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Résumé

Introduction

Des équipements médicaux de plus en plus sophistiquéstappaujourd’hui des infor-
mations indispensables a la prise de décision du médecparénulier dans les domaines
de la cancérologie et des pathologies neurologiques. loggés permis par les nouvelles
technologies d’acquisition d’information médicale, quesoit par 'amélioration du rap-
port signal a bruit ou le couplage inédit entre anatomie gsiofogie, ont progressivement
donné a I'imagerie médicale un statut indispensable datebioration du diagnostic, du
pronostic et de la prise en charge thérapeutique. Par m&ill€analyse de combinaisons
de signaux biologiques apparait aujourd’hui prometteass toutefois faire systématique-
ment partie de la routine clinique. Les techniques d’adfijois des signaux médicaux
sont en outre en constante évolution (échographie endioseypromographie par émis-
sion de Positons TEP, spectroscopie par Résonance Magméigcléaire, Imagerie par
Résonance Magnétique IRM, imagerie IRM fonctionnelle IRBtffournissent une quan-
tité croissante de données hétérogenes qui doivent étiyséas par le médecin. En effet,
d’'une observation statique & une multi-observation dygamyi d’'une information sur la
structure des organes a l'information sur leurs fonctides,techniques d’acquisition de
signaux médicaux portent potentiellement la signatureadedladie (bio-marqueurs) bien
au-dela de I'examen clinique ponctuel. Dans ce contexte ntthodes automatiques de
traitement des signaux médicaux sont réguliérement pégsopour aider I'expert dans
I'analyse qualitative et quantitative en facilitant lentdarprétation. Ces méthodes doivent
tenir compte de la physique de l'acquisition, de I'a prianiegqnous avons sur ces signaux
et de la quantité de données a analyser pour une interpréfaitis précise et plus fiable.
Parmi les nouvelles techniques d’acquisition de signaaxalyse des tissus biologique
par spectroscopie RMN ou la recherche des activités famutibes cérébrales et leurs con-
nectivités par IRMf sont explorées pour la recherche de @aux bio-marqueurs (objet),
gue ce soit pour I'aide au diagnostic de pathologies ou osuivi d’effets thérapeutiques.
Pour ce faire, il est également nécessaire d’amélioreigls d’analyse associés a ces nou-
velles techniques. Dans cette optique, nous proposonsuweaon schéma d'indexation et
de recherche par le contenu d’objets pour la détection @esarqueurs.

Le scénario classique d’exploitation d’'un systéme de netleed’information est le
suivant : un utilisateur soumet une requéte et le systenmifideles informations perti-
nentes a la requéte soumise, puis les retourne a I'utilisagansi, le but d'un systéme de
recherche d'information est de retrouver les documentingeits par rapport a une requéte
donnée. Cependant, I'évaluation de la pertinence d’unmeot n'est toujours pas aisée
puisque la notion de la pertinence est tres dépendante éiEsaences de l'utilisateur. La
recherche traditionnelle des documents (par exemplanagas médicales, les sons respi-
ratoires, etc) par mots-clés est I'approche la plus aneietna plus utilisée. Cependant,
elle reste limitée par le faible pouvoir expressif des mp#s,les contraintes linguistiques



(le passage d'une langue a une autre, 'ambigiité sémantafuypar le caractére objectif
des annotations (deux médecins peuvent annoter différatnume image médicale). En
outre, elle nécessite I'intervention humaine et est domtra@nante pour les bases de don-
nées de tailles importantes si les mots clés sont générasetfement. De plus, notons que
'annotation ne pourra jamais décrire le contenu d’un doeninde fagon exhaustive.

Afin de contourner ces inconvénients, I'approche d’indexaet de recherche par le
contenu a été proposée (appelée désormais approche @ifimgqEakins9§. Elle con-
siste a rechercher des documents en n'utilisant que le dattui-méme, c’est-a-dire son
contenu sans aucune autre information. Par exemple, darasldes images, l'idée est
de caractériser le contenu visuel des images par des desesisuels et d’effectuer des
recherches par similarité visuelle a partir de ces desenipt Par conséquent, I'approche
d’'indexation basée sur le contenu nous permet non seulafiedéxer automatiguement
les documents et d’interroger une base de données diratténpartir de leur contenu in-
formatif, sans intervention humaine, mais aussi d’analgb@ctivement son contenu. Par
exemple, si on considere une tumeur cérébrale comme unétegguous pouvons facile-
ment identifier avec une fonction de mesure de similaritéacihje les tumeurs similaires
appartenant a la base de données sollicitée.

Généralement, le systeme d’indexation nécessite:
1. Une étape d’alignement de documents,

2. Une étape de codage de document et de mesure de similantéffet, le codage
du document consiste a calculer pour chaque document umblesd’attributs de-
scriptifs compacts qui définit sa signature. Une mesure mdasité utilisant ces
descripteurs permet de comparer deux documents et dligeratinsi les documents
similaires.

Afin d’accélérer la sollicitation de grande base de donréesxhéma d’'indexation peut
étre divisé en deux phases:

1. Une phase hors ligne dans laquelle on réalise l'align¢miele codage du contenu
de la base de données. Durant cette phase, l'utilisatest p&s encore connecté
au systeme. Cette phase peut alors prendre le temps néeesdaixtraction des
descripteurs. Le codage hors ligne consiste a extraireideatsires associées aux
contenus de la base de données. Ces dernieres sont ensagistedes dans une
base de données organisée comme un dictionnaire invensedindocument et sig-
nature) permettant ainsi de retrouver rapidement le dontissocié a une signature
donnée.

2. Une phase en ligne dans laquelle I'utilisateur interrlagbase de données a l'aide
d’'un document exemple. Durant cette seconde phase, le @enggponse du sys-
téme est crucial et il faut I'optimiser. Notons que les étage I'alignement et du
codage ne concernent que le document requéte. Une mestuireildeite entre la



signature de la requéte et celles établies dans le diclienimverse est alors cal-
culée. Enfin, les documents appartenant a la base de dororéedassés par ordre
de similarité.

Bien que ce systéme classique d’indexation a été appligeé swcces sur des bases
de données du Web [1], il n’est malheureusement pas adagt@éhle d’identification des
bio-marqueurs. En effet, cette derniere nécessite laifitaton des profils de signaux
médicaux (groupes) pour la détection de changements. Bampd, si on considére deux
classes de profils: la classe saine et la classe patholodigiehe d’identification de bio-
marqueurs revient a classifier un groupe de signaux médidans la classe des signaux
sains ou pathologique (par exemple, le cancer ou les maladigchologiques) et de dé-
tecter alors les différences (variations) entre eux. Hnlaiclasse des signaux sains peut
étre considérée comme la classe du "non changement" eskegiathologique comme la
classe du "changement". Par conséquent, I'ajout d’unesélapclassification/détection
de changement au schéma classique d’indexation nous peinde détecter les bio-
marqueurs a partir des données médicales considéréesnblaifocalisons dans ce travail
de thése sur :

1. Les spectres a deux dimensions HSQC (HeteronucleareSiggintum Coherence)
obtenus en Résonance Magnétique Nucléaire (RMN) et plugyigrement en
spectroscopie RMN hétéro-nucléaire HR-MAS (High-ResoiuMagic Angle Spin-
ning : RMN haute résolution par rotation de I'échantillon’angle magique) qui
permet I'analyse directe des tissus biologiques (biopsie)

2. Les images IRMf pour les régions fonctionnelles cérésral

De ce fait, et contrairement au schéma d’indexation classide nouveau schéma
d’indexation contient deux étapes supplémentaires: umgeéde détection d'objets (dé-
tection de pics de spectres HSQC et des zones actives dsmBjéf) et une étape de
classification d’objets (détection de changements). Ghagformation médicale traitée
(spectres 2D RMN ou images IRMf) est alors caractérisée pangemble d’'objets (bio-
marqueurs) que nous cherchons a extraire, aligner et doeleegroupement de ces objets
par la mesure de leur similarité permet alors leur classifica C'est ce schéma globale
d’'indexation et de recherche par le contenu d’objets que awons adopté. Dans notre
cas, ces objets sont :

- Les raies d’émission pour les spectres RMN HR-MAS 2D (ium,ensemble de
pics est la réponse correspondant a la présence de métapgaliague métabolite
générant différents pics d’émission traduisant la préseegetite molécule a travers
des interactions Proton-Carbone 13 dans le cadre desapé&t3QC).

- Les zones actives pour les images IRMf (i.e., une zoneaett la réponse d'une
activité cérébrale a un stimulus).



Le schéma d’'indexation proposé est alors divisé en deuxephas

1. Une phase hors ligne dans laquelle on réalise sur chagpe siaité (spectre HSQC
et image IRM() : la de détection d’objets, I'alignement dets, Ir codage d’objets,
la mesure de similarité et enfin la classification d’objetsnafement, des profils
de groupes ou de populations données (par exemple groupgndens normaux ou
pathologigques) sont établis.

2. Une phase en ligne dans laquelle I'utilisateur interladmse de données en utilisant
une requéte (nouvel individu/groupe de spectres). Les raétapes que dans la
phase hors ligne sont appliquées sur la requéte (spectreCHSdmage IRMf).
Enfin, cette requéte est assignée a un profil préalablemént @&étape hors ligne.
Notons que contrairement au schéma d'indexation classliape de mesure de
similarité d’objets vise ici a regrouper les objets sinméai appartenant a un groupe
de signaux médicaux donnés permettant ainsi I'attributlence groupe au profil
approprié. En d'autres termes, la tache d'attribution dionveau groupe/individu
est abordée ici au niveau de I'étape de classification et asrap niveau de I'étape
de mesure de similarité comme c’est le cas pour le schémdeXation classique.
Figure2.15montre le schéma du traitement.
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Figure 1: Schéma synoptique de la méthode d’indexationgz@g

Dans la suite, nous développons les étapes de détectgmealent d’objets, de codage
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et de mesure de la similarité ainsi que I'étape de classditatobjets.

1. Détection et alignement d’objets

Le probleme de la détection d’'objets consiste a découpeigialsen un ensemble de

groupes significatifs (objets) en se basant sur les infeomsispatiales et/ou les intensités
des pixels. La tache d'alignement d’'objet est le processusugerposition de deux ou

plusieurs objets pris a des moments différents, et/ourdift& points de vue, et/ou par

des modalités différentes. Plus précisément, I'aligndéndeis objets consiste a aligner
géométriqguement un objet par rapport & un motif de référeMdmons que la tache de

détection d’'objets et celle de I'alignement sont deux &apeiciales dans le systéme
d’indexation car toutes les autres étapes en dépendentcoRséquent, afin d'aboutir a

un résultat de détection et d’alignement d’objets optinltes les connaissancaspri-

ori que nous avons sur les données doivent étre correctemégtéas dans les méthodes
proposées de détection et d’alignement d’'objets. C’'estiaaiiche que nous suivons dans
cette thése.

Pour I'étape d’extraction et d’alignement des objets, npugosons une nouvelle
méthode basée sur l'utilisation de la théorie de I'évidequecombine la détection et
l'alignement des raies d’émission. En effet, la théorie'éeidlence permet la manipula-
tion de l'incertitude des modéles et I'imprécision qui caéaisent les spectres HSQC. Par
conséquent, nous proposons le couplage entre la théorendembles flous et la théorie
bayésienne pour modéliser et quantifier le degré d’'imp@tides spectres qui sera ainsi
exploité pour définir les fonctions de masse (i.e., une fonafjui modélise le degré de
croyance sur une hypothése donnée). En ce qui concerne dgesniRMf, nous procé-
dons, dans une premiére étape a l'extraction des zonegs@&iv utilisant un algorithme
de segmentation par chaines de Markov. Ensuite, nous mogas) nouvel algorithme
d’alignement des zones actives basé sur I'utilisation dméshode d’Analyse en Com-
posante Principale (ACP) non-linéaire pour I'estimati@s dymétries de réflexion. Ces
symétries de réflexion sont ensuite utilisées pour I'aligeert des zones actives.

1.1 Détection et alignement de pics

Nous proposons dans cette thése une nouvelle méthode dtiaiést d’'alignement des
pics de spectres RMN HR-MAS 2D en utilisant la théorie deitiénce. Cette théorie per-
met d'affecter des degrés de confiance, aussi connus soomlée fonctions de masses,
non seulement a des hypothéses simples, mais aussi a desmsadihypothéses(si la con-
naissance disponible ne porte que sur un ensemble d’hygastteans plus de précision).
Par exemple, un pixel de spectre peut appartenir a la cla¢séd,} ou H; représente la
classe des raies d’émissiontdt celle du bruit. Il n'existe pas une méthode générique
reconnue pour construire ces fonctions de masses et lenitidéfiest trés dépendante de
I'application étudiée. Pour ce faire, nous nous intéressola modélisation du conflit pour
la quantification de I'imprécision dans les spectres en b&fmt trois hypotheses triviales:
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hyp, ('imprécision (contradiction) portant sur les amplit@didhyp (I'imprécision portant
sur les formes des pics) leyp; (I'imprécision portant sur les positions des pics). La cant
diction sera maximale lorsque un pixel correspond a uneadfaimission dans un spectre et
correspond en méme temps a un bruit dans l'autre. Les diffemarameétres des spectres
(localisation des pics, charachtéristiques de chaqueapiglitude et forme) sont estimés
par une procedure Monte Carlo Markov Chain MCM@&riffin04]. Figure 6.3 représente
la chaine de traitement de la méthode de détection et déatignt des pics.
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Figure 2: La chaine de détection et d’alignement des pics.

1.2 Détection et alignement de zones actives

Nous rappelons que une image IRMf peut simplement étreseptée par un ensemble de
zones actives que nous cherchons a détecter et a alignem@@aur les pics du spectre
HSQC) en 3D. Chaque zone active peut étre caractérisée pasisan, sa forme et les in-

tensités de ses voxels. Contrairement au schéma de datettitalignement des pics, les
problémes de détection et d’alignement des zone activadrsiteés séparément. Plus ex-
plicitement, étant donnés deux objets détectés, notretifigst de les aligner en fonction

de leur pose canoniques. Pour ce faire, la détection des zmtiges est d'abord effectuée
en utilisant une méthode classique de segmentation pahsises de Markov cachées

J



[Bricq0§g| permettant d’'intégrer I'information spatiale dans lag#dure de segmentation.

Afin d’aboutir & un résultat satisfaisant d’alignement, ¥0ous appuyons sur la per-
ception humaine dans le schéma d’alignement qui consigigrieaun objet en fonction
de ses axes de symétrie. Cette approche nous permet dertlaypese la plus naturelle
de I'objet et ensuite aligner les objets visuellement siirels de la méme maniére. La plu-
part des méthodes basées sur la perception humaine ontoitpp@wsr le choix de I'ACP
ou I'ACP continue VranicOla VranicO1l pour estimer les plans de réflexion. Ces plans
sont ensuite utilisés pour estimer le systeme de coordercaréésiennes approprié asso-
cié a I'objet. Bien que ces méthodes aient été appliquées aweeés pour I'alignement
des objets 3D du Web/ranic01H, elles sont malheureusement pas adoptées pour les ob-
jets 3D IRMf. En effet, en raison de la forme du cortex, la symaéde réflexion sur les
zones actives est plus sphérique que planaire. Nous pnapadors d'utiliser la ACP
non-linéaire qui est plus adaptée a la forme de nos objets podéliser la symétrie de
réflexion des zones activeBighop93. Pour cela, nous avons développé une nouvelle
méthode d’estimation des symétries de réflexion sphériguee dasant sur les réseaux de
neurones qui ont montré leurs intéréts dans la modélisaohaspect non-linéaire des
donnéedfisieh98 Stamkopoulos98Scholz0%. Figure 6.5 représente la chaine de traite-
ment de la méthode de d’alignement des zones actives.
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Figure 3: La chaine d’alignement des zones actives.

2 Codage d’objets et mesure de similarité

Nous rappelons que chaque spectre est composé de pluseiggipsont dispersés dans
le spectre. Ces pics sont les réponses de la présence deolitésatiPar conséquent, les
pics appartenant a un métabolite donné ont des propriétémuoaes. Afin d’aboutir a un
meilleur résultat de codage et de mesure de similarité dssges propriétés devraient étre
modélisées et injectées dans le schéma proposé. Ainst,pké&fgrable de manipuler les
métabolites plutbt que leurs pics séparément. Par aillélarss le cas des spectres HSQC,
I'étape de codage d'objets s’avére inutile puisque les péesrent étre uniqguement décrits
par trois paramétres (localisation, amplitude et formeisesont donc déja représentés



d’une fagon parcimonieuse. De ce fait, I'étape de codage etesure de similarité des pics
revient a identifier les métabolites. Pour cela, nous proposine nouvelle méthode basée
sur la combinaison de la théorie bayésienne et de la thé@msembles flous permettant
de gérer l'incertitude et le caractere flou des observagbmkinjecter notre connaissance
a priori dans le modéle d’inférence. Concernant les images IRMfs moaposons une
nouvelle méthode de codage basée sur la transformatiosigans généralisée permettant
de décrire d’'une maniére fiable la topologie de surface desszactives.

2.1 Identification de métabolites

On distingue généralement deux approches pour I'étude deghalites. Dans la premiére
approche, appeléeapproche schématiqueles composants ne sont pas initialement iden-
tifiés. Seulement leurs modéles spectraux et intensitéscemmus et comparés statis-
tiguement pour identifier leurs caractéristiques spextrappropriées qui distinguent des
classes. Une fois ces caractéristiques établies, undévadi@proches peut alors étre util-
isée pour identifier les métaboliteBrjndle02. Dans I'autre approche, appeléapproche

du profil ciblé, les composants sont d’abord identifiés et évalués queveitaent en com-
parant le spectre NMR de la biopsie a une bibliothéque deerdété spectrale obtenue de
composants purdNeljie06]. Bien que la premiere approche présente I'avantage degouv
détecter des métabolites non connus a l'avance, elle wggglas de contraintes supplé-
mentaires comme la connaissance de la composition de laibjapombre de pics d'un
métabolite, etc. Pour cela, nous allons définir trois @#ériviaux pour modéliser ces
priori qui sont la localisation des pics, les parameétres de laetsiprobabilité des ampli-
tudes des pics et finalement le rapport entre les différast four ce dernier, nous allons
supposer que les rapports d’intensité des raies d'émisbionmétabolite donné sont les
mémes. Bien que cette contrainte soit théoriquement valien’est que rarement vérifiée
en pratique du fait des changements des conditions d'atiqnjsde la perte de la matiere,
etc. Pour contourner ce probleme, nous allons utiliserdarik des ensembles flous pour
modéliser les erreurs introduites par ces perturbatiopsopioser un schéma d’annotation
automatique. Le deuxiéme critére est les hyperparametgda Bigure4 représente la
chaine d'identification des métabolites.

2.2 Codage et mesure de similarité des zones actives

Parmi les méthodes de codage d'objets, le descripteur igaud® (3DGD) proposé par
Chaouch Chaouch0Pa montré son efficacité comparé a d’autres méthodes et dadtc
premier sur la base de données de Princeton Shape Benchirfaikpartie de la famille
des descripteurs basés sur une partition de I'espace. heigeide ce descripteur est de
caractériser et d’amplifier localement le voisinage de téase 3D. Pour cela, les auteurs
proposent d'utiliser des fonctions gaussiennes qui mastlirefluence des points de la
surface sur des points réguliérement répartis dans I'espaglobant I'objet 3D. Ce de-
scripteur offre une caractérisation compacte, robusté&atte®e a la forme 3D. Bien que
cette méthode ait été appliquée avec succes sur la rectmrchaternet d’'objets 3D, elle

présente une lacune. En effet, elle ne fournit pas une irgtom sur la topologie de sur-



Xi

Sélection — -
d’'un métabolite Critére d,e S|gr_1ature
candidat de métabolite

|

Optimisation ' | Modélisation de

i i Modélisation floud

PYRTR— des critéres: la signature
S.eIeICF'O” d'un fonctions floues [~ _ P& les parune
pic aléatoirement d'appartenance| ! algorithmes fonction floue

T | génétiques
Détection et i l
alignement Critére de localisation ! Sélection
de pics de pics ! du bon métabolite¢
_____ Etapel i FEtape2 | ... Etape3 |

Figure 4: Chaine d’identification des métabolites.

face d'objets. Pour cela, nous proposons un nouveau desgrige descripteur gaussien
généralisé (3DGGD) inspiré de la méthode 3DGD. Cette métlsedbase sur I'utilisation
de la loi gaussienne généralisée a la place de la loi ganssparmettant ainsi de s’adapter
a la topologie de la surface de l'objet (surface plane, aigu@réace a son paramétre de
forme a. La mesure de similarité peut étre calculée en utilisant disnce euclidi-
enne dans l'espace des coefficients gaussiens générdiigpse 5 représente la chaine
du codage des zones actives.

3 Classification d’objets

Plusieurs algorithmes de classification pour détecter hesmgements ont été dévelop-
pés dans les dernieres décennies. Certains restent sfge\én raison de la difficulté
de la tache. D’autres ne le sont pas ce qui cause parfois utes g robustesse et un
temps de calcul relativement élevé. La premiére approchgpsie sur des méthodes
de classification supervisées afin de détecter les changemetne plusieurs acquisitions
[Derrode03. Cette tache revient a discriminer les données entre dess&s.changement
etnon changementLa premiére nécessite une réalité de terrain afin d’enuimerforma-
tion appropriée pour définir le processus d’apprentissagecthssificateurs. Cependant,
la vérité terrain est souvent difficile et colteuse a troufar conséquent, l'utilisation de
méthodes de détection de changement non-superviséedieisiieerdans de nombreuses
applications ou la vérité terrain est hors portEarhera0OQ
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Dans la littérature, les méthodes a noyau sont largemdisées pour la détection de
changement. En effet, elles offrent plusieurs avantagesapaort a d'autres approches :
elles réduisent la malédiction de la dimensionnalité @edens les données, augmentent
la fiabilité et la robustesse de la méthode a la présence dveaunélevé de bruit et per-
mettent une cartographie flexible entre les objets qui sgprtésentés par un vecteur de
caractéristiques (entrées) et de I'étiquette de classtigsp[Shawe-TaylorOf Cepen-
dant, I'inconvénient majeur des méthodes a noyau est lexaw®ia fonction noyau qui
dépend fortement de I'applicatio®¢holkopfOQ .

Parmi les différentes méthodes a noyaux présentées daiti@datlire (par exemple
[FureyOQ et [Bruzzone0®), les Descripteurs de données a vecteurs de support (SVDD)
[Tax04 est adoptée ici.L'objectif de la méthode de classificatBWiDD consiste a car-
tographier les données dans un espace de grande dimension.cB nouvel espace, une
hypersphére entourant la plupart de 'ensemble de donp@astanant a la classe d'intérét
(cible correspondant a la classe ddennées inchangégst en rejetant les autres observa-
tions (qui seront considérées comias valeurs aberrantesest définie. Dans cet article,
le probléeme de détection de changement est abordé d’'une&raaron supervisée. Notre
objectif est de discriminer les données en deux classesssecldes données changées et
classe de données inchangées.

Bien que les fonctions noyau de base sont plus ou moins agglsgavec succes pour
la détection de changement, elles n’exploitent pas desaintés supplémentaires souvent
disponibles, tels que la dépendance et la distribution dee&ks. Afin de tenir compte de
ces caractéristiques dans notre schéma de détection dgechant, nous proposons une
nouvelle fonction noyau qui combine les fonctions noyau asehavec de nouvelles infor-
mations sur la distribution de caractéristiques et de l&déance des données. Le défi est
alors de trouver le moyen approprié pour traiter cette dégece. Pour cela, nous avons
opté pour la théorie des copules qui a prouvé son efficacité faiter la dépendance.
La méthode proposée est notée SV3DH (SV3DH est I'acronynfeugeort Vector Data
Description including Dependency Hypothesis). Figreprésente la chaine de classifi-
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4 Résultats

Dans cette section, nous présentons les résultats exméainxeobtenus avec les méthodes
proposées sur des données simulées et réelles. Pour metkadence l'intérét de ces
méthodes, nous avons comparé chaque méthode proposéesivaéthodes existantes.
Concernant la détection et I'alignement de pics des speti®QC, et afin de montrer
l'intérét de l'utilisation de la théorie de I'évidence, reoavons comparé notre méthode
avec une méthode purement bayésieioeys0% sur des spectres simulés avec différent
Peak to signal ratio PSNR. Les résultats obtenus sont fiégsseans Tablg. Nous pouvons
facilement constater que la méthode proposée est meilipieréa méthode bayésienne.

En ce qui concerne 'alignement des zones actives, nousaanparé notre méthode
avec la méthode de I'’ACP continu€ranic014 sur cing bases de données simulées. Cha-
cune contient cent objets 3D. Les résultats obtenus sosepiés dans Tabl&4. Nous
pouvons constater que la méthode proposée est plus adaptéerses actives que I'ACP
continue.

A I'égard de l'identification des métabolites, nous avonsiparé notre méthode avec
la méthode Support Vector Machine SVKadmps-VallsObet une autre méthode de seuil-
lage [Xia08]. Afin de valider et de souligner les avantages de I'apprquioposée, nous
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Méthode évidentielle| Méthode bayésienne
PSNR Ec E€H Ec €H
30dB | 5.110° | 9.110° | 0.097 | 6.110°3
28dB | 1.21102 | 5.110“4 | 0.139 | 8.610°3
25dB | 0.1098 | 2.510°2% | 0.2584| 1.91107?
23dB | 0.1874 | 9.3510°% | 0.3278| 2.03107?

Table 1: Les erreurs de déplacement chimiques moyennes du cagp@tale I'hydrogéney
exprimées ppm.

Méthode proposée ACP continue

data setl] 0.02+1.210* | 0.097+ 7.85 10
data set2] 0.038+5.810°4 | 0.124+2.14 10°3
data set3| 0.0474+ 9.710°% | 0.301+ 4.23 103
data set4{ 0.062+ 1.0310°3 | 0.832+ 5.82 10°?
data set5| 0.078+4.12 03 | 1.177+ 7.98 102

Table 2: Les erreurs de déplacement moyenne et I'écart type obtela méthode proposée et
la ACP continue.

utilisons deux mesures de performenaagpel et précisiondéfinis par:

TP

TP . TP
TP+FN’

rappel= TP+FP

precision=

ou TP représente le nombre de vraies identificatidfid, le nombre de fausses identi-
fications négatives &P le nombre de fausses identifications positives. Les résudtant

présentés dans Tabfel Nous remarquons que la méthode proposée donne de meilleurs

résultats que ceux obtenus avec la méthode SVM qui ne prendrpaompte notre con-
naissancea priori sur les spectres.

Méthode proposée SVM Méthode de seuillage
PSNR| rappel(%) | prcision%) | rappel(%) | prcision(%) | rappel(%) | prcision(%)
30dB 93.87 95.11 90.38 91.72 81.16 78.01
28dB 92.42 94.82 88.50 89.61 78.98 76.12
25dB 92.84 94.64 82.11 86.90 75.77 74.25
23dB 89.02 90.18 83.02 84.66 74.02 71.88

Table 3: Les mesura@sppel(%) et prcision(%) obtenues avec: notre méthode, la méthode

SVM, et la méthode de seuillage sur des données simulées.

Pour le codage et la mesure de similarité des zones actives,avons comparé notre
méthode ala méthode (3DGDOJfaouch0Pet a la méthode de I'histogrammarjkerst99.
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Méthode proposée 3GD Méthode de I'histogramme
dataset | recall(%) | precisior(%) | recall(%) | precisior(%) | recall(%) precisior(%)
datasetl] 91.35 88.02 84.21 83.25 80.38 75.72
dataset?] 90.44 88.12 85.50 82.01 81.67 77.45
dataset3] 91.74 87.23 81.09 78.96 77.10 75.98
dataset4| 88.17 86.88 79.69 78.64 70.18 67.41
dataset5 90.95 89.03 86.78 84.35 74.11 72.08

Table 4: Les mesura@appel(%) et prcision%) obtenues avec: notre méthode, la méthode
3GD, et la méthode de I'histogramme sur des données simulées

Les résultats obtenus sont présenté dans TaBleComme nous pouvons le voir, notre
méthode acheve un meilleur résultat de codage et de mesaiithité.

Nous présentons maintenant les résultats expérimentaexusavec la méthode SV3DH
pour la détection de changements en imagerie satellitalres images ont été particuliére-
ment sélecionnées car on dispose d’'une vérité terrain ca'esli pas souvent le cas pour
d’autres applications comme l'imagerie médicale.

Pour cela, nous avons considéré une série d'images a haalatién (1305 x 1520
pixels) recueillies sur une zone géographique de I'Alaskas images sont disponibles
en ligne [siml]. Elles ont été acquises par le satellite Landsat-5 Thendgipper (TM)
en 22 juillet 1985 et 13 juillet 2005, respectivement. Unaeavec 1024 x 1024 pixels
est sélectionnée pour les expériences. Le satellite L&ddEM fournit des imageries op-
tiques sur sept bandes spectrales (Bandes 1-7). la véraintdes cartes de détection des
changements est disponible dalssnjl].

Afin de valider et de souligner les avantages de I'approchpgsée, nous utilisons trois
mesures de performances: le nombre de fausses déteBfidntée nombre de détections
manquée®MD et I'erreur globalePTE:

PFA= {2 % 100%; PMD= {2 x 100%; PTE = N2 x 100%

Ou FA représente le nombre de pixels inchangés et qui ont étér@atement déter-
miné comme changédl- le nombre total de pixels inchangddD le nombre de pixels
changés et qui ont été incorrectement déterminés commarigél,Ny le nombre total
des pixels changeés.

Table. 5.2 presente les résultats obtenus avec la méthode SV3DH auscadéres
méthodes: I'SVDD classiqudax04 et le Systéme a Vastes Marges SVM stand8mizzone0&
Notons que le noyau RBF gaussien est utilisé pour les deuxadés. Nous pouvons con-
stater que la méthode que nous proposons fournit des soitlleurs par rapport aux
deux autres méthodes. Cela signifie que la fonction noygoogée améliore la discrimi-
nation des caractéristiques.
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Fausses détectiorjsdétections manquégserreur globale]

SV3DH 0.71 % 5.01 % 1.09 %
SVDD 1.87 % 6.81 % 2.01%
SVM 1.04 % 6.31 % 1.75%

Table 5: Le nombre de fausses détections, le nhombre de idé®chanquées et I'erreur
globale obtenus avec les méthodes SV3DH, SVDD et SVM.

Conclusion

Dans cette these, nous nous sommes intéressés a la regharédeontenu d'objets 3D, et
plus particulierement a I'identification des bio-marqueeur'objectif de notre travail a été
de proposer des méthodes rapides et efficaces permettdassifier les signaux médicaux
et de détecter les changement entre un individu/groupeetee les différents groupes de
profils appartenant a une base de signaux médicaux. Liééetait de proprement intégrer
notre connaissancespriori dans les méthodes proposées. Les différentes problématiqu
de été étudiées a savoir I'alignement, le codage, la mesuserdlarité et la classification
d’objets 3D. Les différentes méthodes proposées ont §tiéesl, dans une premiére étape,
sur des données simulées (ou réelle quand on dispose d'tt¥eteérain) afin de prouver
leur apport comparées aux méthodes existantes. Dans urEmeupartie, 'ensemble
des résultats obtenus sur les données réelles ont été ésapdan des experts de chaque
domaine (spectroscopie RMN HR-MAS et IRMf). Cette validatinontre le bon com-
portement de nos algorithmes ainsi que leur applicabildéaade échelle que ce soit pour
les spectres HSQC (RMN HR-MAS) et les images IRMf.
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1.1 Motivation

Technology is transforming healthcare. The better patian¢ and diagnosis efficiency
is the goal. In this context, medical equipment and tectgylare increasingly sophis-
ticated providing a new information essential to physiciiagnosis, particularly in the
areas of cancer and neurological diseases. Moreover, dgegss in medical information
acquisition technologies by improving the signal to noesgoror by the coupling between
anatomy and physiology, has gradually given to medical ingags indispensable status
for diagnosis, prognosis and therapeutic managementhéranbre, the analysis of bio-
logical signal combinations appears promising even if #eynot systematically part of
clinical routine today.

