.. Caractérisation-spatiale-et-temporelle, 105 3.2.2 Caractéristiques de l'imagerie du tube, 107 Grandissement spatial . . . . . . . . . . . . . . . . . . . 107

C. Résolution-spectrale:-couplage-avec-un, 140 3.4, p.144

O. Mise-en, 147 3.6.1 Système sous vide, p.148

U. Andiel, K. Eidmann, F. Pisani, K. Witte, I. Uschmann et al., Conical x-ray crystal spectrometer for time integrated and time resolved measurements, Review of Scientific Instruments, vol.74, issue.4, pp.2369-2374, 2003.
DOI : 10.1063/1.1556953

P. A. Bak, R. Calabrese, Y. D. Chernousov, V. Guidi, L. Guidi et al., Status of a radio-frequency-based streak camera with subpicosecond time resolution, Laser and Particle Beams, vol.19, issue.1, pp.105-109, 2001.
DOI : 10.1017/S0263034601191160

. Boutry, P600/650 X-ray streak camera with optimized spatio-temporal resolution , 15 th Intl Congress on High Speed Photography and Photonics, SPIE, vol.348, p.766, 1982.

D. J. Bradley, A. G. Roddie, W. Sibbett, M. H. Key, M. J. Lamb et al., Picosecond x-ray chronoscopy, Optics Communications, vol.15, issue.2, pp.231-236, 1975.
DOI : 10.1016/0030-4018(75)90292-8

J. A. Chakera, M. Raghuramaiah, P. A. Naik, P. D. Gupta, and V. K. Et-chekovin, On-line temporal characterization of an X-ray streak camera, Optics & Laser Technology, vol.33, issue.6, pp.421-425, 2001.
DOI : 10.1016/S0030-3992(01)00053-6

Z. Chang, A. Rundquist, J. Zhou, M. M. Murnane, H. C. Kapteyn et al., Demonstration of a sub-picosecond X-ray streak camera, Appl. Phys. Lett, issue.1, pp.69-133, 1996.

J. Geindre, P. Audebert, V. Nagels, C. Chenais-popovics, and J. Et-gauthier, Spectromètrè a cristal c ? Onique couplécoupléà une caméràcaméràà balayage de fente, Rapport d'activité, LULI, 2002.

D. Gontier, A. Mens, P. Millier, and S. Verdelet, Performances dynamiques des camérascamérasà balayage de fente, Chocs-CEA DAM, vol.21, pp.63-74, 1999.

T. Hara, Y. Tanaka, H. Kitamura, and T. Et-ishikawa, Performance of a CsI photocathode in a hard x-ray streak camera, Review of Scientific Instruments, vol.71, issue.10, p.71, 2000.
DOI : 10.1063/1.1311935

C. Laboratoire, J. D. Kilkenny, and O. L. Et-landen, Caractérisation spectrale et temporelle d'une source X obtenue par laser Toroidally curved crystal for time-resolved X-ray spectroscopy, Rev. Sci. Instrum, issue.5, pp.56-803, 1985.

B. L. Henke, J. Liesegang, and S. D. Smith, Soft-x-ray-induced secondary-electron emission from semiconductors and insulators: Models and measurements, Physical Review B, vol.19, issue.6, pp.3004-3021, 1979.
DOI : 10.1103/PhysRevB.19.3004

. Jaanimagi, Time???resolving x???ray diagnostics for ICF (invited), Review of Scientific Instruments, vol.59, issue.8, pp.1854-1859, 1988.
DOI : 10.1063/1.1140088

. Jaanimagi, Photoelectron throughput in streak tubes, SPIE, vol.2549, issue.63, pp.62-71, 1995.

L. Ji, J. L. Qu, Z. J. Lan, Q. L. Yang, H. Zhang et al., Sampling-image streak framing technique and its special streak image tube, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.489, issue.1-3, pp.241-246, 2002.
DOI : 10.1016/S0168-9002(02)00573-9

. Kalibjian, A circular streak camera tube, Review of Scientific Instruments, vol.45, issue.6, pp.776-778, 1974.
DOI : 10.1063/1.1686735

. Kinoshita, Femtosecond streak tube, Rev. Sci. Instrum, vol.87, issue.58 6, pp.932-938, 1987.
DOI : 10.1117/12.24063

A. G. Kravchenko, D. N. Litvin, V. P. Lazarchuk, V. M. Murugov, S. I. Petrov et al., An Ion Streak Camera, Instruments and Experimental Techniques, vol.47, issue.2, pp.157-162, 2004.
DOI : 10.1023/B:INET.0000025193.22868.6b

J. Larsson, Z. Chang, E. Judd, P. J. Schuck, R. W. Falcone et al., Ultrafast x-ray diffraction using a streak-camera detector in averaging mode, Optics Letters, vol.22, issue.13, pp.22-1012, 1997.
DOI : 10.1364/OL.22.001012

