.. Pid-controller-fragility-analysis, 112 8.3.1 Illustrative Examples, p.116

.. Transfer-function-description, 139 10.2.1 Smaller delay case, p.139

M. Examples and .. , 139 10.3.1 Chain of Integrators Systems, p.141

J. Ackermann, P. Blee, T. Bünte, L. Güvenc, D. Kaesbauer et al., Robust control. The parameter space approach, 2002.

V. M. Alfaro, PID controllers??? fragility, ISA Transactions, vol.46, issue.4, pp.555-559, 2007.
DOI : 10.1016/j.isatra.2007.03.006

K. J. Åström, P. Hagander, and J. Sterby, Zeros of sampled systems, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, pp.31-38, 1984.
DOI : 10.1109/CDC.1980.271968

K. Åström and T. Hagglund, PID controllers: Theory, design and tuning (Instrument Society of America, 1995.

K. J. Åström and B. Wittenmark, Computer Controlled Systems: Theory and Design, 1997.

E. W. Bai and Y. Q. Wu, Limiting zero distribution of sampled systems, Automatica, vol.38, issue.5, pp.843-851, 2002.
DOI : 10.1016/S0005-1098(01)00280-1

N. Bajcinca, Computation of stable regions in PID parameter space for time-delay systems, Proc. of 5th IFAC workshop on time-delay systems, 2005.

L. Bakule and M. De-la-sen, NON-FRAGILE CONTROLLERS FOR A CLASS OF TIME-DELAY NONLINEAR SYSTEMS, IFAC Proceedings Volumes, vol.40, issue.9, pp.15-32, 2009.
DOI : 10.3182/20070723-3-PL-2917.00020

S. Barnett, Polynomials and Linear Control Systems, 1983.

H. Baumgärtel, Analytic Perturbation Theory for Matrices and Operators, 1985.

S. P. Bhattacharyya, H. Chapellat, and L. H. Keel, ROBUST CONTROL: THE PARAMETRIC APPROACH, 1995.
DOI : 10.1016/B978-0-08-042230-5.50016-5

M. J. Blachuta, On zeros of pulse transfer functions, IEEE Transactions on Automatic Control, vol.44, issue.6, pp.1229-1234, 1999.
DOI : 10.1109/9.769380

F. G. Boese, The stability chart for the linearized Cushing equation with a discrete delay and with gamma-distributed delays, Journal of Mathematical Analysis and Applications, vol.140, issue.2, pp.510-536, 1989.
DOI : 10.1016/0022-247X(89)90081-4

M. S. Branicky, Stability of hybrid systems: state of the art, Proceedings of the 36th IEEE Conference on Decision and Control, pp.120-125, 1997.
DOI : 10.1109/CDC.1997.650600

H. Chan and Ü. Özgüner, Closed-loop control of systems over a communications network with queues, International Journal of Control, vol.62, issue.3, pp.493-510, 1995.
DOI : 10.1115/1.2896464

Y. C. Chao, H. S. Lin, Y. W. Guu, and Y. H. Chang, Optimal Tuning of a Practical PID Controller for Second Order Process with Delay, Journal of the Chinese Institute of Chemical Engineering, vol.20, issue.1, pp.7-15, 1989.

N. G. Chebotarev, ?. Me, and N. N. Iman, The Routh-Hurwitz problem for polynomials and entire functions, Trudy Mat. Inst. Steklov, p.28, 1949.

J. Chen, Static output feedback stabilization for SISO systems and related problems: solutions via generalized eigenvalues, in Control -Theory and Advanced Tech, pp.2233-2244, 1995.

J. Chen, P. Fu, and S. Niculescu, Asymptotic behavior of imaginary zeros of linear systems with commesurates delays Proc, 45th IEEE Conf. Dec. Contr, 2006.

