P. Et-par, N. , and R. Après-implantation, de 10 15 cm -2 . expérimentales, pas possible de savoir si la présence de l'hélium et plus particulièrement le rapport accélère ou freine les mécanismes d'agglomération. Pour cela, il serait nécessaire de faire des analyses complémentaires Dans un premier temps, il faudrait terminer les mesures RBS et NRA-C en sondant l'axe à 54° pour l'échantillon implanté He 50keV et recuit à 400 °C, et faire les mêmes mesures pour un échantillon recuit à 950 °C. L'exploitation de ces résultats devrait être approfondie en réalisant des simulations McChasy afin de pouvoir quantifier la fraction d'hélium dans chaque site où il a été détecté. Ensuite, il faudrait réaliser des mesures avec des échantillons implantés hélium à très faible énergie pour limiter la création de défauts et pouvoir décorréler les mécanismes propres à la présence de l'hélium des mécanismes propres aux défauts lacunaires, et des implantations à 50 keV à plus faible fluence (10 12 , 10 13 cm -2 ) pour voir si le pic de désorption se décale vers des températures plus basses. Enfin, il parait maintenant indispensable pour avancer dans l'interprétation des mécanismes mis en oeuvre, d'associer un travail important de modélisation à l'échelle atomique à tous ces résultats expérimentaux. échantillons implantés hélium à très faible énergie pour limiter la création de défauts et pouvoir décorréler les mécanismes propres à la présence d'hélium des mécanismes propres aux défauts lacunaires, et des échantillons implantés He à 50 keV à plus faible fluence ) pour voir si le pic de désorption se décale vers des températures plus basses (TDS). Enfin, il parait maintenant indispensable pour avancer dans l'interprétation des mécanismes mis en oeuvre, d'associer un travail important de simulation numérique à tous ces résultats expérimentaux, pp.12-13

M. Iwami, Silicon carbide: fundamentals, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.466, issue.2, pp.406-411, 2001.
DOI : 10.1016/S0168-9002(01)00601-5

S. Sharafat, R. H. Jones, A. Kohuama, and P. Fenici, Status and prospects for SiC???SiC composite materials development for fusion applications, Fusion Engineering and Design, vol.29, pp.29-411, 1995.
DOI : 10.1016/0920-3796(95)80047-2

E. V. Dyomina, P. Fenici, V. P. Kolotov, and M. Zucchetti, Low-activation characteristics of V-alloys and SiC composites, Journal of Nuclear Materials, vol.258, issue.263, pp.258-263, 1998.
DOI : 10.1016/S0022-3115(98)00133-0

F. Carre, P. Yvon, P. Anzieu, N. Chauvin, and J. Malo, Update of the French R&D strategy on gascooled reactors, Nuclear Engineering and Design, pp.240-2401, 2010.

L. L. Snead, T. Nozawa, Y. Katoh, T. Byun, S. Kondo et al., Handbook of SiC properties for fuel performance modeling, Journal of Nuclear Materials, vol.371, issue.1-3, pp.371-329, 2007.
DOI : 10.1016/j.jnucmat.2007.05.016

B. Ballot, Systèmes nucléaires du futur : Génération IV, pp.51-60, 2007.

A. Hasegawa, M. Saito, S. Nogami, K. Abe, R. H. Jones et al., Helium-bubble formation behavior of SiCf/SiC composites after helium implantation, Journal of Nuclear Materials, vol.264, issue.3, pp.355-358, 1999.
DOI : 10.1016/S0022-3115(98)00619-9

R. H. Jones, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama et al., Promise and challenges of SiCf/SiC composites for fusion energy applications, Journal of Nuclear Materials, vol.307, issue.311, pp.307-311, 2002.
DOI : 10.1016/S0022-3115(02)00976-5

P. David, Système nucléaires du futur: Génération IV, pp.79-84, 2007.

P. Yvon and F. Carré, Structural materials challenges for advanced reactor systems, Journal of Nuclear Materials, vol.385, issue.2, pp.217-222, 2009.
DOI : 10.1016/j.jnucmat.2008.11.026

. Hegeman, Recent advances and issues in development of silicon carbide composites for fusion applications, J. Nucl. Mater, pp.386-388, 2009.

