunk in one language tend to align to words inside one chunk in the other.

Application-driven combination Deng and Zhou (2009) perform combination in light of
an intended application of the resulting alignments. Like the heuristic, the aim is to find a
balance between intersection and union. But unlike the heuristics, combination is carried out
as an optimization process driven by an effectiveness function. This function evaluates the
impact of each alignment link on the number of phrase pairs that can be extracted from the
sentence pair'’. Thus, the word alignment combination is seen as a process of maximizing
the number of extracted phrase pairs.

2.3.1.2 Agreement constraints

Instead of symmetrizing the “Viterbi” output of directional models a posteriori, one can jointly
maximize a combination of data likelihood and agreement between the models.

Viewing intersection as a way of finding predictions that both models agree on, Liang,
Taskar, and Klein (2006) modify the objective to incorporate both data likelihood and a
measure of agreement between models, which is quantified using the probability that the
alignments produced by the two models (pg, (e, alf) and pg, (f, ale)), agree on an example
x = (e, f). The objective function used for training becomes™:

max 3 |logpe, (x) +logpe, (x) +10g }_pe, (alx)pe,(ak) |- (2.20)
1HY2 (X) a

However the product distribution pg, (alx)pg, (alx) ranges over all one-to-one alignments and
computing it is #P-complete (Valiant, 1979; Liang, Taskar, and Klein, 2006).

A variety of approximate probabilistic inference techniques, for example, sampling or
variational methods can be used. In practice, a simple approximation that uses posterior
marginal probability of individual links pg(a; jle, f) works well. Such probabilities, which are
called state occupation probabilities in (Matusov, Zens, and Ney, 2004) are computed efficiently
for simple models (Baum-Welch for HMM).

One problem in this procedure is that it is not clear what objective the approximate
procedure actually optimizes. Ganchev, Graca, and Taskar (2008); Graca, Ganchev, and Taskar
(2010) incorporate agreement constraints to EM training using Posterior Regularization (PR)
(Graca, Ganchev, and Taskar, 2007) aims to incorporate side-information into unsupervised
estimation in the form of constraints on the model’s posteriors. Such constraints are useful

°Note that the combined alignments need not be directional; any alignment A can be used.

See Section 2.5.2.1 for phrase pairs extraction methods.

The distributions pg, (x) = p(e)pg, (f, ale) and pg, (x) = p(f)pe, (e, alf) are used in the equation in
order to unify the notation and remove the condition. Since both e and f are known in each respective
model, p(e) and p(f) do not affect the training.
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for several reasons. As with any unsupervised induction method, there is no guarantee that
the maximum likelihood parameters correspond to the intended meaning for the hidden
variables; and constraining the expected value of some features instead of adding them to
the generative story of the model enables to express features that would otherwise make the
model intractable.

For example, enforcing that each hidden state of an HMM should be used at most once
per sentence would break the Markov property and make the model intractable. In contrast,
using the PR framework, one can enforce the constraint that each hidden state is used at most
once in expectation. The underlying model remains unchanged, but the learning method
changes. During learning, the method is similar to the EM algorithm with the addition of
solving an optimization problem similar to a maximum entropy problem inside the E-Step.
Graga, Ganchev, and Taskar (2010) shows how to add Bijectivity and Symmetry constraints.
We use an implementation of this model called Posterior Constrained Alignment Toolkit
(PostCAT)*3 (Graga, Ganchev, and Taskar, 2007; Ganchev, Graca, and Taskar, 2008; Graca,
Ganchev, and Taskar, 2010) as a baseline in our experiments in Part II.

Once the model parameters are trained, the output alignment can be obtained either using
the Viterbi algorithm or using Minimum Bayes-Risk (MBR) decoding (Kumar and Byrne,
2004) as discussed in Section 2.3.2.1.

Instead of training two separate models, DeNero and Macherey (2011) propose to embed
two directional HMM aligners into a single model. While the combined model structure
rewards agreement, the inference is intractable due to numerous cycles in the model’s graph.
Dual decomposition (Sontag, Globerson, and Jaakkola, 2011) is used as an approximate
inference technique.

2.3.1.3 Discriminative combination

Instead of making combination decisions heuristically, or modifying the generative training
procedure, one would wish to combine several clues in a more principled way. The dis-
criminative modeling framework offers the possibility to combine feature functions while
optimizing a well-defined objective. A binary classifier can then be used to compute the
function Ay ; € {0, 1}, V(i,j) € Ui_, ak-

Several such models have been investigated in the literature. For instance Ayan and Dorr
(2006a) propose to use an MaxEnt classifier to combine all IBM and HMM models. Learning is
performed in a supervised way to maximize the regularized conditional likelihood of manual
word alignments for a small parallel corpus. Features include the generative alignment
predictions and external linguistic information such as Part-of-Speech (PoS) tags of source
and target words. Elming and Habash (2007) combine alignments obtained from several
preprocessing (tokenization) schemes using a rule-based classifier. Ma et al. (2008) start from
the intersection of IBM models (or a heuristic) to build a high precision anchor set used as
features in a SVM classifier. Fossum, Knight, and Abney (2008) use greedy search algorithms
with a linear scoring function to decide which links should be removed from the union. The
parameter of this scoring function are estimated using the averaged perceptron algorithm
with structured outputs (Collins, 2002). However, this scoring function is defined globally at
the level of the entire alignment structure and not at the level of individual links. We will
discuss such methods more in details in Section 2.3.4.

2.3.2 Weighted Matrix Based Methods

Several alignment methods associate a score c; j to each link (i,j) in the alignment matrix
and search for the alignment A with the maximal score under some constraints. We refer to

Bhttp://www.seas.upenn.edu/ strctlrn/CAT/CAT.html
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the cost matrix as the Weighted Alignment Matrix (WAM):

Ciy1 G2 oo CgM
Ca1 Cap -0 CaM

C= . . ) . (2.21)
CN,1 CNp2 " CNM

Several approaches to compute the individual scores exist, among them:

e Corpus statistics such as Pearson’s x> (Gale and Church, 1991) or the likelihood ratio
(Dunning, 1993), and Melamed (2000) probabilistic noise model;

e Context information can be incorporated in a probabilistic model using several feature
functions (Cherry and Lin, 2003);

e Link posterior probabilities under some alignment model or a combination thereof
(Matusov, Zens, and Ney, 2004; Liang, Taskar, and Klein, 2006; DeNero and Klein, 2007;
Graca, Ganchev, and Taskar, 2010);

e Weighted linear combination of multiple feature scores (Tiedemann, 2003b; Taskar,
Lacoste-Julien, and Klein, 2005; Ren, Wu, and Wang, 2007).

Once the cost matrix is built several types of constraints and search algorithms can be applied,
even including image processing techniques (Chang and Chen, 1997b). In the following we
review the most widely used approaches.

2.3.2.1  Minimum Bayes-risk decoding

Under probabilistic models, the output alignment is normally predicted by selecting the
single best (Viterbi) alignment given the model parameters.

Another possibility is to use Minimum Bayes-Risk decoding (Kumar and Byrne, 2002;
Liang, Taskar, and Klein, 2006; Graca, Ganchev, and Taskar, 2010), which uses posterior-based
computed matrices. The alignment inference procedure includes a link if its score is above
some threshold. The same method can be used with different type of matrices (Ren, Wu, and
Wang, 2007). This allows the accumulation of probability from several low-scoring alignments
that agree on one alignment link. The threshold is tuned on some small amount of labeled
data to minimize some loss. MBR decoding has several advantages over the maximum
probability decoding. First, irrespectively of the particular choice of the loss function, the
threshold enables to trade-off precision and recall. Second, with this method, it is possible to
ignore the null word probabilities which tend to be poorly estimated.

MBR decoding results in many-to-many alignments even though the underlying models
use have different constraints.

2.3.2.2 One-to-many constraints

We have already described a heuristic approach which uses an association scores matrix for
sequence labeling (cf. Section 2.2.1) and which results in one-to-many alignments. Matusov,
Zens, and Ney (2004) use the same approach for HMM posterior matrices.

2.3.2.3 One-to-one constraints

Simple thresholding can lead to wrong alignments because of spurious relations may be dis-
covered in the matrix due to the garbage collector effect (Moore, 2004a). Therefore, additional
one-to-one constraints may be helpful (Melamed, 2000; Cherry and Lin, 2003; Tiedemann,
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2003b; Matusov, Zens, and Ney, 2004). Melamed (2000) presents the competitive linking algo-
rithm, which uses a matrix of association scores. First, the highest-ranking word position (i, j)
is aligned. Then, the corresponding row and column are removed from the association score
matrix. This procedure is iteratively repeated until every source or target language word
is aligned. Matusov, Zens, and Ney (2004); Tiedemann (2004) find one-to-one alignment by
applying the Hungarian algorithm to solve the maximum-weight bipartite matching problem.

2.3.2.4 Alignment as assignment

Taskar, Lacoste-Julien, and Klein (2005) use the same formulation as the maximum weighted
matching problem for bipartite graphs. However, each individual score c; j is modeled as a
weighted feature vector using an arbitrary number of real-valued or binary feature functions:

10|

Ci,j = Z Ongn(i,j, e f). (2.22)
h=1

The weight vector 0 is trained to minimize a prediction error on the training data. Taskar,
Lacoste-Julien, and Klein (2005) use weighted Hamming distance for the loss and formulate a
large-margin learning problem.

Lacoste-Julien et al. (2006) noted that this approach is limited by the restriction that
words have fertility of at most one; and more importantly, first order correlations between
consecutive words are modeled only indirectly through the one-to-one constraints. They,
therefore introduce a parameterized model that penalizes different levels of fertility without
increasing in computational complexity, and incorporates first-order interactions between
alignments of consecutive words by formulating the alignment problem as a quadratic
assignment problem. In addition to scoring individual links, they also define scores of pairs
of links that connect consecutive words in an alignment.

2.3.2.5 Alignment as matrix factorization

Goutte, Yamada, and Gaussier (2004) show that rephrasing the alignment problem as orthog-
onal non-negative matrix factorization allows to obtain many-to-many alignments that respect
two constraints: coverage, where all words must be aligned (null included) and transitive
closure, meaning that if f;, is aligned to e;j, and e;,, then any word f;, aligned to e;, must also
be aligned to ej,. They also give an algorithm that solves this problem.

In a similar view, Deng and Gao (2007) use Singular Value Decomposition (SVD) as a
prior knowledge to guide the alignment.

2.3.3 Generative Many-to-Many Models

Fraser and Marcu (2007a) describe a generative model called LEAF, which directly models
many-to-many word alignments with gaps. This is different from the previous models, such
as HMM, which authorize only one-to-many alignments. Reordering and fertility models in
LEAF are similar to IBM model 4’s. However, its nine-step generative story is considerably
more complicated.

2.3.4 Global Discriminative Models

Models described here use a discriminative function to score entire alignment matrix structures
using arbitrary global features and use a search guided by this score to make predictions.
Compromises are needed when training the parameters because of the global features
involved.
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Figure 2.8: Dependencies and corresponding feature scopes in the CRF-based matrix model
described (Niehues and Vogel, 2008).

2.3.4.1 CRF-based matrix modeling

Niehues and Vogel (2008) model explicitly the dependencies in the alignment matrix into
a CRF. We use this model as a discriminative baseline for our MaxEnt model presented in
Chapter 4.

CRFs are most widely used for sequential structure prediction because exact inference is
tractable. However, to model the alignment matrix, the graphical structure of the model needs
to integrate more complex dependencies. The alignment matrix is described by a random
variable y; ; for every source and target word pair (fi,e;). These variables can have two
values, o or 1, indicating whether the corresponding words are aligned or not. A word with
zero fertility is indirectly modeled by setting all associated random variables to a value of
0. The structure of the CRF is described by a factored graph which contains two different
types of nodes: hidden nodes, which correspond to the random variables; and factored
nodes shown in Figure 2.8, taken from (Niehues and Vogel, 2008). Local features along with
global fertility and first-order features make the dependencies quite complex and subsume
many loops in the graphical structure, so the loopy belief propagation algorithm is used for
approximate inference. Our MaxEnt matrix, described in Chapter 4 model is very similar,
with the important difference that it only uses local factors. This simplify the structure and
allow for exact inference. Global dependencies are approximated in our model using using
stacking techniques.

In (Niehues and Vogel, 2008), the first group of features are local features which depend
only on the source and target words (Figure 2.8(a)). This group includes lexical translation
probabilities obtained by IBM model 4; the relative distance of the sentence positions of both
words which should help to aligning words that occur several times in the sentence; the
relative edit distance between source and target word, which should improve the alignment
of cognates; a feature indicating if source and target words are identical which helps aligning
dates, numbers and named entities, which are quite difficult to align using only lexical
features since they occur quite rarely; finally the predictions of IBM4 are also used as features.
See also the discussion about possible features in Section 2.6.

The second group of features are the fertility features. The corresponding factored node
for a source word is connected to all M random variables representing the links to the
target words, and the node for a target word is connected to all the N nodes for the links to
source words (Figure 2.8(b)). Indicator features for the different fertilities up to 3 are used.
Additionally, there is a real-valued feature that uses the IBM4 probabilities for the different
fertilities. In our MaxEnt we discretize all real-valued feature and binarize the result. By
doing this way, multiple model parameters are used instead of only one parameter in the
real-valued case, which seems to yield better performance for our model.

The first-order features model the first-order dependencies between the different links.
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They are grouped into different directions. The factored node for the direction (t,s) is
connected to the variable nodes y; j and yi4+,j4s. For example, the most common direction
is (1, 1), which describes the situation that if the words at positions i and j are aligned, also
the immediate successor words in both sentences are aligned as shown in Figure 2.8(c). The
directions (1,1), (2,1), (1,2), and (1,—1) are used. So this feature is able to explicitly model
short jumps in the alignment, like in the directions (2, 1) and (1,2) as well as crossing links
like in the directions (1, —1).

