D. Schardt, T. Elsasser, and D. Schulz-ertner, Heavy-ion tumor therapy: Physical and radiobiological benefits, Reviews of Modern Physics, vol.82, issue.1, p.383, 2010.
DOI : 10.1103/RevModPhys.82.383

J. F. Ziegler, SRIM-2003 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, vol.219, pp.1027-1036, 2004.

K. Gunzert-marx, H. Iwase, D. Schardt, R. S. Simon, G. Kantor et al., « Helical tomotherapy for craniospinal radiation « Current indications and ongoing clinical trials with CyberKnife® stereotactic radiotherapy in France Cancer de la prostate: techniques de curiethérapie; revue de la littérature et expérience de l'Institut Gustave Roussy, et I. Stroyer, « Transperineal seed implantation in prostatic cancer guided by transrectal ultrasonography « An economic evaluation of interstitial brachytherapy, radical prostatectomy and external beam radiotherapy for localized prostate cancer: results during the first year after therapy, 12C ions in water and their dose contributions in carbon ion radiotherapy Évaluation nationale de la tomothérapie hélico\ïdale: description des indications, des contraintes de dose et des seuils de repositionnement De l'emploi du radium dans les cancers de la prostate, pp.75003-75009, 1913.

J. S. Bedford, W. C. Dewey31-]-j, F. H. Watson, . N. Crick32-]-f, and . Gobert, Historical and current highlights in radiation biology: has anything important been learned by irradiating cells? Demonstration eines cabcrids des rechten Handriickens, das dich nach langdauernder einwirkung von Röntgenstrahlen entwickelt hatte Inspiring science: Jim Watson and the age of DNA « A structure for deoxyribose nucleic acid », Inspiring science: Jim Watson and the age of DNA « Chromosome aberrations and cell inactivation induced in mammalian cells by ultrasoft X-rays: correlation with the core ionizations in DNA Dutrillaux, « Possible role of innershell ionization phenomena in cell inactivation by heavy ions « Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons « Numerical simulation of multiple ionization and high LET effects in liquid water radiolysis, « d'après la base de donnée XCOM du National Institute of Standards and Technology (NIST) Genetical implications of the structure of deoxyribonucleic acid Cellular defenses against damage from reactive oxygen species37] D. Dabli, « Utilisation d'un modèle microdosimétrique cinétique (MKM) pour l'interprétation d'irradiations cellulaires dans le cadre de l'hadronthérapie : Application de simulations Monte- Carlo », 2010. [38] D. Averbeck, Radiobiologie : Radiothérapie et Radioprotection, Bases fondamentales, Hermann. 2008. [39] H. Coutard, « Principles of x-ray therapy of malignant diseases Heavy-ion tumor therapy: Physical and radiobiological benefits, pp.251-291, 1902.

H. Kato, « Biological gain of carbon-ion radiotherapy for the early response of tumor growth delay and against early response of skin reaction in mice Predicting realistic RBE values for clinically relevant radiotherapy schedules Visualization and transport of positron emission from proton activation in vivo « Intensity-modulated radiation therapy, protons, and the risk of second cancers « In regards to hall: Intensity-modulated radiation therapy, protons, and the risk of second cancers. Authors' reply », International journal of radiation oncology, biology, physics « Secondary dose exposures during 200 MeV proton therapy « Measurement of neutron dose equivalent to proton therapy patients outside of the proton radiation field », Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment « Secondary neutron dose during proton therapy using spot scanning Gottschalk, « Neutron dose in scattered and scanned proton beams: in regard to, « RBE values and repair characteristics for colo-rectal injury after caesium 137 gamma-ray and neutron irradiation. II. Fractionation up to ten doses « High energy neutron treatment for pelvic cancers: study stopped because of increased mortality Maor, « Fast neutron therapy in advanced head and neck cancer: a collaborative internal randomised trial « The incorporation of the concept of minimum RBE (RBEmin) into the linear-quadratic model and the potential for improved radiobiological analysis of high-LET treatments, PTCOG : rapport de statistiques. . [76] rapport préliminaire de la Haute Autorité de Santé sur l'Hadronthérapie par ion Carbone88] D. K. Bewley, « Calculated LET distributions of fast neutrons Development of a Parallel Computing Optimized Head Movement Correction Method in Positron Emission Tomography In: Master of Computer Science thesis Hasch, « In-situ positron emission tomography for dose localisation at the tumour therapy with 12C », GSI Scientific Report95] J. Pawelke et al., « In-beam PET imaging for the control of heavy-ion tumour therapy ». [96] W. Enghardt et al., « Charged hadron tumour therapy monitoring by means of PET », Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Optimization of in-beam positron emission tomography for monitoring heavy ion tumor therapy », 2006. [98] W. Enghardt, F. Fiedler, D. Mockël, et K. Parodi, « In-beam PET for radiotherapy monitoring », presented at the Conf. on Clinical and Experimental Research in Radiation Oncology [99] P. Crespo, G. Shakirin, et W. Enghardt, « On the detector arrangement for in-beam PET for hadron therapy monitoring », Physics in Medicine and Biology, pp.75009-51, 1968.

