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Résumé

Introduction

Des équipements médicaux de plus en plus sophistiqués apportent aujourd’hui des infor-
mations indispensables à la prise de décision du médecin, enparticulier dans les domaines
de la cancérologie et des pathologies neurologiques. Les progrès permis par les nouvelles
technologies d’acquisition d’information médicale, que ce soit par l’amélioration du rap-
port signal à bruit ou le couplage inédit entre anatomie et physiologie, ont progressivement
donné à l’imagerie médicale un statut indispensable dans l’élaboration du diagnostic, du
pronostic et de la prise en charge thérapeutique. Par ailleurs, l’analyse de combinaisons
de signaux biologiques apparait aujourd’hui prometteuse sans toutefois faire systématique-
ment partie de la routine clinique. Les techniques d’acquisition des signaux médicaux
sont en outre en constante évolution (échographie endoscopique, Tomographie par émis-
sion de Positons TEP, spectroscopie par Résonance Magnétique Nucléaire, Imagerie par
Résonance Magnétique IRM, imagerie IRM fonctionnelle IRMf) et fournissent une quan-
tité croissante de données hétérogènes qui doivent être analysées par le médecin. En effet,
d’une observation statique à une multi-observation dynamique, d’une information sur la
structure des organes à l’information sur leurs fonctions,les techniques d’acquisition de
signaux médicaux portent potentiellement la signature de la maladie (bio-marqueurs) bien
au-delà de l’examen clinique ponctuel. Dans ce contexte, des méthodes automatiques de
traitement des signaux médicaux sont régulièrement proposées pour aider l’expert dans
l’analyse qualitative et quantitative en facilitant leur interprétation. Ces méthodes doivent
tenir compte de la physique de l’acquisition, de l’a priori que nous avons sur ces signaux
et de la quantité de données à analyser pour une interprétation plus précise et plus fiable.
Parmi les nouvelles techniques d’acquisition de signaux, l’analyse des tissus biologique
par spectroscopie RMN ou la recherche des activités fonctionnelles cérébrales et leurs con-
nectivités par IRMf sont explorées pour la recherche de nouveaux bio-marqueurs (objet),
que ce soit pour l’aide au diagnostic de pathologies ou pour le suivi d’effets thérapeutiques.
Pour ce faire, il est également nécessaire d’améliorer les outils d’analyse associés à ces nou-
velles techniques. Dans cette optique, nous proposons un nouveau schéma d’indexation et
de recherche par le contenu d’objets pour la détection des bio-marqueurs.

Le scénario classique d’exploitation d’un système de recherche d’information est le
suivant : un utilisateur soumet une requête et le système identifie les informations perti-
nentes à la requête soumise, puis les retourne à l’utilisateur. Ainsi, le but d’un système de
recherche d’information est de retrouver les documents pertinents par rapport à une requête
donnée. Cependant, l’évaluation de la pertinence d’un document n’est toujours pas aisée
puisque la notion de la pertinence est très dépendante des préférences de l’utilisateur. La
recherche traditionnelle des documents (par exemple, les images médicales, les sons respi-
ratoires, etc) par mots-clés est l’approche la plus ancienne et la plus utilisée. Cependant,
elle reste limitée par le faible pouvoir expressif des mots,par les contraintes linguistiques
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(le passage d’une langue à une autre, l’ambigüité sémantique) et par le caractère objectif
des annotations (deux médecins peuvent annoter différemment une image médicale). En
outre, elle nécessite l’intervention humaine et est donc contraignante pour les bases de don-
nées de tailles importantes si les mots clés sont générés manuellement. De plus, notons que
l’annotation ne pourra jamais décrire le contenu d’un document de façon exhaustive.

Afin de contourner ces inconvénients, l’approche d’indexation et de recherche par le
contenu a été proposée (appelée désormais approche d’indexation) [Eakins96]. Elle con-
siste à rechercher des documents en n’utilisant que le document lui-même, c’est-à-dire son
contenu sans aucune autre information. Par exemple, dans lecas des images, l’idée est
de caractériser le contenu visuel des images par des descripteurs visuels et d’effectuer des
recherches par similarité visuelle à partir de ces descripteurs. Par conséquent, l’approche
d’indexation basée sur le contenu nous permet non seulementd’indexer automatiquement
les documents et d’interroger une base de données directement à partir de leur contenu in-
formatif, sans intervention humaine, mais aussi d’analyser objectivement son contenu. Par
exemple, si on considère une tumeur cérébrale comme une requête, nous pouvons facile-
ment identifier avec une fonction de mesure de similarité objective les tumeurs similaires
appartenant à la base de données sollicitée.

Généralement, le système d’indexation nécessite:

1. Une étape d’alignement de documents,

2. Une étape de codage de document et de mesure de similarité.En effet, le codage
du document consiste à calculer pour chaque document un ensemble d’attributs de-
scriptifs compacts qui définit sa signature. Une mesure de similarité utilisant ces
descripteurs permet de comparer deux documents et d’identifier ainsi les documents
similaires.

Afin d’accélérer la sollicitation de grande base de données,le schéma d’indexation peut
être divisé en deux phases:

1. Une phase hors ligne dans laquelle on réalise l’alignement et le codage du contenu
de la base de données. Durant cette phase, l’utilisateur n’est pas encore connecté
au système. Cette phase peut alors prendre le temps nécessaire à l’extraction des
descripteurs. Le codage hors ligne consiste à extraire les signatures associées aux
contenus de la base de données. Ces dernières sont ensuite enregistrées dans une
base de données organisée comme un dictionnaire inverse (nom du document et sig-
nature) permettant ainsi de retrouver rapidement le document associé à une signature
donnée.

2. Une phase en ligne dans laquelle l’utilisateur interrogela base de données à l’aide
d’un document exemple. Durant cette seconde phase, le tempsde réponse du sys-
tème est crucial et il faut l’optimiser. Notons que les étapes de l’alignement et du
codage ne concernent que le document requête. Une mesure de similarité entre la
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signature de la requête et celles établies dans le dictionnaire inverse est alors cal-
culée. Enfin, les documents appartenant à la base de données sont classés par ordre
de similarité.

Bien que ce système classique d’indexation a été appliqué avec succès sur des bases
de données du Web [1], il n’est malheureusement pas adapté à la tâche d’identification des
bio-marqueurs. En effet, cette dernière nécessite la classification des profils de signaux
médicaux (groupes) pour la détection de changements. Par exemple, si on considère deux
classes de profils: la classe saine et la classe pathologique, la tâche d’identification de bio-
marqueurs revient à classifier un groupe de signaux médicauxdans la classe des signaux
sains ou pathologique (par exemple, le cancer ou les maladies psychologiques) et de dé-
tecter alors les différences (variations) entre eux. En fait, la classe des signaux sains peut
être considérée comme la classe du "non changement" et la classe pathologique comme la
classe du "changement". Par conséquent, l’ajout d’une étape de classification/détection
de changement au schéma classique d’indexation nous permettrait de détecter les bio-
marqueurs à partir des données médicales considérées. Nousnous focalisons dans ce travail
de thèse sur :

1. Les spectres à deux dimensions HSQC (Heteronuclear Single Quantum Coherence)
obtenus en Résonance Magnétique Nucléaire (RMN) et plus particulièrement en
spectroscopie RMN hétéro-nucléaire HR-MAS (High-Resolution Magic Angle Spin-
ning : RMN haute résolution par rotation de l’échantillon à l’angle magique) qui
permet l’analyse directe des tissus biologiques (biopsie)

2. Les images IRMf pour les régions fonctionnelles cérébrales.

De ce fait, et contrairement au schéma d’indexation classique, le nouveau schéma
d’indexation contient deux étapes supplémentaires: une étape de détection d’objets (dé-
tection de pics de spectres HSQC et des zones actives d’images IRMf) et une étape de
classification d’objets (détection de changements). Chaque information médicale traitée
(spectres 2D RMN ou images IRMf) est alors caractérisée par un ensemble d’objets (bio-
marqueurs) que nous cherchons à extraire, aligner et coder.Le regroupement de ces objets
par la mesure de leur similarité permet alors leur classification. C’est ce schéma globale
d’indexation et de recherche par le contenu d’objets que nous avons adopté. Dans notre
cas, ces objets sont :

- Les raies d’émission pour les spectres RMN HR-MAS 2D (i.e.,un ensemble de
pics est la réponse correspondant à la présence de métabolites, chaque métabolite
générant différents pics d’émission traduisant la présence de petite molécule à travers
des interactions Proton-Carbone 13 dans le cadre des spectres HSQC).

- Les zones actives pour les images IRMf (i.e., une zone active est la réponse d’une
activité cérébrale à un stimulus).
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Le schéma d’indexation proposé est alors divisé en deux phases:

1. Une phase hors ligne dans laquelle on réalise sur chaque signal traité (spectre HSQC
et image IRMf) : la de détection d’objets, l’alignement d’objets, lr codage d’objets,
la mesure de similarité et enfin la classification d’objets. Finalement, des profils
de groupes ou de populations données (par exemple groupe de signaux normaux ou
pathologiques) sont établis.

2. Une phase en ligne dans laquelle l’utilisateur interrogela base de données en utilisant
une requête (nouvel individu/groupe de spectres). Les mêmes étapes que dans la
phase hors ligne sont appliquées sur la requête (spectre HSQC ou image IRMf).
Enfin, cette requête est assignée à un profil préalablement défini à l’étape hors ligne.
Notons que contrairement au schéma d’indexation classique, l’étape de mesure de
similarité d’objets vise ici à regrouper les objets similaires appartenant à un groupe
de signaux médicaux donnés permettant ainsi l’attributionde ce groupe au profil
approprié. En d’autres termes, la tâche d’attribution d’unnouveau groupe/individu
est abordée ici au niveau de l’étape de classification et non pas au niveau de l’étape
de mesure de similarité comme c’est le cas pour le schéma d’indexation classique.
Figure2.15montre le schéma du traitement.
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Figure 1: Schéma synoptique de la méthode d’indexation proposée.

Dans la suite, nous développons les étapes de détection-alignement d’objets, de codage
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et de mesure de la similarité ainsi que l’étape de classification d’objets.

1. Détection et alignement d’objets

Le problème de la détection d’objets consiste à découper le signal en un ensemble de
groupes significatifs (objets) en se basant sur les informations spatiales et/ou les intensités
des pixels. La tâche d’alignement d’objet est le processus de superposition de deux ou
plusieurs objets pris à des moments différents, et/ou différents points de vue, et/ou par
des modalités différentes. Plus précisément, l’alignement des objets consiste à aligner
géométriquement un objet par rapport à un motif de référence. Notons que la tâche de
détection d’objets et celle de l’alignement sont deux étapes cruciales dans le système
d’indexation car toutes les autres étapes en dépendent. Parconséquent, afin d’aboutir à
un résultat de détection et d’alignement d’objets optimal,toutes les connaissancesa pri-
ori que nous avons sur les données doivent être correctement intégrées dans les méthodes
proposées de détection et d’alignement d’objets. C’est la démarche que nous suivons dans
cette thèse.

Pour l’étape d’extraction et d’alignement des objets, nousproposons une nouvelle
méthode basée sur l’utilisation de la théorie de l’évidencequi combine la détection et
l’alignement des raies d’émission. En effet, la théorie de l’évidence permet la manipula-
tion de l’incertitude des modèles et l’imprécision qui caractérisent les spectres HSQC. Par
conséquent, nous proposons le couplage entre la théorie desensembles flous et la théorie
bayésienne pour modéliser et quantifier le degré d’imprécision des spectres qui sera ainsi
exploité pour définir les fonctions de masse (i.e., une fonction qui modélise le degré de
croyance sur une hypothèse donnée). En ce qui concerne les images IRMf, nous procé-
dons, dans une première étape à l’extraction des zones actives en utilisant un algorithme
de segmentation par chaînes de Markov. Ensuite, nous proposons un nouvel algorithme
d’alignement des zones actives basé sur l’utilisation de laméthode d’Analyse en Com-
posante Principale (ACP) non-linéaire pour l’estimation des symétries de réflexion. Ces
symétries de réflexion sont ensuite utilisées pour l’alignement des zones actives.

1.1 Détection et alignement de pics

Nous proposons dans cette thèse une nouvelle méthode de détection et d’alignement des
pics de spectres RMN HR-MAS 2D en utilisant la théorie de l’évidence. Cette théorie per-
met d’affecter des degrés de confiance, aussi connus sous le nom de fonctions de masses,
non seulement à des hypothèses simples, mais aussi à des réunions d’hypothèses(si la con-
naissance disponible ne porte que sur un ensemble d’hypothèses sans plus de précision).
Par exemple, un pixel de spectre peut appartenir à la classe{H1,H2} où H1 représente la
classe des raies d’émission etH2 celle du bruit. Il n’existe pas une méthode générique
reconnue pour construire ces fonctions de masses et leur définition est très dépendante de
l’application étudiée. Pour ce faire, nous nous intéressons à la modélisation du conflit pour
la quantification de l’imprécision dans les spectres en définissant trois hypothèses triviales:
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hyp1 (l’imprécision (contradiction) portant sur les amplitudes),hyp2 (l’imprécision portant
sur les formes des pics) ethyp3 (l’imprécision portant sur les positions des pics). La contra-
diction sera maximale lorsque un pixel correspond à une raied’émission dans un spectre et
correspond en même temps à un bruit dans l’autre. Les différents paramètres des spectres
(localisation des pics, charachtéristiques de chaque pic:amplitude et forme) sont estimés
par une procedure Monte Carlo Markov Chain MCMC [Griffin04]. Figure6.3 représente
la chaîne de traitement de la méthode de détection et d’alignement des pics.
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Figure 2: La chaîne de détection et d’alignement des pics.

1.2 Détection et alignement de zones actives

Nous rappelons que une image IRMf peut simplement être représentée par un ensemble de
zones actives que nous cherchons à détecter et à aligner (comme pour les pics du spectre
HSQC) en 3D. Chaque zone active peut être caractérisée par sapositon, sa forme et les in-
tensités de ses voxels. Contrairement au schéma de détection et d’alignement des pics, les
problèmes de détection et d’alignement des zone actives sont traités séparément. Plus ex-
plicitement, étant donnés deux objets détectés, notre objectif est de les aligner en fonction
de leur pose canoniques. Pour ce faire, la détection des zones actives est d’abord effectuée
en utilisant une méthode classique de segmentation par les chaînes de Markov cachées
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[Bricq08] permettant d’intégrer l’information spatiale dans la procédure de segmentation.

Afin d’aboutir à un résultat satisfaisant d’alignement, nous nous appuyons sur la per-
ception humaine dans le schéma d’alignement qui consiste à aligner un objet en fonction
de ses axes de symétrie. Cette approche nous permet de trouver la pose la plus naturelle
de l’objet et ensuite aligner les objets visuellement similaires de la même manière. La plu-
part des méthodes basées sur la perception humaine ont opté soit pour le choix de l’ACP
ou l’ACP continue [Vranić01a, Vranic01b] pour estimer les plans de réflexion. Ces plans
sont ensuite utilisés pour estimer le système de coordonnées cartésiennes approprié asso-
cié à l’objet. Bien que ces méthodes aient été appliquées avec succès pour l’alignement
des objets 3D du Web [Vranic01b], elles sont malheureusement pas adoptées pour les ob-
jets 3D IRMf. En effet, en raison de la forme du cortex, la symétrie de réflexion sur les
zones actives est plus sphérique que planaire. Nous proposons alors d’utiliser la ACP
non-linéaire qui est plus adaptée à la forme de nos objets pour modéliser la symétrie de
réflexion des zones actives [Bishop95]. Pour cela, nous avons développé une nouvelle
méthode d’estimation des symétries de réflexion sphérique en se basant sur les réseaux de
neurones qui ont montré leurs intérêts dans la modélisationde l’aspect non-linéaire des
données[Hsieh98, Stamkopoulos98, Scholz05]. Figure6.5 représente la chaîne de traite-
ment de la méthode de d’alignement des zones actives.
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Figure 3: La chaîne d’alignement des zones actives.

2 Codage d’objets et mesure de similarité

Nous rappelons que chaque spectre est composé de plusieurs pics qui sont dispersés dans
le spectre. Ces pics sont les réponses de la présence de métabolites. Par conséquent, les
pics appartenant à un métabolite donné ont des propriétés communes. Afin d’aboutir à un
meilleur résultat de codage et de mesure de similarité des pics, ces propriétés devraient être
modélisées et injectées dans le schéma proposé. Ainsi, il est préférable de manipuler les
métabolites plutôt que leurs pics séparément. Par ailleurs, dans le cas des spectres HSQC,
l’étape de codage d’objets s’avère inutile puisque les picspeuvent être uniquement décrits
par trois paramètres (localisation, amplitude et forme) etils sont donc déjà représentés
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d’une façon parcimonieuse. De ce fait, l’étape de codage et de mesure de similarité des pics
revient à identifier les métabolites. Pour cela, nous proposons une nouvelle méthode basée
sur la combinaison de la théorie bayésienne et de la théorie d’ensembles flous permettant
de gérer l’incertitude et le caractère flou des observationset d’injecter notre connaissance
a priori dans le modèle d’inférence. Concernant les images IRMf, nous proposons une
nouvelle méthode de codage basée sur la transformation gaussienne généralisée permettant
de décrire d’une manière fiable la topologie de surface des zones actives.

2.1 Identification de métabolites

On distingue généralement deux approches pour l’étude des métabolites. Dans la première
approche, appelée l’approche schématique, les composants ne sont pas initialement iden-
tifiés. Seulement leurs modèles spectraux et intensités sont connus et comparés statis-
tiquement pour identifier leurs caractéristiques spectrales appropriées qui distinguent des
classes. Une fois ces caractéristiques établies, une variété d’approches peut alors être util-
isée pour identifier les métabolites [Brindle02]. Dans l’autre approche, appelée l’approche
du profil ciblé , les composants sont d’abord identifiés et évalués quantitativement en com-
parant le spectre NMR de la biopsie à une bibliothèque de référence spectrale obtenue de
composants purs [Weljie06]. Bien que la première approche présente l’avantage de pouvoir
détecter des métabolites non connus à l’avance, elle n’exploite pas de contraintes supplé-
mentaires comme la connaissance de la composition de la biopsie, nombre de pics d’un
métabolite, etc. Pour cela, nous allons définir trois critères triviaux pour modéliser cesa
priori qui sont la localisation des pics, les paramètres de la densité de probabilité des ampli-
tudes des pics et finalement le rapport entre les différent pics. Pour ce dernier, nous allons
supposer que les rapports d’intensité des raies d’émissiond’un métabolite donné sont les
mêmes. Bien que cette contrainte soit théoriquement valide, elle n’est que rarement vérifiée
en pratique du fait des changements des conditions d’acquisition, de la perte de la matière,
etc. Pour contourner ce problème, nous allons utiliser la théorie des ensembles flous pour
modéliser les erreurs introduites par ces perturbations etproposer un schéma d’annotation
automatique. Le deuxième critère est les hyperparamètres de la Figure4 représente la
chaîne d’identification des métabolites.

2.2 Codage et mesure de similarité des zones actives

Parmi les méthodes de codage d’objets, le descripteur gaussien 3D (3DGD) proposé par
Chaouch [Chaouch09] a montré son efficacité comparé à d’autres méthodes et a été classé
premier sur la base de données de Princeton Shape Benchmark.Il fait partie de la famille
des descripteurs basés sur une partition de l’espace. Le principe de ce descripteur est de
caractériser et d’amplifier localement le voisinage de la surface 3D. Pour cela, les auteurs
proposent d’utiliser des fonctions gaussiennes qui mesurent l’influence des points de la
surface sur des points régulièrement répartis dans l’espace englobant l’objet 3D. Ce de-
scripteur offre une caractérisation compacte, robuste et attachée à la forme 3D. Bien que
cette méthode ait été appliquée avec succès sur la recherchesur Internet d’objets 3D, elle
présente une lacune. En effet, elle ne fournit pas une information sur la topologie de sur-
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face d’objets. Pour cela, nous proposons un nouveau descripteur: le descripteur gaussien
généralisé (3DGGD) inspiré de la méthode 3DGD. Cette méthode se base sur l’utilisation
de la loi gaussienne généralisée à la place de la loi gaussienne permettant ainsi de s’adapter
à la topologie de la surface de l’objet (surface plane, aiguë,..) grâce à son paramètre de
forme α. La mesure de similarité peut être calculée en utilisant unedistance euclidi-
enne dans l’espace des coefficients gaussiens généralisés.Figure5 représente la chaîne
du codage des zones actives.

3 Classification d’objets

Plusieurs algorithmes de classification pour détecter les changements ont été dévelop-
pés dans les dernières décennies. Certains restent supervisées en raison de la difficulté
de la tâche. D’autres ne le sont pas ce qui cause parfois une perte de robustesse et un
temps de calcul relativement élevé. La première approche s’appuie sur des méthodes
de classification supervisées afin de détecter les changements entre plusieurs acquisitions
[Derrode03]. Cette tâche revient à discriminer les données entre deux classes:changement
et non changement. La première nécessite une réalité de terrain afin d’en tirerune forma-
tion appropriée pour définir le processus d’apprentissage des classificateurs. Cependant,
la vérité terrain est souvent difficile et coûteuse à trouver. Par conséquent, l’utilisation de
méthodes de détection de changement non-supervisées est cruciale dans de nombreuses
applications où la vérité terrain est hors portée [Fumera00].
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Dans la littérature, les méthodes à noyau sont largement utilisées pour la détection de
changement. En effet, elles offrent plusieurs avantages par rapport à d’autres approches :
elles réduisent la malédiction de la dimensionnalité élevée dans les données, augmentent
la fiabilité et la robustesse de la méthode à la présence d’un niveau élevé de bruit et per-
mettent une cartographie flexible entre les objets qui sont représentés par un vecteur de
caractéristiques (entrées) et de l’étiquette de classe (sorties) [Shawe-Taylor04]. Cepen-
dant, l’inconvénient majeur des méthodes à noyau est le choix de la fonction noyau qui
dépend fortement de l’application [Scholkopf00] .

Parmi les différentes méthodes à noyaux présentées dans la littérature (par exemple
[Furey00] et [Bruzzone06]), les Descripteurs de données à vecteurs de support (SVDD)
[Tax04] est adoptée ici.L’objectif de la méthode de classificationSVDD consiste à car-
tographier les données dans un espace de grande dimension. Dans ce nouvel espace, une
hypersphère entourant la plupart de l’ensemble de données appartenant à la classe d’intérêt
(cible correspondant à la classe desdonnées inchangées) et en rejetant les autres observa-
tions (qui seront considérées commeles valeurs aberrantes) est définie. Dans cet article,
le problème de détection de changement est abordé d’une manière non supervisée. Notre
objectif est de discriminer les données en deux classes : classe des données changées et
classe de données inchangées.

Bien que les fonctions noyau de base sont plus ou moins appliquées avec succès pour
la détection de changement, elles n’exploitent pas des contraintes supplémentaires souvent
disponibles, tels que la dépendance et la distribution des données. Afin de tenir compte de
ces caractéristiques dans notre schéma de détection de changement, nous proposons une
nouvelle fonction noyau qui combine les fonctions noyau de base avec de nouvelles infor-
mations sur la distribution de caractéristiques et de la dépendance des données. Le défi est
alors de trouver le moyen approprié pour traiter cette dépendance. Pour cela, nous avons
opté pour la théorie des copules qui a prouvé son efficacité pour traiter la dépendance.
La méthode proposée est notée SV3DH (SV3DH est l’acronyme deSupport Vector Data
Description including Dependency Hypothesis). Figure6 représente la chaîne de classifi-
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4 Résultats

Dans cette section, nous présentons les résultats expérimentaux obtenus avec les méthodes
proposées sur des données simulées et réelles. Pour mettre en évidence l’intérêt de ces
méthodes, nous avons comparé chaque méthode proposée avec les méthodes existantes.
Concernant la détection et l’alignement de pics des spectres HSQC, et afin de montrer
l’intérêt de l’utilisation de la théorie de l’évidence, nous avons comparé notre méthode
avec une méthode purement bayésienne [Toews05] sur des spectres simulés avec différent
Peak to signal ratio PSNR. Les résultats obtenus sont présentés dans Table1. Nous pouvons
facilement constater que la méthode proposée est meilleureque la méthode bayésienne.

En ce qui concerne l’alignement des zones actives, nous avons comparé notre méthode
avec la méthode de l’ACP continue [Vranić01a] sur cinq bases de données simulées. Cha-
cune contient cent objets 3D. Les résultats obtenus sont présentés dans Table3.4. Nous
pouvons constater que la méthode proposée est plus adaptée aux zones actives que l’ACP
continue.

A l’égard de l’identification des métabolites, nous avons comparé notre méthode avec
la méthode Support Vector Machine SVM [Camps-Valls05] et une autre méthode de seuil-
lage [Xia08]. Afin de valider et de souligner les avantages de l’approcheproposée, nous
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Méthode évidentielle Méthode bayésienne
PSNR εc εH εc εH

30dB 5.110−3 9.110−5 0.097 6.1 10−3

28dB 1.2110−2 5.110−4 0.139 8.6 10−3

25dB 0.1098 2.510−3 0.2584 1.91 10−2

23dB 0.1874 9.3510−3 0.3278 2.03 10−2

Table 1: Les erreurs de déplacement chimiques moyennes du carboneεc et de l’hydrogèneεH

exprimées ppm.

Méthode proposée ACP continue
data set1 0.02± 1.210−4 0.097± 7.85 10−4

data set2 0.038± 5.810−4 0.124± 2.14 10−3

data set3 0.0474± 9.710−4 0.301± 4.23 10−3

data set4 0.062± 1.0310−3 0.832± 5.82 10−2

data set5 0.078± 4.12 10−3 1.177± 7.98 10−2

Table 2: Les erreurs de déplacement moyenne et l’écart type obtenus par la méthode proposée et
la ACP continue.

utilisons deux mesures de performences:rappeletprécisiondéfinis par:

rappel= TP
TP+FN ; precision= TP

TP+FP

où TP représente le nombre de vraies identifications,FN le nombre de fausses identi-
fications négatives etFP le nombre de fausses identifications positives. Les résultats sont
présentés dans Table4.1. Nous remarquons que la méthode proposée donne de meilleurs
résultats que ceux obtenus avec la méthode SVM qui ne prend pas en compte notre con-
naissancesa priori sur les spectres.

Méthode proposée SVM Méthode de seuillage
PSNR rappel(%) prcision(%) rappel(%) prcision(%) rappel(%) prcision(%)

30dB 93.87 95.11 90.38 91.72 81.16 78.01
28dB 92.42 94.82 88.50 89.61 78.98 76.12
25dB 92.84 94.64 82.11 86.90 75.77 74.25
23dB 89.02 90.18 83.02 84.66 74.02 71.88

Table 3: Les mesuresrappel(%) et prcision(%) obtenues avec: notre méthode, la méthode
SVM, et la méthode de seuillage sur des données simulées.

Pour le codage et la mesure de similarité des zones actives, nous avons comparé notre
méthode à la méthode (3DGD) [Chaouch09] et à la méthode de l’histogramme [Ankerst99].
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Méthode proposée 3GD Méthode de l’histogramme
dataset recall(%) precision(%) recall(%) precision(%) recall(%) precision(%)

dataset1 91.35 88.02 84.21 83.25 80.38 75.72
dataset2 90.44 88.12 85.50 82.01 81.67 77.45
dataset3 91.74 87.23 81.09 78.96 77.10 75.98
dataset4 88.17 86.88 79.69 78.64 70.18 67.41
dataset5 90.95 89.03 86.78 84.35 74.11 72.08

Table 4: Les mesuresrappel(%) et prcision(%) obtenues avec: notre méthode, la méthode
3GD, et la méthode de l’histogramme sur des données simulées.

Les résultats obtenus sont présenté dans Table4.2. Comme nous pouvons le voir, notre
méthode achève un meilleur résultat de codage et de mesure desimilarité.

Nous présentons maintenant les résultats expérimentaux obtenus avec la méthode SV3DH
pour la détection de changements en imagerie satellitaires. Ces images ont été particulière-
ment sélecionnées car on dispose d’une vérité terrain ce quin’est pas souvent le cas pour
d’autres applications comme l’imagerie médicale.

Pour cela, nous avons considéré une série d’images à haute résolution (1305 x 1520
pixels) recueillies sur une zone géographique de l’Alaska.Ces images sont disponibles
en ligne [lsiml]. Elles ont été acquises par le satellite Landsat-5 Thematic Mapper (TM)
en 22 juillet 1985 et 13 juillet 2005, respectivement. Une zone avec 1024 x 1024 pixels
est sélectionnée pour les expériences. Le satellite Landsat-5 TM fournit des imageries op-
tiques sur sept bandes spectrales (Bandes 1-7). la vérité terrain des cartes de détection des
changements est disponible dans [lsiml].

Afin de valider et de souligner les avantages de l’approche proposée, nous utilisons trois
mesures de performances: le nombre de fausses détectionsPFA, le nombre de détections
manquéesPMD et l’erreur globalePTE :

PFA= FA
NF

×100%; PMD= MD
NM

×100%; PTE= MD+FA
NM+NF

×100%

Où FA représente le nombre de pixels inchangés et qui ont été incorrectement déter-
miné comme changés,NF le nombre total de pixels inchangés,MD le nombre de pixels
changés et qui ont été incorrectement déterminés comme inchangés,NM le nombre total
des pixels changés.

Table. 5.2 presente les résultats obtenus avec la méthode SV3DH avec deux autres
méthodes: l’SVDD classique [Tax04] et le Système à Vastes Marges SVM standard [Bruzzone06].
Notons que le noyau RBF gaussien est utilisé pour les deux méthodes. Nous pouvons con-
stater que la méthode que nous proposons fournit des résultats meilleurs par rapport aux
deux autres méthodes. Cela signifie que la fonction noyau proposée améliore la discrimi-
nation des caractéristiques.
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Fausses détectionsdétections manquéeserreur globale

SV3DH 0.71 % 5.01 % 1.09 %
SVDD 1.87 % 6.81 % 2.01 %
SVM 1.04 % 6.31 % 1.75 %

Table 5: Le nombre de fausses détections, le nombre de détections manquées et l’erreur
globale obtenus avec les méthodes SV3DH, SVDD et SVM.