Gradient descent methods are used with two different objectives: the log-likelihood of
the data and an approximation of the AER or the F-score (Fraser and Marcu, 2007b) using
a sigmoid functions as in (Gao et al., 2006; Suzuki, McDermott, and Isozaki, 2006). The
sigmoid approximation is needed since the AER and F-score can not be differentiated which
is necessary for gradient-based training. The AER objective enables the training to use from
data annotated with sure and possible links, for which the likelihood objective is not sensible.
The advantage of the F-score is that there is an additional parameter o, which allows to bias
the metric more towards precision or more towards recall. Optimization towards AER is also
used in other discriminative approaches such as boosting (Wu and Wang, 2005).

2.3.4.2 Other models

Model 6 introduced by Och and Ney (2003) can be seen as the first approach in which IBM
model alignments have been combined in a log-linear fashion.

Cherry and Lin (2003) propose a discriminative model which uses link probabilities as in
the weighted matrix but augment it with global context features. Search is then performed
using greedy best-first search under one-to-one and cohesion constraints. Liu, Liu, and
Lin (2005) incorporate various global features derived from other sources into a globally
normalized conditional model:

p(Ale, f) = exp0'g(A,e,f) (2.23)

_r
Z(0,e,f)

with a simple decision rule that does not require the normalization factor. Feature functions
used here are IBM3 probabilities, PoS tags and bilingual dictionaries. Inference uses a greedy
search algorithm based on a heuristic gain function that can be computed incrementally. They
use an iterative scaling algorithm for parameter estimation based on an n-best list of highly
probable alignments.

Moore (2005); Moore, Yih, and Bode (2006) introduce a similar framework using linear
combination of features but drop the probabilistic interpretation and get rid of the nor-
malization constant. Search is not trivial and includes a beam search strategy. To avoid
preference to alignment with many links which stems from the simple sum over features,
only 5 alignment patterns are allowed (1-1, 1-2, 1-3, 2-1 and 3-1). Additionally, links need to
include the strongest individual association for at least one token pair. This corresponds to a
greedy selection with respect to association scores. Training is performed using the averaged
perceptron Collins (2002). A similar model, with hierarchical search using syntactic parse trees
is proposed in (Riesa and Marcu, 2010) which is also trained using the averaged perceptron.

Venkatapathy and Joshi (2007) propose discriminative re-ranking approach which enables
to make use of structural features effectively. The alignment algorithm first generates a list of
n-best alignments using local features. Then it re-ranks this list using global features. All the
n-best alignments are used to update feature weights during parameters estimation through
Margin Infused Relaxed Algorithm (MIRA) (Crammer et al., 2006) unlike Moore, Yih, and
Bode (2006) where only the best alignment is used.

All these methods needs to enumerate all possible alignments during parameter estimation.
However, there is no efficient inference algorithm for global optimization with models that
include arbitrary global features. A compromise is done in (Ayan, Dorr, and Monz, 2005;
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Ayan and Dorr, 2006a) where each link in the matrix is modeled separately using a neural
network or MaxEnt with strictly local features and global constraints being ignored.

This section presented several methods to obtain symmetric alignments by using global
functions to score alignment matrices. Such models are able to take link dependencies into
consideration, but at a high computational cost, especially for long-distance interactions. This
is mainly because no restriction on the alignment space is imposed. In the next section, we
will discuss how the SCFG formalism can be used to model the equivalence between two
sentences using a constrained alignment space. Such constraints reduce the complexity while
accounting for long-distance interactions.

2.4 Syntactic and Hierarchical Alignments

We now consider an additional type of constraints used in Tree alignment, which is a special
case of structure alignment where the output a must be a strictly compositional, hierarchical
alignment (Wu, 2010). Each sentence has a hierarchical structure represented as a parse tree,
where every subtree spans a part of the sentence.

Aligning two subtrees means that words in the yield of the first can be aligned only to
words in the yield of the second. This is called the crossing constraint (Wu, 2010), and has
several benefits. First, the crossing constraint greatly reduces the space of possible alignments
and thereby reduces the search complexity; second, due to its relation to syntax, this constraint
is accurate most of the times; third, large-distance reordering can easily be modeled while
avoiding the complexity of arbitrary permutations. Note that a simple local inversion between
constituent in a high level in the hierarchy accounts for a long-distance reordering on the
level of leaves.

There exists two alternatives to use such constraints. The first is to separately parse each
sentence, possibly with two distinct Context-Free Grammar (CFG)s, and to use a parse-parse-
match strategy taking the parse trees as input. However, this approach suffers from the lack
of appropriate, robust, monolingual grammars; mismatch of the grammars across languages;
and inaccurate selection between multiple possible constituent matchings (Wu, 2010). The
second alternative is to simultaneously parse both of the sentences using a synchronous CFG,
producing parses for both sides along with the alignment. Obviously, the major disadvantage
of such an approach is the difficulty of obtaining the grammar.

Similar to the approaches of Section 2.3, the models we describe here produce many-
to-many alignment structures. However, to reduce the number of parameters and the
computational complexity they are usually used in one-to-one settings.

2.4.1 Inversion Transduction Grammars

A syntax-directed transduction is a set of bisentences generated by some SCFG (Lewis and
Stearns, 1968; Aho and Ullman, 1969). Compared to a Finite-State Transducer (FST), which is
the special case with limited expressive power, a general SCFG is more expensive to biparse,
train and induce.

The computational complexity for Viterbi chart (bi)parsing, and EM training algorithms
for a FST is O(n#) while it is O(n®"*2) for general SCFG. ITG (Wu, 1995a; Wu, 1995b; Wu,
1997) is a special case of SCFG and equivalent to binary or ternary SCFG whose transduction
rules are restricted to straight and inverted permutations only. Such restrictions reduce the
computational complexity to O(n®), and make ITG an attractive intermediate solution whose
generative capacity and computational complexity falls in between FSTs and SCFGs. Segaard
(2009) discusses the complexity of the alignment problem within this formalism.
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X1 XX XK NS X WK
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Figure 2.9: Examples of alignment patterns with ITG parses. One pattern is not attainable which

is called inside-outside alignment.

In a 2-normal form ITG, each transduction rule takes one of the following forms:

S—X

X = [XX]
X = (XX)
X —s/e
X — e/t
X —s/t

where [] represents straight rule and <> an inverted rule, s and t are source and target
language terminal segments. Non-terminal rules can also be lexicalized (Zhang and Gildea,
2005). € on both sides accounts for insertion and deletion of tokens.

Although ITGs have proved expressive enough to model most reordering patterns occur-
ring in real data, some patterns are still not attainable. Some of these patterns are shown
in Figure 2.9 adapted from (Wu, 1997). Zens and Ney (2003) discuss the expressiveness of
ITGs. Beside its expressiveness, the main problem with using ITGs for alignment is that
exhaustive biparsing runs in O(n®) time. Several ways to lower the complexity of ITGs have
been suggested. One way is to use pruning methods. For example, Haghighi et al. (2009) do
pruning based on the probabilities of links from a simpler alignment model (HMM), which
reduces the time complexity by two orders of magnitude. Zhang and Gildea (2005) propose
“Tic-tac-toe” pruning, which is based on the IBM1 probabilities of word pairs inside and
outside a pair of spans. Zhang et al. (2008) present a method for evaluating spans in the
sentence pair to determine whether they should be excluded or not. Their algorithm has a
best case runtime complexity of O(n3). Liu, Li, and Zhou (2010) combine several clues in a
discriminative pruning framework. A different approach is taken in (Saers, Nivre, and Wu,
2010). Instead of using full ITGs, they subject the grammar to a linearity constraint where
rules may have at most one nonterminal symbol in their production. This constraint reduces
the complexity of exhaustive biparsing of a sentence pair to O(n#*). This can be further
improved by applying additional pruning. This constraint implies a significant reduction of
expressiveness, which does not seem to negatively affect the performance (Saers, Nivre, and
Wu, 2010).

2.4.2 parameterization and Learning

In the generative setting, a stochastic context-free grammar associates a probability to every
rule in the grammar. The probability of biparse tree is the product of the probabilities of all
the rules used in the generation.

Given such a grammar, the task of alignment is cast as a biparsing problem, where the
rule probabilities guide the search for the best scoring biparse (Wu, 1995a; Wu, 1995b; Wu,
1997) present a bottom-up parsing algorithm that generalizes the monolingual CYK algorithm
to the bilingual case (Stochastic ITGs). Efficient parameter estimation is possible through
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inside-outside algorithm (Lari and Young, 1990; Goodman, 1999), which is similar to the
forward-backward algorithm for linear chains.

Unsupervised parameter estimation can be performed using EM (Wu, 1995b). Inside-
outside probabilities are used to compute expected counts in the E-step, which are then re-
normalized in the M-step. Saers and Wu (2009) show that this model produce better alignment
than IBM models for German-English, Spanish-English, and French-English Europarl data
(Koehn, 2005), in terms of translation quality.

So far, we have discussed a generative parameterization of ITGs, we now move to the
discriminative setting. Every alignment is scored with a function that does not necessarily
factor in terms of derivation steps (according to a generative story). The ITG is used merely
as a constraint on the space of possible alignments. Haghighi et al. (2009) investigate the
effect of using ITG constraints in discriminative one-to-one alignments. As already signaled
by (Cherry and Lin, 2006b), ITGs have several advantages over the one-to-one constraints
in general matching that have been widely used in symmetric discriminative alignments
(Melamed, 2000; Taskar, Lacoste-Julien, and Klein, 2005; Moore, Yih, and Bode, 2006). First,
the additional structural constraints seem to match the linguist structure. Second, they permit
terminals to span several words without increasing the computational complexity, something
that general matching can not efficiently do. Third, they admit a range of training options;
as with general one-to-one matchings, margin-based objectives can be optimized. However,
unlike with general matchings, one can also efficiently compute expectations over the set of
ITG derivations, enabling the training of conditional likelihood models.

A major challenge for discriminative training for ITGs is that it requires a corpus annotated
with ITG trees. However, manual annotations are often not one-to-one ITG alignments. The
recent work of Segaard and Kuhn (2009); Segaard and Wu (2009) provides an extensive
empirical study on the expressiveness of ITG alignments with respect to their ability to
generate manual alignments. Haghighi et al. (2009) illustrate that for gold standards that are
outside the ITG class, directly training to maximize the margin is unstable, and training to
maximize the likelihood is ill-defined. A solution would be to use pseudo-gold alignments
with minimal distance from the true reference alignment.

2.4.3 Syntactic Constraints

Most alignment methods use surface statistics as the only information to obtain alignments.
However, the success of structural constraints, which are highly related to syntax, motivates
the following question: could alignment models benefit from incorporating syntactic and
linguistic analysis? After all, syntactic models are increasingly successful in SMT (Yamada
and Knight, 2001; Chiang, 2005; Galley et al., 2006), and syntax-directed alignment may be
more coherent with such model than general alignments.

Lopez and Resnik (2005) suggest to parameterize the distortion model in the HMM
alignment using the “tree distance” between each pair of target words, conditionally on
the PoS tag of the previous word: p(ajlaj—;) = p(a; IT(eaj,eajfl),PoS(eajﬂ)). Given a
dependency parse of the target sentence, the distance T between two words is defined as the
number of links separating them from their closest common ancestor node in the parse tree.
This is a way to incorporate PoS features into a generative model, however their obtained
results are not superior to the surface statistic and obtaining dependency parses is expensive.
Similarly, DeNero and Klein (2007) integrate a target language syntactic parse trees into
the transition model of an HMM. The transition probabilities now condition upon paths
through the target parse tree, allowing the model to prefer distortions which respect the tree
structure. Taking the target language constituent explicitly into account is helpful when used
in conjunction with syntax-based translation systems.

An alternative is to use syntactic analysis as hard constraints on possible alignments
similar to the ITG-based methods. Crego and Habash (2008) use the result of chunk analysis
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to post-process the alignments.

A final, arguably simpler, solution is to incorporate syntax-based information into the
model in guise of features, which is done in almost every model that uses feature functions to
represent data.

2.4.4 Other Syntax-Based Models

Yamada and Knight (2001) presented a tree-to-string alignment model. The model is trained
using English syntactic trees generated from a high quality syntactic parser and Japanese
strings. A particular generative story applies operations to the English tree to generate
the Japanese string, and this induces an alignment. Gildea (2003) extended this model to
tree-to-tree alignments.

2.5 Phrase-Based Alignment Models

So far, we have considered alignment with word constraints, where alignable units are words.
Unfortunately, single words are not always the best units to capture translation relations.
Problems such as word fertility, lexical ambiguity and word order can be solved to a large
extent by relaxing the single word constraint and allowing phrases to be aligned instead of
words.

Let us recall the definition of a phrase alignment between two sentences to be the set of
links between phrases:

A ={(p,r):p C Nand r C M}, (2.24)

where N and M are the set of source and target indices respectively. Some decisions concerning
word lexical ambiguity, fertility and reordering, that had to be made explicitly in word
alignment, are partially taken implicitly by considering longer units. Phrase-based models
are typically simpler than word-based models, at the cost of increased learning and inference
complexity.