J. Chen, P. Fu, S. Niculescu, and Z. Guan, When will zeros of time-delay systems cross imaginary axis? Part 2: Zero crossings

J. B. Conway, Functions of One Complex Variable Springer-Verlag, 1978.

K. L. Cooke and Z. Grossman, Discrete delay, distributed delay and stability switches, Journal of Mathematical Analysis and Applications, vol.86, issue.2, pp.592-627, 1982.
DOI : 10.1016/0022-247X(82)90243-8

URL : http://doi.org/10.1016/0022-247x(82)90243-8

K. L. Cooke and P. Van-den-driessche, On zeroes of some transcendental equations Funkcialaj Ekvacioj, pp.77-90, 1986.

W. J. Cunningham, Simultaneous nonlinear equations of growth, The Bulletin of Mathematical Biophysics, vol.28, issue.2, pp.101-110, 1955.
DOI : 10.1007/BF02477988

A. Datta, M. Ho, and S. P. Bhattacharyya, Structure and Synthesis of PID controllers, 2000.
DOI : 10.1007/978-1-4471-3651-4

R. Datko, A procedure for determination of the exponential stability of certain differential-difference equations Quart, Appl. Math, vol.36, pp.279-292, 1978.

R. Datko, Remarks concerning the asymptotic stability and stabilization of linear delay differential equations, Journal of Mathematical Analysis and Applications, vol.111, issue.2, pp.571-584, 1985.
DOI : 10.1016/0022-247X(85)90236-7

A. S. Deif, Nondiagonable systems under small perturbations, ZAMP Zeitschrift f???r angewandte Mathematik und Physik, vol.13, issue.2, pp.282-288, 1982.
DOI : 10.1007/BF00944977

L. E. El-'sgolts-' and S. B. Norkin, Introduction to the theory and applications of differential equations with deviating arguments Academic Press, 1973.

D. B. Ender, Process control performance: Not as good as you think, Control Eng, p.180, 1993.

A. Fernandez, A. Barreiro, A. Banos, and J. Carrasco, Reset control for passive teleoperation, 2008 34th Annual Conference of IEEE Industrial Electronics, pp.2935-2940, 2008.
DOI : 10.1109/IECON.2008.4758426

M. Fliess, R. Marquez, and H. Mounier, PID-like regulators for a class of linear systems in, Proc. European Contr. Conf, 2001.

P. Fu, J. Chen, and S. Niculescu, High-Order Analysis Of Critical Stability Properties of Linear Time-Delay Systems, 2007 American Control Conference, 2007.
DOI : 10.1109/ACC.2007.4282786

Y. Fu and G. A. Dumont, Choice of sampling to ensure minimum-phase behaviour, IEEE Transactions on Automatic Control, vol.34, issue.5, pp.560-563, 1989.
DOI : 10.1109/9.24216

H. Gao, T. Chen, and J. Lam, A new delay system approach to network-based control, Automatica, vol.44, issue.1, pp.39-52, 2007.
DOI : 10.1016/j.automatica.2007.04.020

K. Gu, V. L. Kharitonov, and J. Chen, Stability of time-delay systems Birkhauser, 2003.

K. Gu, S. Niculescu, and J. Chen, On stability crossing curves for general systems with two delays, Journal of Mathematical Analysis and Applications, vol.311, issue.1, pp.231-253, 2005.
DOI : 10.1016/j.jmaa.2005.02.034

K. Gu, S. Niculescu, and J. Chen, Computing Maximum Delay Deviation Allowed to Retain Stability in Systems with Two Delays, Lecture Notes in Control and Information Sciences, vol.352, pp.157-164, 2007.
DOI : 10.1007/978-3-540-49556-7_10

H. W. Guggenheimer, Differential geometry, 1977.

P. Hagander, Comments on "Conditions for stable zeros of sampled systems" by M. Ishitobi, IEEE Transactions on Automatic Control, vol.38, issue.5, pp.830-831, 1993.
DOI : 10.1109/9.277257

T. Hagiwara, Analytic study on the intrinsic zeros of sampled-data systems, IEEE Transactions on Automatic Control, vol.41, issue.2, pp.261-263, 1996.
DOI : 10.1109/9.481531

