Nanometric confinement of molecular fluids: from interfacial interactions to one dimensional transport properties - TEL - Thèses en ligne Accéder directement au contenu
Hdr Année : 2011

Nanometric confinement of molecular fluids: from interfacial interactions to one dimensional transport properties

Confinement nanométrique de fluides moléculaires : des interactions de surface à des propriétés de transport à une dimension

Jean-Marc Zanotti

Résumé

Nanometric confinement of molecular fluids is a classical route to stabilize meta-stable states by achieving frustrations of the bulk natural fluctuations and/or phase transitions. In the first chapter of the manuscript, we address the physics of water under confinement and in a second chapter, the specific case of a polymer melt. Confinement of molecular liquids is a route to tune very significant temperature depressions of the melting point. This property has recently been intensively used in the quest for experimental evidences of the existence of a Low Temperature Critical Point (LTCP) in bulk liquid water, at Ts ~ 228 K and Ps ~ 100 MPa. Here, we highlight the surprisingly rich low temperature (from 100 to 300 K) dynamical behavior of interfacial water. Then, we propose a percolation model to account for the dynamical/thermodynamical transitions we observe at 150, 220 and 240 K and reach a global and coherent view of this two dimensional (2D) water. Due to dominant surface interactions, we question the relevance of confined water to prove the reality of the LTCP. Nevertheless, using interfacial water, we show that a liquid-liquid transition (a condition for the existence of the LTCP) involving water is possible. Recently, a corset effect has been proposed: under confinement the reptation tube diameter of a polymer chain, would be only a few Angstroms i.e. one order of magnitude smaller than in bulk. In the second chapter, we describe an inelastic neutron scattering-based multiscale approach to polymer dynamics (bulk and confined) from the atomic scale at short time (ps), up to few tens of nanometers and long times (600 ns). Over this detailed study of the time and spatial dependence of the polymer relaxations we detect no corset effect. When using nanometric confinement to obtain pure volume effects, next to the detrimental so-called surface effects evidenced in the first chapter, the significant physical insight lost by powder average of the spectroscopic observables is another limitation. In the second chapter, we illustrate how to take advantage of a macroscopically oriented confining matrix to lift this severe drawback. The ambition of the third and last chapter is to define a physical system, where macroscopic orientation meets nanometric confinement with no surface effects, to induce strong 1D pure volume effects over macroscopic distances. We discuss how such nano-pipes could enhance macroscopic flow, offering systems of prime interest to both fundamental and applied research.
Le confinement nanométrique permet d'obtenir la frustration des fluctuations et/ou des transitions de phases spontanées qu'un fluide moléculaire présente en volume (i.e. en " bulk "). Le confinement au sein de matrices poreuses est donc une voie usuelle de stabilisation de phases métastables. Nous détaillons ici les propriétés structurales, dynamiques et thermodynamiques de deux systèmes moléculaires confinés : dans un premier chapitre, nous nous intéressons au cas de l'eau puis, dans un deuxième chapitre, nous traitons le cas spécifique d'un polymère semi-cristallin. Le confinement permet d'abaisser considérablement le point de fusion du fluide confiné. Cette propriété a été récemment mise à profit dans la cadre de nombreux travaux visant à tester l'existence d'un hypothétique point critique à basse température dans l'eau volumique à 228 K and 100 MPa. Dans cette contribution, nous mettons en évidence des propriétés dynamiques surprenantes de l'eau interfaciale à basse température (de 100 à 300 K). Nous proposons un modèle de percolation décrivant les transitions dynamiques et thermodynamiques que nous observons à 150, 220 et 240 K. Nous proposons une description cohérente de cette eau à deux dimensions et de ses propriétés. Nous invoquons le rôle dominant des interactions de surface pour remettre en cause la pertinence de l'utilisation de l'eau confinée pour prouver l'existence d'un point critique à basse température dans l'eau volumique. Cette étude met cependant en évidence l'existence d'une transition liquide-liquide (l'une des conditions pour observer un point critique) impliquant des molécules d'eau. Récemment, un " effet corset " a été proposé : le confinement induirait une réduction d'un ordre de grandeur du diamètre du tube de reptation d'un polymère (quelques nanomètres en volume contre quelques angströms sous confinement). Dans le second chapitre, nous utilisons une approche par diffusion de neutrons pour accéder à une description multi-échelles de la dynamique d'un polymère (en volume puis sous confinement) de l'échelle atomique à temps court (picosecondes) jusqu'à une dizaine de nanomètres, à temps long (600 nanosecondes). Cette étude détaillée de la dépendance spatiale de la relaxation temporelle des chaînes de polymère ne permet pas de mettre en évidence d'"effet corset ". De façon générale, lorsque l'on cherche à tirer profit du confinement nanométrique pour obtenir des "effets de volume", en plus d'"effets de surface" parasites décrits dans le premier chapitre, on est également confronté à une perte significative d'information induite par la moyenne spatiale des observables spectroscopiques. Nous décrivons dans le deuxième chapitre comment utiliser des matrices de confinement orientées macroscopiquement pour s'affranchir de ces effets indésirables et/ou limitants. Dans le troisième et dernier chapitre, nous définissons un système de confinement nanométrique qui permet d'associer i) une orientation macroscopique des pores et ii) une absence totale d'interactions de surface. Un tel système permet d'envisager des effets de volume unidimensionnels très significatifs et ayant une portée sur des distances macroscopiques. Nous discutons pourquoi de tels " tuyaux nanométriques" peuvent potentiellement intéresser à la fois la recherche fondamentale et l'industrie.
Fichier principal
Vignette du fichier
HdR_JMZ.pdf (15.83 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-00715833 , version 1 (10-07-2012)

Identifiants

  • HAL Id : tel-00715833 , version 1

Citer

Jean-Marc Zanotti. Nanometric confinement of molecular fluids: from interfacial interactions to one dimensional transport properties. Soft Condensed Matter [cond-mat.soft]. Université Pierre et Marie Curie - Paris VI, 2011. ⟨tel-00715833⟩
225 Consultations
329 Téléchargements

Partager

Gmail Facebook X LinkedIn More