Conclusion

Dans cette thèse, nous nous sommes intéressés à la recherchepar le contenu d’objets 3D, et
plus particulièrement à l’identification des bio-marqueurs. L’objectif de notre travail a été
de proposer des méthodes rapides et efficaces permettant de classifier les signaux médicaux
et de détecter les changement entre un individu/groupe requête et les différents groupes de
profils appartenant à une base de signaux médicaux. L’idée clé était de proprement intégrer
notre connaissancesa priori dans les méthodes proposées. Les différentes problématiques
de été étudiées à savoir l’alignement, le codage, la mesure de similarité et la classification
d’objets 3D. Les différentes méthodes proposées ont été validées, dans une première étape,
sur des données simulées (ou réelle quand on dispose d’une vérité terrain) afin de prouver
leur apport comparées aux méthodes existantes. Dans une deuxième partie, l’ensemble
des résultats obtenus sur les données réelles ont été examinés par des experts de chaque
domaine (spectroscopie RMN HR-MAS et IRMf). Cette validation montre le bon com-
portement de nos algorithmes ainsi que leur applicabilité àgrande échelle que ce soit pour
les spectres HSQC (RMN HR-MAS) et les images IRMf.
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Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Organization of the manuscript . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Motivation

Technology is transforming healthcare. The better patientcare and diagnosis efficiency
is the goal. In this context, medical equipment and technology are increasingly sophis-
ticated providing a new information essential to physiciandiagnosis, particularly in the
areas of cancer and neurological diseases. Moreover, the progress in medical information
acquisition technologies by improving the signal to noise ratio or by the coupling between
anatomy and physiology, has gradually given to medical imaging its indispensable status
for diagnosis, prognosis and therapeutic management. Furthermore, the analysis of bio-
logical signal combinations appears promising even if theyare not systematically part of
clinical routine today.

The medical signal acquisition techniques are constantly evolving in recent years (ul-
trasound endoscopy, Positron Emission Tomography PET, Nuclear Magnetic Resonance
NMR spectroscopy, Magnetic Resonance Imaging-MRI, functional MRI-fMRI) and pro-
viding an increasing amount of data which should be then analyzed. Indeed, from a static
observation to a dynamic multi-observation, from an information about the organs structure
to an information about their functions, the signal acquisition techniques are potentially
carrying the disease signature (biomarkers) well beyond the punctual clinical examination.
In this context, automatic signal processing methods are regularly proposed to assist the
expert in the qualitative and quantitative analysis of these images in order to facilitate their
interpretation. These methods should take into account thephysics of signal acquisition,
thea priori we have on the signal formation and the amount of data to analyze for a more
accurate and reliable interpretation.

Among the new signal acquisition techniques, the NMR spectroscopy for biological
tissues analysis and the fMRI for functional brain activities and connectivity analysis are



2 Chapter 1. Introduction

explored to identify new biomarkers (objects). These biomarkers could be used to help
the diseases diagnosis or to monitor therapeutic effects. To this end, it is important to im-
prove the analysis tools associated with these techniques.In this context, we propose a new
content-based object indexing and retrieval scheme for biomarkers detection.

This proposed indexing scheme consists of both an off-line and an on-line phases.
In the off-line one, the medical profiles of different medical signal group or population
(e.g, group of normal or pathological signals) are established. In the on-line phase, the
assignment of a new individual/group to a given profile defined in the off-line phase is
performed. Both phases are divided into three steps:

1. Object detection and alignment,

2. Object coding and similarity measurement,

3. Object classification.

1.2 Methodology

We focus in this thesis on:

• The two-dimensional 2D Heteronuclear Single Quantum Coherence HSQC spectra
obtained by High-Resolution Magic Angle Spinning HR-MAS NMR for biological
tissue (biopsy) analysis [Schmidt-Rohr94].

• The fMRI images for functional brain activities analysis [Engel97].

Each processed medical information (2D NMR spectra or fMRI)will be characterized by a
set of objects (biomarkers) that we seek to extract, align, and code. The clustering of these
objects by measuring their similarity will allow then theirclassification. It is this global
content-based object indexing and retrieval scheme (henceforth called indexing scheme)
that we adopt. In our case, these objects are:

• The emission peaks for 2D HR-MAS NMR spectra (i.e, a set of peaks is the re-
sponse corresponding to the metabolite presences, each metabolite generating differ-
ent emission peaks reflecting the presence of small moleculethrough the interaction
between the Proton and Carbon-13 in the case of HSQC spectra).

• The active zones for fMRI (i.e, an active zone is the response of brain activity to a
stimulus).

However, this indexing task is not trivial and requires the development of new process-
ing tools. Therefore, we are interested in this thesis to properly model and integrate thea
priori knowledge we have on these biological signal allowing us to propose thereafter ap-
propriate methods to each indexing step and each type of signal. The methods we propose
are:
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• For the object detection and alignment step in the case of 2D HR-MAS NMR spectra,
we propose a new peak detection and alignment method based onthe use of evidence
theory. Indeed, the evidence theory allows us to handel the uncertainty models and
the imprecision that well adopted HSQC spectra. Therefore,we propose the cou-
pling between the fuzzy set theory and Bayesian theory to model and quantify the
degree of spectrum imprecision which will be used to define the mass functions (i.e, a
function that models the belief degree on a given hypothesis). We particularly show
that the use of the evidence theory for peak detection and alignment consistently
achieve a higher performance compared to a pure Bayesian approach. Regarding
the fMRI images, we proceed in a first step to the extraction offMRI active zones
using a Hidden Markov chain segmentation algorithm. Then, we propose a new ac-
tive zone alignment algorithm relying on the use of non-linear principal component
analysis (PCA) algorithm, well suited to fit the cortex shape, to estimate the planes
of symmetry. These planes of symmetry will be used then to align active zones.

• The object coding step consist in calculating for each object a set of compact descrip-
tive attributes defining its signature. A similarity measurement using the descriptors
aims at comparing two objects and at grouping similar objects as well. For HSQC
spectra, the object coding step is not useful since the peaksalready have a parsi-
monious representation with three parameters (location, amplitude and shape). For
the similarity measurement, we propose a new method based onthe combination of
Bayesian theory and the theory of fuzzy sets to handle the uncertainty and fuzzi-
ness of the observations and to integratea priori knowledge in the inference process.
Concerning the fMRI images, we propose a new coding method based on the gener-
alized Gaussian transformation allowing us to reliably describe the surface topology
of the active zones. In particular, we show that the proposedcoding method not only
provides a compact representation of the object, but also a signature faithful to its
shape. We also propose a similarity measurement robust to small displacements and
little variations of the objects.

• For the objects classification step, we propose a new SupportVector Data Description
(SVDD) kernel function combining the features of basic kernel functions with new
information about features distribution and then dependency between samples. The
dependency between samples will be based on copulas theory that is used for the
first time to our knowledge in the SVDD framework. We show thatthe use of the
new kernel function increases the classification performance with respect to the basic
kernel functions either on simulated or real data.

1.3 Results

The different proposed methods were validated in a first parton simulated data to demon-
strate their behavior compared to existing methods. In a second part, all the results obtained
on real data have been examined by experts in each domain (HR-MAS NMR spectroscopy
and fMRI). This validation shows the good performance of ouralgorithms leading to sim-
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ilar results to those obtained by physicians in a short time both for the HSQC spectra
(HR-MAS NMR) and fMRI images.

1.4 Organization of the manuscript

This manuscript is divided into six chapters. The second chapter is devoted to the descrip-
tion of the medical images formation/acquisation on which we work in this thesis. We
focus on the description of image content and on the different characteristics associated
with the acquisition process. This chapter is divided into three parts: the first one describes
the physical principles of Nuclear Magnetic Resonance (NMR) as well as the 1D and the
2D NMR experiments. Functional Magnetic Resonance Imaging(fMRI) is then introduced
in part two. Finally, the Statement of indexing problem is studied.

In the third chapter, we describe in the first part the widely used object detection and
alignment methods proposed for the indexing schemes. Then we detail the proposed peak
detection and alignment method as well as the active zone alignment method in part two
and three respectively.

Chapter four is devoted to the second step of the indexing scheme: the object coding
and similarity measurements. To this end, we present in the first part an overview of object
coding and similarity measurement methods. Then, we describe the proposed method for
peak similarity measurement. In the third part, the proposed active zone coding algorithm
inspired from the Gaussian transformation is presented.

The fith chapter presents the kernel-based methods for object classification task. We
propose a new Support Vector Data Description (SVDD) kernelfunction which combines
the characteristics of basic kernel functions with new information about features distribu-
tion. We pay a particular attention to check that the proposed kernel function is robust
with higher performance compared to classic Support VectorMachine (SVM) and SVDD
methods on both synthetic and real data sets.

In the sixth chapter, we first describe the entire work-flows of both treatment chains
(HSQC spectra and fMRI data). Then, we provide an assessmentof the developed meth-
ods. This is done in two stages. Initially, we proceed to a detailed study of some repre-
sentative cases. Then, the results on a consistent databases is compared to a ground truth
provided by experts.

This work ends with a general conclusion that provides a summary contributions of this
thesis. We present likewise some perspectives.
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The medicine has considerably progressed over the past twenty years. On the one
hand, the development of medical technology has enabled a significant increase in life
expectancy. On the other hand, the costs of health services are increasing particularly in
France which devotes 8.7% of its GDP (Gross Domestic Product) to medical services, the
highest proportion of all countries [ICID10]. Therefore, increasing the diagnosis accu-
racy seems to be crucial in order to reduce the time of hospitalization and improve patient
survival and his life quality. In this context, the medical signal processing has found its
success and has emerged as an ideal technique for biomarkersidentification and analysis
and hence for helping the differential diagnosis of diseases.

Medical signal acquisition has certainly contributed to the improvement of medicine
from 20 to 30 years. In particular, the development of new medical signal acquisition tech-
niques such as the two dimensional 2D Heteronuclear Single Quantum Coherence (HSQC)
NMR spectroscopy and the functional Magnetic Resonance imaging fMRI which are ex-
amples of technological advancements in medicine researches. These techniques allow
physicians to directly observe phenomena that previously had to be blind-evaluated or
predicted. Indeed, on the one hand, the NMR spectroscopy enables the identification of
metabolites in non-invasive manner. On the other hand, fMRItechnique is used to measure
the hemodynamic response related to neural activity in the brain.

This chapter is divided into three parts: in the first one we describe the physical princi-
ples of NMR spectroscopy, then we present the 1D as well as the2D NMR ex vivoexperi-
ments. We particularly show the contribution of 2D spectra compared to 1D spectra. fMRI
experiment is then briefly introduced in Section2.2. Finally, the proposed content-based
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information indexing and retrieval scheme for biomarkers identification, the main topic of
this thesis, is detailed in section2.3.

2.1 NMR spectroscopy

The Metabolomics is an exponentially growing field of ’omics’ research concerned with
the comparison, identification and quantification of large numbers of metabolites in bi-
ological system [Fiehn02]. This emergent science of metabolomics enables the identifi-
cation of biomarker diseases that integrates biochemical changes in disease and predict
human reaction to treatments. In this context, the NMR spectroscopy has emerged as
an ideal platform for metabolite studying [Holzgrabe99, Beckonert07]. Indeed, in 1977,
Ekstrand et al. have established the possibility of studying the metabolism by applica-
tion of NMR [Ekstrand77]. In this work, a suspension of red blood cells was analyzed
by liquid NMR to study the proton relaxation times of some metabolites such as lactate,
pyruvate, alanine or creatine. The large amount of information becoming accessible to
a better understanding of metabolism using the NMR technique was immediately appre-
hended by the scientific community. This has naturally led the proton NMR performed on
biological fluids to take a prominent place in the field of pharmacology, toxicology and the
study of pathological changes metabolism. Fluids that havebeen analysed by NMR are:
the urine [Bales84, Foxall95, Griffin00, Melendez01], the bile [Keun02, Paczkowska03],
the blood plasma [Wevers94, Nicholson95, Alum08], the cerebrospinal fluid [Dunne05,
Jukarainen08, Sinclair10], the milk [Martin-Pastor00, Holmes00, Bertram07], the saliva
[Silwood99, Grootveld05, Grootveld06], the gastric fluid [Lof97], the seminal fluid [Lynch94,
Tomlins98] and the amniotic fluid [Joe08, Graca09, Cohn09]. Nevertheless, the first stud-
ies involving the human organ analysis were addressed with the in vivo and ex vivo NMR.
In fact, since the first application of NMR spectroscopy in vivo [Ross83] and ex vivo
[Mountford82], the technique of NMR has been increasingly used as a powerful tool to
explore, in situ, a significant number of organs such as heart[Barba07], kidney [Tate00,
Garrod01, Righi07], prostate [Swanson08], cervical [Mahon04, Sitter04] as well as the
stomach [Tugnoli04, Tugnoli06, Calabrese08]. Indeed, the technique of NMR allows us to
obtain metabolic information needed for clinical diagnosis of the patient with a suspected
injury, to establish the prognostic or to study the diseasesevolution [Howe93, Ross94,
Howe03, Kwock06]. The fields of application in the medicine include as well the study of
brain tumors [Opstad08, Opstad08, Wright10], the breast tumor [Beckonert03], the ovarian
tumors [Odunsi05], the neurological disorders such as epilepsy [Hammen07], the acquired
immune deficiency syndrom AIDS [Corr06], the Alzheimer’s disease [Thompson07] mul-
tiple sclerosis disease [Brenner93, Davies95] or other neurodegenerative diseases
[Apostolova07] as Parkinson’s disease [Camicioli07]. In the following we describe the
principles of the NMR technique.

2.1.1 NMR principles

The structure determination of almost any biological or organic molecules as well as many
inorganic molecules begins with the NMR spectroscopy. Indeed, the technique of NMR



2.1. NMR spectroscopy 9

Figure 2.1: The nucleus has a magnetic moment which can be assimilated to a small mag-
net.

has become one of the praised methods for identifying the structure of both pure and mixed
compounds as well as solid or liquid compounds. This technique often involves performing
NMR experiments to deduce the molecular structure from the magnetic properties of the
atomic nuclei and the surrounding electrons. The NMR technique relies on the atom nu-
cleus behavior while spinning. Indeed, the atom nucleus canbe considered as a positively
charged sphere spinning on itself (Fig.2.1). As result of this spin, each nucleus processes
an angular momentump and a magnetic momentµ [Friebolin91].

Thanks to the quantum mechanics, we can express the behaviorof the magnetic mo-
mentµ with the number of spin denotedI [Liboff98]. Indeed,I determines the number of
possible directions that a nucleus can adopt in the presenceof an external magnetic field. In
fact, in the presence of a external magnetic field

−→
B0, the component ofµ along

−→
B0 (oriented

along z-axis) is expressed as [Friebolin91]:

µz = γ.~.m (2.1)

whereγ is the gyromagnetic ratio related to the treated atom and~ is the reduced Planck
constant. The magnetic quantum numberm can take valuesm∈ {I , I − 1, I − 2, ...− I}
whereI is the spin number. For example, if we consider a proton1H (I = 1

2) placed in a
magnetic field, there are two possible states:
m=±1

2 or m=−1
2. Thus, we have:

µz =±γ.~
2

(2.2)

Fig.2.2shows the two possible orientations for a spin withI = 1
2.

The proton nucleus, abundantly present in the human body in the water molecules
form, are assumed to be randomly oriented. When a sample is exposed to an intense
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external magnetic field
−→
B0, the nuclear magnetic moments are orientated in the direction

of this field. However, the thermal agitation opposes to thisorientation [Van de Ven95].
As we saw in the previous paragraph, the component magnetic momentsµz of spin 1

2 can

only adopt two possible orientations: one is parallel to
−→
B0 (Fig.2.3.a) and the other one is

anti-parallel to
−→
B0 (Fig.2.3.b).

Figure 2.2: Orientations of the magnetic dipole in the presence a magnetic field
−→
B0 for a

spin 1
2.

Since, the number of parallel nuclei is slightly higher thanthat of antiparallel nuclei,
the vector sum of all nuclear magnetic moments is non-zero and is then aligned among the
direction of the field

−→
B0 [Friebolin91]. This amount is called the nuclear magnetization and

denoted by
−→
M = ∑i

−→ui (Fig.2.4) where−→µi the magnetic moment of theith nuclei. Since the
dephasing between the different precession movements (i.e; changes in the orientation of
the nuclei rotation axis) of the elementary magnetization−→µi is uniformly distributed, the
transverse component of the resulting magnetization is equal to zero.

Moreover, when a small magnetic field−→µ is plunged into an intense magnetic field
−→
B0,

we can show that−→µ is animated by a precession movement around
−→
B0 which is analogous

to the movement of a spintop axis about the vertical (Fig.2.5) [Fukushima81]. The speed
at which this precesses occurs is given by the Larmor frequency relationship:

ω0 = γ.||−→B0||

Since this precession is around
−→
B0, it does not alter the direction or the modulus of the

magnetization
−→
M [Fukushima81]. The origin of this precession movement lies in the fact

that, when plunged into a magnetic field
−→
B0, a magnetic moment−→µ undergoes the force−→

F :
−→
F =−→µ ∧−→

B0



2.1. NMR spectroscopy 11

Figure 2.3: Orientation of nuclear magnetic moments: a) in the absence b) in the presence
of an external magnetic field.

This force is hence the result of the vector product∧ of the magnetic moment−→µ and
the magnetic field

−→
B0. This vector relation can be written as three differential equations:

dµx

dt
= γB0µy,

dµy

dt
= γB0µx,

dµz

dt
= 0, (2.3)

The solution of these equations is:

µx = µt=0
x sin(γB0t), µy = µt=0

y cos(γB0t), µz = µt=0
z (2.4)

µz remains unchanged andµxy turn around
−→
B0. The vector−→µ is therefore animated by

a precess around
−→
B0.

We recall that the magnetization is proportional to the number of spins, so it is that
we attempt to measure by NMR. However,

−→
M remains unobservable when it is parallel to−→

B0, so it should be rotated by 90◦ from z-axe (Fig.2.6.a). To rotate
−→
M , it is sufficient to

apply another transient magnetic field
−→
B1 directed to 90◦ from

−→
B0. The magnetic moments

are animated to precess around
−→
B1. Once a rotation of 90◦ was obtained, the

−→
B1 field

is turned off (Fig.2.6.b). Since, the magnetization
−→
M is the sum of all nuclear magnetic

moments, then it is oriented at 90◦ from
−→
B0 and hence can be measured (Fig.2.6.c). The

resonance frequency depends on the molecular environment as well as the gyromagnetic
ratio γ and

−→
B0. We call "chemical shift" the variation of resonance frequency with the
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Figure 2.4: The sum of magnetic moment vector
−→
M . In the presence of a magnetic field,−→

M is nonzero and directed in the direction of this field.

shielding hyperparameterσ (the process of reducing) of
−→
B0. The expression of the chemical

shift Chs is given by:

δ =
γ ||−→B0||(1−σ)

2π
(2.5)

Note that chemical shiftChs is usually expressed in parts per million (ppm) by fre-
quency, and it is calculated as follows:

δ =
difference between the resonance frequency and that of a reference substance

operation frequency of the spectrometer
(2.6)

Since the resonance frequency strongly depends of the structural environment of the
nucleus, the NMR technique becomes the structural tool of choice for chemists [Bovey69]
to study molecular structures and their associations and interactions.

As shown in the previous paragraph, the advantage of NMR precisely lies in the ob-
servation of the spin return to the equilibrium state after being irradiated with

−→
B1. This

return to equilibrium is characterized by two relaxation processes. In order to describe the
magnetization position during an NMR experiment, the coordinate system called "refer-
ence coordinate system" can be used. It consists of three orthogonal axes (x, y, z) relatively
fixed to a reference. By convention, the z-axis is parallel to

−→
B0. The z-axis is called the

longitudinal axis and the plane (xy) is called transverse plane. At any instant of an NMR
experiment, the magnetization has a component that is parallel to

−→
B0 so-called longitudinal

magnetization (denotedMz) and a component that is perpendicular to
−→
B0 called transverse

magnetization (denotedMxy).



2.1. NMR spectroscopy 13

Figure 2.5: Precession movement: a) of a spintop around the vertical b) of a magnetic
moment around the field

−→
B0.

Figure 2.6: The sum of magnetic moment vector
−→
M . In the presence of

−→
B0,

−→
M is non-zero

and directed along z (a). The application of a field
−→
B1 perpendicular to

−→
B0 causes the 90◦

rotation of all the magnetic moments (b). When
−→
B1 is no longer applied, the magnetic

moments return to a precession rotation around
−→
B0, and only

−→
M remains in the transverse

plane (c).
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After being tipped in the transverse plane, the magnetization will return to its equilib-
rium position, parallel to

−→
B0. The longitudinal and transversal components are differently

affected by the relaxation phenomenon [Friebolin91]:

1. the longitudinal relaxation: The return of the longitudinal magnetization (Mz) to
its equilibrium state generally happens according to a mono-exponential process. We
call the characteristic time of the longitudinal magnetization decay the "longitudinal
relaxation time". It is denoted byT1. The longitudinal relaxation mechanisms are
associated with fluctuations of local magnetic fields. What matters in the context of
longitudinal relaxation are the fluctuations of the local fields at the Larmor frequency.

2. the transverse relaxation: It consist in cancelingMxy. In most cases the trans-
verse magnetization mono-exponentially decreases. We call the characteristic time
of the monoexponential decay the "transverse relaxation time". It is denoted byT2.
Transverse relaxation mechanisms include, besides those mentioned above, interac-
tions between spins. The interactions between magnetic dipoles of neighbor spins
generate at each spin a local magnetic field. The local field fluctuates as a result of
movement of neighbor spins, or as a result of changes in theirquantum states. This
loss of phase coherence is an additional mechanism for the transverse relaxation.

2.1.2 NMR experiments

The 1D NMR experiment

The basic 1D NMR experiment can be decomposed as follows:

1. An excitation phase: it consists in irradiating a sample with a radio-frequency (RF)
pulse whose frequency is close to the resonance frequency ofthe considered nucleus.
The amplitude and duration of the RF pulse are calibrated to tip the magnetization to
the transverse plane (90◦ rotation of the magnetization).

2. A detection phase: it consists in measuring the tipped magnetization.

Since the
−→
B0 is always present, the magnetization

−→
M rotates around it at the speedω0.

Due to the rotation of
−→
M , the magnetic flux through the coil (proportional to the component

of M along the axis of the coil) periodically varies and then induces, in the coil, an electrical
signal directly proportional to

−→
M . This signal is called the FID for "Free Induction Decay

[Van de Ven95]. As
−→
M returns gradually to its equilibrium position parallel to

−→
B0, the FID

signal decreases over time (Fig.2.7.a).
In order to determine the nuclei frequencies of each molecules examined by the NMR,

a Fourier Transform (FT) is then performed on the recorded FID signal (Fig.2.7.b). As a
matter of fact, each metabolite is presented by a set of peakswith specific characteristics
(peak frequency and amplitude) (Fig.2.8).

The Magic angle spinning MAS NMR technique
In traditional NMR techniques, the spectrum resolution is poor (i.e; peaks with large
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Figure 2.7: (a) The NMR signal detected and (b) the spectrum obtained after Fourier trans-
form.

Figure 2.8: The ethanol peaks.
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Figure 2.9: An example of a 1D spectrum with the NMR techniquein blue and the HR-
MAS technique in red.

widths) for semisolid or solid samples due to residual dipole interactions, chemical shift
anisotropy and susceptibility within the tissue sample. These factors can be minimized
by low-speed Magic Angle Spinning MAS [Griffin04]. In MAS, samples rotate rapidly at
54.7◦ to a magnetic field (angle between the rotation axis and the NMR magnetic field).
Indeed, only at the magic angle, the nuclear dipole-dipole interaction between nuclei mo-
ments averages to zero. The use of MAS improves the quality ofNMR spectra by elim-
inating broad peaks and obtaining enough information for easier molecule identification
(Fig.2.9)

The 2D NMR experiment

Although the 1D HR-MAS NMR spectroscopy is more or less successfully applied
to identify the structure of solid or liquid compounds, thistechnique suffers from several
shortcomings. Indeed, 1D NMR spectra of complex biologicalsamples typically have high
spectral overlap, which significantly limits the number of metabolites that can be uniquely
identified and quantified. To overcome this drawback, the twodimensional 2D NMR HR-
MAS should be recommended. This technique offers more detailed and unequivocal as-
signments of biologically metabolites in intact tissue samples and enables accurate identifi-
cation of a large number of metabolites that are not resolvable in a 1D NMR spectroscopy.
More precisely, 2D NMR offers two distinct advantages:

1. It reduces the overcrowding of resonance lines. Indeed, as the spectral information
is spread out in two frequencies (better than a single frequency) the 2D NMR spec-
trum technique can reduce spectral overlap and allows the identification of some
molecules that remains unresolvable in 1D NMR spectra. In other words, a 2D
spectrum peak is no longer characterized by one frequency but by two frequencies
allowing an easier discrimination.
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2. It offers the ability to correlate pairs of resonance suchas the proton1H and the car-
bon13C. Indeed, since almost metabolites contain carbon and proton, it is interesting
to determinate which protons are connected to which carbons(i.e; which proton1H
is correlated with which carbon13C).

For a typical 2D spectrum, we can distinguish four time intervals or periods, as shown
in Fig.2.10 [Schmidt-Rohr94]: τp the preparation period,t1 the evolution period,τM the
mixing period andt2 the detection period. In the first period, the magnitude environment is
prepared. During thet1 period, the magnetization evolves freely, so thatMxy precesses at
its Larmor frequency, and each nuclear magnetization is featured according to its Larmor
frequency. During the periodτM, another RF pulse signal or pulse signal sequence is in-
jected into the system to enable the mixing of the nuclear magnetizations used to produce
xy. Finally, t2 is the usual data acquisition period in which an FID is acquired as in 1D
experiment.

This procedure is then repeated many times, with different durations of the evolution
period t1 and keeping all other settings constant. For each value oft1 period, the signal
that is acquired duringt2 is stored. Once the experiments are achieved, we obtain a 2D
time domain signals(t1, t2) (FID 2D). In order to obtain the 2D spectrum, a 2D Fourier
Transform is performed on the obtained 2D FID signal. Among various spectrum types,
the most frequently applied is the Heteronuclear Single Quantum Coherence better known
by its acronym, HSQC [Berger04]. In a HSQC experiment, the chemical shift range of the
proton1H spectrum is plotted on one axis, while the chemical shift range of the13C spec-
trum for the same sample is plotted on the second axis. Indeed, since almost metabolites
contain carbon and proton, the addition of a second dimension (13C or 1H) improves the
frequency discrimination and enables the identification ofa large number of metabolites
that are not resolvable in a standard 1D1H or 1D 13C NMR spectrum. Therefore, the 2D
HSQC spectrum has become arguably one of the widely used technique to elucidate the
relationships between clinically relevant cell processesand specific metabolites in order to
identify diseases such as the multiple sclerosis disease [Tiberio06] and tumor identifica-
tion [Piotto09]. Along these lines, the relevant information characterizing the spectra is the
metabolite peakswhich could be considered for biomarkers identification andanalyzing.

When the data are subjected to a Fourier transform, the resulting spectrum plot shows
the chemical shift of1H plotted alongx-axis and the chemical shift of13C plotted along
they-axis. Fig.2.11shows an example of a HSQC spectra of colon biopsy.
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Figure 2.10: The schematic representation of a basic 2D NMR experiment in term of four
periods:τp evolution,t1 mixing, τM mixing andt2 detection. For a given experiment,τp

andτM are usually fixed periods whilet1 andt2 are variable time periods.

2.2 Functional Magnetic Resonance Imaging

Since twenty years, functional brain imaging techniques allow an in vivo analysis of neu-
ral and hemodynamic phenomena associated with brain activity (activation imaging). The
motor, sensory, or cognitive functions can be assigned to one or several anatomical areas
of the cortical that are activated as networks [Aster05].

The general basis of the human brain functional organization have been further refined
through the Positron Emission Tomography (PET) technique.This technique measures
changes in brain perfusion during a cognitive task thanks tothe use of water labeled with
the oxygen 15 as a marker [Kaplan99]. However, the significant technical limitations as
well as the high cost of this technique explain the fact that the activation by PET imaging
is currently restricted to research centers. Moreover, thedanger of radiation limits its use
on children.

The development of MRI in the early 1980s has revolutionizedthe study of neu-
roanatomical human brain thanks to its relatively easy use and particularly the lack of
constraints related to irradiation. The MRI imaging has been very fertile in fundamental
works on brain perfusion study at rest, using exogenous contrast agents [Villringer88], in-
trinsic contrast agents such as blood velocity (MRI angiography) [Rosen90], or diffusion
phenomena [Le Bihan91]. However, the application of these techniques has been rapidly
supplanted by the discovery of the BOLD (Blood Oxygenation Level Dependent) contrast
associated with deoxyhemoglobin whose ease of implementation and high accuracy have
promoted the success of the fMRI technique [Engel97, Vazquez98, Rombouts09].

Indeed, fMRI is an indirect imaging of neuronal activity through the detection of local
perfusion changes. In early 1890, Roy and Sherrington had suggested the existence of a
spatial relationship between neuronal activity and brain perfusion [Roy90]. Neuronal activ-
ity causes a small increase in local cerebral metabolism andhence an oxygen consumption
as well. Very rapidly (within hundreds of milliseconds), this phenomenon is followed by an
increase in local brain perfusion and hence an increase in the intake of oxyhemoglobin (ar-
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Figure 2.11: An example of a HSQC spectrum displayed as (a) a contours plot (b) as 3D
plot.
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Figure 2.12: An example of fMRI acquisitions. The active zones are presented with the red
color.

terial blood) which exceeds oxygen consumption [Fox86]. It is possible to measure blood
perfusion with MRI image, nevertheless, it has been shown that the use of BOLD contrast
leads to a more accurate measurement [Lee95].

The difference in magnetic susceptibility between vesselsfilled red blood cells respon-
sible for interstitial deoxyhemoglobin and diamagnetic induces a local gradient magnetic
field that extends beyond the vascular wall. In this perivascular gradient, whose size de-
pends on the diameter of the vessel and the concentration of deoxyhemoglobin, the spins of
the protons undergo interstitial diffusion leading to a reduction in the value of T2 weighted
image (T2 weighted image is a type of MRI image [Mintorovitch91]). Ergo, blood vessels
have a fairly dark color that is easily detected in the T2 weighted image. As a result, the
relevant information that typifies the fMRI images is thethe active zoneswhich could be
used to identify and analyze biomarkers. Fig.2.12shows an example of a fMRI acquisi-
tions. The active zones are presented in red color. Fig.2.13display the superposition of
the activation map (the different activation zones) on the anatomic brain image.