The medical signal acquisition techniques are constantivig in recent years (ul-
trasound endoscopy, Positron Emission Tomography PETieludlagnetic Resonance
NMR spectroscopy, Magnetic Resonance Imaging-MRI, feneti MRI-fMRI) and pro-
viding an increasing amount of data which should be thenyardl Indeed, from a static
observation to a dynamic multi-observation, from an infation about the organs structure
to an information about their functions, the signal acdiaisi techniques are potentially
carrying the disease signature (biomarkers) well beyoagbtimctual clinical examination.
In this context, automatic signal processing methods ayelaegy proposed to assist the
expert in the qualitative and quantitative analysis of ¢hiesages in order to facilitate their
interpretation. These methods should take into accounphlgsics of signal acquisition,
thea priori we have on the signal formation and the amount of data to aedbr a more
accurate and reliable interpretation.

Among the new signal acquisition techniques, the NMR spsctpy for biological
tissues analysis and the fMRI for functional brain act@stiand connectivity analysis are
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explored to identify new biomarkers (objects). These bid®&ig could be used to help
the diseases diagnosis or to monitor therapeutic effect$hi$ end, it is important to im-
prove the analysis tools associated with these technidoi¢isis context, we propose a new
content-based object indexing and retrieval scheme fanaikers detection.

This proposed indexing scheme consists of both an off-lm& @ on-line phases.
In the off-line one, the medical profiles of different medis@mnal group or population
(e.g, group of normal or pathological signals) are establishedthé on-line phase, the
assignment of a new individual/group to a given profile defimethe off-line phase is
performed. Both phases are divided into three steps:

1. Object detection and alignment,
2. Object coding and similarity measurement,

3. Obiject classification.

1.2 Methodology

We focus in this thesis on:

e The two-dimensional 2D Heteronuclear Single Quantum Gaiwr HSQC spectra
obtained by High-Resolution Magic Angle Spinning HR-MAS IRMor biological
tissue (biopsy) analysisghmidt-Rohrot

e The fMRI images for functional brain activities analysiEngel91.

Each processed medical information (2D NMR spectra or fMRIl)be characterized by a
set of objects (biomarkers) that we seek to extract, aligd,ade. The clustering of these
objects by measuring their similarity will allow then theiiassification. It is this global
content-based object indexing and retrieval scheme (fiemicecalled indexing scheme)
that we adopt. In our case, these objects are:

e The emission peaks for 2D HR-MAS NMR spectiag,(a set of peaks is the re-
sponse corresponding to the metabolite presences, eaahdatitt generating differ-
ent emission peaks reflecting the presence of small mol¢atdagh the interaction
between the Proton and Carbon-13 in the case of HSQC spectra)

e The active zones for fMRIi(e, an active zone is the response of brain activity to a
stimulus).

However, this indexing task is not trivial and requires tegelopment of new process-
ing tools. Therefore, we are interested in this thesis tp@ny model and integrate tre
priori knowledge we have on these biological signal allowing usrtppse thereafter ap-
propriate methods to each indexing step and each type ddlsifjhe methods we propose
are:
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e Forthe object detection and alignment step in the case of REMAS NMR spectra,
we propose a new peak detection and alignment method baskd ose of evidence
theory. Indeed, the evidence theory allows us to handelisertainty models and
the imprecision that well adopted HSQC spectra. Therefespropose the cou-
pling between the fuzzy set theory and Bayesian theory toefrand quantify the
degree of spectrum imprecision which will be used to defieantlass functions g, a
function that models the belief degree on a given hypothe®ie particularly show
that the use of the evidence theory for peak detection aiggraknt consistently
achieve a higher performance compared to a pure Bayesianagbp Regarding
the fMRI images, we proceed in a first step to the extractiofMiR| active zones
using a Hidden Markov chain segmentation algorithm. Thesmpropose a new ac-
tive zone alignment algorithm relying on the use of nondingrincipal component
analysis (PCA) algorithm, well suited to fit the cortex shapeestimate the planes
of symmetry. These planes of symmetry will be used then tmadictive zones.

e The object coding step consist in calculating for each dlgiset of compact descrip-
tive attributes defining its signature. A similarity measuent using the descriptors
aims at comparing two objects and at grouping similar objastwell. For HSQC
spectra, the object coding step is not useful since the palaady have a parsi-
monious representation with three parameters (locatimplitude and shape). For
the similarity measurement, we propose a new method basttaombination of
Bayesian theory and the theory of fuzzy sets to handle thertaioty and fuzzi-
ness of the observations and to integiaf#iori knowledge in the inference process.
Concerning the fMRI images, we propose a hew coding methsédan the gener-
alized Gaussian transformation allowing us to reliablycdies the surface topology
of the active zones. In particular, we show that the propeseéhg method not only
provides a compact representation of the object, but alsgratsire faithful to its
shape. We also propose a similarity measurement robustat displacements and
little variations of the objects.

e Forthe objects classification step, we propose a new Sugectitr Data Description
(SVDD) kernel function combining the features of basic letrfiunctions with new
information about features distribution and then depeagdé®tween samples. The
dependency between samples will be based on copulas thHearistused for the
first time to our knowledge in the SVDD framework. We show ttieg use of the
new kernel function increases the classification perfogaanith respect to the basic
kernel functions either on simulated or real data.

1.3 Results

The different proposed methods were validated in a first@adimulated data to demon-
strate their behavior compared to existing methods. Inarskpart, all the results obtained
on real data have been examined by experts in each domaitMARNMR spectroscopy
and fMRI). This validation shows the good performance ofagorithms leading to sim-



4 Chapter 1. Introduction

ilar results to those obtained by physicians in a short tiroth for the HSQC spectra
(HR-MAS NMR) and fMRI images.

1.4 Organization of the manuscript

This manuscript is divided into six chapters. The secongiehnds devoted to the descrip-
tion of the medical images formation/acquisation on whiah work in this thesis. We
focus on the description of image content and on the diftecaaracteristics associated
with the acquisition process. This chapter is divided ihteé parts: the first one describes
the physical principles of Nuclear Magnetic Resonance (Ni&Rwell as the 1D and the
2D NMR experiments. Functional Magnetic Resonance Ima@MR@l) is then introduced

in part two. Finally, the Statement of indexing problem isdétd.

In the third chapter, we describe in the first part the widedgdiobject detection and
alignment methods proposed for the indexing schemes. Tleetetail the proposed peak
detection and alignment method as well as the active zogaraént method in part two
and three respectively.

Chapter four is devoted to the second step of the indexingrmseh the object coding
and similarity measurements. To this end, we present inttstepfart an overview of object
coding and similarity measurement methods. Then, we desthnie proposed method for
peak similarity measurement. In the third part, the progassive zone coding algorithm
inspired from the Gaussian transformation is presented.

The fith chapter presents the kernel-based methods fortobigessification task. We
propose a new Support Vector Data Description (SVDD) kefunettion which combines
the characteristics of basic kernel functions with new rimfation about features distribu-
tion. We pay a particular attention to check that the progdssnel function is robust
with higher performance compared to classic Support Vediachine (SVM) and SVDD
methods on both synthetic and real data sets.

In the sixth chapter, we first describe the entire work-flolvdath treatment chains
(HSQC spectra and fMRI data). Then, we provide an assessohéme developed meth-
ods. This is done in two stages. Initially, we proceed to aitkt study of some repre-
sentative cases. Then, the results on a consistent dasabasempared to a ground truth
provided by experts.

This work ends with a general conclusion that provides a samicontributions of this
thesis. We present likewise some perspectives.
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The medicine has considerably progressed over the pastytwears. On the one
hand, the development of medical technology has enabledrifisant increase in life
expectancy. On the other hand, the costs of health serviedsaeasing particularly in
France which devotes 8.7% of its GDP (Gross Domestic Prpduchedical services, the
highest proportion of all countried@GID10]. Therefore, increasing the diagnosis accu-
racy seems to be crucial in order to reduce the time of hdigiteon and improve patient
survival and his life quality. In this context, the medicareal processing has found its
success and has emerged as an ideal technique for biomatéetiication and analysis
and hence for helping the differential diagnosis of disease

Medical signal acquisition has certainly contributed te timprovement of medicine
from 20 to 30 years. In particular, the development of newinadignal acquisition tech-
niques such as the two dimensional 2D Heteronuclear Singgatdm Coherence (HSQC)
NMR spectroscopy and the functional Magnetic ResonancgimgdMRI which are ex-
amples of technological advancements in medicine researciithese techniques allow
physicians to directly observe phenomena that previoualy to be blind-evaluated or
predicted. Indeed, on the one hand, the NMR spectroscopylenthe identification of
metabolites in non-invasive manner. On the other hand, fidBtinique is used to measure
the hemodynamic response related to neural activity in tagb

This chapter is divided into three parts: in the first one wacdbe the physical princi-
ples of NMR spectroscopy, then we present the 1D as well 28DHEMR ex vivoexperi-
ments. We particularly show the contribution of 2D spectipared to 1D spectra. fMRI
experiment is then briefly introduced in Sectidr2 Finally, the proposed content-based
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information indexing and retrieval scheme for biomarkeentification, the main topic of
this thesis, is detailed in secti@3.

2.1 NMR spectroscopy

The Metabolomics is an exponentially growing field of 'omiossearch concerned with
the comparison, identification and quantification of largenbers of metabolites in bi-
ological system Fiehn02. This emergent science of metabolomics enables the fdenti
cation of biomarker diseases that integrates biochemttahges in disease and predict
human reaction to treatments. In this context, the NMR spscbpy has emerged as
an ideal platform for metabolite studyingiplzgrabe99 BeckonertOT. Indeed, in 1977,
Ekstrand et al. have established the possibility of stuglglre metabolism by applica-
tion of NMR [Ekstrand77. In this work, a suspension of red blood cells was analyzed
by liquid NMR to study the proton relaxation times of some abeiites such as lactate,
pyruvate, alanine or creatine. The large amount of infoilenabecoming accessible to
a better understanding of metabolism using the NMR teclenigas immediately appre-
hended by the scientific community. This has naturally ledgitoton NMR performed on
biological fluids to take a prominent place in the field of phacology, toxicology and the
study of pathological changes metabolism. Fluids that Heeen analysed by NMR are:
the urine Bales84 Foxall95 Griffin00, Melendez0}, the bile [Keun02 Paczkowska(3
the blood plasmaWevers94 Nicholson95 Alum0§g], the cerebrospinal fluidqunne0%
Jukarainen08Sinclairld, the milk [Martin-PastorOQ Holmes0Q Bertram0Q7, the saliva
[Silwood99 Grootveld05 Grootveld0§, the gastric fluid Lof97], the seminal fluidLynch94
Tomlins9g and the amniotic fluidJoe08 Graca09 Cohn09. Nevertheless, the first stud-
ies involving the human organ analysis were addressed hatintvivo and ex vivo NMR.
In fact, since the first application of NMR spectroscopy imov[R0ss83 and ex vivo
[Mountford83, the technique of NMR has been increasingly used as a polmadl to
explore, in situ, a significant number of organs such as Harba0T7, kidney [Tate0Q
Garrod01 Righi07], prostate $wanson0B cervical [Mahon04 Sitter04 as well as the
stomach Tugnoli04, TugnoliOg Calabrese0B Indeed, the technique of NMR allows us to
obtain metabolic information needed for clinical diagisosi the patient with a suspected
injury, to establish the prognostic or to study the diseasadution Howe93 Ross94
Howe03 Kwock0g. The fields of application in the medicine include as wed gtudy of
brain tumors Qpstad080pstad08Wright1(Q], the breast tumorgeckonert0y the ovarian
tumors Pdunsi0j, the neurological disorders such as epilegdgihmen07, the acquired
immune deficiency syndrom AIDEJorr0§, the Alzheimer's diseaser hompsonOf mul-
tiple sclerosis diseas®fenner93Davies93 or other neurodegenerative diseases
[ApostolovaOT as Parkinson’s diseas€amicioli07. In the following we describe the
principles of the NMR technique.

2.1.1 NMR principles

The structure determination of almost any biological oaoig molecules as well as many
inorganic molecules begins with the NMR spectroscopy. éddeéhe technique of NMR
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D/

Figure 2.1: The nucleus has a magnetic moment which can beikted to a small mag-
net.

has become one of the praised methods for identifying thetsire of both pure and mixed
compounds as well as solid or liquid compounds. This teale@ften involves performing
NMR experiments to deduce the molecular structure from thgmatic properties of the
atomic nuclei and the surrounding electrons. The NMR tephairelies on the atom nu-
cleus behavior while spinning. Indeed, the atom nucleusbearonsidered as a positively
charged sphere spinning on itself (Ad). As result of this spin, each nucleus processes
an angular momenturp and a magnetic momept[Friebolin91.

Thanks to the quantum mechanics, we can express the belodfer magnetic mo-
mentp with the number of spin denotdd Liboff98]. Indeed,l determines the number of
possible directions that a nucleus can adopt in the pres#rareexternal magnetic field. In
fact, in the presence of a external magnetic ﬂﬁdthe component qilalongB_é (oriented
along z-axis) is expressed diebolin9]:

Mz =Y..m (2.1)

wherey is the gyromagnetic ratio related to the treated atom7arsdhe reduced Planck
constant. The magnetic quantum numbecan take valuesne {I,| — 1,1 —2,... — |}
wherel is the spin number. For example, if we consider a prdtan(l = %) placed in a
magnetic field, there are two possible states:
m= +2 orm= —3. Thus, we have:

==Y 2.2)

Fig.2.2 shows the two possible orientations for a spin with %

The proton nucleus, abundantly present in the human bodiieinMater molecules
form, are assumed to be randomly oriented. When a samplepizsed to an intense
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external magnetic fielﬁ?é, the nuclear magnetic moments are orientated in the directi
of this field. However, the thermal agitation opposes to thientation Van de Ven9h
As we saw in the previous paragraph, the component magneticemtsy, of spin% can
only adopt two_E)ossibIe orientations: one is paralleﬁ;c(Fig.Z.&a) and the other one is
anti-parallel toBg (Fig.2.3.b).

w=1; 1 ==, 1

Figure 2.2: Orientations of the magnetic dipole in the pnesea magnetic fieIBTg for a
1
spin3.

Since, the number of parallel nuclei is slightly higher thiaat of antiparallel nuclei,
the vector sum of all nuclear magnetic moments is non-zetlasathen aligned among the
direction of the field§6 [Friebolin9]. This amount is called the nuclear magnetization and
denoted b)m =5 U (Fig.2.4) where the magnetic moment of th# nuclei. Since the
dephasing between the different precession movemeatslianges in the orientation of
the nuclei rotation axis) of the elementary magnetizaiidns uniformly distributed, the
transverse component of the resulting magnetization ialequero.

Moreover, when a small magnetic fi€[d is plunged into an intense magnetic fiﬂ_@,
we can show thafl is animated by a precession movement aroIBijhich is analogous
to the movement of a spintop axis about the vertical g&&).[Fukushima8l The speed
at which this precesses occurs is given by the Larmor fregyussiationship:

%
wo = Y.||Bo|

Since this precession is aroul?d, it does not alter the direction or the modulus of the
magneti2<':1tior1\7l> [Fukushima8l The origin of this precession movement lies in the fact
that, when plunged into a magnetic fiddg, a magnetic momenfl undergoes the force

F:F=HAB
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(a) (b)

Figure 2.3: Orientation of nuclear magnetic moments: ahénabsence b) in the presence
of an external magnetic field.

This force is rﬁnce the result of the vector produaif the magnetic momengl and
the magnetic fieldy. This vector relation can be written as three differentcalations:

dik dy dix
at YBoky, T YBok, T 0, (2.3)
The solution of these equations is:
o= Osin(yBot), Wy =M CcosyBot),  pp =g (2.4)

: — . :
H, remains unchanged ampg, turn aroundBg. The vector|l is therefore animated by
—
a precess aroungy.

We recall that the magnetization is proportional to the nemif spins, so it is that
vle attempt to measure by NMR. Howevdt, remains unobservable when it is parallel to
Bo, so it should be rotated by 96rom z-axe (Fig2.6.a). To rotatem, it is sufficient to
apply another transient magnetic fiédg directed to 90 from Bp. The magnetic moments
are animated to precess arou Once a rotation of 90was obtained, the’e‘?l> field
is turned off (Fig2.6.b). Since, the magnetizatioﬁ is the sum of all nuclear magnetic
moments, then it is oriented at 9@om B_S and hence can be measured (Ei§c). The
resonance frequency depends on the molecular environreemélaas the gyromagnetic
ratio y and Bp. We call "chemical shift" the variation of resonance fregme with the
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Figure 2.4. The sum of magnetic moment veo%r In the presence of a magnetic field,
is nonzero and directed in the direction of this field.

shielding hyperparameter(the process of reducing) % The expression of the chemical
shift Chs is given by:
_>
5 YlBoll(1—0)
21
Note that chemical shif€hs is usually expressed in parts per million (ppm) by fre-
guency, and it is calculated as follows:

(2.5)

5_ difference between the resonance frequency and that ofeerefe substanc
N operation frequency of the spectrometer

©.6)

Since the resonance frequency strongly depends of thawstbenvironment of the
nucleus, the NMR technique becomes the structural tool @telfor chemistsBovey69
to study molecular structures and their associations aedgictions.

As shown in the previous paragraph, the advantage of NMRgealgdies in the ob-
servation of the spin return to the equilibrium state aftein irradiated witH?i. This
return to equilibrium is characterized by two relaxationgasses. In order to describe the
magnetization position during an NMR experiment, the coai@ system called "refer-
ence coordinate system” can be used. It consists of thrieegamal axes (X, y, z) relatively
fixed to a reference. By convention, the z-axis is paralldBgo The z-axis is called the
longitudinal axis and the plane (xy) is called transversme!l At any instant of an NMR
experiment, the magnetization has a component that isl@lai@B, so-called longitudinal
magnetization (denoteldl,) and a component that is perpendiculaﬁpcalled transverse
magnetization (denoteldyy).
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(a) (b)

Figure 2.5: Precession_)movement: a) of a spintop around dhtecal b) of a magnetic
moment around the fielBy.

)

=l

(a) (b) (c)

Figure 2.6: The sum of magnetic moment veo%r In the presence d? m is non-zero
and directed along z (a). The application of a figﬁjperpendicular td3p causes the 90
rotation of all the magnetic moments (b). WhBp is no longer applied, the magnetic
moments return to a precession rotation aroBpdand onlyM remains in the transverse

plane (c).
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After being tipped in the transverse plane, the magnetiaatiill return to its equilib-
rium position, parallel t@y. The longitudinal and transversal components are diffgren
affected by the relaxation phenomendmigbolin91:

1. the longitudinal relaxation: The return of the longitudinal magnetization (Mz) to
its equilibrium state generally happens according to a mexpmnential process. We
call the characteristic time of the longitudinal magnet@adecay the "longitudinal
relaxation time". It is denoted by;. The longitudinal relaxation mechanisms are
associated with fluctuations of local magnetic fields. Whattets in the context of
longitudinal relaxation are the fluctuations of the locdbiéeat the Larmor frequency.

2. the transverse relaxation It consist in cancelingvly,. In most cases the trans-
verse magnetization mono-exponentially decreases. Weheatharacteristic time
of the monoexponential decay the "transverse relaxatiog"ti It is denoted byl>.
Transverse relaxation mechanisms include, besides thesganed above, interac-
tions between spins. The interactions between magnetaedippf neighbor spins
generate at each spin a local magnetic field. The local fietdufates as a result of
movement of neighbor spins, or as a result of changes indo@intum states. This
loss of phase coherence is an additional mechanism forahsverse relaxation.

2.1.2 NMR experiments
The 1D NMR experiment

The basic 1D NMR experiment can be decomposed as follows:

1. An excitation phase: it consists in irradiating a sampith & radio-frequency (RF)
pulse whose frequency is close to the resonance frequertlog obnsidered nucleus.
The amplitude and duration of the RF pulse are calibrateip thé magnetization to
the transverse plane (9€otation of the magnetization).

2. A detection phase: it consists in measuring the tippedhetazation.

Since the§6 is always present, the magnetizati%rotates around it at the speedg.
Due to the rotation oM, the magnetic flux through the coil (proportional to the comgnt
of M along the axis of the coil) periodically varies and theduces, in the coil, an electrical
signal directly proportional td/. This signal is called the FID for "Free Ind_u>ction Decay
[Van de Ven9% As M returns gradually to its equilibrium position parallelBg, the FID
signal decreases over time (FAdi.a).

In order to determine the nuclei frequencies of each modscekamined by the NMR,
a Fourier Transform (FT) is then performed on the recorddal dignal (Fig2.7.b). As a
matter of fact, each metabolite is presented by a set of peidksspecific characteristics
(peak frequency and amplitude) (F2¢).

The Magic angle spinning MAS NMR technique
In traditional NMR techniques, the spectrum resolution @®m(.e; peaks with large
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Figure 2.7: (a) The NMR signal detected and (b) the spectrotaimed after Fourier trans-
form.

Ethanol CH3

Ethanol CH2

i

r—r T T 17 T T T T T T T T T T
PPM 2.8 26 2.4 .2 20 2.8

T 1T 7T 7T 71
2.6 2.4 22 20 18 1.6 1.4 1.2 1.0 0.8 0.&

Figure 2.8: The ethanol peaks.
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Figure 2.9: An example of a 1D spectrum with the NMR technigublue and the HR-
MAS technique in red.

widths) for semisolid or solid samples due to residual digateractions, chemical shift
anisotropy and susceptibility within the tissue sample.eSéhfactors can be minimized
by low-speed Magic Angle Spinning MASSFiffin04]. In MAS, samples rotate rapidly at
54.7 to a magnetic field (angle between the rotation axis and th&RNihgnetic field).
Indeed, only at the magic angle, the nuclear dipole-dipaieraction between nuclei mo-
ments averages to zero. The use of MAS improves the qualiNMR spectra by elim-
inating broad peaks and obtaining enough information feieganolecule identification
(Fig.2.9

The 2D NMR experiment

Although the 1D HR-MAS NMR spectroscopy is more or less sssfigly applied
to identify the structure of solid or liquid compounds, tteshnique suffers from several
shortcomings. Indeed, 1D NMR spectra of complex biologszahples typically have high
spectral overlap, which significantly limits the number dftabolites that can be uniquely
identified and quantified. To overcome this drawback, thedimmensional 2D NMR HR-
MAS should be recommended. This technique offers morelddtand unequivocal as-
signments of biologically metabolites in intact tissue pls and enables accurate identifi-
cation of a large number of metabolites that are not rest#viala 1D NMR spectroscopy.
More precisely, 2D NMR offers two distinct advantages:

1. It reduces the overcrowding of resonance lines. Indeztheaspectral information
is spread out in two frequencies (better than a single fregy)ethe 2D NMR spec-
trum technique can reduce spectral overlap and allows thatifttation of some
molecules that remains unresolvable in 1D NMR spectra. herowords, a 2D
spectrum peak is no longer characterized by one frequertcgybtwo frequencies
allowing an easier discrimination.
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2. It offers the ability to correlate pairs of resonance sasithe protodH and the car-
bon®3C. Indeed, since almost metabolites contain carbon andmriis interesting
to determinate which protons are connected to which cartiagsvhich proton'H
is correlated with which carbolfC).

For a typical 2D spectrum, we can distinguish four time wes or periods, as shown
in Fig.2.10[Schmidt-Rohr9% 1, the preparation period; the evolution periodry the
mixing period and, the detection period. In the first period, the magnituderenvinent is
prepared. During the period, the magnetization evolves freely, so thi} precesses at
its Larmor frequency, and each nuclear magnetization isifed according to its Larmor
frequency. During the perioty, another RF pulse signal or pulse signal sequence is in-
jected into the system to enable the mixing of the nuclearmagzations used to produce
xy. Finally, t; is the usual data acquisition period in which an FID is aelias in 1D
experiment.

This procedure is then repeated many times, with differematibns of the evolution
periodt; and keeping all other settings constant. For each valuge périod, the signal
that is acquired duringp is stored. Once the experiments are achieved, we obtain a 2D
time domain signa(t;,to) (FID 2D). In order to obtain the 2D spectrum, a 2D Fourier
Transform is performed on the obtained 2D FID signal. Amoagous spectrum types,
the most frequently applied is the Heteronuclear Singlenfuma Coherence better known
by its acronym, HSQCBerger04. In a HSQC experiment, the chemical shift range of the
proton'H spectrum is plotted on one axis, while the chemical shiftjeanf the'C spec-
trum for the same sample is plotted on the second axis. Indémce almost metabolites
contain carbon and proton, the addition of a second diman&ie or *H) improves the
frequency discrimination and enables the identificatiom ¢tdirge number of metabolites
that are not resolvable in a standard 1 or 1D 3C NMR spectrum. Therefore, the 2D
HSQC spectrum has become arguably one of the widely useditgghto elucidate the
relationships between clinically relevant cell processed specific metabolites in order to
identify diseases such as the multiple sclerosis diseEberjo0q and tumor identifica-
tion [Piotto09. Along these lines, the relevant information charactegzhe spectra is the
metabolite peakswhich could be considered for biomarkers identification andlyzing.

When the data are subjected to a Fourier transform, thetirgggipectrum plot shows
the chemical shift ofH plotted alongx-axis and the chemical shift 3fC plotted along
they-axis. Fig2.11shows an example of a HSQC spectra of colon biopsy.
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Preparation i i Evolution | { Mixing i | Detection

Tp tq ™ to

Figure 2.10: The schematic representation of a basic 2D NkfieRranent in term of four
periods: T, evolution,t; mixing, Ty Mixing andt, detection. For a given experiment,
andTty are usually fixed periods whitg andt, are variable time periods.

2.2 Functional Magnetic Resonance Imaging

Since twenty years, functional brain imaging techniquésaaén in vivo analysis of neu-
ral and hemodynamic phenomena associated with brain tgatagtivation imaging). The
motor, sensory, or cognitive functions can be assigned ¢ocorseveral anatomical areas
of the cortical that are activated as networRster03.

The general basis of the human brain functional organizdtave been further refined
through the Positron Emission Tomography (PET) techniqbis technique measures
changes in brain perfusion during a cognitive task thankbaaise of water labeled with
the oxygen 15 as a markek@plan99. However, the significant technical limitations as
well as the high cost of this technique explain the fact thatdctivation by PET imaging
is currently restricted to research centers. Moreoverddreger of radiation limits its use
on children.

The development of MRI in the early 1980s has revolutionigeel study of neu-
roanatomical human brain thanks to its relatively easy umk @articularly the lack of
constraints related to irradiation. The MRI imaging hasrbeery fertile in fundamental
works on brain perfusion study at rest, using exogenougasiragentsVillringer88], in-
trinsic contrast agents such as blood velocity (MRI angipby) [Rosen9(, or diffusion
phenomenalle Bihan9]. However, the application of these techniques has beddlyap
supplanted by the discovery of the BOLD (Blood Oxygenati@vél Dependent) contrast
associated with deoxyhemoglobin whose ease of implenientahd high accuracy have
promoted the success of the fMRI technig&mgel97 Vazquez98RomboutsOP

Indeed, fMRI is an indirect imaging of neuronal activitydligh the detection of local
perfusion changes. In early 1890, Roy and Sherrington hgdested the existence of a
spatial relationship between neuronal activity and brairfiysion Roy9d. Neuronal activ-
ity causes a small increase in local cerebral metabolisnhande an oxygen consumption
as well. Very rapidly (within hundreds of milliseconds)isiphenomenon is followed by an
increase in local brain perfusion and hence an increase iimthke of oxyhemoglobin (ar-
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Figure 2.12: An example of fMRI acquisitions. The active gsare presented with the red
color.

terial blood) which exceeds oxygen consumptibnX84. It is possible to measure blood
perfusion with MRI image, nevertheless, it has been shoanttte use of BOLD contrast
leads to a more accurate measuremeaepg.

The difference in magnetic susceptibility between veddédsd red blood cells respon-
sible for interstitial deoxyhemoglobin and diamagnetiduoes a local gradient magnetic
field that extends beyond the vascular wall. In this perivkscgradient, whose size de-
pends on the diameter of the vessel and the concentraticgpgi/demoglobin, the spins of
the protons undergo interstitial diffusion leading to autbn in the value of T2 weighted
image (T2 weighted image is a type of MRI imad¢iftorovitch91]). Ergo, blood vessels
have a fairly dark color that is easily detected in the T2 Wwidd image. As a result, the
relevant information that typifies the fMRI images is the active zonesvhich could be
used to identify and analyze biomarkers. F&y12shows an example of a fMRI acquisi-
tions. The active zones are presented in red color. Eig3display the superposition of
the activation map (the different activation zones) on tiet@mic brain image.

Furthermore, the development of the BOLD technique hasitited the use the fMRI
in medical researches. For example, many studies havem#drto show that fMRI has
the ability to identify in primary visualGanis04, somato-motor [NakataO$ and even au-
ditory brain areaspownar0] by the use of simple stimuli (flashing lights, simple move-
ments of the hand). These initial results, the arrival of ¢ebo-planar sequences and
the relative ease of access to technology have contribatedet broad development of
fMRI. This technique is now suitable for studying specifiarahysiological issues of
patients and some clinical applications have been dewveldpeeed, clinical applications
of fMRI are booming. The two most advanced applications #mne: presurgical sensori-
motor functional mappingdhang09 and the study of hemispheric dominance of language
[Binder97. Other researchs explored more diseases such as epilsgesse, the patho-
physiology of various neurological disorders (M8dcca02 Reddy02, pathology of the
basal gangliaferrandezO0B ...), psychiatric (schizophrenialrguladzel]) or cortical
plasticity after injury or after surgery.
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Figure 2.13: Superposition of the activation map on theanat brain image. The active
zones are presented with the red color.
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2.2.1 fMRI experiment

The investigators hypothesize that individual respomsags to specific antidepressant med-
ications can be predicted based on patterns of brain netaatikity as visualized by func-
tional connectivity analysis of fMRI data. Indeed, brainwerks consist of groups of
nerve cells from different brain regions that communicaii wne another. Using fMRI,
researchers can monitor which groups of nerve cells argeaatiany given moment. Func-
tional connectivity studies take this analysis one steth&r By comparing levels of ac-
tivity among different groups of brain cells, researchess determine which areas are
communicating with one another. During an fMRI sessionignés undergoes an activa-
tion paradigm. The activation paradigm is the sequencerotiithat are used to highlight
the desired brain activity given the context. As a matteraot,ftwo major contexts can be
schematically distinguished:

1. The search context: in this context we want to highlightaihomogeneous group
of subjects, the common neurophysiological or neuropdggical behavior in re-
sponse to a certain type of stimulations to understand rbétéeoperation of any
normal or pathological cortical network. Therefore, elated paradigms must be
perfectly reproducible from one patient to another. Nopoesler subject may be
excluded or analyzed separately. The data analysis couttbihe subject by sub-
ject, by applying the same criteria of analysis, allowing $ludy of inter-individual
variation.