2.5.1 Bisegmentation

A bisegmentation is obtained under bijectivity constraints for phrase alignments, where
each alignment A implies a phrasal partition of the source and target sentences, along with
a bijective mapping between them. The number of such joint phrase segmentations and
alignments is exponential in the sentence length, which makes enumerating all of them
infeasible. For models that operate on the full phrase alignment space (Marcu and Wong,
2002; DeNero et al., 2006), the computational complexity of inference is NP-hard (DeNero
and Klein, 2008). Inference algorithms must either be approximate as in (Marcu and Wong,
2002; Birch et al., 2006), which rely on word alignments to obtain a good starting point for
a hill-climbing heuristic in a restricted search space; or require running time exponential
in the sentence length as the DP (DeNero et al., 2006) and the Integer Linear Programming
(ILP) solutions proposed in (DeNero and Klein, 2008). However, the application of additional
restrictions on this combinatorial space can lead to polynomial-time DP solutions. Such
restrictions may be linear as in monotone and distortion-limited alignments (Zens and Ney,
2004), or hierarchical as in ITG alignments (Cherry and Lin, 2007). As discussed in Section 2.4,
ITG can straightforwardly include phrase productions in addition to words and still permits
polynomial-time exploration of the search space with a complexity O(n®). However, for large
corpora and with long sentences, inference remains prohibitively costly.
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Figure 2.10: The phrase-based translation model: starts with a segmentation step (1), followed
by a lexical substitution step (2), and ends with a permutation step (3).

2.5.1.1 Generative models

In the generative framework presented in Section 2.2.2, Marcu and Wong (2002); Birch et al.
(2006) propose a three step generative process to model the joint distribution p(A, e, f). First,
the number (n) of phrase pairs is chosen; then n phrase pairs are drawn independently from a
distribution over phrase pairs; and finally, phrase pairs are reordered. Therefore, an alignment
implies a joint segmentation of the source and the target sentences, and a permutation of the
resulting phrases on one side. DeNero et al. (2006) propose a similar generative process to
model the conditional distribution p(A, elf). This is illustrated in Figure 2.10.

Similar to word-based models, parameter estimation can be performed by MLE using
EM. However, computing expectations requires to sum over all bijective phrase alignments,
which is intractable. Therefore, (Birch et al., 2006; DeNero et al., 2006) and similar approaches
(Cherry and Lin, 2007) use ITG constraints in addition to word alignment based pruning. ITG
are interesting also for syntactic alignment and have been used to align spans in a source
sentence to nodes in a target parse tree (Pauls et al., 2010).

Hidden semi-Markov models An alternative approach to the conditional generative model
for phrase alignment is based on an extension of standard HMMs, presented by Ostendorf,
Digalakis, and Kimball (1995).

Deng and Byrne (2005) describe a word-to-phrase HMM which modifies the parameter-
ization of the traditional word-based HMM model to allow a state to produce more than
one words. Figure 2.11, adapted from (Deng and Byrne, 2008), shows such an alignment for
a Chinese-English sentence pair. However, this model only changes the parameterization
and not the set of possible alignments. This model provides a more powerful formulation of
a phrase length model than the “stay” (loop) probabilities in word-based HMM alignment
(Toutanova, Ilhan, and Manning, 2002). Andrés-Ferrer and Juan (2009) use a similar model
interpolated with IBM1 when only monotonic alignments are allowed.

The degeneracy problem Unfortunately, MLE training for phrase models often lead to
degenerate solutions for both the joint and the conditional generative models (DeNero et al.,
2006):

e The likelihood can be artefactually increased by using fewer multiplicative terms, which
can be achieved by selecting large phrases in order to explain the training data. As
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Figure 2.11: An example of word-to-phrase HMM Alignment (Deng and Byrne, 2008). Source
words are treated as states and target phrases as observations.

a result, the joint model often fails to learn to translate individual words and short
phrases.

e Imposing competition between segmentations may lead to spurious solutions to the
translation lexical ambiguity under the conditional model. For instance, the French
“une note” can be translated into English as “a note” or as “a grade”. Using these
two parallel sentences MLE could choose the parameters p(notela note) = 1 and
p(gradelnote) = 1 which maximize the likelihood by conditioning on rare phrases in
low-entropy distributions.

Several solutions to the degeneracy problem have been investigated. Moore and Quirk
(2007) proposed a new conditional model that does not cause large and small phrases to
compete for the same probability mass. May and Knight (2007) added additional model
terms to balance the cost of long and short derivations in a syntactic alignment model. Bansal,
Quirk, and Moore (2011) combine the phrase-based HMM model of (Andrés-Ferrer and Juan,
2009), without the monotonicity requirement, and agreement constraints of (Liang, Taskar,
and Klein, 2006) (cf. Section 2.3.1.2). Phrases may be used in both the state and observation
space of both sentences, hence agreement during EM training no longer penalizes phrasal
links. Agreement constraints help avoiding the degeneracy problem since meaningful phrasal
links that are likely in both alignment directions will be reinforced, while phrasal links likely
in only one direction will be disregarded.

2.5.1.2 Bayesian models

Many of the previous solutions to the degeneracy problem integrate the prior knowledge as
constraints on the search space. Alternatively, Bayesian priors incorporate such knowledge
into the model. Bayesian modeling treats model parameters as additional random variables
that have associated distributions. This additional distribution over parameters adjusts
the learning objective while maintaining the same structure and parameterization for the
underlying model.

Introducing Bayesian priors to the generative models encodes a preference for short
phrases rather than long ones; and a preference for reusing phrases across the entire corpus.
To express these priors, DeNero, Bouchard-Coté, and Klein (2008) use a Dirichlet Process, which
is a prior over multinomials with an unbounded number of dimensions, and collapsed Gibbs
sampling which is an approximate inference technique with desirable convergence properties.
Instead of using word alignment as constraints, they can be used for initialization (DeNero,
Bouchard-Coté, and Klein, 2008). In a similar view, Zhang et al. (2008) reduce the complexity
by using IBM1 scores in dynamic pruning algorithm (Zhang and Gildea, 2005). They also
incorporate a sparse prior using Variational Bayes EM to avoid overfitting.
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Figure 2.12: Comparison between word-based and phrase-based matrices.

Blunsom et al. (2009) use a non-parameteric Bayesian formulation to include a hierarchical
prior. They use a Gibbs sampler for approximate inference over the infinite space of possible
translation units. Unlike many other previous approaches, they do not use heuristics pruning
or constraints from word alignments.

2.5.1.3 Discriminative models

Alternatively, these models can be trained discriminatevly in a supervised way, as in Haghighi
et al. (2009), who describe a block ITG model in addition to the word-based model.

Liu, Li, and Zhou (2010) propose a discriminative pruning framework for discriminative
ITG. The pruning model uses a log-linear model to integrate several features (like Model 1
probability and HMM posteriors) that help identify the correct span pair and is trained using
Minimum Error-Rate Training (MERT) (Och, 2003). On top of the discriminative pruning
method, a discriminative ITG that incorporate hierarchical phrases is trained. Features
computed on such phrases are combined in a log linear model similar to (Liu, Liu, and Lin,
2005; Moore, 2005).

2.5.2 Generalized Phrase Alignment

In previous sections, we have described word-based and bijective phrase-based alignment. We
now describe methods that relax the bijectivity constraints and results in overlapping phrases
that do not necessarily form a partition. Hence, the focus is on the extraction of reliable
translation equivalents, sometimes called translation spotting (Véronis, 2000).

2.5.2.1 Extraction heuristics

In a similar way to the weighted word-based matrix, we can represent the space of all possible
phrase alignment using a binary matrix of dimensions 2N x 2M, where rows and columns are
indexed with sefs of source and target positions. We restrict the matrix to contiguous phrase
pairs only (p = i;...12,r = j1...jo). The matrix alignment function maps all possible phrasal
links to the binary active/inactive set: Vp,r: Ay € {0, 1}.

Several phrase alignment methods start by associating a score cp r to each cell in the
matrix. Figure 2.12 depicts such a matrix. Any number of alternatives can be used to score
the phrasal links.
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Figure 2.13: Phrase pairs consistent with the word alignment.

The standard approach Koehn, Och, and Marcu (2003) compute first a word or a phrase
alignment and use it to induce a binary score ¢ r € {0, 1}:

(2.25)

S O if (p, 1) is consistent with the word alignment
Pr™ 1 o0 otherwise

In order for a phrase pair to be consistent, it should contain at least one word-based link;
and no word inside it is aligned to a word outside it. Figure 2.13 shows few examples of
consistent phrase pairs.

The major issue of this heuristic is its sensitivity to word alignment errors. Since the
consistency constraint is based on the “Viterbi” alignment, an error could prevents the
extraction of many correct phrase pairs.

Weighted phrase-based matrix To alleviate the problem of the standard extraction approach,
the strict consistency constraint can be replaced by a more informative one which may go
beyond the “Viterbi” alignment. For instance, one can compute smoothed scores cp r € [0, 1]
to evaluate each phrase pair. Some filtering techniques multiply the binary consistency
score by a probability resulting from statistical significance tests (Johnson et al., 2007; Tomeh,
Cancedda, and Dymetman, 2009). Vogel (2005) use a linear combination of features computed
from a weighted word-based matrix populated with IBM1 scores. Similarly, Liu et al. (2009)
use the product of two scores that characterize the consistency based on a weighted word
matrix built from a set of N-best alignments. Zettlemoyer and Moore (2007) use the same
combination of features used by a phrase-based translation system (Koehn, Och, and Marcu,
2003), tuned with MERT (Och, 2003). Deng and Byrne (2005) combine two phrase alignment
posteriors, computed under two HMMs, one for each directions. Venugopal, Vogel, and
Waibel (2003) apply several features but use a weighted linear combination. One issue with
these method is that no learning is involved to weight the combined features or to select the
threshold. Therefore, Deng, Xu, and Gao (2008) propose to tune the weights of this model by
plugging it into an end-to-end translation pipeline and by maximizing BLEU.

Once the scores are in place, simple thresholding similar to MBR decoding can be applied
to obtain the final alignment (Koehn, Och, and Marcu, 2003; Venugopal, Vogel, and Waibel,
2003; Johnson et al., 2007; Tomeh, Cancedda, and Dymetman, 2009). The presence of this
threshold allows the extraction procedure to control the balance between precision and recall.
Vogel (2005) extracts maximum scoring phrase pairs for source phrases. Zettlemoyer and
Moore (2007) use a competitive linking algorithm similar to (Melamed, 2000).

2.5.2.2 Translation spotting

Various simple, techniques can be applied for lexicon extraction and translation spotting.
(Tiedemann, 1999; Tiedemann, 2003a) use smaller aligned segments to iteratively reduce the
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size of unaligned longer segments. For example, many sentence-aligned bitexts include very
short sentence fragments, and their alignments can often be used immediately as lexical trans-
lation equivalent. These initial entries can then be used to mark other occurrences of known
equivalence pairs in the bitext. Lardilleux and Lepage (2008) define an alignment method
that relies on simple heuristics based on similarities and differences between sentences.

2.5.2.3 Discriminative models

Deng, Xu, and Gao (2008) represent the extraction of phrase pairs as a binary classification
problem where each classification decision is made independently. A linear model is used to
combine several features, of which the weights are learned to maximize BLEU. The threshold
used to select phrase pairs is considered as a parameter and is optimized with the feature
weights. The major issue with this approach is its complexity: given one set of parameters,
a phrase table is built and used to compute the BLEU score on some corpus. This requires
constructing and training a translation system including tuning the weights of its features.
This is needed many times during training which becomes prohibitively expensive. A sub-
optimal compromise is to discard the tuning of the translation system’s weights and fix them
once and for all.

All the previous approaches to general phrase alignments consider each phrase pair
independently from the others. Therefore, DeNero and Klein (2010) recast the problem
as a structured classification problem, in which a complex object containing all extracted
phrase pairs (called the extraction set) is predicted for an input sentence pair. They use a
discriminative linear model to score the set of extracted phrase pairs. Similar to previous
approaches, features on phrase pairs can be easily incorporated. The used loss function is a
phrase-level F-measure which requires hand-annotation of extraction sets. This is problematic
since only word annotations are typically available. To solve this issue, a deterministic
mapping form the word alignment to the extraction set is defined and used to obtain training
annotations. Inference in the extraction set space is intractable: the model does not factor over
disjoint word-to-word links or minimal phrase pairs, and so existing inference procedures do
not directly apply. A solution is to use ITG constraints and resort to a DP algorithm, originally
presented in (Haghighi et al., 2009), and which can be augmented to score extraction sets that
are indexed by underlying ITG word alignments.

The main advantage of this method is the modeling the interactions between extracted,
overlapping phrase pairs. However, the loss function is not directly related to the translation
quality.

2.6 Features

When making alignment decisions between two sentences, the word sequences themselves e
and f and any number of external information regarding the context may be relevant. The
context may include resources external to the sentences such as the output of taggers and
parsers or any other type of annotation including the output of other alignment methods. It is
helpful to transform such input data into a reduced representation set of features. The space
of input-output pairs X* x A* x A is mapped to a d-dimensional R space through a feature
vector function, g(A, e, f). Each feature function gy maps a sentence pair and its alignment to
a real value. If features engineering is carefully done, features set will extract all the relevant
information to perform the alignment, hence it can be seen as some kind of dimensionality
reduction.

Designing a feature is guided by what kind of information it captures, its scope and its
representation. We discuss these aspects in this section.
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2.6.1 Type

Typical feature functions in Natural Language Processing (NLP) perform some symbolic test
on the given context and return a binary value indicating the success status of the test. For
instance, a feature based on word lexical content may take the form:

1 iffizle/\e]- = the

o otherwise (2.26)

glex(i>j> €, f) = {

Features functions can also return discrete values such as the distance from the diagonal of
the alignment matrix: gjex(i,j, e, f) =i —j|. It is however a common practice to binarize such
features by incorporating the return value into the test itself. So a the previous feature is
re-expressed using a separate feature per distance o, 1, 2, ...:

1 ifli—jl=o0

o otherwise (2.27)

glex(i)jy €, f) = {

Similarly, general real-valued features can be discretized and then binarized, which practically
results in superior performance in many cases.