P. Norajitra, L. Bühler, U. Fischer, S. Gordeev, S. Malang et al., Conceptual design of the dual-coolant blanket in the frame of the EU power plant conceptual study, Fusion engineering and design, pp.69-669, 2003.

B. Riccardi, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama et al., Issues and advances in SiC< sub> f</sub>/SiC composites development for fusion reactors, J. Nucl. Mater, pp.329-56, 2004.

. Youssef, An overview of the US DCLL ITER-TBM program, Fusion engineering and design, pp.1129-1132, 2010.

P. Norajitra, L. Bühler, U. Fischer, K. Kleefeldt, S. Malang et al., The EU advanced lead lithium blanket concept using SiCf/SiC flow channel inserts as electrical and thermal insulators, Fusion engineering and design, pp.58-59, 2001.

L. H. Rovner and G. R. Hopkins, Ceramic materials for fusion, Nuclear Technology, vol.29, pp.274-302, 1976.

M. R. Gilbert and J. C. Sublet, Neutron-induced transmutation effects in W and W-alloys in a fusion environment, Nuclear Fusion, vol.51, issue.4, p.51, 2011.
DOI : 10.1088/0029-5515/51/4/043005

Y. Katoh, L. L. Snead, C. H. Henager, A. Hasegawa, A. Kohyama et al., Current status and critical issues for development of SiC composites for fusion applications, Journal of Nuclear Materials, vol.367, issue.370, pp.367-659, 2007.
DOI : 10.1016/j.jnucmat.2007.03.032

G. Newsome, L. L. Snead, T. Hinoki, Y. Katoh, and D. Peters, Evaluation of neutron irradiated silicon carbide and silicon carbide composites, Journal of Nuclear Materials, vol.371, issue.1-3, pp.371-76, 2007.
DOI : 10.1016/j.jnucmat.2007.05.007

. Lewis, The effect of irradiation on the stability and properties of monolithic silicon carbide and SiCf/SiC composites up to 25 dpa, J. Nucl. Mater, vol.219, pp.70-86, 1995.

L. L. Snead, Limits on irradiation-induced thermal conductivity and electrical resistivity in silicon carbide materials, Journal of Nuclear Materials, vol.329, issue.333, pp.329-333, 2004.
DOI : 10.1016/j.jnucmat.2004.04.294

L. L. Snead, Y. Katoh, and S. Connery, Swelling of SiC at intermediate and high irradiation temperatures, Journal of Nuclear Materials, vol.367, issue.370, pp.367-370, 2007.
DOI : 10.1016/j.jnucmat.2007.03.097

K. Sasaki, T. Yano, T. Maruyama, and T. Iseki, Helium release and microstructure of neutronirradiated SiC ceramics, J. Nucl. Mater, vol.179, pp.407-410, 1991.

P. Jung, Diffusion and retention of helium in graphite and silicon-carbide, J. Nucl. Mater, vol.191, pp.377-381, 1992.

L. Vincent, T. Sauvage, G. Carlot, P. Garcia, G. Martin et al., Thermal behaviour of helium in silicon carbide: Influence of microstructure, Vacuum, vol.83, pp.83-119, 2009.
DOI : 10.1016/j.vacuum.2009.01.017

URL : https://hal.archives-ouvertes.fr/in2p3-00693339

W. Hua, S. Yao, N. D. Theodore, X. Wang, W. Chu et al., Ion-irradiationinduced athermal annealing of helium bubbles in SiC, Physics Research Section B: Beam Interactions with Materials and Atoms, pp.268-2325, 2010.