Furthermore, the development of the BOLD technique has facilitated the use the fMRI
in medical researches. For example, many studies have attempted to show that fMRI has
the ability to identify in primary visual [Ganis04], somato-motor [Nakata08] and even au-
ditory brain areas [Downar01] by the use of simple stimuli (flashing lights, simple move-
ments of the hand). These initial results, the arrival of theecho-planar sequences and
the relative ease of access to technology have contributed to the broad development of
fMRI. This technique is now suitable for studying specific neurophysiological issues of
patients and some clinical applications have been developed. Indeed, clinical applications
of fMRI are booming. The two most advanced applications are:the presurgical sensori-
motor functional mapping [Zhang09] and the study of hemispheric dominance of language
[Binder97]. Other researchs explored more diseases such as epilepsy disease, the patho-
physiology of various neurological disorders (MS [Rocca02, Reddy02], pathology of the
basal ganglia [Ferrandez03], ...), psychiatric (schizophrenia) [Surguladze10], or cortical
plasticity after injury or after surgery.
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Figure 2.13: Superposition of the activation map on the anatomic brain image. The active
zones are presented with the red color.
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2.2.1 fMRI experiment

The investigators hypothesize that individual responsiveness to specific antidepressant med-
ications can be predicted based on patterns of brain networkactivity as visualized by func-
tional connectivity analysis of fMRI data. Indeed, brain networks consist of groups of
nerve cells from different brain regions that communicate with one another. Using fMRI,
researchers can monitor which groups of nerve cells are active at any given moment. Func-
tional connectivity studies take this analysis one step further. By comparing levels of ac-
tivity among different groups of brain cells, researchers can determine which areas are
communicating with one another. During an fMRI session, patients undergoes an activa-
tion paradigm. The activation paradigm is the sequence of stimuli that are used to highlight
the desired brain activity given the context. As a matter of fact, two major contexts can be
schematically distinguished:

1. The search context: in this context we want to highlight, in a homogeneous group
of subjects, the common neurophysiological or neuropsychological behavior in re-
sponse to a certain type of stimulations to understand better the operation of any
normal or pathological cortical network. Therefore, elaborated paradigms must be
perfectly reproducible from one patient to another. Nonresponder subject may be
excluded or analyzed separately. The data analysis could bedone subject by sub-
ject, by applying the same criteria of analysis, allowing the study of inter-individual
variation.

2. The clinical context: in this context the problem is quitedifferent. Indeed, it con-
sists in analyzing for a particular patient behavior in response to a particular stimuli,
depending on the pathology, diagnostic purposes and/or pretreatment. These studies
can only be performed individually and a false negative results may have adverse
consequences for the patient. The paradigm, which has previously been tested and
calibrated in healthy subjects and possibly similar patients, should be relatively sim-
ple, robust and easy to perform in hospitals. Given the variability of aptitude among
patients, the compliance and/or performance of the subjectmust be taken into ac-
count in the data analysis step.

However, recent functional connectivity analysis have shown that certain brain net-
works, called resting state networks, are especially active when the brain is at rest (i.e; no
activation paradigm is performed) [De Luca06, Scholvinck10]. These networks are par-
ticularly used to analyze alzheimer [Rombouts05] and schizophrenia diseases [Liang06].
Note that in this thesis, we particularly focus on Nuto studynetwork healthy patients.

2.3 Statement of the indexing problem

In the previous sections, two medical information acquisition techniques were presented:
the 2D HSQC HR-MAS spectroscopy and the fMRI imaging. Moreover, we described the
relevant information that typifies each signals: thepeaksfor the 2D HSQC spectra and
the active zonesfor the fMRI images. Thus, each medical information (HSQC spectrum
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or fMRI image) consists of a set of relevant information orobjects that could be used to
identify new biomarkers particularly for cancer and neurological diseases. To this end, it
is important to improve the tools of analysis associated with these techniques. In the same
vein, we propose a new content-based object indexing and retrieval scheme for biomarkers
detection.

The classical content-based information indexing and retrieval scheme

A classical indexing and information retrieval scheme operates as follows: a user sub-
mits a query and the system identifies the relevant information to the submitted query and
then returned it to the user. The most ancient and widely usedindexing and document
(e.g., medical images, respiratory sounds, etc) retrieval schemeis the indexing by key-
words where the document is described by a set of keywords (e.g; a word, a phrase, or
an alphanumerical term). However, this technique remains limited by the low expressive
power of words, by the language constraints (the transitionfrom one language to another,
semantic ambiguity) and the subjective nature of the annotations (two physicians can differ-
ently annotate a medical image). Moreover, the indexing technique by keywords requires
human intervention which is a binding task particularly on large databases if the keywords
are generated manually. In addition, the keyword annotation can never exhaustively de-
scribe the contents of a document (e.g, a tumor in a MRI image : location, type, ... etc).
In order to overcome these drawbacks, the content-based information indexing and retrieval
approach (henceforth called indexing approach) was proposed [Eakins96]. Indeed, content-
based means that the search will analyze the actual contentsof the information rather than
the meta-data such as keywords, tags, and/or descriptions associated with the information.
For example, the term ’content’ might refer to colors, textures, or any other information
that can be derived from an image itself. Therefore, the content-based information index-
ing and retrieval approach allows us not only to automatically index the documents and
query a database directly from their information content without human intervention but
also to objectively analyze the database content. For example, if we consider a cerebral
tumor as a query, we would be able to easily identify with an objective similarity measure-
ment function the similar tumors belonged to the requested database.
Basically, the indexing scheme requires:

1. Document alignment step,

2. Document codifying and similarity measurement steps. The first one aims at codify-
ing different documents into a compact description whereasthe second one consists
in establishing the object similarity measurement procedure.

In order to accelerate the large database queries, the indexing scheme can be divided
into two phases (Fig.2.14):

1. An off-line phase in which the content database alignmentand coding is performed.
Indeed, the off-line coding consists in extracting the signatures associated with the
contents of the database. The latter are then stored in a reverse dictionary (file name
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and signature), which allows to quickly find the document associated with a given
signature.

2. An online phase in which the user queries the database using a document request.
The online alignment and coding steps only concern the document request. A simi-
larity measurement between the request document signatureand those calculated in
the reverse dictionary is then performed. Finally, the documents belonging to the
database are classified by order of similarity.
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Figure 2.14: Overview diagram of the classical indexing scheme.

Although this indexing scheme was successfully applied on web databases document
retrieval [Chaouch09], it is not suited to the biomarker identification task. Indeed, the later
requires the classification of medical signal profiles (groups) for change detection. For ex-
ample, if we consider two profile classes: the healthy class and the pathologic class, the
biomarker identification consists in classifying a group ofmedical signals into the healthy
and the pathologic classes (e.g cancer or psychological diseases) and to detect then the dif-
ferences (changes) between them. As a matter of fact, healthy class can be considered as the
"unchanged" class whereas the pathologic class as "changed" class. Consequently, adding
a classification step to the classical indexing scheme wouldallow us to detect biomarkers
from both HSQC spectra and fMRI images.
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The proposed content-based object indexing and retrieval scheme

Unlike the classical indexing scheme (Fig.2.14), the proposed indexing scheme con-
tains two additional steps: an object detection step (detection of HSQC peaks and active
zones fMRI images) and an object classification (change detection) step. The new indexing
scheme is likewise divided into two phases (Fig.2.15):

1. An off-line phase in which we perform on each medical signal: an object detection
and alignment step, an object coding and similarity measurement step and finally an
object classification step (e.g, healthy or pathological profile).

2. An online phase in which the user queries the database using a request (new individ-
ual/ group of medical signals). The same steps as in the off-line phase are applied
on the medical signal request. Finally, the later is assigned to a previously defined
profile (in the off line step). Note that unlike the classicalindexing scheme, the ob-
ject similarity step aims here at clustering the similar objects belonging to a given
medical signal group allowing then the assignment of this group to the appropriate
profile. In other word, the assignment of a new group/individual task is addressed us-
ing the classification step and not the similarity measurement step as in the classical
indexing scheme.

Fig. 2.15shows the overview diagram of the proposed indexing scheme.

Conclusion

This chapter presented a brief recall of the NMR principles and how 1D/2D spectra are
constructed from acquired signals. It also detailed the main basis of fMRI imaging tech-
niques and its medical applications today and in the future.We particularly described the
relevant information that typifies each signals: thepeaksfor the 2D HSQC spectra and the
active zonesfor the fMRI images. Finally a first contribution of this workwhich consists in
adding of a classification step to the classical indexing scheme for biomarkers identification
was presented. In the next chapters, different steps of the indexing scheme (object detec-
tion and alignment Chap.3, object coding and similarity measurement Chap.4 and object
classification Chap.5) are described.
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Symbols:

Tg() Geometric transformation
Tp() Photometric transformation
X Theoretical spectrum
Xre f Reference theoretical spectrum
Y Observed spectrum
Yre f Reference observed spectrum
B Noise
Γb Noise covariance matrix
h(i, j) Peak shape filter
γY = (γY

1 ,γY
2) Shape hyperparameters of peaks within the spectrumY

hyp1,2,3 Hypotheses modeling the spectrum imprecision
X̂ An estimation of the theoretical spectrumX
fhyp1 S-membership function associated tohyp1

fhyp2 S-membership function associated tohyp2

fhyp3 S-membership function associated tohyp3

H1 Peak absence hypothesis
H2 Peak presence hypothesis

µ[hyp1]
i, j Imprecision degree of the pixel located at(i, j) associated tohyp1

µ[hyp2]
i, j Imprecision degree of the pixel located at(i, j) associated tohyp2

µ[hyp3]
i, j Imprecision degree of the pixel located at(i, j) associated tohyp3

µi, j Combined imprecision degree of the pixel located at(i, j)
mi, j(Y) Mass function associated to the pixel located at(i, j) in Y
mi, j Combined mass function associated to the pixel located at(i, j)
Beli, j Belief function associated to the pixel located at(i, j)
di, j Local displacement vector associated to the pixel located at (i, j)
d̂i, j Estimation ofdi, j

d Global peak displacement vector
d̂ Estimation ofd
V Peak neighborhood
Ω frame of discernment
(X̂c, X̂h) Estimate coordinates ofX in ppm
(X̂rc, X̂rh) Estimate coordinates ofXre f in ppm
εc Carbon mean error chemical shift in ppm
εh Hydrogen mean error chemical shift in ppm
E[X] Expected value ofX
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Symbols:

P Observed object coordinates
P′ Added samples coordinates
P̂ Estimation ofP
Z Projection ofP with Neural Network PCA

z[l ]i Weight of theith node belonging to thel th layer
Wl Network weight matrix connectingl th layer with(l +1)th layer
wi j Connection weight from nodei to node j
Φextr(.) Neural Network extraction function
Φgen(.) reconstruction function
(r, θ, φ) Spherical coordinate system

Acronyms:

HR-MAS High Resolution Magic Angle Spinning
EEG Electro-Encephalo-Graphy
HSQC Heteronuclear Single Quantum Coherence spectrum
fMRI functional Magnetic Resonance Imaging
PCA Principal Component Analysis
PC Principal Components
MI Mutuel Information
DS Dempster Shafer
SSD Sum of Squared Difference
PRST Planar-Reflective Symmetry Transform
PSF Point Spread Function
PSNR Peak Signal to Noise Ration
MCMC Monte Carlo Markov Chain
MLP Multi-Layer Perceptron
NNPCA Neural Network Principal Component Analysis
ANNs Artificial Neural Networks
GA Genetic Algorithm
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Introduction

The problem of object detection consists in dividing signalinto meaningful groups (ob-
jects) based on the spatial arrangement and/or pixel intensity. The object alignment task is
the process of overlaying two or more objects taken at different times, and/or from different
viewpoints, and/or by different modalities and intrinsic variabilities. More precisely, object
alignment consists in geometrically aligning an object with reference pattern. The object
detection and alignment task is a crucial step in the indexing scheme since all other steps
depend on it. Consequently, in order to lead to an optimal object detection and alignment
results, alla priori knowledge that we have on the data need to be properly integrated in
the proposed object detection and alignment methods. That is the way we take in this thesis
where we pay a particular attention to includea priori knowledge for two types of data (2D
HSQC spectra and fMRI images).

In this chapter we present section3.1) a brief overview of the object detection and
alignment methods used in the indexing schemes. In section3.2, we present the scheme
for peak detection and alignment based on the use of evidencetheory. We particularly show
that the proposed evidential scheme for peak detection and alignment consistently achieves
a higher performance compared to the existing schemes on both synthetic and real spectra.

Regarding the fMRI images, we present (section3.3) the proposed active zone de-
tection and alignment algorithm. The detection step is addressed using a Markov chain
segmentation algorithm whereas the alignment step relies on the use of non-linear Prin-
cipal Component Analysis (PCA) algorithm, which would be well suited to fit the cortex
shape, to estimate the non-linear planes of symmetry. We notably show that the use of the
non-linear PCA allows us to get more accurate object-alignment results compared to the
classical PCA alignment algorithm.

3.1 Overview of object detection and alignment methods

3.1.1 Object detection

In the literature, we can distinguish two approaches to address the problem of object detec-
tion: the signal segmentation based approach and feature based approach.

• The segmentation approach: it aims at partitioning a signal into distinct mean-
ingful entities sharing together the same properties, by defining boundaries between
different objects. Several clustering techniques have been proposed in the litera-
ture [Pappas92, Tao07, Zhang08]. Basically, clustering algorithms don’t use the
training data. So, to compensate this deficiency, these algorithms seek to alternate
between signal segmentation and cluster property characterization. In other words,
clustering methods try to get trained by the utilization of the available data. Three
commonly used clustering algorithms are the K-means [MacQueen67], the Markov
model [Fjortoft03] and the active contour [Kass88]. The latter approximates the ob-
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ject shape as a flexible 2D curve or a 3D surface that can be deformed to better fit
the object shape. The notion of active contour was firstly proposed in Kass [Kass88].
The underlying idea is to create a link between a low-level process that only uses the
available signal of intensities and a high-level process that integrates mechanisms for
semantic interpretations.

• The features based approach: it aims at providing a sparse local representation of
data. Its goal is to describe regions by keeping distinctiveinformation and, at the
same time, to provide robustness to small transformations and noise. The region
descriptors offer an elegant solution to deal with occlusion and cluttered background
since they only store salient information of the region and therefore they are not
distracted by other parts of regions. The most used feature detection algorithms are
the Harris point [Harris88], the Hessian detector [Beaudet78] and the scale-invariant
point of interest (e.g, the Laplacian-of-Gaussian (LoG) [Lindeberg98]).

In this work, we adopt the feature based approach for peak detection (section3.2) and
the segmentation approach for the active zone detection (section 3.3).

3.1.2 Object alignment

Cost function minimization based approach

In this section, we focus on the alignment methods based on the optimization of an error
function. This error function is constructed from a reference object and another object we
need to align. The most used transformation models are:

1. The geometric distortion: it is parameterized by a geometric transformationTg()

which models the viewpoint changes of the camera, the displacement of the object
with respect to the reference object. This transformation acts either on the spatial
coordinates of the objects [Berg05, Schneiderman98] or on the object shape using
the deformable model [McInerney96, Leymarie93],

2. The photometric transformation: it is parameterized by atransformationTp() which
models changes in brightness or noise measure modifying thepixel intensities of the
object [Seo05].

Cost function minimization based approach aims at estimating the parameters of the
transformationsTg() and Tp() by the definition of an optimization criterion (cost func-
tion). As for transformation models, the latter is chosen according to the context of the
application. For example, we can opt to be robust to photometric transformations without
estimating them (e.g.; shape based alignment methods), or to establish a noise model in
order to take it into account in the alignment scheme.
To estimate the hyperparameters ofTg() andTp(), it is necessary to develop a strategy for
solving the established cost function. Unfortunately, this task is generally complex and
often cannot solve it exactly.
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Cost function definition

Cost function establishment generally consists in defininga criterion for direct com-
parison of objects. This criterion can be based on light intensities [Belongie02], mutual
information [Viola95], etc, and its estimation leads to an optimization task. Theexisting
methods often consider iterative approaches because of thenonlinear nature of the cost
function.
Among the existing cost functions, the most commonly used isthe squared error SSD (Sum
of Squared Difference) proposed in [Lucas81], which is optimal in the sense of maximum
likelihood under the assumption that the measurements are corrupted by a centered white
Gaussian noise. Several variations of this SSD function have been proposed in the litera-
ture in order to increase the alignment accuracy results [Keller04] [Zimmermann09] or to
reduce computing time [Hager98, Baker04].
Furthermore, in the case of significant geometric distortions, some studies propose the
kernel-based cost function allowing to be more robust in situations where the geometric
distortion of the observed scene is not fully addressed by the basic alignment algorithm
[Comaniciu03, Hager04].
Finally, in order to address the alignment task with a Bayesian framework, methods based
on the maximization of mutual information between images [Dowson08, Dame09] have
been proposed. Indeed, mutual information measures the statistical dependence between
the intensities of compared object. This dependency is assumed to be maximized when both
objects are aligned. Nevertheless, it may turn out that mutual information is not adapted to
object with thin structures [Roche01].

Cost function optimization

Once the cost function determined, the optimization step consists in minimizing the
cost by minimizing model hyperparameters in a supervised oran unsupervised way. The
former mainly aims at approximating the cost function in order to lead to a linear system
since these cost functions are generally non-linear. Generic iterative optimization methods
such as gradient descent (used in [Amberg09]), or the Newton algorithm [Shum02, Xiao08]
are the most commonly used ones. These methods consist in estimating the extrema of the
cost function (e.g.; points where the gradients of the cost function are null).
The second approach relies on a learning step. Indeed, the supervised methods require the
modeling of most expected transformations between two patterns. Once these transfor-
mations are modeled, one uses a reference pattern to generate a series of reference errors
which can be obtained by calculating differences between the reference pattern and the
transformed one [La Cascia00]. These errors allow us to establish the link between a given
observed error and the corresponding transformation [Jurie02, Bayro-Corrochano07]. Al-
though these methods are not time-consuming, they require ahigh prior knowledge that is
not always available.

Canonical system based approach
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The canonical system based approach consists in estimatingthe canonical pose of a
given object (e.g.;. estimate the axes of the cartesian coordinate system associated to the
pattern). Thus, it is possible, if necessary, to define the sign or the direction of these
axes in order to solve the problems of reflections. Methods based on this approach do not
operate directly on object intensities but on object shapes(2D curves or 3D surfaces). In
this section we present a brief overview of methods based on the canonical system and
particularly those applied on the 3D objects. Generally, a 3D object can be presented in
different manners. We can distinguish:

• Surface representation (3D mesh representation): the object is represented by its
border. In the case of a polyhedral object, the border is composed of a set of planar
polygonal facets. In the literature, the triangular mesh isthe most popular form
of polyhedral surfaces. Therefore, the object surface is composed of a set of inter-
connected triangles where each triangle consists of three vertices and a gravity center.
The 3D triangular mesh presentation enables a compact encoding of object and a
suitable object display according to the desired resolution [Kos01].

• Volumetric representation (voxel representation): the object is represented by a union
of disjoint elementary unit volumes called voxels. Unlike the surface representation,
it is particularly useful for representing data density (point cloud). The fitness of this
representation depends on the number of voxels [Gibson97].

• Algebraic representation: the object is described by an equation (e.g.; f (x,y,z) = 0).
The algebraic presentation enables a sparse object representation. However, such
equation is not always available particularly for object with complex shape [Kang01].

The two widely used methods to estimate the object canonicalpose (the axes of the
cartesian coordinate system associated to the pattern) from these possible definitions of the
object, are:

Principal component analysis PCA

The Principal Component Analysis, also known as "PCA" is commonly used in data
analysis to find the principal axes of an object [Jolliffe86]. For 3D objects, it is used to
calculate the three coordinate axes necessary for the 3D model. These three axes consti-
tute then the new cartesian coordinate system associated tothe pattern. Several variants of
basic PCA method have emerged to address the problem of 3D object alignment. Indeed,
although the basic PCA is not time-consuming and robust in the case of the object volu-
metric representation, it is not adapted to the object mesh representation [Vranić01a] (the
object is presented with a set of connected triangular forming its continuous surface). Thus,
improvements have been proposed to overcome these problems. On the one hand, Paquet
et al. [Paquet00] propose to weight the triangle facet gravity centers by their surface. On
the other hand, Vranic and Saupe [Vranić01a, Vranic01b] extend the work of Paquet et al
and propose the PCA in the continuous case, noted "continuous PCA", and thus allow a
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better robustness in the case of a 3D mesh.

To estimate the alignment of a 3D model it is necessary to calculate a PCA on all
centers of the triangle facets of an object. To achieve this,the objects must be composed
of polygons whose vertices have always coplanar three points. The PCA aims at finding a
basis where the projection of an object is symmetrically invariant.

In order to determine the orientation of an object, with respect to its faces, the contin-
uous PCA estimates the three main axes of the 3D object. To this end, it calculates the
covariance matrix on the facets vertices of the 3D mesh. The idea is to find the axis which
maximizes the variance of the point cloud. The maximum variance is then obtained for the
eigenvector associated with the largest eigenvalue. Similarly, the vector that contains the
largest remaining inertia is the second eigenvector while the third expresses the residual
inertia. To conclude, to define the 3D object orientation, itsuffices to diagonalize the co-
variance matrix of normalized faces. The eigenvectors matrix stands for then the rotation
matrix defining the 3D model alignment.

Orientation by the axes of symmetry

To orient a 3D object, Podolak et al. [Podolak06] propose to calculate the symmetry
planes of the model. For this, they define the notion of symmetry for the plane intersecting
the object through the calculation of the "Planar-Reflective Symmetry Transform" (PRST).
The PRST aims at associating to each plane a scalar value measuring its symmetry. The
more this scalar value is great, the more the associated plane is symmetry. Then, they
choose as the first axis, the normal of the plane that has the maximal symmetry. The
second is the plane of the maximal symmetry orthogonal to theplane previously selected.
Finally, the last axis is similarly obtained by finding the maximal symmetry plane that is
perpendicular to the normal of the two selected planes.

3.1.3 Retained approaches

In the previous sections, we described two strategies to address the object detection task:
the segmentation approach and the features based approach.We presented likewise two
approaches to address the object alignment task: the cost function minimization based ap-
proach and the canonical system based approach.

A spectrum is composed of several peaks which are the responses of metabolite pres-
ence. Each peak can be characterized by its locations (chemical shifts), its amplitude and its
shape. These peaks are scattered within the spectrum and hence they can not be presented
by a curve. Therefore, the canonical system based approach is unappropriate in the peak
case and for this reason we have opted for the cost function minimization based approach
to address the peak alignment task. Note that the peak detection step is simultaneously
performed with the alignment step.

Concerning the active zone of the fMRI images, it can be characterized by its location
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and its shape. Unlike peaks, an active zone is a dense form (consisting of neighboring
voxels) and hence may be presented by a 3D surface. Therefore, the segmentation approach
is adopted for active zone detection. In order to be robust tophotometric transformation
(a delicate task for the cost function minimization based approach), we have chosen the
canonical system based approach for the fMRI active zone alignment. Note that the active
zone detection step is separately addressed from the alignment step.

3.2 Peak detection and alignment algorithm (HSQC)

In this section, we propose a new method able to simultaneously detect and align different
peaks. The peak characteristics theoretically invariablefor the same metabolite between
samples are in practice corrupted by a noise: a location imprecision is added to the spectra
in practical cases. We will model this imprecision and theuncertaintyalways present on
the observed HR-MAS 2D data so as to obtain an optimal peak alignment results.

The notions of uncertainty and imprecision are distinct andthey must be now clearly
defined [Shafer76]. On the one hand, the uncertainty presents the belief or thedoubt we
have on the existence or on the validity of the data [Gilks96] (presence or absence of a peak
in the case of HSQC spectra). In the other hand, when we have not enough knowledge on
the data, we describe it with vague terms but its realizationis certain: in this case we speak
about imprecision(a modification of the peak shape and location in the case of HSQC
spectra). In order to take into account both imprecision anduncertainty of the spectra, we
propose the use of the evidence theory [Shafer76] which can be well suited to deal with raw
data through the definition of a mass function. This mass function allows us to quantify
the reliability of a given hypothesis. An overview of Evidence theory and its application
on real cases is presented in (AppendixC).

Moreover, the evidential peak alignment scheme proposed inthis thesis is based on the
fuzzy set theory [Bezdek99] to model and quantify the imprecision degree presented in the
spectra. In particular, we show that this modeling, used in the mass function definition, in-
creases the performance of the alignment scheme with comparison to the Bayesian scheme.

3.2.1 Evidential peak detection and alignment method

Spectra modeling

In this work, the spectrum is considered as a random field. To model 2D HSQC spec-
trum formation, we consider a 2D spectrum realizationY such thatY = y(i, j)i=1...M, j=1...N

where (M×N) is the spectrum sizes. It corresponds to the observation of atheoretical 2D
spectrum image realizationX such thatX = x(i, j)i=1...M, j=1...N, considered as a random
field as well, through a nuclear magnetic resonance system. In our case,X consists of the
various peaks corresponding to the metabolites present in the biopsy. If the nuclear mag-
netic resonance system was linear and shift-invariant, therelation betweeny(i, j) andx(i, j)
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on the same location should be expressed as a convolution product [Dobrosotskaya08]:

y(i, j) = ∑
k1,k2

x(k1,k2)h(i −k1, j −k2) +b(i, j). (3.1)

whereh is the Point Spread Function (PSF) of the nuclear magnetic resonance system,
andB= b(i, j)i=1...M, j=1...N is a realization of a random field corresponding to an additive
noise modeling both acquisition noise and degradation of the biopsy tissues.

In the case of the 2D spectra,h is assumed to be a Lorentzian filter [Lowry08] whose
continuous expression is parameterized byγY = (γY
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Note that in some studies (e.g; [Schanda05, Feliz06]), the peak shape is assumed to be
gaussian.

Imprecision quantification

Before step estimation, we have to define three assumptionshyp1, hyp2 andhyp3 in
order to model and manage conflicts.

Assumption hyp1

Let H1 be the hypothesis corresponding to the absence of a peak located at(i, j), and
H2 the hypothesis of presence of a peak (detection) at the same position. We are interested
with thea posterioriprobabilities of the hypothesesHk,k ∈ {1,2} of the observationY to
quantify the contradiction degree. The estimation of theseprobabilitiespi, j(Hk/Y) at every
position(i, j) will be presented in AppendixA Eq. A.6.

For a given hypothesisHk estimated at the location(i, j) in both imagesYre f (reference
image) andY (image to align with respect toYre f ), we will assume that the more thea
posterioriprobability are close the more the imprecision on the data issmall.

Let us take the extreme case wherepi, j(H2/Yre f ) = 1 andpi, j(H2/Y) = 1. The contra-
diction in this case is absent because the peak appears at thesame position in both images.
This is based on the assumption that the higher is the conflict, the higher is the imprecision.

Assumption hyp2

Let us denote byγYre f (i, j) = (γYre f

1 (i, j),γYre f

2 (i, j)) the shape parameters of a peak at
position(i, j) belonging toYre f , andγY(i2, j2) = (γY

1(i2, j2),γY
2(i2, j2)) the shape parameter

of a peak at position(i2, j2) belonging toY. The more the parameters of both peaks are
close, the more the imprecision on the data is small.

Assumption hyp3
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We will model that the more the peaks are far, the more the contradiction is large. In-
deed, the peak position variations are limited by a fuzzy neighborhood around the expected
position. Outside of this neighborhood, two peaks can not beassigned as corresponding.

Membership function

These hypothesis are defined to quantify the imprecision in the data which may be
modeled using the fuzzy set theory. This is based on the assumption that the concept of
the imprecision is an ambiguous one,i.e, each data item is considered as imprecise with a
certain degree of membership in this fuzzy set denotedEimprecise(e.g., the imprecise data
set). In our case, the degree of membershipµi, j denotes how much the pixel with specific
a posterioriprobability is imprecise, given different hypothesis.

The link between hard domain and fuzzy domain can be given with anS-membership
function f whose expression is given in Eq.3.3. Note that the range[a,c] defines the fuzzy
region.

f (x;a,b,c) =



























0 x< a
(x−a)2

(b−a)(c−a) a≤ x< b

1− (x−c)2

(c−b)(c−a) b≤ x< c

1 otherwise

(3.3)

wherea< b< c.

To calculateµi, j for each observed coefficienty(i, j), we will define in the next subsec-
tion, aS-membership function associated to each hypothesis.

Imprecision modeling through member function

Let us describe in this part the threeS-membership functions associated with the three
hypotheses:

Modeling of hyp1

hyp1 expresses the contradiction between twoa posterioriprobabilities for the same
hypotheses of peak presence/absence. The modeling ofhyp1 requires the definition of a
S-membership degree,µ[hyp1]

i, j ∈ Eimprecisefor every pixel ofYre f andY.
To measure the distance between two variables we generally use their ratio, however

this approach leads sometimes to obtain undefined fraction (dividing by zero). To avoid
such difficulty, it is better to manipulate the exponential of these two variables before com-
puting their ratio.

Therefore, membership degree computing inEimprecisemeans here calculating the ratio
of the exponential of thea posteriori probabilities, then finding its projection by theS-
membership function (defined in Eq.3.3).

This function allows us to quantify, from this ratio of exponential, the membership
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to the fuzzy setEimprecise. The proposedµ[hyp1]
i, j

1 defined by the exponential ratio of the
smallest and the biggest probability of the couple(pi, j(H2/Yre f ), pi, j (H2/Y)) in order to
keep a ratio smaller than one (< 1), is given by:

µ[hyp1]
i, j = fhyp1

(

expmin(pi, j (H2/Yre f ),pi, j (H2/Y))

expmax(pi, j (H2/Yre f ),pi, j (H2/Y))
;a1,b1,c1

)

(3.4)

Note that the probabilities(pi, j (H2/Yre f ), pi, j (H2/Y)) are estimated using a Monte
Carlo Markov Chain procedure (AppendixA, Eq.A.6).

Modeling of hyp2

hyp2 models the contradiction between the shape parameters of two peaks belonging
to two spectrum images. The modeling ofhyp2 requires the definition of a membership
degreeµ[hyp2]

i, j ∈ Eimpreciseusing aS-membership functionfhyp2 expressed as:

µ[hyp2]
i, j = fhyp2





min
(

γYre f

1 (i, j).γYre f

2 (i, j),γY
1(i2, j2).γY

2(i2, j2)
)

max
(

γYre f

1 (i, j).γYre f

2 (i, j),γY
1(i2, j2).γY

2(i2, j2)
) ;a2,b2,c2



 (3.5)

Note that since the peak shape parametersγY
1 andγY

2 are strictly positive, the exponential
function is unuseful in this case.

Modeling of hyp3

hyp3 models a neighborhood where the possibility to assign two peaks is highly en-
couraged. The modeling ofhyp3 requires the definition of a membership degreeµ[hyp3]

i, j ∈
Eimpreciseusing anS-membership functionfhyp3:

µ[hyp3]
i, j = fhyp3((i − i2)

2+( j − j2)
2;a3,b3,c3) (3.6)

where(i, j) stands for the position of the peak belonging toYre f and(i2, j2) stands for the
position of the peak belonging toY.
In practice, the values of the coefficients (a1,b1, c1, a2,b2, c2, a3,b3, c3) are automatically
estimated by the Genetic Algorithm (AppendixB) using a training datasets (spectra with
known peak alignment results). Once these coefficients are estimated, they will used to
measure the imprecision of new spectra and no coefficients reestimation is needed.