R. Iritani, « Washout measurement of radioisotope implanted by radioactive beams in the rabbit », Physics in medicine and biology, vol.48, p.2269, 2003.

F. Fiedler, -activity, Acta Oncologica, vol.73, issue.6, pp.1077-1086, 2008.
DOI : 10.1016/j.ijrobp.2003.09.041

URL : https://hal.archives-ouvertes.fr/hal-00889644

G. W. Bennett, J. O. Archambeau, B. E. Archambeau, J. I. Meltzer, and C. L. Wingate, Visualization and Transport of Positron Emission from Proton Activation in vivo, Science, vol.200, issue.4346, pp.4346-1151, 1978.
DOI : 10.1126/science.200.4346.1151

P. Vert and . Etude, développement et validation d'un concept d'architecture électronique sans temps mort pour TEP de haute sensibilité, pp.28-2007

P. Crespo, G. Shakirin, F. Fiedler, W. Enghardt, and E. A. Wagner, Direct time-of-flight for quantitative, real-time in-beam PET: a concept and feasibility study, Physics in Medicine and Biology, vol.52, issue.23, p.6795, 2007.
DOI : 10.1088/0031-9155/52/23/002

R. Lecomte, « Novel detector technology for clinical PET », European journal of nuclear medicine and molecular imaging, pp.69-85, 2009.

C. H. Min, C. H. Kim, M. Y. Youn, and J. W. Kim, Prompt gamma measurements for locating the dose falloff region in the proton therapy, Applied Physics Letters, vol.89, issue.18, p.183517, 2006.
DOI : 10.1063/1.2378561

E. Testa, « Dose profile monitoring with carbon ions by means of prompt-gamma measurements », Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, vol.267, issue.6, pp.993-996, 2009.

G. W. Phillips, Gamma-ray imaging with Compton cameras », Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, vol.99, pp.1-4, 1995.

M. H. Richard, « Design Guidelines for a Double Scattering Compton Camera forPrompt-Imaging During Ion Beam Therapy : a Monte Carlo Simulation Study, IEEE Trans. Nucl. Sci, 2010.

R. Kaufmann and R. Wolfgang, Nucleon Transfer Reactions in Grazing Collisions of Heavy Ions, Physical Review, vol.121, issue.1, pp.192-205, 1961.
DOI : 10.1103/PhysRev.121.192

E. Rutherford, « The scattering of alpha and beta particles by matter and the structure of the atom, Philosophical Magazine Series, vol.6, issue.125, pp.669-688, 1911.

H. L. Reynolds and A. Zucker, Nuclear Reactions Produced by Nitrogen on Nitrogen, Physical Review, vol.101, issue.1, pp.166-171, 1956.
DOI : 10.1103/PhysRev.101.166

K. Alder, A. Bohr, T. Huus, and B. Mottelson, Study of Nuclear Structure by Electromagnetic Excitation with Accelerated Ions, Reviews of Modern Physics, vol.28, issue.4, pp.432-542, 1956.
DOI : 10.1103/RevModPhys.28.432

C. Y. Wong, Introduction to high-energy heavy-ion collisions, 1994.
DOI : 10.1142/1128

C. O. Bacri, Onset of vaporization for the Ar+Ni system, Physics Letters B, vol.353, issue.1, pp.27-31, 1995.
DOI : 10.1016/0370-2693(95)00551-U

URL : https://hal.archives-ouvertes.fr/in2p3-00012954

J. Hüfner and K. Sch\äfer, Abrasion-ablation in reactions between relativistic heavy ions, Physical Review C, vol.12, issue.6, pp.1888-1898, 1975.
DOI : 10.1103/PhysRevC.12.1888

L. F. Oliveira, R. Donangelo, and J. O. Rasmussen, Abrasion-ablation calculations of large fragment yields from relativistic heavy ion reactions, Physical Review C, vol.19, issue.3, pp.826-833, 1979.
DOI : 10.1103/PhysRevC.19.826

V. Crespo and P. Alexandre, « Optimization of in-beam positron emission tomography for monitoring heavy ion tumor therapy, 2006.

F. and L. Foulher, Simulations Monte Carlo et mesure de l'émission de gamma prompts appliquées au contrôle en ligne en hadronthérapie, 2010.