T. Hagiwara and M. Araki, On preservation of strong stabilizability under sampling, IEEE Transactions on Automatic Control, vol.33, issue.11, pp.1080-1082, 1988.
DOI : 10.1109/9.14424

J. K. Hale and W. Huang, Global Geometry of the Stable Regions for Two Delay Differential Equations, Journal of Mathematical Analysis and Applications, vol.178, issue.2, pp.344-362, 1993.
DOI : 10.1006/jmaa.1993.1312

J. K. Hale, E. F. Infante, F. S. Tsen, and -. , Stability in linear delay equations, Journal of Mathematical Analysis and Applications, vol.105, issue.2, pp.533-555, 1985.
DOI : 10.1016/0022-247X(85)90068-X

J. K. Hale, V. Lunel, and S. M. , Introduction to Functional Differential Equations, Applied Math. Sciences, vol.99, 1993.
DOI : 10.1007/978-1-4612-4342-7

J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, A Survey of Recent Results in Networked Control Systems, Proceedings of IEEE, pp.138-162, 2007.
DOI : 10.1109/JPROC.2006.887288

M. T. Ho, Non Fragile PID Controller Design, Proceeding of the 39th CDC, 2000.

M. Ho, A. Datta, and S. P. Bhattacharyya, A linear programming characterization of all stabilizing PID controllers, Proceedings American Control Conf, pp.3922-3928, 1997.

C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, Analysis and design of controllers for AQM routers supporting TCP flows, IEEE Transactions on Automatic Control, vol.47, issue.6, pp.945-956, 2002.
DOI : 10.1109/TAC.2002.1008360

R. Hryniv and P. Lancaster, On the Perturbation of Analytic Matrix Functions, Integral Equations and Operator Theory, pp.325-338, 1999.

N. Hohenbichler, All stabilizing PID controllers for time delay systems, Automatica, vol.45, issue.11, pp.2678-2684, 2009.
DOI : 10.1016/j.automatica.2009.07.026

L. S. Hu, . T. Bai, P. Shi, and Z. Wu, Sampled-data control of networked linear control systems, Automatica, vol.43, issue.5, pp.903-911, 2007.
DOI : 10.1016/j.automatica.2006.11.015

S. S. Hu and Q. X. Zhu, Stochastic optimal control and analysis stability of networked control systems with long delay, Automatica, vol.39, pp.1877-1884, 2003.

C. T. Huang, C. J. Chou, and J. L. Wang, Tuning of PID Controllers Based on the Second-Order Model by Calculation, Journal of the Chinese Institute of Chemical Engineering, vol.27, issue.2, pp.107-120, 1996.

J. H. Hubbard, B. Hubbard, and H. , Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach, Matrix Editions, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01297648

G. Hutchinson, CIRCULAR CAUSAL SYSTEMS IN ECOLOGY, Annals of the New York Academy of Sciences, vol.2, issue.36, pp.221-246, 1948.
DOI : 10.1111/j.1469-8137.1943.tb04982.x

S. H. Hwang, Closed-Loop Automatic Tuning of Single-Input-Single-Output Systems, Industrial & Engineering Chemistry Research, vol.34, issue.7, pp.2406-2417, 1995.
DOI : 10.1021/ie00046a024

A. Ilchmann and C. J. Sangwin, Output feedback stabilization of minimum phase systems by delays, System and Control Letters, pp.233-245, 2004.

M. Ishitobi, Conditions for stable zeros of sampled systems, IEEE Transactions on Automatic Control, vol.37, issue.10, pp.1558-1561, 1992.
DOI : 10.1109/9.256381

M. Ishitobi and S. Liang, Asymptotic Properties and Stability of Zeros os Sampled Multivariable Systems, Proc. 15th IFAC World Congress, 2002.

A. K. Jana, Nonlinear State Stimation and Generic Model Control of a Continuous Stirred Tank Reactor, Int. J. Chemical Reactor Eng, vol.5, pp.1-15, 2007.