Overall membership degree function

Our aim is now to propose the overall membership degreeµi, j ∈ Eimprecise. To this end,
we simply opted for the average operator as fusion operator:

µi, j =
1
3
.(µ[hyp1]

i, j +µ[hyp2]
i, j +µ[hyp3]

i, j ) (3.7)

1µ[hyp1]
i, j is the membership function degree to the fuzzy setEimpreciserelated to the first hypothesishyp1.
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In conclusion, we proposed in this section, an imprecision modeling scheme of spec-
trum images through three intuitive assumptions, mathematically translated and fused in
order to obtain the overall membership degreeµi, j . We needa posterioriprobability and
peak shape parameters to estimateµi, j : a proposed estimation scheme is presented in Ap-
pendixA with a Bayesian approach (Monte Carlo Markov Chain MCMC optimization).
The quantification ofµi, j allows us now to define the mass functions, crucial step in theev-
idence theory (AppendixC). This mass function will be then used to detect and align peaks.

The peak detection and alignment scheme

Proposed mass function

Determination of the proposed mass function requires thea posterioriprobability and
the imprecision degreeµi, j already defined. Indeed, two extreme situations appear: 1) The
first one is characterized by the total imprecision absence (µi, j = 0), in this case only the
mass functions of the simple hypotheses are non-zero. 2) Thesecond situation is charac-
terized by the total ignorance (µi, j = 1): all the mass functions of the simple hypotheses
are null. The expression of the proposed non-normalized mass functionmi, j(Y) for a given
observationY is:

mi, j({H1};Y) = (1−µi, j).pi, j (H1/Y) (3.8)

mi, j({H2};Y) = (1−µi, j).pi, j (H2/Y) (3.9)

mi, j({H1,H2};Y) = µi, j .max(pi, j (H1/Y), pi, j(H2/Y)) (3.10)

The normalization step consists in having:

mi, j({H1};Y)+mi, j({H2};Y)+mi, j({H1,H2};Y) = 1 (3.11)

When we have two or several sources on the same frame of discernmentΘ built by various
hypotheses (Ω = {H1,H2,{H1,H2}} in our case), we can associate for every imageY a
mass functionmi, j(Y) which quantifies knowledge brought by the observation. The combi-
nation rule of Dempster-Shafer (DS) consists in supplying asingle mass function from all
the mass functionsmi, j(Y) associated to each observationY (AppendixC). The combined
mass functionmi, j is then calculated using the DS combination (AppendixC) as follows:

mi, j({H2}) =mi, j({H2};Y) . mi, j({H2};Yre f )

+ mi, j({H1,H2};Y) . mi, j({H1,H2};Yre f ) (3.12)

mi, j({H1}) =mi, j({H1};Y) . mi, j({H1};Yre f )

+ mi, j({H1,H2};Y) . mi, j({H1,H2};Yre f ) (3.13)
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mi, j({H1,H2}) = mi, j({H1,H2};Y) . mi, j({H1,H2};Yre f )

This mass function will be used in the following paragraph toestimate the chemical shift
of a detected peak. We hence be able to propose a method realizing simultaneous detection
and alinement of peaks.

Proposed cost function

In order to model the peak chemical shifts, we are interestedin recovering a displace-

ment vectord = {di, j}i=1...M, j=1...N wheredi, j =

[

di

d j

]

is a local displacement vector

associated to the peak at the location(i, j). Adopting an evidence strategy previously de-
fined, we formulated̂ as:

d̂ = argmax
d/di, j∈V

[Beli, j ({H2}/Yre f ,(Y+d)] (3.14)

whereV is the neighborhood selected according tohyp3 andBeli, j is the belief function
which is derived from the mass functionmi, j and expressed as (AppendixC):

Beli, j({H2}) =mi, j({H2})+mi, j({H1,H2}) (3.15)

To maximize the cost function Eq.3.14, we need thea posterioriprobabilities as well
as the parameters of the shape filters. An analytical solution of this problem is unfortunately
impossible, and we decide to use a MCMC procedure to realize such optimization (see
AppendixA). An overview diagram of the peak detection and alignment chain in Fig.3.1.

3.2.2 Peak detection and alignment validation

This part describes some peaks detection and alignments results which are obtained with
the proposed evidential alignment scheme. This method was applied on synthetic spectra
designed to fit the characteristics of the HSQC HR-MAS spectra as well as on some real
spectra. More results on real spectra will be presented in chapter6. In order to validate and
emphasize the benefit of the proposed approach, we have retained the following criteria for
the estimaion validation:

1. Accuracy : it defines the accuracy level of estimated parameters. It represents the
difference between computed and theoretical value known from a ground truth. In
our case, we use the mean chemical shift error function. For each 2D spectrum im-
age, we calculate the bias for the carbon chemical shiftεc and the hydrogen chemical
shift εh where

εc =
1

Np

Np

∑
p=1

[X̂c(p)−Xrc(p)] εh =
1

Np

Np

∑
p=1

[X̂h(p)−Xrh(p)] (3.16)

where(X̂c(p), X̂h(p)) stands for the estimated coordinates of the a peakXp whereas
(Xrc(p),Xrh(p)) stands for the theoretical location of the peakX andNp is the number
of peaks.
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Figure 3.1: Overview diagram of the peak detection and alignment chain.
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2. Validation of some registration properties : in this study, we just retain the transi-
tivity property : for any three spectra, the generated transformation from the second
to the third spectrum composed with the generated registration transformation (i.e.,
alignment) from the first to the second one should be equal to the alignment from the
first to the third one. This transitivity property can be formalized, for every detected
peak at location(i, j), as :

d̂1→2(d̂2→3)(i, j) = d̂1→3(i, j) (3.17)

3. Robustness: evaluates the performance of the method in special cases such as the
presence of pathology or different noise level in the data. The principle is that even if
we have different initial conditions, the system convergestoward a unique solution.
In our case, this means we obtain same alignment results (same number of detected
peaks and value of mean error chemical shift).

The main advantage of using simulated data is that we perfectly know the character-
istics of the data such as the number of peaks presented in every spectrum and the peak
chemical shifts values. For this, we firstly generate a synthetic theoretical 2D spectrum
imageXre f with (M = 500 pixels byN = 500 pixels) which containsNp = 200 peaks.

This synthetic spectrum will be used as reference to register other synthetic spectra.
Three other synthetic theoretical 2D spectrum imagesX1, X2 andX3 are generated from
Xre f by modifying the location and the shape hyperparameters of each peak ofXre f . The
values of chemical shift vectors are assumed randomly distributed following a Gaussian
distribution with zero mean and variance matrix

[

0.02 0
0 0.25

]

. Note that this variance matrix
was chosen to fit the real chemical shift vectors. The hyperparameters of the shape filter
h for each peak are randomly generated from a Gaussian distribution with mean equals to
1 and variance 0.1. In order to simulate the peak shape modification, we randomly add a
white gaussian error of variance 0.005 to each peak shape hyperparameters. A zero mean
correlated noiseB with covariance matrixΓb was added to each spectrum to obtain the
synthetic spectra used in the simulationYre f , Y1,Y2 andY3.

The Peak Signal to Noise Ratio PSNR ofYre f is set to 30dB where the PSNR is ex-
pressed as:

PSNR= 10 log10(max(Xre f )
2/E[(B)2]) (3.18)

This value of PSNR was chosen to fit at best the real spectra. Indeed, the PSNR of the real
spectrum is∼ 30dB that corresponds ta a strongly noised observation.

In order to emphasize the robustness of the proposed approach to the high level of noise,
we have processed to the detection and the alignment of peakscontained inY1, by taking
Yre f as reference, with different values of PSNR (30, 28, 25 and 23dB). The different peak
detection and alignment results are presented in Table4.1. Since the pixel resolution is
0.16ppm (resp6.8 10−3 ppm) for they-axis, i.e. the13C chemical shift axis, (resp x-axis,
i.e. the1H chemical shift axis), as one can remark, even with a PSNR=25dB, we obtained
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PSNR εc εh nb of missed peaks nb of false peak assignments

30dB 0.0064 9 10−5 9/200 4/200
28dB 0.0107 7 10−4 9/200 5/200
25dB 0.149 0.0052 11/200 8/200
23dB 0.291 0.019 13/200 10/200

Table 3.1: Detection and alignment error on the synthetic spectrumY1. The mean chemical
shift errors are expressed in ppm.

a sub-pixel precision for the mean chemical shift errors. Infact, with a PSNR=25 dB, the
εc < 0.16 andεh <6.8 10−3 (Eq. 3.16). Figure.3.2(a) shows an example of missed peak.
As one would suspect, the missed detections correspond to weak events which are strongly
noised. Indeed, the average amplitude of missed peaks is∼ 1

10 maximum simulated noise
amplitude. Fig.3.3 shows an example of x-axis and y-axis projection of a missed and a
detected peak. As one can remark, the missed peak is completely burred in the noise. The
false peak assignments correspond to events which are strongly imprecise : the shapes, lo-
cations anda posterioriprobabilities of the right peaks and the estimated assignment peak
are too close. Figure.3.2(b) shows an example of false peak alignment errors, the right
location of the peak is presented with a continuous arrow andthe estimated peak location
is presented with a dotted arrow. As one can see, the characteristics of the estimated peak
(location, shape and amplitude) are too close to the assignment peak characteristics. In this
case, the imprecision is so great that a distinction betweenthese two peaks turns out to be
difficult and sometimes impossible.

In order to emphasize the benefit of the proposed approach, two different alignment
methods were applied to the synthetic spectrumY3 with different values of PSNR: a Bayesian
method [Toews05] and our alignment method. The peak alignment results are presented
in Table3.2. We can easily observe that the proposed method performed better than the
Bayesian method. Indeed, even with a PSNR=25dB, we obtaineda sub-pixel precision for
the mean chemical shift errors which is two times smaller compared to that obtained by the
Bayesian method. This can be explained by the fact that we took into account in our align-
ment scheme both uncertainty (thea posterioriprobability) and imprecision in the spectra
(conflict information). It is important to note that the Bayesian scheme provides only tools
to handle the uncertainty and, for this reason, the use of evidence theory was proposed.
Note that the Bayesian method only addresses the alignment step. Therefore, we have used
the detection results obtained by the proposed method to perform the alignment step with
the Bayesian Method.

Now we consider the problem of transitivity property validation. Since the missed
detections correspond to weak events which are strongly noised, the missed peaks are the
same for each spectrum. The alignment error using transitivity property are presented in
Table 3.3. As one can see, we obtained the same alignment results whichvalidate the
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Proposed scheme Bayesian scheme
PSNR εc εh εc εh

30dB 5.1 10−3 9.1 10−5 0.097 6.1 10−3

28dB 1.21 10−2 5.1 10−4 0.139 8.6 10−3

25dB 0.1098 2.5 10−3 0.2584 1.91 10−2

23dB 0.1874 9.35 10−3 0.3278 2.03 10−2

Table 3.2: The mean chemical shift errorsεc εh on the synthetic spectrumY3 expressed in ppm
obtained by the proposed and the Bayesian methods.

Yre f→1→2 Yre f→2

PSNR εc εh εc εh

30dB 0.0059 8.7 10−5 0.006 8.5 10−5

28dB 0.011 5.3 10−4 0.010 4.2 10−4

25dB 0.149 0.0012 0.0984 0.0011
23dB 0.2245 0.0121 0.2278 0.0131

Table 3.3: Alignment error using transitivity property

transitivity property.

Figure3.4 presents some results of peak alignment on the same region ofsimulated
spectra. We can see that all the peaks were correctly detected and aligned. In addition, we
can easily remark from Fig.3.4 that a manual extraction of peaks (7,8; 13,14; 24 and 29)
seems difficult even impossible.

Figure3.5 displays the peaks detection and alignment results on the same zone of a
healthy spectrum and cancerous spectrum. Some peaks like peak number 10 are visually
very difficult to detect due to the high noise level, yet our method is actually able to detect
and align it. Note that the spectra are presented as contour plots with the same number of
level which explain the absence of a presentation the peak number 10 in Fig.3.5(b).
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Figure 3.2: Example of (a) a missed peak, (b) a false peak assignment : real location in
dotted arrow and estimated position in continuous arrow.
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(a) (b)

(c) (d)

Figure 3.3: An example of the x and y projections of a missed and a detected peak (a) x-axis
projection of a missed peak, (b) y-axis projection of a missed peak, (c) x-axis projection of
a detected peak, (d) y-axis projection of a detected peak



3.2. Peak detection and alignment algorithm (HSQC) 47

(a)

(b)

Figure 3.4: The detection and alignment results on (a) the reference synthetic observed
spectrumYre f (PSNR = 30dB) and (b) the synthetic observed spectrumY1 (PSNR = 30dB)
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Figure 3.5: The detection and alignment results on (a) a realhealthy spectra (b) a real
cancerous spectra.
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3.3 Active zone detection and alignment (fMRI)

We recall that an fMRI image can merely be presented by a set ofactive zones that we
have to detect and align (as for HSQC spectrum peaks) but in 3D. Each active zone may
be characterized with its location, its shape and its voxel intensities. In contrast to the
peak alignment scheme, the detection and the alignment of the active zone is separately
addressed. More explicitly, given two detected objects, our aim is to align them according
to their canonical poses. To this end, the active zone detection is firstly performed using a
Hidden Markov chain segmentation HMC approach [Bricq08] which allows us to integrate
spatial information into the segmentation method. Concerning the alignment method, it is
important to note that the alignment can be effectively exploited in the indexing procedure
only if all the following criteria are verified:

• 3D rotation invariance: objects with similar shape should be identically aligned
whatever their initial orientations;

• 3D anisotropic transformation invariance: an aligned object that has been undergoes
a narrowing or lengthening of a reasonable size following the alignment directions
should maintain the alignment result;

• Weak time-consuming.

Note that since the active zone detection is addressed usinga classical HMC segmen-
tation method, we present in this thesis only the active zonealignment method. In order
to lead to a satisfactory alignment result, we integrate human perception in the scheme of
alignment. Generally, one seeks to align an object according to its symmetry axis. This ap-
proach allows us both to find the most object natural pose and align visually similar objects
in the same manner. Most methods opted for this approach use either the PCA/continuous
PCA [Vranić01a, Vranic01b] or the reflection measurement [Simari06] to find the mirror
planes (planes of reflection). These planes are then used to estimate the appropriate carte-
sian coordinate system associated with the object. Although these methods were success-
fully applied on 3D internet object searching, they are unfortunately not currently adopted
to the 3D fMRI objects. Indeed, due the cortex shape, the reflection symmetry of the active
zones is more spherical than planar. We propose to use non-linear PCA that is well suited
to model the reflection symmetry of the cortical active zones.

3.3.1 Partial spherical object alignment method

The characterization of a 3D object by reflection symmetry has aroused a lot of works
[Bustos04, Podolak06, Simari06, Mitra06]. Mainly relying on the studies of human per-
ception, these works have motivated our choice and led us to consider this reflection sym-
metry. In the literature, the mirror symmetry is the most used symmetry. However, the
main drawback of this approach lies in its high time-consuming which makes its utilization
very constraining [Vranić01a]. To overcome this, some authors [Chaouch08] propose the
use of the PCA/continuous PCA algorithms to calculate all reflection symmetries that may
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be characterized by the object main direction. Indeed, the PCA/continuous PCA seeks to
describe the data variance with a set of orthogonal featuresbetter known as the Principal
Components (PC) which can be estimated by the correlation matrix. These PC will be
used as a new coordinate system on which the original data will be projected. In the linear
(basic) PCA, the PC is either lines (2D object) or planes (3D object). The use of the planar
PC as reflection symmetries has found lot of success in many applications particularly the
3D internet object searching [Chaouch08].
The main drawback of this approach lies in its high time-consuming which makes its uti-
lization very constrained. To overcome this, the authors [Vranić01a, Chaouch08] propose
the use of the PCA/continuous PCA algorithms to calculate all reflection symmetries that
may be characterized by the object principle direction. Indeed, the PCA/continuous PCA
seeks to describe the data variance with a set of orthogonal features better known as the
Principal Components (PC) which can be estimated by the correlation matrix. These PC
will be used as a new coordinate system on which the original data will be projected. In
the linear (basic) PCA, the PC is either lines (2D object) or planes (3D object). The use
of the planar PC as reflection symmetries has found lot of success in many applications
particularly the 3D internet object searching [Chaouch08].

Nevertheless, the basic PCA/continuous PCA is very well notadapted for fMRI ac-
tive zones alignment task due to the cortex shape. Indeed thereflection symmetry in our
case is likely more spherical than planar. Our aim is then to properly integrate thisa pri-
ori knowledge in the proposed scheme. An elegant way to address this task is the use of
nonlinear PCA. This nonlinear behavior was firstly presented in [Lingoes67, Kruskal74].
Then, many varieties of the nonlinear PCA were proposed suchas the probabilistic non-
linear PCA [Lawrence05], the kernel nonlinear PCA [Ge09] and the neural network PCA
[Kramer91, Scholz07]. Among all these works, we pay a particular attention to this latter:
the Neural Network PCA (NNPCA) [Kramer91] has proved its high accuracy to estimate
the non-linear PC in many field such as the meteorology [Hsieh98], the EEG Electro-
Encephalo-Graphy signal [Stamkopoulos98], metabolism [Scholz05]. Indeed, the NNPCA
relies on Multi-Layer Perceptron (MLP) [Bishop95] with an auto associative topology al-
lowing an identity mapping (e.g; the neural network inputP should be equal to the neural
network outputP̂ whereP is the observed object voxel coordinates). To this end, the square
reconstruction error||P− P̂||2 should be minimized. The neural network is generally com-
posed of five layers [2-1-2] interconnected with four network weightWl , l = 1...4 (Fig.
3.6). The layer in the middle is called the bottleneck layer which consists of a number of
nodes lower than that of the input/output layers. This bottleneck layer, leading to a data
compression and a decompression steps, makes the minimization of the square error not
trivial. The two first layers constitute the non-linear extraction functionΦextr(.) allowing
us to perform a nonlinear projection of the observed object coordinatesP= p1...pN (i.e; pi

is the cartesian coordinates of theith voxel of the object (the size ofpi is three)),N is the
number of object voxels, into the second layer (Φextr(P) = Z) in order to obtain the matrix
of score (the matrix of the nonlinear PC). In the other hand, the two last layers constitute
the reconstruction functionΦgen(.) allowing us to perform a nonlinear reconstruction of
the observation (Φgen(Z) = P) thanks to the estimated score matrix (Fig.3.6).
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Figure 3.6: A standard MLP network with an auto associative topology. This network is
composed of 3 parts [2-1-2]. The first two layers aim at compressing the original signals
P to only three componentsz[3]1 , z[3]2 andz[3]3 (the bottleneck layer) thanks toΦextr function.
The last two layers aim at reconstructing the data toP̂ thanks toΦgen function.

Our aim now is to properly integrate thea priori knowledge that we have on the data
into this network. In other words, we should adopt the network to the spherical shape of
the active zone. To this end, we can distinguish two cases. The first one consists of an en-
tire spherical shape (Fig.3.7.a) whereas the second one consists of a partial spherical shape
(Fig.3.7.b) which is the case of the fMRI active zones. In the next part, we describe the
proposed methods to adopt the network for both shape cases: entire spherical shape and
partial spherical shape.

Entire spherical shape case

(a) (b)

Figure 3.7: Example of (a) an entire sphere, (b) a partial sphere.
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The developed method was inspired from the work proposed in [Kirby96] where au-
thors adapt the network to the case of circular data (2D data). We extend this work to the
3D data for entire spherical shape. To this end, the triplet (z[3]1 , z[3]2 , z[3]3 ) 2 (Fig. 3.6) are
constrained to lie on a unit sphere:

(z[3]1 )
2
+(z[3]2 )

2
+(z[3]3 )

2
= 1

Generally, a sphere can be characterized with the triplet (r, θ, φ) wherer ≥ 0 is the
distance from the origin,θ ∈ [0,2π[ the azimuth angle andφ ∈ [−π

2 ,−π
2[ the elevation

angle. The three nodes of the bottleneck layer can be described by two hyperparameters (θ
andφ):

z[3]1 = cos(θ)cos(ϕ), z[3]2 = sin(θ)cos(ϕ) and z[3]3 = sin(ϕ) (3.19)

To calculate the radiusr of the sphere, a forward propagation is performed. We recall
that the link between the layer number 2 and the bottleneck layer is assured by the matrix
W2. Let z[2]m m∈ [1...M], M the number of nodes in the second layer, the value of themth

node of the layer number two. Each nodem of this layer is connected to each node of
the bottleneck layer with a weighted connectionwim wherei ∈ {1,2,3}. The radiusr is
expressed as:

r =
√

(v1)2+(v2)2+(v3)2 (3.20)

where

v1 =
M

∑
m=1

w1mz[2]m , v2 =
M

∑
m=1

w2mz[2]m and v3 =
M

∑
m=1

w3mz[2]m

In order to obtain a spherical constraint, we should have:

z[3]1 =
v1

r
, z[3]2 =

v2

r
and z[3]3 =

v3

r
(3.21)

To estimate the network weightWl , l = 1...4, a backward propagation is performed to
minimize the error functionE with respect to all network weightWl , l = 1...4:

E =
N

∑
n=1

3

∑
j=1

(

p̂ j
n− p j

n

)2
(3.22)

where (p1
n, p

2
n, p

3
n) is the cartesian coordinate of the object voxelpn and (p̂1

n, p̂
2
n, p̂

3
n) the

reconstructed coordinates ofpn. This error function can be minimized using the gradient
optimization algorithm [Nocedal99] and the derivation of the network weightsWl , l = 1...4
are obtained by standard back propagation [Fahlman88].

Partial spherical shape case

In this paragraph, we adapt the method previously presented(the entire spherical shape)
to the case of the fMRI active zones (the partial sphere shape). Unfortunately this task is
not trivial since the fMRI active zones do not retain a uniqueshape and consequently the
partial sphere modeling the reflection symmetry changes from an active zone to another
one. In order to overcome the problem of shape variability, we proceed as follows:

2 z[3]i is the value of the ith node of layer number three.
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1. The first step consists of finding the closest sphere that properly fits the 3D ob-
ject shape. To this end, we used the Inverse Non-Linear PCA method proposed in
[Scholz05] to initialize the reflection symmetry of the 3D object. Indeed, this method
allows the estimation of the surface that models the reflection symmetry with no con-
strains on the expected surface shape (in our case a spherical shape). Then, we use
the gradient descent algorithm to estimate the hyperparameters of the closest partial
sphere (the triplet (ˆr , θ̂, φ̂)) that properly fits the estimated surface.

2. The second step consists of adding samples to the 3D objectto complete the sphere
based on the partial sphere hyperparameters estimated in the pervious step. There-
fore we obtain two 3D objects. The first one (P) is composed of the original samples
coordinates and the second one, denoted byP′ = p′1...p

′
N′ , is composed of the added

samples coordinates.

3. The last step consists in applying the proposed method to the constructed sphere.
However, onlyP contains the useful data and therefore samples ofP′ should be
penalized in the network training step. To this end, it is sufficient to modify the error
function (Eq.3.22) by introducing a new hyperparameter 0< ξ < 1 according to:

E =
N

∑
n=1

3

∑
j=1

(

p̂ j
n− p j

n=1

)2
+ξ

N′

∑
n

3

∑
j=1

(

p̂′
j
n− p′ j

n

)2
(3.23)

By this way, the error introduced byP′ is penalized and it partially contributes to the
gradient.

An overview diagram of the proposed active zones alignment chain is presented in
Fig. 3.8. Finally, two objects are aligned according to their estimated partial spherical
symmetries. Indeed, it is sufficient to first estimate two partial spherical symmetries for
each object (Fig.3.9) and than to superpose them to find the common object pose (Fig.
3.10).

Inverse
Non-Linear PCA

?
Finding the closest

sphere that
properly fit the 3D object shape

-
adding samples
to the 3D object

to complete the sphere
-

Spherical
PCA

?
Spherical symmetry

estimate of the constructed
sphere (Eq.3.20)

Initialization: estimate of (ˆr, θ̂, φ̂)) Partial spherical PCA

Figure 3.8: Overview diagram of the proposed active zones alignment chain.
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Partial spherical symmetry 2

Partial spherical symmetry 1

Figure 3.9: Two reflection symmetries estimation of a 3D object.

(a) (b) (c)

Figure 3.10: The two estimated reflection symmetries of (a) object 1 and (b) object 2, (c)
the superposition result of the estimated reflection symmetries.
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(a) (b)

Figure 3.11: (a) A cloud point representation of the reference sphere, (b) A triangular mesh
representation of the reference sphere

3.3.2 Active zone alignment validation

In this part, we provide some 3D object alignment results obtained with the proposed
method. This method was applied on both spherical 3D objectsand partial 3D objects
designed to fit the characteristics of the active zones as well as on some real fMRI active
zone. More results on real spectra will be presented in chapter 6. In order to emphasize
the benefit of the proposed method and particularly the use ofthe non-linear PCA, we have
compared our algorithm with the continuous PCA method [Vranić01a].

The goal of our experiments is to assess the performance of the proposed alignment
scheme. Let us start with spherical toys problem to demonstrate the effects of the proposed
and the continuous PCA strategies. To construct our toy dataset, we firstly generated a
reference sphere denoted bySr (Fig 3.11.a). Note that we have opted for the 3D triangular
mesh representation for all artificial toys (Fig3.11.b). This sphere will be used as refer-
ence to generate twenty nine other spheres by adding a Gaussian noise with zero mean and
varianceσo to its cartesian coordinates (xr , yr , zr ) such that the PSNR∈ [5dB,20dB] (Fig.
3.12).

Fig. 3.13shows some results of spherical symmetry reflection estimation on synthetic
toys with different PSNR values. In order to facilitate the visual interpretation of the results
we have presented the cross sections of different spheres. As one can see, even with a small
PSNR, we can correctly estimate the reflection symmetries.

We now address the problem of 3D partial spherical object alignment. To this end, we
generated five partial spheres by removing 55%, 60%, 65%, 70%and 75% ofSo and by
adding a Gaussian noise with zero mean and varianceσoi as that thePSNR∼ 15db. Then,
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Figure 3.12: Two synthetic spherical toys generated from the reference sphereSo

Proposed method Continuous PCA
data set1 (55% ofSo) 0.02± 1.2 10−4 0.097± 7.85 10−4

data set2 (60% ofSo) 0.038± 5.8 10−4 0.124± 2.14 10−3

data set3 (65% ofSo) 0.0474± 9.7 10−4 0.301± 4.23 10−3

data set4 (70% ofSo) 0.062± 1.03 10−3 0.832± 5.82 10−2

data set5 (75% ofSo) 0.078± 4.12 10−3 1.177± 7.98 10−2

Table 3.4: The mean shift errors and the standard deviation obtained bythe proposed and the
continuous PCA methods.

for each partial sphereSoi, i = 1...10, we generated forty nine other spheres by rotatingSoi.
The rotation angle is between 20 and 130 degrees. At the end ofthis procedure we obtained
five data sets each one composed of 50 toys. Fig.3.14.(a) shows an example of a generated
toy whereas Fig.3.14.(b) shows an example of a fMRI active zone. The toy alignmentre-
sults for each data set are presented in Table3.4. We can easily observe that the proposed
method performed better than the continuous PCA method. Fig. 3.15shows an example of
real active zones alignment. As one can see, our method performs the best alignment result.
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(a) (b)

(c) (d)

Figure 3.13: Spherical symmetry reflection estimation on synthetic toys with (a) PSNR =
15dB, (b) PSNR = 12dB, (c) PSNR = 10dB and (d) PSNR = 8dB
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(a) (b)

Figure 3.14: An example of (a) a synthetic toy, (b) a real active zone

(a) (b)

Figure 3.15: Alignment result of real active zones obtainedwith (a) the proposed method,
(b) the continuous PCA method.
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Conclusion

In this chapter, we addressed the object detection and alignment task.

Concerning the 2D HSQC spectrum, we proposed a new peak detection and alignment
methods which combined the modeling of the knowledge by means of the evidence theory
and integrate the fuzzy theory to quantify the imprecision degree presented in the spectra.
The handling of both imprecision and uncertainty by the evidence theory increased the
robustness of the proposed alignment scheme with comparison to the Bayesian method.
In addition, we have used the deconvolution model to achievea better fit of the HSQC
spectrum. The synthetic validation of the proposed approach has shown its efficiency and
particularly its robustness to the high level of noise, one of the delicate issues in HSQC
spectra and its ability to align peaks even if they are manually difficult to separate. The
proposed method offers not only a powerful automated tool for peaks detection and align-
ment but also a parametric representation of the NMR 2D spectrum which will be used for
spectrum indexation in the next chapter.

On the other hand, the second method, dedicated to the fMRI active zone alignment,
relies on the canonical system approach. This approach allows us to find the most ob-
ject natural pose and to visually align similar objects in the same manner. In order to
integrate oura priori knowledge, we proposed a new method for spherical symmetry esti-
mation based on the non-linear PCA that is well suited to model the reflection symmetry
of the cortical active zones. The synthetic validation of the proposed active zone alignment
scheme has shown that the modeling of the partial spherical symmetry has increased the
robustness of the proposed registration scheme with comparison to the continuous PCA
method which does not take into consideration thisa priori knowledge.
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Symbols:

X Candidate peak amplitudes
R Reference peak amplitudes
Y Observed spectrum
Yre f Reference observed spectrum
ro Observed peaks ratio
re Expected peaks ratio
G Gamma distribution
(α,β) Hyperparameters of the Gamma distribution
ΓX Inter-metabolite correlation matrix
I Identity matrix
Φ Standard Gaussian cumulative distribution
B Noise
Γb Noise covariance matrix
cg Gaussian copula
h(i, j) Peak shape filter
γY = (γY

1 ,γY
2) Shape hyperparameters of peaks within the spectrumY

hyp1,2,3 Hypotheses modeling the spectrum imprecision
X̂ An estimation of the theoretical spectrumX
f Π -membership function used for candidate metabolites selection
f1 S-membership function associated to criterion 1
f2 S-membership function associated to criterion 2
fM Π -membership function associated to criterion 3
g Trapezoidal membership function associated to global criterion
µM Metabolite reliability degree associated tof
µcr1 Metabolite reliability degree associated to criterion 1
µcr2 Metabolite reliability degree associated to criterion 2
µcr3 Metabolite reliability degree associated to criterion 3
Me Metabolite belonging to exception list
recall Recall measurement
Precision Precision measurement
E[X] Expected value ofX
X Theoretical spectrum
Xre f Reference theoretical spectrum
Y Observed spectrum
Yre f Reference observed spectrum
M A metabolite
M̂ An estimation ofM
CM Candidate Metabolite set
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Symbols:

O A 3D Object
T Object triangle mesh
Mo,q,r The geometric moments of order(o+q+ r)
Ap Area of the triangle associated top∈ T
gi, j,k Gravity center of object portion number(i, j,k)
ci, j,k Object Gaussian descriptor associated togi, j,k

G(.) Gaussian transformation
d(., .) The euclidian distance
ci Descriptors set of objectOi

∆(O1,O2) Object similarity measurement betweenO1 andO2

tm Themth surface object portion
gm Themth point belonging the unit shpere
GGt(.) Generalized Gaussian transformation

Acronyms:

HR-MAS High Resolution Magic Angle Spinning
HSQC Heteronuclear Single Quantum Coherence spectrum
fMRI functional Magnetic Resonance imaging
PCA Principal Component Analysis
3DGD 3D Gaussian Descriptor
3DGGD 3D Generalized Gaussian Descriptor
PSNR Peak Signal to Noise Ration
MCMC Monte Carlo Markov Chain
GA Genetic Algorithm
ML Maximum Likelihood
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Introduction

The Object coding and similarity measurement is the second step in the proposed object in-
dexing scheme (Fig.2.15). On one hand, the object coding task consists in coding different
objects into a compact description. This compact description allows us to accelerate large
database queries. On the other hand, the similarity measurement task consists in establish-
ing the object similarity measurement procedure. In other word, this task returns to find
and to group the most similar objects within a given medical signal group/population query.