2. The clinical context: in this context the problem is gudiferent. Indeed, it con-
sists in analyzing for a particular patient behavior in mese to a particular stimuli,
depending on the pathology, diagnostic purposes and/tieptment. These studies
can only be performed individually and a false negative Itesnay have adverse
consequences for the patient. The paradigm, which hasgusyibeen tested and
calibrated in healthy subjects and possibly similar pagieshould be relatively sim-
ple, robust and easy to perform in hospitals. Given the baitia of aptitude among
patients, the compliance and/or performance of the subjest be taken into ac-
count in the data analysis step.

However, recent functional connectivity analysis havewshohat certain brain net-
works, called resting state networks, are especially eatiien the brain is at rest€ no
activation paradigm is performedpg Luca06 Scholvinck1(. These networks are par-
ticularly used to analyze alzheimaéRgmboutsOband schizophrenia diseasdsgng0§.
Note that in this thesis, we particularly focus on Nuto stadywork healthy patients.

2.3 Statement of the indexing problem

In the previous sections, two medical information acqigisitechniques were presented:
the 2D HSQC HR-MAS spectroscopy and the fMRI imaging. Moexpwe described the

relevant information that typifies each signals: theaksfor the 2D HSQC spectra and
the active zonesor the fMRI images. Thus, each medical information (HSQ€cspum
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or fMRI image) consists of a set of relevant informationobjects that could be used to
identify new biomarkers particularly for cancer and neogatal diseases. To this end, it
is important to improve the tools of analysis associateti wiese techniques. In the same
vein, we propose a new content-based object indexing anidvatscheme for biomarkers
detection.

The classical content-based information indexing and reieval scheme

A classical indexing and information retrieval scheme afes as follows: a user sub-
mits a query and the system identifies the relevant infoonat the submitted query and
then returned it to the user. The most ancient and widely irsgeking and document
(e.g., medical images, respiratory sounds, etc) retrieval schisnttee indexing by key-
words where the document is described by a set of keywadsd word, a phrase, or
an alphanumerical term). However, this technique remainiseld by the low expressive
power of words, by the language constraints (the transftiom one language to another,
semantic ambiguity) and the subjective nature of the atino&(two physicians can differ-
ently annotate a medical image). Moreover, the indexingrtiegie by keywords requires
human intervention which is a binding task particularly arge databases if the keywords
are generated manually. In addition, the keyword annatatem never exhaustively de-
scribe the contents of a documeaiy a tumor in a MRI image : location, type, ... etc).
In order to overcome these drawbacks, the content-baseadhriafion indexing and retrieval
approach (henceforth called indexing approach) was peaplgakins96. Indeed, content-
based means that the search will analyze the actual comtkthits information rather than
the meta-data such as keywords, tags, and/or descriptisosiated with the information.
For example, the term 'content’ might refer to colors, tegty or any other information
that can be derived from an image itself. Therefore, theartrthased information index-
ing and retrieval approach allows us not only to automdticaldex the documents and
query a database directly from their information conterthait human intervention but
also to objectively analyze the database content. For ebeariipve consider a cerebral
tumor as a query, we would be able to easily identify with ajective similarity measure-
ment function the similar tumors belonged to the requesitdbdise.

Basically, the indexing scheme requires:

1. Document alignment step,

2. Document codifying and similarity measurement step® first one aims at codify-
ing different documents into a compact description whetkasecond one consists
in establishing the object similarity measurement procedu

In order to accelerate the large database queries, theimgdsgheme can be divided
into two phases (Fig2.14):

1. An off-line phase in which the content database alignraedtcoding is performed.
Indeed, the off-line coding consists in extracting the atgres associated with the
contents of the database. The latter are then stored in esestiztionary (file name
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and signature), which allows to quickly find the documenbaisged with a given
signature.

2. An online phase in which the user queries the databasg asitocument request.
The online alignment and coding steps only concern the deatilequest. A simi-
larity measurement between the request document sigretdrénose calculated in
the reverse dictionary is then performed. Finally, the doents belonging to the
database are classified by order of similarity.

available document documen inverse
data set$ alignment coding Dictionary
Q2 .
® request document document coding
21 |documen ~| alignment and similarity
8 measurement

Figure 2.14: Overview diagram of the classical indexingescé.

Although this indexing scheme was successfully applied eb databases document
retrieval [ChaouchO9 it is not suited to the biomarker identification task. ledethe later
requires the classification of medical signal profiles (ggjuor change detection. For ex-
ample, if we consider two profile classes: the healthy claskthe pathologic class, the
biomarker identification consists in classifying a groupradical signals into the healthy
and the pathologic classesd cancer or psychological diseases) and to detect then the dif
ferences (changes) between them. As a matter of fact, peddtss can be considered as the
"unchanged" class whereas the pathologic class as "chaniged. Consequently, adding
a classification step to the classical indexing scheme walldgv us to detect biomarkers
from both HSQC spectra and fMRI images.
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The proposed content-based object indexing and retrievalcheme

Unlike the classical indexing scheme (Fig14), the proposed indexing scheme con-
tains two additional steps: an object detection step (tleteof HSQC peaks and active
zones fMRI images) and an object classification (changectietg step. The new indexing
scheme is likewise divided into two phases (FdL5:

1. An off-line phase in which we perform on each medical sigaa object detection
and alignment step, an object coding and similarity measent step and finally an
object classification ste.f, healthy or pathological profile).

2. An online phase in which the user queries the databasg asiquest (new individ-
ual/ group of medical signals). The same steps as in theneffdhase are applied
on the medical signal request. Finally, the later is assignea previously defined
profile (in the off line step). Note that unlike the classicalexing scheme, the ob-
ject similarity step aims here at clustering the similareatg belonging to a given
medical signal group allowing then the assignment of thaigrto the appropriate
profile. In other word, the assignment of a new group/indieidask is addressed us-
ing the classification step and not the similarity measurgragp as in the classical
indexing scheme.

Fig. 2.15shows the overview diagram of the proposed indexing scheme.

Conclusion

This chapter presented a brief recall of the NMR principled how 1D/2D spectra are
constructed from acquired signals. It also detailed thenrhasis of fMRI imaging tech-
niques and its medical applications today and in the futWe.particularly described the
relevant information that typifies each signals: theaksfor the 2D HSQC spectra and the
active zone$or the fMRI images. Finally a first contribution of this wowkhich consists in
adding of a classification step to the classical indexingswhfor biomarkers identification
was presented. In the next chapters, different steps ohtlexing scheme (object detec-
tion and alignment Chap, object coding and similarity measurement CHhamd object
classification Chap) are described.
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Figure 2.15: Overview diagram of the proposed classificaftiamework
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Symbols:

Tg() Geometric transformation

To() Photometric transformation

X Theoretical spectrum

Kret Reference theoretical spectrum

Y Observed spectrum

Yeet Reference observed spectrum

B Noise

M Noise covariance matrix

h(i, j) Peak shape filter

Y' = (y{,y¥) Shape hyperparameters of peaks within the spectfum
hypi23 Hypotheses maodeling the spectrum imprecision

X An estimation of the theoretical spectrutn

fhyp S-membership function associatedhtgy

fhyp S-membership function associatechigy

fhyps S-membership function associatechiops

Hi Peak absence hypothesis

H> Peak presence hypothesis

uﬂym Imprecision degree of the pixel located(atj) associated tbyp
uﬂym Imprecision degree of the pixel located(atj) associated tbyp,
uﬂym Imprecision degree of the pixel located(atj) associated tbyps
M‘;j Combined imprecision degree of the pixel locatedi ait)
mij(Y) Mass function associated to the pixel locatediat) in Y

mj | Combined mass function associated to the pixel locat¢d gt
Bel ; Belief function associated to the pixel located(iaf)

di Local displacement vector associated to the pixel locatéd g
i j Estimation ofd ;

d Global peak displacement vector

d Estimation ofd

V Peak neighborhood

Q frame of discernment

(Xe, Xn) Estimate coordinates of in ppm

(Xie, Xrh) Estimate coordinates &€e in ppm

€ Carbon mean error chemical shift in ppm

€h Hydrogen mean error chemical shift in ppm

E[X] Expected value oK
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Symbols:

P Observed object coordinates

P’ Added samples coordinates

P Estimation ofP

Z Projection ofP with Neural Network PCA

Zl! Weight of theit" node belonging to thE" layer

W, Network weight matrix connecting” layer with (I + 1)™" layer
Wij Connection weight from nodeto nodej

Peyir(.) Neural Network extraction function

Dyen(.) reconstruction function

(r, 6, @ Spherical coordinate system

Acronyms:

HR-MAS High Resolution Magic Angle Spinning

EEG Electro-Encephalo-Graphy

HSQC Heteronuclear Single Quantum Coherence spectrum
fMRI functional Magnetic Resonance Imaging

PCA Principal Component Analysis

PC Principal Components

Ml Mutuel Information

DS Dempster Shafer

SSD Sum of Squared Difference

PRST Planar-Reflective Symmetry Transform

PSF Point Spread Function

PSNR Peak Signal to Noise Ration

MCMC Monte Carlo Markov Chain

MLP Multi-Layer Perceptron

NNPCA Neural Network Principal Component Analysis
ANNSs Artificial Neural Networks

GA Genetic Algorithm
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Introduction

The problem of object detection consists in dividing sigimé meaningful groups (ob-
jects) based on the spatial arrangement and/or pixel iityefi$rie object alignment task is
the process of overlaying two or more objects taken at diffetimes, and/or from different
viewpoints, and/or by different modalities and intrinsariabilities. More precisely, object
alignment consists in geometrically aligning an objectwitference pattern. The object
detection and alignment task is a crucial step in the indggtheme since all other steps
depend on it. Consequently, in order to lead to an optimaatlgetection and alignment
results, alla priori knowledge that we have on the data need to be properly ineztna
the proposed object detection and alignment methods. itz way we take in this thesis
where we pay a particular attention to inclualpriori knowledge for two types of data (2D
HSQC spectra and fMRI images).

In this chapter we present secti@nl) a brief overview of the object detection and
alignment methods used in the indexing schemes. In se8t®mwe present the scheme
for peak detection and alignment based on the use of evidkaogy. We particularly show
that the proposed evidential scheme for peak detectionlaymeent consistently achieves
a higher performance compared to the existing schemes brshothetic and real spectra.

Regarding the fMRI images, we present (sect®8) the proposed active zone de-
tection and alignment algorithm. The detection step is esklrd using a Markov chain
segmentation algorithm whereas the alignment step reflieth® use of non-linear Prin-
cipal Component Analysis (PCA) algorithm, which would bellvgeited to fit the cortex
shape, to estimate the non-linear planes of symmetry. Wabhyoshow that the use of the
non-linear PCA allows us to get more accurate object-algmnmesults compared to the
classical PCA alignment algorithm.

3.1 Overview of object detection and alignment methods

3.1.1 Object detection

In the literature, we can distinguish two approaches toesidthe problem of object detec-
tion: the signal segmentation based approach and feataesl lagpproach.

e The segmentation approach it aims at partitioning a signal into distinct mean-
ingful entities sharing together the same properties, liyitdg boundaries between
different objects. Several clustering techniques haven lpgeposed in the litera-
ture [Pappas92Tao07 Zhang08. Basically, clustering algorithms don’t use the
training data. So, to compensate this deficiency, theseitgtes seek to alternate
between signal segmentation and cluster property chaizatien. In other words,
clustering methods try to get trained by the utilization lué favailable data. Three
commonly used clustering algorithms are the K-medtadQueen6], the Markov
model [Fjortoft03] and the active contouKlass88. The latter approximates the ob-
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ject shape as a flexible 2D curve or a 3D surface that can bendefbto better fit
the object shape. The notion of active contour was firstlyppsed in Kassiass88.
The underlying idea is to create a link between a low-levetpss that only uses the
available signal of intensities and a high-level proceasititegrates mechanisms for
semantic interpretations.

e The features based approachit aims at providing a sparse local representation of
data. Its goal is to describe regions by keeping distindtifermation and, at the
same time, to provide robustness to small transformatiolsr@ise. The region
descriptors offer an elegant solution to deal with occlugiod cluttered background
since they only store salient information of the region amerefore they are not
distracted by other parts of regions. The most used feattextion algorithms are
the Harris point Harris8g, the Hessian detectoBpaudet78and the scale-invariant
point of interest €.g, the Laplacian-of-Gaussiah.¢G) [Lindeberg9§).

In this work, we adopt the feature based approach for peactien (sectior8.2) and
the segmentation approach for the active zone detectictidsé.3).

3.1.2 Object alignment

Cost function minimization based approach

In this section, we focus on the alignment methods basedeooptimization of an error
function. This error function is constructed from a refa@object and another object we
need to align. The most used transformation models are:

1. The geometric distortion: it is parameterized by a gedmétansformationTy()
which models the viewpoint changes of the camera, the dispiant of the object
with respect to the reference object. This transformaticts aither on the spatial
coordinates of the object®grg05 Schneidermang8r on the object shape using
the deformable modeMclnerney96 Leymarie93,

2. The photometric transformation: it is parameterized iyaasformationT,() which
models changes in brightness or noise measure modifyingixkeeintensities of the
object [Seo05.

Cost function minimization based approach aims at estilgatie parameters of the
transformationsTy() and Ty() by the definition of an optimization criterion (cost func-
tion). As for transformation models, the latter is choseocoading to the context of the
application. For example, we can opt to be robust to photaoeansformations without
estimating them€g.; shape based alignment methods), or to establish a noiselrimod
order to take it into account in the alignment scheme.

To estimate the hyperparametersTgf) and Ty (), it is necessary to develop a strategy for
solving the established cost function. Unfortunatelys tiaisk is generally complex and
often cannot solve it exactly.
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Cost function definition

Cost function establishment generally consists in defimirggiterion for direct com-
parison of objects. This criterion can be based on lightnsitees Belongie02, mutual
information Miola95], etc, and its estimation leads to an optimization task. &kisting
methods often consider iterative approaches because afothiénear nature of the cost
function.

Among the existing cost functions, the most commonly us#ttesquared error SSD (Sum
of Squared Difference) proposed indcas8], which is optimal in the sense of maximum
likelihood under the assumption that the measurementsaarepted by a centered white
Gaussian noise. Several variations of this SSD functiom lieaen proposed in the litera-
ture in order to increase the alignment accuracy resiigfidro4] [ ZimmermannOPor to
reduce computing timd{ager98 Baker04.

Furthermore, in the case of significant geometric distogjosome studies propose the
kernel-based cost function allowing to be more robust inasibns where the geometric
distortion of the observed scene is not fully addressed bybtsic alignment algorithm
[Comaniciu03Hager04.

Finally, in order to address the alignment task with a Bayrefiamework, methods based
on the maximization of mutual information between imadgeswson08 Dame09 have
been proposed. Indeed, mutual information measures ttistisi& dependence between
the intensities of compared object. This dependency is@sdtio be maximized when both
objects are aligned. Nevertheless, it may turn out that atutdormation is not adapted to
object with thin structures§joche0l

Cost function optimization

Once the cost function determined, the optimization stepsists in minimizing the
cost by minimizing model hyperparameters in a superviseghainsupervised way. The
former mainly aims at approximating the cost function inesrtb lead to a linear system
since these cost functions are generally non-linear. Geiterative optimization methods
such as gradient descent (useddmpberg09), or the Newton algorithm$hum02 Xiao08
are the most commonly used ones. These methods consisinratisg the extrema of the
cost function €.g.; points where the gradients of the cost function are null).

The second approach relies on a learning step. Indeed, pleevised methods require the
modeling of most expected transformations between twepatt Once these transfor-
mations are modeled, one uses a reference pattern to geaesaties of reference errors
which can be obtained by calculating differences betweenréifierence pattern and the
transformed onelfa Cascia0Op These errors allow us to establish the link between a given
observed error and the corresponding transformatiand02 Bayro-Corrochano(7 Al-
though these methods are not time-consuming, they regtiighgorior knowledge that is
not always available.

Canonical system based approach
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The canonical system based approach consists in estimthtnganonical pose of a
given object ég.;. estimate the axes of the cartesian coordinate systerciagsbto the
pattern). Thus, it is possible, if necessary, to define the si the direction of these
axes in order to solve the problems of reflections. Methodsdan this approach do not
operate directly on object intensities but on object sh&pBscurves or 3D surfaces). In
this section we present a brief overview of methods basedhercanonical system and
particularly those applied on the 3D objects. GenerallyDaoBject can be presented in
different manners. We can distinguish:

e Surface representation (3D mesh representation): thectoigigepresented by its
border. In the case of a polyhedral object, the border is oz of a set of planar
polygonal facets. In the literature, the triangular meskhi&s most popular form
of polyhedral surfaces. Therefore, the object surface ispmsed of a set of inter-
connected triangles where each triangle consists of tredie®s and a gravity center.
The 3D triangular mesh presentation enables a compact ieigcofl object and a
suitable object display according to the desired resailtams0]].

e \olumetric representation (voxel representation): theahs represented by a union
of disjoint elementary unit volumes called voxels. Unlike surface representation,
itis particularly useful for representing data densityifpaloud). The fitness of this
representation depends on the number of voxgibgon97.

e Algebraic representation: the object is described by aatmuE.g.; f(Xx,y,z) =0).
The algebraic presentation enables a sparse object rafatse. However, such
equation is not always available particularly for objedhwiomplex shapadang01.

The two widely used methods to estimate the object canopiesé (the axes of the
cartesian coordinate system associated to the pattem)tfrese possible definitions of the
object, are:

Principal component analysis PCA

The Principal Component Analysis, also known as "PCA" is camly used in data
analysis to find the principal axes of an objedtl[iffe86]. For 3D objects, it is used to
calculate the three coordinate axes necessary for the 3[2Imdtese three axes consti-
tute then the new cartesian coordinate system associatkd pattern. Several variants of
basic PCA method have emerged to address the problem of &dtadjgnment. Indeed,
although the basic PCA is not time-consuming and robustenctse of the object volu-
metric representation, it is not adapted to the object megtesentationranic014 (the
object is presented with a set of connected triangular fagriis continuous surface). Thus,
improvements have been proposed to overcome these prob@mihe one hand, Paquet
et al. [PaquetODpropose to weight the triangle facet gravity centers byrtharface. On
the other hand, Vranic and Saup&4nic01a VranicO1 extend the work of Paquet et al
and propose the PCA in the continuous case, noted "contnB@A", and thus allow a
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better robustness in the case of a 3D mesh.

To estimate the alignment of a 3D model it is necessary toutzte a PCA on all
centers of the triangle facets of an object. To achieve thespbjects must be composed
of polygons whose vertices have always coplanar three goiifie PCA aims at finding a
basis where the projection of an object is symmetricallaiiant.

In order to determine the orientation of an object, with eesfio its faces, the contin-
uous PCA estimates the three main axes of the 3D object. $cetid, it calculates the
covariance matrix on the facets vertices of the 3D mesh. dé iis to find the axis which
maximizes the variance of the point cloud. The maximum vaeds then obtained for the
eigenvector associated with the largest eigenvalue. &ilpilthe vector that contains the
largest remaining inertia is the second eigenvector whigethird expresses the residual
inertia. To conclude, to define the 3D object orientatiorsuitfices to diagonalize the co-
variance matrix of normalized faces. The eigenvectorsirmatands for then the rotation
matrix defining the 3D model alignment.

Orientation by the axes of symmetry

To orient a 3D object, Podolak et alPddolakO§ propose to calculate the symmetry
planes of the model. For this, they define the notion of symyrfet the plane intersecting
the object through the calculation of the "Planar-ReflecBymmetry Transform” (PRST).
The PRST aims at associating to each plane a scalar valuainmgpgs symmetry. The
more this scalar value is great, the more the associate@ jdasymmetry. Then, they
choose as the first axis, the normal of the plane that has tkénmabsymmetry. The
second is the plane of the maximal symmetry orthogonal telduee previously selected.
Finally, the last axis is similarly obtained by finding the ximaal symmetry plane that is
perpendicular to the normal of the two selected planes.

3.1.3 Retained approaches

In the previous sections, we described two strategies toeaddhe object detection task:
the segmentation approach and the features based apprdé&chresented likewise two
approaches to address the object alignment task: the gugtdo minimization based ap-
proach and the canonical system based approach.

A spectrum is composed of several peaks which are the resparfisnetabolite pres-
ence. Each peak can be characterized by its locations (cheshifts), its amplitude and its
shape. These peaks are scattered within the spectrum aoel thery can not be presented
by a curve. Therefore, the canonical system based appreagteppropriate in the peak
case and for this reason we have opted for the cost functiommzation based approach
to address the peak alignment task. Note that the peak idetestep is simultaneously
performed with the alignment step.

Concerning the active zone of the fMRI images, it can be cherized by its location
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and its shape. Unlike peaks, an active zone is a dense fomsigtimg of neighboring
voxels) and hence may be presented by a 3D surface. Thergfersegmentation approach
is adopted for active zone detection. In order to be robughtmiometric transformation
(a delicate task for the cost function minimization basegragch), we have chosen the
canonical system based approach for the fMRI active zogerakent. Note that the active
zone detection step is separately addressed from the aigrstep.

3.2 Peak detection and alignment algorithm (HSQC)

In this section, we propose a new method able to simultahgdesect and align different
peaks. The peak characteristics theoretically invariédnléhe same metabolite between
samples are in practice corrupted by a noise: a locationdoigion is added to the spectra
in practical cases. We will model this imprecision and timeertaintyalways present on
the observed HR-MAS 2D data so as to obtain an optimal peghraknt results.

The notions of uncertainty and imprecision are distinct tiay must be now clearly
defined Bhafer7¢. On the one hand, the uncertainty presents the belief oddbt we
have on the existence or on the validity of the d&d{s96] (presence or absence of a peak
in the case of HSQC spectra). In the other hand, when we havenpagh knowledge on
the data, we describe it with vague terms but its realizaa®rtain: in this case we speak
aboutimprecision(a modification of the peak shape and location in the case @EIS
spectra). In order to take into account both imprecision @amzkrtainty of the spectra, we
propose the use of the evidence the@hafer7§which can be well suited to deal with raw
data through the definition of a mass function. This masstfomallows us to quantify
the reliability of a given hypothesis. An overview of Evidentheory and its application
on real cases is presented in (AppenGjx

Moreover, the evidential peak alignment scheme propos#usrthesis is based on the
fuzzy set theoryBezdek99to model and quantify the imprecision degree presentelden t
spectra. In particular, we show that this modeling, usetd@nhass function definition, in-
creases the performance of the alignment scheme with cisopdo the Bayesian scheme.

3.2.1 Evidential peak detection and alignment method

Spectra modeling

In this work, the spectrum is considered as a random field. ddein2D HSQC spec-
trum formation, we consider a 2D spectrum realiza¥osuch thal? = y(i, j)i_y_w, j—1.n
where M x N) is the spectrum sizes. It corresponds to the observatioritgfaetical 2D
spectrum image realizatiok such thatX = X(i, j)i_1 _w. j—1._n COnsidered as a random
field as well, through a nuclear magnetic resonance systemurlcaseX consists of the
various peaks corresponding to the metabolites preseheibibpsy. If the nuclear mag-
netic resonance system was linear and shift-invariantefiagion between(i, j) andx(i, j)
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on the same location should be expressed as a convolutidngrfpobrosotskaya(8

y(i,j) = Z X(ke, ko) h(i — kg, j —ka) +b(i, J). (3.1)
kg, k2

whereh is the Point Spread Function (PSF) of the nuclear magnetamance system,
andB = D(i, j)i_; w j—1 n is arealization of a random field corresponding to an adalitiv
noise modeling both acquisition noise and degradationebtbpsy tissues.

In the case of the 2D spectiajs assumed to be a Lorentzian filterowry08] whose
continuous expression is parameterized/by-= (y!,y):

1/vf 1/v§
(L/V))?+KD) ((1/v5)?+k3)

Note that in some studie®.§; [Schanda05Feliz0g), the peak shape is assumed to be
gaussian.

h(ky,Ka; ¥y, Y5) =

(3.2)

Imprecision quantification

Before step estimation, we have to define three assumplipps hyp andhyps in
order to model and manage conflicts.

Assumption hyp

Let H; be the hypothesis corresponding to the absence of a peakdoati, j), and
H> the hypothesis of presence of a peak (detection) at the sasitgop. We are interested
with the a posterioriprobabilities of the hypothesé4, k € {1,2} of the observatiorY to
quantify the contradiction degree. The estimation of theabilitiesp; ; (Hx/Y) at every
position(i, j) will be presented in AppendiA Eq. A.6.

For a given hypothesidy estimated at the locatiofi, j) in both image,e+ (reference
image) andY (image to align with respect td.¢), we will assume that the more tlze
posterioriprobability are close the more the imprecision on the dasaiall.

Let us take the extreme case wherg(Hz/Yrer) = 1 andp; j(H2/Y) = 1. The contra-
diction in this case is absent because the peak appearssartteeposition in both images.
This is based on the assumption that the higher is the cqortfiehigher is the imprecision.

Assumption hyp

Let us denote by (i, j) = ( I’ef(i, i), Z’ef(i, j)) the shape parameters of a peak at

position (i, j) belonging toYef, andy(iz, j2) = (y{(iz, jz),y\z((iz, j2)) the shape parameter
of a peak at positionjiz, j2) belonging toY. The more the parameters of both peaks are
close, the more the imprecision on the data is small.

Assumption hyp
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We will model that the more the peaks are far, the more theradiction is large. In-
deed, the peak position variations are limited by a fuzzgtmabrhood around the expected
position. Outside of this neighborhood, two peaks can natdsggned as corresponding.

Membership function

These hypothesis are defined to quantify the imprecisioméndata which may be
modeled using the fuzzy set theory. This is based on the ggBamthat the concept of
the imprecision is an ambiguous ong, each data item is considered as imprecise with a
certain degree of membership in this fuzzy set den&ggrecise(e-9., the imprecise data
set). In our case, the degree of memberghipdenotes how much the pixel with specific
a posterioriprobability is imprecise, given different hypothesis.

The link between hard domain and fuzzy domain can be giveln avitS-membership
function f whose expression is given in E81.3 Note that the rangf, c| defines the fuzzy
region.

0 X<a
ﬂ a<x< b
f(x;a,b,c) = (b’a)(c&'j‘)c)z - (3.3)
1- I b<x<c
1 otherwise

wherea< b < c.

To calculatgy ; for each observed coefficienti, j), we will define in the next subsec-
tion, aS-membership function associated to each hypothesis.

Imprecision modeling through member function

Let us describe in this part the thr8emembership functions associated with the three
hypotheses:

Modeling of hyp

hyp expresses the contradiction between &vposteriori probabilities for the same
hypotheses of peak presence/absence. The modelingppfrequires the definition of a
Smembership degreaﬂym € Eimprecisefor every pixel ofYier andy.

To measure the distance between two variables we genesadlyheir ratio, however
this approach leads sometimes to obtain undefined fradtiwiding by zero). To avoid
such difficulty, it is better to manipulate the exponentih@se two variables before com-
puting their ratio.

Therefore, membership degree computiniiRprecisemeans here calculating the ratio
of the exponential of tha posteriori probabilities, then finding its projection by ti&
membership function (defined in E8.3).

This function allows us to quantify, from this ratio of expoial, the membership
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to the fuzzy seEmprecise The proposedji[f}ypl] ! defined by the exponential ratio of the
smallest and the biggest probability of the coufle;(Hz/Yret), pi,j(H2/Y)) in order to
keep a ratio smaller than one (1), is given by:

in( pi.j (Ha/Yeer),pi j (Hz2/Y))
el _ ¢ exp” rap, by, c 3.4
Wi hyp. <exﬂna)‘(pi‘j(Hz/Yref)7pi,j<H2/Y)), 1L (3-4)

Note that the probabilitiegp; ;(H2/Yret), pi,j(H2/Y)) are estimated using a Monte
Carlo Markov Chain procedure (Appendix EqA.6).

Modeling of hyp

hyp models the contradiction between the shape parametersogfdaks belonging
to two spectrum images. The modelinghofp, requires the definition of a membership
degreeuI e EimpreciseUsing aS-membership functiorfnyp, expressed as:

h
“1[ Jypz

min (Vi (. )5 (1, 1):V{ iz 12) ¥ iz J2) )
— fhypz Vot Yor v v ;az,bz,Cz (3.5)
max (Vi (i, 1)-v5" (i, 1), (i, i2)-¥3 iz, J2) )

Note that since the peak shape paramegtémdy\z( are strictly positive, the exponential
function is unuseful in this case.

Modeling of hyp

hyps models a neighborhood where the possibility to assign tvakgés highly en-
couraged. The modeling d¢fyps requires the definition of a membership degpgém] €
EimpreciseUsing anS-membership functioryp,:

WY = frygy (1—12)2+ (j = J2)? 8, bs, Ca) (3.6)
where(i, j) stands for the position of the peak belongingrita and(iy, j2) stands for the
position of the peak belonging ¥

In practice, the values of the coefficients ,(b1, ¢1, a2, by, ¢, as, bs, c3) are automatically
estimated by the Genetic Algorithm (Append® using a training datasets (spectra with
known peak alignment results). Once these coefficients stimated, they will used to
measure the imprecision of new spectra and no coefficieatdineation is needed.

Overall membership degree function

Our aim is now to propose the overall membership degie€& Eimprecise TO this end,
we simply opted for the average operator as fusion operator:

(Mhym] +H[h,yp2] +u,[h,yp3]) (3.7)

thypl is the membership function degree to the fuzzyES@hreciserelated to the first hypothesig/p; .
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In conclusion, we proposed in this section, an imprecisi@ueling scheme of spec-
trum images through three intuitive assumptions, mathieaibt translated and fused in
order to obtain the overall membership degpeg We needa posteriori probability and
peak shape parameters to estimate a proposed estimation scheme is presented in Ap-
pendix A with a Bayesian approach (Monte Carlo Markov Chain MCMC roj#tation).
The quantification ofy ; allows us now to define the mass functions, crucial step iehe
idence theory (Appendif). This mass function will be then used to detect and aligkkgea

The peak detection and alignment scheme

Proposed mass function

Determination of the proposed mass function requiresathesterioriprobability and
the imprecision degreg j already defined. Indeed, two extreme situations appearhé) T
first one is characterized by the total imprecision absepge= 0), in this case only the
mass functions of the simple hypotheses are non-zero. 2sd&tmnd situation is charac-
terized by the total ignorancey(; = 1): all the mass functions of the simple hypotheses
are null. The expression of the proposed non-normalized fioastionm ; (Y) for a given
observatiory is:

mij({Hi}Y) = (1—ij)-pij(H1/Y) (3.8)
mj({H2}:Y) = (1—wj)-pij (H2/Y) (3.9)
mj({H1, H2};Y) = W j.max(pi j (H1/Y), pij(H2/Y)) (3.10)

The normalization step consists in having:

mj({HL}Y) +mj({H2}hY) +mij({H1, Hz}Y) =1 (3.11)

When we have two or several sources on the same frame of mliiseat® built by various
hypotheses® = {H1,H2,{H1,H2}} in our case), we can associate for every imsge
mass functionm j(Y) which quantifies knowledge brought by the observation. Tdmeli-
nation rule of Dempster-Shafer (DS) consists in supplyisingle mass function from all
the mass functionsy j(Y) associated to each observatdifAppendixC). The combined
mass functionm; ; is then calculated using the DS combination (Apper@pas follows:

mij({Hz}) =m j({H2};Y) . my j({Hz}; Yeet)
+ mj({H1,H2}Y) o my j({H1, Ha}s Yeer) (3.12)

mi,j({Hl}) :m,j({Hl};Y) . m,j({Hl};Yref)
+ mj({Hg,H2}Y) . my j({H1, H2}; Yeet) (3.13)
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mi j({H1,Hz}) = m j({H1, H2}Y) - my j({H1, Ha} Yeet)

This mass function will be used in the following paragraplestimate the chemical shift
of a detected peak. We hence be able to propose a methodngalinultaneous detection
and alinement of peaks.