O. Jäkel, M. Krämer, and C. P. Karger, Treatment planning for heavy ion radiotherapy: clinical implementation and application, Physics in Medicine and Biology, vol.46, issue.4, p.1101, 2001.
DOI : 10.1088/0031-9155/46/4/314

M. Krämer and M. Scholz, Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose, Physics in medicine and biology, p.3319, 2000.
DOI : 10.1088/0031-9155/45/11/314

M. Krämer, O. Jäkel, T. Haberer, G. Kraft, D. Schardt et al., Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization, Physics in Medicine and Biology, vol.45, issue.11, p.3299, 2000.
DOI : 10.1088/0031-9155/45/11/313

M. Endo, « HIPLAN?a heavy ion treatment planning system at HIMAC, J. Japan. Soc. Ther. Radiol. Oncol, vol.8, pp.231-239, 1996.

P. L. Petti, Differential-pencil-beam dose calculations for charged particles, Medical physics, p.137, 1992.
DOI : 10.1118/1.596887

F. Salvat, J. M. Fernández-varea, E. J. Sempau, and «. Penelope, a code system for Monte Carlo simulation of electron and photon transport, Proceedings of a Workshop/Training Course, 2001.

J. F. Briesmeister, «. Others, and . Mcnptm, A General Monte Carlo N-particle Transport Code », Version 4A, Los Alamos National Laboratory Manual LA-12625-M, 1993.

M. R. James, G. W. Mckinney, J. S. Hendricks, and E. M. Moyers, « Recent enhancements in MCNPX: Heavy-ion transport and the LAQGSM physics model », Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp.819-822, 2006.

A. Stankovskiy, S. Kerhoas-cavata, R. Ferrand, C. Nauraye, and E. L. Demarzi, Monte Carlo modelling of the treatment line of the Proton Therapy Center in Orsay, Monte Carlo modelling of the treatment line of the Proton Therapy Center in Orsay », p.2377, 2009.
DOI : 10.1088/0031-9155/54/8/008

H. Iwase, « The multi-purpose Particle and Heavy Ion Transport code System PHITS

H. Nose, Improvement of Three-dimensional Monte Carlo Code PHITS for Heavy Ion Therapy, Journal of Nuclear Science and Technology, vol.7, issue.2, pp.250-255, 2005.
DOI : 10.1080/18811248.2005.9726386

A. V. Dmentyev and N. M. Sobolevsky, shield ??? universal Monte Carlo hadron transport code: scope and applications, Proc. of 3rd Workshop on Simulating Accelerator Radiation Environments, pp.7-9, 1997.
DOI : 10.1016/S1350-4487(99)00231-0

I. Gudowska, N. Sobolevsky, P. Andreo, and D. Belki?, Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT, Physics in Medicine and Biology, vol.49, issue.10, p.1933, 2004.
DOI : 10.1088/0031-9155/49/10/008

L. Sihver, D. Schardt, and E. T. Kanai, « Depth-dose distributions of high-energy carbon, oxygen and neon beams in water, Journal of Medical Physics, 1998.

A. Ferrari, J. Ranft, and P. R. Sala, « The FLUKA radiation transport code and its use for space problems, Physica Medica, vol.17, pp.72-80, 2001.

F. Sommerer, K. Parodi, A. Ferrari, K. Poljanc, and W. Enghardt, Investigating the accuracy of the FLUKA code for transport of therapeutic ion beams in matter, Physics in Medicine and Biology, vol.51, issue.17, p.4385, 2006.
DOI : 10.1088/0031-9155/51/17/017

K. Parodi, A. Ferrari, F. Sommerer, and E. H. Paganetti, Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code, Physics in medicine and biology, p.3369, 2007.
DOI : 10.1088/0031-9155/52/12/004

S. Agostinelli, « Geant4-a simulation toolkit », Nuclear Instruments and Methods in Physics Research-Section A Only, pp.250-303, 2003.

I. Pshenichnov, I. Mishustin, and E. W. Greiner, Neutrons from fragmentation of light nuclei in tissue-like media: a study with the GEANT4 toolkit, Physics in Medicine and Biology, vol.50, issue.23, p.5493, 2005.
DOI : 10.1088/0031-9155/50/23/005

I. Pshenichnov, I. Mishustin, and E. W. Greiner, Distributions of positron-emitting nuclei in proton and carbon-ion therapy studied with GEANT4, Physics in Medicine and Biology, vol.51, issue.23, p.6099, 2006.
DOI : 10.1088/0031-9155/51/23/011

I. Pshenichnov, A. Larionov, I. Mishustin, and E. W. Greiner, C beams: a study with the GEANT4 toolkit, Physics in Medicine and Biology, vol.52, issue.24, p.7295, 2007.
DOI : 10.1088/0031-9155/52/24/007

F. Pönisch, K. Parodi, B. G. Hasch, and E. W. Enghardt, The modelling of positron emitter production and PET imaging during carbon ion therapy, Physics in medicine and biology, p.5217, 2004.
DOI : 10.1088/0031-9155/49/23/002

G. A. Cirrone, G. Cuttone, F. Di-rosa, L. Pandola, and E. Q. Zhang, « Validation of the Geant4 electromagnetic photon cross-sections for elements and compounds », Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010.