In this chapter we present in section4.1 an overview of the most used object coding
and similarity measurement methods. In section4.2, we develop a novel scheme for peak
similarity measurement. Indeed, the step of object encoding is unnecessary since the peaks
can only be described by three parameters (location, amplitude and shape) and are there-
fore already parsimoniously presented. For the similaritymeasurement, we propose a new
method based on the combination of Bayesian theory and the fuzzy sets theory allowing us
to handle the uncertainty and fuzzyness that characterize the observations and to inject our
a priori knowledge into the inference model.

In section4.3, we propose a new coding method based on generalized Gaussian trans-
formation to reliably describe the topology of the active zones. In particular, we show that
the proposed method provides not only a compact representation of the object in its space
but also a signature faithful to its shape. We also propose a similarity measurement robust
to small displacements and variations of objects. We show that the use of the proposed
algorithms allow us to get more accurate object coding and similarity measurement results
compared to the existing schemes.

4.1 Overview of object coding and similarity measurement al-
gorithms

4.1.1 Object coding

Shape distributions

Osada et al. [Osada02] propose five distribution forms to code a 3D object. The object
is assumed to be triangular meshing (Fig.4.1). Therefore, the object surface is composed
of a set of inter-connected triangles where each triangle consists of three vertices and a
gravity center. The considered measurements are:

• The angles between three points on the surface (Fig.4.2.(b)),

• The distance between the mass center and a point of the object(Fig.4.2.(c)),

• The distance between two points (Fig.4.2.(d)),

• The area square root of a triangle formed by three points (Fig.4.2.(e)),

• The volume cube root of the tetrahedron formed by four points(Fig.4.2.(f)).
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Figure 4.1: An object triangular mesh.

All considered points are randomly selected on the object triangular facets. The main
advantages of this approach are the descriptor compactnessand the calculation rapidity.
Moreover, since the considered measurement does not dependon the object coordinate
system, the shape distributions method is invariant to geometric transformations (rotation
and translation). However, its use is more suited to search objects of similar overall shape
since it is not able to discriminate small variations in the object meshing [Ohbuchi03].

Geometric moments
The geometric moment approach consists in projecting a characteristic functionh, that
models a 3D object, on the family of functionsxoyqzr , (o,q, r) ∈ N

3. The geometric mo-
ments of order(o+q+ r) are denoted byMoqr and calculated as follows:

Moqr =

∫
p∈T

h(p)xoyqzr dp (4.1)

where p is a point belonging to the triangular meshT of the object. In particular, the
geometric moments of order one and two are used to calculate the normalization hyperpa-
rameters of the 3D object (the object gravity center and the three principal axes). In the
context of coding, the description of a 3D shape by the geometric moments was proposed
in [Paquet99]. In this work, the geometric moments are obtained by the following equation:

Moqr = ∑
p∈T

Ap (xp−xg)
o(yp−yg)

q(zp−zg)
r (4.2)

whereAp (resp gp = (xp,yp,zp)) is the area (resp the gravity center) of the triangle
associated top∈ T andg= (xg,yg,zg) is the object gravity center.
Note that the use of geometric moments is not the best object coding method. Indeed, a
comparative study in terms of performance made by Varnic andSaupe [Vranic00] on dif-
ferent bases of 3D objects (e.g; the Princeton Shape Benchmark) which contains a database
of 3D object models collected from the World Wide Web (Fig.4.3) shows the limits of this
method particularly for complex 3D shape coding [Shilane04].

Shape histogram

This method, proposed by Ankerst et al. [Ankerst99], consists in uniformly partitioning
the object space into three representations:

1. SHELLS: This partitioning allows to overcome any object rotation through concen-
tric shells around the center of the object (Fig.4.4.(b)). Moreover, to cover the entire
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(a) (b) (c)

(d) (e) ( f )

Figure 4.2: The five considered measurements of the shape distribution method applied
on the (a) Dragon object: (b) 1-the angles between three points on the surface, (c) 2-the
distance between the mass center and a point of the object, (d) 3-the distance between two
points, (e) 4-the area square root of a triangle formed by three points and (f) 5-the volume
cube root of the tetrahedron formed by four points.
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Figure 4.3: Examples of Princeton Shape Benchmark 3D objects.

model, the last shell has no top boundary.

2. SECTORS: This partitioning allows to project the facets of a regular polyhedron on
the unit sphere through an angular decomposition with homogeneous size (Fig.4.4.(c))
.

3. SECSHEL: This partitioning is the combination of SHELLS and SECTORS parti-
tions (Fig.4.4.(d)).

Finally, for each bin an histogram of mesh triangle center within this bin is calculated
and the union of all histograms constitutes the signature ofthe object.

The 3D Gaussian Descriptor

The 3D Gaussian Descriptor (3DGD) introduced by Chaouch [Chaouch09] relies on
the object Gaussian transformation which is derived from the Gaussian law. Indeed, the
Gaussian transform is a real application defined on a set of defined point in space and
obtained by a summation over the surface of the 3D object. TheGaussian transformation
denotedG on a pointq of the space is given by the following expression:

G(q,T,σ) =
∫

p∈T
exp

(−(p−q)2

2σ2

)

dp (4.3)

whered is the euclidian distance,p∈ T (T the object triangular mesh) andσ > 0 is a
positive real.

In order to code a 3D object, author proposes the partitioning of the object intoN3 cells
and then the calculation for each one’s centergi, j,k, i = 1...N, j = 1...N, k = 1...N (Fig.
4.5). Then, the author assigns to each cell acharacteristic value ci, j,k as following:

ci, j,k = ∑
p∈T

Apexp

(−(p−gi jk)
2

2σ2

)

(4.4)
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(a) (b)

(c) (d)

Figure 4.4: The shape histogram descriptors: (a) Sphericalspace, (b) 3 shell bins, (c) 6
sector bins, (d) combination of 3 shell bins and 6 sector bins.
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whereAp is the area of the triangular facet associated top (Fig. 4.6).

Figure 4.5: The 3D object partitioning.

Figure 4.6: Contribution of object surface point in the local description ofgi, j,k.

Thus, the 3D object is codified withc =
[

ci, j,k
]

i, j,k∈N. Note that the 3D Gaussian
Descriptor (3DGD) has showed its effectiveness compared toother methods such as the
shape histogram method and was ranked first on the Princeton Shape Benchmark database
[Chaouch09].

4.1.2 Similarity measurement

The similarity measurement consists in establishing the similarity between two codified
objects, it means the most similar objects within the database toward the object we are
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looking for (query object).

Threshold approach

The threshold schemes are often used to accommodate differences between object de-
scriptors. To this end, it is sufficient to experimentally set a thresholdthresand to evaluate
the differences between two objectsO1 andO2 as following:

∆(O1,O2) =

{

1 if d(c1,c2)≤ thres

0 otherwise
(4.5)

wherec1 andc2 are the object descriptors ofO1 andO2 respectively andd(., .) is the
euclidian distance. Thus,O1 andO2 are assigned together if the function∆(O1,O2) is equal
to 1. The threshold based approach is a rudimentary technique but it found some success in
applications such as in metabolite identification [Zheng07, Xia08] thanks to its simplicity
and speed. Nevertheless, thresholds set may strongly affect the robustness of the similarity
measurements.

Distance minimization approach

The similarity between two objectsO1 andO2 can be calculated using the euclidian
distance as follows:

∆(O1,O2) = d(c1,c2) (4.6)

Thus, the most similar objectOs to query objectO within the database is the given by:

Os = argmin
Oi

(

d(O,Oi)
)

(4.7)

In order to be less sensitive to small displacements or minorgeometric variations,
[Chaouch09] introduced a new similarity measurement that minimizes the distance be-
tween adjacent pairs of components:

∆(O1,O2) =
1

N3

N

∑
i, j,k=1

min

({

(c1
i, j,k−c2

i, j,k)
2

(c1
i, j,k−c2

i′, j ′,k′)
2, i′, j ′,k′ ∈V(i, j,k)

)

(4.8)

whereV(i, j,k) is the 3×3×3 neighborhood of the descriptorc2
i, j,k.

Supervised learning approach

Supervised learning approach relies on the link function establishment between object
descriptors and expected results (similar or no similar objects) via a training step. The
widely common used methods are the Support Vector approach SVM [ Bruzzone06] and the
Artificial Neural Networks [Bate98]. Thus, the similarity measurement task is equivalent
to a classification task. In other words, for each objectOi belonging to the database, a
classification functionf(.) is established using a training dataset which contains objects
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with known similarity results. Therefore, a test objectOt is assigned to the objectOi (i.e.;
Ot and Oi are considered as similar) iff(Ot) = 1. As one can remark, the supervised
learning approach is a generalization of the threshold approach since it allows a non-linear
behavior of the assignment functionf(.).

4.1.3 Retained approaches

We recall that each spectrum is composed of several peaks that are scattered within the
spectrum. These peaks are the responses of metabolite presence. Therefore, peaks belong-
ing to a given metabolite have common properties. In order toimprove the peak coding
and similarity measurement task, these properties should be modeled and injected into the
proposed scheme. Thus, it is better to manipulate metabolites than single peaks. Moreover,
since a metabolite is described by a set of few peaks with specific characteristics (locations,
shapes and amplitudes) the metabolite coding step is no longer necessary (the metabolite
is already compactly presented) and finally the peak coding and similarity measurement
task is simply equivalent to ametabolite identificationtask (e.g, identify the most similar
metabolite to a given metabolite).

Concerning the fMRI image, unlike peaks, an active zone is a dense form (consisting
of neighboring voxels) and therefore a compact representation of this active zone should be
carried out. Among different object coding methods, the 3D Gaussian Descriptor (3DGD)
introduced by [Chaouch09] has showed its effectiveness compared to other methods and
was ranked first on the Princeton Shape Benchmark database. For this reason, the Gaussian
transformation is retained in this work for fMRI active zones

4.2 Metabolite similarity measurement (HSQC)

In the literature, we distinguish two methods [Zheng07, Xia08] that deal with the metabo-
lite similarity measurement. In these works, two metabolites are considered as similar if
their peaks appear at the same locations. To this end, these methods use threshold schemes
to accommodate the chemical shift differences between different metabolites. Neverthe-
less, the choice of the thresholds may strongly affect the robustness of the similarity mea-
surement method. To overcome this problem, we propose the use of the fuzzy set theory
which is well appropriate to handle fuzzy situations [Waltz90] and hence avoid a binary
reasoning (similar or not similar). Moreover, in order to lead to a more robust, more accu-
rate and efficient similarity measurement method, additional constraints, other than peaks
location, such as the knowledge of the biopsy compositions or peak amplitudes should
be integrated into the assignment scheme. Thesea priori knowledge are available in a
metabolites library denoted the "corpus". Indeed, the corpus contains different metabolites
expected to be present within the spectra as well as the characteristics of each metabolites
(expected peak locations and peaks amplitudes). The corpuscan be obtained by two ways.
In the first one, a reference spectrum is manually annotated (i.e; the spectrum annotation
task is equivalent to metabolites identification task) and then the annotation results are used
to identify metabolite presented in other spectra obtainedfrom the same type of biopsy. In



72 Chapter 4. Object coding and similarity measurement

the second one, the corpus does not depend on the biopsy. For example, it can be the
annotation results of spectra obtained from pure compounds. Indeed, since the metabo-
lites are independent of the treated tissue type, the corpusorigin has no influence on the
metabolite identification scheme. Moreover, in order to increase the metabolite similarity
measurement accuracy, it is better to consider a multi-spectra metabolite identification.

4.2.1 Metabolite identification

The proposed fuzzy metabolite similarity measurement scheme is divided into three steps:

1. Randomly choose a peak denoted the reference peak,

2. Find the candidate metabolites that may contain the selected reference peak,

3. Find the right metabolite candidate according to different criteria exposed in the
following.

Candidate metabolites selection

The first selection criterion, in the metabolite similaritymeasurement scheme, is the
peak location. Indeed, each metabolite is composed of one orseveral peaks at very specific
frequency coordinates (carbon-13C chemical shift inx axis and proton-1H chemical shift
in y axis of the spectrum image). However, we recall that peaks can slightly be shifted
from their expected positions. To overcome this, we assume that the peak membership to a
metabolite is a fuzzy concept. In fact, a given peak may belong to several metabolites with
a membership degree denotedµM . The value of this membership degree depends on both
the expected and the measured peak location.

For the transformation from the hard to fuzzy domain, aΠ membership function de-
noted f is used. The expression off is given below:

f (x;a1,b1) =
1

1+
(

x−a1
b1

)2 (4.9)

Fig 4.7.(a) shows an example ofΠ membership function for a given pair(a1,b1). For a
given metaboliteM from the corpus, the membership degreeµM, using aΠ membership
function, is expressed as:

µM = f ((i − iM)2+( j − jM)
2;a1,b1) (4.10)

where (i, j) is the peak measured position and(iM , jM) is the expected peak position
(available from the corpus). The hyperparameters(a1,b1) are automatically estimated
with the Genetic Algorithm procedure (see AppendixB). Indeed, the GA aims at esti-
mating the model hyperparameters using a training dataset that contains metabolites with
known similarity results. Once the candidate metabolites (set of metabolites such that
(a1−b1)< µM < (a1+b1) denoted henceforthCM) have been selected, we address in the
next part the problem of the right candidate identification.
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Right metabolite identification

Our challenge in this study is to properly model the metabolite profile using thea priori
knowledge in order to lead to a optimal selection of the rightmetabolite. To this end, we
define three criteria to be respected in the metabolite scheme identification:

Criterion 1

Theoretically, and with respect to the reproducibility principle, the ratio of two peaks
belonging to the same metabolite must be the same for any observation. But this rule is
not perfectly verified in practice (due to the degradation ofthe tissues used in the biopsy
during acquisition and/or the acquisition conditions thatare not necessarily the same for all
observations). Therefore, the modeling of the ambiguity introduced by these disturbances
is essential to avoid false negative identification (assigning a peak to a wrong candidate).
Let us denotero as the observed ratio between the reference peak and a new candidate
peak andrt as the expected ratio given by the corpus. The more these ratios are close, the
more the metabolite identification is reliable. To model this reliability, we define anS type
function f1 as the membership function. The expression off1 is :

f1(x;a2,b2,c2) =



























0 x< a2

(x−a2)
2

(b2−a2)(c2−a2)
a2 ≤ x< b2

1− (x−c2)
2

(c2−b2)(c2−a2)
b2 ≤ x< c2

1 otherwise

(4.11)

Wherea2 < b2 < c2 are the hyperparameters of thef1 function. Fig4.7.(b) shows an ex-
ample ofSmembership function for a given triplet(a2,b2,c2).
The proposed reliability degree denotedµcr1 is then given by Eq.4.12. The hyperparame-
ters of this function are estimated using the Genetic algorithm (see AppendixB).

µcr1 = f1(min(rt , ro)/max(rt , ro);a2,b2,c2) (4.12)

Criterion 2

In this method, we consider simultaneouslyN biopsies (multivariate analysis). We as-
sume that the peak amplitudes follow a Gamma distribution. Indeed, the major advantage
of this distribution is that the shape parameters allow the fitting of spectral data that possi-
bly present some sparsity and/or a background [Dobigeon09]. The criterion 2 models the
likelihood between the observed peaks and a given metabolite belonging to the corpus. The
Gamma distribution [Dobigeon09] G is expressed as:

G (yi ;α,β) = y(α−1)
i

βα

Γ(α)
exp(−βyi ) y> 0 (4.13)

whereyi stands for the amplitude, andα,β > 0 represent the shape and the inverse scale
parameters respectively. The likelihood term has to be expressed in a multidimensional
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(a) (b)

(c)

Figure 4.7: Different fuzzy membership functions used in the metabolite identification
scheme: (a)Π membership function, (b)Smembership function and (c) trapezoidal mem-
bership function. The hyperparameters of these fuzzy membership functions are estimated
with the Genetic algorithm using a set of training spectrum databases. Each database
contains several spectra with known metabolite identification results. The simulations
show that these fuzzy membership function hyperparametersare almost the same for all
databases.
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way. Nevertheless, an analytical expression of the multidimensional Gamma distribution
is not available. To overcome this problem, we propose the use of the copula theory which
offers an elegant way to model the dependency between the different observations (the
metabolite realizations over several spectra) and hence toaccess to the multidimensional
Gamma distribution [Joe97].

Several studies show the effectiveness of the Gaussian copula cg to handle dependency
[Joe97]. In order to properly take into account the metabolite dependency into the similarity
measurement scheme, we adopt this copula:∀ y = (y1, · · · ,yN) ∈ IR N,

cg(y,Γ) = |Γ|− 1
2 exp

[

− ỹT(Γ−1− I)ỹ
2

]

(4.14)

whereỹ = (Φ−1(y1), · · · ,Φ−1(yN))
T with Φ(.) the standard Gaussian cumulative dis-

tribution, Γ is the inter-spectra correlation matrix andI theN×N identity matrix. Let us
now denoteR= (R1, ...,Ri , ...,RN) the amplitude of reference peak over theN considered
spectra andX = (X1, ...,Xi , ...,XN) the amplitude of a candidate peak over theN spectra
and letai be the theoretical ratio betweenRi andXi: Xi = ai ×Ri, i = 1...N. In our case,Ri

follows a gamma distribution with hyperparametersαi andβi. Under these assumptions,
(Xi/M) follows a gamma distribution with hyperparametersαi and βi

ai
. Using the Gaussian

copulacg, the likelihood is then given by :

P(X/M) = fga(X1;α1,
β1

a1
)× ...× fga(XN;αN,

βN

aN
)× cg(X,ΓX)

whereΓX is the inter-metabolite correlation matrix. The hyperparameters ofP(X/M)

are estimated using an MCMC procedure [Smith93]. We use this last expression to build
the reliability degree: considering anSmembershipf2 as, the proposed reliability degree
denotedµcr2 is given by:

µcr2 = f2(P(X/M);a3,b3,c3) (4.15)

Thus, the higher the likelihood valueP(X/M) is great, the moreµcr2 is close to 1 and
the more the probability of the metaboliteM to be the right metabolite is large.

Criterion 3

This criterion deals with the variations of the observed peak chemical shifts from their
theoretical positions defined in the corpus. We use the same membership function as in
Eq.4.9. The proposed reliability degree denoted byµcr3 is hence expressed as:

µcr3 = fM(((i − iM)2+( j − jM)
2);a1,b1) (4.16)

where(i, j) stands for the observed peak position and(iM , jM) for the theoretical peak po-
sition.

Global criterion
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We combine the 3 reliability degrees previously defined, to expect the best candidate
in the following way:

M̂ = argmax
M∈CM

(
K

∏
k=1

µcr1(Xk).µcr2(Xk).µcr3(Xk)) (4.17)

As one can remark, given the cost function definition (Eq.4.17), a solution of the
metabolite identification always exists which is not necessarily correct (i.e; a metabolite
can be not present in a spectrum). In order to reduce the number of false positive identifi-
cation, the reliability of the membership degrees for all different criteria ofM̂ should also
be quantified. In other word, not all solutions of (Eq.4.17) are acceptable. Therefore, we
propose a last fuzzy decision function that takes as input the criterion value ofM̂ and as
output their reliability. This reliability is quantified bythe membership degree of̂MB to the
fuzzy set: the metabolites biomarkers set. We opted for the trapezoidal function denoted
by g as a membership function. The expression ofg is given by :

g(x;a4,b4,c4,d4) =























( x−a4
b4−a4

) a4 ≤ x< b4

1 b4 ≤ x< c4

( d4−x
d4−c4

) c4 ≤ x< d4

0 otherwise

(4.18)

wherea4 < b4 < c4 < d4.
The allure ofg for a given quadruple(a4,b4,c4,d4) is presented in Fig.4.7.(c). Another

time, the Genetic algorithm was used to estimate this quadruple. The decision to identify
M̂ as a right metabolite depends on the output of the functiong. As one can remark,g
function depends on the quadruple(a4,b4,c4,d4) as well as on(a2,b2,c2), (a3,b3,c3) and
(a1,b1). The decision function is expressed as:

g(
K

∏
k=1

µcr1(Xk).µcr2(Xk).µcr3(Xk);a4,b4,c4,d4,a1,b1,a2,b2,c2;a3,b3,c3) (4.19)

If g
(

∏K
k=1µcr1(Xk).µcr2(Xk).µcr3(Xk)

)

= 1 thenM̂ is selected. It is important to note that
under some circumstances, such as the changes in the nucleusenvironment features, some
peaks of a given metabolite may not be present. Thus, such exceptions should be taken
into account in the annotation scheme due toa priori knowledge. To this end, an exception
list is made by physicians. This list contains the peak set that may not be present for each
metabolite. Let us denote byXk, k= 1...K the peaks of a given metaboliteMe belonging to
the exception list and byXke the peak which could not be present. The exception handling
is defining in Alg.1.

Algorithm 1 Exception handling algorithm
Input=Xke andMe.

1-Calculate the membership functionµcr3(Xke) (Eq. 4.16),
2-If µcr3(Xke) 6= 0, no change onMe composition is made,
3-If µcr3(Xke) = 0, the new composition ofMe is Xk, k= {1...K}−{ke},

Output=new composition ofMe.
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An overview diagram of the metabolite identification chain is presented in Fig.4.8.
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Figure 4.8: Overview diagram of the metabolite identification chain.

4.2.2 Metabolite identification validation

This part describes some biomarker identification results obtained with the proposed scheme.
This method was applied on synthetic spectra designed to fit the characteristics of the1H -
13C HSQC HR-MAS spectra as well as on some real spectra. More results on real spectra
are presented in chapter6.

In order to validate and emphasize the benefits of the proposed approach, we have
retained therecall and theprecisionmeasurements for the synthetic data validation:

recall = TP
TP+FN ; precision= TP

TP+FP

whereTP stands for the number of true positive identifications,FN the number of false
negative identifications andFP the number of false positive identifications.

The main advantage of using simulated data is that we perfectly know the character-
istics of the data such as the number of peaks presented in every spectrum and the peaks
chemical shifts values. For this, we firstly generate a synthetic theoretical 2D spectrum
imageXre f ( M = 500 pixels byN = 500 pixels) which containsNp = 500 peaks corre-
sponding to two hundred metabolitesNm = 200. The positions of different peaks and the
hyperparameters of the shape filter for each peak are randomly generated. This synthetic
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spectrum will be used as reference to register other synthetic spectra. Nine other synthetic
theoretical 2D spectrum imagesXi , i = 1...9 are generated fromXre f by applying a dis-
placement vector at each peak ofXre f . The values of chemical shift vectors are assumed
to be random and following a Gaussian distribution with zeromean and a variance matrix
Γd =

[

0.02 0
0 0.25

]

. The new shape peak hyperparameter for each peak is calculated by adding
a zero-mean Gaussian random noise of variance 0.005. A spatially zero mean correlated
noiseB was added to each spectrum to obtain the synthetic spectra used in the simulation
Yre f , Yi , i = 1...9.

Figure4.9 shows the synthetic theoretical 2D spectrum imageXre f and the reference
synthetic spectrumYre f with PSNR = 30dB where:

PSNR= 10 log10(max(Xre f )
2/E[(B)2]) (4.20)

This value of PSNR was chosen to fit at best the real spectra. Infact, the PSNR of the
real spectrum is∼ 30dB. Concerning the usedcorpus, it summarizes the ground truth of
Yre f . It is important to note that all the spectra are presented ascontour plots with the same
number of level.

In order to emphasize the benefit of the proposed approach, three different similarity
measurements methods were applied to the synthetic spectraYi , i = 1...9 with different val-
ues of PSNR: our identification method , an SVM method [Camps-Valls05] and a threshold
method [Xia08] . The metabolites identification results ofYi are presented in Table4.1.
First, as one can see, the proposed method is enough robust toa hight level of noise. In
fact, even with a PSNR= 23dB, therecall and theprecisionmeasurements are still close to
90%. Secondly, we can easily observe that the proposed method performed better than the
SVM method which does not take into account thea priori knowledge.

Proposed method SVM Threshold method
PSNR recall(%) precision(%) recall(%) precision(%) recall(%) precision(%)

30dB 93.87 95.11 90.38 91.72 81.16 78.01
28dB 92.42 94.82 88.50 89.61 78.98 76.12
25dB 92.84 94.64 82.11 86.90 75.77 74.25
23dB 89.02 90.18 83.02 84.66 74.02 71.88

Table 4.1: The averagerecall(%) and precision(%) obtained with: our identification
method, the SVM method, a threshold method on synthetic spectra.

Figure4.10presents the metabolites identifications results on the same region ofY1 and
Y2. Each peakp belonging to a given metaboliteM is labeled with(p,M). As we can see,
some peaks (like peak number (6,1), (3,2) and (9,1)) are visually very difficult to identify,
yet our method is able to properly assign them.
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The performance of the proposed method was evaluated in the case of missing peaks.
The missing peaks were simulated by removing peaks of each metabolite randomly with
0%, 20% and 50% probabilities. We can distinguish two cases.If the modified metabolite
belongs to the exception list, the exception handling algorithm (Algorithm 1) is then per-
formed. In the other case, we assume that the peak absence of agiven metabolite is the
result of the metabolite absence. We have applied our annotation scheme on the synthetic
spectra. The results show that every modified metabolite which does not belong to the ex-
ception list was not identified and indeed every metabolite belonging to the exception list
was identified. In other words, we obtained the same results as those presented in Table4.1.

Figure4.11displays the metabolites identification results on the samezone of a healthy
and a cancerous spectra. As we can see, some metabolites (like metabolite number (5,2))
are visually very difficult to identify. Yet our method is actually able to correctly identify
them even with a high noise level.
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Figure 4.9: (a) The synthetic theoretical 2D spectrumXre f , (b) a contours plot of the refer-
ence synthetic observed spectrumYre f (PSNR = 30dB).
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Figure 4.10: Metabolites identification results on synthetic spectra (a)Y1 (b)Y2. Every peak
p belonging to a given metaboliteM is labeled with(p,M).
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Figure 4.11: Metabolites identification results on (a) a real healthy spectrum (b) a real
cancerous spectrum. Every peakp belonging to a given metaboliteM is labeled with
(p,M).
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4.3 Active zone coding and similarity measurement (fMRI)

Among object coding methods, the 3D Gaussian Descriptor (3DGD) proposed by Chaouch
[Chaouch09] has showed its effectiveness compared to other methods andwas ranked first
on the Princeton Shape Benchmark database. The 3DGD method relies on the object Gaus-
sian transformation which is derived from the Gaussian law.Although this method was
successfully applied on 3D internet object searching, it presents a shortcoming. Indeed, it
does not provide an information about the object surface topography. In order to lead to
a more accurate fMRI active zone objects coding and similarity measurement result such
information should be taken into account the proposed scheme. To this end, we propose
a new descriptor: the 3D Generalized Gaussian Descriptor (3DGGD) inspired from the
3DGD method.

4.3.1 The 3D Generalized Gaussian Descriptor

In order to code a 3D object, we recall that author of [Chaouch09] proposed the partitioning
of the object intoN3 cells and then the calculation for each one’s centergi, j,k, i = 1...N, j =
1...N, k = 1...N. Then, the author assigned to each cell acharacteristic value ci, j,k as
following (Fig. 4.6):

ci, j,k = ∑
p∈T

Apexp

(−(p−gi jk)
2

2σ2

)

(4.21)

whereAp is the area of the triangular associated top. Thus, the 3D object is codified
with ci, j,k.

Our goal is now to adapt the partitioning object step to the partial spherical shape of the
fMRI active zones and to introduce the surface topology intothe coding step. Concerning
the first task (object partitioning), it is sufficient to put the active zone into a unit sphere
modeled byM pointsgm, m= 1...M (Fig.4.12). Then, we assign to each point of the sphere
a portiontm, m= l ...M of the object surface. Concerning the second task,ci, j,k is indepen-
dent of the topology of the cell surface. In other words, thismethod treats in the same way
a flat surface (Fig.4.13.(a)) or a surface with reliefs (Fig.4.13.(b)).

An elegant way to integrate such information is the use of theGeneralized Gaussian
function. Fig.4.14shows the shape of Generalized Gaussian function with different values
of the shape parameterα. This parameterα allows us to adapt our function to the topology
of tm surface (Fig.4.15). In other words, the more thetm surface is flat the moreα is great.
The shape parameterα for eachtm portion is estimated using the Maximum Likelihood
(ML) algorithm.

The 3DGG descriptorcGG(m), m= 1...M (Fig.4.12), is given by:

cGG(m) = ∑
p∈tm

Apexp[−(η(αm)|pm−gm|)αm] (4.22)
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Figure 4.13: Contribution of an: (a) object flat surface, (b)object acute surface, points in
the local description ofgi, j,k using a Gaussian function.
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Figure 4.16: Overview diagram of the proposed active zones coding and similarity mea-
surement chain.

whereη(αm) =
[

Γ(3/αm)
σ2Γ(1/αm)

] 1
2
, Γ(α) =

∫ ∞
0 tα−1 exp(−t)dt andgm is the point belonging to

the unit sphere and associated totm.

To compare two objectsO1 andO2, we firstly calculate for each one the 3DGGDc1 =

[c1
GG(m)]m∈M andc2 = [c2

GG(m)]m∈M . The similarity can be calculated using the euclidian
distance as follows:

∆(O1,O2) = d(c1,c2) (4.23)

In order to be less sensitive to small displacements or minorgeometric variations, we
introduce a new similarity measure that minimizes the distance between adjacent pairs of
components:

∆(O1,O2) =
1
M

M

∑
m=1

min

({

(c1
GG(m)−c2

GG(m))2

(c1
GG(m)−c2

GG(m
′))2, m′ ∈Vm

)

whereVm is the 1-order neighborhood of the descriptorc2
GG(m). An overview diagram of

the proposed active zones coding and similarity measurement chain is presented in Fig.
4.16.