Proposed cost function

In order to model the peak chemical shifts, we are interesteelcovering a displace-

d | . .
ment vectord = {d; j }i—1..m, j—1.n Whered; ; = { ! } is a local displacement vector

dj
associated to the peak at the locatiorj). Adopting an evidence strategy previously de-
fined, we formulatel as:

d = argmaxBel j({Hz} /Yier, (Y +d)] (3.14)
d/dijev
whereV is the neighborhood selected accordingnygs andBel ; is the belief function
which is derived from the mass functiam ; and expressed as (Appendmy:

Bel j({Hz2}) = mj j({Hz}) +mi j({H1,H2}) (3.15)

To maximize the cost function E®.14 we need the posterioriprobabilities as well
as the parameters of the shape filters. An analytical solafithis problem is unfortunately
impossible, and we decide to use a MCMC procedure to realizb eptimization (see
AppendixA). An overview diagram of the peak detection and alignmeaircin Fig3.1

3.2.2 Peak detection and alignment validation

This part describes some peaks detection and alignmeniksregich are obtained with
the proposed evidential alignment scheme. This method pfléed on synthetic spectra
designed to fit the characteristics of the HSQC HR-MAS spea$rwell as on some real
spectra. More results on real spectra will be presenteddptel6. In order to validate and
emphasize the benefit of the proposed approach, we haveaethie following criteria for

the estimaion validation:

1. Accuracy : it defines the accuracy level of estimated parameters.ptesents the
difference between computed and theoretical value knoam fa ground truth. In
our case, we use the mean chemical shift error function. &cn D spectrum im-
age, we calculate the bias for the carbon chemical shéhd the hydrogen chemical
shift e, where

1 N 1N
2o 2 PPl XlP) B0 = 3 olp) - Xo(p] (339

where(Xe(p), % (p)) stands for the estimated coordinates of the a pgakhereas
(X, (P), X, (p)) stands for the theoretical location of the pe@&ndN,, is the number
of peaks.
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Conflict modeling
fuzzy membershig
functions (Eq.3.3)

l

Colored Gaussian
noise (EqA.2)

Direct model imprecision i mass function i
(section3. 1) | MCMC quantification ! modeling !
optimization (Eq.3.7) ! (Eq.3.12 !

‘ (Appendix.A) ‘ | l |

Lorentzian shape . — ! peak detection !
(Eq.3.2) Conflict description ! and !

hypi,hy | peak alignmen |

and : estimation |

hyps ! (Eq.3.19 !

___________ Uncertaintheory _________,____Fuzzysettheory \ ___Evidence theory _

Figure 3.1: Overview diagram of the peak detection and adigmt chain.
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2. Validation of some registration properties: in this study, we just retain the transi-
tivity property : for any three spectra, the generated fansation from the second
to the third spectrum composed with the generated regmtratansformationi(e.,
alignment) from the first to the second one should be equaktalignment from the
first to the third one. This transitivity property can be falimed, for every detected
peak at locatiori, j), as :

di2(ds3) (i, ) = disali, ) (3.17)

3. Robustness: evaluates the performance of the method in special casésasuthe
presence of pathology or different noise level in the datee grinciple is that even if
we have different initial conditions, the system convergegard a unique solution.
In our case, this means we obtain same alignment resultse(samber of detected
peaks and value of mean error chemical shift).

The main advantage of using simulated data is that we pbrfieabw the character-
istics of the data such as the number of peaks presented liy gyectrum and the peak
chemical shifts values. For this, we firstly generate a sstiththeoretical 2D spectrum
imageXes With (M = 500 pixels byN = 500 pixels) which containbl, = 200 peaks.

This synthetic spectrum will be used as reference to regigter synthetic spectra.
Three other synthetic theoretical 2D spectrum imaxgsX, and Xz are generated from
Xret by modifying the location and the shape hyperparameteradi peak oK. The
values of chemical shift vectors are assumed randomlyilaliséd following a Gaussian
distribution with zero mean and variance matfi%* 2, |. Note that this variance matrix
was chosen to fit the real chemical shift vectors. The hyparpaters of the shape filter
h for each peak are randomly generated from a Gaussian dibribwith mean equals to
1 and variance 0.1. In order to simulate the peak shape maiitiin; we randomly add a
white gaussian error of variance 0.005 to each peak shappgiameters. A zero mean
correlated noisd with covariance matriX', was added to each spectrum to obtain the

synthetic spectra used in the simulatigy, Y1,Y> andYs.

The Peak Signal to Noise Ratio PSNRYaf; is set to 30dB where the PSNR is ex-
pressed as:
PSNR= 10logio(maxXret)?/E[(B)?]) (3.18)

This value of PSNR was chosen to fit at best the real spectiaeth the PSNR of the real
spectrum is~ 30dB that corresponds ta a strongly noised observation.

In order to emphasize the robustness of the proposed appitwe high level of noise,
we have processed to the detection and the alignment of peakained inY;, by taking
Yret as reference, with different values of PSNR (30, 28, 25 andB)3 The different peak
detection and alignment results are presented in Talle Since the pixel resolution is
0.16ppm (esp6.8 103 ppm) for they-axis, i.e. the 13C chemical shift axis,reésp xaxis,
i.e. theH chemical shift axis), as one can remark, even with a PSNRB &€ obtained
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| PSNR| & | & [ nbofmissed peaks nb of false peak assignments
30dB | 0.0064| 9 10° 9/200 4/200
28dB | 0.0107| 7 10* 9/200 5/200
25dB | 0.149 | 0.0052 11/200 8/200
23dB | 0.291 | 0.019 13/200 10/200

Table 3.1: Detection and alignment error on the synthegctspmY;. The mean chemical
shift errors are expressed in ppm.

a sub-pixel precision for the mean chemical shift errorsfatit, with a PSNR=25 dB, the
gc < 0.16 ande, <6.8 1072 (Eq. 3.16). Figure.3.2a) shows an example of missed peak.
As one would suspect, the missed detections correspondaio events which are strongly
noised. Indeed, the average amplitude of missed peaksfbsmaximum simulated noise
amplitude. Fig.3.3 shows an example of x-axis and y-axis projection of a missedaa
detected peak. As one can remark, the missed peak is colgiateed in the noise. The
false peak assignments correspond to events which argstiorprecise : the shapes, lo-
cations andh posterioriprobabilities of the right peaks and the estimated assighpeak
are too close. Figure3.2(b) shows an example of false peak alignment errors, thé righ
location of the peak is presented with a continuous arrowthedstimated peak location
is presented with a dotted arrow. As one can see, the chasticte of the estimated peak
(location, shape and amplitude) are too close to the assighpeak characteristics. In this
case, the imprecision is so great that a distinction betwleese two peaks turns out to be
difficult and sometimes impossible.

In order to emphasize the benefit of the proposed approachdifferent alignment
methods were applied to the synthetic spectigmvith different values of PSNR: a Bayesian
method Toews0% and our alignment method. The peak alignment results arsepted
in Table3.2 We can easily observe that the proposed method performtest tiean the
Bayesian method. Indeed, even with a PSNR=25dB, we obtairseith-pixel precision for
the mean chemical shift errors which is two times smallergared to that obtained by the
Bayesian method. This can be explained by the fact that weitho account in our align-
ment scheme both uncertainty (tlagposterioriprobability) and imprecision in the spectra
(conflict information). It is important to note that the Bajen scheme provides only tools
to handle the uncertainty and, for this reason, the use dfeaece theory was proposed.
Note that the Bayesian method only addresses the aligniegntEherefore, we have used
the detection results obtained by the proposed method forpethe alignment step with
the Bayesian Method.

Now we consider the problem of transitivity property vatida. Since the missed
detections correspond to weak events which are strongbedpthe missed peaks are the
same for each spectrum. The alignment error using traitgifivoperty are presented in
Table 3.3 As one can see, we obtained the same alignment results whiiclate the
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Proposed scheme | Bayesian scheme
PSNR & €h & €h
30dB | 5.110° | 9.110° | 0.097 | 6.110°
28dB | 1.2110° | 5110% | 0.139 | 8.610°
25dB | 0.1098 | 2.510° | 0.2584| 1.9110°?
23dB | 0.1874 | 9.3510° | 0.3278| 2.0310°?

Table 3.2: The mean chemical shift errogs €, on the synthetic spectruivy expressed in ppm
obtained by the proposed and the Bayesian methods.

Yref 12 Yref 2
PSNR € €h € €h
30dB | 0.0059| 8.710° | 0.006 | 8.510°
28dB | 0.011 | 5.310* | 0.010 | 4.210*
25dB | 0.149 | 0.0012 | 0.0984| 0.0011
23dB | 0.2245| 0.0121 | 0.2278| 0.0131

Table 3.3: Alignment error using transitivity property

transitivity property.

Figure 3.4 presents some results of peak alignment on the same regisimaofated
spectra. We can see that all the peaks were correctly détantkaligned. In addition, we
can easily remark from Fig3.4 that a manual extraction of peaks (7,8; 13,14; 24 and 29)
seems difficult even impossible.

Figure 3.5 displays the peaks detection and alignment results on tine gane of a
healthy spectrum and cancerous spectrum. Some peaks kenpenber 10 are visually
very difficult to detect due to the high noise level, yet outtmoel is actually able to detect
and align it. Note that the spectra are presented as contmsrwith the same number of
level which explain the absence of a presentation the peadbeul0 in Fig3.5 (b).
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C (ppm)

C (ppm)

2.8 29 3 31
H (ppm)

(b)

Figure 3.2: Example of (a) a missed peak, (b) a false peagrassint : real location in
dotted arrow and estimated position in continuous arrow.
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Figure 3.3: An example of the x and y projections of a missetieattetected peak (a) x-axis
projection of a missed peak, (b) y-axis projection of a ndgseak, (c) x-axis projection of
a detected peak, (d) y-axis projection of a detected peak
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Figure 3.4: The detection and alignment results on (a) tfererce synthetic observed
spectrumyes (PSNR = 30dB) and (b) the synthetic observed specifu(SNR = 30dB)
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Figure 3.5: The detection and alignment results on (a) alrealthy spectra (b) a real
cancerous spectra.
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3.3 Active zone detection and alignment (fMRI)

We recall that an fMRI image can merely be presented by a sattdbfe zones that we

have to detect and align (as for HSQC spectrum peaks) but irE8bh active zone may
be characterized with its location, its shape and its vomtnisities. In contrast to the
peak alignment scheme, the detection and the alignmentedddtive zone is separately
addressed. More explicitly, given two detected objects,aim is to align them according

to their canonical poses. To this end, the active zone deteist firstly performed using a

Hidden Markov chain segmentation HMC approaBhi¢q08] which allows us to integrate

spatial information into the segmentation method. Coringrthe alignment method, it is
important to note that the alignment can be effectively eitgtl in the indexing procedure
only if all the following criteria are verified:

e 3D rotation invariance: objects with similar shape shouddidentically aligned
whatever their initial orientations;

e 3D anisotropic transformation invariance: an aligned ctdjleat has been undergoes
a narrowing or lengthening of a reasonable size followirggahignment directions
should maintain the alignment result;

e Weak time-consuming.

Note that since the active zone detection is addressed asitagsical HMC segmen-
tation method, we present in this thesis only the active aligmment method. In order
to lead to a satisfactory alignment result, we integrate druperception in the scheme of
alignment. Generally, one seeks to align an object accgriits symmetry axis. This ap-
proach allows us both to find the most object natural pose kgnahdasually similar objects
in the same manner. Most methods opted for this approachithee the PCA/continuous
PCA [VranitOl1a Vranic014 or the reflection measuremer@ifnariog to find the mirror
planes (planes of reflection). These planes are then usedtinwaée the appropriate carte-
sian coordinate system associated with the object. Althahigse methods were success-
fully applied on 3D internet object searching, they are unfwately not currently adopted
to the 3D fMRI objects. Indeed, due the cortex shape, thectaftesymmetry of the active
zones is more spherical than planar. We propose to use mearIPCA that is well suited
to model the reflection symmetry of the cortical active zones

3.3.1 Partial spherical object alignment method

The characterization of a 3D object by reflection symmetry &oused a lot of works
[Bustos04 Podolak06 Simari0g Mitra06]. Mainly relying on the studies of human per-
ception, these works have motivated our choice and led usrtsider this reflection sym-
metry. In the literature, the mirror symmetry is the mostdusgmmetry. However, the
main drawback of this approach lies in its high time-consigwirhich makes its utilization

very constraining Yranic01d. To overcome this, some authoiGHaouchOBpropose the

use of the PCA/continuous PCA algorithms to calculate #itcdon symmetries that may
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be characterized by the object main direction. Indeed, &/Bontinuous PCA seeks to
describe the data variance with a set of orthogonal featuetier known as the Principal
Components (PC) which can be estimated by the correlatidnixnalhese PC will be
used as a new coordinate system on which the original dat&evijrojected. In the linear
(basic) PCA, the PC is either lines (2D object) or planes (B[eat). The use of the planar
PC as reflection symmetries has found lot of success in maplicafions particularly the
3D internet object searchin@€haouchO08

The main drawback of this approach lies in its high time-conisig which makes its uti-
lization very constrained. To overcome this, the auth®irafic01a ChaouchOBpropose
the use of the PCA/continuous PCA algorithms to calculdtesflection symmetries that
may be characterized by the object principle direction.ebd] the PCA/continuous PCA
seeks to describe the data variance with a set of orthogeaslires better known as the
Principal Components (PC) which can be estimated by thesledion matrix. These PC
will be used as a new coordinate system on which the origiatd dill be projected. In
the linear (basic) PCA, the PC is either lines (2D object) langs (3D object). The use
of the planar PC as reflection symmetries has found lot ofesgcin many applications
particularly the 3D internet object searchir@haouchOB

Nevertheless, the basic PCA/continuous PCA is very welladatpted for fMRI ac-
tive zones alignment task due to the cortex shape. Indeegktleetion symmetry in our
case is likely more spherical than planar. Our aim is therrepgrly integrate this pri-
ori knowledge in the proposed scheme. An elegant way to addrsstask is the use of
nonlinear PCA. This nonlinear behavior was firstly presenite[Lingoes67 Kruskal74.
Then, many varieties of the nonlinear PCA were proposed aadhe probabilistic non-
linear PCA LawrenceO}§ the kernel nonlinear PCA3e09 and the neural network PCA
[Kramer91 Scholz07. Among all these works, we pay a particular attention te thtter:
the Neural Network PCA (NNPCAXramer9] has proved its high accuracy to estimate
the non-linear PC in many field such as the meteorolddsigh98, the EEG Electro-
Encephalo-Graphy signabfamkopoulos9B metabolism $cholz0%. Indeed, the NNPCA
relies on Multi-Layer Perceptron (MLPBjshop99 with an auto associative topology al-
lowing an identity mappingeg(g; the neural network inpu® should be equal to the neural
network outpu® whereP is the observed object voxel coordinates). To this end,dbare
reconstruction errof{P — P||2 should be minimized. The neural network is generally com-
posed of five layers [2-1-2] interconnected with four netwarightW,, | = 1...4 (Fig.
3.6). The layer in the middle is called the bottleneck layer hionsists of a number of
nodes lower than that of the input/output layers. This bo#tk layer, leading to a data
compression and a decompression steps, makes the minonizditthe square error not
trivial. The two first layers constitute the non-linear extion function®ey(.) allowing
us to perform a nonlinear projection of the observed objeotdinated® = p;...pN (i.€; i
is the cartesian coordinates of tifevoxel of the object (the size g is three)),N is the
number of object voxels, into the second lay@e(P) = Z) in order to obtain the matrix
of score (the matrix of the nonlinear PC). In the other hahd,tivo last layers constitute
the reconstruction functio®gen(.) allowing us to perform a nonlinear reconstruction of
the observationdgen(Z) = P) thanks to the estimated score matrix (FR3g6).
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Figure 3.6: A standard MLP network with an auto associatiyglogy. This network is
composed of 3 parts [2-1-2]. The first two layers aim at corsgirgy the original signals
P to only three componené’], 2[23] andz[33] (the bottleneck layer) thanks e, function.
The last two layers aim at reconstructing the dat& tbanks to®gen function.

Our aim now is to properly integrate tlepriori knowledge that we have on the data
into this network. In other words, we should adopt the nekwiorthe spherical shape of
the active zone. To this end, we can distinguish two cases fil$t one consists of an en-
tire spherical shape (Fig).7.a) whereas the second one consists of a partial sphereaé sh
(Fig.3.7.b) which is the case of the fMRI active zones. In the next,paet describe the
proposed methods to adopt the network for both shape castige spherical shape and
partial spherical shape.

Entire spherical shape case

(a) (b)
Figure 3.7: Example of (a) an entire sphere, (b) a partiatsph
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The developed method was inspired from the work proposedinby96] where au-
thors adapt the network to the case of circular data (2D dW&?extend this work to the
3D data for entire spherical shape. To this end, the trlrz{lgt Qz (Fig. 3.6) are
constrained to lie on a unit sphere:

2 2 2
&)+ @) + @) =1

Generally, a sphere can be characterized with the tripled, (p) wherer > 0 is the
distance from the origin® € [0,2r] the azimuth angle ang € [, -7 the elevation
angle. The three nodes of the bottleneck layer can be desddjptwo hyperparameter8 (
and@):

z[f] = cog0)cog¢), 2[23] =sin(6)cog¢$) and zf] =sin(¢) (3.19)

To calculate the radiusof the sphere, a forward propagation is performed. We recall
that the link between the layer number 2 and the bottlenegl g assured by the matrix
W,. Letza me [1...M], M the number of nodes in the second layer, the value ofrffie
node of the layer number two. Each noaeof this layer is connected to each node of
the bottleneck layer with a weighted connectiog, wherei € {1,2,3}. The radiusr is
expressed as:

- \/ (V1) + (v3)2 (3.20)
where

2]

< 02 : 2
Vi= ) WimZm, V2= ) WamZm
m=1 m=1

M
and v3= Z W3mZm
m=1

In order to obtain a spherical constraint, we should have:

zJ = %, 2 = % and ZJ = T (3.21)
To estimate the network weighit|, | = 1...4, a backward propagation is performed to
minimize the error functiort with respect to all network weigh/,, | = 1...4:

i (3.22)

HMZ

where @}, p2, pd) is the cartesian coordinate of the object vopgland @, p2, p2) the
reconstructed coordinates pf. This error function can be minimized using the gradient
optimization algorithmIiNocedal99and the derivation of the network weighg, | =1...4

are obtained by standard back propagatieahlman88

Partial spherical shape case

In this paragraph, we adapt the method previously presétite@ntire spherical shape)
to the case of the fMRI active zones (the partial sphere ghapafortunately this task is
not trivial since the fMRI active zones do not retain a unighape and consequently the
partial sphere modeling the reflection symmetry changes fino active zone to another
one. In order to overcome the problem of shape variabiligypnoceed as follows:

2 zi[a] is the value of the'f! node of layer number three.
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1. The first step consists of finding the closest sphere thaieply fits the 3D ob-
ject shape. To this end, we used the Inverse Non-Linear PCAadeproposed in
[Scholz0% to initialize the reflection symmetry of the 3D object. Irdk this method
allows the estimation of the surface that models the refledymmetry with no con-
strains on the expected surface shape (in our case a splefdqee). Then, we use
the gradient descent algorithm to estimate the hyperpaeamef the closest partial
sphere (the tripletr(@, fp)) that properly fits the estimated surface.

2. The second step consists of adding samples to the 3D dbjeotnplete the sphere
based on the partial sphere hyperparameters estimated petkious step. There-
fore we obtain two 3D objects. The first orf®) (s composed of the original samples
coordinates and the second one, denote®by pj...p\,, is composed of the added
samples coordinates.

3. The last step consists in applying the proposed methodet@anstructed sphere.
However, onlyP contains the useful data and therefore sampleB’ athould be
penalized in the network training step. To this end, it idisignt to modify the error
function (Eq.3.22 by introducing a new hyperparametex(® < 1 according to:

HMw
/_\
v

_ N’

E= pl — p/ (3.23)
n=1j=1 < ! "~ l> ;

By this way, the error introduced B is penalized and it partially contributes to the

gradient.

An overview diagram of the proposed active zones alignméatncis presented in
Fig. 3.8 Finally, two objects are aligned according to their estedapartial spherical
symmetries. Indeed, it is sufficient to first estimate twatiphspherical symmetries for
each object (Fig.3.9 and than to superpose them to find the common object pose (Fig
3.10.

I I
i Inverse i i Spherical i
I Non-Linear PCA| I PCA I
I (nl I
| ! ! | |
| Finding the closest adding samples i Spherical symmetry |
: sphere that to the 3D object 1| estimate of the constructéd |
. | properly fit the 3D object shape to complete the sphete " sphere (E®.20 :
| h |
I (nl I
I (nl I
b Initialization: estimate of(6, @) ;i ___Partial spherical PCA_ |

Figure 3.8: Overview diagram of the proposed active zorigamlent chain.
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Partial spherical symmetry 2

Partial spherical symmetry 1

Figure 3.9: Two reflection symmetries estimation of a 3D obje

(a) (b) (c)

Figure 3.10: The two estimated reflection symmetries of tg¢ai 1 and (b) object 2, (c)
the superposition result of the estimated reflection symiaset
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Figure 3.11: (a) A cloud point representation of the refeessphere, (b) A triangular mesh
representation of the reference sphere

3.3.2 Active zone alignment validation

In this part, we provide some 3D object alignment resultsioled with the proposed
method. This method was applied on both spherical 3D obgeutspartial 3D objects
designed to fit the characteristics of the active zones asasaln some real fMRI active
zone. More results on real spectra will be presented in eh&ptin order to emphasize
the benefit of the proposed method and particularly the uigeafon-linear PCA, we have
compared our algorithm with the continuous PCA methéahic014.

The goal of our experiments is to assess the performancesgirtiposed alignment
scheme. Let us start with spherical toys problem to dematesthe effects of the proposed
and the continuous PCA strategies. To construct our toy skettawe firstly generated a
reference sphere denoted y(Fig 3.11a). Note that we have opted for the 3D triangular
mesh representation for all artificial toys (Rdl1b). This sphere will be used as refer-
ence to generate twenty nine other spheres by adding a @aussse with zero mean and

varianceo, to its cartesian coordinates (y;, z) such that the PSNR [5dB, 20dB] (Fig.
3.12.

Fig. 3.13shows some results of spherical symmetry reflection estmain synthetic
toys with different PSNR values. In order to facilitate thewal interpretation of the results
we have presented the cross sections of different sphesssné\can see, even with a small
PSNR, we can correctly estimate the reflection symmetries.

We now address the problem of 3D partial spherical objeghatient. To this end, we
generated five partial spheres by removing 55%, 60%, 65%, &itd67/5% ofS, and by
adding a Gaussian noise with zero mean and variagcas that the®SNR~ 15db. Then,
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Figure 3.12: Two synthetic spherical toys generated fromréfierence sphei®

Table 3.4:

Proposed method

Continuous PCA

data setl (55% df,)

0.02+1.210*

0.097+ 7.85 104

data set2 (60% df,)

0.038+5.810*%

0.124+ 2.14 103

data set3 (65% df,)

0.0474+9.710%

0.301+ 4.23 103

data set4 (70% df,)

0.062+ 1.03 103

0.832+ 5.82 1072

data set5 (75% d#,)

0.078+ 4.12 103

1.177+ 7.98 102

The mean shift errors and the standard deviation obtainettidoyproposed and the
continuous PCA methods.

for each partial spherg,;, i = 1...10, we generated forty nine other spheres by rotefing
The rotation angle is between 20 and 130 degrees. At the eéhsqirocedure we obtained
five data sets each one composed of 50 toys3Hig(a) shows an example of a generated
toy whereas Fi@.14(b) shows an example of a fMRI active zone. The toy alignnient
sults for each data set are presented in T8bleWe can easily observe that the proposed
method performed better than the continuous PCA method.3Elgshows an example of
real active zones alignment. As one can see, our methodrperthe best alignment result.
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(©) (d)

Figure 3.13: Spherical symmetry reflection estimation amttsstic toys with (a) PSNR =
15dB, (b) PSNR = 12dB, (c) PSNR = 10dB and (d) PSNR = 8dB
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(a) (b)
Figure 3.14: An example of (a) a synthetic toy, (b) a realvactione

(@) (b)

Figure 3.15: Alignment result of real active zones obtaintti (a) the proposed method,
(b) the continuous PCA method.
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Conclusion

In this chapter, we addressed the object detection andnadightask.

Concerning the 2D HSQC spectrum, we proposed a new peakidataad alignment
methods which combined the modeling of the knowledge by me&the evidence theory
and integrate the fuzzy theory to quantify the imprecisiegrée presented in the spectra.
The handling of both imprecision and uncertainty by the ena theory increased the
robustness of the proposed alignment scheme with compatisthe Bayesian method.
In addition, we have used the deconvolution model to achéebetter fit of the HSQC
spectrum. The synthetic validation of the proposed apprdas shown its efficiency and
particularly its robustness to the high level of noise, ohéhe delicate issues in HSQC
spectra and its ability to align peaks even if they are madyuhdficult to separate. The
proposed method offers not only a powerful automated tagbéaks detection and align-
ment but also a parametric representation of the NMR 2D gjpacivhich will be used for
spectrum indexation in the next chapter.

On the other hand, the second method, dedicated to the fMREamne alignment,
relies on the canonical system approach. This approactvalls to find the most ob-
ject natural pose and to visually align similar objects i@ #ame manner. In order to
integrate oum priori knowledge, we proposed a new method for spherical symmstiy e
mation based on the non-linear PCA that is well suited to rhthdereflection symmetry
of the cortical active zones. The synthetic validation efpnoposed active zone alignment
scheme has shown that the modeling of the partial spherjoain®try has increased the
robustness of the proposed registration scheme with casopato the continuous PCA
method which does not take into consideration ¢hggiori knowledge.
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Symbols:

X Candidate peak amplitudes

R Reference peak amplitudes

Y Observed spectrum

Yief Reference observed spectrum

lo Observed peaks ratio

le Expected peaks ratio

G Gamma distribution

(a,B) Hyperparameters of the Gamma distribution

Mx Inter-metabolite correlation matrix

I Identity matrix

P Standard Gaussian cumulative distribution

B Noise

My Noise covariance matrix

Cq Gaussian copula

h(i, j) Peak shape filter

Y =(y{,y5) Shape hyperparameters of peaks within the spectfum
hypL23 Hypotheses modeling the spectrum imprecision

X An estimation of the theoretical spectrdtn

f M -membership function used for candidate metabolites efec
f1 S-membership function associated to criterion 1

f2 S-membership function associated to criterion 2

fum M -membership function associated to criterion 3

g Trapezoidal membership function associated to globatrioih
iy Metabolite reliability degree associatedfto

Mer1 Metabolite reliability degree associated to criterion 1
Mer2 Metabolite reliability degree associated to criterion 2
Mer3 Metabolite reliability degree associated to criterion 3
Me Metabolite belonging to exception list

recall Recall measurement

Precision Precision measurement

E[X] Expected value oK

X Theoretical spectrum

Xref Reference theoretical spectrum

Y Observed spectrum

Yeet Reference observed spectrum

M A metabolite

M An estimation of\

Cwm Candidate Metabolite set
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Symbols:

Om
GG(.)

Acronyms:

HR-MAS
HSQC
fMRI
PCA
3DGD
3DGGD
PSNR
MCMC
GA

ML

A 3D Object

Object triangle mesh

The geometric moments of ordéy+ q-+r)
Area of the triangle associated po= T
Gravity center of object portion numbér j, k)
Object Gaussian descriptor associated; fi
Gaussian transformation

The euclidian distance

Descriptors set of obje®

Object similarity measurement betwe®h andO?
Them" surface object portion

Themi" point belonging the unit shpere
Generalized Gaussian transformation

High Resolution Magic Angle Spinning
Heteronuclear Single Quantum Coherence spectrum
functional Magnetic Resonance imaging

Principal Component Analysis

3D Gaussian Descriptor

3D Generalized Gaussian Descriptor

Peak Signal to Noise Ration

Monte Carlo Markov Chain

Genetic Algorithm

Maximum Likelihood
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Introduction

The Object coding and similarity measurement is the sectaqdis the proposed object in-
dexing scheme (Fig2.15. On one hand, the object coding task consists in codingreifit
objects into a compact description. This compact desoripdilows us to accelerate large
database queries. On the other hand, the similarity measmteask consists in establish-
ing the object similarity measurement procedure. In otherdwthis task returns to find
and to group the most similar objects within a given medicaia group/population query.

In this chapter we present in sectidril an overview of the most used object coding
and similarity measurement methods. In secdd?) we develop a novel scheme for peak
similarity measurement. Indeed, the step of object encpdinnnecessary since the peaks
can only be described by three parameters (location, amdpliand shape) and are there-
fore already parsimoniously presented. For the similarigasurement, we propose a new
method based on the combination of Bayesian theory and #zg &ets theory allowing us
to handle the uncertainty and fuzzyness that charactdr&eliservations and to inject our
a priori knowledge into the inference model.

In section4.3, we propose a new coding method based on generalized Gaussia-
formation to reliably describe the topology of the activees. In particular, we show that
the proposed method provides not only a compact repregantatthe object in its space
but also a signature faithful to its shape. We also proposmitasity measurement robust
to small displacements and variations of objects. We shawttie use of the proposed
algorithms allow us to get more accurate object coding amdagiity measurement results
compared to the existing schemes.

4.1 Overview of object coding and similarity measurement al
gorithms
4.1.1 Object coding
Shape distributions
Osada et al.QpsadaOPRpropose five distribution forms to code a 3D object. The obje
is assumed to be triangular meshing (&id). Therefore, the object surface is composed

of a set of inter-connected triangles where each triangiesists of three vertices and a
gravity center. The considered measurements are:

e The angles between three points on the surface{R¢p)),

The distance between the mass center and a point of the dbjget.2(c)),

The distance between two points (Hig.(d)),

The area square root of a triangle formed by three points4Eige)),

The volume cube root of the tetrahedron formed by four pdifits.4.2 (f)).
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Figure 4.1: An object triangular mesh.

All considered points are randomly selected on the objéahdular facets. The main
advantages of this approach are the descriptor compacanesthe calculation rapidity.
Moreover, since the considered measurement does not depetite object coordinate
system, the shape distributions method is invariant to gtaentransformations (rotation
and translation). However, its use is more suited to sed@tts of similar overall shape
since it is not able to discriminate small variations in thgeot meshing@hbuchi03.