2.6.2 Indicators of alignment

Various types of information are good indicators for alignment and can be explored by the
features (Wu, 2010; Tiedemann, 2011). Here are few examples.

Lexical information. Succeeding in finding some lexical link between source and target
segments may serve of strong indication of a translational equivalence relation. Suffixes and
prefixes of the linked words may indicate some derivational similarities. Bilingual dictionaries
and wordnets, which are large lexical databases of nouns, verbs, adjectives and adverbs,
grouped into sets of cognitive synonyms, can be used for lexical matching. Matching between
cognates, which are words that have a common origin across languages, is also helpful for
related languages. Possible lexical matches can be found by measuring string distance in
languages with similar alphabets such as French and English. Examples include named entity
(“Saddam Hussein” - “Sadam Hussayn”) and numerical items (“3,14” - “3.14”). Word that
have a common etymological origin can also be matched. An example in Indo-European
languages, the words “night” (English), “nuit” (French), “Nacht” (German) “nacht” (Dutch)

are cognates. The Hebrew “shalom”, the Arabic “»M. salam”, the Maltese “sliem” and the
Ambharic “selam” (peace) are also cognates, derived from a Proto-Semitic root. However,
words or phrases that look or sound similar but differ in meaning (false friends) may be
misleading. An example is Portuguese “raro (rare)” vs. Spanish “raro” (strange).

Segment length. Word or phrases that express the same meaning tend to have similar
lengths, as measured by the number of words of characters. Such correlation is notably high
in similar languages and much less reliable for distant languages.

Position. Alignments are mainly monotonic, centered around the diagonal of the align-
ment matrix.

Distributional profiles. Corresponding words and segments usually have similar distri-
butional properties across the corpus, which can be measured by means of statistical tools.
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This is especially helpful in case of rare words and hapaxes that would be otherwise difficult
to align.

Linguistic features. Annotating the parallel corpus with morphological and syntactic
information, possibly with the help of external tools, make the alignment benefit from
similarities beyond surface statistics. For example, aligning two verbs is more probable than
aligning a verb to a noun.

Such indicators define the type of information that we would like to incorporate into the
feature. From which context these information are extracted is defined by the scope of the
feature which we discuss next.

2.6.3 Scope

We can divide features into three types according to the portion of the alignment structure
being considered (Tiedemann, 2011):

e Local features: They restrict their context to the current link g(i, j, e, f). Instances of
such features are abound in the literature since they are the less expensive. Examples
include lexical content, prefix of suffix of the connected words; association scores; co-
occurrence information; position in the alignment matrix; string similarity; and any
number of the cues we discussed in the previous section.

e Dynamic features: If the alignment structure is predicted sequentially, a history-based
approach can be used to keep track of previously predicted links in addition to the
current one. An example of such feature is described by Ittycheriah and Roukos (2005).

¢ Global features: The entire alignment structure is taken into consideration at once.
For instance the number of links included in the alignment, or the score given to the
alignment by another alignment model. Such features can be found in (Liu, Liu, and
Lin, 2005; Moore, 2005) and many more.

When designing a feature, independence assumptions about modeled variables are needed
to maintain tractability. With larger contexts (from local to global), comes sparsity issues
which affects the parameter estimation. Moreover, computing a feature of the modeled
variable, is exponential in time and space in the size of the context. However, features of
observed variables are less expensive and can be computed linearly in the size of the context.
This is the case of the feature:

1 if suffix(f;_,) = ing A POS(e;_,) = VERB

o otherwise (2.28)

glex(i>ja €, f) = {

2.7 Summary

In this chapter we have presented a survey of approaches to the problems of word and phrase
alignment.

In word-based models, we have first considered the IBM models which date back to the
early days of word-based translation systems. Despite their numerous shortcomings, these
models are still widely used in practice, especially as a first step in training phrase-based
translation systems. This is mainly because they are trained in an unsupervised manner from
a sentence-aligned parallel corpus. However, they have several drawbacks. Incorporating
additional features is not straightforward in generative models; large amount of training data
is required in order to obtain reasonable results; the likelihood objective does not relate directly
to the quality of the alignment; and finally, they can only produce one-to-many, asymmetric
alignments. IBM models belong to a family of approaches that considers the alignment
as a sequence labeling problem. Within the same family, we have described an approach,
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which addresses the issue of incorporating features into generative models. This is done
using an alternative local log-linear parameterization. Then, we have described discriminative
approaches to one-to-many alignments, such maximum entropy models. Discriminative
models are are trained from supervised data. The are typically simpler than their generative
counterparts, since they only model the alignment variable. Additionally, they achieve a
competitive performance using relatively smaller amounts of training data.

After describing one-to-many alignments, we have moved to another family of techniques,
which does not suffer from asymmetry. We have first described a heuristic which obtains
symmetry by combining two directional alignments. It makes symmetrization decisions
so as to balance the precision and the recall of the resulting alignments. This heuristic
performs surprisingly well in practice and is used by current state of the art translation
systems. Nevertheless, model-based approaches to the alignment combination problem
typically outperform the heuristic. We have therefore discussed approaches that perform the
symmetrization during the training of the directional models instead of during the inference.
This is done using agreement constraints. We have also discussed how multiple features
can be incorporated to the alignment combination process by using discriminative models
to make the combination decisions. After having discussed the combination methods, we
have presented techniques that directly produce symmetric alignments. One such approaches
is based on weighted alignments matrices. First, an association score is computed for each
possible link in the alignment matrix; then, an alignment is obtained either by thresholding
the scores, or by performing a search for the best scoring alignment under some constraints.
The thresholding method is quite popular because it is simple, and it enables to control the
balance between precision and recall. Whereas many search methods are computationally
costly and typically rely on approximations. From matrix-based approaches we have moved
to more general methods, which used a discriminative function to score the alignments. The
advantage of these methods is that global features can be used to incorporate information
about the interaction between the links within the alignment. However, a compromise between
expressiveness of the model and its computational complexity has to take place, in order to
maintain the tractability of the search.

Intractability is the major issue in global approaches. The complexity arises from allowing
arbitrary alignment in the goal of capturing long-distance interactions between links. We have
therefore described a middle-ground, tractable solutions, based on ITG constraints. Restricting
the alignments to have an ITG structure permits long-distance interactions while drastically
reducing the number of permissible alignments, and hence reducing the complexity. Although
a lot of work has been done around ITG alignments, their use is still limited in practice for
two reasons. First, even though ITGs admit polynomial time training and inference (O(n®)
and O(n#) for linear ITG), they are still prohibitively costly in practice especially for long
sentences. Pruning is therefore always required. Second, ITGs do not cover all patterns found
in manual alignments which means that some correct alignment can not be obtained. This is
problematic especially for discriminative models, trained from gold standards which may not
belong to the ITG class.

The main weakness of all word-based models is their incapability to model multi-word
phrase alignment explicitly. Many of word alignment difficulties, such as lexical ambiguity,
word fertility and word reordering, can be implicitly accounted for in a phrase-based model.
After having described word models, we have presented several phrase-based models, in
which phrases can be aligned directly as a whole. The first family of phrase alignment models
seek to produce a bisegmentation of the parallel sentence. Generative models are frequently
used for this purpose. However, these models often get trapped in degenerate solutions. As
a remedy, the Bayesian framework can be used in order to incorporate a prior knowledge
and guide learning to desired solutions. The second family of phrase alignments is more
general. Instead of seeking a bisegmentation, generalized phrase alignments seek to identify
all possible phrase correspondences within a sentence pair. Generalized phrase alignments
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are directly used to train phrase-based translation systems, and therefore they are of great
importance. In practice, the predominant method to obtain generalized phrase alignment
is a heuristic, which extracts all phrase pairs that are consistent with an underlying word
alignment. A generalization of this heuristic uses a softer definition of the consistency. This
enables a better control of the balance between the precision of extracted phrase pairs and their
recall. Finally, we have described a discriminative model that scores entire sets of extractable
phrase pairs for each sentence pair, and search for the best scoring one. This approach is
more directed toward the translation as the final application the extraction sets; and it also
takes into consideration the interactions between phrase pairs. However, the computational
complexity involved in scoring such sets and searching among them is prohibitive to its use
in practice. Moreover, training the model requires gold standards which can not be easily
obtained for extraction sets.

Finally, we have discussed several aspects of the feature functions, which are used by the
alignment models that we have presented. These aspects have covered the information that
helps making the alignment decisions, and how it can be represented in the model. We have
also discussed the scope of these features and its impact of the complexity of the model.
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CHAPTER

Phrase Based Statistical Machine Translation

Machine Translation (MT) is the sub-task of NLP addressing translation from one natural
language to another using machines. Over recent years, the field of machine translation
witnessed tremendous changes. Nevertheless, the long-standing debate on the feasibility of
the ultimate goal of “fully automatic, high quality machine translation” (Bar-Hillel, 1964)
continues with a better understanding of the limits of automatic translation (Madsen, 2009).

Similar to many other NLP applications, due to the coupling of powerful machine learning
methods with the increasing availability of computational power and necessary resources,
translation has been rapidly dominated by statistical approaches, with an unprecedented
practical success. Such success can be attributed to several factors. On the one hand, Internet
facilitates the dissemination and assimilation of information from multilingual sources of
information: several governments and agencies broadcast multilingual documents, which are
accessible to SMT practitioners; moreover, online translation services are nowadays widely
used in everyday communication. On the other hand, rapid development in hardware and
computing technologies makes it possible to benefit from the growing body of available texts.
Additionally, the development of automatic translation metrics and of several free and open
source SMT toolkits, facilitate the implementation and the evaluation of translation systems.

Translation is a complex process involving a large number of interacting factors. A
translation equivalence model attempts to disentangle these various factors, to describe them
individually, and to model their interactions. According to such model, translating a text
amounts to segmenting it into smaller text fragments (translation units), translating them
atomically and recombining their translations afterward. Statistical approaches aim to learn
such segmentation, translation and recombination decisions by observing them in large
collections of previously translated texts. In most cases, these decisions are implicit in the
bitext and can not be observed directly. At this point, the task of bitext alignment is of a great
importance to reveal the hidden relations and state them explicitly.

While SMT systems share the same foundations, they diverge in several aspects. The first
aspect is the translational equivalence model which specifies the formal process for translation
decision making. Most systems rely on concepts from automata and formal language theory
to perform this modeling. The second is the parameterization of this model which is required
to score competing translation alternatives and to resolve ambiguities. The parameterization
defines a set of statistics (parameters) that are learned from data using machine learning
techniques through parameter estimation. Third, decoding aims to search for the best scoring
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translation of a given source sentence according to the model.

In this chapter we give a brief introduction to the phrase-based paradigm to Statistical
Machine Translation (PBSMT), in which we have performed our experiments presented in this
dissertation. For more details on phrase-based SMT and for overviews of other approaches
one can refer to several surveys or books covering SMT (Knight and Marcu, 2005; Lopez,
2008a; Koehn, 2010); and related fundamental research in NLP (Manning and Schiitze, 1999;
Jurafsky and Martin, 2008), artificial intelligence (Russell and Norvig, 2009), and machine
learning for NLP (Smith, 2011), and formal language theory (Hopcroft, Motwani, and Ullman,
2006).

3.1 Phrase-Based Translation Model

Phrase-based models translate several contiguous word tokens as an atomic unit, called a
phrase®. Phrases pairs that are translation of one another constitute the model’s bilexicon and
they are stored in a structure famously referred to as the phrase table.

The first SMT systems were word-based (Brown et al., 1993) meaning that they used words
as the units of translation. However, shifting from words to phrases is advantageous in several

ways. We consider the following example. The Arabic collocation “ SWL ,4s” usually
translates to English as “worthy of mentioning”. The word-based model should choose a

fertility of one for “ ,u>" and translate it as “worthy”, a fertility of two for “ SJL” and
translate it as “of mentioning”, and then invert their translations. This process involve many
decisions that can be avoided in a phrase-based model which can perform the translation
directly in one step. Since phrases can have variable length, null translation and fertility are
no longer required and many local reordering decisions are made implicitly. Incorporating
phrases results in simpler models, yielding fewer decisions to make and hence fewer chances
for committing errors. Larger local context also helps dealing with lexical ambiguity. In the

case of phrasal verbs such as the Arabic verb “ \£|”, identifying the meaning requires

VZaTi

consulting the following proposition: while “ J| &I translates to English as “to help”,
= Lkl “franslates as “to kill”. Translating idiomatic expressions and non-compositional

phrases becomes feasible by memorizing their translations, as with the Arabic expression “
> X sle”, which literally translates to “he returned with Hunain’s shoes” while it
should be translated to “he returned empty-handed”.

According to the phrase-based model (Zens, Och, and Ney, 2002; Koehn, Och, and Marcu,
2003; Och and Ney, 2004), translation is performed in three steps that can be implemented by
a cascade of finite state transducers (Kumar, Deng, and Byrne, 2006): a segmentation step,
where the source sentence is first split into disjoint contiguous phrases; a lexical translation
step, in which each source phrase is translated; and finally a reordering step, in which target
phrases are permuted into their final order.

Phrase-based translation is implemented in the open source toolkit Moses (Koehn et al.,
2007)*. Many variants of the phrase-based model have been investigated in the literature.