L. Grevillot, « Optimization of GEANT4 settings for Proton Pencil Beam Scanning simulations using GATE », Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Measurement of lateral straggling using a microbeam Physics Research Section B: Beam Interactions with Materials and Atoms, pp.1-4, 2001.

R. K. Tripathi, Accurate universal parameterization of absorption cross sections, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.117, issue.4, 1997.
DOI : 10.1016/0168-583X(96)00331-X

W. Shen, Total reaction cross section for heavy-ion collisions and its relation to the neutron excess degree of freedom, Nuclear Physics A, vol.491, issue.1, pp.130-146, 1989.
DOI : 10.1016/0375-9474(89)90209-1

S. Kox, Trends of total reaction cross sections for heavy ion collisions in the intermediate energy range, Physical Review C, vol.35, issue.5, pp.1678-1691, 1987.
DOI : 10.1103/PhysRevC.35.1678

URL : https://hal.archives-ouvertes.fr/in2p3-00022753

L. Sihver, C. H. Tsao, R. Silberberg, T. Kanai, and A. F. Barghouty, ???26), ? 26), pp.1225-1236, 1993.
DOI : 10.1103/PhysRevC.47.1225

P. Solevi, Study of an in-beam PET system for CNAO, the National Centre for Oncological Hadrontherapy

R. Serber, Nuclear Reactions at High Energies, Nuclear reactions at high energies, pp.1114-1115, 1947.
DOI : 10.1103/PhysRev.72.1114

G. Folger, V. N. Ivanchenko, and J. P. Wellisch, The Binary Cascade, The European Physical Journal A, vol.22, issue.3, pp.407-417, 2004.
DOI : 10.1140/epja/i2003-10219-7

C. Grégoire and E. Joliot-curie, Au-delà du champ moyen, p.93, 1987.

C. Z. Jarlskog and H. Paganetti, « Physics settings for using the Geant4 toolkit in proton therapy, IEEE Transactions on Nuclear Science, vol.55, issue.3, 2008.

K. K. Gudima, S. G. Mashnik, and V. D. Toneev, Cascade-exciton model of nuclear reactions, Nuclear Physics A, vol.401, issue.2, pp.329-361, 1983.
DOI : 10.1016/0375-9474(83)90532-8

J. M. Quesada, « Nuclear Models in GEANT4 " from " Workshop on Nuclear Models for use in Hadron Therapy, pp.8-2009

D. Schardt and T. Elsasser, Heavy-ion tumor therapy: Physical and radiobiological benefits, Reviews of Modern Physics, vol.82, issue.1, p.383, 2010.
DOI : 10.1103/RevModPhys.82.383

J. Baudot, First test results Of MIMOSA-26, a fast CMOS sensor with integrated zero suppression and digitized output, 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp.1169-1173, 2009.
DOI : 10.1109/NSSMIC.2009.5402399

R. W. Schulte, S. N. Penfold, J. T. Tafas, and K. E. Schubert, A maximum likelihood proton path formalism for application in proton computed tomography, Medical Physics, vol.506, issue.11, p.4849, 2008.
DOI : 10.1016/S0168-9002(03)01368-8

T. Li, Z. Liang, J. V. Singanallur, T. J. Satogata, D. C. Williams et al., Reconstruction for proton computed tomography by tracing proton trajectories: A Monte Carlo study, Medical Physics, vol.52, issue.3, p.699, 2006.
DOI : 10.1118/1.596685

N. Matsufuji, Spatial fragment distribution from a therapeutic pencil-like carbon beam in water, Physics in Medicine and Biology, vol.50, issue.14, p.3393, 2005.
DOI : 10.1088/0031-9155/50/14/014

M. Testa, « Physical measurments for ion range verification in charged particle therapy, 2010.

T. T. Böhlen, Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy, Physics in medicine and biology, p.5833, 2010.
DOI : 10.1088/0031-9155/55/19/014

«. Nist-geant4-material and . Database, Available: http://geant4.cern.ch/UserDocumentation, pp.14-2011

. Dans-le-cadre-de-notre-Étude, la position du vertex est déterminée de deux manières différentes : soit en calculant l'intersection de la trajectoire d'un fragment émergent avec celle de l'ion incident (connue grâce à l'utilisation d'un hodoscope de faisceau placé en amont du patient), soit grâce à l

. Enfin, optimisation des principaux paramètres de cette technique, une simulation réaliste montre qu'il est possible de mesurer le parcours des ions avec une précision millimétrique à l'échelle d'une tranche en énergie voire à l'échelle d'un voxel unique