T. Kaewong, Y. Lenbury, and P. Niamsup, A note on asymptotic stability conditions for delay difference equations, International Journal of Mathematics and Mathematical Sciences, vol.2005, issue.7, pp.1007-1013, 2005.
DOI : 10.1155/IJMMS.2005.1007

T. Kato, Perturbation Theory of Linear Operators, 1976.

L. H. Keel and S. P. Bhattacharyya, Authors' Reply, IEEE Transactions on Automatic Control, vol.43, issue.9, p.1268, 1998.
DOI : 10.1109/TAC.1998.718614

L. H. Keel and S. P. Bhattacharyya, Robust, fragile, or optimal?, IEEE Transactions on Automatic Control, vol.42, issue.8, pp.1098-1105, 1997.
DOI : 10.1109/9.618239

V. L. Kharitonov, S. I. Niculescu, J. Moreno, and W. Michiels, Static output feedback stabilization: necessary conditions for multiple delay controllers, IEEE Transactions on Automatic Control, vol.50, issue.1, pp.82-86, 2005.
DOI : 10.1109/TAC.2004.841137

H. Kokame, K. Hirata, K. Konishi, and T. Mori, Difference feedback can stabilize uncertain steady states, Difference feedback can stabilize uncertain steady states, pp.1908-1913, 2001.
DOI : 10.1109/9.975474

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, 1999.
DOI : 10.1007/978-94-017-1965-0

S. G. Krantz and H. R. Parks, The Implicit Function Theorem: History, Thoery and Applications, 2003.

H. Langer and B. Najman, Remarks on the Perturbation of Analytic Matrix Functions II, Integral Equations and Operator Theory, pp.392-407, 1989.

H. Langer and B. Najman, Remarks on the Perturbation of Analytic Matrix Functions III, Integral Equations and Operator Theory, pp.796-806, 1992.

H. Langer, B. Najman, and K. Vaselic, Perturbation of the Eigenvalues of Quadratic Matrix Polynomials, SIAM Journal on Matrix Analysis and Applications, vol.13, issue.2, pp.474-489, 1992.
DOI : 10.1137/0613031

J. Li and P. Li, Stability Regions Analysis of PID Controllers for Time-Delay Systems, Proc. 6th World Congress on Inteligent Control and Automation, pp.2219-2223, 2006.

J. Li and P. Li, An approach to optimal design of stabilizing PID controllers for time-delay systems, 2009 Chinese Control and Decision Conference, pp.3465-3470, 2009.
DOI : 10.1109/CCDC.2009.5192414

P. M. Mäkilä, Comments on "Robust, fragile, or optimal?" [with reply], IEEE Transactions on Automatic Control, vol.43, issue.9, pp.1265-1267, 1998.
DOI : 10.1109/9.718613

B. Liacu, C. Méndez-barrios, S. Niculescu, and S. Olaru, Some Remarks on the Fragility of PD Controllers for SISO systems with I/O Delays, Proc. 14th International Conference on System Theory and Control, pp.287-292, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00528759

F. Lian, Analysis, design, modeling and control of networked control systems, 2001.

M. Marden, Geometry of Polynomials, 1989.
DOI : 10.1090/surv/003

J. E. Marsden, Elementary Classical Analysis, Freeman and Company, 1974.

F. Mazenc, S. Mondié, and S. I. Niculescu, Global asymptotic stabilization for chains of integrators with a delay in the input, IEEE Transactions on Automatic Control, vol.48, issue.1, pp.57-63, 2003.
DOI : 10.1109/TAC.2002.806654

D. Melchor-aguilar and S. Niculescu, Robust non-fragile PI controllers for delay models of TCP, Proc. IFAC Workshop on Time Delay Systems, 2007.

C. Méndez-barrios, S. Niculescu, I. Mor?-arescu, and K. Gu, On the Fragility of PI Controllers for Time-Delay SISO systems -16th Mediterranean Conference on Control and Automation, MED'08, pp.529-534, 2008.