Geometric moments
The geometric moment approach consists in projecting aacteistic functionh, that
models a 3D object, on the family of function&7, (0,q,r) € N3. The geometric mo-
ments of ordefo+ g+ r) are denoted bilqr and calculated as follows:

Mogr = /p . h(p) x°y9Z dp (4.1)

where p is a point belonging to the triangular me$hof the object. In particular, the
geometric moments of order one and two are used to calchiatearmalization hyperpa-
rameters of the 3D object (the object gravity center and hineet principal axes). In the
context of coding, the description of a 3D shape by the gedon@ioments was proposed
in [Paquet9® In this work, the geometric moments are obtained by theiehg equation:

Mogr = erp (Xp —Xg)°(Yp — Yg)H(zp — 29)" (4.2)
pe

whereA, (resp ¢ = (Xp,Yp,Zp)) is the areargspthe gravity center) of the triangle
associated tp € T andg = (Xg,Yq, Zg) iS the object gravity center.
Note that the use of geometric moments is not the best objetihg method. Indeed, a
comparative study in terms of performance made by VarnicZaupe YranicOJ on dif-

ferent bases of 3D objects.g; the Princeton Shape Benchmark) which contains a database

of 3D object models collected from the World Wide Web (Fg3) shows the limits of this
method particularly for complex 3D shape codi@h{lane04.

Shape histogram

This method, proposed by Ankerst et gnkerst99, consists in uniformly partitioning
the object space into three representations:

1. SHELLS: This partitioning allows to overcome any objeathtion through concen-
tric shells around the center of the object (Big.(b)). Moreover, to cover the entire
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(d) (e) (f)

Figure 4.2: The five considered measurements of the shap#éudiion method applied
on the (a) Dragon object: (b) 1-the angles between threggoimthe surface, (c) 2-the
distance between the mass center and a point of the objg&tk@ distance between two
points, (e) 4-the area square root of a triangle formed bgetipoints and (f) 5-the volume
cube root of the tetrahedron formed by four points.
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Figure 4.3: Examples of Princeton Shape Benchmark 3D abject

model, the last shell has no top boundary.

2. SECTORS: This partitioning allows to project the facdta cegular polyhedron on
the unit sphere through an angular decomposition with h@megus size (Fig.4.(c))

3. SECSHEL.: This partitioning is the combination of SHELLU®I&SECTORS parti-
tions (Fig4.4.(d)).

Finally, for each bin an histogram of mesh triangle centehiwithis bin is calculated
and the union of all histograms constitutes the signatutbeobbject.

The 3D Gaussian Descriptor

The 3D Gaussian Descriptor (3DGD) introduced by ChaoutimapuchOPrelies on
the object Gaussian transformation which is derived fromm@aussian law. Indeed, the
Gaussian transform is a real application defined on a set fofedkepoint in space and
obtained by a summation over the surface of the 3D object. Qdugssian transformation
denotedG on a pointg of the space is given by the following expression:

exp(ﬂ) dp (4.3)

202

G@I@:/

peT

whered is the euclidian distancey € T (T the object triangular mesh) amd> 0 is a
positive real.

In order to code a 3D object, author proposes the partitgpaofrihe object intd\® cells
and then the calculation for each one’s cemjgri, i = 1...N, j = 1L..N, k= 1...N (Fig.
4.9). Then, the author assigns to each catharacteristic value g x as following:

_(p_gijk)z)
Gik= Y A exp(————————— (4.4)
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(©) (d)

Figure 4.4: The shape histogram descriptors: (a) Sphesmate, (b) 3 shell bins, (c) 6
sector bins, (d) combination of 3 shell bins and 6 sector.bins



69

4.1. Overview of object coding and similarity measurement lgorithms

whereA; is the area of the triangular facet associateg (Big. 4.6).

Figure 4.5: The 3D obiject partitioning.
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Figure 4.6: Contribution of object surface point in the lodescription ofg; j .

L,j,keN' Note that the 3D Gaussian

= [Ci,j,k
Descriptor (3DGD) has showed its effectiveness compareamthter methods such as the

Thus, the 3D object is codified with

shape histogram method and was ranked first on the Princémpme®Benchmark database

[ChaouchO}

4.1.2 Similarity measurement

The similarity measurement consists in establishing thelaiity between two codified

objects, it means the most similar objects within the dataltaward the object we are



70 Chapter 4. Object coding and similarity measurement

looking for (query object).
Threshold approach

The threshold schemes are often used to accommodate difésrédetween object de-
scriptors. To this end, it is sufficient to experimentally a¢hresholdhresand to evaluate
the differences between two obje@$ andO? as following:

1 ifd(ct,c?) <thres

. (4.5)
0 otherwise

A(OY,0?%) = {
wherec! andc? are the object descriptors 6ft andO? respectively and(.,.) is the
euclidian distance. Thu§! andO? are assigned together if the functianO!, 0?) is equal
to 1. The threshold based approach is a rudimentary techmigit found some success in
applications such as in metabolite identificatiaih¢ng07 Xia08] thanks to its simplicity
and speed. Nevertheless, thresholds set may strongly #feemobustness of the similarity
measurements.

Distance minimization approach

The similarity between two object8* and O? can be calculated using the euclidian
distance as follows:
A(O,0%) =d(ct,c?) (4.6)

Thus, the most similar obje@S to query objecO within the database is the given by:

O° = argmin(d(0,0")) 4.7)
Gi
In order to be less sensitive to small displacements or mgemmetric variations,
[ChaouchO®introduced a new similarity measurement that minimizes distance be-
tween adjacent pairs of components:

N 12 32
(O 0?) = - > mi (Cx—® N (4.8)
N*j %1 (C-l-k—cizlﬁj,’k,)z, i j K eV, j,k)

|7J7

whereV (i, j,k) is the 3x 3 x 3 neighborhood of the descriptqﬁk.
Supervised learning approach

Supervised learning approach relies on the link functigaldishment between object
descriptors and expected results (similar or no similaea) via a training step. The
widely common used methods are the Support Vector approdbh[8ruzzoneOband the
Artificial Neural Networks Bate9§. Thus, the similarity measurement task is equivalent
to a classification task. In other words, for each obj@tbelonging to the database, a
classification functiorf(.) is established using a training dataset which containsctje
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with known similarity results. Therefore, a test obj@#tis assigned to the obje€¥ (i.e;

O' and O' are considered as similar) §fO') = 1. As one can remark, the supervised
learning approach is a generalization of the thresholdagmbr since it allows a non-linear
behavior of the assignment functigf).

4.1.3 Retained approaches

We recall that each spectrum is composed of several peaksariacattered within the
spectrum. These peaks are the responses of metabolitegeeJderefore, peaks belong-
ing to a given metabolite have common properties. In ordémfwove the peak coding
and similarity measurement task, these properties shaufddaeled and injected into the
proposed scheme. Thus, it is better to manipulate metabdhtn single peaks. Moreover,
since a metabolite is described by a set of few peaks withfgpelaaracteristics (locations,
shapes and amplitudes) the metabolite coding step is nelaregessary (the metabolite
is already compactly presented) and finally the peak codimtsamilarity measurement
task is simply equivalent to metabolite identificatiortask €.g, identify the most similar
metabolite to a given metabolite).

Concerning the fMRI image, unlike peaks, an active zone isresé form (consisting
of neighboring voxels) and therefore a compact representaf this active zone should be
carried out. Among different object coding methods, the 3iussian Descriptor (3DGD)
introduced by Chaouch0Phas showed its effectiveness compared to other methods and
was ranked first on the Princeton Shape Benchmark databasthig-reason, the Gaussian
transformation is retained in this work for fMRI active zane

4.2 Metabolite similarity measurement (HSQC)

In the literature, we distinguish two methodheng07 Xia08] that deal with the metabo-
lite similarity measurement. In these works, two metabsliire considered as similar if
their peaks appear at the same locations. To this end, thetb®ds use threshold schemes
to accommodate the chemical shift differences betweeprdift metabolites. Neverthe-
less, the choice of the thresholds may strongly affect thastmess of the similarity mea-
surement method. To overcome this problem, we propose thefube fuzzy set theory
which is well appropriate to handle fuzzy situatioMdltz9qQ and hence avoid a binary
reasoning (similar or not similar). Moreover, in order tadeto a more robust, more accu-
rate and efficient similarity measurement method, addiliconstraints, other than peaks
location, such as the knowledge of the biopsy compositiongeak amplitudes should
be integrated into the assignment scheme. Tlaepdori knowledge are available in a
metabolites library denoted the "corpus”. Indeed, thew®gontains different metabolites
expected to be present within the spectra as well as theatkastics of each metabolites
(expected peak locations and peaks amplitudes). The cogmuise obtained by two ways.
In the first one, a reference spectrum is manually annotatedte spectrum annotation
task is equivalent to metabolites identification task) dahtthe annotation results are used
to identify metabolite presented in other spectra obtafnau the same type of biopsy. In
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the second one, the corpus does not depend on the biopsy.x&opke, it can be the
annotation results of spectra obtained from pure compoutm$eed, since the metabo-
lites are independent of the treated tissue type, the carpgs has no influence on the
metabolite identification scheme. Moreover, in order toéase the metabolite similarity
measurement accuracy, it is better to consider a multitspetetabolite identification.

4.2.1 Metabolite identification

The proposed fuzzy metabolite similarity measurementraehis divided into three steps:
1. Randomly choose a peak denoted the reference peak,
2. Find the candidate metabolites that may contain the teeleeference peak,

3. Find the right metabolite candidate according to différeriteria exposed in the
following.

Candidate metabolites selection

The first selection criterion, in the metabolite similarityeasurement scheme, is the
peak location. Indeed, each metabolite is composed of oseveral peaks at very specific
frequency coordinates (carbd®e chemical shift inx axis and protortH chemical shift
in y axis of the spectrum image). However, we recall that peaksstightly be shifted
from their expected positions. To overcome this, we asshiatethe peak membership to a
metabolite is a fuzzy concept. In fact, a given peak may lgetorseveral metabolites with
a membership degree denotag. The value of this membership degree depends on both
the expected and the measured peak location.

For the transformation from the hard to fuzzy domairi] anembership function de-
notedf is used. The expression ofis given below:

1
2
1+ (%2)
Fig 4.7.(a) shows an example &f membership function for a given paja;,b;). For a

given metaboliteM from the corpus, the membership deggge using al'l membership
function, is expressed as:

b = f((i—im)?+ (j — im)% a1, bs) (4.10)

where (i, j) is the peak measured position afigh, jm) is the expected peak position
(available from the corpus). The hyperparametexsb;) are automatically estimated
with the Genetic Algorithm procedure (see Append@ix Indeed, the GA aims at esti-
mating the model hyperparameters using a training datagetontains metabolites with
known similarity results. Once the candidate metabolitet 6f metabolites such that
(a1 —b1) < pm < (a1 +by) denoted hencefortBy) have been selected, we address in the
next part the problem of the right candidate identification.

f(xag,by) = (4.9)
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Right metabolite identification

Our challenge in this study is to properly model the metaégliofile using the priori
knowledge in order to lead to a optimal selection of the rigletabolite. To this end, we
define three criteria to be respected in the metabolite sehéemtification:

Criterion 1

Theoretically, and with respect to the reproducibilityngiple, the ratio of two peaks
belonging to the same metabolite must be the same for anywaltie®. But this rule is
not perfectly verified in practice (due to the degradationhef tissues used in the biopsy
during acquisition and/or the acquisition conditions tir&t not necessarily the same for all
observations). Therefore, the modeling of the ambiguitsottuced by these disturbances
is essential to avoid false negative identification (assm peak to a wrong candidate).
Let us denote, as the observed ratio between the reference peak and a neldaian
peak and; as the expected ratio given by the corpus. The more thess @i close, the
more the metabolite identification is reliable. To modes trgliability, we define astype
function f; as the membership function. The expressiori;,as :

0 X< ap
_ (xap)? 2 <x<b
fi(xa,bp,c) = (bzfaz)(?)z(:gzg))z 2 = > @.11)
~ oo P2SX<e
1 otherwise

Wherea, < by < ¢, are the hyperparameters of tfigfunction. Fig4.7.(b) shows an ex-
ample ofSmembership function for a given tripléay, by, c;).

The proposed reliability degree denoiggh is then given by Eq4.12 The hyperparame-
ters of this function are estimated using the Genetic algori{see AppendiB).

Hera = fo(min(re,ro)/maxre, ro); az, bz, C2) (4.12)
Criterion 2

In this method, we consider simultaneouslybiopsies (multivariate analysis). We as-
sume that the peak amplitudes follow a Gamma distributiodeé¢d, the major advantage
of this distribution is that the shape parameters allow tiiadi of spectral data that possi-
bly present some sparsity and/or a backgroundiigeon09. The criterion 2 models the
likelihood between the observed peaks and a given metali@ionging to the corpus. The
Gamma distributionPobigeon09 ¢ is expressed as:

oy oy B ey
G (yi;0,B) =V r(a)exrf Woy>0 (4.13)

wherey; stands for the amplitude, ard 3 > O represent the shape and the inverse scale
parameters respectively. The likelihood term has to beesgad in a multidimensional
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Figure 4.7 Different fuzzy membership functions used ia thetabolite identification
scheme: (a)1 membership function, (K membership function and (c) trapezoidal mem-
bership function. The hyperparameters of these fuzzy meshigefunctions are estimated
with the Genetic algorithm using a set of training spectruamaldases. Each database
contains several spectra with known metabolite identiioatesults. The simulations
show that these fuzzy membership function hyperparamaterslmost the same for all
databases.
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way. Nevertheless, an analytical expression of the muoigisional Gamma distribution
is not available. To overcome this problem, we propose teeotithe copula theory which
offers an elegant way to model the dependency between tferetif observations (the
metabolite realizations over several spectra) and heneedess to the multidimensional
Gamma distributionJoe97.

Several studies show the effectiveness of the Gaussiartecqpio handle dependency
[Joe9T. In order to properly take into account the metabolite delemcy into the similarity
measurement scheme, we adopt this copila:= (y,--- ,yn) € RN,

yirr-ny |)y] (4.14)

coty-1) = |- exp -

where§ = (d1(y),---,® L(yy))" with ®(.) the standard Gaussian cumulative dis-
tribution, I is the inter-spectra correlation matrix ahthe N x N identity matrix. Let us
now denoteR = (Ry, ..., R;,...,Ry) the amplitude of reference peak over theonsidered
spectra anK = (Xi,...,X%,...,Xn) the amplitude of a candidate peak over thepectra
and letg; be the theoretical ratio betwe@andX;: X = a; x R;, i = 1...N. In our caseR
follows a gamma distribution with hyperparametessand 3;. Under these assumptions,
(Xi/M) follows a gamma distribution with hyperparametersand%. Using the Gaussian
copulacy, the likelihood is then given by :

P(X/M) = fga(Xl;al,g—i) X ... X fga(XN;(XN, EN—N) X cg(X,Fx)

wherelx is the inter-metabolite correlation matrix. The hyperpaegers ofP(X/M)
are estimated using an MCMC procedu8niith93. We use this last expression to build
the reliability degree: considering &membershipf, as, the proposed reliability degree
denoted. is given by:

Her2 = f2(P(X/M); a3,b3,C3) (4.15)

Thus, the higher the likelihood vall& X /M) is great, the morgy» is close to 1 and
the more the probability of the metabolité to be the right metabolite is large.

Criterion 3
This criterion deals with the variations of the observedkpa@mical shifts from their
theoretical positions defined in the corpus. We use the saembmrship function as in
Eq4.9. The proposed reliability degree denotedpgy is hence expressed as:
Mers = fwn (1 —im)?+ (J — im)?); @0, br) (4.16)

where(i, j) stands for the observed peak position & ju) for the theoretical peak po-
sition.

Global criterion
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We combine the 3 reliability degrees previously defined,Xjoeet the best candidate
in the following way:

K

M = argmax [ Hert (X)-Her2(Xic) - Hera (X)) (4.17)
MeCy k=1

As one can remark, given the cost function definition (Egl7), a solution of the
metabolite identification always exists which is not neagfs correct (.e; a metabolite
can be not present in a spectrum). In order to reduce the nuohlfese positive identifi-
cation, the reliability of the membership degrees for dfledént criteria ofM should also
be guantified. In other word, not all solutions of (Eh17) are acceptable. Therefore, we
propose a last fuzzy decision function that takes as inpittherion value oM and as
output their reliability. This reliability is quantified kpe membership degree bf; to the
fuzzy set: the metabolites biomarkers set. We opted forrdperzoidal function denoted
by g as a membership function. The expressiog of given by :

(%) as<x<by

1 bs<x<c

g0canbsCad) =4 (4.18)
(q=8) Casx<ds
0 otherwise

whereay < by < ¢4 < dg.

The allure ofg for a given quadrupléas, by, c4,d4) is presented in Figd.7.(c). Another
time, the Genetic algorithm was used to estimate this queéelrd’he decision to identify
M as a right metabolite depends on the output of the funagiois one can remarkg
function depends on the quadrugbe, bs,c4,ds) as well as or{az, by, ¢2), (as,bs,c3) and
(a1,b1). The decision function is expressed as:

K
([ Mere (X)-Herz(Xi) -Hers(X); @4, ba, €, da, @1, b @2, bz, €25 83, bs, C3) (4.19)
K1

If g(ﬂE:1 Ucrl(xk).ucrz(xk).ucr3(xk)) — 1 thenM is selected. It is important to note that
under some circumstances, such as the changes in the naolétement features, some
peaks of a given metabolite may not be present. Thus, sudptans should be taken
into account in the annotation scheme dua fwiori knowledge. To this end, an exception
list is made by physicians. This list contains the peak satriay not be present for each
metabolite. Let us denote b, k= 1...K the peaks of a given metabolité, belonging to

the exception list and b¥e the peak which could not be present. The exception handling
is defining in Algl.

Algorithm 1 Exception handling algorithm
Input=Xxe andMe.
1-Calculate the membership functipgs(Xe) (Eq. 4.16),
2-1f per3(Xke) # 0, no change oM composition is made,
3-If per3(Xke) = 0, the new composition dfle is Xy, k= {1...K} — {ke},
Output=new composition d¥le.
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An overview diagram of the metabolite identification champresented in Figd.8.

Candidate S
metabolites metabolite signaturg
selection criteria (Eq.4.15

|

Criterion fuzzy : sig'nature
Sp— m modeling: Genetic modeling:
an clnm yPeaks .. | fuzzy membership~—i— algorithm fuzzy membership
selection functions (Ec4.9) optimization functions (Eq4.17)
T (Appendix B)

|

Peak detection - -
and 11 [Location criterion ! Right metabolite
alignment o (Eq4.10 ! selection (Eq4.19
... Stagel ! Stage2 : |____._.Stage3

Figure 4.8: Overview diagram of the metabolite identificatchain.

4.2.2 Metabolite identification validation

This part describes some biomarker identification resiitained with the proposed scheme.
This method was applied on synthetic spectra designed twfitharacteristics of thi -

13C HSQC HR-MAS spectra as well as on some real spectra. Moréigesureal spectra
are presented in chaptér

In order to validate and emphasize the benefits of the prapaperoach, we have
retained theecall and theprecisionmeasurements for the synthetic data validation:

TP

. TP
TPFN’

precision=
whereT P stands for the number of true positive identificatioR$) the number of false
negative identifications arfdP the number of false positive identifications.

The main advantage of using simulated data is that we pbrfeabw the character-
istics of the data such as the number of peaks presented iy gvectrum and the peaks
chemical shifts values. For this, we firstly generate a stiththeoretical 2D spectrum
imageXrer (M = 500 pixels byN = 500 pixels) which containsl, = 500 peaks corre-
sponding to two hundred metabolitBlg, = 200. The positions of different peaks and the
hyperparameters of the shape filter for each peak are ragdgenkerated. This synthetic
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spectrum will be used as reference to register other syathg¢ctra. Nine other synthetic
theoretical 2D spectrum imagés, i = 1...9 are generated frorRes by applying a dis-
placement vector at each peakxafs. The values of chemical shift vectors are assumed
to be random and following a Gaussian distribution with zeean and a variance matrix
rd:[ 0% o } The new shape peak hyperparameter for each peak is caltiigtadding

a zero-mean Gaussian random noise of variance 0.005. Aabpatero mean correlated
noiseB was added to each spectrum to obtain the synthetic spe@dhimshe simulation

Yref, Yi, | — 19

Figure 4.9 shows the synthetic theoretical 2D spectrum im#&ge and the reference
synthetic spectrunites with PSNR = 30dB where:

PSNR= 10logio(maxXret)?/E[(B)?]) (4.20)

This value of PSNR was chosen to fit at best the real spectfacinthe PSNR of the
real spectrum is- 30dB. Concerning the useambrpus it summarizes the ground truth of
Yet. Itis important to note that all the spectra are presentaatur plots with the same
number of level.

In order to emphasize the benefit of the proposed approaae thifferent similarity
measurements methods were applied to the synthetic spedteal...9 with different val-
ues of PSNR: our identification method , an SVM methGdrnps-VallsOband a threshold
method Kia08] . The metabolites identification results 4fare presented in Tablel
First, as one can see, the proposed method is enough robagtight level of noise. In
fact, even with a PSNR= 23dB, thecall and theprecisionmeasurements are still close to
90%. Secondly, we can easily observe that the proposed thptréormed better than the
SVM method which does not take into account gheriori knowledge.

Proposed method SVM Threshold method
PSNR| recall(%) | precisior(%) | recall(%) | precisior(%) | recall(%) | precisior(%)
30dB 93.87 95.11 90.38 91.72 81.16 78.01
28dB 92.42 94.82 88.50 89.61 78.98 76.12
25dB 92.84 94.64 82.11 86.90 75.77 74.25
23dB 89.02 90.18 83.02 84.66 74.02 71.88

Table 4.1: The averageecall(%) and precisior{%) obtained with: our identification
method, the SVM method, a threshold method on syntheticispec

Figure4.10presents the metabolites identifications results on the sagion ofY; and
Y,. Each pealp belonging to a given metabolitd is labeled with(p,M). As we can see,
some peaks (like peak number (6,1), (3,2) and (9,1)) aralysuery difficult to identify,
yet our method is able to properly assign them.
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The performance of the proposed method was evaluated iradeeaf missing peaks.
The missing peaks were simulated by removing peaks of eatdbwige randomly with
0%, 20% and 50% probabilities. We can distinguish two ca$éise modified metabolite
belongs to the exception list, the exception handling #@lgar (Algorithm 1) is then per-
formed. In the other case, we assume that the peak absencgivahametabolite is the
result of the metabolite absence. We have applied our atimotscheme on the synthetic
spectra. The results show that every modified metabolitelwtides not belong to the ex-
ception list was not identified and indeed every metaboltierying to the exception list
was identified. In other words, we obtained the same ressittscse presented in Tallel

Figure4.11displays the metabolites identification results on the samne of a healthy
and a cancerous spectra. As we can see, some metabolitesméiiabolite number (5,2))
are visually very difficult to identify. Yet our method is aelly able to correctly identify
them even with a high noise level.
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Figure 4.9: (a) The synthetic theoretical 2D spectiXig, (b) a contours plot of the refer-
ence synthetic observed spectrifgy (PSNR = 30dB).
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4.3 Active zone coding and similarity measurement (fMRI)

Among object coding methods, the 3D Gaussian DescriptoG@proposed by Chaouch
[ChaouchO®has showed its effectiveness compared to other methodwasdanked first
on the Princeton Shape Benchmark database. The 3DGD metiesian the object Gaus-
sian transformation which is derived from the Gaussian lAlthough this method was
successfully applied on 3D internet object searching,dsents a shortcoming. Indeed, it
does not provide an information about the object surfacegmphy. In order to lead to
a more accurate fMRI active zone objects coding and simjlaneasurement result such
information should be taken into account the proposed seheéra this end, we propose
a new descriptor: the 3D Generalized Gaussian Descrip@G@D) inspired from the
3DGD method.

4.3.1 The 3D Generalized Gaussian Descriptor

In order to code a 3D object, we recall that author@figouchO0Pproposed the partitioning
of the object intd\® cells and then the calculation for each one’s cegtgg, i = 1..N, j =
1.N, k= 1..N. Then, the author assigned to each cetiharacteristic value gk as
following (Fig. 4.6):
)2
Glik = ZApexp(M> (4.21)
pe

202

whereA, is the area of the triangular associatedptoThus, the 3D object is codified
with Cij k-

Our goal is now to adapt the partitioning object step to thégdaspherical shape of the
fMRI active zones and to introduce the surface topology theocoding step. Concerning
the first task (object partitioning), it is sufficient to phietactive zone into a unit sphere
modeled byM pointsgn, m=1...M (Fig.4.12. Then, we assign to each point of the sphere
a portionty,, m=1...M of the object surface. Concerning the second task; is indepen-
dent of the topology of the cell surface. In other words, thethod treats in the same way
a flat surface (Figt.13(a)) or a surface with reliefs (Fig.13(b)).

An elegant way to integrate such information is the use ofGleeeralized Gaussian
function. Fig4.14shows the shape of Generalized Gaussian function withreiffesalues
of the shape parametar This parameten allows us to adapt our function to the topology
of t, surface (Figd.15. In other words, the more thg surface is flat the more is great.
The shape parameter for eachty, portion is estimated using the Maximum Likelihood
(ML) algorithm.

The 3DGG descriptotgg(m), m=1...M (Fig.4.12, is given by:

Cea(m) = Z Apexp[—(n(atm)|Pm — G| )*"] (4.22)
PEm
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Figure 4.12: Spherical partitioning of a fMRI active zone.
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Figure 4.16: Overview diagram of the proposed active zooeig and similarity mea-
surement chain.

[N

wheren(apy) = [02%%“:1)} “T(a) = Jo % Lexp(—t)dt andgm is the point belonging to

the unit sphere and associated o

To compare two object®! andO?, we firstly calculate for each one the 3DG@b=
[ctca(M)]mem andc® = [Pca(M)]mem. The similarity can be calculated using the euclidian
distance as follows:

A(OY,0%) =d(ct,¢?) (4.23)

In order to be less sensitive to small displacements or ngeometric variations, we
introduce a new similarity measure that minimizes the distabetween adjacent pairs of
components:

A(OY,0%) = 1 % (c(m) —nge(m))zz
M & (Cga(m) —Cag(m))?, M €V
whereVp, is the 1-order neighborhood of the descriptgg(m). An overview diagram of

the proposed active zones coding and similarity measureotein is presented in Fig.
4.16

4.3.2 Active zone coding and similarity measurement valideon

In this part, we provide some 3D object coding and similantgasurement results ob-
tained with the proposed method. As for the alignment metladidation, this method was
applied on partial 3D objects designed to fit the charadtesi®f the active zones as well
as on some real fMRI images. More results on real active zaregresented in chapter
6. In order to emphasize the benefit of the proposed method artitydarly the use of
the Generalized Gaussian function to model the surfacddgpowe have compared our
algorithm to (3DGD) method@haouchOPand the Shape histogram methdhkerst99.
The goal of these experiments is to assess the performattoe mfoposed coding and sim-
ilarity measurement scheme. To construct our toy data sefirstly generated five partial
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3DGGD method 3DGD method shape histogram method
dataset recall(%) | precision(%) | recall(%) | precision(%) | recall(%) | precisior(%)
datasetl (55% o%,) | 91.35 88.02 84.21 83.25 80.38 75.72
dataset2 (60% o%,) | 90.44 88.12 85.50 82.01 81.67 77.45
dataset3 (65% o&) | 91.74 87.23 81.09 78.96 77.10 75.98
dataset4 (70% o%,) | 88.17 86.88 79.69 78.64 70.18 67.41
dataset5 (75% o%,) | 90.95 89.03 86.78 84.35 74.11 72.08

Table 4.2: The averagecall(%) and precisior{%) obtained with: our coding and simi-
larity measurement method 3DGGD, the 3DGD method, the shepegram method on
different simulated datasets.

spheresPS i = 1...5, by removing 55%, 60%, 65%, 70% and 75% of an entire spBgre
EachPS§ is then partitioned intd = 20 portions. From eacRS, we generate nineteen
other partial sphereBS;, j = 1...10 by only modifying three portions ¢&?§ surface. Fi-
nally, from eachPS; we generate fifty other 3D object by adding a Gaussian noise su
that thePSNRe [10dB,20dB]. At the end, we obtain five datasets. Each dataset contains
one thousand 3D objects. These simulated datasets allosvaxaluate the performance
of the method in difficult cases such as the capacity to digndte objects with minor
changes (only three surface portions) and its robustnedigfeéoent values of Peak Signal
to Noise Ratio PSNR. Note that we have opted for the 3D trilamguesh representation
for all artificial toys. For the performance assessment,eta@med the samecall and the
precisionmeasurements as the metabolite identification validation.

Figure4.17 shows some simulated 3D objects. The object coding andasityiimea-
surement results for each data set are presented in Fablda-irst, as one can see, the
proposed method performs the best coding and similaritysareanent results compared
to the 3DGD and the Shape histogram methods which do notakeccount the surface
topology information. Secondly, thecall and theprecisionmeasurements are still close
to 90% for all datasets which proves that the proposed methaell adapted to this type
of 3D objects (partial spherical object). Figu#l18shows an example of two simulated
3D objects wrongly assigned with the 3DGD method. As one eanisis very difficult to
visually observe the differences. Note that these two tbj@ere correctly indexed by our
method. Figure4.19shows an example of real active zones assignment.

Conclusion

In this chapter, we presented two new object coding and aiityilmeasurement methods.
The first method, dedicated to the 2D HSQC spectrum metakidiéntification, is based
on the use of the fuzzy set theory to deal with the ambiguitictvis in the heart of such
an identification task. The use of the metabolite likelihooehsure as metabolite signature
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Figure 4.17: Six simulated 3D objects.
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Figure 4.18: An example of two simulated 3D objects wrongigigned with the 3DGD
method.

Figure 4.19: Assignment result of real active zones obthimi¢h the proposed method.
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has increased the robustness of the proposed identificatiame with comparison to the
SVM and the threshold methods which do not take into accdwed priori knowledge.

In the other hand, the second method, dedicated to the fMREamne object, relies on the
Partition-Space approach. This approach allows us to ciffdesht objects into an appro-
priate description and to calculate the similarity betwtem objects. In order to integrate
the surface topology information into the coding and sintifameasurement scheme, we
proposed a new descriptor: the 3D Generalized Gaussianipesd3DGGD). The syn-
thetic validation of the proposed active zone coding andlaiity measurement scheme
has shown that the modeling of the surface topology hasaserkthe robustness of the pro-
posed coding and similarity measurement scheme with casgrato the 3DGD method
which does not take into consideration thigriori knowledge.
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Symbols:
Xi Object features vector
ri Classification result of;
f Separating function
(w, b) Hyperplane hyperparameters
(w*, b*) Optimal hyperplane hyperparameters
B Lagrange multipliers
Yy Lagrange multipliers
a Lagrange multipliers
oF Optimal Lagrange multipliers
G Slack variable associated xp
C Regularization parameter
C Regularization parameter
C Regularization parameter
X Kernel function
o(.) Mapping function
H Hilbert space
(R a Hypersphere hyperparameters
(R, @) Optimal hypersphere hyperparameters
Co Gaussian copula
) Standard Gaussian cumulative distribution
r Correlation matrix
I Identity matrix
V] Membership degree to the target class
Cht Hard class of target population
Cit Fuzzy class of target population
Cho Hard class of outlier population
Csto Fuzzy class of outlier population
G Gamma distribution
A(,) Standard normal distribution

GG

Generalized Gaussian distribution
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Acronyms:

HR-MAS
HSQC
fMRI
SVM
SVDD
SV3DH
ML
MCMC
LOO
RBF

High Resolution Magic Angle Spinning

Heteronuclear Single Quantum Coherence spectrum
functional Magnetic Resonance imaging

Support Vector Machine

Support Vector Data Description

Support Vector Data Description with Dependency Hiagd
Maximum Likelihood

Monte Carlo Markov Chain

Leave One Out

Radial Basis Function
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Introduction

The Object classification is the third step in the proposegegatbindexing scheme (Fig.
2.15. This step aims at comparing a request (individual/grdupexical signal) to defined
groups belonging to the available databasg, (healthy group or pathological group) for
change detection. Indeed, detecting the changes betweapgis equivalent to discrim-
inating the data into two classeshangedandunchangedor unimportant changed) data
classes (the later will be the class of interest in the faihg) In this case, the correspond-
ing classifier is know a one-class classifier (target clads@ject class). The classification
method may either be supervised due to the difficulty of tls& ta unsupervised but the
cost is sometimes a loss of robustness and/or higher congptithe. In the supervised
case, the process requires to be able to access to a grotinihtouder to derive a suitable
training set for the learning process of the classifiers. &l@s, the ground truth is usually
difficult and expensive to find (which is unfortunately ousep. Consequently, the use of
unsupervised change-detection methods is crucial in m@pijcations where ground truth
is out of reach.