4.3.2 Active zone coding and similarity measurement validation

In this part, we provide some 3D object coding and similaritymeasurement results ob-
tained with the proposed method. As for the alignment methodvalidation, this method was
applied on partial 3D objects designed to fit the characteristics of the active zones as well
as on some real fMRI images. More results on real active zonesare presented in chapter
6. In order to emphasize the benefit of the proposed method and particularly the use of
the Generalized Gaussian function to model the surface topology, we have compared our
algorithm to (3DGD) method [Chaouch09] and the Shape histogram method [Ankerst99].
The goal of these experiments is to assess the performance ofthe proposed coding and sim-
ilarity measurement scheme. To construct our toy data set, we firstly generated five partial
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3DGGD method 3DGD method shape histogram method

dataset recall(%) precision(%) recall(%) precision(%) recall(%) precision(%)

dataset1 (55% ofSo) 91.35 88.02 84.21 83.25 80.38 75.72

dataset2 (60% ofSo) 90.44 88.12 85.50 82.01 81.67 77.45

dataset3 (65% ofSo) 91.74 87.23 81.09 78.96 77.10 75.98

dataset4 (70% ofSo) 88.17 86.88 79.69 78.64 70.18 67.41

dataset5 (75% ofSo) 90.95 89.03 86.78 84.35 74.11 72.08

Table 4.2: The averagerecall(%) and precision(%) obtained with: our coding and simi-
larity measurement method 3DGGD, the 3DGD method, the shapehistogram method on
different simulated datasets.

spheres,PSi i = 1...5, by removing 55%, 60%, 65%, 70% and 75% of an entire sphereSo.
EachPSi is then partitioned intoM = 20 portions. From eachPSi, we generate nineteen
other partial spheresPSi j , j = 1...10 by only modifying three portions ofPSi surface. Fi-
nally, from eachPSi j we generate fifty other 3D object by adding a Gaussian noise such
that thePSNR∈ [10dB,20dB]. At the end, we obtain five datasets. Each dataset contains
one thousand 3D objects. These simulated datasets allow us to evaluate the performance
of the method in difficult cases such as the capacity to discriminate objects with minor
changes (only three surface portions) and its robustness todifferent values of Peak Signal
to Noise Ratio PSNR. Note that we have opted for the 3D triangular mesh representation
for all artificial toys. For the performance assessment, we retained the samerecall and the
precisionmeasurements as the metabolite identification validation.

Figure.4.17shows some simulated 3D objects. The object coding and similarity mea-
surement results for each data set are presented in Table4.2. First, as one can see, the
proposed method performs the best coding and similarity measurement results compared
to the 3DGD and the Shape histogram methods which do not take into account the surface
topology information. Secondly, therecall and theprecisionmeasurements are still close
to 90% for all datasets which proves that the proposed methodis well adapted to this type
of 3D objects (partial spherical object). Figure.4.18shows an example of two simulated
3D objects wrongly assigned with the 3DGD method. As one can see, it is very difficult to
visually observe the differences. Note that these two objects were correctly indexed by our
method. Figure.4.19shows an example of real active zones assignment.

Conclusion

In this chapter, we presented two new object coding and similarity measurement methods.
The first method, dedicated to the 2D HSQC spectrum metabolite identification, is based
on the use of the fuzzy set theory to deal with the ambiguity which is in the heart of such
an identification task. The use of the metabolite likelihoodmeasure as metabolite signature
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Figure 4.17: Six simulated 3D objects.
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Figure 4.18: An example of two simulated 3D objects wrongly assigned with the 3DGD
method.

Figure 4.19: Assignment result of real active zones obtained with the proposed method.
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has increased the robustness of the proposed identificationscheme with comparison to the
SVM and the threshold methods which do not take into account thea priori knowledge.
In the other hand, the second method, dedicated to the fMRI active zone object, relies on the
Partition-Space approach. This approach allows us to code different objects into an appro-
priate description and to calculate the similarity betweentwo objects. In order to integrate
the surface topology information into the coding and similarity measurement scheme, we
proposed a new descriptor: the 3D Generalized Gaussian Descriptor (3DGGD). The syn-
thetic validation of the proposed active zone coding and similarity measurement scheme
has shown that the modeling of the surface topology has increased the robustness of the pro-
posed coding and similarity measurement scheme with comparison to the 3DGD method
which does not take into consideration thisa priori knowledge.
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Symbols:

xi Object features vector
r i Classification result ofxi

f Separating function
(w, b) Hyperplane hyperparameters
(w∗, b∗) Optimal hyperplane hyperparameters
β Lagrange multipliers
γ Lagrange multipliers
α Lagrange multipliers
α∗ Optimal Lagrange multipliers
ζi Slack variable associated toxi

C Regularization parameter
C1 Regularization parameter
C2 Regularization parameter
K Kernel function
ϕ(.) Mapping function
H Hilbert space
(R, a) Hypersphere hyperparameters
(R∗, a∗) Optimal hypersphere hyperparameters
CG Gaussian copula
Φ Standard Gaussian cumulative distribution
Γ Correlation matrix
I Identity matrix
µ Membership degree to the target class
Cht Hard class of target population
Cf t Fuzzy class of target population
Cho Hard class of outlier population
Cf o Fuzzy class of outlier population
G Gamma distribution
N (,) Standard normal distribution
GG Generalized Gaussian distribution
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Acronyms:

HR-MAS High Resolution Magic Angle Spinning
HSQC Heteronuclear Single Quantum Coherence spectrum
fMRI functional Magnetic Resonance imaging
SVM Support Vector Machine
SVDD Support Vector Data Description
SV3DH Support Vector Data Description with Dependency Handling
ML Maximum Likelihood
MCMC Monte Carlo Markov Chain
LOO Leave One Out
RBF Radial Basis Function
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Introduction

The Object classification is the third step in the proposed object indexing scheme (Fig.
2.15). This step aims at comparing a request (individual/group of medical signal) to defined
groups belonging to the available database (e.g, healthy group or pathological group) for
change detection. Indeed, detecting the changes between groups is equivalent to discrim-
inating the data into two classes:changedandunchanged(or unimportant changed) data
classes (the later will be the class of interest in the following). In this case, the correspond-
ing classifier is know a one-class classifier (target class and reject class). The classification
method may either be supervised due to the difficulty of the task or unsupervised but the
cost is sometimes a loss of robustness and/or higher computing time. In the supervised
case, the process requires to be able to access to a ground truth in order to derive a suitable
training set for the learning process of the classifiers. However, the ground truth is usually
difficult and expensive to find (which is unfortunately our case) . Consequently, the use of
unsupervised change-detection methods is crucial in many applications where ground truth
is out of reach.

Among all object classification/change detection methods,we pay attention in this the-
sis to the kernel based classification methods. Indeed, the kernel-based methods offer sev-
eral advantages compared to other approaches: they reduce the curse of high dimension-
ality in data and increase the reliability and the robustness of the method to a high level
of noise [Li06]. In this chapter, we present in section5.1, a brief overview of the object
kernel-based methods. In section5.2, we propose a new kernel function which combines
the characteristics of basic kernel functions with new information about features distribu-
tion and then dependency between samples. This kernel function is then used to map the
data into a high dimensional features space where an hypersphere encloses most patterns
belonging to the "unchanged" class. The dependency betweensamples will be based on
copulas theory that will be used for the first time to our knowledge in the support vector
data description (SVDD) framework. In section5.3, we pay a particular attention to check
that the proposed kernel function is robust with higher performance compared to classic
Support Vector Machine (SVM) and Support Vector Data Description (SVDD) methods.

5.1 Kernel-based classifiers

In the literature, two very interesting and widely-used unsupervised change-detection meth-
ods are the Bayesian methods [Fumera00] and the kernel methods [Ben-Hur02]. Although
the former approach is relatively simple, it exhibits a major drawback: it requires a large
amount of knowledge about the class of interest which is not always available, particularly,
in highly complex applications like the medical one [Sanchez-Hernandez07]. Moreover,
when only weak changes occurred between the two considered data set, the probability
density function (pdf) of thechanged datamay be confused with theunchanged datapdf
(e.g., the Hidden Markov Model method generally tries to regularize bad classification re-
sults due to this ill-posed problem and the presence of outliers in the data [Belghith09]).
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Although these drawbacks, Bayesian methods offer efficienttools to include ana priori
through a posteriori pdf.

Furthermore, the kernel methods are more flexible. Indeed, the kernel-based function
offers several advantages compared to other approaches: they reduce the curse of high di-
mensionality in data, increase the reliability and the robustness of the method to a high
level of noise and allow flexible mapping between objects (inputs) represented by a feature
vector and class label (outputs)[Shawe-Taylor04]. Among all these advantages, the ker-
nel based change-detection method is not time-consuming and then allows to develop real
time applications. The mainly used kernel-based methods are the Support Vector Machine
(SVM) and the Support Vector Data Description (SVDD).

5.1.1 Support vector Machine SVM

Let {xi}i=1...K , xi ∈ R
N be the vector containing theN features of a given object and

{r i}i=1...K , with r i ∈ {±1}, the corresponding output of{xi}i=1...K . The SVM algorithm
aims at classifying{xi}i=1...K into two classes: class of targets (i.e.; unchange orr i = +1
class) and the outliers (i.e.; change orr i =−1 class). In the supervised case, the purpose of
SVM algorithm is to predict the labelr i from a set of observations called training set com-
posed by objects{xi}i=1...K with known classification results{r i}i=1...K . Thus, the problem
is to find a separating functionf that assigns the label 1 (respectively−1) to each object
xi such thatf (xi) ≥ 0 (respectivelyf (xi) < 0). The separating surface (or the separating
hyperplane) is then given by the equationf (xi) = 0.

Linear classifier
Suppose the training data

(xi , r i)i=1...K , xi ∈ R
N, r i ∈ {−1,1}

can be separated by a hyperplane :

wTxi +b=
N

∑
j=1

w jxi( j)+b= 0 (5.1)

wherew ∈R
N andb∈ R (called thebias) are the hyperparameters of the hyperplane.

We say that this set of vectors is separated by the optimal hyperplane if it is sepa-
rated without error and the distance between closest vectorto the hyperplane is maximal
[Vapnik00]. The separating hyperplane can be described by the following form:

r i
(

wTxi +b
)

≥ 1, i = 1...K (5.2)

To find this hyperplane, one has to solve the following quadratic programming problem:

min
w

1
2

wTw (5.3)
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subject to constraints (Eq.5.2).

This is a classical optimization problem with inequality constraints. Such an optimiza-
tion problem can be solved by the saddle point of the Lagrangefunction [Vapnik00]:

L(w,b,α) =
wTw

2
−

K

∑
i=1

αi
[

r i
(

wTxi +b
)

−1
]

(5.4)

whereα ≥ 0 is the Lagrange multipliers. To find this point, one has to minimize this
function overw and b and to maximize it over the Lagrange multipliersα ≥ 0. At the
saddle point, the solution(w∗,b∗,α∗), should satisfy the condition:

∂L(w∗,b∗,α∗)
∂w

= 0 (5.5)

∂L(w∗,b∗,α∗)
∂b

= 0 (5.6)

Rewriting theses equations, one obtains the following properties of the optimal hyperplane:

1. The coefficientα∗ for the optimal hyperplane should satisfy the constraints:

K

∑
i=1

α∗
i r i = 0 α∗ ≥ 0 (5.7)

2. w∗ is a linear combination of the vectors of the training set:

w∗ =
K

∑
i=1

α∗
i r ixi (5.8)

3. Only the so-called Support Vectors (SV) can have nonzero coefficientsαi
∗ in the

expansion ofw∗. The support vectors are the vectors for which in inequality(Eq.
5.2), equality is achieved.

w∗ = ∑
i∈SV

α∗
i r ixi (5.9)

This fact follows from the classical Kuhn-Tucker theorem, according to which nec-
essary and sufficient conditions for optimal hyperplane arethat the separating hyper-
plane satisfies the conditions [Vapnik98]:

α∗
i

[

r i

(

(w∗)Txi +b∗
)

−1
]

= 0 i = 1...K (5.10)

Putting (Eq.5.8) into (Eq.5.4) and taking into account the Kuhn-Tucker conditions, one
obtains the functional:

W(α) =
K

∑
i=1

αi −
1
2

K

∑
i, j=1

r ir jαiα jxT
i x j (5.11)
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It remains to maximize this functional in the nonnegative quadrantαi ≥ 0 and under
the constraint:

K

∑
i=1

αir i = 0 (5.12)

This can be achieved by the use of standard quadratic programming methods [Bazaraa06].

Let the vectorα∗ = (α∗
1, ...,α∗

K) be the solution to this quadratic optimization problem.
The separating function functionf is given by:

f (x) = sign

(

∑
i∈SV

α∗
i r ixTxi +b∗

)

(5.13)

wheresign(.) is the sign function and

b∗ = r i −w∗Txs (5.14)

wherexs is a given support vector.

Non-linear classifier

In the previous paragraph, patterns belonging to the training set are assumed to be
linearly separable with a plane separating surface. However, the assumption of linear sep-
arability case is too restrictive for many particular applications, especially when data are
noisy. The optimal margin algorithm is generalized [Cortes95] to nonseparable problems
by the introduction of non-negative slack variables denoted by ζi,i∈{1,...,K} ≥ 0 in the state-
ment of the optimization problem (Fig.5.1).

The changed objective functional with penalty parameterC (a regularization parameter
that controls the trade-off between the margew and the number of learning errors) is:

wTw
2

+C
K

∑
i=1

ζi (5.15)

subject to the inequality constraints:

r i
(

wTxi +b
)

≥ 1−ζi, i = 1...K, ξi ≥ 0 (5.16)

In analogy with what was done for the separable case, the use of the Lagrange multi-
pliers leads do the following optimization problem:
Maximize

W(α) =
K

∑
i=1

αi −
1
2

K

∑
i, j=1

r ir jαiα jxT
i x j (5.17)

subject to:
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K

∑
i=1

αir i = 0 and 0≤ αi ≤C (5.18)

As one can remark, the only difference from the separable case is that now theαi have
an upper bound ofC.

However, even with the introduction of the slack variablesζi , the training set may re-
quire a decision surface more complicated than a simple linear hyperplane. To take into
account non-linear separator, the linear SVM can be generalized by the introduction of the
kernel functions (Fig.5.2) [Boser92]. Indeed, the kernel function allows the mapping of
data set defined over the inputI into a higher dimensional Hilbert spaceH (feature space)
where the patterns are assumed to be linearly separated. Themapping function is denoted
by ϕ : X → H. If a given algorithm can be expressed in the form of dot products in the
input space, its non-linear kernel version only needs the dot products among mapped sam-
ples. Kernel methods compute the similarity between training samples using pairwise inner
products between mapped samples [Halmos82]. The bottleneck for any method based on
kernel function is the proper definition of a kernel functionthat accurately reflects the sim-
ilarity among samples. In the early years of kernel machine learning research, researchers
considered kernels satisfying the conditions of Mercer’s theorem (e.g., [Rousseau03]).

Definition 1 LetX be a closed set ofRN. A symmetric functionK : X ×X → R which for
all g(.) ∈ L2(X ) (square integrable function):

∫
X

∫
X

K (x,y)g(x)g(y)dxdy≥ 0 (5.19)

is said to be a Mercer kernel [Minh06].

In [Hofmann08], authors show that the positive definite kernels are the right class of
kernels to consider.

Definition 2 Let X be a nonempty setRN. A symmetric functionK : X × X → R which
for all xi ∈ X and real numbers ai ∈R:

∑
i j

aia jK (xi ,xj )≥ 0 (5.20)

is said to be a positive definite kernel [Minh06].

The most common used kernel are:

• the linear kernelK (xi ,xj ) = xi
Txj ,

• the polynomial kernelK (xi ,xj ) = (xi
Txj +1)d, d > 0

• the Radial Basis Function (RBF),K (xi ,xj ) = exp(−(xi −xj )
T(xi −xj)/2σ2), σ > 0
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Once a valid kernelK has been chosen, to find the coefficientαi in the separable case
(analogously in the non-separable case) it is sufficient to:
maximize

W(α) =
K

∑
i=1

αi −
1
2

K

∑
i, j=1

r ir jαiα j K (xi ,x j) (5.21)

with αi ≥ 0 and under the constraint:

∑
i

αir i = 0 (5.22)

and the decision function is

f (x) = sign

(

K

∑
i=1

α∗
i r iK (xi ,x j)+b∗

)

(5.23)
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Figure 5.1: Non-linear classifier separation by a hyperplane with slack variablesζi.
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Figure 5.2: Kernel classifier separation by a complex decision surface.
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5.1.2 Support Vector Data Description SVDD

The aim of SVDD classifier method consists in mapping the datainto a high dimensional
feature space. In this new space, an hypersphere enclosing most of the data set belonging
to the class of interest (target class corresponding tounchanged data) and rejecting the
other observations (that will be considered likeoutliers) is defined (Fig.5.3) [Tax04]. This
amounts to draw a minimum volume hypersphere in the kernel feature space that includes
all or most of the target objects which are available in the training set. By analogy with the
SVM problem (which consists in estimating the hyperparameters of the hyperplane (w,b),
the sphere is characterized by its centera and its radiusR> 0. Thus, the problem is to find
a decision functionf that assigns the label 1 (respectively−1) to each objectxi such that
f (xi)≤ R (respectivelyf (xi)> R).
In the following the target objects are enumerated by indices i and j. Thus, minimizing the
volume of the sphere returns to minimizingR2 with the constraints [Tax04]:

(xi −a)T(xi −a)≤ R2 ∀i (5.24)

To allow the possibility of outliers in the training set, thedistance fromxi to the center
a should not be strictly smaller thanR2, but larger distances should be penalized. Therefore
we introduce slack variablesζi ≥ 0 and the minimization problem changes into:

min
R,a,ζi

{

R2+C∑
i

ζi

}

(5.25)

with constraints that almost all objects belonging to the target class are within the
sphere:

(xi −a)T(xi −a)≤ R2+ζi ∀i, ζi ≥ 0 (5.26)

As for the SVM case, the saddle point of the primal LagrangianL(R,a,ζi ,αi ,γi) [Tax04]:

L(R,a,ζi ,αi ,γi) =R2+C∑
i

ξi −∑
i

αi
{

R2+ξi −
(

xi
Txi −2aTxi +aTa

)}

−∑
i

γiξi (5.27)

whereαi ≥ 0 andγi ≥ 0 are the Lagrangian multipliers. Again, one should find an
optimal saddle point(R∗,a∗,ζ∗,α∗,γ∗) by minimizingL with respect to(a,R,ζ) and maxi-
mizing L with respect to non-negative(α,γ). In analogy with what was done for the SVM
case, a solution in dual space is found using standard conditions for an optimum of a con-
strained function:

∂L
∂R

= 0, i.e, ∑
i

α∗
i = 1 (5.28)

∂L
∂a

= 0, i.e, a∗ = ∑
i

α∗
i xi (5.29)

∂L
∂ζi

= 0, i.e, α∗
i + γ∗i =C (5.30)
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From the last equationα∗
i + γ∗i =C and becauseαi ≥ 0, γi ≥ 0, Lagrange multipliersγi

can be removed when we demand that 0≤αi ≤C. The use of the dual variables Lagrangian
leads do the following optimization problem :
Maximize

W(α) = ∑
i

αixi
Txi −∑

i, j

αiα jxT
i x j (5.31)

subject to:

0≤ αi ≤C (5.32)

Eq.5.29shows that the center of the sphere is a linear combination ofthe objects. Only
the support vectorsxs are needed in the description.R2 is the distance from the center of
the spherea to (any of the support vectors on) the boundary. Support vectors which fall
outside the description(αi =C) are excluded. Therefore:

R2 = xs
Txs−2∑

i

αixs
Txi +∑

i, j

αiα jxi
Txj (5.33)

To test an objectz, the distance to the center of the sphere has to be calculated. A test
objectzbelongs to the target class when this distance is smaller or equal than the radiusR:

f (z) =

(

zTz−2∑
i

α∗
i zTxi +∑

i, j

α∗
i α∗

j xi
Txj

)

≤ R2 (5.34)

When negative examples (objects which should be rejected) are available, they can be
incorporated in the training to improve the description. Incontrast with the training (target)
examples which should be within the sphere, the negative examples should be outside it.
This data description now differs from the normal Support Vector Classifier in the fact that
the SVDD always obtains a closed boundary around one of the classes (the target class).
In the following the target objects are enumerated by indices i, j and the negative examples
by l ,m. Again we allow for errors in both the target and the outlier set and introduce slack
variablesζi ≥ 0 andζl ≥ 0 and the minimization problem changes into [Tax04]:

min
R,a,ζi ,ζl

{

R2+C1∑
i

ζi +C2∑
l

ζl

}

(5.35)

and the constraints

(xi −a)T(xi −a)≤R2+ζi, (xl −a)T(xl −a)≥R2−ζl , ζi ≥ 0, ζl ≥ 0, ∀i, l (5.36)

whereC1 andC2 are two regularization parameters. The saddle point of the primal
LagrangianL(R,a,ζi ,ζl ,αi ,αl ,γi ,γl ):
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L(R,a,ζi ,ζl ,αi ,αl ,γi ,γl ) =R2+C1∑
i

ξi +C2∑
l

ξl −∑
i

γiξi −∑
l

γl ξl

−∑
i

αi
{

R2+ξi −
(

xT
i xi −2aTxi +aTa

)}

−∑
l

αl
{(

xT
l xl −2aTxl +aTa

)

−R2+ξl
}

(5.37)

whereαi ≥ 0, αl ≥ 0,γi ≥ 0 andγl ≥ 0 are the Lagrangian multipliers. Setting the
partial derivatives of L with respect toR, a, ξi andξl to zero gives the constraints:

∑
i

α∗
i −∑

l

α∗
l = 1 (5.38)

a∗ = ∑
i

α∗
i xi −∑

l

α∗
l xl (5.39)

0≤ αi ≤C1, 0≤ αl ≤C2, ∀i, l (5.40)

The use of the Lagrange multipliers leads do the following optimization problem [Tax04]:
Maximize

W(αi ,αl ) =∑
i

αixi
Txi −∑

l

αl xl
Txl −∑

i, j
αiα jxT

i x j

−∑
l ,m

αl αmxT
l xm+2∑

l , j

α jαl xT
j xl (5.41)

subject to:

0≤ αi ≤C1, 0≤ αl ≤C2 ∀i, l (5.42)

If we define new variablesα′
n = rnαn. Note that the following the indexn andq enu-

merate both target and outlier objects.
The SVDD with negative examples is identical to the normal SVDD. The constraints

given in (Eq.5.38) and (Eq.5.39) change into∑n (α
′
n)

∗
= 1 anda∗ = ∑n(α

′
n)

∗
xn and again

the testing function Eq.5.34can be used.

Once a valid kernelK has been chosen, to find the coefficientαi in the positive case
(analogously in the positive and negative case) it is sufficient to:

maximize
W(α) = ∑

i

αiK (xi ,xi)−∑
i, j

αiα jK (xi ,x j) (5.43)

subject to:

0≤ αi ≤C (5.44)
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Figure 5.3: Linear classifier separation by an hypersphere.

The new testing function is expressed as:

f (z) =

(

K (z,z)−2∑
i

α∗
i K (z,xi)+∑

i, j
α∗

i α∗
jK (xi ,xj )

)

≤ R2 (5.45)

For the case with negative examples, the testing function isexpressed as:

f (z) =

(

K (z,z)−2∑
n
(α

′
n)

∗
K (z,xn)+∑

n,q
(α

′
n)

∗
(α

′
q)

∗
K (xn,xq)

)

≤ R2 (5.46)

5.2 Support Vector Data Description including Dependency Hy-
pothesis

The change-detection/classification problem is tackled inan unsupervised way using the
kernel-based approach. However, the main bottleneck of kernel methods is the choice of
the kernel function which depends strongly of the application [Scholkopf00]. Although
the basic kernel functions are more or less successfully applied for change-detection, they
do not exploit additional constraints often available, such as the dependency and the dis-
tribution of different features. We particularly show thatthe change-detection should be
more robust, more accurate and more efficient if such information is integrated and cor-
rectly modeled within the change-detection method. In order to take into account these
characteristics in our change-detection scheme, we propose the new kernel function which
combines the old kernel functions with a new information about features distribution and
dependency. The challenge is then to find the appropriate wayto handle this dependency.
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To this end, we have opted for the copula theory which has proved its effectiveness to han-
dle dependency [Joe97]. Several studies show the effectiveness of the SVDD methodto
detect changes [Yang04, Camps-Valls08]. Indeed, in the case with few available labeled
information, purely supervised approaches like SVMs yieldpoor solutions since there is
no information on the change class. Contrarily, SVDD offersvery good results since the
method tries to model the ’unchange’ class accurately rather than building a separating
hyperplane ’change’/’unchange’ [Camps-Valls06]. For this reason we opt for the SVDD
method. Moreover, we show that the use of the new kernel function increases the per-
formance of the change-detection compared to the basic kernel functions. The proposed
method is denoted SV3DH (SV3DH is the acronym for Support Vector Data Description
including Dependency Hypothesis).

5.2.1 Copula kernel function

The proposed kernel function

We remind that we seek to blindly classify the data into two classes: class of tar-
gets (i.e.; unchange) and the outliers using the SVDD method. In this part we define the
proposed kernel function. Our aim is then to properly model and integrate both the de-
pendency and the distribution of different features in the kernel function to reach a more
accurate change-detection result. The new kernel functionshould combine the old kernel
functions (in our case the RBF function which offers some freedom degree thanks to the
hyperparameterσ) with a new information about correlated features distribution. To this
end, we propose a simple, yet powerful, kernel function based on the copula theory.

Several studies show the effectiveness of the Gaussian copula cG to handle dependency
[Joe97] and we adopt this one:∀ y = (y1, · · · ,yL) ∈ IR L,

cG(y) = |Γ|− 1
2 exp

[

− ỹT(Γ−1− I)ỹ
2

]

(5.47)

whereỹ = (Φ−1(y1), · · · ,Φ−1(yL))
T with Φ(.) the standard Gaussian cumulative dis-

tribution, Γ is the inter-data correlation matrix andI theL×L identity matrix.
The proposed kernel function is given by:

K (xi ,xj ) =CG(xi ,xj ). exp(−(xi − xj)
T(xi − xj)/2σ2) σ > 0 (5.48)

whereCG(xi ,xj ) = ( 1
N ∑N

k=1cG(xi(k),x j(k)) andN is the length of the vectorxi andxj . Simply
expressed, the more the couple(xi ,xj ) is dependent the moreCG(xi ,xj ) is close to 1. The
hyperparameters of the copula function are estimated with the Maximum Likelihood (ML)
procedure. Since the new kernel is the sum and the product of positive definite kernels, it
is a positive definite kernel as well [Hofmann08].
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5.2.2 The SV3DH algorithm

The proposed scheme is based on two steps: 1) an initialization step 2) the SV3DH core
algorithm.

Fuzzy K-means initialization

The first step of the proposed change-detection scheme is to identify two classes: the class
of targets and the class of outliers which are required to initialize the SVDD classifier.
In order to address the gradual transition between both classes, we apply the fuzzy K-
means method [Duda01] to extract classes. To estimate the membership function defining
the membership degree of an element to the class of targets, we used an S-membership
function.

Let µ be the estimated membership of an object to the target class.At the end of this
K-means-based initialization step, we get two hard classesand two fuzzy classes: 1) Hard
class of target population:µ= 1 denotedCht, 2) Fuzzy class of target population:µ> 0.5
denotedCf t , 3) Fuzzy class of outlier population: 0< µ≤ 0.5 denotedCf o and 4) Hard
class of outlier population:µ= 0 denotedCho. This result will be used for initializing the
SVDD algorithm.

The SV3DH core algorithm

The second step aims at describing the target class by exploiting the information present in
the target and outlier sets defined in the initialization step (we use the SVDD with positive
and negative patterns). For this, we replaced the kernel function in Eq. 5.46by the pro-
posed one. The leave-one-out cross-validation estimator was used to estimate our model
hyperparameters [Cawley03]. This algorithm, often cited as being highly attractive for the
purposes of model selection, provides an almost unbiased estimate.

5.3 Experiments

In this section, we present the experimental results obtained with the proposed method on
synthetic on real dataset which have been introduced in [Ratsch01] as a benchmark collec-
tion. The advantage of this collection is that the ground truth is available. Unfortunately,
since no ground truth is available for 2D HSQC spectra, only acomparison between results
obtained with the proposed method on 2D HSQC spectra and results obtained on 1D spec-
tra (both 1D and 2D spectra are obtained from the same biopsy)is presented in chapter6.

Let us start with artificial toys problem to demonstrate the effects of different algorithm
initialization strategies. For this, we have generated three artificial toys. Samples(x,y) ∈
R

10×±1 are drown as follows: first we fix a labely with equal probability, then:

1. Database 1: we setxi = gi + zi for i ∈ 1, ...,5 andxi = zi , where thezi ∼ N (0,1)
are standard normal distribution andgi ∼ G (1+yi/4,1) are the Gamma distribution
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where its expression is given by Eq.5.49. For bothzi and gi , the dependency of
samples is 0.5.

G (gi ,α,β) = k(α−1) βα

Γ(α)
exp(−βgi ) gi > 0 (5.49)

2. Database 2: we setxi = gi +zi for i ∈ 1, ...,5 andxi = zi , where thezi ∼ N (0,1) are
standard normally distribution andgi ∼ GG(α,σ,µ) (σ = 1,µ= yi) are the General-
ized Gaussian distribution where its expression is given byEq.5.50. For bothzi and
gi , the dependency of samples is 0.5.

GG(gi ;α,σ,µ) =
η(α)α

[2Γ(1/α)]
exp[−(η(α)|gi −µ|)α] (5.50)

whereη(α) =
[

Γ(3/α)
σ2Γ(1/α)

] 1
2
, Γ(α) =

∫ ∞
0 tα−1exp−t dt andµ, σ, α the mean, standard

deviation and shape parameter.

3. Database 3: we setxi = yi/2+ zi for i ∈ 1, ...,5 andxi = zi , where thezi ∼ N (0,1)
are standard normally distribution. Forzi , the dependency of samples is 0.5.

Thus, all coordinates are noisy, and only the first five coordinates carry task relevant infor-
mation. We draw 5000 examples which were split into 50 partitions. In order to emphasize
the benefit of the proposed initialization algorithm and particularly the use of the fuzzy
k-means, three different methods were used to initialize the SV3DH: the proposed method,
the k-means method and the Maximum likelihood method. The results of validation on
synthetic databases are summarized in Table.5.1. As one can see, our method performed
the best. This means that our initialization algorithm is well adapted to the proposed change
detection method.

initialization database1 database 2 database 3
fuzzy k-means 4.49± 0.45 4.52± 0.68 3.52± 0.48
k-means 5.39± 0.88 5.98± 0.82 4.99± 0.57
ML 5.12± 0.82 5.69± 0.71 4.74± 0.51

Table 5.1: SV3DH averaged classification error in % and the standard deviation on syn-
thetic data sets obtained with different initialization algorithms.