. Larsson, Evaluation of laser-irradiated Ar clusters as a source for time-resolved x-ray studies, Review of Scientific Instruments, vol.70, issue.5, pp.2253-2256, 1999.
DOI : 10.1063/1.1149748

R. A. Lerche, J. W. Mcdonald, R. L. Griffith, G. Vergel-de-dios, D. S. Andrews et al., Preliminary performance measurements for a streak camera with a large-format direct-coupled charge-coupled device readout, Review of Scientific Instruments, vol.75, issue.10
DOI : 10.1063/1.1788890

H. Liu, J. Yao, and A. Et-puri, Second and third harmonic generation in BBO by femtosecond Ti: sapphire laser pulses, Optics Communications, vol.109, issue.1-2, pp.139-144, 1994.
DOI : 10.1016/0030-4018(94)90751-X

V. Losovoi and I. Et-ushkov, 200-femtosecond streak camera: development and dynamic measurements, 25th International Congress on High-Speed Photography and Photonics, pp.297-304, 2003.
DOI : 10.1117/12.516879

E. Martinolli, M. Koenig, L. Gremillet, J. J. Santos, F. Amiranoff et al., Fast electron heating in ultra-intense laser-solid interaction using high brightness shifted ka spectroscopy, 2001.

E. Martinolli, M. Koenig, J. M. Boudenne, E. Perelli, D. Batani et al., Conical crystal spectrograph for high brightness x-ray K?? spectroscopy in subpicosecond laser???solid interaction, Review of Scientific Instruments, vol.75, issue.6, pp.2024-2028, 2004.
DOI : 10.1063/1.1753098

T. Missalla, I. Uschmann, E. Förster, G. Jenke, D. Et-von-der-linde et al., Ultrafast x-ray streak camera for use in ultrashort laser-produced plasma research, et Stewart R. Rev. Sci. Instrum, issue.1, pp.66-719, 1995.

T. Shiraishi, M. Mori, and K. Et-kondo, Estimation of the pulse width of x-ray emission from Xe clusters excited by a subpicosecond intense Ti :sapphire laser pulse, Phys. Rev. A, vol.65, issue.045201, 2002.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. Et-dwayne-millera, Ultrafast electron optics: Propagation dynamics of femtosecond electron packets, Journal of Applied Physics, vol.92, issue.3, pp.1643-1648, 2002.
DOI : 10.1063/1.1487437

G. L. Stradling, G. K. Studebaker, C. Cavailler, J. Launspach, and J. Et-planes, <title>Characterization Results From Several Commercial Soft X-Ray Streak Cameras</title>, High Speed Photography, Videography, and Photonics IV, 1986.
DOI : 10.1117/12.936727

URL : http://www.osti.gov/scitech/servlets/purl/5420833

B. K. Young, A. L. Osterheld, D. F. Price, R. Shepherd, R. E. Stewart et al., High-resolution x-ray spectrometer based on spherically bent crystals for investigations of femtosecond laser plasmas, Review of Scientific Instruments, vol.69, issue.12, pp.69-4049, 1998.
DOI : 10.1063/1.1149249

X. Calcul-de-l-'´-emission, 181 4.3.3.1 Utilisation du code collisionnel-radiatif Transpec, p.183

Q. Fournit, ´ evolution de la densité ionique en fonction du temps et de l'espace, ou, comme ici, de la densitédensitéélectronique n e et de la températuré electronique T e . Dans ce chapitre, l'entrée du code est assurée par le modèle simple d'expansion hydrodynamique

T. Le-code and . Peut-rendre-compte-de-l, ´ emission X de plasmas de différentes géométries Selon la géométrie considérée, différents fichiers sontàsontà paramétrer : ? param : pour les caractéristiques du calcul, ` a savoir pas de temps du calcul, pas de temps des fichiers de sortie, etc

. Le-fichier-d, entrée hydrodyn permet de spécifier le nombre et les caractéristiques des cellules considérées (couches de plasma) Les résultats présentés ontétéontété obtenus avec un pas de temps suffisamment petit pour nous assurer de la convergence des résultats

. Cependant, utilisation du code Transpec s'impose : une telle hypothèse de dépôt instantané d'´ energie n'est pas adaptéè a une utilisation correcte du code Transpec. En effet, ce dernier nécessite un temps minimum pour calculer les différentes populations d'´ etats responsables de l'´ emission X. C'est pourquoi l'´ emission X ne commence pasàpasà " 0 ps

. La-figure-4, 21 présente le profil temporel de l'´ emission intégrée enénergieenénergie (de 100à100`100à 6100 eV) Les conditions correspondent comme aux figures précédentesprécédentesà une températuré electronique initiale de 580 eV, un rayon d

V. Nagels, J. P. Geindre, F. Dorchies, O. Peyrusse, S. Gary et al., En appliquant un filtre (correspondantàcorrespondantà la transmission de 3 feuilles de Mylar aluminisées), nous obtenons une allure légèrement différente (courbe en tirets longs, ´ echelle de droite) Dans ce cas, l'´ emission est dominée par la raie He ? et ses satellites Ce calcul indique une durée d'´ emission de quelques centaines de femtosecondes seulement, X-ray spectroscopy of a thin foil plasma produced by a short-pulse high-intensity laser, evolution en fonction du temps du signal intégré est représentée en trait plein, pp.19-30, 2003.