Among all object classification/change detection methagspay attention in this the-
sis to the kernel based classification methods. Indeed aimekbased methods offer sev-
eral advantages compared to other approaches: they rduiceirse of high dimension-
ality in data and increase the reliability and the robustnafsthe method to a high level
of noise Li0O6]. In this chapter, we present in sectidtil, a brief overview of the object
kernel-based methods. In sectibr2, we propose a new kernel function which combines
the characteristics of basic kernel functions with new rimfation about features distribu-
tion and then dependency between samples. This kerneldaristthen used to map the
data into a high dimensional features space where an hypmesencloses most patterns
belonging to the "unchanged" class. The dependency betasaples will be based on
copulas theory that will be used for the first time to our kreage in the support vector
data description (SVDD) framework. In sectibtB, we pay a particular attention to check
that the proposed kernel function is robust with higher grenance compared to classic
Support Vector Machine (SVM) and Support Vector Data Desicm (SVDD) methods.

5.1 Kernel-based classifiers

In the literature, two very interesting and widely-usedup®vised change-detection meth-
ods are the Bayesian methodmeraODand the kernel method8gn-Hur03. Although
the former approach is relatively simple, it exhibits a macawback: it requires a large
amount of knowledge about the class of interest which is ey available, particularly,
in highly complex applications like the medical orf@ahchez-HernandezD7Moreover,
when only weak changes occurred between the two considertadsdt, the probability
density function (pdf) of thehanged datanay be confused with thenchanged datadf
(e.g., the Hidden Markov Model method generally tries to regakaihad classification re-
sults due to this ill-posed problem and the presence ofeyatin the dataBelghith09).
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Although these drawbacks, Bayesian methods offer effidigols to include ara priori
through a posteriori pdf.

Furthermore, the kernel methods are more flexible. Indéedkérnel-based function
offers several advantages compared to other approactessrettiuce the curse of high di-
mensionality in data, increase the reliability and the stbess of the method to a high
level of noise and allow flexible mapping between objectpyin) represented by a feature
vector and class label (outputS}jjawe-TaylorO Among all these advantages, the ker-
nel based change-detection method is not time-consumicigham allows to develop real
time applications. The mainly used kernel-based methaaltharSupport Vector Machine
(SVM) and the Support Vector Data Description (SVDD).

5.1.1 Support vector Machine SVM

Let {Xi}i—1. k, Xi € RN be the vector containing the features of a given object and
{ri}iz1..x, with r; € {£1}, the corresponding output gk; };—1_ k. The SVM algorithm
aims at classifyingx; }i—1._k into two classes: class of targete( unchange or; = +1
class) and the outliers.€.; change or; = —1 class). In the supervised case, the purpose of
SVM algorithm is to predict the labe] from a set of observations called training set com-
posed by object$x; }i—1._k with known classification resultg; }i_1. . Thus, the problem

is to find a separating functiof that assigns the label 1 (respectivehl) to each object

X; such thatf(x;) > 0 (respectivelyf (x;) < 0). The separating surface (or the separating
hyperplane) is then given by the equatibfx;) = 0.

Linear classifier
Suppose the training data

(X, M)i—1.k, X €RN, rie{-11}
can be separated by a hyperplane :
N
wixi+b= "y wx(j)+b=0 (5.1)
=1

wherew € RN andb € R (called thebias) are the hyperparameters of the hyperplane.

We say that this set of vectors is separated by the optimatrpigne if it is sepa-
rated without error and the distance between closest véetibre hyperplane is maximal
[Vapnik0d. The separating hyperplane can be described by the failbpfdrm:

n(whx+b)>1, i=1.K (5.2)

To find this hyperplane, one has to solve the following quidmogramming problem:

1 5
min QW w (5.3)
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subject to constraints (E.2).

This is a classical optimization problem with inequalitynstraints. Such an optimiza-
tion problem can be solved by the saddle point of the Lagrémgetion [Vapnik0Q:

T K

— Zdi [ri (WTXi + b) — l] (5.4)

=

L(w,b,a) = 2~ W

I\J ‘

wherea > 0 is the Lagrange multipliers. To find this point, one has taimize this
function overw andb and to maximize it over the Lagrange multipliexs> 0. At the
saddle point, the solutiofw*,b*, a*), should satisfy the condition:

oL(w",b*,a*)
— =0 (5.5)
aL(w",b*,a*)

——— =0 (5.6)

Rewriting theses equations, one obtains the following @rtigs of the optimal hyperplane:

1. The coefficienti* for the optimal hyperplane should satisfy the constraints:

K
a’ri=0 a*>0 (5.7)
2,%

2. w* is a linear combination of the vectors of the training set:

K

W= _Zlai*rixi (5.8)

3. Only the so-called Support Vectors (SV) can have nonzesgfficientsa;* in the
expansion ofwv*. The support vectors are the vectors for which in inequdkg.

5.2), equality is achieved.
wh = i;af‘rixi (5.9)

This fact follows from the classical Kuhn-Tucker theoremm¢@ding to which nec-
essary and sufficient conditions for optimal hyperplanelzasiethe separating hyper-
plane satisfies the conditionggpnik9g:

a [ri ((w*)Txi + b*) - 1] —0i=1.K (5.10)

Putting (Eg5.8) into (Eg5.4) and taking into account the Kuhn-Tucker conditions, one
obtains the functional:

~

K
W(a) = eromtxxJ (5.11)

I\JII—‘
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It remains to maximize this functional in the nonnegativadpanta; > 0 and under
the constraint:

K

ajri=0 (5.12)
i; (R
This can be achieved by the use of standard quadratic progiragmethodsBazaraaOp

Let the vectol* = (a7, ...,a ) be the solution to this quadratic optimization problem.
The separating function functiohis given by:

f(x) :sign(%vai*rixTxi +b*> (5.13)

wheresign(.) is the sign function and

b* =r —w*TXs (5.14)

wherexs is a given support vector.
Non-linear classifier

In the previous paragraph, patterns belonging to the trgisiet are assumed to be
linearly separable with a plane separating surface. Homdwe assumption of linear sep-
arability case is too restrictive for many particular apations, especially when data are
noisy. The optimal margin algorithm is generaliz&tbftes9%to nonseparable problems
by the introduction of non-negative slack variables dethdied; jc(1 .k} > 0 in the state-
ment of the optimization problem (Fi&1).

The changed objective functional with penalty param€téa regularization parameter
that controls the trade-off between the mangand the number of learning errors) is:

wlw K
—+CH G (5.15)
2 "
subject to the inequality constraints:

i (Wi +b) >1-¢, i=1.K,&§>0 (5.16)

In analogy with what was done for the separable case, thefubke dagrange multi-
pliers leads do the following optimization problem:
Maximize

1 K
Wa)=%a-5 7% Q0 X] X (5.17)
’J:

subject to:
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K
Zlonri =0and0<qg;<C (5.18)
i=

As one can remark, the only difference from the separable isakat now the; have
an upper bound dt.

However, even with the introduction of the slack variakgghe training set may re-
quire a decision surface more complicated than a simpladihgperplane. To take into
account non-linear separator, the linear SVM can be gémedaby the introduction of the
kernel functions (Fig5.2) [Boser92. Indeed, the kernel function allows the mapping of
data set defined over the inpuinto a higher dimensional Hilbert spakk(feature space)
where the patterns are assumed to be linearly separatedndpy@ng function is denoted
by ¢ : x — H. If a given algorithm can be expressed in the form of dot pet&lin the
input space, its non-linear kernel version only needs thigamucts among mapped sam-
ples. Kernel methods compute the similarity between tngisamples using pairwise inner
products between mapped sampldalmos82. The bottleneck for any method based on
kernel function is the proper definition of a kernel functibat accurately reflects the sim-
ilarity among samples. In the early years of kernel mactaaening research, researchers
considered kernels satisfying the conditions of Mercdrotem (e.g.,Rousseau(3.

Definition 1 Letx be a closed set &&N. A symmetric functiom : x x x — R which for
all g(.) € Lo(x) (square integrable function):

/X /X X (X,¥)9(x)g(y)dxdy> 0 (5.19)
is said to be a Mercer kerneMinh06].

In [Hofmann0§, authors show that the positive definite kernels are thiet itass of
kernels to consider.

Definition 2 Letx be a nonempty s&N. A symmetric functiork: x x x — R which
for all x; € x and real numbersijac R:

> &K (xi, %) >0 (5.20)
1]

is said to be a positive definite kerndllinh0g].

The most common used kernel are:
e the linear kernelx (x;,x;) = X" xj,
o the polynomial kernef (xi,xj) = (xTxj+1)¢,d >0

e the Radial Basis Function (RBFX (Xi,Xj) = exp—(Xi — ;)T (xi —;)/20%), 6> 0
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Once a valid kernek has been chosen, to find the coefficianin the separable case
(analogously in the non-separable case) it is sufficient to:

maximize
K 1 K
W(a)=Sai—= '} rirjoio; € (xi,x;) (5.21)
29722,
with a; > 0 and under the constraint:
> air=0 (5.22)
|
and the decision function is
K
f(x) = sign Zai‘rﬂc(xi,xj)+b* (5.23)
1=

2 [+ outlier B
+ target *

Feature 2

-2
Feature 1

Figure 5.1: Non-linear classifier separation by a hypemplaith slack variableg;.

+ outlier
2r + target

Feature 2
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Figure 5.2: Kernel classifier separation by a complex degisurface.
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5.1.2 Support Vector Data Description SVDD

The aim of SVDD classifier method consists in mapping the otea high dimensional
feature space. In this new space, an hypersphere enclosisgofithe data set belonging
to the class of interestdrget class corresponding tonchanged dafaand rejecting the
other observations (that will be considered ldgliers) is defined (Fig5.3) [Tax04. This
amounts to draw a minimum volume hypersphere in the keraglife space that includes
all or most of the target objects which are available in tagtng set. By analogy with the
SVM problem (which consists in estimating the hyperparanseof the hyperplaney;b),
the sphere is characterized by its cemand its radiusk > 0. Thus, the problem is to find
a decision functiorf that assigns the label 1 (respectivehl) to each objeck; such that
f(x) < R(respectivelyf(x) > R).

In the following the target objects are enumerated by irglieend j. Thus, minimizing the
volume of the sphere returns to minimiziRg with the constraintsTax04:

(xi—a) (xi—a) <R Vi (5.24)

To allow the possibility of outliers in the training set, tistance fronx; to the center
ashould not be strictly smaller tha?, but larger distances should be penalized. Therefore
we introduce slack variablgs > 0 and the minimization problem changes into:

£2{¥+CZQ} (5.25)

with constraints that almost all objects belonging to thrgedt class are within the
sphere:

xi—a)'(x—a) <R+L Vi, {>0 (5.26)
As for the SVM case, the saddle point of the primal Lagrangid a, ¢;, 0, ;) [Tax04:

L(Ra g, ai,Yi) = R2+CZEi - a {RE+& — (xi'x —2a' X +aTa)}—ZyiEi (5.27)

wherea; > 0 andy; > O are the Lagrangian multipliers. Again, one should find an
optimal saddle pointR*,a*,*,a*,y") by minimizing L with respect tqa, R, {) and maxi-
mizing L with respect to non-negativ@,y). In analogy with what was done for the SVM
case, a solution in dual space is found using standard ¢omslitor an optimum of a con-
strained function:

o . .

3R 0,i.e .zai =1 (5.28)
oL . . «
P 0,i.e a' = .Zai Xi (5.29)
o =0,i.e o +y =C (5.30)

a¢;
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From the last equatioa; + v = C and because; > 0, y; > 0, Lagrange multipliers;
can be removed when we demand that @; < C. The use of the dual variables Lagrangian
leads do the following optimization problem :

Maximize

W(a) = z aiXi Xj— z aiaX; Xj (5.31)
| iR A Z idjRp Xj
subject to:

0<a;<C (5.32)

Eqg5.29shows that the center of the sphere is a linear combinatitimeadbjects. Only
the support vectorss are needed in the descriptioR? is the distance from the center of
the spherea to (any of the support vectors on) the boundary. Supportoveathich fall
outside the descriptiofo; = C) are excluded. Therefore:

R2:XSTXS—ZZ(XiXSTXi—i—ZGideiTXj (5.33)
| 1,]

To test an object, the distance to the center of the sphere has to be calculatizbt
objectz belongs to the target class when this distance is smallegual ¢han the radiuR:

f(z) = (sz— 25 ofz'xi + Zui*u]-‘xiTXj> <R (5.34)
| 1,]

When negative examples (objects which should be rejectec\ailable, they can be
incorporated in the training to improve the descriptioncdmtrast with the training (target)
examples which should be within the sphere, the negativepbes should be outside it.
This data description now differs from the normal Supporttve Classifier in the fact that
the SVDD always obtains a closed boundary around one of #ese$ (the target class).
In the following the target objects are enumerated by irgliceand the negative examples
by |, m. Again we allow for errors in both the target and the outlierand introduce slack
variables¢; > 0 and¢; > 0 and the minimization problem changes int@x04:

min {R2+clzzi+czzzl} (5.35)

Radi,q

and the constraints

(xi—a)' (xi—a) <RP+&, (x—a)'(x—-a>RP-Y, >0, >0, Vil (5.36)

whereC; andC, are two regularization parameters. The saddle point of thegb
Lagrangiani(R,a,i, {1, 0, 01, Yi, W):
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L(R.a,3i,21,00,001,Yi 1) =R2+clza+czza ACRIAN
=Y ai{R+&— (xx—2a"x+a'a)}

—Zon {(x'x —2a"x +a"a) —RP+&} (5.37)

wherea; > 0, a; > 0, > 0 andy; > 0 are the Lagrangian multipliers. Setting the
partial derivatives of L with respect , a, &; and§, to zero gives the constraints:

yai - Zal* =1 (5.38)
at = Zai*xi — Zoq*xl (5.39)

0<0i<Cq, 0<a <Gy, Vil (5.40)

The use of the Lagrange multipliers leads do the followingrozation problem Tax04:
Maximize

W(Gi,C(|) :zC(iXiTXi — ZC(|X|TX| — ZGiGinTXj
I I7J

_Za|0(mx|Txm+ZZaj0(|ijx| (5.41)
m J

subject to:

0<a<C;, 0<a <C, Vil (5.42)

If we define new variablee'n = rnan. Note that the following the indem andq enu-

merate both target and outlier objects.
The SVDD with negative examples is identical to the normaD®V The constraints

given in (Eq.5.38 and (Eq.5.39 change intdy , (a;,) = 1 anda® = ¥, (ap,) %, and again
the testing function E§.34can be used.

Once a valid kernelk has been chosen, to find the coefficiantin the positive case
(analogously in the positive and negative case) it is seffitcfo:

maximize
W(a) = aig (X, Xi) — ) aidjK (Xi,X;) (5.43)
I I7J

subject to:

0<a;<C (5.44)
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Figure 5.3: Linear classifier separation by an hypersphere.

The new testing function is expressed as:

f(z) = (K(z,z) —ZZGf‘K(z,xi)+ZO({‘O(]‘K(xi,xj)> <R (5.45)
] [N]

For the case with negative examples, the testing functierpsessed as:

f(z) = (zfc(z,z> ~25 (o) K (zx) + ¥ <a’n>*<a’q>*x<xn,xq>> <R (5.46)
n n,q

5.2 Support Vector Data Description including Dependency i-
pothesis

The change-detection/classification problem is tacklednimunsupervised way using the
kernel-based approach. However, the main bottleneck ofekenethods is the choice of
the kernel function which depends strongly of the applaafiScholkopf0Q. Although
the basic kernel functions are more or less successfulliiegbfor change-detection, they
do not exploit additional constraints often available,tsas the dependency and the dis-
tribution of different features. We particularly show thiaé change-detection should be
more robust, more accurate and more efficient if such inféonas integrated and cor-
rectly modeled within the change-detection method. In otdgake into account these
characteristics in our change-detection scheme, we peapesnew kernel function which
combines the old kernel functions with a new information wtfeatures distribution and
dependency. The challenge is then to find the appropriatetovhgindle this dependency.
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To this end, we have opted for the copula theory which hasautite effectiveness to han-
dle dependencyJpe97. Several studies show the effectiveness of the SVDD metbod
detect changesypng04 Camps-VallsO8 Indeed, in the case with few available labeled
information, purely supervised approaches like SVMs yj@or solutions since there is
no information on the change class. Contrarily, SVDD offegsy good results since the
method tries to model the 'unchange’ class accurately ratien building a separating
hyperplane 'change’/'unchangeCamps-VallsOf For this reason we opt for the SVDD
method. Moreover, we show that the use of the new kernel ifomébcreases the per-
formance of the change-detection compared to the basiek&mctions. The proposed
method is denoted SV3DH (SV3DH is the acronym for Supportdebata Description
including Dependency Hypothesis).

5.2.1 Copula kernel function

The proposed kernel function

We remind that we seek to blindly classify the data into twassks: class of tar-
gets (.e.; unchange) and the outliers using the SVDD method. In thisyea define the
proposed kernel function. Our aim is then to properly modl mtegrate both the de-
pendency and the distribution of different features in teekl function to reach a more
accurate change-detection result. The new kernel funstimuld combine the old kernel
functions (in our case the RBF function which offers somedian degree thanks to the
hyperparameteo) with a new information about correlated features distidiu To this
end, we propose a simple, yet powerful, kernel function éasethe copula theory.

Several studies show the effectiveness of the Gaussiarectpto handle dependency
[Joe97 and we adopt this onefy = (yi,---,y.) € R',

. ST r=1_ 1\
cely) = Ir|* exp[_LzUy] (5.47)

where§ = (@~ 1(yy),---, @ (y )" with ®(.) the standard Gaussian cumulative dis-
tribution, I' is the inter-data correlation matrix ahdheL x L identity matrix.
The proposed kernel function is given by:

X (Xi,%j) = Ca(Xi,X). exp(—(xi — ;)T (xi —Xj)/20%) 0>0 (5.48)

whereCgs(xi,Xj) = (& Sk-1ca(%i(K),xj(k)) andN is the length of the vectog andx;. Simply
expressed, the more the coule, x;) is dependent the mo@s(x;,x;) is close to 1. The
hyperparameters of the copula function are estimated Witvtaximum Likelihood (ML)
procedure. Since the new kernel is the sum and the produdsitiye definite kernels, it
is a positive definite kernel as welHpfmann0§.
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5.2.2 The SV3DH algorithm

The proposed scheme is based on two steps: 1) an initializatep 2) the SV3DH core
algorithm.

Fuzzy K-means initialization

The first step of the proposed change-detection schemedsmdify two classes: the class
of targets and the class of outliers which are required tialiie the SVDD classifier.
In order to address the gradual transition between botlsetasve apply the fuzzy K-
means methodjuda0] to extract classes. To estimate the membership functifinide
the membership degree of an element to the class of targetsised an S-membership
function.

Let 4 be the estimated membership of an object to the target chashie end of this
K-means-based initialization step, we get two hard claaedswo fuzzy classes: 1) Hard
class of target populationu = 1 denotedCy, 2) Fuzzy class of target populatiop:> 0.5
denotedCy, 3) Fuzzy class of outlier population: © L < 0.5 denotedCs, and 4) Hard
class of outlier populationpt = 0 denotedCy,o. This result will be used for initializing the
SVDD algorithm.

The SV3DH core algorithm

The second step aims at describing the target class by grglthe information present in
the target and outlier sets defined in the initializatiornp gtee use the SVDD with positive
and negative patterns). For this, we replaced the kernektibtmin Eq. 5.46 by the pro-
posed one. The leave-one-out cross-validation estimaasrused to estimate our model
hyperparametersawley03. This algorithm, often cited as being highly attractive floe
purposes of model selection, provides an almost unbiagedads.

5.3 Experiments

In this section, we present the experimental results obtamith the proposed method on
synthetic on real dataset which have been introduceRatgch0l as a benchmark collec-

tion. The advantage of this collection is that the grounthtis available. Unfortunately,

since no ground truth is available for 2D HSQC spectra, omyraparison between results
obtained with the proposed method on 2D HSQC spectra antisestiained on 1D spec-

tra (both 1D and 2D spectra are obtained from the same bigpgygsented in chaptér

Let us start with artificial toys problem to demonstrate tffieats of different algorithm
initialization strategies. For this, we have generateddtfartificial toys. Sample,y) €
R10x +1 are drown as follows: first we fix a labglwith equal probability, then:

1. Database 1: we se&t =g +z fori € 1,...,5 andx = z, where thez ~ A((0,1)
are standard normal distribution agd~ G (1+V;/4,1) are the Gamma distribution
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where its expression is given by B9 For bothz and g, the dependency of

samples is 0.5.

_ ka0 P oygpa) 0

- Wex g| >

2. Database 2: we sgt=g; +z fori € 1,...,5 andx = z, where thez, ~ A (0,1) are
standard normally distribution argl ~ GG(a,0,1) (0 = 1, =;) are the General-
ized Gaussian distribution where its expression is giveE¢$.50 For bothz and
0, the dependency of samples is 0.5.

%exp[—(n(d)fgi — )

G (9, a,B) (5.49)

GG(gi;a,0,H) = (5.50)

1
wheren(a) = [OE%%)} ‘M (a)= Jo 1% texptdt andy, o, a the mean, standard

deviation and shape parameter.

3. Database 3: we sgt=1y;/2+z fori € 1,...,5 andx = z, where thez ~ 2 (0,1)
are standard normally distribution. Fprthe dependency of samples is 0.5.

Thus, all coordinates are noisy, and only the first five cowtdis carry task relevant infor-
mation. We draw 5000 examples which were split into 50 pantit. In order to emphasize
the benefit of the proposed initialization algorithm andtipatarly the use of the fuzzy
k-means, three different methods were used to initialize¥{3DH: the proposed method,
the k-means method and the Maximum likelihood method. Thkalt® of validation on
synthetic databases are summarized in Tablg. As one can see, our method performed
the best. This means that our initialization algorithm i¢haweapted to the proposed change
detection method.

initialization databasel | database 2 | database 3
fuzzy k-means| 4.49+ 0.45| 4.52+ 0.68 | 3.52+ 0.48
k-means 5.394-0.88 | 5.98+0.82 | 4.99+ 0.57
ML 512+ 0.82| 5.694+0.71 | 4.74+ 0.51

Table 5.1: SV3DH averaged classification error in % and thedsrd deviation on syn-
thetic data sets obtained with different initializatiog@dithms.

Moreover, and in order to evaluate the performance of thpqeed algorithm on real
datasets, we considered two multitemporal remote sensiage data sets acquired from
a geographical area of Alaska and Philadelphia which aréaél@ from [lsiml]. The first
database (Alaska image) contains a high resolution (1328 pixels) set of multispec-
tral images collected on a geographical area of Alaska. é'lreages were acquired by
Landsat-5 Thematic Mapper (TM) on July 22, 1985 and July D852 respectively. An
area with 1024 x 1024 pixels is selected for experiments. Lemelsat-5 TM provides op-
tical imageries using seven spectral bands, Bands 1-7.rEtreiment’s pixel resolution is
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30 m. The ground truth of the change detection maps is alailaljlsiml].

The second database (Philadelphia image) contains a tighutien (2000 x 2000 pix-
els) set of multispectral images collected on a geographiea of Philadelphia. These im-
ages were acquired by Landsat-5 Thematic Mapper (TM) on28n£988 and a Landsat-7
Enhanced Thematic Mapper (ETM+) on September 23, 199%césgply. As the Landsat-
5, the Landsat-7 provides optical imageries using sevectigppdands. An area with 1024
x 1024 pixels is selected from Philadelphia image for expents. Pixel size for all bands
is 28.5 m. This includes the Landsat 7 ETM+ thermal band whahbeen resampled from
its 57 m resolution and the Landsat 5 TM thermal band whichbleas resampled from its
114 m resolution. The ground truth of the change detectiopsiisavailable inlgiml].

For multitemporal change detection, we consider the npdtigal difference image
Is=12—11 on 7 spectral bands. Therefore the high dimensional irdton present in
the multispectral difference image is considered to imerhe change detection accuracy.
Fig. 5.4 (resp Fig.5.5) displays the feature distribution of the unchanged clgssyj and
changed class (dark) pixels in the 2-dimensidg@llaska image (resp Philadelphia image)
according to the available ground truth map. As one can seen [Fig. 5.5, the change
detection problem on Philadelphia image is quite more ceriblan that on Alaska image,
as the target and outlier classes are significantly ovesldpp

In order to perform the change detection evaluation, we huséalse AlarnPFA, the
Miss DetectionrPMD and the Total ErroPTE measurements computed in percentage and
defined by:

PFA= {2 x 100%; PMD= {2 x 100%; PTE = N2 x 100%

whereFA stands for the number of unchanged pixels that were indtyrdetermined
as changed onedr the total number of unchanged pixeldD the number of changed
pixels that were mistakenly detected as unchanged dfgshe total number of changed
pixels.

Tab.5.2presents the false detection, missed detection and totasem both databases
resulting from:

e The proposed SV3DH method initialized with the fuzzy K-meatgorithm,

e The SVM method with the proposed copula kernel function (SWVith Dependance
Handling SVMDH) initialized with the fuzzy K-means algdmit,

e The proposed method trained using only positive exampl¥8[%Hi+) initialized
with the fuzzy K-means algorithm,

e The proposed method initialized with the k-means algorithard-SV3DH),

e The SVDD with the RBF kernel function trained using positared negative exam-
ples (SVDD) and initialized with the fuzzy K-means algonith
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Alaska Image | False detectior] Missed detectior| Total Errors

SV3DH 0.71 % 5.01% 1.09 %
SVMDH 0.70% 4.96% 1.07%
SV3DH+ 0.78 % 532% 1.18%
Hard-SV3DH 0.84 % 5.99 % 1.29%
SVvDD 1.87 % 6.81 % 2.01 %
SVDD+ 1.89 % 7.03 % 211 %
SVM 1.04 % 6.31 % 1.75%
Philadelphia Image False detectior] Missed detection| Total Errors
SV3DH 3.82% 14.54% 8.34%
SVMDH 4.27 % 16.07 % 9.37 %
SV3DH+ 4.41 % 16.84 % 9.79 %
Hard-SV3DH 4.87 % 16.93 % 10.35%
SVDD 5.09 % 17.79 % 11.09 %
SVDD+ 6.17 % 18.38 % 12.21 %
SVM 531 % 17.91 % 11.39 %

Table 5.2: False detection, missed detection and totatseresulting from: the proposed
method SV3DH, the SVM method with the proposed copula kefunettion SVMDH,
the proposed method trained using only positive example3D$\4, the proposed method
initialized with the k-means algorithm, the SVDD trainedngspositive and negative ex-
amples (SVDD), the SVDD trained using only positive exara&vVDD+) and the SVM
method.

e The SVDD with the RBF kernel function trained using only piesiexamples (SVDD+)
and initialized with the fuzzy K-means algorithm,

e The SVM with the RBF kernel function methods initialized wihe fuzzy K-means
algorithm,.

As one can remark, the SV3DH and the SVMDH perform similaultes That means that
the proposed kernel function improves the features disieation for both standard SVDD
and SVM methods. Moreover, the fuzzy k-means initializatdiows us to obtain a better
results than a k-means initialization particularly in thghhuncertainty situation (Philadel-
phia image). Indeed, we obtained 8.34 % of total error withftizzy initialization while
the k-means initialization lead to 10.35 % of total errors.

In order to emphasize the benefit of the Gaussian copula fdures dependency
handling, we have compared the feature fit goodness of thegopea copula with five
other copula functions: the t-student copuemartaOf the Farlie-Gumbel-Morgenstern
(FGM) copula Cossette0B the Gumbel copula, the Frank copula and finally the Clayton
copula functionsRRodriguez0Y. To this end, we used the copula goodness-of-fit measure-
ment approach proposed iGgnestOB This approach consists in measuring the discrete
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changed class
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Figure 5.4: Distribution of the unchanged class (gray) dmmhged class (dark) pixels in
the 2-dimensionals Alaska image according to the available ground truth.
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z
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Figure 5.5: Distribution of the unchanged class (gray) dmghged class (dark) pixels in
the 2-dimensionals Philadelphia image according to the available ground truth
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copula | Alaska image| Philadelphia image
Gaussian| 5.1210°3 4.0210°°
t-student| 5.48 1073 419103
FGM 5911073 4.6110°3
Clayton 6.85 103 5.17 1073
Frank 557 103 4.28 103
Gumbel 6.11 103 4.97 103

Table 5.3: The.2 norm for different copula types with the empirical copula.

L2 norm between a set of copulas and the empirical copula andstiect the one with the
minimum difference. We have applied this approach and thedatabases. Results are
presented in Talb.3. As on can remark, Gaussian copula seems to be the one whieh be
approximates the empirical copula.

Conclusion

In this chapter, the third step step in the indexing schentacided. Indeed, the SV3DH
method for unsupervised change-detection/classificdiesed on SVDD has been pro-
posed. This method could be used either for assigning a nemwyda the appropriate
profile defined in the off-line phase (classification) or fetetting changes between two
medical signal groups (change detection). We particultotus on the formulation of
change problem as a minimum enclosing ball problem with angbd samples as target
objects. The use of the dependency measurement for theirffiesttd our knowledge in
the SVDD framework increases the robustness of the proposaage-detection scheme
with comparison to the classical SVM and SVDD methods. Ofreeuany performance
gain depends on the quality of the prior samples distrilytrehich amounts to the quality
of chosen distributions and consequently, the copula yheas used. Indeed, it provides
tools to model samples dependency even if their distributioes not follow a gaussian
law (HSQC spectrum peaks and fMRI object surface). Experiaigesults clearly indi-
cate the benefit of the proposed method. Different apptinatof the proposed method on
real HSQC spectra are presented in the next chapter.
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Introduction

This chapter aims at experimentally validating the proddseatment framework on real
HSQC spectra and fMRI images. All comments, suggestionsandusions presented in
this chapter are the result of analysis conducted in cotipmevith experts in the field of
NMR: Pr. Karim Elbayed fromnstitut de Chimie, University of strasbouend Pr |zzie
Jacques Namer fro@epartment of Biophysics and Nuclear Medicine, Universitys-
pitals of Strasbourgand in the field of fMRI images: Dr Jacques Foucher frGfmique
psychiatrique, University Hospitals of Strasbourg

In section6.1, we describe first the HSQC database used to perform theierqés.
The second part details the complete scheme for HSQC spegptecessing. Finally, the
experimental validation of the proposed approaches igpted and discussed.

After describing the real data involved in the fMRI validatiand the way they have
been reconstructed from the raw data, we details in the sigzan of sectior6.2the com-
plete scheme for fMRI image analysis. Finally, the experitakresults obtained with the
proposed approaches is presented.