Moreover, and in order to evaluate the performance of the proposed algorithm on real
datasets, we considered two multitemporal remote sensing image data sets acquired from
a geographical area of Alaska and Philadelphia which are available from [lsiml]. The first
database (Alaska image) contains a high resolution (1305 x 1520 pixels) set of multispec-
tral images collected on a geographical area of Alaska. These images were acquired by
Landsat-5 Thematic Mapper (TM) on July 22, 1985 and July 13, 2005, respectively. An
area with 1024 x 1024 pixels is selected for experiments. TheLandsat-5 TM provides op-
tical imageries using seven spectral bands, Bands 1-7. The instrument’s pixel resolution is
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30 m. The ground truth of the change detection maps is available in [lsiml].

The second database (Philadelphia image) contains a high resolution (2000 x 2000 pix-
els) set of multispectral images collected on a geographical area of Philadelphia. These im-
ages were acquired by Landsat-5 Thematic Mapper (TM) on June28, 1988 and a Landsat-7
Enhanced Thematic Mapper (ETM+) on September 23, 1999, respectively. As the Landsat-
5, the Landsat-7 provides optical imageries using seven spectral bands. An area with 1024
x 1024 pixels is selected from Philadelphia image for experiments. Pixel size for all bands
is 28.5 m. This includes the Landsat 7 ETM+ thermal band whichhas been resampled from
its 57 m resolution and the Landsat 5 TM thermal band which hasbeen resampled from its
114 m resolution. The ground truth of the change detection maps is available in [lsiml].

For multitemporal change detection, we consider the multispectral difference image
Iδ = I2− I1 on 7 spectral bands. Therefore the high dimensional information present in
the multispectral difference image is considered to improve the change detection accuracy.
Fig. 5.4 (resp Fig.5.5) displays the feature distribution of the unchanged class (gray) and
changed class (dark) pixels in the 2-dimensionalIδ Alaska image (resp Philadelphia image)
according to the available ground truth map. As one can seen from Fig. 5.5, the change
detection problem on Philadelphia image is quite more complex than that on Alaska image,
as the target and outlier classes are significantly overlapped.

In order to perform the change detection evaluation, we use the False AlarmPFA, the
Miss DetectionPMD and the Total ErrorPTEmeasurements computed in percentage and
defined by:

PFA= FA
NF

×100%; PMD= MD
NM

×100%; PTE= MD+FA
NM+NF

×100%

whereFA stands for the number of unchanged pixels that were incorrectly determined
as changed ones,NF the total number of unchanged pixels,MD the number of changed
pixels that were mistakenly detected as unchanged ones,NM the total number of changed
pixels.

Tab.5.2presents the false detection, missed detection and total errors on both databases
resulting from:

• The proposed SV3DH method initialized with the fuzzy K-means algorithm,

• The SVM method with the proposed copula kernel function (SVMwith Dependance
Handling SVMDH) initialized with the fuzzy K-means algorithm,

• The proposed method trained using only positive examples (SV3DH+) initialized
with the fuzzy K-means algorithm,

• The proposed method initialized with the k-means algorithm(hard-SV3DH),

• The SVDD with the RBF kernel function trained using positiveand negative exam-
ples (SVDD) and initialized with the fuzzy K-means algorithm,
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Alaska Image False detection Missed detection Total Errors

SV3DH 0.71 % 5.01 % 1.09 %
SVMDH 0.70% 4.96% 1.07%
SV3DH+ 0.78 % 5.32 % 1.18 %

Hard-SV3DH 0.84 % 5.99 % 1.29 %
SVDD 1.87 % 6.81 % 2.01 %

SVDD+ 1.89 % 7.03 % 2.11 %
SVM 1.04 % 6.31 % 1.75 %

Philadelphia Image False detection Missed detection Total Errors

SV3DH 3.82% 14.54% 8.34%
SVMDH 4.27 % 16.07 % 9.37 %
SV3DH+ 4.41 % 16.84 % 9.79 %

Hard-SV3DH 4.87 % 16.93 % 10.35 %
SVDD 5.09 % 17.79 % 11.09 %

SVDD+ 6.17 % 18.38 % 12.21 %
SVM 5.31 % 17.91 % 11.39 %

Table 5.2: False detection, missed detection and total errors resulting from: the proposed
method SV3DH, the SVM method with the proposed copula kernelfunction SVMDH,
the proposed method trained using only positive examples SV3DH+, the proposed method
initialized with the k-means algorithm, the SVDD trained using positive and negative ex-
amples (SVDD), the SVDD trained using only positive examples (SVDD+) and the SVM
method.

• The SVDD with the RBF kernel function trained using only positive examples (SVDD+)
and initialized with the fuzzy K-means algorithm,

• The SVM with the RBF kernel function methods initialized with the fuzzy K-means
algorithm,.

As one can remark, the SV3DH and the SVMDH perform similar results. That means that
the proposed kernel function improves the features discrimination for both standard SVDD
and SVM methods. Moreover, the fuzzy k-means initialization allows us to obtain a better
results than a k-means initialization particularly in the high uncertainty situation (Philadel-
phia image). Indeed, we obtained 8.34 % of total error with the fuzzy initialization while
the k-means initialization lead to 10.35 % of total errors.

In order to emphasize the benefit of the Gaussian copula for features dependency
handling, we have compared the feature fit goodness of the proposed copula with five
other copula functions: the t-student copula [Demarta05], the Farlie-Gumbel-Morgenstern
(FGM) copula [Cossette08], the Gumbel copula, the Frank copula and finally the Clayton
copula functions [Rodriguez07]. To this end, we used the copula goodness-of-fit measure-
ment approach proposed in [Genest08]. This approach consists in measuring the discrete
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Figure 5.4: Distribution of the unchanged class (gray) and changed class (dark) pixels in
the 2-dimensionalIδ Alaska image according to the available ground truth.

Figure 5.5: Distribution of the unchanged class (gray) and changed class (dark) pixels in
the 2-dimensionalIδ Philadelphia image according to the available ground truth.
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copula Alaska image Philadelphia image
Gaussian 5.1210−3 4.0210−3

t-student 5.48 10−3 4.19 10−3

FGM 5.91 10−3 4.61 10−3

Clayton 6.85 10−3 5.17 10−3

Frank 5.57 10−3 4.28 10−3

Gumbel 6.11 10−3 4.97 10−3

Table 5.3: TheL2 norm for different copula types with the empirical copula.

L2 norm between a set of copulas and the empirical copula and then select the one with the
minimum difference. We have applied this approach and the real databases. Results are
presented in Tab.5.3. As on can remark, Gaussian copula seems to be the one which better
approximates the empirical copula.

Conclusion

In this chapter, the third step step in the indexing scheme istackled. Indeed, the SV3DH
method for unsupervised change-detection/classificationbased on SVDD has been pro-
posed. This method could be used either for assigning a new query to the appropriate
profile defined in the off-line phase (classification) or for detecting changes between two
medical signal groups (change detection). We particularlyfocus on the formulation of
change problem as a minimum enclosing ball problem with unchanged samples as target
objects. The use of the dependency measurement for the first time to our knowledge in
the SVDD framework increases the robustness of the proposedchange-detection scheme
with comparison to the classical SVM and SVDD methods. Of course, any performance
gain depends on the quality of the prior samples distribution, which amounts to the quality
of chosen distributions and consequently, the copula theory was used. Indeed, it provides
tools to model samples dependency even if their distribution does not follow a gaussian
law (HSQC spectrum peaks and fMRI object surface). Experimental results clearly indi-
cate the benefit of the proposed method. Different applications of the proposed method on
real HSQC spectra are presented in the next chapter.
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Introduction

This chapter aims at experimentally validating the proposed treatment framework on real
HSQC spectra and fMRI images. All comments, suggestions andconclusions presented in
this chapter are the result of analysis conducted in conjunction with experts in the field of
NMR: Pr. Karim Elbayed fromInstitut de Chimie, University of strasbourgand Pr Izzie
Jacques Namer fromDepartment of Biophysics and Nuclear Medicine, UniversityHos-
pitals of Strasbourgand in the field of fMRI images: Dr Jacques Foucher fromClinique
psychiatrique, University Hospitals of Strasbourg.

In section6.1, we describe first the HSQC database used to perform the experiments.
The second part details the complete scheme for HSQC spectrum processing. Finally, the
experimental validation of the proposed approaches is presented and discussed.

After describing the real data involved in the fMRI validation and the way they have
been reconstructed from the raw data, we details in the second part of section6.2the com-
plete scheme for fMRI image analysis. Finally, the experimental results obtained with the
proposed approaches is presented.

Finally, some conclusions are drawn based on the validationresults in section6.3.



112 Chapter 6. Results and discussion

6.1 HSQC spectrum Experiments

6.1.1 HSQC spectra data sets

Our data base contains two datasets: dataset1 and dataset2.The first one is dedicated to
the Multiple Sclerosis (MS) pathology of central nerve system (c.f, Fig.6.1). Note that we
have used the Experimental Autoimmune Encephalomyelitis (EAE) as a model of multiple
sclerosis pathology. Dataset2 is dedicated to the colon cancer pathology. A detailed de-
scription of the database is given in Tab.6.1.

The 2D HSQC spectra were recorded on a Bruker Avance III 500 spectrometer operat-
ing at a proton frequency of 500.13 MHz. This instrument is installed at the Hautepierre
University Hospital in Strasbourg and is dedicated to the analysis of biopsies by HR-MAS.
It is operated by qualified scientific and medical personnel in the context of the CARMeN
project. Indeed, the CARMeN project (Cancer RMN) is a consortium that gathers Stras-
bourg University Hospitals, Strasbourg University, CNRS,INSERM and Bruker BioSpin.
It was labeled on December 20th 2006 by the Pole of Competitiveness «Therapeutic In-
novations» of the Alsace region. This project aimed at creating a metabolic database in
cancer research using the metabolic phenotype of tumors to identify high risk cancers and
to develop personalized treatments.

The usedcorpuscontains 45 referenced metabolites given by the physicians. Tab.6.2
displays different metabolites present in thecorpusas well as the chemical shifts of their
peaks in ppm. Note that for privacy concerns, the decimal digits of the chemical shift of
hydrogen1H and the carbon13C are not provided.

Figure 6.1: Central nerve system of the rat.
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dataset1

biopsy spectrum number

health Optical Nerve (ON) 10
EAE Optical Nerve (ON) 10
healthy Cervical Spinal Cord (CSC) 10
EAE Cervical Spinal Cord (CSC) 10
healthy Thoracic Spinal Cord (TSC) 10
EAE Thoracic Spinal Cord (TSC) 10
healthy Lumber Spinal Cord (LSC) 10
EAE Lumber Spinal Cord (LSC) 10

datatset2

biopsy spectrum number

healthy colon 28
cancerous colon 28

Table 6.1: HSQC database description

Metabolite Abbreviation 13C 1H Metabolite Abbreviation 13C 1H

Succinate Succinate 36 2 Taurine Tau 50 3

Theronine Thr 63 3 Taurine Tau 38 3

Theronine Thr 68 4 Thrimethylamine Thrimethylamine 47 2

Theronine Thr 22 1 Tyrosine Tyr 133 7

Uracil Uracil 103 5 Tyrosine Tyr 118 6

Uracil Uracil 146 7 Valine Val 31 2

Alpha-Glucose alpha-Glc 94 5 Valine Val 20 1

Alpha-Glucose alpha-Glc 75 3 Valine Val 19 0.9

Alpha-Glucose alpha-Glc 72 3 Beta-Glucose Beta-Glc 98 4

Alpha-Glucose alpha-Glc 73 3 Beta-Glucose Beta-Glc 72 3

Alpha-Glucose alpha-Glc 63 3 Beta-Glucose Beta-Glc 78 3

Myo-Inositole mI 73 3 Beta-Glucose Beta-Glc 63 3

Myo-Inositole mI 74 4 GABA GABA 36 2

Myo-Inositole mI 75 3 GABA GABA 26 1

Myo-Inositole mI 77 3 Adrenaline Adrenaline 35 2

Serine Ser 59 3 Adrenaline Adrenaline 118 6

Serine Ser 62 3 Adrenaline Adrenaline 121 6

Proline Pro 26 1 Adrenaline Adrenaline 116 6
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Metabolite Abbreviation 13C 1H Metabolite Abbreviation 13C 1H

Acetate Ace 26 1 Alanine Ala 53 3

Asparagine Asn 53 3 Alanine Ala 18 1

Asparagine Asn 37 2 Arginine Arg 30 1

Asparagine Asn 37 2 Arginine Arg 43 3

Aspartate Asp 54 3 Arginine Arg 26 1

Aspartate Asp 39 2 Ascrobate Ascrobate 81 4

Aspartate Asp 39 2 Betaine Betaine 56 3

Creatine Cr 56 3 Choline Cho 58 4

Creatine Cr 39 3 Choline Cho 96 3

Cysteine Cys 27 3 Ethanol ETHO 19 1

Cysteine Cys 27 3 Ethanol ETHO 60 3

Ethanolamine Ethanolamine 60 3 Lipide (a) FA (a) 25 1

Ethanolamine Ethanolamine 32 2 Lipide (a) FA (a) 34 1

Glucose 6-phosphate G6P 73 3 Lipide (b) FA (b) 130 5

Glucose 6-phosphate G6P 71 3 Lipide (b) FA (b) 132 5

Glucose 6-phosphate G6P 65 3 Lipide (b) FA (b) 27 2

Phosphatidylcholine GPCho 37 3 Lipide (b) FA (b) 28 2

Phosphatidylcholine GPCho 62 4 Lipide (c) FA (c) 27 1

Phosphatidylcholine GPCho 68 3 Lipide (c) FA (c) 36 2

Glutathione GSH 28 2 Glutamine Gln 33 2

Glutathione GSH 58 4 Glutamine Gln 29 2

Glutathione GSH 56 3 Glutamic acid Glu 36 2

Glutathione GSH 46 3 Glycine Gly 44 3

Glutathione GSH 28 2 Glycerol Glyc 65 3

Glutathione GSH 33 2 Glycerol Glyc 65 3

Hypothorine Hypothorine 36 3 Glycerol Glyc 74 3

Hypothorine Hypothorine 13 0.9 Isoleucine Ile 13 0.9

Isobutyrate Isobutyrate 24 0.9 Isoleucine Ile 17 1

Isovalerate Isovalerate 24 0.9 Lactate Lac 71 4

Isovalerate Isovalerate 71 4 Lactate Lac 22.7 1.33

Leucine Leu 55 3 Lysine Lys 32 1

Leucine Leu 42 1 Lysine Lys 29 1

Leucine Leu 24 0.9 Lysine Lys 41 3

Leucine Leu 23 0.9 Lysine Lys 24 1

Methionine Meth 16 2 AcetylGlutamate AcetylGlutamate 57 4

Methionine Meth 31 2 AcetylGlutamate AcetylGlutamate 24 2

N-Acetyl-Aspartate NAA 24 2 Phosphocholine Pcho 56 3

N-Acetyl-Aspartate NAA 55 4 Phosphocholine Pcho 60 4

Phenylalanine Phe 131 7 Phosphocholine Pcho 68 3

Phenylalanine Phe 132 7 Proline Pro 63 4

Phenylalanine Phe 58 3 Proline Pro 31 2

Phenylalanine Phe 39 3 Proline Pro 31 2

Scyllo-Inositol Scyllo-Inositol 76 3 Proline Pro 48 3

Table 6.2: Different metabolites present in the usedcorpusas well as the hydrogen chemi-
cal shifts1H and the carbon chemical shift13C of their peaks in ppm.
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Before applying the treatment chain, a manual calibration of spectra using a peak refer-
ence (the lactate which is presented in bold in Tab.6.2) with well known location (22.7ppm
for carbon13C axis and 1.33ppm for proton1H axis) is performed. Then all the HSQC
spectrum intensities are divided by their biopsies masses.

6.1.2 Treatment framework

We recall that our indexing scheme is composed of an off-linestep which consists in estab-
lishing the profile of each diseases and then an on-line step which aims at assigning a new
individual/group to a pathologic/healthy profile.

In the case of the HSQC spectrum analysis, the considered objects are the peaks within
the spectrum. A summary of the treatment framework is presented in Fig.6.2.
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Figure 6.2: Overview diagram of the proposed classificationframework for HSQC 2D
NMR spectra.

The first step of the indexing framework consists in detecting and aligning different
peaks within spectra (an overview of the proposed method is presented in Fig.6.3). This
step requires up to 3h30 of computation time with Intel 2.66 GHz and a combination of C
and matlab codes. Once this step achieved, we turn to the metabolite similarity measure-
ment step. This step consists in identifying different metabolites in the spectra using the
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Figure 6.3: Overview diagram of the peak detection and alignment chain.

corpus(Fig.6.4). This step requires up to 15mn of computation time with Intel 2.66 GHz
and matlab codes.
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Figure 6.4: Overview diagram of the metabolite identification chain.

Once the metabolite is identified, we address the metaboliteclassification/change de-
tection step. This step aims at comparing a new individual/population of spectra by iden-
tifying changed metabolites from unchanged ones. In order to achieve a more accurate
metabolite change detection results, we introduce morea priori knowledge we have on the
spectra into the change detection scheme. As a matter of fact, we assume that the residual
spectrum image (the difference between the observed and theparameterized spectrum) is
the same for all observations. Indeed, as the acquisition system is isolated from the outside
environment, the characteristics of acquisition noise should be the same. Thus, any differ-
ence between two residual images is due either to errors in estimating the hyperparameters
of the spectrum, to a deterioration of tissues or to a modification in biopsy features (e.g;
the pH). To achieve a better change detection result, all these disturbances must be taken
into account. To this end, we propose a method to compensate the estimation error within
the change detection scheme (Alg.2). Finally, the overview diagram of the metabolite clas-
sification/change detection chain is described in Fig.6.5. Note that, this step requires up to
20mn of computation time with Intel 2.66 GHz and matlab codes.
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Algorithm 2 Error compensation estimation
Input: a reference spectrumYre f , another spectrumY as well as their parameterized
(reconstructed) formsYrec, re f andYrec (Eq.3.1).
1- For each two assigned peaksxre f (i, j) andx(i, j) estimated fromYre f andY (Eq.3.1) :

- Extract the local spectrum areas containingYlocal, re f andYlocal: Yrec,re f
local, re f andYrec

local
respectively.

- Calculate the covariance matrixΓre f
local (respΓlocal) of

(

Ylocal,re f −Yrec,re f
local, re f

)

(resp
(

Ylocal −Yrec
local

)

).

- Perform the Principal Component Analysis PCA algorithm onbothΓre f
local andΓlocal

- Let λre f (respλ) be the largest eigenvalue of the PCA decomposition performed on
Γre f

local (respΓlocal): the estimated peak amplitudex(i, j) is normalized as follows:

x(i, j) =
λ

λre f
x(i, j) (6.1)
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Figure 6.5: Overview diagram of the metabolite classification/change detection chain.
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In the practice, the proposed metabolite classification/change detection (SV3DH) algo-
rithm can be used for three different uses:

1. Metabolite change detection: given two spectrum populations, we aim at detecting
the changed metabolites from unchanged ones. In this case, afeature vectorxMi is
associated to each metaboliteMi. The vectorxMi consists of the peak amplitudes
of the metabolite (Eq.3.1), the peak shape hyperparameters (Eq.3.2) and the peak
chemical shifts (Eq.3.14). As one can remark, each metabolite is separately treated
from the other ones. The first step consists in selecting a spectrum population and
then estimating the hypersphere hyperparameters(aMi ,RMi ) that model the profile of
each metaboliteMi using the SV3DH method. Then, the decision functionf (Eq.
5.46) is applied to each spectrum belonging to the second population. In order to
quantify the metabolite change degree denotedµMi , we propose the use of an S-
membership functionf1 (Eq.3.3). The expression ofµMi is given by:

µMi = f1( f (xMi )/RMi ) (6.2)

where(aMi ,RMi ) are the hypershpere hyperparameters. Therefore, the moreµMi is
close to 1 the more the metaboliteMi has changed. Thus the metabolites can be
ranked according to their change degrees allowing the physicians to select the rele-
vant changed metabolites by a simple threshold and then to control the results. In
order to facilitate the threshold setting, we have classified the metabolites according
to the change degree into two classes: "weak change" and "high change". To this
end, we used a Maximum Likelihood (ML) classifier with respect to the statistical
distribution law of metabolite change degrees. For example, the estimated threshold
is about 0.4 for dataset1 et 0.35 for dataset2. Note thatµMi is assumed to follow a
Generalized Gaussian distribution. Moreover, as we already remarked,µMi mainly
depends on the hypersphere radiusRMi (the distance from the center of the sphere
aMi to any of the support vectors on the boundary and the feature vectorxMi . In order
to quantify our uncertainty on the metabolite change degreeestimation, we assign to
eachµMi a confidence margin which is equal to:

εMi = f1((eMi )/RMi ) (6.3)

whereeMi consists of the difference between the estimated metabolite peak ampli-
tudes (Eq.3.1) and the normalized peak amplitude (Eq.6.1). Therefore, the more the
difference is great the more the metabolite peaks amplitudeestimation is unreliable
and the moreεMi is great. In the practice, thef1 hyperparameters(a1,b1,c1) are set
as follows:

• a1 = 1,

• b1 = median({µMi}i=1...N/µMi > 1), whereN is the number of metabolites
within the spectra andmedian(.) is the median function,

• c1 = max({µMi}i=1...N/µMi > 1).
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Once all metabolite change degree for each spectrum belonging to the second popu-
lation are estimated, ap-valueis associated with each metabolite allowing to reject
the null hypothesisH0 (changed metabolite). Hence, computing the significance of
the metabolite change over all the second population spectra amounts to compare
p(µMi > 0.1/H0) with α (generally set to 10−3). Thus, if p(µMi > 0.1/H0) < α the
null hypothesisH0 cannot be rejected.

2. Spectrum discrimination: given a set of spectra, we aim at discriminating two
groups. In this case, a feature vectorxXs is associated to each spectrumXs. The
vectorxXs consists of the peak amplitudes of the spectra (Eq.3.1). As one can remark,
all metabolites are conjointly treated. Note that in spectrum discrimination case,
the SV3DH method allows us to directly obtain the discrimination results and no
statistical test is required.

3. Spectrum classification: given several spectrum populationsPkk>1, we aim at clas-
sifying a new spectrumX. As the spectrum discrimination case, the feature vector
contains all the spectrum peaks. The first step consists in estimating the hypershpere
hyperparameters(aPk,RPk) modeling the profile of each populationPk (or theclass
profile) using the SV3DH method. Then, the decision function is applied to the new
spectrumX which will be assigned to the population with the lowest( f (xX)/RPk)

value.

6.1.3 Results on real spectra

The results obtained by the proposed methods on real HSQC spectra are presented in two
parts. In the first one, we focus on some case studies in order to emphasize the benefit of
the proposed schemes and particularly the use of the deconvolution model for peaks detec-
tion and the use of fuzzy set theory to deal with the ambiguitywhich is in the heart of the
metabolite identification task. In the second part, some metabolite change detection results
and a comparison with results obtained with 1D spectra are presented.

Metabolite identification results

The first step in the HSQC spectrum analysis is the peak detection. This task is very
important since all the rest of the processing chain dependson it. Indeed, a poor peak
detection can cause the fail of the framework. For this reason we have paid an important
attention to this task. We recall that the proposed peak detection algorithm relies on the
deconvolution model to achieve a better fit of the HSQC spectrum (Eq.3.1) which allows
us to overcome the problem of peak overlap. For example, Fig.6.6.(a) shows two peaks
that can be easily detected without a deconvolution step. However, in some cases (e.g
Fig.6.6.(b)) two peaks could be overlapped and then a manual peak extraction seems to be
a difficult task. Thus, the peak deconvolution allows us to overcome such problem.

However, the problem of peak overlap is unfortunately not the single one to be ad-
dressed to automatic the peak analysis process. In fact, thehigh complexity of this type of
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(a)

(b)

Figure 6.6: Examples of (a) two separated peaks, (b) two overlapped peaks. In both cases,
the proposed evidential peak detection method has correctly identified peaks.
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Figure 6.7: A real HSQC spectrum

spectra brought by the noise and the artifacts make the detection task more delicate and dif-
ficult [Becker00]. Indeed, due to experimental conditions, correlated vertical lines appear
sometimes in the observed spectrum [Becker00]. In order to overcome this problem, we
proposed the use of the multivariate Gaussian distributionto model the noise correlation.
We recall that the synthetic validation of the proposed approach has shown its robustness
to the high level of noise (Tab.4.1). Unfortunately, the validation task on real spectra is
not trivial since no ground/absolute truth is available. A manual validation by NMR ex-
perts is then required in order to assess the performances ofthe proposed scheme on real
spectra. Note that the only available ground truth is the biological nature of the biopsies (a
metabolite exists or does not exist) and hence a peak presence or absence does not have a
biological sense. Therefore, our NMR experts have validated the metabolite identification
results and thus explicitly the peak detection and alignment results. The validation results
show that most metabolites belonging to thecorpusare properly detected and identified.
For example, only 3/45 metabolites were wrongly identified in the dataset2.

Metabolite change detection results
We are now faced with the problem of metabolites change detection on real HSQC HR-
MAS 2D spectra. We recall that our first objective is the determination of discriminant
parameters between two states of the same biological system( e.g., two evolution stages
of the same type of tumor). Indeed, the identification of metabolic fingerprint associated
with specific biological states could reveal metabolic differences related to different con-
sidered groups of spectra (e.g, healthy and pathological groups of spectra). In a second
step, these metabolic fingerprints (discriminants or biomarkers) should allow us to under-
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stand the metabolic processes associated with each treatedgroup of spectra and then to
establish the group profiles.

Metabolite change detection results on dataset1

In the following, we detail the change detection results on the dataset1 (EAE disease).
Since no ground truth is available, we will compare our results with those obtained with
the 1D spectrum experiments to study the result coherence (concordance). To this end, we
distinguish three different experiments: the 1D experiment and the 2D HSQC experiment
on the same sample. In the last one, we repeat the 1D experiment on the sample taken from
the spectrometer after the 2D experiment. Indeed, due to thehigh time sample spinning
(rotation) during the 2D HSQC experiment, the concentrations of some metabolites partic-
ularly the Ace, Ala, Asp, Cr, Cho, GABA, Glu Gly Lac, mI, NAA, Pcho and Tau may be
changed [Detour11].

To facilitate the result interpretations, we used a table for each configurations of EAE/Healty
spectrum group comparisons (c.f, Tab6.1). In this table, we distinguish four typefaces:

1. Normal font (e.g, Asp). In this case, the metabolite was detected as a changed
metabolite only with the 2D experiment.

2. Italic font (e.g, Asp). In this case, the metabolite was detected as a changed metabo-
lite with the 2D experiment and the first 1D experiment.

3. Bold font (e.g, Asp). In this case, the metabolite was detected as a changed metabo-
lite with the 2D experiment and the second 1D experiment.

4. Italic bold font (e.g, Asp). In this case, the metabolite was detected as a changed
metabolite with the 2D experiment, the first 1D experiment and the second 1D ex-
periment.

Note that the metabolites detected as changed only with the first and second 1D ex-
periment are presented in the table caption. We present likewise in the same table the
metabolite concentration changes ("inc" for concentration increase and "dec" for concen-
tration decrease) as well as the metabolite change detection degreeµM (Eq.6.2).
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Metabolite µM concentration

Arg 0.519 inc
Ser 0.461 inc
Asp 0.390 inc
Cho 0.331 dec
Pcho 0.327 dec
Glu 0.321 dec
Ace 0.298 dec
Ala 0.214 dec
Ile 0.214 dec
Gln 0.267 dec

Ascorbate 0.218 inc
mI 0.165 dec
Cr 0.166 dec
Gly 0.168 inc
NAA 0.150 inc
Lys 0.144 inc
Lac 0.110 dec

Table 6.3: Identified biomarkers for healthy ON biopsy vs. EAE ON biopsy with 2D
spectra. The changed metabolites identified with the first 1Dexperiment are: GPCho and
N-acetylglutamate. The changed metabolites identified with the second 1D experiment
are: Thr, Succinate, GABA and Tau. As one can see, we identifywith the 2D experiment
most metabolites identified with the first and the second 1D experiment. Moreover, some
metabolite like the "NAA", the "Ala" and the "Lys" were identified only with the first 1D
experiment and the 2D experiment. We recall that the concentrations of these metabolites
change during the 2D experiment and for this reasons they were not detected in the second
1D experiment. However, we still able to identify them as changed metabolites. This
could be explained by the fact that we used in our SV3DH algorithm beside the metabolite
concentration other features like the peak chemical shiftsand the peak shapes for change
detection. In addition, we remark that the Arg, Ile, Gly and Ser were detected as changed
metabolites only with the 2D experiment.
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Metabolite µM concentration

alpha-Glc 0.824 inc
Hypotaurine 0.834 inc

beta-Glc 0.724 inc
mI 0.684 dec
Gln 0.642 inc
Cho 0.627 dec
Thr 0.546 inc

GPCHO 0.510 inc
Ace 0.464 dec
Tau 0.446 inc
Asp 0.394 dec

Glu/Gln 0.389 inc
Lys 0.347 inc
Ser 0.341 inc
Ala 0.260 inc
Arg 0.257 inc

PCho 0.239 dec
Ethanolamine 0.234 dec

Gly 0.179 dec
Lac 0.124 dec
Val 0.116 dec

Table 6.4: Identified biomarkers for healthy CSC biopsy vs. EAE CSC biopsy with 2D
spectra. The changed metabolites identified only with the first 1D experiment are: Succ,
Ile and NAA. The changed metabolite identified only with the second 1D experiment is the
Cr. As one can remark, we identify with the 2D experiment mostmetabolites identified
with the first and the second 1D experiment. Moreover, some metabolite like the "Ser",
the "Gly" and the "Gln" were identified only with the first 1D experiment and the 2D
experiment.
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Metabolite µM concentration

beta-Glc 0.807 inc
Ace 0.747 dec
Cho 0.688 dec
Ser 0.659 inc

Alpha-Glc 0.654 inc
Gln 0.646 inc
Thr 0.634 inc
mI 0.604 dec
Lys 0.590 inc
Asp 0.516 dec

Ethanolamine 0.462 dec
Tau 0.371 inc

Glu/Gln 0.263 inc
Tyr 0.256 inc
Ile 0.250 inc
Gly 0.221 dec

PCho 0.176 dec
GPCho 0.161 dec

Table 6.5: Identified biomarkers for healthy TSC biopsy vs. EAE TSC biopsy with 2D
spectra. The changed metabolites identified only with the first 1D experiment are: Ala,
Succ, Hypotaurine, Val and NAA. The changed metabolites identified only with the second
1D experiment are: Ala, Hypotaurine. As one can remark, we identify with the 2D experi-
ment most metabolites identified with the first and the second1D experiment. However, the
Ala and the Hypotaurine were detected only with the first and the second 1D experiments.
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Metabolite µM concentration

mI 0.978 dec
beta-Glc 0.942 inc

Thr 0.904 inc
Glu/Gln 0.669 inc

Gln 0.619 inc
Gly 0.606 inc
Ser 0.494 inc
Ace 0.479 dec
Cho 0.429 dec
Arg 0.409 inc
Ile 0.361 inc
Asp 0.382 dec
Ala 0.370 inc
Cr 0.320 dec

PCHo 0.255 dec
Ethanolamine 0.213 dec

Val 0.194 inc
Thr 0.131 inc

Table 6.6: Identified biomarkers for healthy LSC biopsy vs. EAE LSC biopsy with 2D
spectra. The changed metabolites identified only with the first 1D experiment are: Lys,
Hypotau, Succ, Tau, PCho, GPCho and NAA. The changed metabolites identified only
with the second 1D experiment are: Lys, Hypotau, Tau and GPCho. As one can remark,
we identify with the 2D experiment most metabolites identified with the first and the second
1D experiment. However, as one can observe, some metabolites like the Lys and Hypotau
were detected only with the first and the second 1D experiments while the Val was detected
only with the 2D and the second 1D experiments.
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Metabolite µM concentration

Arg 0.452 inc
Tau 0.363 dec
Val 0.291 inc
Gln 0.256 inc

NAA 0.198 inc
Thr 0.116 inc

Table 6.7: Identified biomarker for healthy CSC biopsy vs. healthy LSC biopsy with 2D
spectra. In this experiment, no changed metabolite was detected with the first and second
1D experiments while 6 metabolites were be detected with the2D experiment. This means
that our method is able to discriminate the healthy CSC biopsy from the healthy LSC
biopsy.