C. D. Meyer, Matrix Analysis and Applied Linear Algebra, 2000.
DOI : 10.1137/1.9780898719512

W. Michiels, K. Engelborghs, D. Roose, and D. Dochain, Sensitivity to infinitesimal delays in neutral equations SIAM, J. Contr. Optim, pp.40-1134, 2002.

W. Michiels and S. Niculescu, Stability and stabilization of time-delay systems. An eigenvalue approach, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00664367

V. Misra, W. Gong, and D. Towsley, A fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED, Proc. ACM SIGCOMM, pp.151-160, 2000.

L. A. Montestruque and P. Antsaklis, On the model-based control of networked systems, Automatica, vol.39, issue.10, pp.1837-1843, 2003.
DOI : 10.1016/S0005-1098(03)00186-9

C. I. Mor?-arescu, Qualitative analysis of distributed delay systems: Methodology and algorithms, 2006.

I. Mor?-arescu, C. Méndez-barrios, S. Niculescu, and K. Gu, Stability Crossing Boundaries and Fragility Characterization of PID Controllers for SISO Systems with I/O Delays, Proc. 2011 American Control Conference, 2011.

I. Mor?-arescu, C. Méndez-barrios, S. Niculescu, and K. Gu, Geometric Ideas in Controlling Delays Systems

C. I. Mor?-arescu and S. Niculescu, Stability crossing curves of SISO systems controlled by delayed output feedback Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Appl. & Algorithms, pp.659-678, 2007.

C. I. Mor?-arescu, S. Niculescu, and K. Gu, The geometry of stability crossing curves of PI controllers for SISO systems I/O delays Rev, Roumaine Math. Pures Appl, vol.55, issue.4, pp.297-313, 2010.

C. I. Mor?-arescu, S. Niculescu, and K. Gu, Stability Crossing Curves of Shifted Gamma-Distributed Delay Systems, SIAM Journal on Applied Dynamical Systems, vol.6, issue.2, pp.475-493, 2007.
DOI : 10.1137/060670766

J. Neimark, D-subdivisions and spaces of quasi-polynomials, Prikl. Math. Mech, vol.13, pp.349-380, 1949.

I. Newton, The mathematical papers of I, 1967.

S. Niculescu, Delay effects on stability. A robust control approach, 2001.

S. Niculescu, On delay robustness analysis of a simple control algorithm in high-speed networks, Automatica, vol.38, issue.5, pp.885-889, 2002.
DOI : 10.1016/S0005-1098(01)00260-6

S. I. Niculescu and W. Michiels, Stabilizing a Chain of Integrators Using Multiple Delays, IEEE Transactions on Automatic Control, vol.49, issue.5, pp.802-807, 2004.
DOI : 10.1109/TAC.2004.828326

S. Niculescu, W. Michiels, K. Gu, and C. T. Abdallah, Delay Effects on Output Feedback Control of Dynamical Systems, Complex Time-Delay Systems, pp.63-84, 2010.
DOI : 10.1007/978-3-642-02329-3_3

J. Nilsson, B. Bernhardsson, and B. Wittenmark, Stochastic analysis and control of real-time systems with random time delays, Automatica, vol.34, issue.1, pp.57-64, 1998.
DOI : 10.1016/S0005-1098(97)00170-2

O. Dwyer and A. , PI and PID controller tuning rules for time delay processes: a summary Technical report AOD-00-01, 2000.

V. A. Oliveira, A. V. Cossi, M. C. Teixeira, and A. M. Silva, Synthesis of PID controllers for a class of time delay systems, Automatica, vol.45, issue.7, pp.1778-1782, 2009.
DOI : 10.1016/j.automatica.2009.03.018

L. L. Ou, W. Zhang, Y. , and L. , Low-Order Stabilization of LTI Systems With Time Delay, IEEE Trans. Automat. Contr, vol.54, issue.4, pp.774-787, 2010.

H. Özbay and A. N. Günde¸sgünde¸s, Resilient PI and PD controller designs for a class of unstable plants with I/O delays Appl, Comput. Math, vol.6, issue.1, pp.18-26, 2007.