Finally, some conclusions are drawn based on the valida¢isults in sectio.3
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6.1 HSQC spectrum Experiments

6.1.1 HSQC spectra data sets

Our data base contains two datasets: datasetl and datd$etZirst one is dedicated to
the Multiple Sclerosis (MS) pathology of central nerve syst(c.f, Fig6.1). Note that we
have used the Experimental Autoimmune Encephalomyeli#es) as a model of multiple
sclerosis pathology. Dataset2 is dedicated to the colonetgmathology. A detailed de-
scription of the database is given in Tald.

The 2D HSQC spectra were recorded on a Bruker Avance lll 566tspmeter operat-
ing at a proton frequency of 500.13 MHz. This instrument &afied at the Hautepierre
University Hospital in Strasbourg and is dedicated to thedyesis of biopsies by HR-MAS.
It is operated by qualified scientific and medical personm&hé context of the CARMeN
project. Indeed, the CARMeN project (Cancer RMN) is a cotgior that gathers Stras-
bourg University Hospitals, Strasbourg University, CNRESERM and Bruker BioSpin.
It was labeled on December 20th 2006 by the Pole of Compatiéiss «Therapeutic In-
novations» of the Alsace region. This project aimed at angad metabolic database in
cancer research using the metabolic phenotype of tumodetdify high risk cancers and
to develop personalized treatments.

The usedcorpuscontains 45 referenced metabolites given by the physicidab6.2
displays different metabolites present in ttwrpusas well as the chemical shifts of their
peaks in ppm. Note that for privacy concerns, the decimatdaf the chemical shift of
hydrogen'H and the carboA®C are not provided.

Optic Nerve Brain

Lumbar Spinal Cord

Figure 6.1: Central nerve system of the rat.
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| biopsy | spectrum numbef
health Optical Nerve (ON) 10
EAE Optical Nerve (ON) 10
healthy Cervical Spinal Cord (CSQ) 10
datasetl| | EAE Cervical Spinal Cord (CSC) 10
healthy Thoracic Spinal Cord (TSQ) 10
EAE Thoracic Spinal Cord (TSC) 10
healthy Lumber Spinal Cord (LSC 10
EAE Lumber Spinal Cord (LSC) 10
| biopsy | spectrum numbef
datatset?| | healthy colon 28
cancerous colon 28
Table 6.1: HSQC database description
Metabolite Abbreviation | 13C | IH | Metabolite Abbreviation 3¢ | H
Succinate Succinate 36 | 2 Taurine Tau 50 3
Theronine Thr 63 | 3 Taurine Tau 38 3
Theronine Thr 68 | 4 Thrimethylamine| Thrimethylamine| 47 | 2
Theronine Thr 22 1 Tyrosine Tyr 133 | 7
Uracil Uracil 103 | 5 Tyrosine Tyr 118 | 6
Uracil Uracll 146 | 7 Valine Val 31 2
Alpha-Glucose| alpha-Glc 94 | 5 Valine Val 20 |1
Alpha-Glucose| alpha-Glc 75 |3 Valine Val 19 | 0.9
Alpha-Glucose| alpha-Glc 72 | 3 Beta-Glucose Beta-Glc 98 | 4
Alpha-Glucose| alpha-Glc 73 | 3 Beta-Glucose Beta-Glc 72 |3
Alpha-Glucose| alpha-Glc 63 | 3 Beta-Glucose Beta-Glc 78 |3
Myo-Inositole | ml 73 | 3 Beta-Glucose Beta-Glc 63 | 3
Myo-Inositole | ml 74 | 4 GABA GABA 36 |2
Myo-Inositole | ml 75 |3 GABA GABA 26 1
Myo-Inositole | ml 777 |3 Adrenaline Adrenaline 35 | 2
Serine Ser 50 | 3 Adrenaline Adrenaline 118 | 6
Serine Ser 62 3 Adrenaline Adrenaline 121 | 6
Proline Pro 26 1 Adrenaline Adrenaline 116 | 6
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Metabolite Abbreviation | 13C | H | Metabolite Abbreviation Bc | H
Acetate Ace 26 |1 Alanine Ala 53 3
Asparagine Asn 53 | 3 Alanine Ala 18 1
Asparagine Asn 37 | 2 Arginine Arg 30 1
Asparagine Asn 37 | 2 Arginine Arg 43 3
Aspartate Asp 54 | 3 Arginine Arg 26 1
Aspartate Asp 39 | 2 Ascrobate Ascrobate 81 4
Aspartate Asp 39 | 2 Betaine Betaine 56 3
Creatine Cr 56 3 Choline Cho 58 4
Creatine Cr 39 3 Choline Cho 96 3
Cysteine Cys 27 | 3 Ethanol ETHO 19 1
Cysteine Cys 27 | 3 Ethanol ETHO 60 3
Ethanolamine Ethanolamine | 60 | 3 Lipide (a) FA (a) 25 1
Ethanolamine Ethanolamine | 32 | 2 Lipide (a) FA (a) 34 1
Glucose 6-phosphate G6P 73 | 3 Lipide (b) FA (b) 130 | 5
Glucose 6-phosphate G6P 71 | 3 Lipide (b) FA (b) 132 | 5
Glucose 6-phosphate G6P 65 | 3 Lipide (b) FA (b) 27 2
Phosphatidylcholine| GPCho 37 | 3 Lipide (b) FA (b) 28 2
Phosphatidylcholine| GPCho 62 | 4 Lipide (c) FA (c) 27 1
Phosphatidylcholine| GPCho 68 | 3 Lipide (c) FA (c) 36 2
Glutathione GSH 28 | 2 Glutamine GIn 33 2
Glutathione GSH 58 | 4 Glutamine GIn 29 2
Glutathione GSH 56 |3 Glutamic acid Glu 36 2
Glutathione GSH 46 | 3 Glycine Gly 44 3
Glutathione GSH 28 | 2 Glycerol Glyc 65 3
Glutathione GSH 33 | 2 Glycerol Glyc 65 3
Hypothorine Hypothorine 36 |3 Glycerol Glyc 74 3
Hypothorine Hypothorine 13 | 0.9 | Isoleucine lle 13 0.9
Isobutyrate Isobutyrate 24 | 0.9 | Isoleucine lle 17 1
Isovalerate Isovalerate 24 | 0.9 | Lactate Lac 71 4
Isovalerate Isovalerate 71 | 4 Lactate Lac 22.7 | 1.33
Leucine Leu 55 | 3 Lysine Lys 32 1
Leucine Leu 42 |1 Lysine Lys 29 1
Leucine Leu 24 | 0.9 | Lysine Lys 41 3
Leucine Leu 23 | 0.9 | Lysine Lys 24 1
Methionine Meth 16 | 2 AcetylGlutamate| AcetylGlutamate| 57 4
Methionine Meth 31 | 2 AcetylGlutamate| AcetylGlutamate| 24 2
N-Acetyl-Aspartate | NAA 24 | 2 Phosphocholine | Pcho 56 3
N-Acetyl-Aspartate | NAA 55 | 4 Phosphocholine | Pcho 60 4
Phenylalanine Phe 131 | 7 Phosphocholine | Pcho 68 3
Phenylalanine Phe 132 | 7 Proline Pro 63 4
Phenylalanine Phe 58 | 3 Proline Pro 31 2
Phenylalanine Phe 39 |3 Proline Pro 31 2
Scyllo-Inositol Scyllo-Inositol | 76 | 3 Proline Pro 48 3

Table 6.2: Different metabolites present in the userpusas well as the hydrogen chemi-
cal shifts'H and the carbon chemical shifiC of their peaks in ppm.
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Before applying the treatment chain, a manual calibrati@pectra using a peak refer-
ence (the lactate which is presented in bold in &B) with well known location (22.7ppm
for carbon®3C axis and 1.33ppm for prototH axis) is performed. Then all the HSQC
spectrum intensities are divided by their biopsies masses.

6.1.2 Treatment framework

We recall that our indexing scheme is composed of an offdtee which consists in estab-
lishing the profile of each diseases and then an on-line stéghvaims at assigning a new
individual/group to a pathologic/healthy profile.

In the case of the HSQC spectrum analysis, the consideredtsigre the peaks within
the spectrum. A summary of the treatment framework is ptesen Fig.6.2

. Peak detection,
available alignment, coding, | class / populatior
data sets$ similarity measurement, profiles.
and classification
j =
28 .
S8%
<=
826
Eo~
- - peak coding ©
) A
5 request peak detection and similarity
o HSQC|___Jandalignment | mneasurement
c spectrg (section3.2) (section4.?)
C
(@)

Figure 6.2: Overview diagram of the proposed classificaframework for HSQC 2D
NMR spectra.

The first step of the indexing framework consists in detgcand aligning different
peaks within spectra (an overview of the proposed methodeisepted in Fig.3). This
step requires up to 3h30 of computation time with Intel 2.66z&nd a combination of C
and matlab codes. Once this step achieved, we turn to thébaliéeasimilarity measure-
ment step. This step consists in identifying different rbeties in the spectra using the
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Conflict modeling
fuzzy membershig
functions (Eq.3.3

|

Colored Gaussianh
noise (EqA.2)

| Direct model imprecision i 1 | mass functior |
! h MCMC quantification L modeling |
| (SeeED |7 optimization | THT (g 3. T Eas13 |
1 (Appendle) 1 ‘ 1 1
: Lorentzian shape ) _ — L peak detection !
| (Eq.3.2) 11| Conflict description c and |
| o hypr,hyp i | peak alignment |
| o and D estimation |
| ¥ hyps | (Eq.3.149 |
b L Uncertaintheory _________ \L____Fuzzysettheory ___; . ___Evidence theory _

Figure 6.3: Overview diagram of the peak detection and edigmt chain.

corpus(Fig.6.4). This step requires up to 15mn of computation time withlIat66 GHz
and matlab codes.
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Candidate —
metabolites metabolite signaturg
selection criteria (Eq.4.15

|

Criterion fuzzy : sig'nature
Sp— m modeling: Genetic modeling:
an clnm Y Peaks ! | fuzzy membership<~—i— algorithm fuzzy membership
selection functions (Ec4.9) optimization functions (Eq4.17)
T (Appendix B)

|

Peak detection - -
and 11 [Location criterion ! Right metabolite
alignment o (Eq4.10 ! selection (Eq4.19
... Stagel . _____Stage2 | ,____...Stage3

Figure 6.4: Overview diagram of the metabolite identificatchain.

Once the metabolite is identified, we address the metalmdissification/change de-
tection step. This step aims at comparing a new individoaljtation of spectra by iden-
tifying changed metabolites from unchanged ones. In orderchieve a more accurate
metabolite change detection results, we introduce raqgnéori knowledge we have on the
spectra into the change detection scheme. As a matter pffacssume that the residual
spectrum image (the difference between the observed amuhtheneterized spectrum) is
the same for all observations. Indeed, as the acquisitistesyis isolated from the outside
environment, the characteristics of acquisition noisaukhbe the same. Thus, any differ-
ence between two residual images is due either to errorgimagig the hyperparameters
of the spectrum, to a deterioration of tissues or to a modiifican biopsy featuresg(g;
the pH). To achieve a better change detection result, aktlésturbances must be taken
into account. To this end, we propose a method to compenrsatestimation error within
the change detection scheme (&)g.Finally, the overview diagram of the metabolite clas-
sification/change detection chain is described in6=t.Note that, this step requires up to
20mn of computation time with Intel 2.66 GHz and matlab codes
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Algorithm 2 Error compensation estimation
Input: a reference spectruijes, another spectruny as well as their parameterized
(reconstructed) formg'c ef andYc (Eq.3.1).
1- For each two assigned peafs: (i, j) andx(i, j) estimated fronY,er andY (Eq3.1) :

- Extract the local spectrum areas containfigal, rer andYiocal: \(Ige;;e:ef andy;e¢,
respectively.

- Calculate the covariance matii ecfal (respliocal) Of (ﬂoca“ef —Yl[)‘f;f:ef) (resp

(Yiocal = Yiocar))-

ref
local

- Perform the Principal Component Analysis PCA algorithmboth I’ andrl gcal

- Let et (respA) be the largest eigenvalue of the PCA decomposition pegdron

r{ggal (respliocal): the estimated peak amplitudé, j) is normalized as follows:

Estimation erro
compensation

(Alg. 2)

|

i SV3DH algorithm

Metabolite e :
idont fieation ————1dentified metabolitel
(Fig.6.3

(section4.2)

'

Changed quantification

(metabolite are ranked
from largest to

smallest changes)

1-Peak shape parametetss.2
2- Peak chemical shiftsqs.149
3- Peak amplitudegqs.y

Peak detection
and alignmen

(Fig6.3

' __Previous.chains.! ! Change detection input ! ' Output

Figure 6.5: Overview diagram of the metabolite classifar@tthange detection chain.
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In the practice, the proposed metabolite classificatiarigke detection (SV3DH) algo-
rithm can be used for three different uses:

1. Metabolite change detection given two spectrum populations, we aim at detecting
the changed metabolites from unchanged ones. In this cdsafue vectoxy, is
associated to each metabolNg. The vectorxy, consists of the peak amplitudes
of the metabolite (E®.1), the peak shape hyperparameters 3&).and the peak
chemical shifts (E®.14). As one can remark, each metabolite is separately treated
from the other ones. The first step consists in selecting etspe population and
then estimating the hypersphere hyperparamétgisRy; ) that model the profile of
each metabolité/l; using the SV3DH method. Then, the decision functiofEg.
5.46 is applied to each spectrum belonging to the second papulatn order to
quantify the metabolite change degree denqigd we propose the use of an S-
membership functiorf; (Eq.3.3). The expression gy, is given by:

Mvy = fl(f(XMi)/RMi) (6-2)

where (ay;,,Ry;) are the hypershpere hyperparameters. Therefore, the ppis
close to 1 the more the metabolitd has changed. Thus the metabolites can be
ranked according to their change degrees allowing the piays to select the rele-
vant changed metabolites by a simple threshold and thennivotdhe results. In
order to facilitate the threshold setting, we have clagbifiree metabolites according
to the change degree into two classes: "weak change" and thignge". To this
end, we used a Maximum Likelihood (ML) classifier with redptecthe statistical
distribution law of metabolite change degrees. For exantpéeestimated threshold
is about 0.4 for datasetl et 0.35 for dataset2. Notepfjats assumed to follow a
Generalized Gaussian distribution. Moreover, as we ajreacharked py;, mainly
depends on the hypersphere radiig (the distance from the center of the sphere
ay;, to any of the support vectors on the boundary and the feaga®nxy,. In order

to quantify our uncertainty on the metabolite change degstienation, we assign to
eachpy, a confidence margin which is equal to:

M = fl((eMi)/RMi) (6.3)

whereey, consists of the difference between the estimated metaebmdiak ampli-

tudes (EB.1) and the normalized peak amplitude (&4). Therefore, the more the
difference is great the more the metabolite peaks ampliéstienation is unreliable
and the morey, is great. In the practice, thi hyperparametergy, by, c;) are set

as follows:

e =1,

e by = median{pw; }i=1. N/ > 1), whereN is the number of metabolites
within the spectra anthediarn.) is the median function,

o ;= max({um ti—1.n/tw > 1).
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Once all metabolite change degree for each spectrum belpnhgithe second popu-
lation are estimated, j-valueis associated with each metabolite allowing to reject
the null hypothesi$iy (changed metabolite). Hence, computing the significance of
the metabolite change over all the second population spectrounts to compare
p(kv, > 0.1/Ho) with o (generally set to 10°). Thus, if p(uy, > 0.1/Ho) < a the

null hypothesisHy cannot be rejected.

. Spectrum discrimination: given a set of spectra, we aim at discriminating two

groups. In this case, a feature vecky is associated to each spectri®m The
vectorxy, consists of the peak amplitudes of the spectra3Hyj. As one can remark,
all metabolites are conjointly treated. Note that in speutrdiscrimination case,
the SV3DH method allows us to directly obtain the discrinima results and no
statistical test is required.

. Spectrum classification given several spectrum populatioRg-1, we aim at clas-

sifying a new spectrunxX. As the spectrum discrimination case, the feature vector
contains all the spectrum peaks. The first step consistgimating the hypershpere
hyperparameteréap , Rp, ) modeling the profile of each populatiéh (or theclass
profile) using the SV3DH method. Then, the decision function isiedpb the new
spectrumX which will be assigned to the population with the lowé$txx)/Re,)
value.

6.1.3 Results on real spectra

The results obtained by the proposed methods on real HSQra@ee presented in two
parts. In the first one, we focus on some case studies in avdanphasize the benefit of
the proposed schemes and particularly the use of the ddatiovomodel for peaks detec-
tion and the use of fuzzy set theory to deal with the ambigwitych is in the heart of the
metabolite identification task. In the second part, somebwite change detection results
and a comparison with results obtained with 1D spectra asgpted.

Metabolite identification results

The first step in the HSQC spectrum analysis is the peak dmtecthis task is very
important since all the rest of the processing chain depends. Indeed, a poor peak
detection can cause the fail of the framework. For this nease have paid an important
attention to this task. We recall that the proposed peakctietealgorithm relies on the
deconvolution model to achieve a better fit of the HSQC spetifEq3.1) which allows
us to overcome the problem of peak overlap. For example6li¢p) shows two peaks
that can be easily detected without a deconvolution stepweder, in some casese(g
Fig.6.6.(b)) two peaks could be overlapped and then a manual peedcégh seems to be
a difficult task. Thus, the peak deconvolution allows us teroeme such problem.

However, the problem of peak overlap is unfortunately net ¢ingle one to be ad-

dressed to automatic the peak analysis process. In fadtigheeomplexity of this type of
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Figure 6.6: Examples of (a) two separated peaks, (b) twdapyeed peaks. In both cases,
the proposed evidential peak detection method has coriidethtified peaks.
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C"3 (ppm)

Figure 6.7: Areal HSQC spectrum

spectra brought by the noise and the artifacts make thetiteteask more delicate and dif-
ficult [Becker0Q. Indeed, due to experimental conditions, correlatedicadrtines appear
sometimes in the observed spectruBe¢ker0(. In order to overcome this problem, we
proposed the use of the multivariate Gaussian distributtomodel the noise correlation.
We recall that the synthetic validation of the proposed aggih has shown its robustness
to the high level of noise (Ta®.1). Unfortunately, the validation task on real spectra is
not trivial since no ground/absolute truth is available. Armal validation by NMR ex-
perts is then required in order to assess the performandbe giroposed scheme on real
spectra. Note that the only available ground truth is théobioal nature of the biopsies (a
metabolite exists or does not exist) and hence a peak peserabsence does not have a
biological sense. Therefore, our NMR experts have valdigie metabolite identification
results and thus explicitly the peak detection and aligrimesults. The validation results
show that most metabolites belonging to twpusare properly detected and identified.
For example, only 3/45 metabolites were wrongly identifiethie dataset2.

Metabolite change detection results

We are now faced with the problem of metabolites change tieteon real HSQC HR-
MAS 2D spectra. We recall that our first objective is the daiaation of discriminant
parameters between two states of the same biological sy{sésgn two evolution stages

of the same type of tumor). Indeed, the identification of roelia fingerprint associated
with specific biological states could reveal metabolicati#nces related to different con-
sidered groups of spectra.g, healthy and pathological groups of spectra). In a second
step, these metabolic fingerprints (discriminants or biders) should allow us to under-
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stand the metabolic processes associated with each trgiated of spectra and then to
establish the group profiles.

Metabolite change detection results on datasetl

In the following, we detail the change detection resultstandatasetl (EAE disease).
Since no ground truth is available, we will compare our rsswiith those obtained with
the 1D spectrum experiments to study the result coheremcedcdance). To this end, we
distinguish three different experiments: the 1D experitegrd the 2D HSQC experiment
on the same sample. In the last one, we repeat the 1D expémméme sample taken from
the spectrometer after the 2D experiment. Indeed, due thigietime sample spinning
(rotation) during the 2D HSQC experiment, the concentratiof some metabolites partic-
ularly the Ace, Ala, Asp, Cr, Cho, GABA, Glu Gly Lac, ml, NAAdRo and Tau may be
changed Detourl].

To facilitate the result interpretations, we used a tableéah configurations of EAE/Healty
spectrum group comparisons (c.f, Td). In this table, we distinguish four typefaces:

1. Normal font &g, Asp). In this case, the metabolite was detected as a changed
metabolite only with the 2D experiment.

2. ltalic font (e.g, Asp. In this case, the metabolite was detected as a changethoneta
lite with the 2D experiment and the first 1D experiment.

3. Bold font .9, Asp). In this case, the metabolite was detected as a changethoneta
lite with the 2D experiment and the second 1D experiment.

4. ltalic bold font g€.g, Asp). In this case, the metabolite was detected as a changed
metabolite with the 2D experiment, the first 1D experimerd #re second 1D ex-
periment.

Note that the metabolites detected as changed only with tteafid second 1D ex-
periment are presented in the table caption. We presemikein the same table the
metabolite concentration changes ("inc" for concentratiwrease and "dec" for concen-
tration decrease) as well as the metabolite change detattigrea.y, (Eq6.2).
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| Metabolite| py | concentration|

Arg 0.519 inc
Ser 0.461 inc
Asp 0.390 inc
Cho 0.331 dec
Pcho 0.327 dec
Glu 0.321 dec
Ace 0.298 dec
Ala 0.214 dec
lle 0.214 dec
GIn 0.267 dec
Ascorbate | 0.218 inc
mi 0.165 dec
Cr 0.166 dec
Gly 0.168 inc
NAA 0.150 inc
Lys 0.144 inc
Lac 0.110 dec

Table 6.3: Identified biomarkers for healthy ON biopsy vs. EEAN biopsy with 2D
spectra. The changed metabolites identified with the firsejeriment are: GPCho and
N-acetylglutamate. The changed metabolites identifieth Wit second 1D experiment
are: Thr, Succinate, GABA and Tau. As one can see, we idewitfythe 2D experiment
most metabolites identified with the first and the second Ljegment. Moreover, some
metabolite like the "NAA", the "Ala" and the "Lys" were idéfied only with the first 1D
experiment and the 2D experiment. We recall that the coratioris of these metabolites
change during the 2D experiment and for this reasons they m@rdetected in the second
1D experiment. However, we still able to identify them asrgfed metabolites. This
could be explained by the fact that we used in our SV3DH allgoribeside the metabolite
concentration other features like the peak chemical shiftsthe peak shapes for change
detection. In addition, we remark that the Arg, lle, Gly arat @ere detected as changed
metabolites only with the 2D experiment.
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| Metabolite | py | concentration

alpha-Glc | 0.824 inc
Hypotaurine | 0.834 inc
beta-Glc 0.724 inc
mi 0.684 dec
Gin 0.642 inc
Cho 0.627 dec
Thr 0.546 inc
GPCHO 0.510 inc
Ace 0.464 dec
Tau 0.446 inc
Asp 0.394 dec
Glu/GIn 0.389 inc
Lys 0.347 inc
Ser 0.341 inc
Ala 0.260 inc
Arg 0.257 inc
PCho 0.239 dec
Ethanolaming| 0.234 dec
Gly 0.179 dec
Lac 0.124 dec
Val 0.116 dec

Table 6.4: Identified biomarkers for healthy CSC biopsy VAEECSC biopsy with 2D

spectra. The changed metabolites identified only with tls¢ fiD experiment are: Succ,
lle and NAA. The changed metabolite identified only with tee@nd 1D experiment is the
Cr. As one can remark, we identify with the 2D experiment ntmostabolites identified

with the first and the second 1D experiment. Moreover, somaboéte like the "Ser",

the "Gly" and the "GIn" were identified only with the first 1D pximent and the 2D
experiment.
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| Metabolite | py | concentration|

beta-Glc 0.807 inc
Ace 0.747 dec
Cho 0.688 dec
Ser 0.659 inc
Alpha-Glc | 0.654 inc
GIn 0.646 inc
Thr 0.634 inc

mi 0.604 dec

Lys 0.590 inc
Asp 0.516 dec
Ethanolamine| 0.462 dec
Tau 0.371 inc
Glu/GIn 0.263 inc
Tyr 0.256 inc

lle 0.250 inc
Gly 0.221 dec
PCho 0.176 dec
GPCho 0.161 dec

Table 6.5: Identified biomarkers for healthy TSC biopsy VRAEETSC biopsy with 2D
spectra. The changed metabolites identified only with tle¢ 1iD experiment are: Ala,
Succ, Hypotaurine, Val and NAA. The changed metabolitestitied only with the second
1D experiment are: Ala, Hypotaurine. As one can remark, weatitly with the 2D experi-
ment most metabolites identified with the first and the sed@hdxperiment. However, the
Ala and the Hypotaurine were detected only with the first dnedsiecond 1D experiments.
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| Metabolite | py | concentration|

mi 0.978 dec
beta-Glc 0.942 inc
Thr 0.904 inc
Glu/GIn 0.669 inc
GIn 0.619 inc
Gly 0.606 inc
Ser 0.494 inc
Ace 0.479 dec
Cho 0.429 dec
Arg 0.409 inc
e 0.361 inc
Asp 0.382 dec
Ala 0.370 inc
Cr 0.320 dec
PCHo 0.255 dec
Ethanolamine| 0.213 dec
Val 0.194 inc
Thr 0.131 inc

Table 6.6: Identified biomarkers for healthy LSC biopsy VAERLSC biopsy with 2D
spectra. The changed metabolites identified only with tle¢ iD experiment are: Lys,
Hypotau, Succ, Tau, PCho, GPCho and NAA. The changed métsbadentified only
with the second 1D experiment are: Lys, Hypotau, Tau and @P@ls one can remark,
we identify with the 2D experiment most metabolites ideatifivith the first and the second
1D experiment. However, as one can observe, some metablifisethe Lys and Hypotau
were detected only with the first and the second 1D expergnehile the Val was detected
only with the 2D and the second 1D experiments.
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| Metabolite| py | concentration|

Arg 0.452 inc
Tau 0.363 dec
Val 0.291 inc
Gin 0.256 inc
NAA 0.198 inc
Thr 0.116 inc

Table 6.7: Identified biomarker for healthy CSC biopsy vsaltiy LSC biopsy with 2D
spectra. In this experiment, no changed metabolite wastéetsvith the first and second
1D experiments while 6 metabolites were be detected witEhexperiment. This means
that our method is able to discriminate the healthy CSC lyidpsm the healthy LSC
biopsy.

| Metabolite| py | concentration|

mil 0.341 inc
Arg 0.338 inc
Tau 0.320 dec
Gin 0.311 inc

Glu/GIn | 0.224 inc
NAA 0.211 inc

Tyr 0.184 dec
Cho 0.161 inc

Cr 0.157 inc

PCho 0.149 inc

Table 6.8: Identified biomarkers for healthy CTC biopsy wsalthy LTC biopsy with 2D
spectra. In this experiment, no changed metabolite wastaetsvith the first and second
1D experiments while 10 metabolites were be detected wél2ih experiment.

Metabolite change detection results on dataset2

We address now the metabolite change detection on colorec&t®QC spectra. Fig.
6.8 (a) shows a healthy colon biopsy spectrum whereas &:8(b) displays a cancerous
colon biopsy spectrum. The mean image of the 25 reconsttinealthy spectra (after peak
detection with the MCMC procedure) is presented in Big (c). Fig. 6.8(d) displays the
mean image of the 25 reconstructed cancerous spectra. Asnmemark, all the spectrum
noise was removed and only the relevant peaks (belongingetadrpus) were preserved
allowing an easier interpretation of the spectra by phgsiEi Fig. 6.9 presents some
metabolites change detection results on a cancerous wpefdrawn in red arrows). As
one can see, it is difficult to manually detect changed méditabo The metabolite change
detection results on dataset2 are presented ir6.Bab.
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| Metabolite| py | concentration|

Tau 0.895 inc
ml 0.771 dec
beta-Glc | 0.638 dec
Asp 0.621 inc
Glu 0.502 inc
Lac 0.445 inc
Pcho 0.394 inc

Table 6.9: Identified biomarkers for healthy colon biopsyaancerous colon biopsy with
2D spectra. As one can remark, we identify the same metatadiin first 1D experiment.
Nota that no second 1D experiment was performed in the case ablon biopsy spectra.

All these results for both datasets were examined and Yatiday NMR experts. The
first conclusion that 2D experiment results confirm thoseioled with 1D experiments.
Secondly, the 2D experiment can be used to discriminate speerum populations (c.f,
Tab6.7 and Talb.8).

Spectrum classification results

We address now the spectrum classification validation. iscetid, we used the Leave-
One-Out Cross-Validation (LOOCYV). Indeed, this validatinvolves to use a single obser-
vation from a spectrum group as the validation data (thetapaaquery), and the remaining
spectra as the training data (the spectrum group profile)Hig. 6.2). In other words,
we select a spectrum form the database and we try to assorietof the available spec-
trum groups. In our case, we dispose of ten spectrum grobpsON healthy group, the
ON EAE group, the CSC healthy group, the CSC EAE group, the A&ilthy group, the
TSC EAE group, the LSC healthy group, the LSC EAE group, tHercbealthy group
and finally the colon cancerous group (&f}). In order to emphasize the benefits of the
proposed classification method and particularly the usbetbpula kernel function, we
use two methods for spectrum classification: the propose8D&Vmethod and the clas-
sical SVDD method with a RBF kernel function. Note that werteal both methods only
with target class (c.f, Chap). Tab6.10shows the spectrum classification results. As one
can remark, most of the spectra were correctly classifiedpxtie ON group. This can
be explained by the high biopsy degradation during the HSxp@rements. Moreover, the
proposed method performs the best comparing to the clasiiaD method.
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\ Spectrum group \ number of correct classificatioh number of wrong classificatimh
SV3DH 8 SV3DH 2
ON healthy group SVDD 6 SVDD 4
SV3DH 9 SV3DH 1
ON EAE group SVDD 8 SvDD 2
SV3DH 10 SV3DH 0
CSC healthy group SVDD 9 SvDD 1
SV3DH 10 SV3DH 0
CSC EAE group SVDD 10 SVDD 0
SV3DH 10 SV3DH 0
TSC healthy group SVvDD 8 SvDD 1
SV3DH 9 SV3DH 1
TSC EAE group SVDD 8 SvDD 2
SV3DH 10 SV3DH 0
LSC healthy group SVDD 9 SVvDD 1
SV3DH 10 SV3DH 0
LSC EAE group SVDD 10 SVDD 0
colon healthy grou SVebH 27 Svop 3
YIoUP 1 svpp 25 SvDD 3
colon cancerous group SV3DH 28 s
I svpp 26 SvDD 2

Table 6.10: Spectrum classification results with the SV3Dethad and the classical
SVDD method.
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Spectrum discrimination results

Let's turn now to the spectrum discrimination validatiom this experiment, we try
to discriminate between two groups of the same biopsy: Ineatoup and pathological
group. We compared likewise our method to the classical S\@D® SVM methods. Tab
6.11 shows the spectrum discrimination results. As one can fiemmaost of the spectra
were correctly discriminated. Moreover, the proposed wetperforms the best in all
tested configurations compared to the classical SVM and Sxieihods.

| Spectrum group | number of wrong discriminated spectfa
SV3DH 3/20
ON healthyvs ON EAE groups SVM 4/20
SVDD  6/20
SV3DH 0/20
CSC healthyvs CSC EAE groups SVM 3/20
SVvDD  3/20
SV3DH 1/20
TSC healthyws TSC EAE groups SVM 1/20
SVDD  2/20
SV3DH 0/20
LSC healthys LSC EAE groups SVM 2/20
SVDD  4/20
SV3DH 2/56
Healthyvs cancerous colon groups SVM 4/56
SVDD  4/56

Table 6.11: Spectrum discrimination with the SV3DH, the S¥&nd the SVM methods.
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6.2 fMRI experiments

6.2.1 Material and Database

Participants
After giving written informed consent, 62 right-handed Itiea participants (age 37.&
7.9 years) with no history of neurological or psychiatrisaliders underwent a resting-state
fMRI session. This study was part of a protocol approved leyldlcal Ethics Committee.
Participants were instructed to lie down with their eyesetbwithout falling asleep.