L. L. Snead, R. Scholz, A. Hasegawa, and A. Frias-rebelo, Experimental simulation of the effect of transmuted helium on the mechanical properties of silicon carbide, Journal of Nuclear Materials, vol.307, issue.311, pp.307-311, 2002.
DOI : 10.1016/S0022-3115(02)01052-8

Y. Katoh, H. Kishimoto, and A. Kohyama, The influences of irradiation temperature and helium production on the dimensional stability of silicon carbide, Journal of Nuclear Materials, vol.307, issue.311, pp.307-311, 2002.
DOI : 10.1016/S0022-3115(02)01062-0

S. Kondo, T. Hinoki, and A. Kohyama, Synergistic Effects of Heavy Ion and Helium Irradiation on Microstructural and Dimensional Change in &beta;-SiC, MATERIALS TRANSACTIONS, vol.46, issue.6, pp.46-1388, 2005.
DOI : 10.2320/matertrans.46.1388

S. Kondo, K. H. Park, Y. Katho, and A. Kohyama, High temperature ion-irradiation effects on microstructural evolution in beta-SiC, Fusion Science and Technology, pp.44-181, 2003.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The stopping power and range of ions in solids, 1985.

W. J. Weber, L. M. Wang, N. Yu, and N. J. Hess, Structure and properties of ion-beam-modified (6H) silicon carbide, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.253-62, 1998.
DOI : 10.1016/S0921-5093(98)00710-2

J. M. Perlado, L. Malerba, A. Sanchez-rubio, T. D. De-la, and R. , Analysis of displacement cascades and threshold displacement energies in beta-sic, J. Nucl. Mater, pp.276-235, 2000.

R. Devanathan and W. J. Weber, Displacement energy surface in 3C and 6H SiC, Journal of Nuclear Materials, vol.278, issue.2-3, pp.258-265, 2000.
DOI : 10.1016/S0022-3115(99)00266-4

X. Kerbiriou, M. F. Barthe, S. Esnouf, P. Desgardin, G. Blondiaux et al., Silicon displacement threshold energy determined by electron paramagnetic resonance and positron annihilation spectroscopy in cubic and hexagonal polytypes of silicon carbide, Journal of Nuclear Materials, vol.362, issue.2-3, pp.362-202, 2007.
DOI : 10.1016/j.jnucmat.2007.01.023

M. Bertolus, Modélisation à l'échelle atomique de matériaux nucléaires du cycle du combustible, 2011.

S. Dannefaer and D. Kerr, Positron annihilation investigation of electron irradiation-produced defects in 6H-SiC, Diamond and Related Materials, vol.13, issue.1, pp.157-165, 2004.
DOI : 10.1016/j.diamond.2003.10.027

A. Kawasuso, H. Itoh, S. Okada, and H. Okumura, ???SiC studied by positron lifetime spectroscopy, Journal of Applied Physics, vol.80, issue.10, pp.80-5639, 1996.
DOI : 10.1063/1.363615

S. Okumura and . Yoshida, Silicon vacancies in 3C-SiC observed by positron lifetime and electron spin resonance, Applied Physics a-Materials Science & Processing, vol.67, pp.209-212, 1998.

A. Y. Azarov, A. I. Titov, P. A. Karaseov, and A. Hallén, Effect of collision cascade density on radiation damage in SiC, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, pp.267-1247, 2009.

S. Arpiainen, K. Saarinen, P. Hautojarvi, L. Henry, M. F. Barthe et al., Optical transitions of the silicon vacancy in 6H-SiC studied by positron annihilation spectroscopy, Phys. Rev. B, p.66, 2002.

W. J. Weber, L. M. Wang, and N. Yu, The irradiation-induced crystalline-to-amorphous phase transition in [alpha]-SiC, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, pp.116-322, 1996.

H. Inui, H. Mori, and H. Fujita, Electron-irradiation-induced crystalline to amorhous transition in alpha-SiC single-crystalline to amorphous transition in alpha-SiC single-crystals, Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties, pp.61-107, 1990.

E. Wendler, A. Heft, and W. Wesch, Ion-beam induced damage and annealing behaviour in SiC, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, pp.141-105, 1998.

W. J. Weber, R. E. Williford, and K. E. Sickafus, Total displacement functions for SiC, Journal of Nuclear Materials, vol.244, issue.3, pp.205-211, 1997.
DOI : 10.1016/S0022-3115(96)00738-6

M. Toulemonde, C. Dufour, Z. Wang, and E. Paumier, Atomic and cluster ion bombardment in the electronic stopping power regime: A thermal spike description, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, pp.112-138, 1996.