'In this context, the term “phrase” has no specific linguistic meaning.
2The Moses toolkit is available at http://www.statmt .org/moses.
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3.2. Modeling and Parameter Estimation

Och and Ney (2004) present an alignment template approach that model word reordering
based on their part-of-speech categories. Marifio et al. (2006) refer to phrase pairs as tuples
and estimate the translation model as n-gram distributions over tuples. Other phrase-based
variants (Simard et al., 2005; Crego and Yvon, 2009; Galley and Manning, 2010) offer the
possibility for phrases to contains gaps that are filled with other phrases during decoding.
While phrase-based models produce better results than their word-based counterparts,
they still have issues with the modeling of reordering. Accounting for long-distance reordering
is complicated, and distinguishing correct reordering patterns is a challenging task, which
may benefit from incorporating syntax constraints. Hierarchical and synchronous context-free
grammar models handle this problem in a more principled way, using more expressive models,
belonging to the class of context-free grammar (CFG). These models are closely tied to a
linguistic representation of syntax and can better model long-distance reorderings.

3.2 Modeling and Parameter Estimation

Translational equivalence models make it possible to enumerate all structural relationships
between pairs of strings. However, the ambiguity of natural language results in a very large
number of possible target sentences for any input source sentence. These hypotheses need
to be ranked; for this purpose it is customary to assign a real-valued score to any pair of
source and target sentences. As in typical statistical decisions problems, we are given an input
sentence f, and the goal is to find the best translation e.

Therefore, a function w : &* x A* — R that maps input and output pairs in a real-valued
score, is used to rank possible outputs. Given an appropriate parameterization, this scoring
function can be interpreted as the conditional probability p(e|f) where e = (e4,...,en) and
f = (fy,...,fn) are represented with random variables.

In the FST model of translation, each sentence e can be derived from f in several ways
according the alignment d established between source and target words or segments. The
value of p(elf) is therefore obtained by summing the probabilities of all derivations d € D
that yield e.

plelf) = > ple,dif). (3-1)

deD

However, this sum involves an exponential number of terms and hence, a common practice
is to resort to directly maximizing the function p(e,d|f). The parameters of p(e,d|f) are
estimated from a parallel corpus using machine learning techniques.

As a side note, one should realize that any of the alignment model, surveyed in Chapter 2,
that scores both of the alignment and the target sentence, can be used for translation.

3.2.1 Discriminative Translation Models

Discriminative models are more suitable for translation prediction because they do not try to
model the source sentence which is always considered given. In SMT, a popular approach is
to use a linear model (Berger, Pietra, and Pietra, 1996; Och and Ney, 2002), as in Equation

(3-2):
K
ple,dif) = Z(£N) " exp D Achile,d, f), (3-2)
k=1

where {A}JX are the scaling factors, associated to the feature functions (h}K, and Z(f,A) =

Ze‘d exp lele Axhy(e,d,f) is a normalization factor required only to make the scoring
function a well-formed probability distribution. Fortunately, we can ignore this normalizer

61



3. PHRASE BASED SMT

during decoding because it is constant for any given f. Its computation may or may not be
required during parameter estimation, depending on the algorithm.

3.2.2 Bilexicon Induction

The hypotheses translations for a given input sentence are constructed from precomputed set
of phrase pairs, called the bilexicon. The bilexicon is built from a sentence-aligned parallel
corpus in one of two ways. Typically, a general phrase alignment (an extraction set) is
computed for each sentence pair (cf. Section 2.5.2), and the extracted phrase pairs are
accumulated over the entire corpus. This method performs very well in practice and is
used in most state-of-the-art translation systems. Alternatively, the bilexicon can be built by
harvesting the parameters of a generative translation model that includes a hidden phrase
alignment variable. (DeNero, Bouchard-Coté, and Klein, 2008; Saers and Wu, 2011). This
approach is less common in practice mainly because training a generative phrase based model
is difficult (cf. Section 2.5.1.1).

For each phrase pair in the bilexicon, a set of feature functions are computed and used
to score translation hypotheses. We discuss the most commonly used feature functions in
Section 3.2.3, and the data structure used to store them, called the phrase table, in Section 3.2.4.

3.2.3 Features

A feature can be any function from {£*, D, A*} — [o,inf) that maps a pair of source and
target sentences to a non-negative value. Each feature function typically decomposes in terms
of local evaluations at the level of words and also phrases. We now briefly describe the
“standard” features introduced in Koehn et al. (2007) and found in other approaches (Chiang,
2005; Simard et al., 2005). Different features have different scopes, as discussed in Section 2.6.
Global features are computed from the entire derivation, they include:

e Distortion count: Sums the number of source words between two source phrases
translated into consecutive target phrases.

e Phrase penalty: The number of phrase pairs used in the derivation |D|.

e Word penalty: The number of produced target words, which controls the length of
translation.

Other features use a limited context around the individual phrase pairs:

o Target language model: The logarithm of an n-gram target language model

M
logp(e) =log [ [ plejlej—i-..e5-n), (3-3)

j=1
which requires to remember a history of n words for each position in the target sentence.

The remaining features require many parameters and can be factorized in terms of
individual phrase pairs. They include phrase translation probabilities, lexical weighting and
lexical reordering.

e Translation probabilities: The conditional translation probability of the target phrase
given the source phrase:

log H p(rlp), (3-4)

(r,p)ed
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Figure 3.1: Phrase orientations in a lexicalized reordering model (Koehn, 2010).

where p is a source phrase and r is a target phrase. The equivalent phrase probability
for the same phrase pairs in the opposite direction p(plr) is also used. It has been found
to produce a performance comparable to the direct probability p(plr) in practice (Och,
Tillmann, and Ney, 1999).

The estimation of the individual probabilities vary along with the phrase alignment
model used to build the bilexicon. For generative models, these probabilities could
correspond to the parameters of the model computed with EM. Alternatively, they could
correspond to normalized joint frequencies accumulated over the bilexicon.

_ count(p, 1)

plplr) = count(r) (3-5)

The nominator represents the number of the joint occurrences of both phrases aligned
together (p,r), while the denominator represents the marginal counts of the phrase r.
p(plr) is defined similarly.

Lexical weighting: Relative frequency estimation of conditional phrase probabilities
are overly optimistic due do data sparsity. Lexical weighting is then basically used as a
smoothing method for infrequent phrase pairs, the probabilities of which are poorly
estimated (Foster, Kuhn, and Johnson, 2006). Smoothing is based on word-to-word
translation probabilities, for which statistics are available. The target-to-source lexical
weighting is:

L,j) € All i:(i,j)eA

M
1
lex(eif, A) =log | | eorsyeay 2 Plfiles), (36)

j=1""
where A refers to some underlying word alignment. The reverse lexical weighting
lex(fle, A) is defined similarly. The word conditional probabilities p(fi|e;) are computed
in a similar way as phrase conditional probabilities. The parameters of word-based IBM
model 1 are found to perform well in practice.

Lexicalized reordering: These features describe the orientation of a source phrase
being translated with respect to the previously translated phrase. Reordering can be
represented as the distance (in number of words) between these two source phrases. To
avoid sparsity issues, orientation can be limited to some predefined categories: the most
widely used are monotone, swap (s) with the previously translated source phrase and
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Features

N

<«——— Bilexica

v

Source p(elf) lex(elf) p(omle f)
A bl L Caai | say 0.83 0.12 0.87
.S: what | say 0.11 0.03 0.91
* half of what | say 0.01 0.01 0.91
A Jaa Y ~<: meaningless 0.91 0.56 0.75
is meaningles 0.09 0.28 1.00
AY Gl . second half 0.27 0.02 0.13
§ other half 0.36 0.01 0.53
the other half 0.14 0.00 0.33
laly .i: reach 0.35 0.11 0.45
reach you 0.24 0.02 0.67

Figure 3.2: An example phrase table.

discontinuous (d). These categories are illustrated in Figure 3.1, borrowed from (Koehn,
2010). The associated features are then computed:

log H p(orientation|p, r). (3.7)

(orientation,r,p) €D

Again, there exist several ways to compute the probabilities p(orientation|p, r) for all
phrase pairs in the bilexicon. A common practice is again to rely on relative frequencies
of such events in the parallel corpus annotated with alignment. Orientation events can
be defined either with respect to the word alignment (Tillmann, 2004; Koehn et al., 2005)
or to the phrase alignment (Galley and Manning, 2008).

Other score functions have been proposed in the literature and can be used in conjunction
with the previous scores. In fact, any function associating a numerical positive score with each
phrase pair is a candidate feature. Boolean functions can thus be used for measuring arbitrary
syntactic properties of a phrase pair, such as “Is r a target constituent?” “Do r and p both
contain a verb?”, and so on. Additional feature functions relying upon external information
such as syntactic parses can also be found in the literature (Och et al., 2004; Chiang, Knight,
and Wang, 2009).

3.2.4 The Phrase Table

A data structure that is widely used in phrase-based systems is the phrase table. This structure
contains all the phrase pairs included in the bilexicon. Since many of the features used by
the model are decomposable in terms of individual phrase pairs, they are precomputed and
stored in the phrase table as well. Figure 3.2 shows an example of a phrase table. It represents
each source phrase along with each possible translation and the associated parameter values.
The pipeline used to build the phrase table is pictured in Figure 3.3.

3.2.5 Learning in Discriminative Models

From the definition of the discriminative model defined in Equation (3.2), after computing
the values of the features hy (e, d, f)EZl, the only parameters that remain to be learned are
the scaling factors ?\k,]jzl.
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Figure 3.3: The pipeline to construct the phrase table.

The MERT algorithm (Och, 2003; Zaidan, 2009) is widely used in practice for the estimation
of these parameters. MERT implements Powell search method to find a local optimum of
the BLEU function, which is non-differentiable, non-convex, without computing any of its
derivatives, This procedure remains widely used in practice in spite of its computational cost3;
the instability of its solutions due to local minima; and the limitation of the number of weights
that can be simultaneously optimized. Multiple variations and improvements are proposed
in (Foster and Kuhn, 2007; Cer, Jurafsky, and Manning, 2008; Moore and Quirk, 2008). An
alternative method based on large margin approach called MIRA is proposed by (Crammer
et al., 2006; Chiang, Marton, and Resnik, 2008). Other approaches use more conventional
discriminative learning algorithms (Liang et al., 2006).

3.3 Decoding

Once the model is specified and all the parameters are estimated, it is possible to translate
new input sentences. The role of the decoding module is to construct a translation for any
source sentence. The best translation hypothesis is the one with the highest model score and
therefore translation is a matter of searching, among the sentences which can be aligned with
f, the hypothesis e* maximizing the linear model score:

K
e’ = argmaxp(elf) = arg max Z p(e,dlf) = argmax Z Z Mchy (e, d, f). (3.8)
€ € deD € deDk=1

The search space ranges over A* x D for a given f and the optimization involves a sum
over exponential number of derivations. Computing the best translation in fact involves the
resolution of a NP-hard combinatorial optimization problem when reordering is arbitrary

(Knight, 1999).

3MERT typically requires multiple decoding of the development set and training a complete system
can take several hours, sometimes days to optimize a dozen of parameters

65



3. PHRASE BASED SMT

In order to tackle this complexity, one can impose further restrictions on the search space
and on the scoring function to allow for efficient resolution strategies. An example would
be allowing only monotone or limited local reordering translations. the search algorithm
proceeds through a directed acyclic graph of states representing partial or completed transla-
tion hypotheses, which are constructed from left-to-right in the target language word order
Wang and Waibel (1997); Koehn (2004). Other implementations (Knight and Al-Onaizan, 1998;
Kumar and Byrne, 2003; Kumar, Deng, and Byrne, 2006) may rely on the formalism of FSTs,
and benefit from well-known and efficient algorithms (Mohri, Pereira, and Riley, 2002). As
an alternative way to reduce the complexity of the search, one can resort to heuristic search
techniques and compute approximate solutions. Possibilities include the use of best first search
techniques (Pearl, 1984); greedy local search techniques (Germann, 2003); monotone decoding
applied on a large permutation sets computed heuristically (Crego and Marifio, 2006); the
transformation of the decoding problem into a known combinatorial problem which can then
be solved using general purpose solvers such as Integer Linear Programming (ILP) (Germann
et al., 2001); etc. To reduce the complexity, these approaches actually drop the marginalization
of the derivation (the sum in the Equation 3.8) and search for the best (e,d)*. An alternative
decision rule is the MBR decoding proposed in (Kumar and Byrne, 2004) which aims at a
direct minimization of the expected risk of translation errors under a given loss function such
as BLEU.

Even if there are no search errors and the translation that exactly optimizes the decision
rule can be produced, the output of the decoder may not be the actual best translation
according to human judgment. It is possible that the search space explored by the decoder
contained a better translation, and the decoder assigned a lower score for this hypothesis
because its score estimation was incorrect. This is called model error. One approach to
reducing model error is reranking or rescoring in which the decoder returns N highest-scoring
translations for some value N. These translations are then rescored by an alternative model
with access to more feature functions than the decoder. This can be done using a log-linear
model as in (Och et al., 2004; Shen, Sarkar, and Och, 2004) or any other machine learning
approaches such as kernel methods or Gaussian mixture models (Nguyen, Mahajan, and
He, 2007). A wide range of features can be useful to improve the re-ranking performance
(Giménez and Marquez, 2008; Chiang, Knight, and Wang, 2009).

Figure 3.4 represents the main components of a log-linear SMT system.

3.4 Evaluating Machine Translation

One way of evaluating the output of an SMT system relies on a comparison between the
system’s output and correct translations. However, as argued in Section 1.2 translation is
non-deterministic. Furthermore, comparison between translations is not well-defined which
make judging the quality of one translation with respect to the references a difficult task. The
problem of evaluation is usually solved either by asking a human expert to subjectively judge
the quality of the system’s output; or by explicitly constructing the the correct answer and
conceiving an objective comparison metric.