. Ditmire, Strong X-Ray Emission from High-Temperature Plasmas Produced by Intense Irradiation of Clusters, Physical Review Letters, vol.75, issue.17, pp.17-23, 1995.
DOI : 10.1103/PhysRevLett.75.3122

. Ditmire, Interaction of intense laser pulses with atomic clusters, Physical Review A, vol.53, issue.5, pp.3379-3402, 1996.
DOI : 10.1103/PhysRevA.53.3379

F. Dorchies, T. Caillaud, F. Blasco, C. Bonté, H. Jouin et al., -shell x-ray emission measurements, Physical Review E, vol.71, issue.6, pp.66410-66411, 2005.
DOI : 10.1103/PhysRevE.71.066410

URL : https://hal.archives-ouvertes.fr/inserm-00605738

. Gallant, Spectroscopy of solid density plasmas generated by irradiation of thin foils by a fs laser, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.65, issue.1-3, pp.243-252, 1999.
DOI : 10.1016/S0022-4073(99)00071-0

K. Kondo, M. Mori, and T. Et-shiraishi, X-ray generation from fs laser heated Xe clusters, Applied Surface Science, vol.197, issue.198, pp.197-198, 2002.
DOI : 10.1016/S0169-4332(02)00317-3

. Larsson, Evaluation of laser-irradiated Ar clusters as a source for time-resolved x-ray studies, Review of Scientific Instruments, vol.70, issue.5, pp.2253-2256, 1999.
DOI : 10.1063/1.1149748

S. Namba, N. Hasegawa, K. Nagashima, T. Kawachi, M. Kishimoto et al., Efficient electron heating in nitrogen clusters irradiated with intense femtosecond laser pulses, Physical Review A, vol.73, issue.1, p.13205, 2006.
DOI : 10.1103/PhysRevA.73.013205

. Shiraishi, Estimation of the pulse width of x-ray emission from Xe clusters excited by a subpicosecond intense Ti :sapphire laser pulse, Phys. Rev. A, vol.65, issue.045201, 2002.

S. Discussion, 199 5.3.1 Modèle " nanoplasma, Profils temporels de n e et

X. Calcul-du-spectre-résolu-en-temps-de-l-'´-emission, 204 5.3.2.1 Spectre résolu en temps calculé, p.204

U. Andiel, K. Eidmann, F. Pisani, K. Witte, I. Uschmann et al., Conical x-ray crystal spectrometer for time integrated and time resolved measurements, Review of Scientific Instruments, vol.74, issue.4, pp.2369-2374, 2003.
DOI : 10.1063/1.1556953

P. Audebert, P. Renaudin, S. Bastiani-ceccotti, J. Geindre, C. Chenais-popovics et al., Picosecond Time-Resolved X-Ray Absorption Spectroscopy of Ultrafast Aluminum Plasmas, Physical Review Letters, vol.94, issue.2, pp.94-025004, 2005.
DOI : 10.1103/PhysRevLett.94.025004

T. Caillaud, F. Blasco, C. Bonté, F. Dorchies, and P. Mora, Study of intense femtosecond laser propagation into a dense Ar gas and cluster jet, Physics of Plasmas, vol.13, issue.3, p.33105, 2006.
DOI : 10.1063/1.2180689

C. Deiss, N. Rohringer, J. Burgdörfer, E. Lamour, C. Prigent et al., Laser-Cluster Interaction: X-Ray Production by Short Laser Pulses, Physical Review Letters, vol.96, issue.1, pp.96-013203, 2006.
DOI : 10.1103/PhysRevLett.96.013203

URL : https://hal.archives-ouvertes.fr/hal-00008072

. Ditmire, Interaction of intense laser pulses with atomic clusters, Physical Review A, vol.53, issue.5, pp.3379-3402, 1996.
DOI : 10.1103/PhysRevA.53.3379

F. Dorchies, T. Caillaud, F. Blasco, C. Bonté, H. Jouin et al., -shell x-ray emission measurements, Physical Review E, vol.71, issue.6, pp.66410-66411, 2005.
DOI : 10.1103/PhysRevE.71.066410

URL : https://hal.archives-ouvertes.fr/inserm-00605738

. Gallant, Dynamics of Al thin foils irradiated by a subpicosecond high intensity laser pulse, Physics of Plasmas, vol.10, issue.3, pp.577-580, 2003.
DOI : 10.1063/1.1544558

S. Micheau, F. A. Gutierrez, B. Pons, and H. Et-jouin, Screening models for laser???cluster interactions, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.38, issue.18, pp.38-3405, 2005.
DOI : 10.1088/0953-4075/38/18/011