S. Bouffard, C. Leroy, S. Della-negra, A. Brunelle, and J. Costantini, Damage production yield by electron excitation in mica for ion and cluster irradiations, Philosophical Magazine A, vol.107, issue.12, pp.81-2841, 2001.
DOI : 10.1080/01418610108217168

URL : https://hal.archives-ouvertes.fr/in2p3-00010692

S. J. Zinkle, V. A. Skuratov, and D. T. Hoelzer, On the conflicting roles of ionizing radiation in ceramics, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.191, issue.1-4, pp.191-758, 2002.
DOI : 10.1016/S0168-583X(02)00648-1

U. Gerstmann, E. Rauls, T. Frauenheim, and H. Overhof, Formation and annealing of nitrogen-related complexes in SiC, Physical Review B, vol.67, issue.20, p.67, 2003.
DOI : 10.1103/PhysRevB.67.205202

Y. Zhang, W. J. Weber, W. Jiang, C. M. Wang, V. Shutthanandan et al., Effects of implantation temperature on damage accumulation in Al-implanted 4H???SiC, Journal of Applied Physics, vol.95, issue.8, pp.95-4012, 2004.
DOI : 10.1063/1.1666974

L. Henry, Structure atomique et activité électrique des défauts natifs et induits par irradiation dans lee carbure de silicium 6H-SiC déterminées par annihilation de positons, Science and Technology, 2002.

P. Kögel, W. Sperr, and . Triftshäuser, Negatively charged vacancy defects in 6H?SiC after low-energy proton implantation and annealing, Physica B, vol.308, pp.668-670, 2001.

T. Lingner, S. Greulich-weber, J. M. Spaeth, U. Gerstmann, E. Rauls et al., The annealing product of the silicon vacancy in 6H???SiC, Physica B: Condensed Matter, vol.308, issue.310, pp.625-628, 2001.
DOI : 10.1016/S0921-4526(01)00762-1

C. C. Ling, C. D. Beling, and S. Fung, Isochronal annealing studies of n-type 6H-SiC with positron lifetime spectroscopy, Phys. Rev. B, pp.62-8016, 2000.

A. Polity, S. Huth, and M. Lausmann, Defect characterization in electron-irradiated 6H-SiC by positron annihilation, Phys. Rev. B, pp.59-10603, 1999.

. Overhof, Structure of the silicon vacancy in 6H-SiC after annealing identified as the carbon vacancycarbon antisite pair, Phys. Rev. B, vol.64, pp.245212-245212, 2001.

C. Y. Zhu, C. C. Ling, G. Brauer, W. Anwand, and W. Skorupa, Vacancy-type defects in 6H???silicon carbide induced by He-implantation: a positron annihilation spectroscopy approach, Journal of Physics D: Applied Physics, vol.41, issue.19, p.41, 2008.
DOI : 10.1088/0022-3727/41/19/195304

Y. Quéré, Physique des matériaux: cours et problèmes, Ellipses Marketing, 1988.

P. Persson, L. Hultman, M. S. Janson, A. Hallén, R. Yakimova et al., On the nature of ion implantation induced dislocation loops in 4H-silicon carbide, Journal of Applied Physics, vol.92, issue.5, p.92, 2002.
DOI : 10.1063/1.1499749

E. Oliviero, A. Van-veen, A. V. Fedorov, M. F. Beaufort, and J. F. Barbot, Helium implantation defects in SiC studied by thermal helium desorption spectrometry, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, pp.186-223, 2002.