Subjective evaluation requires the annotators to judge the quality of a translation based on
several criteria such as intelligibility, fluency, fidelity, adequacy and even informativity. This
approach is adopted in recent evaluation campaigns (Callison-Burch et al., 2008; Callison-
Burch et al., 2009). Alternatively, the judgment may be based on how helpful the system'’s
output was to the annotator to complete a specific task (Blanchon and Boitet, 2007); or how
easy was post-editing the output to obtain a correct translation (Specia, 2011).

4In FST terminology, the exact optimization in Equation 3.8 corresponds to a determinization of the

FST followed by a shortest path algorithm. The determinization being very costly is dropped in the
approximation.
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Figure 3.4: Components of an SMT system. The phrase table, the language model and the other
features are first estimated from the training data; discriminative training (MERT,
MIRA, etc.) is carried on to learn feature weights from a small development data set.
Given all the parameters and an input sentence, the decoder explores the search space
and output the best translation.

Automatic evaluation mostly relies on a direct comparison between the system output
hypothesis and the reference translations. The underlying assumption is that the closer the
hypothesis is to the reference, the better its quality will be. In comparison with subjective
evaluations, human annotator are involved just once in the process, when the reference is
generated. The difficulty of automatic evaluation is two-fold. On the one hand, we have
the difficulty of defining the correct translation. Usually one or several human experts are
asked to translate the input sentence and build the set of references as an approximation of
the space of correct translations. However, given the nature of translation this space is huge,
and few translations are likely to cover only a small fraction of it. Recent technologies based
on meaning-equivalent semantics tools (Dreyer and Marcu, 2012) provide the annotators with
efficient ways to generate a large number of reference translations,thus resulting in a better
approximation of the correct translations space.

On the other hand, there is the difficulty of designing metrics capable of taking into
account many aspects of the comparison such as the similarity of syntactic structure or the
similarity of semantic content. Current metrics are far form perfect and improving them is
still an active research area>. The most widely used metric is the BLEU score (Papineni et al.,
2002). BLEU considers not only single word matches between the output and the reference
sentence, but also n-gram matches, up to some maximum n. This formulation permits to
reward sentences where local word order is closer to the local word order in the reference.
BLEU is a precision-oriented metric; that is, it considers the number of n-gram matches as a
fraction of the number of total n-grams in the output sentence. Other metrics such as TERp
(Snover et al., 2006b) and METEOR (Agarwal and Lavie, 2008) have been developed recently,
and are becoming more and more popular.

3.5 Summary
SMT is the main application which drives most of the research in alignment models. In this
chapter, we have described a state-of-the-art phrase-based SMT system. In the following part,

we will use such a system to evaluate the performance of our alignment models.

5See the WMT metrics tasks between 2008 and 2012 http://www.statmt.org/wmt12/
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3. PHRASE BASED SMT

After having discussed the motivation for using phrases, instead of words, as the units
of translation, we have presented the discriminative phrase-based model that we use in this
dissertation. This model is a weighted linear combination of feature functions. Translation
hypotheses are constructed by concatenating phrase translations found in the bilexicon of the
translation system. This bilexicon is typically built from a parallel corpus which is annotated
with generalized phrase alignment. We have then detailed the “standard” set of features
that are found to be useful and are used in current SMT systems. We have also described
the phrase table, which is a data structure, used to store the values of the features for each
phrase pair. After having mentioned methods to learn the parameters of this model, we have
briefly introduce the inference in this model which amounts to the search for the best scoring
translation hypotheses. This search is done by the decoder. Finally, we have presented several
automatic metrics for the evaluation of the translation quality.
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Research Statement

I have introduced the problem of bitext alignment and its applications, especially SMT,
and surveyed the literature for existing approaches. In our research contribution we are
interested in improving the intrinsic quality of bitext alignment and its impact on the SMT
application. We explore the pipeline of constructing a phrase table from a parallel corpus,
spot its weaknesses, and propose several methods to improve it. As shown in Figure 3.5,
phrase tables are built from phrase alignments, which in their turn rely on word alignment
information.

The first problem we are concerned with is improving the word alignment quality. In
Chapter 2 we reviewed state-of-the-art approaches and pointed out their problems. Now we
summarize these problems and our propositions to confront them.

o Asymmetry. This problem results from representing the alignment as a mapping func-
tion from one side of the bitext to the other. Therefore the output depends on the
direction of the alignment. Asymmetry limits the alignment to one-to-many patterns,
whereas we are interested in many-to-many word alignments. This problem exists
in many generative approaches including the widely used IBM models, as well as
discriminative approaches. This problem is solved in practice by using a symmetriza-
tion heuristic, which starts from the intersection of two directional alignments, and
heuristically adds points from their union to increase coverage.

We propose in Chapter 4 an alternative representation of the alignment by directly
modeling the alignment matrix. We propose to model the decision of aligning any word
pair using a MaxEnt model. This results in symmetric, many-to-many alignments. Our
proposition is also a model-based replacement of the symmetrization heuristic.

o Incorporating features. Generative models have to factorize according to a particular
generative process, which imposes considerable restrictions on the kinds of features
that can be incorporated.

We propose to use a discriminative approach which facilitates the incorporation of many
relevant features.
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Figure 3.5: Constructing a phrase table from a parallel corpus.
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e Structure and independence assumptions. In both generative and discriminative

models there is a compromise about the model structure. A complicated structure, with
many dependencies, enhances the model capacity to take the context into consideration
when making alignment decisions. However, efficiency and the increased number of
parameters become issues for inference and learning. Typically strong independence
assumptions are made which do not always correspond to reality.

The model we propose in Chapter 4 enables efficient learning and inference by making
the alignment decision of each word pair independently from the other pairs. Better
structure and more dependencies are then incorporated by using stacking machine
learning techniques without increasing the model complexity.

Estimating link posteriors. Computing a score to evaluate the association between two
words under the alignment model is of a great importance for some alignment methods
and for applications of the alignments. This score corresponds to the link posterior
probability. Computing posteriors involve summing over all possible alignments, which
is intractable under complicated model such as the IBM models.

Our approach is an efficient way to compute such scores since it models the posterior
directly.

Correlation between AER and BLEU. The correlation between intrinsic alignment
quality measures, such as AER, and translation quality measures, such as BLEU, has seen
contradictory results in the literature. Furthermore, it is not clear what characteristics of
word alignments are required in order to produce good translation performance.

We propose a series of experiments which involve several discriminative and generative
alignment models and we compare their characteristics in light of their translation
performance.

The second problem we are concerned with is phrase pairs extraction. In the standard

approach to phrase-based translation systems, the word alignment is first computed for
each parallel sentence; then an extraction heuristic is used to compute the extraction set (or
generalized phrase alignment), from which the phrase table is built. We call this approach
“Viterbi-based” because it relies on the one-best alignment. We aim to confront the following
problems in this pipeline.
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e Alignment error propagation. Since the standard phrase extraction procedure ignores

alignment posterior probabilities, it tends to be sensitive to alignment’s precision and
recall errors. An erroneous link, as unlikely as it may be, can prevent the extraction of
many plausible phrase pairs. Furthermore, the extracted phrase pairs are all considered
of equal quality, regardless of how much evidence the alignment matrix provides for
them.

Our MaxEnt model presented in Chapter 4 allows efficient and reliable estimation of
the posterior probabilities. We take advantage of this formulation in Chapter 5 and use
alternative extraction methods that allow to consider the entire alignment distribution
to make extraction decisions. We call this approach “posterior-based” extraction.

Balancing precision and recall. In the standard pipeline, the number of phrase pairs
extracted per sentence pair, and hence the size of the phrase table, is determined by
the underlying word alignment. However, if large training corpora are available for
the SMT system, only precise phrase pairs with high translation quality are needed to
be extracted from each sentence; while for smaller corpora, more phrase pairs may be
better even of lower quality. Controlling this balance between precision and recall for
building phrase tables is not possible in the standard approach.
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We propose to remedy this problem in two ways. First, use thresholding of the link
posterior probabilities to produce the word alignment. This threshold allows to control
the sparsity of the resulting alignment and hence the number of extracted phrase pairs.
Second, do not use a single word alignment, but instead use an extraction procedure
that use the posteriors directly to compute a confidence score per phrase pair and
threshold this later score.

The third problem we are concerned with is the generalized phrase alignment for SMT.
Building the phrase table requires the extraction of all relevant phrase pairs. We address the
following problems in the existing methods.

e Incorporating features. “Posterior-based” extraction approach improves over the
“Viterbi-based” by using links posteriors instead of links in the one-best. However,
only the alignment models are used which are not perfect.

In Chapter 6 we propose to use several features in addition to the alignment models in
order to recover from their errors.

e Modeling the extraction. The predominant methods to build the extraction set (the
generalized phrase alignment) for a sentence pair is using extraction heuristics. The
extraction decisions are based on the estimation of the intrinsic quality of phrase pairs,
estimated from word alignment models or phrase bisegmentation models. However,
these heuristics are not concerned with the translation as the final application of the
phrase pairs, and are agnostic about the “utility” of extracted phrase pairs in that
context.

In Chapter 6 we present a model-based, discriminative approach to the extraction
problem. In our model, extraction decisions are learned from phrase pairs annotated as
useful for translation.

Chapter 4 presents a word-based alignment model which estimates the link posteriors
directly in a MaxEnt framework. Chapter 5 studies the performance of this model when
used in SMT systems, and compare Viterbi-based and posterior-based extraction heuristics.
Chapter 6 introduces a novel discriminative extraction model for phrase pairs, which is
informed about the quality of the translation.
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CHAPTER

A Maximum Entropy Framework for Word-Based
Alignment Models

The word alignment task is at the heart of many applications including machine translation.
They constitute the first step in the process of building the bilexicon in phrase-based SMT
systems, as well as in syntax-based systems. Different approaches to solve the word alignment
problem have been discussed in Chapter 2. The most widely used in practice are the generative
IBM models (Brown et al., 1993). Such models can be easily trained from sentence-aligned
bitexts in an unsupervised way using the EM algorithm. Unfortunately, IBM models make a
lot of alignment errors, and our main objective in this chapter is to design a word alignment
model that improves the intrinsic quality of state of the art alignments.

The major problems with IBM models is their asymmetry. Only directional one-to-many
mapping can be obtained from these models which does not reflect the symmetric nature
of the alignments. A practical solution is to construct two directional alignments and to
symmetrize them in a post-processing step. However, the wide-spread symmetrization
heuristic (Koehn, Och, and Marcu, 2003) acts locally at the sentence-pair level and lacks a
global view of the entire training corpus. An additional issue is that incorporating features
into generative models is difficult.

A natural remedy to these problems is to use discriminative models, trained in a supervised
way from parallel corpora annotated with manual alignments. Discriminative models are able
to consider arbitrary, possibly overlapping, features. In this context, we cast the alignment
task as a classification problem: a binary classifier predicts, for each possible link, whether
it should be included or not in the alignment (Ayan and Dorr, 2006a). This discriminative
framework models directly the posterior probability of alignment links, thus enabling the
use of MBR decoding with a threshold and a specific loss function such as AER, similar to
(Kumar and Byrne, 2002).

This approach can be seen as a model-based alignment combination method and a
replacement of the symmetrization heuristic used with the generative models (cf. Section
2.3.1). The alignments to be combined are used to compute features and restrict the set of
possible links that are passed to the classifier. Combination decisions are learned in light of a
global view of the data to maximize the AER, instead of being made locally and arbitrarily as
in the heuristic.

However, this approach remains unable to model interactions between alignment decisions
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which are of great help to correctly prevent or promote certain configurations in the predicted
alignment. For instance, when predicting whether two words are aligned or not, the binary
model does not have access to information about the alignment predictions of the neighboring
words. This shortcoming may be overcome by introducing a stacked classification layer
(Wolpert, 1992) that operates globally on the alignment matrix level and, hence, enables
arbitrary features describing interactions between alignment decisions to be taken into
consideration.

The main contribution of this chapter is a simple and efficient MaxEnt alignment model,
which can be trained from a small amount of labeled data. The model dispenses with the
symmetrization heuristic and delivers state-of-the-art alignment quality as measured by AER.

This chapter is organized as follows. In Sections 4.1 and 4.2, we propose to model
the distribution over binary alignment decisions with a MaxEnt model. Using this model,
thresholding can be used to produce alignments as described in Section 4.3. In Sections 4.4
and 4.5 we describe how we estimate the parameters of our model and how we cope with the
problem of imbalanced training data sets. One important aspect in discriminative modeling
is the choice of features which we detail in Section 4.6. The model is enhanced with a stacked
classification layer described in Section 4.7. In the experiments reported in Sections 4.8 and 4.9
we evaluate the intrinsic quality of the alignments produced by our framework as measured
by the AER. We compare our model to other state-of-the-art generative and discriminative
models. We also extensively study the role of each component in the model and its relation to
the alignment quality. We conclude with in a summary of the chapter in Section 4.11. The
findings of this chapter was originally published in (Tomeh et al., 2010; Tomeh, Allauzen, and
Yvon, 2011a; Tomeh, Allauzen, and Yvon, 2011b; Tomeh et al., 2011a).

4.1 Word Alignment as a Structured Prediction Problem

The task of word alignment is to find many-to-many word-level, translational equivalences
between two parallel sentences f and e, of length N and M respectively. The alignment refers
to the set of links pairing single word positions in the two sentences.

Let N ={j : 1 <j < N} be the set of source positions and M ={i: 1 < i < M} be the set of
target positions. A word alignment is defined as:

A ={(i,j) e M x N} (4.1)

Matching is only possible between word positions, meaning that only single words can be
explicitly put in a translation relation. This can be interpreted as fixed segmentation constraints
on the sentences.