Data acquisition
Four hundred and five whole-brain T2*-weighted echo plansages were acquired in-
terleaved on a 2T Bruker scanner (Ettlingen, Germany) i@egsmrameters: TR = 3 s;
flip angle = 90; TE = 43ms; FOV = 256 mm x 256 x mm x 128mm; Imaging matrix =
64 x 64 x 32; 4 mm isotropic voxels, with fat saturation preparatidajing 20 minutes.

Preprocessing
After conversion to Analyze format, images were preproggssing Statistical Parametric
Mapping toolbox v99 (Welcome Department of Cognitive Néogg, London, UK) work-
ing on Matlab R2009b (The MathWorks, Inc., Sherborn, MA, USA
For each participant, the first 5 images were removed to atdouT1 partial saturation.
The 400 remaining images were then motion corrected, arnldeallolumes were realigned
on the 200th volume (sinc interpolation).

Statistical analyzes of fMRI data
For each participant, Independent Component Analysis J[T&-Won9§ was performed
using FMRLAB toolbox 2.3 (Swartz Center for Computation&uxoscience, University of
San Diego, CA, USA) with an implementation of INFOMAX algiwin [Theis03. Since
we planned to capture even small spontaneous activitieaddical application, the dimen-
sion of the data was only reduced from 400 to 250 using a @dhcomponent approach
for each participant. This procedure allowed maintainimg computational time for the
algorithm to converge in acceptable limits. For displaypmse, the components were
superimposed on the (EPI) (Echo-Planar Imaging) mean irmgg¢hreshold of-1.5 stan-
dard deviation Weiskopf0g. Each ICA component is called a Spontaneous Activity Map
(SAM). At the end of the ICA algorithm, we obtain 250 SAM.

Selection of relevant SAM

In order to only select the relevant SAM, several criteriaudti be respected. Indeed,
these criteria suppose that the whole brain volume is displavith positive and negative
parts of the spatial components overlapped on the mean E$o(e is above or below
+1.5). The time course has to be evaluated on the component tiorsee more than on
the average region of interest time courfasitive selection criteriaa plausible BOLD
signal is expected to fit with every following criteria forethvhole cerebral volume or time
course:
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1. Spatially coherent positive or negative 3D blobs, i.g¢himiand between slices. The
component can be followed on slice series and its parts lkekal3D coherent map.
In the case of an interleaved acquisition, a signal occgrewvery two slices is not
considered as spatially coherent.

2. The spatial distribution of the blobs overlaps on greytenainly.

3. The signal time course is in the appropriate frequencgeane., most of the power
is below the frequency of the hemodynamic response (< 0.Q8kdE oscillating at
a higher frequency than 0.004 Hz (max. period of 2 min.).

Examples of typical SAMs are shown in Fi§.10(1) to (5) (radiological convention)
(1: Default Mode Network DMN; 2: verbal working memory netkp 3: visuospatial
working memory/attentional network; 4-5: visual netwqrks

Rejection criteria To avoid artifact or noisy components, none of the follayvimiteria
should be present anywhere in the volume or the time courspogsent a negligible aspect
of it:

1. A spatial alternating aspedte., a juxtaposition of significantly correlated and anti-
correlated voxels, alternating in space and sometimesaaipgdike a reticule (Fig.
6.10(6)).

2. A spatial noisy aspect, i.e. the voxels are mildly sigaificand disseminated (Fig.
6.10(7)).

3. Brutal crash or slow drift on the temporal time course.

4. No aspect of any known artifacts:

e Head motion artifacts. Translation or rotation movememts surrounding
high spatial contrasts (Cerebrospinal fluid (CSF)/bral®8F@r brain/skull etc)
sometimes with a symmetrical aspect (positive correlatanone side and
negative on the other side). Temporal course comes with dtiftvor bru-
tal crashes. Fig.6.10(8) shows the aspect of a z-translation residuum after
registration.

e Ocular movements artifacts: signal in the eyeball with nwrkess trails in the
encoding phase axis, Dirac spike on the time course @-if2(9a) and (9b))

e CSF-pulse artifacts. Arterial pulse and respiration irdGSF flux and this T1
partial saturation effect leads to signal fluctuation ins#ére regions, i.e., the
temporal pole, Sylvian sulcus, skull base around the cotMillis, aqueduct
of Sylvius, foramen of Monro or ventricles (Fig6.10(10)). The temporal
course is mostly at high frequency.

e Scanner artifacts, e, radio frequency (trails of alternating significant vojels
or Analogic-Digital converter artifacts (signal drop osiability in one slice).

The pretreatment chain is presented in Bg.1
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Figure 6.10: Spontaneous Activity Map (SAM) selectionamid

fMRI Data reduction__,| Temporal decorrelatiop Relevant
images with PCA with ICA sam selection

Figure 6.11: Overview diagram of the fMRI pretreatment obhai
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Figure 6.12: Overview diagram of the proposed classifiodtiamework for fMRI images.

6.2.2 fMRI treatment framework

In the case of the fMRI image analysis, the considered abja@ the active zones (AZ).
A summary of the treatment framework is presented in Big2

The first step of the indexing framework consists in detgctind aligning different
active zones within fMRI images. To this end, we firstly penfcan active zone detection
step using a Hidden Markov Chain (HMC) segmentation algori{Bricq08. However,
when only weak differences occurred between samples obtigdered classes€; active
zone with positive intensity class, active zone class wahative intensity class and no ac-
tive zone), the probability density function (pdf) of ondssamay be confused with the pdf
of another classeg(g., the Hidden Markov Model method generally tries to regakathad
segmentation results due to this ill-posed problem and thsemce of outliers in the data
[Belghith0g). To overcome this issue, we applied a fuzzy contrast ecdraent (FCE)
method on each detected object with the HMC algorithm. Theshiod aims at segment-
ing an unknown sample based on the intensity of its neighypronsidering a fuzzy class
transition {.ethe edge intensities of two adjacent classes follow a S-neeship function).
Once the active zones are detected we apply first the propasied zone alignment algo-
rithm (Fig6.13. This step requires up to 3mn of computation time with 112€6 GHz
and matlab codes. Then the AZ coding and similarity measeneifiFig6.14) to cluster
similar objets (about 1mn of computation time with a matlates). However, two objects
with two similar shapes can not be affected together if theynat in the same brain area.
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Figure 6.14: Overview diagram of the proposed active zoweig and similarity mea-
surement chain.

For this, we add two new constraints to the objects clusjestap: the object position and
overlap. Thus, the more their positions are close, the g dan be assigned together.

6.2.3 Real results

Since the fMRI images of subjects with psychologic path@egre not yet available, we
only focus on the two first steps of the indexing scheme: thigeazone alignment step
and the active zone clustering step (active zone coding iamthgty measurement). We
have applied the proposed methods on our fMRI database.efdnt of the second step,

we obtained 72 fMRI object clusters.

Let us start with the object alignment validation. In orderemphasize the benefit
of the alignment method and patrticularly the use of the glspherical PCA, we have
compared our algorithm with the continuous PCA methddahic01g on some objects
belongings to three different clusters (C1, C2 and C3).6-1é.(a) (resp Figh.16(a) and
Fig.6.17.(a)) displays the active zone alignment results on thrgectdbbelonging to C1
(resp C2 and C3) obtained with the proposed method.6Hi§(b) (resp Figs.16(b) and
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Fig.6.17.(b)) displays the active zone alignment results on thrgectd belonging to C1
(resp C2 and C3) obtained with the continuous PCA method.n&scan see, our method
performs the best alignment result. Moreover, even with rmm@unced partial spherical
shape of the active zones (cf. FadL6), the proposed method still works well and provides
better results than the continues PCA. This can be explathdfact that the initialization
step properly fit the object shape thanks to the sphere hammetersr(”é, @). For exam-
ple, the more the object shape seems to a plan, the nisigréat.

We address now the object clustering validation. Since oargt truth is available, the
clustering results were examined by an expert. The pretirginesults are promising and
we are now working on a comprehensive validation of the tesiig6.18and Fig6.19
display four active zone clusters obtained by the proposeithoals.

6.3 Conclusion

The evaluation of real cases and statistical comparisotistiag results obtained by experts
were used to validate the behavior of our methods on larde detasets. We were able to
obtain good or satisfactory arrangements for all consitleharacteristics. This study and
critical analysis carried out with the experts allowed ugdentify the main limitations of
the algorithms on a significant number of objects and theardehe a number of changes
to solve most encountered problems. Below a summary of playssuggestions:

For the HSQC spectra:

e Consideration of the peak with the largest amplitude ageafee to calculate the
peak ratios of a given metabolite in the annotation scheme;

e Normalization of the spectra with their biopsy masses;
e Introduction of a metabolite confidence degree for eachtifieth metabolite;

e Introduction of a change threshold to select the relevaabhghd metabolites.

For the fMRI images:

e Separation between fMRI objects with positive and negatitensities;

e Tightening of the fMRI object location and object overlamstraints in the cluster-
ing step;
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Figure 6.15: Alignment results of three active zones belantp the same cluster with the
(a) the proposed method and (b) the Continues PCA method.



6.3. Conclusion 141

Figure 6.16: Alignment results of three active zones wittpramounced partial spherical
shape belonging to the same cluster with the (a) the propmstidod and (b) the Contin-
ues PCA method. As one can see, even with no pronounced| uotierical shape, the
proposed method performs better than the Continues PCAaaheth
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Figure 6.17: Alignment results of three active zones belantp the same cluster with the
(a) the proposed method and (b) the Continues PCA method.
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Figure 6.18: Two active zone clusters obtained by the pmghosethod. A reference brain
is displayed to indicate the position of the active zonetelss
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Figure 6.19: Two active zone clusters obtained by the pmghosethod. A reference brain
is displayed to indicate the position of the active zonetelss



Conclusion and perspectives

This research work aimed at developing an approach for bikenadentification from
medical signals and particularly the HSQC HR-MAS 2D NMR ¢peand fMRI images.
Our approach should be based on characterizations havitepaand proven physician
interpretation. We have answered this problem in two st€psthe one hand, the devel-
opment of a hierarchical model providing a high semanticscdgtion level of medical
signals, and an access to the relevant information of theaalesignal using a new global
content-based object indexing and retrieval scheme. Onttier hand, we are interested
to properly model and integrate tlaepriori knowledge we have on the biological signal
allowing us to propose thereafter appropriate methods ¢b galexing scheme step and
each type of treated signals. The performances obtainedebgdambination of these two
aspects were then evaluated on a consistent medical desalide results were discussed
in depth with physicians and we were able to show the relevamd robustness of the
proposed methods.

The main contributions of this PhD are the followings:

1. A global content-based object indexing and retrieval schem We have imagined
a strategy to adapt classical indexing scheme to biomadesttification problem,
thus providing a global application framework valid for mboges of medical sig-
nals. To this end, we proposed the add of a classificationtstdye classical index-
ing scheme. Indeed, the biomarker identification consistdassifying for example
a group of medical signals into the healthy and the pathololgisses€ g cancer or
psychological diseases) and to detect then the differgiobesges) between them.
One perspective of this development involves the intraalucf an interaction mod-
ule between the system and the user (a real time feedbaokyjiadj the results con-
trol according to the physicians expectations.

2. An evidential peaks detection and alignment methodThis method combined the
modeling of the knowledge by means of the evidence theoryraadrates the fuzzy
theory to quantify the imprecision degree presented in pleetsa. The handling of
both imprecision and uncertainty by the evidence theorseimged the robustness of
the proposed alignment scheme with comparison to the Bayesiethod. In ad-
dition, we have used the deconvolution model to achieve bttt of the HSQC
spectrum and the multivariate Gaussian distribution to ehtite noise correlation
enabling method robustness to a high level of noise, oneeofiibst delicate issues
in HSQC spectra. All these developments resulted in a deteptocedure and fully
automatic alignment of peaks to a fully parametric repregam of the observed
spectra.

In this work, we used a deconvolution method for spectrunk giegection. The
optimization of the problem is addressed by a classic MCM&cgaure where the
Gibbs algorithm was used to model hyperparameters sampliihis allowed us to
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take advantage of the sampler computing time rapidity. Hewemore sophisti-

cated samplers can potentially be used to achieve betteitselike the Reversible
Jump MCMC procedurellarocque02 allowing a variant peak number handling.
Moreover, it would be particularly interesting to repladeetevidence theory by the
possibility theory. Indeed, possibility theory is one af tturrent uncertainty the-

ories devoted to the handling of incomplete information.sigally, this theory is

similar to the probability theory because it is based onfsettions but differs from

the latter by the use of a pair of dual set functions calledsfimbty and necessity

measuresDubois0§.

. An active zone alignment method Based on the reflection symmetry, this method

allows us to find the most object natural pose and align Viginilar objects in
the same manner. Indeed, in order to integrateaopiriori knowledge and particu-
larly the partial spherical active zone shape, we proposeshamethod for spherical
symmetry estimation based on the non-linear PCA to modekttection symmetry
of the cortical active zones. To calculate the sphericalmsginies of the fMRI active
zones, we develop previous works proposedKirtdy96] where authors adapt the
network to the case of circular data (2D data). In a first stepextend this work
to the 3D data case (entire spherical shape) and then to thel ggherical shape
which is well suited to fit the active zone shape due the hurnaiex shape.

In neuroimaging, it is well known that the brain is made up loké main com-
ponents: white matter, gray matter and cerebral spinal fluMany efficient seg-
mentation algorithms are now available and allow to prelyisextract these three
components. Based on such segmentation, the active zdeetiatealgorithm may
be extended to take into account the differences betwesa theee tissue types in-
side the brain. Moreover, extending the proposed active adignment method by
combining the detection and alignment steps in a joint fr&or& would also lead to
a fully automatic method exploiting the brain tissue vaeiet

. A metabolite similarity measurement method We have proposed the use of the

fuzzy set theory to deal with the ambiguity which is in thete&such identification

task. The use of the metabolite likelihood measure as a miglsignature has
increased the robustness of the proposed identificatioensetwith comparison to
the SVM method which does not take into accountahmiori knowledge. Genetic
Algorithm (GA) was employed to train the comparison modebider to calibrate

the parameters in an unsupervised way.

One perspective of this development involves the use ofsidual image (the image
difference between the observation and the parametrictspaaepresentation) to
compensate the estimation error within the similarity msasent scheme.

. A fMRI active zone coding and similarity measurement method Inspired from

the Gaussian transformation , the proposed active zonegadethod is improved
by using of the Generalized Gaussian transformation wisievell suited to describe
the surface topology of the fMRI active zones. In particulee showed that the
proposed method not only provides a compact representafidthe object in its



6.3. Conclusion 147

space but also a signature faithfully attached to its sarfapology (flat surface or
surface with reliefs). Moreover, in order to be less sevssito small displacements
or minor geometric variations, we introduced a new sintyjameasure.

It would be interesting to extend the method to other comsgleface topology by
combining the GG transformation with other transformatiqag mixture Gaussian
and mixture GG transformations).

6. A object classification/change detection methadin this method, we proposed a
new SV3DH kernel function which combines the characte&sstif basic kernel func-
tions with new information about features distribution &neih dependency between
samples. The dependency between samples was handled aseputas theory
that is be used for the first time to our knowledge in the SVDddrfework.

The proposed classification method is limited to two clas&es matter of fact, new
individual/group is classified into two classes: changed anchanged class. This
method can potentially be extended to the multi-class ch®@iag a multi-diseases

discrimination.

Finally, the different proposed methods were validatedfinsapart on simulated data
to demonstrate their behavior compared to existing metHadssecond part, all the results
obtained on real data have been examined by experts in ea@in(HR-MAS NMR spec-
troscopy and fMRI). This validation shows the good perfang®of our algorithms leading
to similar results to those obtained by physicians in a sioe both for the HSQC spectra
(HR-MAS NMR) and fMRI images. The discussions we had withgibians convinced us
of the relevance of the proposed approaches, the proxiritiyeoparametric model with
the biological model allowing a dialogue and an easy feekilbatween both communities.






APPENDIXA

MCMC

In this Appendix, we develop a Monte Carlo Markov Chain (MCMx@ocedure to estimate

the peak locations, amplitudes and shapes required forrtpoged peak detection and
alignment scheme. The principle of MCMC method is to gemesaimples drawn from

the posterior densities and then to be able to achieve hgpmmeter estimation using the
Marginal Mean (MPM) estimatoiGilks96:

X =E[X/Y] (A.1)

whereX is the variable to estimate (theoretical spectrum) fronotieervatiorY (observed
spectrum).

We use a Gibbs sampleSmith93 based on a stationary ergodic Markov chain al-
lowing to draw samples whose distribution asymptoticadijoivs thea posterioridensity
P(X,0/Y), 8= {Byr,6p,64}) where:

e 6,v stands for the pdf hyperparameters of the Lorentzian shipeyii (Eq.3.2),
¢ 0O, stands for the hyperparameters of additive n@iseb(i, j)i—1..m,j—1.n (Eq3.1),

e O, represents the hyperparameters of the theoretical 2DrepeanageX (location,
shape, amplitude (E8.2)).

Noise Model

MCMC method requires the definition of a noise model that @hdsed in a Bayesian
framework as additive, white and Gaussian. However, thetmngsis of a white gaussian
noise is not always entirely justifie®pdenhauseng0 Thus, we propose here to keep
the Gaussian behavior but to take into account the comelati the additive noise. Indeed,
vertical lines appear sometimes in the observed spectrdmhith are due to experimental
condition Becker0Q: it leads us to introduce a correlated noise modeling tiisl lof
artefact. Then, we adopt a multivariate Gaussian distdbutvith covariance matrix
and meany,. The expression of the noise density is given by:

b(L, j) b(L, j)
y b(2,j) b(2,j)
1
(B ko, ') —= ' — Mt ' —
Ho:Tb J|_|12nM/2|rb|1/2 Pl 2 . o o . Mo
b(M, ) b(M, })

(A.2)
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where(M x N) is the spectrum size. The likelihood corresponding to thea-daven
term is expressed as:

Y/X y eb = XyYJ,eb) (A.3)

H:z

wherey; = [y(1,}),¥(2, j),...,y(M, e, Xj = [xyv"j(l),...,xyv,j(i),...,xva(M)}T,xva(i) =
¥ Skijo X(Ki, k2) h(i — Ky, j — kp) andBp = {I'p, Uy }-

Simulation scheme

We present in this paragraph the implementation of thetiter&ibbs algorithm we
used for sampling. We introduce the variab8§8°" and6}s which represent the parameter
of the a priori probability p(X /6¢"*") and the likelihood probabilit(Y /X, 8Y%) respec-
tively. To samplep(X,y,0), at every iterationt, the main steps consist in:

1. sampling the theoretical 2D spectrum image Y from

(X/Y eVS eprlor) (A4)

vs — [yell] 11yl
eX. {X oY } (A.5)
e)F()HOF _ {(XI],BI]}

where{al'l, BlI} are the hyperparameters of the Gamma distribution modéiag
priori on X. The gamma distribution is an exponential family distribatwhich is
used for fitting non-negative datei$iao03. Indeed, the shape parametefal!,pl'})
of the Gamma distribution allow to fit spectral data that megspnt some sparsity
and possibly a backgroun®gbigeon09. The gamma density is expressed as:

p(X;a,B) = rll‘Lg x(i,j) >0

; B Bx(i,
—I'L R "o

with

2. sampling the hyperparameters of the Lorentzian shapeyflit! from

(Y /Y. 817,855 (A7)

{9“{ o} "9

gPrior _ |]}

where
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where{o[']} is the variance of the gaussian distribution modeling ayriori on

{y'}

p(y';0) = 1 e <7<<2VE[?]2>> (A.9)
1.2 V21ol!

3. sampling the covariance matrix of the nol'sgél] from
(oY, X1y ) (A10)
4. sampling the hyperparametet 2 from
p(a /Y, x4,y gl (A1)
5. sampling the hyperparame@t*¥ from
p(B/Y, X!+ all) (A12)
6. sampling the hyperparametettfrom

1 I+1
p( Y, Xy (A.13)

After |axiterations X and\fY are given by

v |max
{>,<\ - Imaxilmin z"minJrlX[I][” (A14)
V= o 2% 2Y"

Imax—Imin

wherelqin stands for the number of iterations corresponding to th@-butime of the
Markov chain Cowles96. In our casdnmn is equal to 200 iterations wherelag is equal
to 500. Concerning the computation time, the MCMC algoritlequires up to 3h30 to
converge with a 2.66 GHz Intel processor and a combinationaifab and C code.
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Genetic algorithm

Genetic Algorithms (GA) are adaptive heuristic search tlgm premised on the evolu-
tionary ideas of natural selection and gene@oldberg89. The basic concept of GA is
designed to simulate processes in natural system necdesamplution, specifically those
that follow the principles first laid down by Charles Darwihsurvival of the fittest. As
such they represent an intelligent exploitation of a randearch within a defined search
space to solve a problem. The aim of genetic algorithm is ¢osiraple representations to
encode complex structures and simple operations to impghmges structures.

We describe in this part how to use GA to ascertain the hypanpeters of differ-
ent membership functions. As a matter of fact, we used the I@évithm for the peak
detection-alignment and the metabolite identificatioresebs. To this end, we use a train-
ing data base containing 10 spectra where each one corsgfiseetabolites with known
characteristics (the number of metabolite peaks, theitmtatind the shape od each peaks).

Concerning the fuzzy membership functions hyperparameteed in the peak detec-
tion and alignment scheme, let us denote(&y,b;, c1,a,, b2, Cy,as, b3, c3) the population
representing the hyperparameters of these functions whete, c; ) are the hyperparam-
eters of the functiorfrym (EQ.3.4), (az,by,cy) the hyperparameters difye (Eq. 3.5 and
(a,bs,c3) the hyperparameters dfys (Eq. 3.6). We apply real coding to encode the
chromosomes of the population. Each individual is represehy a vector of0,1}. The
different steps of GA are:

1. Generating an initial population:
o [0 [0 0 0
(a[l],b[ll,c[l],a2 ,b[ ,C2 a3] b[ ,03)

The initialization is done in an experimental way.

2. Define individual fitness function to indicate the fitneggwery chromosome. The
proposed function is expressed as:

fope = (W1, J) — be(i, 1))? (B.1)

whered'l(i, j) is given by EqB.7 with respect to the estimated hyperparameters at
iterationl and| is the expected solution.

3. Generating offspring by selection and crossover: 20%efpopulation which has
best fitness is copied directly to next generation to keepbt® gene. The other
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80% of the population is obtained by crossover operatioi &iprobabilityP, =
0.8. We select randomly one cut-point and then we exchangaghepart of two
chromosomes.

4. Mutation operation: only the chromosomes having undergrossover can be af-
fected by the mutation. It consists in modifying a gene witprabability Pm=
0.008.

5. Ending condition: if the maximal evolutionary epoch (rimaal number of iterations
500) is reached, the GA end.

For the metabolite identification problem, let us denote by:

(ag,b1,a2,b2,C2,a3,b3,C3,84,04,C4,ds)

the population representing the parameters of the useg¢ fuembership functions. In-
deed,(a1,b;) are the hyperparameters of E416 (ap, by, c,) the hyperparameters of Eq.
4.12 (ag, bz, c3) the hyperparameters of E4.15and(as, ba, 4, ds) the hyperparameters of
Eq. 4.18 We apply real coding to encode the chromosomes of the pipular herefore,
each individual is represented by a vecto{0f1}. The different steps of GA are:

1. Generating in an experimental way the initial population

0 L0 0 0 W0 [0 40

(a[ll,b” ]b[ ,Cz a3],b] (0] E] bgl,cgl,dé[l])

2. Define individual fitness function to indicate the fitnesgwery chromosome. The
proposed function is expressed as:

fopt: (9_1)2 (B.2)
whereg is given by Eq.4.19and 1 is the expected resutt { Eq. 4.19.

3. Generating offspring by selection and crossover: 20%efpopulation which has
best fitness is copied directly to next generation to keepbtdst gene. The other
80% of the population is obtained by crossover operatioin &iprobabilityP, =
0.8. We select randomly one cut-point and then we exchangaghepart of two
chromosomes.

4. Mutation operation: only the Chromosomes having unde¥gmossover can be af-
fected by the mutation. It consists in modifying a gene witphrabability Pm=
0.008.

5. Ending condition: if the maximal evolutionary epoch (rimaal number of iterations
500) is reached, the GA end.

Concerning the computation time, the GA algorithm requine¢o 6h45 to converge with
a 2.66 GHz Intel processor and a matlab codes.
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Evidence theory

The Dempster Shafer (DS) is a mathematical theory of eviglelmca finite discrete space,
DS theory may be red as a generalization of probability thebrdeed, the probabilities
are assigned to sets as against to mutually exclusive samgleIn probability theory, ev-
idence is only related to one hypothesghpfer78. In DS theory, evidence is related to
sets of events. As a matter of fact, the DS theory is designedpe with varying levels of
precision regarding the information. To this end, DS thqugvides tools to represent the
uncertainty of data where an imprecise may be charactebigedset or an interval and the
resulting output is a set or an interval.

The mass function

Let us denot® the frame of discernmentvhich is defined as:
©={H1,Hy,....H\}

Itis composed oN exhaustive and exclusive hypothes¢sj = 1..N. From the frame of
discernment, le© be the power set composed with tH¥ FopositionsA of ©:

Q= {@, {Hl}, {Hz}, ey {HN}7 {Hl, Hz}, ,O}

The DS evidence theory provides a representation of bothieiogion and uncertainty
through the definition of two functions: plausibilityls and beliefBel, which are both

derived from a mass functiam. This mass functiom allows us to quantify the reliability
degree of a propositiormis defined for every eleme#tof Q and observatiolY, such that

the mass valuen(A;Y) belongs to the [0, 1] interval with respect to:

[m@y)=o0
M) s mAY) =1
ACQ

where0 is the empty set. In the Bayesian theory, the uncertaintytaho hypothesis is
calculated by the probability and imprecision associatétth wncertainty is assumed to
be null. In the evidence theory, the plausibility value maydxplained as the maximum
uncertainty value abouk whereas the belief value of hypothegisnay be explained as
the minimum uncertainty value abo#t Therefore, this theory, which allows to represent
both imprecision and uncertainty, appears as a more flerifstegeneral approach than
the Bayesian one. Indeed, when the mass affected to a comhfypothesis{H,H,} is
nonzero, it means that we have an option not to make the dedigitweer{H;} or {H;}
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as the Bayesian theory but rather leave the sample ifHheH,} class. Applications were
developed in medical signal€haabaneQ9yazdani09, object detection Aeberhardl1],
image segmentatiorPjeczynskiO7 Ben Chaabane(9and remote sensing classification
[Malpica07.

The belief and plausibility functions, derived from are respectively defined fro@
to [0, 1]

Bel(A/Y) = B;Y Cl1l

el(A/Y) ACngAm( ) (C.1)

PIS(A/Y) = Z m(B;Y) (C.2)
ACQBNAAD

DS Combination

In the case of problems taking into account both uncertaihimprecise data, it should
be useful to combined the information obtained from sevswatces in order to get more
relevant information. DS theory offers tools to combine khewledge given by different
sources. The orthogonal rule also called Dempster’s rutmofbination is the first com-
bination defined within the framework of evidence theoryt i denotam(Yz),...m(Y),

L masses of belief coming froin distinct sourced;, | = 1...L. The belief functiorm re-
sulting from the combination of thie sources by means of Dempster’'s combination rule is
defined by:

m(A) = m(A;Y1) ©M(AY2) @ ... mM(AY) (C.3)

whered® is defined by:

1
AY; AYo) = —— B;Y1).m(C;Y, CA4a
M(A; Y1) & M(A;Y2) 1_KBHZ:Am( 1)-m(C;Y2) (C.4)
and
K= S m(B).m(C) (C.5)
B(C=0

K is often interpreted as a measure of conflict between therdiit sources and is in-
troduced as a normalization factor. The largeKisthe more the sources are conflicting
and the less sense has their combination. KHactor indicates the amount of evidential
conflict. If K = 0, this shows a complete compatibility and ikOK < 1, it shows partial
compatibility. Finally, the orthogonal sum does not existenK = 1. In this case, the
sources are totally contradictory, and it is no longer gaegio combine them.
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Résumeé:
Les techniques d’acquisition des signaux médicaux sontoastante évolution et four-
nissent une quantité croissante de données hétérogéndsigemt étre analysées par le
médecin. Dans ce contexte, des méthodes automatiquestdm@at des signaux medi-
caux sont régulierement proposées pour aider I'expert malyse qualitative et quanti-
tative en facilitant leur interprétation. Ces méthodewelui tenir compte de la physique
de l'acquisition, de & priori que nous avons sur ces signaux et de la quantité de données
a analyser pour une interprétation plus précise et plusefiabhns cette thése, I'analyse
des tissus biologique par spectroscopie RMN et la rechatekeactivités fonctionnelles
cérébrales et leurs connectivités par IRMf sont explorées [a recherche de nouveaux
bio-marqueurs. Chaque information médicale sera carsé&par un ensemble d’objets
gue nous cherchons a extraire, a aligner, et a coder. Leuggnwent de ces objets par la
mesure de leur similitude permettra leur classificatioridgtification de bio-marqueurs.
C’est ce schéma global d’'indexation et de recherche parrieena d'objets pour la dé-
tection des bio-marqueurs que nous proposons. Pour cala, nmmus sommes intéressés
dans cette thése a modéliser et intégrer les connaissarmési que nous avons sur ces
signaux biologiques permettant ainsi de proposer des mésrappropriées a chaque étape
d’'indexation et a chaque type de signal.

Mots clés: Identification de bio-marqueurs, spectres HSQC, imaged fMBexation,
détection et alignement d'objet, codage et mesure de sitdjlaétection de changement.

Abstract:
The medical signal acquisition techniques are constamtivimg in recent years and pro-
viding an increasing amount of data which should be thenyagedl In this context, auto-
matic signal processing methods are regularly proposesktstahe expert in the qualitative
and quantitative analysis of these images in order to fatglitheir interpretation. These
methods should take into account the physics of signal aitigqui, thea priori we have
on the signal formation and the amount of data to analyze foioee accurate and reli-
able interpretation. In this thesis, we focus on the twoatisional 2D Heteronuclear Sin-
gle Quantum Coherence HSQC spectra obtained by High-R&solMagic Angle Spin-
ning HR-MAS NMR for biological tissue analysis and the fuanal Magnetic Resonance
Imaging fMRI images for functional brain activities andfy/sEach processed medical in-
formation will be characterized by a set of objects that wekge extract, align, and code.
The clustering of these objects by measuring their sintjlavill allow their classification
and then the identification of biomarkers. It is this globahnt-based object indexing
and retrieval scheme that we propose. We are interestedsithésis to properly model
and integrate tha priori knowledge we have on these biological signal allowing ugte p
pose thereafter appropriate methods to each indexing stepaxch type of signal.

Keywords: Biomarker identification, HSQC spectra, fMRI images, inidgx object
detection and alignment, object coding and similarity measent, change detection.
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