T. Sauvage, G. Carlot, G. Martin, L. Vincent, P. Garcia et al., Helium behavior in [alpha]-SiC ceramics investigated by NRA technique, Physics Research Section B: Beam Interactions with Materials and Atoms, pp.257-231, 2007.
URL : https://hal.archives-ouvertes.fr/in2p3-00169581

C. H. Zhang, S. E. Donnelly, V. M. Vishnyakov, and J. H. Evans, Dose dependence of formation of nanoscale cavities in helium-implanted 4H???SiC, Journal of Applied Physics, vol.94, issue.9, pp.94-6017, 2003.
DOI : 10.1063/1.1611630

J. Chen, P. Jung, and H. Trinkaus, Microstructural evolution of helium-implanted alpha-SiC, Phys. Rev

Y. Pramono, K. Sasaki, and T. Yano, Release and Diffusion Rate of Helium in Neutron-Irradiated SiC, Journal of Nuclear Science and Technology, vol.48, issue.5, pp.41-751, 2004.
DOI : 10.1080/18811248.1992.9731578

M. Bruel and B. Aspar, Procédé de réalisation d'un film mince de matériau solide et applications de ce procédé, 1997.

P. Sperr, W. Egger, G. Kögel, G. Dollinger, C. Hugenschmidt et al., Status of the pulsed low energy positron beam system (PLEPS) at the Munich Research Reactor FRM-II, Applied Surface Science, vol.255, issue.1, pp.255-290, 2008.
DOI : 10.1016/j.apsusc.2008.05.307

M. J. Puska, C. Corbel, and R. M. Nieminen, Positron trapping in semiconductors, Physical Review B, vol.41, issue.14, pp.41-9980, 1990.
DOI : 10.1103/PhysRevB.41.9980

M. Puska and R. Nieminen, Theory of positrons in solids and on solid surfaces, Reviews of Modern Physics, vol.66, issue.3, pp.841-897, 1994.
DOI : 10.1103/RevModPhys.66.841

A. I. Akhiezer, V. B. Berestetskii, R. A. Shaffer, and Q. Electrodynamics, Quantum Electrodynamics, American Journal of Physics, vol.33, issue.11, pp.976-976, 1965.
DOI : 10.1119/1.1971111

C. Corbel, G. Blondiaux, and M. F. Barthe, Caractérisation de défauts lacunaires par annihilation de positons, 2003.

A. Blondiaux, P. Colder, M. Marie, and . Levalois, Slow positron beam facility in Orleans, Positron Annihilation -Icpa-12, pp.523-525, 2001.

M. J. Puska, P. Lanki, and R. M. Nieminen, Positron affinities for elemental metals, Journal of Physics: Condensed Matter, vol.1, issue.35, pp.6081-6093, 1989.
DOI : 10.1088/0953-8984/1/35/008

G. Brauer, W. Anwand, F. Eichhorn, W. Skorupa, C. Hofer et al., Characterization of a SiC/SiC composite by X-ray diffraction, atomic force microscopy and positron spectroscopies, Applied Surface Science, vol.252, issue.9, pp.252-3342, 2006.
DOI : 10.1016/j.apsusc.2005.08.096

. Korhonen, Evaluation of some basic positron-related characteristics of SiC, Phys. Rev. B, vol.54, pp.2512-2517, 1996.

C. Ling, H. Weng, C. Beling, and S. Fung, Experimental investigation of slow-positron emission from 4H-SiC and 6H-SiC surfaces, Journal of Physics: Condensed Matter, vol.14, issue.25, p.14, 2002.
DOI : 10.1088/0953-8984/14/25/306

M. J. Puska and R. M. Nieminen, Positron and electron energy levels in rare-gas solids, Physical Review B, vol.46, issue.3, pp.1278-1283, 1992.
DOI : 10.1103/PhysRevB.46.1278

O. V. Boev, M. J. Puska, and R. M. Nieminen, Electron and positron energy levels in solids, Physical Review B, vol.36, issue.15, pp.7786-7794, 1987.
DOI : 10.1103/PhysRevB.36.7786

B. K. Panda, G. Brauer, W. Skorupa, and J. Kuriplach, Positron energy levels in semiconductors, Physical Review B, vol.61, issue.23, pp.61-15848, 2000.
DOI : 10.1103/PhysRevB.61.15848

A. Van-veen, H. Schut, M. Clement, J. De-nijs, A. Kruseman et al., VEPFIT applied to depth profiling problems, Applied Surface Science, vol.85, pp.85-216, 1995.
DOI : 10.1016/0169-4332(94)00334-3