This alignment is usually represented by enumerating the function A : N x M — {—1,1}
which maps the cells (i,j) in the alignment matrix to a binary value A; j indicating whether
the corresponding words are aligned or not: 1 indicates an active link and —1 an inactive link.
Word alignment can then be seen as a binary classification task, in which the goal is to predict
a class y € {—1, 1} for every candidate link in the matrix.

4.2 The Maximum Entropy Framework

In probabilistic modeling, predicting an output y from an input x is based on the conditional
probability distribution p(y/x) which is modeled directly in discriminative approaches. Let
x refer to all input information extracted from the context of the parallel sentence and any
annotation thereof. The maximum entropy model of this distribution relies on a generalized
log-linear parameterization:

exp 0" g(x,y)
Zg e{—1,1} EXP OTg(x) 9)

plylx) = (4-2)
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Alignment Matrix Maximum Entropy

Classifier

N
] ] a = 50%
|

Thresholding o

Figure 4.1: The MaxEnt alignment framework. The classifier is used to populate the weighted
alignment matrix. Then, a threshold o is used to select active links.

The output search space contains two elements y = A; ; € {—1,1}. The partition function
Z(X) = ) ye(—1,1} &P 0 "g(x, 1) is specific to each input x and is used as a normalizer. g is
a feature vector of K components, each of which is associated with a model parameter (a
component of the vector ). Since Z(x) does not depend on y, the decoding rule becomes:
§ =argmax,c, 0" g(x,y). The binary classification case is also called logistic regression.

4.3 Minimum Bayes-Risk Decoding

During inference, the model assigns a probability to each possible alignment link. The final
output matrix consists of active links whose probability exceeds a threshold p (optimized on
a development set using grid search). This parameter is used to control the density of the
resulting alignment.

Thresholding the link posterior probability p(a; i|x), which we model directly using the
MaxEnt model, is equivalent to the MBR decoding with the AER as loss function (Kumar and
Byrne, 2002). Irrespective of the particular choice of the loss function, the threshold allows to
trade-off precision and recall. This is shown in Figure 4.1. This decoding results in symmetric
many-to-many alignments.

4.4 Parameter Estimation

Given an annotated corpus {(&, fr, Ak)}]]S:I, the conditional log-likelihood function is given
as:

N
OLL(8) = < > 07 g(%x, i) — log Zg(%i) 43)
k=1

The model is trained to optimize the log-likelihood:

0" = argmax @y . (4-4)
0

Training is sketched in Figure 4.2. Log-linear models are also called maximum entropy (MaxEnt)
models, because they can be alternatively derived by maximizing entropy subject to some
empirical constraints (Berger, Pietra, and Pietra, 1996).
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Figure 4.2: Parameter estimation for the MaxEnt alignment model. The threshold « is optimized
separately on a development corpus to maximize the AER.

MLE for conditional log-linear models does not have a closed-form solution. However,
it yields an unconstrained optimization problem with a smooth, differentiable and globally
concave function. Therefore, a wide range of numerical optimization algorithms are available
to perform the optimization. In most cases, those algorithms will require the calculation of
the objective function @11 and of its first derivatives with respect to each component 0;:

20;

(0) = ]Ef)(x,y) [91(X> Y)] - ]Efy(x).pg (ylx) [91’.(") Y)] (45)

where g; is the ith feature function. The first derivative with respect to the ith weight is the
difference of the expectations E of the ith feature respectively with respect to the empirical
and the to model distributions.

In order to avoid overfitting in MLE, the model is trained to optimize the regularized
log-likelihood of the parameters. The most common regularization used in literature is the
Gaussian prior (£ penalty) which reduces overfitting and thus improves performance on most
tasks. An alternative is to use a Laplacian prior (or £' penalty). Such regularizer performs
feature selection and yields sparse parameter vectors (Tibshirani, 1996). The regularization
hyper-parameter aims to control the strength of the regularization.

This optimization requires a fully derivable function to optimize, which is not the case
at zero for the {* penalty. To overcome this problem, an adaptation of the classical L-BFGS,
called OWL-QN (Andrew and Gao, 2007) can be used. In addition to the {' regularization
term, a small £* term is also added to overtake numerical problems that can results from using
the second order method, leading to the so called elastic-net penalty (Zou and Hastie, 2005).
The benefits of the elastic-net regularization are two-fold. It enables efficient features selection,
without any loss in resulting model quality. Moreover, the obtained models are interpretable,
thus enabling to analyze the features contribution. It should be noted that these advantages
do not entail a change in the number of model parameters, nor a higher computational cost.

4.5 The Set of Input Links

Since the alignment matrix is typically sparse, with a majority of inactive links, the clas-
sification task we consider is imbalanced. Whenever a class is over-represented, its prior
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Figure 4.3: Using a window-based heuristic to extend the input links set.

probability is higher than that of under-represented classes. Hence, attention should be payed
to avoid learning a biased classifier with a tendency towards labeling all links as inactive. For
this purpose, we do not consider the entire alignment matrix: we use the input alignments to
select a set of permissible links, hoping to obtain a more balanced dataset.

Therefore, the union of all input alignments is used, to select input links. The same
method is used during inference, reducing the number of links to be predicted to a subset
of the alignment matrix (Ayan and Dorr, 2006a; Habash and Sadat, 2006): only points that
have been proposed by at least one input alignment are labeled by the classifier, the others
are assumed to be inactive.

This reduction of the number of input links (links considered by the classifier) implies
an upper bound on the recall, by excluding a lot of plausible links, which then become
unreachable by the inference strategy. While a perfect precision can be achieved, recall
becomes a bottleneck. The practical effect of the pruning method on the best obtainable
alignment (oracle) is studied in details in later sections.

As in alignment combination heuristics, the union of all the input alignments® is used
to restrict the set of input links. This establishes an upper bound on recall, which can be
enhanced by adding the links in a neighborhood defined using a fixed-size window strategy.
This method is motivated by the observation that good candidate alignment points often
neighbor other good alignment points. Figure 4.3 illustrates the extension of the set of input
links using the window-based heuristic. A down side for this heuristic is the increased
number of negative examples, which may contribute to the imbalanced data problem?.
Possible solutions include random sub-sampling of the training data, and adjusting the
selection threshold to neutralize the a priori probability assigned to the over-represented
inactive class.

4.6 Features

The choice of features is critical for the performance of a model, and many research questions
involve primarily the exploration of new features for a particular task. In NLP, feature

'For instance, IBM models can be used to generate input alignments.
?In practice, we do not observe such degradation in performance
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Figure 4.4: Features extracted to label the link pointed to by the arrow. Align1 and Align2 are
input alignments, AAlign is the window that defines the context from which the
input alignment based features are extracted. ADist and AJump show the value of
the respective features for this specific matrix.

engineering is largely a matter of manual development guided by linguistic expertise and task
performance. The main strategy is to incorporate as many features as possible into learning
and to allow the parameter estimation method to determine which features are helpful and
which should be dismissed. However, caution should be taken. Adding more features can
only help a model fit the training data better, but at the risk of overfitting, with negative effects
on performance on new data. Overfitting can be reduced using {* regularization, as described
earlier in Section 4.4. Discretization of continuous features is performed in a preprocessing
step, using an unsupervised equal frequency interval binning method (Dougherty, Kohavi,
and Sahami, 1995).

In our discriminative model, we consider two kinds of features: word and alignment
matrix features; some of them are illustrated in Figure 4.4.

4.6.1 Word Features

Word features aim to describe the linguistic context of a given link, and depend on the
sentence-pair in which it occurs, augmented by part-of-speech tags and related corpus
statistics. They include:

1. Part-of-speech tags (WPOS) for a window of words, with variable size, surrounding the
source and target words. This window size variable introduces a model parameter to be
used to optimize AER on a development set. An example of this feature could be:

1 if POS(e;) = VERB

o otherwise (4-6)

gwros(i,j, e, f) = {

The WPOS feature is computed for all target words at positions j —2,j — 1,j,j +1,j + 2,
and similarly for source words. These features help to capture syntactic patterns in the
alignment.

2. Surface lexical form (WLex), which is active if the source/target word is one of the
L most frequent words. Again, L introduces an additional hyper-parameter. These
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features help aligning frequent words by boosting the weight of their correct associations
(encountered in the manual alignments).

3. Monotonicity (WMono) of the link a; ; which includes the difference between source
and target absolute positions [i —j| and their relative positions to the sentence length
o and |5 i\ These features capture the distortion information by computing
the (normahzed) dlstance from the diagonal of the matrix.

4. Lexical probability (WProb). These features include a separate feature for each dis-
cretized probability p(file;) and p(e;[f;). We use the parameter of IBM model 1 to
compute these features.

5. Word frequency (WFreq). The source and target word frequency (and their ratio)
computed as the number of occurrences of the word form in the training data.

6. Lexical Prefix/Suffix (WPref, WSuff) A separate feature for each prefix/suffix of a
predefined length (and their combination), for a; j source and target words. An example
of a combination feature:

1 if prefix(f;) = A1 Asuffix(f;) = At

o otherwise (4-7)

gPS(i»j)e) f) = {

7. Word similarity (WSim). These features reflect that proper nouns are often spelled
similarly in different languages, e.g. “SdAm Hsyn” 3 and “Saddam Hussein”. A
separate feature is defined per distinct value of the word similarity between f; and e;.
We use the Levenshtein (edit) distance as a measure of similarity.

8. Identity (WIdent), which is active whenever f; is equal to e;, which can be useful for
untranslated numbers, symbols, names, and punctuations.

9. Punctuation mismatch WPunct. These features indicate whenever a punctuation is
aligned to a non-punctuation.

Any number of other information sources can be used to design additional lexical features
such as word classes, chunks, stems, parse trees, etc.

4.6.2 Alignment Matrix Features

These features characterize the set of input alignment matrices, in addition to their union
matrix Ay. Most of these features have been already proposed (Ayan and Dorr, 2006a;
Blunsom and Cohn, 2006; Habash and Sadat, 2006), exceptions are ADist and AJump, which
are novelties of this work. Our feature set includes:

1. Predictions (AAlign) of individual input alignment systems (and their union Ay) for the
current link and its neighborhood in a window of size w x w where w is an additional
model meta parameter.

These features test whether a particular link exists in this neighborhood according to
each input alignment. We also test the total number of input alignments supporting
it. Neighbor features are used to inform the current link about its surrounding points,
motivated by the fact that alignment points are usually found around the diagonal of
the alignment matrix.

3All Arabic transliterations are provided in the Buckwalter transliteration scheme
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Figure 4.5: A common problem with IBM Model 4 alignments is a too weak distortion model.
The second English “in” is aligned to the wrong Arabic token. Circles show the gold
alignment.

2. Source and target word fertility (AFert), which represent the number of target (source)
words aligned to the current source (target) word according to a given input alignment
and/or to the union alignment;

3. Distance features (ADist), which describe the minimum/maximum distance between
the current link and the previous/following links of same line/column according to
the union alignment matrix. Beside characterizing fertility and monotonicity of the
union alignment, distance features provide information about the bi-phrases that can be
extracted from the alignment. The larger the distance, the fewer the extracted phrases
and the more discontinuous they are;

4. Jump features (AJump), which characterize the absolute distance between the current
word and closest aligned one, on both source and target side according to the union
alignment matrix. These features provide information about gaps in the alignment.

5. Multiple distortion (AMultd) features, which indicate whether a link involves a dupli-
cated word. Indeed, duplicated words are often misaligned due to a weak distortion
model in comparison with lexical probabilities in IBM alignments (Riesa and Marcu,
2010). E.g. several “fy” on the source side could be erroneously aligned to the same “in”
on the target side regardless of the distortion. This feature is active for the link a; j if f;
or ¢j is duplicated, returning the distance to the diagonal. Figure 4.5, borrowed from
(Riesa and Marcu, 2010) illustrates the utility of such feature.

4.6.3 Partitioning Features

Following (Ayan and Dorr, 2006a; Blunsom and Cohn, 2006), each feature function is condi-
tioned twice on the POS tags of the source word and the target word. We also add another
conditioning criterion corresponding to their conjunction. Thus, we learn a separate weight
for each feature for each source, target and source/target POS tags, allowing the model to
pay more or less attention to each feature depending on the related tags.

4.7 Stacked Inference
Two issues with the MaxEnt formulation of the alignment problem are that i) structure is not

taken into account; and ii) labels are predicted independently. While this keeps the model
simple, interactions between individual predictions can not be modeled.
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One can solve this problem by predicting the entire alighment matrix at once using,
for instance, multinomial logistic regression, conditional random fields, large-margin based
method, or any other structured prediction approach (cf. Section 2.3.4). However, models
with a lot of dependencies are difficult to learn and are not always tractable. In order to
incorporate structure and dependencies into the MaxEnt model, without sacrificing efficiency,
we use a stacked inference method (Wolpert, 1992).

Stacked inference is merely an approximation to structured learning. It allows us to
indirectly model dependencies between predicted labels at a low computational cost. It has
been successfully applied to several NLP problems, like dependency parsing (Martins et al.,
2008), named entity recognition (Krishnan and Manning, 2006) and sequential partitioning
problems (Cohen and Carvalho, 2005).

4.7.1  The Stacking Algorithm

In stacked learning, all labels are predicted in two steps.