L. S. Pontryagin, On the zeros of some elementary transcedental functions, American Math. Soc. Transl, pp.96-110, 1955.

L. S. Pontryagin, On the zeros of some transcedental functions, American Math. Soc. Transl, pp.19-20, 1958.

Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford Science publications, 2002.

S. Roy, A. Saberi, and Y. Wan, On multiple-delay static output feedback stabilization of LTI plants, 2008 American Control Conference, pp.419-423, 2008.
DOI : 10.1109/ACC.2008.4586527

S. Ruan, DELAY DIFFERENTIAL EQUATIONS IN SINGLE SPECIES DYNAMICS, NATO Science Series II: Mathematics, Physics and Chemistry, vol.205, pp.477-517, 2006.
DOI : 10.1007/1-4020-3647-7_11

C. V. Schrader and M. K. Sain, Research on system zeros: a survey, International Journal of Control, vol.28, issue.4, pp.1407-1433, 1989.
DOI : 10.1137/0326021

G. J. Silva, A. Datta, and S. P. Bhattacharrya, PI stabilization of first-order systems with time delay Automatica, pp.2025-2031, 2001.

G. J. Silva, A. Datta, and S. P. Bhattacharrya, PID Controllers for Time Delay Systems, 2005.

G. J. Silva, A. Datta, and S. P. Bhattacharrya, PID tuning revisited: guaranteed stability and non-fragility, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), pp.5000-5006, 2002.
DOI : 10.1109/ACC.2002.1025458

C. A. Smith and A. B. Corripio, Principles and Practice of Automatic Process Control, 1985.

S. L. Sobolev, On the roots of Euler Polynomials, Soviet Math. Dokl, vol.18, pp.935-938, 1977.

G. Stépán, Retarded Dynamical Systems: Stability and Characteristic function, 1989.

Y. Tipsuwan and M. Y. Chow, Control methodologies in networked control systems, Control Engineering Practice, vol.11, issue.10, pp.1099-1111, 2003.
DOI : 10.1016/S0967-0661(03)00036-4

D. Üstebay and H. Özbay, Remarks on PI and PID control-based AQM designs for TCP-flows, Proc. 6th IFAC Wshop Time-Delay Syst., L'Aquila, 2006.

D. Üztebay, H. Özbay, and N. Günde¸sgünde¸s, A New PI and PID Control Design Method or Integrating Systems with Time Delays in, Proceedings of the 6th WSEAS Int. Conf. on Signal Processing, pp.60-65, 2007.

M. I. Vishik and L. Lyusternik, A: The solution of some perturbation problems for matrices and selfadjoint or non-selfadjoint differential equations I Russian Math, Surveys, vol.9, pp.1-74, 1960.

K. Walton and J. E. Marshall, Direct method for TDS stability analysis, IEE Proceedings D Control Theory and Applications, vol.134, issue.2, pp.101-107, 1987.
DOI : 10.1049/ip-d.1987.0018

P. J. Wangersky, Lotka-Volterra Population Models, Annual Review of Ecology and Systematics, vol.9, issue.1, pp.189-218, 1978.
DOI : 10.1146/annurev.es.09.110178.001201

J. F. Whidborne, Controller fragility, Department of Mechanical Engineering, King's College, Tech. Rep, 2000.

J. H. Wilkinson, The Algebraic Eigenvalue Problem, 1965.

H. Xu, A. Datta, and S. P. Bhattacharyya, PID stabilization of LTI plants with timedelay in, Proc. 42nd IEEE Conf. Dec. Contr. Mauii, Hawaii, pp.4038-4043, 2003.

W. Zhang, M. S. Branicky, and S. M. Phillip, Stability of networked control systems, IEEE Control Systems Magazine, vol.21, issue.1, pp.84-99, 2001.
DOI : 10.1109/37.898794

J. C. Ziegler and N. B. Nichols, Optimum Settings for Automatic Controllers, Journal of Dynamic Systems, Measurement, and Control, vol.115, issue.2B, pp.759-768, 1942.
DOI : 10.1115/1.2899060