P. Desgardin, M. F. Barthe, E. Ntsoenzok, and C. L. Liu, Modifications of He implantation induced cavities in silicon by MeV silicon implantation, Applied Surface Science, vol.252, issue.9, pp.252-3231, 2006.
DOI : 10.1016/j.apsusc.2005.08.080

P. Sperr and G. , Present Performance Limits of Pulsed Positron Beams, Positron Annihilation: Icpa-11 -Proceedings of the 11th International Conference on Positron Annihilation, pp.109-113, 1997.
DOI : 10.4028/www.scientific.net/MSF.255-257.109

W. Bauer-kugelmann, P. Sperr, G. Kogel, and W. Triftshauser, Latest Version of the Munich Pulsed Low Energy Positron System, Positron Annihilation -Icpa- 12, pp.529-531, 2001.
DOI : 10.4028/www.scientific.net/MSF.363-365.529

P. Kirkegaard, M. Eldrup, O. E. Mogensen, and N. J. Pedersen, Program system for analysing positron lifetime spectra and angular correlation curves, Computer Physics Communications, vol.23, issue.3, pp.307-335, 1981.
DOI : 10.1016/0010-4655(81)90006-0

P. Kirkegaard, N. J. Pedersen, and M. Eldrup, A data processing system for positron annihilation spectra on mainframe and personal computers, 1989.

. Willutzki, Positron studies of defects in ion-implanted SiC, Phys. Rev. B, vol.54, pp.3084-3092, 1996.

A. D. Mokrushin, A. I. Girka, and A. V. Shishkin, Vacancy Clustering in Irradiated SiC, Physica Status Solidi (a), vol.19, issue.1, pp.31-36, 1991.
DOI : 10.1002/pssa.2211280104

C. Corbel, M. Stucky, P. Hautojarvi, K. Saarinen, and P. Moser, Positron-annihilation spectroscopy of native vacancies in as-grown GaAs, Phys. Rev. B, pp.38-8192, 1988.

K. Saarinen, P. Hautojarvi, P. Lanki, and C. , Ionization levels of As vacancies in as-grown GaAs studied by positron-lifetime spectroscopy, Physical Review B, vol.44, issue.19, pp.44-10585, 1991.
DOI : 10.1103/PhysRevB.44.10585

J. Makinen, P. Hautojarvi, and C. , Positron annihilation and the charge states of the phosphorus-vacancy pair in silicon, Journal of Physics: Condensed Matter, vol.4, issue.22, pp.5137-5154, 1992.
DOI : 10.1088/0953-8984/4/22/012

M. Mayer, SIMNRA user's guide, in, Max-Planck-Inst. für Plasmaphysik, 1997.

M. Mayer, SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA, AIP Conference Proceedings, pp.475-541, 1999.
DOI : 10.1063/1.59188

W. Allen, The lattice location of helium implanted in ??-SiC, Journal of Nuclear Materials, vol.210, issue.3, pp.318-323, 1994.
DOI : 10.1016/0022-3115(94)90185-6

L. Henry, M. F. Barthe, C. Corbel, P. Desgardin, G. Blondiaux et al., Silicon vacancy-type defects in as-received and 12-MeV proton-irradiated 6H-SiC studied by positron annihilation spectroscopy, Phys. Rev. B, p.67, 2003.

C. H. Lam and C. C. Ling, Decomposition of positron lifetime spectra generated by Monte Carlo method: The case study of 6H silicon carbide, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, pp.251-479, 2006.

W. Sprengel, A. Rempel, F. Baier, K. Sato, and H. Schaefer, Identification of Lattice Vacancies and Structural Phase Transitions in Solids by Positron Annihilation Spectroscopy, Materials Science Forum, vol.445, issue.446, pp.31-35, 2004.
DOI : 10.4028/www.scientific.net/MSF.445-446.31

P. Mascher, S. Dannefaer, and D. Kerr, Positron trapping rates and their temperature dependencies in electron-irradiated silicon, Physical Review B, vol.40, issue.17, pp.40-11764, 1989.
DOI : 10.1103/PhysRevB.40.11764