1. For each training example (X, k), the entire set of observations Xy is considered to
extract features, which are then fed to a first-level classifier. This classifier is used to
assign a label y; to each observation X without taking dependencies between labels
into consideration; then

2. observations are augmented with predictions of the local classifier

Yk = (Qoj0y -5 Qjiy- -y AN M) (4-8)

to generate an extended representation of the training corpus, on which a second-level
classifier is trained. This classifier approximates links interactions using the predictions
of the first-level classifier.

4.7.2 A K-fold Selection Process

When building training data for the global classifier, a K-fold selection process is used. The
entire training dataset is divided into K blocks, and K first-level classifiers are trained, each
on a different subset (of K — 1 blocks) of training data. Each of these classifiers is then used
to label the held-out block. These predictions, along with the original data, constitute the
training examples for the second-level classifier.

Stacking avoids the explicit joint modeling of labels and is thus merely an approximation
method of structured learning. Nevertheless, it allows us to take any type of dependency into
account without complicating the model. The runtime of the training algorithm is O(KT¢ 4 Ts)
where T¢ and Ts are the individual runtimes required for training a first- and a second-level
classifier respectively.

4.7.3 Stacking for Word Alignment

For the task of alignment matrix prediction, the use of stacking consists in augmenting input
alignments by one additional matrix, which is the output of the first-level classifier.

Over this matrix, features characterizing the interactions between links in the final output
alignment can be computed. The same set of features used for the first-level classifier is also
used for the second-level one. That is we label the data with a first pass aligner and then we
train another model using its prediction as features.

Features like ADist and AJump are more suitable to capture characteristics of symmetric
alignment matrices like the union alignment and the output of the first-level classifier, and
hence, are calculated exclusively for them.
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Data source #Sentences #Ar tokens #En tokens
test 663 16K 19K
IBMAC dev 3,486 71K 89K
train 10K 215K 269K
MT’08 test set 1,360 43K 53K
MT’ 06 dev set 1,797 46K 55K
MT’09  constrained track 5M 165M 163M

Table 4.1: Experimental data: number of sentences and running words. The number of tokens
after the preprocessing is given.

4.8 Experimental Methodology

As discussed in Chapter 1, intrinsic and extrinsic methods can be used to evaluate the quality
of word alignment. We use AER and several additional measures presented by Guzman,
Gao, and Vogel (2009) that characterize the word alignment and the phrase alignment that
can extracted from it using the extraction heuristic (Koehn, Och, and Marcu, 2003). We also
investigate the relationship between word alignments and the machine translation quality as
measured by BLEU when these alignments are used.

4.8.1 Experimental Setup and Data

We experimented the various models with the Arabic-English language pair using the data
described in Table 4.1. POS tags for English are generated using the Stanford Tagger4, while a
POS tagger provided by ArabicSVMTools is used for Arabic.

The IBM Arabic-English aligned corpus (IBMAC) (Ittycheriah, Al-Onaizan, and Roukos,
2006) provides gold word alignments used for training and evaluation. It includes a training
set that we split into disjoint train and dev sets, used respectively for training and tuning our
discriminative models. We use the IBMAC test set (NIST MT Eval’03) to evaluate different
alignments in terms of Alignment Error Rate (AER).

For MaxEnt training we used freely available toolkits: MaxEnt++5 and Wapiti® (Lavergne,
Cappé, and Yvon, 2010).

Basic preprocessing is performed for English. This includes tokenizing punctuations and
lowercasing all the tokens, except those recognized as named-entities. We use an in-house
tool for named-entity recognition.

4.8.2 Arabic Pre-processing

Arabic is a morphologically complex, highly-inflected language. It has a set of attachable
clitics to be distinguished from inflectional features. They are written attached to the word

4http:/ /nlp.stanford.edu/software/tagger.shtml
Shttp:/ /homepages.inf.ed.ac.uk/lzhang1o/maxent_toolkit.html

®http:/ /wapiti.limsi.fr
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Remapping Splitting
[w+]| s+ || _yktbha || ! |
=
| and || he || will || write || it || !| | and || he || will || write || it || !|

Figure 4.6: Splitting and remapping of alignments for the Arabic token “wsyktbhA!”.

and thus increase its ambiguity. For example the word form “\; 42Sows” (“wsyktbwnhA”)?
has two proclitics, one circumfix and one enclitic8:

wsyktbwnhA

w+ s+ y+ ktb +wn +hA
and will 3"person write masculine-plural it
translation: and they will write it

This makes normalization necessary to reduce the sparsity of the data.

We use MADA+TOKAN?Y (Habash, 2007; Roth et al., 2008; N. Habash and Roth, 2009)
for morphological analysis, disambiguation and tokenization for Arabic. Given previous
experiments on the NIST MT o9 task, we use the D2 tokenization scheme that showed to
perform best under large resource conditions (Habash and Sadat, 2006). For example, the
previous Arabic word form “wsyktbwnhA”7 (“and they will write it” in English) is tokenized
according to the D2 scheme as follows: “w+ s+ yktbwnhA”.

4.8.3 Remappings Alignments

Since the hand-aligned IBMAC corpus is not tokenized with the MADA+TOKAN D2 scheme,
two issues arise:

1. For evaluation, the IBMAC manual alignments and the ones estimated on D2-tokenized
data should be made compatible. Hence all words need to be mapped back (remapped)
to the original form before pre-processing. For an example we consider the Arabic token
“wsyktbhA!”. An aligner will link the tokens in “w+ s+ yktbhA !” to different words
on the English side. In the remapping step, the union of these links is assigned to the
original word “wsyktbhA!”.

2. For training, it is the other way around. The IBMAC manual alignments are split to
match the tokenized words. When tokenizing an Arabic word, aligned to some English
word(s), all resulting tokens are assumed to have the same set of alignment links as
the original word. For instance, suppose that the word “wsyktbhA!” is aligned to all
English words in “and he will write it!” in the IBMAC corpus. After applying the
D2 tokenization scheme, we link each of the resulting tokens to all the English words.
Although this assumption results in noisy reference alignments, it is still the easiest way
to obtain reference alignments for D2 tokenized training data.

Figure 4.6 shows an example of splitting and remapping.
7All Arabic transliterations are provided in the Buckwalter transliteration scheme

8For more details about Arabic processing, we refer the reader to (Habash, 2010)
9http://wwwl.ccls.columbia.edu/MADA/index.html
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4.9 Results

This section provides an empirical evaluation of our model by examining the intrinsic quality
of the alignments compared to manual alignments. When comparing alignments to a gold
standard, the most commonly used metric is the alignment error rate (AER) (Och and Ney,
2003) discussed in Chapter 1. Usually gold alignments are marked with “sure” or “possible”
labels, but since the IBMAC corpus has only sure ones, the AER reduces to a balanced 1 — Fy
measure with « = 0.5:

IANS] IANS]
Pr = Rec = .
A § (4-9)

_ Pr Rc
~ aRc+ (1 —«)Pr

o (4.10)
where Pr denotes the precision and Rc the recall. We also use F, with different values for «
in the Fy to vary the trade-off between precision and recall as desired: o less (greater) than
0.5 weights recall (precision) higher (Fraser and Marcu, 2007b). Following common practice
we do not consider null alignment links in the evaluation.

We start by a comparison with other state-of-the-art aligners, including both generative
and discriminative models. We then focus on our MaxEnt model and provide a detailed
examination of the contribution of each component of the system. First, we study the effect of
pruning on the upper bound established on recall and show that stacking makes room for
significant improvements. Then we explore the relation between alignment quality and the
size of training data and the method of regularization. We show that adding ¢ regularization
result in sparser models than {* without degrading the performance. We then analyze the
obtained models and provide examples of the most useful features which is followed by an
extensive evaluation of the contribution of each feature function. We then provide a set or
experiments demonstrating the ability of our model to control the balance between precision
and recall in order to maximize the AER. Additional experiments to study of the relation
between the quality of the input and output alignments are also provided.

4.9.1 Comparison to Generative “Viterbi” Alignments

We compare the MaxEnt alignments to the Viterbi alignments obtained from generative IBM
and HMM models. A large scale experiment is conducted using MT’08 training data.

4.9.1.1 Baselines: IBM and HMM models

Table 4.2 summarizes our baseline results obtained with three classical generative alignment
models, as estimated by GIZA++'°, in both translation directions, and symmetrized using the
grow-diag-final-and heuristic (Och and Ney, 2003).

Each step from IBM1 to IBM4 through HMM and IBM3 expectedly results in a better
performance. The HMM model achieves a large error reduction over IBM1, with limited
added computational complexity. While IBM3 and IBM4 continue to improve the quality of
the alignments over HMM, they are much more computationally expensive (learning them
takes a few days instead of a few hours) with smaller relative error reduction.

Ar — En alignments are always better than En — Ar, which is due to differences in
morphology between Arabic and English: Arabic is more morphology-rich than English,
therefore an Arabic word tend to be translated (and hence aligned) to several English words;
in the Ar — En direction this one-to-many mapping can be achieved, while it is not possible
in the other direction. More aggressive tokenization schemes than D2 should reduce this
difference.

%http:/ /code.google.com/p/giza-pp/
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Model Direction Pr% Rc% AER%
Ar — En 56.4 66.2 39.1
IBM1 En — Ar 41.3 64.8 49.6
GDFA 70.2  71.0 29.4
Ar — En 66.8 78.4 27.9
HMM En — Ar 51.0 72.6 40.1
GDFA 73.9 81.3 22.6
Ar — En 68.5 80.4 26.0
IBM3 En — Ar 56.5 77.3 34.8
GDFA 75.2 83.8 20.7
Ar — En 71.0 83.3 23.3
IBM4 En — Ar 58.9 79.8 32.3
GDFA 75.0 86.3 19.8

Table 4.2: AER, precision and recall results for GIZA++ alignments with the GDFA symmetriza-
tion heuristic (cf. Section 2.3.1.1).

Input Alignments [#] stack? Pr% Rc% AER%

IBM: [2] VA A
HMM [2] Py wa
IBM3 [2] ; o0 Si:;‘ 138
IBM4 [2] Vv o b
IBM1+HMM [4] 5 g;:g Si:; 32
ALL [8] ; 021 212 119
1BM4 GDFA baseline 750 863  19.8

Table 4.3: Precision, recall and AER results for different sets of input alignments and stacking.
[#] is the number of input alignments, “stack?” denotes if stacking was used or not.

For all the models, the symmetrization heuristic is able to improve both precision and
recall, therefore AER, over the combined alignments.

4.9.1.2 MaxEnt and stacking

Table 4.3 reports precision, recall and AER results obtained for the MaxEnt alignments
for different set of input alignments. The best alignment with maximum entropy approach,
augmented with stacking, achieves a much better precision than the best generative alignment,
with slightly worst recall and yields a 11.9% AER (a relative error reduction of 39.9% over the
best GIZA++ alignment).

The combination of the four generative models (IBM1, HMM, IBM3, IBMy) yields further
improvement with an AER of 12.1% (11.9% with stacking). Stacking systematically improves
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the performance and achieves a state-of-the-art AER of 11.9% on the IBMAC test set.

We also note that the difference between the worst precision (90.4%) and the best precision
(92.9%) for all MaxEnt alignments, is much smaller than the difference between the worst
recall (71.1%) and the best recall (84.4%). This result suggests that the MaxEnt approach
easily achieves a good precision even when using noisy input alignments. However, it is
more difficult to improve its recall because of the upper bound imposed by the recall of
the union of these input alignments. We also note that the IBMy yields a higher recall than
MaxEnt. This result could be explained by observing the number of unaligned words for the
two methods: 1422 and 2460 unaligned source and target words respectively for GDFA; and
3371 and 4542 MaxEnt. Manual alignments produce numbers in between the two methods:
2655 and 3457. This is because GDFA iterates over source and target words, trying to leave
no word unaligned. This behavior resembles that of human annotators. MaxEnt, however,
achieves this indirectly by learning from human annotations, and it is, therefore, less sensitive
to unaligned words. More words are left unaligned with MaxEnt than with GDFA, which
affects the recall negatively.

The discriminative model systematically outperforms IBM models and the symmetrization
heuristic. First, when combining two IBM1 directional alignments, an AER of 20.4% is
achieved (19.6% with stacking) which is a big improvement compared to an AER of 29.4%,
the result of combining the same two alignments with the symmetrization heuristic (a relative
error reduction of 33.3%, when stacking is used). This result is quite impressive since the best
input alignment from IBM1 has an AER of 39.0%, which means that even when using noisy
input alignments, the MaxEnt model is able to perform a good error correction.

Further more, the MaxEnt model, using only IBM1 alignments, achieves comparable per-
formance with the symmetrization heuristic using IBMy alignments. This result is interesting
since IBM4 is much more computationally expensive than IBM1. Moreover, we can use more
accurate input alignments to increase the gain: combining HMM alignments yields a relative
reduction of AER of 28%.

4.9.2 Pruning and Oracle Study

As explained in Section 4.5, limiting the set of input links to the union of input alignments,
establishes an upper bound on the recall, preventing the model from reaching plausible links.
In this oracle study, we quantify manual alignment reachability by several combination of
input alignments, with different window sizes.

Table 4.4 displays the percentage of the alignment matrix covered by the union of input
alignments, with its recall and AER according to the gold alignment.

Oracle AER drops drastically when increasing the size of the window. Take, for instance,
the case of IBM1 models: using a window of size 1 instead of o reduces the oracle by 10.8
points (from 13.7 to 2.9) at the cost of exploring a much larger area of alignment matrix (23.5%
instead of 4.1%).

It is worth noticing that the HMM model achieves similar oracle scores as IBM4, while its
training and inference are fast and exact. Moreover, combining IBM1 and HMM results in
performances that are comparable with the standard symmetrization heuristic (which has an
oracle of 6.0 for the best IBM model), while exploring a slightly larger set of input links.

Increasing the wi