H. Ohshima, E. Itoh, and . Janzen, Divacancy model for P6/P7 centers in 4H-and 6H-SiC

P. G. Baranov, I. V. Il-'in, E. N. Mokhov, M. V. Muzafarova, S. B. Orlinskii et al., EPR identification of the triplet ground state and photoinduced population inversion for a Si-C divacancy in silicon carbide, Journal of Experimental and Theoretical Physics Letters, vol.82, issue.7, pp.82-441, 2005.
DOI : 10.1134/1.2142873

A. Gali, M. Bockstedte, N. T. Son, T. Umeda, J. Isoya et al., Divacancy and its identification: Theory, Silicon Carbide and Related Materials 2005, Pts 1 and 2, pp.523-526, 2006.
DOI : 10.4028/0-87849-425-1.523

. Dua, Identification of nitrogen decorated vacancies in CVD diamond films using positron annihilation coincidence Doppler broadening spectroscopy, Diam. Relat. Mater, vol.13, pp.1719-1724, 2004.

R. Aavikko, K. Saarinen, F. Tuomisto, B. Magnusson, N. T. Son et al., Clustering of vacancy defects in high-purity semi-insulating SiC, Physical Review B, vol.75, issue.8, p.75, 2007.
DOI : 10.1103/PhysRevB.75.085208

X. Kerbiriou, M. F. Barthe, S. Esnouf, P. Desgardin, G. Blondiaux et al., Vacancy defects induced in the track region of 132 MeV 12C irradiated SiC, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, pp.250-259, 2006.

X. Kerbiriou, Propriétés des défauts ponctuels natifs et induits par irradiation dans les polytypes 3C et 6H du carbure de silicium déterminées par annihilation de positons et RPE, Physique des matériaux et des surfaces, 2006.

W. J. Weber, N. Yu, L. M. Wang, and N. J. Hess, Temperature and dose dependence of ion-beaminduced amorphization in alpha-SiC, J. Nucl. Mater, pp.244-258, 1997.

A. Gentils, F. Linez, A. Canizares, P. Simon, L. Thome et al., Influence of ion energy on damage induced by Au-ion implantation in silicon carbide single crystals, Journal of Materials Science, vol.89, issue.19, pp.46-6390, 2011.
DOI : 10.1007/s10853-011-5587-4

URL : https://hal.archives-ouvertes.fr/in2p3-00621124

L. Nowicki, A. Turos, R. Ratajczak, A. Stonert, and F. Garrido, Modern analysis of ion channeling data by Monte Carlo simulations, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, pp.240-277, 2005.

D. W. Feldman, J. H. Parker, W. J. Choyke, and L. Patrick, SiC, Physical Review, vol.170, issue.3, p.698, 1968.
DOI : 10.1103/PhysRev.170.698

URL : https://hal.archives-ouvertes.fr/hal-01273660

D. W. Feldman, J. H. Parker, W. J. Choyke, and L. Patrick, Phonon Dispersion Curves by Raman Scattering in SiC, Phys. Rev, pp.173-787, 1968.

J. Vetelino and S. Mitra, Lattice Dynamics of Cubic SiC, Physical Review, vol.178, issue.3, p.1349, 1969.
DOI : 10.1103/PhysRev.178.1349

K. Kunc, M. Balkanski, and M. Nusimovici, Lattice dynamics of several A NB8?N compounds having the zincblende structure. II. Numerical calculations, Phys. Status Solidi B, pp.72-229, 1975.

H. Bilz and W. Kress, Phonon dispersion relations in insulators, 1979.
DOI : 10.1007/978-3-642-81347-4

S. Sorieul, J. Costantini, L. Gosmain, L. Thomé, and J. Grob, Raman spectroscopy study of heavy-ionirradiated alpha-SiC, J. Phys. Cond. Mat, vol.5235, p.18, 2006.

J. Wong-leung, M. S. Janson, and B. G. Svensson, Effect of crystal orientation on the implant profile of 60 keV Al into 4H-SiC crystals, Journal of Applied Physics, vol.93, issue.11, pp.93-8914, 2003.
DOI : 10.1063/1.1569972

Q. Xu, T. Yoshiie, and M. Okada, Positron annihilation of vacancy-type defects in neutron-irradiated 4H???SiC, Journal of Nuclear Materials, vol.386, issue.388, pp.386-169, 2009.
DOI : 10.1016/j.jnucmat.2008.12.326

T. Ohshima, A. Uedono, K. Abe, H. Itoh, Y. Aoki et al., Characterization of vacancy-type defects and phosphorus donors introduced in 6H-SiC by ion implantation, Applied Physics A: Materials Science & Processing, vol.67, issue.4, pp.67-407, 1998.
DOI : 10.1007/s003390050794

X. Kerbiriou, M. F. Barthe, A. Gentils, and P. Desgardin, irradiated 6H-SiC single crystals, physica status solidi (c), vol.250, issue.10, pp.4-3650, 2007.
DOI : 10.1002/pssc.200675796

R. S. Brusa, G. P. Karwasz, N. Tiengo, A. Zecca, F. Corni et al., He-implantation induced defects in Si studied by slow positron annihilation spectroscopy, Journal of Applied Physics, vol.85, issue.4, pp.85-2390, 1999.
DOI : 10.1063/1.369555

H. Schut, H. Van-gog, A. Van-veen, M. A. Van-huis, and S. W. Eijt, A positron beam study of hydrogen confined in nano-cavities in crystalline silicon, Physics Research Section B: Beam Interactions with Materials and Atoms, pp.216-251, 2004.
DOI : 10.1016/j.nimb.2003.11.042

E. Oliviero, M. F. Beaufort, J. F. Barbot, A. Van-veen, and A. V. Fedorov, Helium implantation defects in SiC: A thermal helium desorption spectrometry investigation, Journal of Applied Physics, vol.93, issue.1, pp.93-231, 2003.
DOI : 10.1063/1.1527974

R. M. Van-ginhoven, A. Chartier, C. Meis, W. J. Weber, and L. , René Corrales, Theoretical study of helium insertion and diffusion in 3C-SiC, J. Nucl. Mater, pp.348-51, 2006.

W. Jiang and W. Weber, Multiaxial channeling study of disorder accumulation and recovery in goldirradiated 6H-SiC, Phys. Rev. B, vol.64, 2001.

W. Jiang, W. J. Weber, S. Thevuthasan, and V. Shutthanandan, Accumulation and recovery of disorder on silicon and carbon sublattices in ion-irradiated 6H???SiC, Journal of Nuclear Materials, vol.289, issue.1-2, pp.289-96, 2001.
DOI : 10.1016/S0022-3115(00)00687-5

A. C. Eddin, Theoretical study of the stability and the mobility of noble gas atoms in silicon and silicon carbide, in: Sciences et ingénierie en matériaux, mécanique, énergétique et aéronautique, 2011.

M. Bockstedte, A. Mattausch, and O. Pankratov, Ab initio study of the annealing of vacancies and interstitials in cubic SiC: Vacancy-interstitial recombination and aggregation of carbon interstitials, Phys. Rev. B, pp.69-235202, 2004.

A. Kawasuso, M. Weidner, F. Redmann, T. Frank, P. Sperr et al., Vacancies in He-implanted 4H and 6H SiC epilayers studied by positron annihilation, Physica B: Condensed Matter, vol.308, issue.310, pp.660-663, 2001.
DOI : 10.1016/S0921-4526(01)00783-9

R. A. Hakvoort, A. Van-veen, P. E. Mijnarends, and H. Schut, Helium and hydrogendashdecorated cavities in silicon, Applied Surface Science, vol.85, pp.271-275, 1995.
DOI : 10.1016/0169-4332(94)00342-4

. Alvarez, Covalent radii revisited, Dalton Trans, pp.2832-2838, 2008.

A. Couet, J. P. Crocombette, and A. Chartier, Atomistic study of the thermodynamic equilibrium of nano-sized helium cavities in beta SiC, J. Nucl. Mater, vol.404, 2010.

A. Figure, Exemple de fonction de résolution du système PLEPS à Munich avec sa décomposition algébrique en plusieurs gaussiennes (Fichier SiCE8012.dat)