Metabolite µM concentration

mI 0.341 inc
Arg 0.338 inc
Tau 0.320 dec
Gln 0.311 inc

Glu/Gln 0.224 inc
NAA 0.211 inc
Tyr 0.184 dec
Cho 0.161 inc
Cr 0.157 inc

PCho 0.149 inc

Table 6.8: Identified biomarkers for healthy CTC biopsy vs. healthy LTC biopsy with 2D
spectra. In this experiment, no changed metabolite was detected with the first and second
1D experiments while 10 metabolites were be detected with the 2D experiment.

Metabolite change detection results on dataset2

We address now the metabolite change detection on colon cancer HSQC spectra. Fig.
6.8 (a) shows a healthy colon biopsy spectrum whereas Fig.6.8 (b) displays a cancerous
colon biopsy spectrum. The mean image of the 25 reconstructed healthy spectra (after peak
detection with the MCMC procedure) is presented in Fig.6.8(c). Fig. 6.8(d) displays the
mean image of the 25 reconstructed cancerous spectra. As onecan remark, all the spectrum
noise was removed and only the relevant peaks (belonging to the corpus) were preserved
allowing an easier interpretation of the spectra by physicians. Fig. 6.9 presents some
metabolites change detection results on a cancerous spectrum (drawn in red arrows). As
one can see, it is difficult to manually detect changed metabolites. The metabolite change
detection results on dataset2 are presented in Tab.6.9.
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Metabolite µM concentration

Tau 0.895 inc
mI 0.771 dec

beta-Glc 0.638 dec
Asp 0.621 inc
Glu 0.502 inc
Lac 0.445 inc
Pcho 0.394 inc

Table 6.9: Identified biomarkers for healthy colon biopsy vs. cancerous colon biopsy with
2D spectra. As one can remark, we identify the same metabolite as in first 1D experiment.
Nota that no second 1D experiment was performed in the case ofthe colon biopsy spectra.

All these results for both datasets were examined and validated by NMR experts. The
first conclusion that 2D experiment results confirm those obtained with 1D experiments.
Secondly, the 2D experiment can be used to discriminate somespectrum populations (c.f,
Tab.6.7and Tab.6.8).

Spectrum classification results

We address now the spectrum classification validation. To this end, we used the Leave-
One-Out Cross-Validation (LOOCV). Indeed, this validation involves to use a single obser-
vation from a spectrum group as the validation data (the spectrum query), and the remaining
spectra as the training data (the spectrum group profiles) (c.f, Fig. 6.2). In other words,
we select a spectrum form the database and we try to assign it to one of the available spec-
trum groups. In our case, we dispose of ten spectrum groups: the ON healthy group, the
ON EAE group, the CSC healthy group, the CSC EAE group, the TSChealthy group, the
TSC EAE group, the LSC healthy group, the LSC EAE group, the colon healthy group
and finally the colon cancerous group (c.f,6.1). In order to emphasize the benefits of the
proposed classification method and particularly the use of the copula kernel function, we
use two methods for spectrum classification: the proposed SV3DH method and the clas-
sical SVDD method with a RBF kernel function. Note that we trained both methods only
with target class (c.f, Chap.5). Tab6.10shows the spectrum classification results. As one
can remark, most of the spectra were correctly classified except the ON group. This can
be explained by the high biopsy degradation during the HSQC experiments. Moreover, the
proposed method performs the best comparing to the classical SVDD method.
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Figure 6.8: Example of (a) a healthy colon biopsy spectrum, (b) a cancerous colon biopsy
spectrum, (c) The mean image of the 28 reconstructed healthyspectra, (d) The mean image
of the 28 reconstructed cancerous spectra.
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Figure 6.9: Identified metabolites in the same area of (a) a healthy colon biopsy spectrum,
(b) a cancerous colon biopsy spectrum. The changed metabolite is presented in red arrows
where every peakp belonging to a given metaboliteM is labeled with(p,M). (c) The
mean image of the 28 reconstructed healthy, (d) The mean image of the 28 reconstructed
cancerous of the same area.
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Spectrum group number of correct classificationnumber of wrong classification

ON healthy group
SV3DH 8
SVDD 6

SV3DH 2
SVDD 4

ON EAE group
SV3DH 9
SVDD 8

SV3DH 1
SVDD 2

CSC healthy group
SV3DH 10
SVDD 9

SV3DH 0
SVDD 1

CSC EAE group
SV3DH 10
SVDD 10

SV3DH 0
SVDD 0

TSC healthy group
SV3DH 10
SVDD 8

SV3DH 0
SVDD 1

TSC EAE group
SV3DH 9
SVDD 8

SV3DH 1
SVDD 2

LSC healthy group
SV3DH 10
SVDD 9

SV3DH 0
SVDD 1

LSC EAE group
SV3DH 10
SVDD 10

SV3DH 0
SVDD 0

colon healthy group
SV3DH 27
SVDD 25

SV3DH 1
SVDD 3

colon cancerous group
SV3DH 28
SVDD 26

SV3DH 0
SVDD 2

Table 6.10: Spectrum classification results with the SV3DH method and the classical
SVDD method.
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Spectrum discrimination results

Let’s turn now to the spectrum discrimination validation. In this experiment, we try
to discriminate between two groups of the same biopsy: healthy group and pathological
group. We compared likewise our method to the classical SVDDand SVM methods. Tab
6.11 shows the spectrum discrimination results. As one can remark, most of the spectra
were correctly discriminated. Moreover, the proposed method performs the best in all
tested configurations compared to the classical SVM and SVDDmethods.

Spectrum group number of wrong discriminated spectra

ON healthyvs. ON EAE groups
SV3DH 3/20
SVM 4/20
SVDD 6/20

CSC healthyvs. CSC EAE groups
SV3DH 0/20
SVM 3/20
SVDD 3/20

TSC healthyvs. TSC EAE groups
SV3DH 1/20
SVM 1/20
SVDD 2/20

LSC healthyvs. LSC EAE groups
SV3DH 0/20
SVM 2/20
SVDD 4/20

Healthyvs. cancerous colon groups
SV3DH 2/56
SVM 4/56
SVDD 4/56

Table 6.11: Spectrum discrimination with the SV3DH, the SVDD and the SVM methods.
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6.2 fMRI experiments

6.2.1 Material and Database

Participants
After giving written informed consent, 62 right-handed healthy participants (age 37.3±
7.9 years) with no history of neurological or psychiatric disorders underwent a resting-state
fMRI session. This study was part of a protocol approved by the local Ethics Committee.
Participants were instructed to lie down with their eyes closed without falling asleep.

Data acquisition
Four hundred and five whole-brain T2*-weighted echo planar images were acquired in-
terleaved on a 2T Bruker scanner (Ettlingen, Germany) (session parameters: TR = 3 s;
flip angle = 90◦; TE = 43ms; FOV = 256 mm x 256 x mm x 128mm; Imaging matrix =
64×64×32; 4 mm isotropic voxels, with fat saturation preparation)during 20 minutes.

Preprocessing
After conversion to Analyze format, images were preprocessed using Statistical Parametric
Mapping toolbox v99 (Welcome Department of Cognitive Neurology, London, UK) work-
ing on Matlab R2009b (The MathWorks, Inc., Sherborn, MA, USA).
For each participant, the first 5 images were removed to account for T1 partial saturation.
The 400 remaining images were then motion corrected, and allthe volumes were realigned
on the 200th volume (sinc interpolation).

Statistical analyzes of fMRI data
For each participant, Independent Component Analysis (ICA) [Te-Won98] was performed
using FMRLAB toolbox 2.3 (Swartz Center for Computational Neuroscience, University of
San Diego, CA, USA) with an implementation of INFOMAX algorithm [Theis03]. Since
we planned to capture even small spontaneous activities formedical application, the dimen-
sion of the data was only reduced from 400 to 250 using a principal component approach
for each participant. This procedure allowed maintaining the computational time for the
algorithm to converge in acceptable limits. For display purpose, the components were
superimposed on the (EPI) (Echo-Planar Imaging) mean imageat a threshold of±1.5 stan-
dard deviation [Weiskopf05]. Each ICA component is called a Spontaneous Activity Map
(SAM). At the end of the ICA algorithm, we obtain 250 SAM.

Selection of relevant SAM
In order to only select the relevant SAM, several criteria should be respected. Indeed,
these criteria suppose that the whole brain volume is displayed with positive and negative
parts of the spatial components overlapped on the mean EPI (z-score is above or below
±1.5). The time course has to be evaluated on the component time course more than on
the average region of interest time course.Positive selection criteria: a plausible BOLD
signal is expected to fit with every following criteria for the whole cerebral volume or time
course:
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1. Spatially coherent positive or negative 3D blobs, i.e. within and between slices. The
component can be followed on slice series and its parts look like a 3D coherent map.
In the case of an interleaved acquisition, a signal occurring every two slices is not
considered as spatially coherent.

2. The spatial distribution of the blobs overlaps on grey matter only.

3. The signal time course is in the appropriate frequency range, i.e., most of the power
is below the frequency of the hemodynamic response (< 0.08 Hz), but oscillating at
a higher frequency than 0.004 Hz (max. period of 2 min.).

Examples of typical SAMs are shown in Fig.6.10.(1) to (5) (radiological convention)
(1: Default Mode Network DMN; 2: verbal working memory network; 3: visuospatial
working memory/attentional network; 4-5: visual networks).

Rejection criteria. To avoid artifact or noisy components, none of the following criteria
should be present anywhere in the volume or the time course orrepresent a negligible aspect
of it:

1. A spatial alternating aspect,i.e., a juxtaposition of significantly correlated and anti-
correlated voxels, alternating in space and sometimes appearing like a reticule (Fig.
6.10.(6)).

2. A spatial noisy aspect, i.e. the voxels are mildly significant and disseminated (Fig.
6.10.(7)).

3. Brutal crash or slow drift on the temporal time course.

4. No aspect of any known artifacts:

• Head motion artifacts. Translation or rotation movements are surrounding
high spatial contrasts (Cerebrospinal fluid (CSF)/brain, CSF or brain/skull etc)
sometimes with a symmetrical aspect (positive correlationon one side and
negative on the other side). Temporal course comes with slowdrift or bru-
tal crashes. Fig.6.10.(8) shows the aspect of a z-translation residuum after
registration.

• Ocular movements artifacts: signal in the eyeball with moreor less trails in the
encoding phase axis, Dirac spike on the time course (Fig.6.10.(9a) and (9b))

• CSF-pulse artifacts. Arterial pulse and respiration induce CSF flux and this T1
partial saturation effect leads to signal fluctuation in sensitive regions, i.e., the
temporal pole, Sylvian sulcus, skull base around the circleof Willis, aqueduct
of Sylvius, foramen of Monro or ventricles (Fig.6.10.(10)). The temporal
course is mostly at high frequency.

• Scanner artifacts,i.e., radio frequency (trails of alternating significant voxels)
or Analogic-Digital converter artifacts (signal drop or instability in one slice).

The pretreatment chain is presented in Fig.6.11.
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Figure 6.10: Spontaneous Activity Map (SAM) selection criteria

fMRI
images

- Data reduction
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Figure 6.11: Overview diagram of the fMRI pretreatment chain.
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Figure 6.12: Overview diagram of the proposed classification framework for fMRI images.

6.2.2 fMRI treatment framework

In the case of the fMRI image analysis, the considered objects are the active zones (AZ).
A summary of the treatment framework is presented in Fig.6.12.

The first step of the indexing framework consists in detecting and aligning different
active zones within fMRI images. To this end, we firstly perform an active zone detection
step using a Hidden Markov Chain (HMC) segmentation algorithm [Bricq08]. However,
when only weak differences occurred between samples of the considered classes (i.e; active
zone with positive intensity class, active zone class with negative intensity class and no ac-
tive zone), the probability density function (pdf) of one calss may be confused with the pdf
of another class (e.g., the Hidden Markov Model method generally tries to regularize bad
segmentation results due to this ill-posed problem and the presence of outliers in the data
[Belghith09]). To overcome this issue, we applied a fuzzy contrast enhancement (FCE)
method on each detected object with the HMC algorithm. This method aims at segment-
ing an unknown sample based on the intensity of its neighborsby considering a fuzzy class
transition (i.e the edge intensities of two adjacent classes follow a S-membership function).
Once the active zones are detected we apply first the proposedactive zone alignment algo-
rithm (Fig.6.13). This step requires up to 3mn of computation time with Intel2.66 GHz
and matlab codes. Then the AZ coding and similarity measurement (Fig.6.14) to cluster
similar objets (about 1mn of computation time with a matlab codes). However, two objects
with two similar shapes can not be affected together if they are not in the same brain area.
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Figure 6.14: Overview diagram of the proposed active zones coding and similarity mea-
surement chain.

For this, we add two new constraints to the objects clustering step: the object position and
overlap. Thus, the more their positions are close, the more they can be assigned together.

6.2.3 Real results

Since the fMRI images of subjects with psychologic pathologies are not yet available, we
only focus on the two first steps of the indexing scheme: the active zone alignment step
and the active zone clustering step (active zone coding and similarity measurement). We
have applied the proposed methods on our fMRI database. At the end of the second step,
we obtained 72 fMRI object clusters.

Let us start with the object alignment validation. In order to emphasize the benefit
of the alignment method and particularly the use of the partial-spherical PCA, we have
compared our algorithm with the continuous PCA method [Vranić01a] on some objects
belongings to three different clusters (C1, C2 and C3). Fig.6.15.(a) (resp Fig.6.16.(a) and
Fig.6.17.(a)) displays the active zone alignment results on three objects belonging to C1
(resp C2 and C3) obtained with the proposed method. Fig.6.15.(b) (resp Fig.6.16.(b) and
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Fig.6.17.(b)) displays the active zone alignment results on three objects belonging to C1
(resp C2 and C3) obtained with the continuous PCA method. As one can see, our method
performs the best alignment result. Moreover, even with no pronounced partial spherical
shape of the active zones (cf. Fig.6.16), the proposed method still works well and provides
better results than the continues PCA. This can be explain bythe fact that the initialization
step properly fit the object shape thanks to the sphere hyperparameters (ˆr, θ̂, φ̂). For exam-
ple, the more the object shape seems to a plan, the more ˆr is great.

We address now the object clustering validation. Since no ground truth is available, the
clustering results were examined by an expert. The preliminary results are promising and
we are now working on a comprehensive validation of the results. Fig.6.18and Fig.6.19
display four active zone clusters obtained by the proposed methods.

6.3 Conclusion

The evaluation of real cases and statistical comparisons with the results obtained by experts
were used to validate the behavior of our methods on large scale datasets. We were able to
obtain good or satisfactory arrangements for all considered characteristics. This study and
critical analysis carried out with the experts allowed us toidentify the main limitations of
the algorithms on a significant number of objects and then determine a number of changes
to solve most encountered problems. Below a summary of physician suggestions:

For the HSQC spectra:

• Consideration of the peak with the largest amplitude as reference to calculate the
peak ratios of a given metabolite in the annotation scheme;

• Normalization of the spectra with their biopsy masses;

• Introduction of a metabolite confidence degree for each identified metabolite;

• Introduction of a change threshold to select the relevant changed metabolites.

For the fMRI images:

• Separation between fMRI objects with positive and negativeintensities;

• Tightening of the fMRI object location and object overlap constraints in the cluster-
ing step;
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(a)

(b)

Figure 6.15: Alignment results of three active zones belonging to the same cluster with the
(a) the proposed method and (b) the Continues PCA method.
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(a)

(b)

Figure 6.16: Alignment results of three active zones with nopronounced partial spherical
shape belonging to the same cluster with the (a) the proposedmethod and (b) the Contin-
ues PCA method. As one can see, even with no pronounced partial spherical shape, the
proposed method performs better than the Continues PCA method.
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(a)

(b)

Figure 6.17: Alignment results of three active zones belonging to the same cluster with the
(a) the proposed method and (b) the Continues PCA method.
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Figure 6.18: Two active zone clusters obtained by the proposed method. A reference brain
is displayed to indicate the position of the active zone clusters.
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Figure 6.19: Two active zone clusters obtained by the proposed method. A reference brain
is displayed to indicate the position of the active zone clusters.



Conclusion and perspectives

This research work aimed at developing an approach for biomarker identification from
medical signals and particularly the HSQC HR-MAS 2D NMR spectra and fMRI images.
Our approach should be based on characterizations having a clear and proven physician
interpretation. We have answered this problem in two steps.On the one hand, the devel-
opment of a hierarchical model providing a high semantics description level of medical
signals, and an access to the relevant information of the medical signal using a new global
content-based object indexing and retrieval scheme. On theother hand, we are interested
to properly model and integrate thea priori knowledge we have on the biological signal
allowing us to propose thereafter appropriate methods to each indexing scheme step and
each type of treated signals. The performances obtained by the combination of these two
aspects were then evaluated on a consistent medical databases. The results were discussed
in depth with physicians and we were able to show the relevance and robustness of the
proposed methods.

The main contributions of this PhD are the followings:

1. A global content-based object indexing and retrieval scheme. We have imagined
a strategy to adapt classical indexing scheme to biomarker identification problem,
thus providing a global application framework valid for most types of medical sig-
nals. To this end, we proposed the add of a classification stepto the classical index-
ing scheme. Indeed, the biomarker identification consists in classifying for example
a group of medical signals into the healthy and the pathologic classes (e.g cancer or
psychological diseases) and to detect then the differences(changes) between them.
One perspective of this development involves the introduction of an interaction mod-
ule between the system and the user (a real time feedback) allowing the results con-
trol according to the physicians expectations.

2. An evidential peaks detection and alignment method. This method combined the
modeling of the knowledge by means of the evidence theory andintegrates the fuzzy
theory to quantify the imprecision degree presented in the spectra. The handling of
both imprecision and uncertainty by the evidence theory increased the robustness of
the proposed alignment scheme with comparison to the Bayesian method. In ad-
dition, we have used the deconvolution model to achieve a better fit of the HSQC
spectrum and the multivariate Gaussian distribution to model the noise correlation
enabling method robustness to a high level of noise, one of the most delicate issues
in HSQC spectra. All these developments resulted in a detection procedure and fully
automatic alignment of peaks to a fully parametric representation of the observed
spectra.
In this work, we used a deconvolution method for spectrum peak detection. The
optimization of the problem is addressed by a classic MCMC procedure where the
Gibbs algorithm was used to model hyperparameters sampling. This allowed us to
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take advantage of the sampler computing time rapidity. However, more sophisti-
cated samplers can potentially be used to achieve better results like the Reversible
Jump MCMC procedure [Larocque02] allowing a variant peak number handling.
Moreover, it would be particularly interesting to replace the evidence theory by the
possibility theory. Indeed, possibility theory is one of the current uncertainty the-
ories devoted to the handling of incomplete information. Basically, this theory is
similar to the probability theory because it is based on set-functions but differs from
the latter by the use of a pair of dual set functions called possibility and necessity
measures [Dubois06].

3. An active zone alignment method. Based on the reflection symmetry, this method
allows us to find the most object natural pose and align visually similar objects in
the same manner. Indeed, in order to integrate oura priori knowledge and particu-
larly the partial spherical active zone shape, we proposed anew method for spherical
symmetry estimation based on the non-linear PCA to model thereflection symmetry
of the cortical active zones. To calculate the spherical symmetries of the fMRI active
zones, we develop previous works proposed in [Kirby96] where authors adapt the
network to the case of circular data (2D data). In a first step,we extend this work
to the 3D data case (entire spherical shape) and then to the partial spherical shape
which is well suited to fit the active zone shape due the human cortex shape.
In neuroimaging, it is well known that the brain is made up of three main com-
ponents: white matter, gray matter and cerebral spinal fluid. Many efficient seg-
mentation algorithms are now available and allow to precisely extract these three
components. Based on such segmentation, the active zones detection algorithm may
be extended to take into account the differences between these three tissue types in-
side the brain. Moreover, extending the proposed active zone alignment method by
combining the detection and alignment steps in a joint framework would also lead to
a fully automatic method exploiting the brain tissue varieties.

4. A metabolite similarity measurement method. We have proposed the use of the
fuzzy set theory to deal with the ambiguity which is in the heart of such identification
task. The use of the metabolite likelihood measure as a metabolite signature has
increased the robustness of the proposed identification scheme with comparison to
the SVM method which does not take into account thea priori knowledge. Genetic
Algorithm (GA) was employed to train the comparison model inorder to calibrate
the parameters in an unsupervised way.
One perspective of this development involves the use of the residual image (the image
difference between the observation and the parametric spectrum representation) to
compensate the estimation error within the similarity measurement scheme.

5. A fMRI active zone coding and similarity measurement method. Inspired from
the Gaussian transformation , the proposed active zone coding method is improved
by using of the Generalized Gaussian transformation which is well suited to describe
the surface topology of the fMRI active zones. In particular, we showed that the
proposed method not only provides a compact representationof the object in its
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space but also a signature faithfully attached to its surface topology (flat surface or
surface with reliefs). Moreover, in order to be less sensitive to small displacements
or minor geometric variations, we introduced a new similarity measure.
It would be interesting to extend the method to other complexsurface topology by
combining the GG transformation with other transformations (e.g mixture Gaussian
and mixture GG transformations).

6. A object classification/change detection method. In this method, we proposed a
new SV3DH kernel function which combines the characteristics of basic kernel func-
tions with new information about features distribution andthen dependency between
samples. The dependency between samples was handled based on copulas theory
that is be used for the first time to our knowledge in the SVDD framework.
The proposed classification method is limited to two classes. As a matter of fact, new
individual/group is classified into two classes: changed and unchanged class. This
method can potentially be extended to the multi-class case allowing a multi-diseases
discrimination.

Finally, the different proposed methods were validated in afirst part on simulated data
to demonstrate their behavior compared to existing methods. In a second part, all the results
obtained on real data have been examined by experts in each domain (HR-MAS NMR spec-
troscopy and fMRI). This validation shows the good performance of our algorithms leading
to similar results to those obtained by physicians in a shorttime both for the HSQC spectra
(HR-MAS NMR) and fMRI images. The discussions we had with physicians convinced us
of the relevance of the proposed approaches, the proximity of the parametric model with
the biological model allowing a dialogue and an easy feedback between both communities.
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MCMC

In this Appendix, we develop a Monte Carlo Markov Chain (MCMC) procedure to estimate
the peak locations, amplitudes and shapes required for the proposed peak detection and
alignment scheme. The principle of MCMC method is to generate samples drawn from
the posterior densities and then to be able to achieve hyperparameter estimation using the
Marginal Mean (MPM) estimator [Gilks96]:

X̂ = E [X/Y] (A.1)

whereX is the variable to estimate (theoretical spectrum) from theobservationY (observed
spectrum).

We use a Gibbs sampler [Smith93] based on a stationary ergodic Markov chain al-
lowing to draw samples whose distribution asymptotically follows thea posterioridensity
p(X,θ/Y), θ = {θγY ,θb,θx}) where:

• θγY stands for the pdf hyperparameters of the Lorentzian shape filter γY (Eq.3.2),

• θb stands for the hyperparameters of additive noiseB= b(i, j)i=1...M, j=1...N (Eq.3.1),

• θx represents the hyperparameters of the theoretical 2D spectrum imageX (location,
shape, amplitude (Eq.3.1)).

Noise Model

MCMC method requires the definition of a noise model that can be based in a Bayesian
framework as additive, white and Gaussian. However, the hypothesis of a white gaussian
noise is not always entirely justified [Bodenhausen80]. Thus, we propose here to keep
the Gaussian behavior but to take into account the correlation of the additive noise. Indeed,
vertical lines appear sometimes in the observed spectrum and which are due to experimental
condition [Becker00]: it leads us to introduce a correlated noise modeling this kind of
artefact. Then, we adopt a multivariate Gaussian distribution with covariance matrixΓb
and meanµb. The expression of the noise density is given by:

N (B;µb,Γb) =
N

∏
j=1

1
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where(M ×N) is the spectrum size. The likelihood corresponding to the data-driven
term is expressed as:

p(Y/X,γY,θb) =
N

∏
j=1
N (y j −xγY, j ,θb) (A.3)

wherey j = [y(1, j),y(2, j), ...,y(M, j)]T , x j =
[

xγY, j(1), ...,xγY, j(i), ...,xγY, j(M)
]T

, xγY, j(i) =

∑∑k1,k2
x(k1,k2)h(i −k1, j −k2) andθb = {Γb,µb}.

Simulation scheme

We present in this paragraph the implementation of the iterative Gibbs algorithm we
used for sampling. We introduce the variablesθprior

x andθvs
x which represent the parameter

of the a priori probability p(X/θprior
x ) and the likelihood probabilityP(Y/X,θvs

x ) respec-
tively. To samplep(X,γ,θ), at every iterationl , the main steps consist in:

1. sampling the theoretical 2D spectrum imageX[l+1] from

p(X/Y,θvs
x ,θ

prior
x ) (A.4)

with






θvs
x =

{

X[l ],Γ[l ]
b ,γY[l ]

}

θprior
x =

{

α[l ],β[l ]
}

(A.5)

where
{

α[l ],β[l ]
}

are the hyperparameters of the Gamma distribution modelingthea
priori on X. The gamma distribution is an exponential family distribution which is
used for fitting non-negative data [Hsiao03]. Indeed, the shape parameters (

{

α[l ],β[l ]
}

)
of the Gamma distribution allow to fit spectral data that may present some sparsity
and possibly a background [Dobigeon09]. The gamma densityG is expressed as:

p(X;α,β) =
M

∏
i=1

N

∏
j=1
G (x(i, j),α,β) x(i, j) > 0

=
M

∏
i=1

N

∏
j=1

x(i, j)(α−1) βα

Γ(α)
exp(−βx(i, j)) (A.6)

2. sampling the hyperparameters of the Lorentzian shape filter γ[l+1] from

p(γY/Y,θvs
γY ,θprior

γY ) (A.7)

where






θvs
γY =

{

X[l+1],Γ[l ]
b ,γY[l ]

}

θprior
γY =

{

σ[l ]
}

(A.8)
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where
{

σ[l ]
}

is the variance of the gaussian distribution modeling oura priori on
{γY}

p(γY;σ) = ∏
c=1,2

1√
2πσ[l ]

exp

(

−
(

(γYc )2

2σ[l ]

))

(A.9)

3. sampling the covariance matrix of the noiseΓ[l+1]
b from

p(Γb/Y,X
[l+1],γY [l+1]

) (A.10)

4. sampling the hyperparameterα[l+1] from

p(α/Y,X[l+1],γY[l+1]
,β[l ]) (A.11)

5. sampling the hyperparameterβ[l+1] from

p(β/Y,X[l+1],γY[l+1]
,α[l ]) (A.12)

6. sampling the hyperparameterσ[l+1]from

p(
1
σ
/Y,X[l+1],γY[l+1]

) (A.13)

After lmax iterations,X̂ andγ̂Y are given by

{

X̂ = 1
lmax−lmin

∑lmax
l=lmin+1X[l ]

γ̂Y = 1
lmax−lmin

∑lmax
l=lmin+1γY[l ] (A.14)

where lmin stands for the number of iterations corresponding to the burn-in time of the
Markov chain [Cowles96]. In our caselmin is equal to 200 iterations whereaslmax is equal
to 500. Concerning the computation time, the MCMC algorithmrequires up to 3h30 to
converge with a 2.66 GHz Intel processor and a combination ofmatlab and C code.
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Genetic algorithm

Genetic Algorithms (GA) are adaptive heuristic search algorithm premised on the evolu-
tionary ideas of natural selection and genetic [Goldberg89]. The basic concept of GA is
designed to simulate processes in natural system necessaryfor evolution, specifically those
that follow the principles first laid down by Charles Darwin of survival of the fittest. As
such they represent an intelligent exploitation of a randomsearch within a defined search
space to solve a problem. The aim of genetic algorithm is to use simple representations to
encode complex structures and simple operations to improvetheses structures.

We describe in this part how to use GA to ascertain the hyperparameters of differ-
ent membership functions. As a matter of fact, we used the GA algorithm for the peak
detection-alignment and the metabolite identification schemes. To this end, we use a train-
ing data base containing 10 spectra where each one consists of 30 metabolites with known
characteristics (the number of metabolite peaks, the locations and the shape od each peaks).

Concerning the fuzzy membership functions hyperparameters used in the peak detec-
tion and alignment scheme, let us denote by(a1,b1,c1,a2,b2,c2,a3,b3,c3) the population
representing the hyperparameters of these functions where(a1,b1,c1) are the hyperparam-
eters of the functionfhyp1 (Eq.3.4), (a2,b2,c2) the hyperparameters offhyp2 (Eq. 3.5) and
(a3,b3,c3) the hyperparameters offhyp3 (Eq. 3.6). We apply real coding to encode the
chromosomes of the population. Each individual is represented by a vector of{0,1}. The
different steps of GA are:

1. Generating an initial population:

(a[0]1 ,b[0]1 ,c[0]1 ,a[0]2 ,b[0]2 ,c[0]2 ,a[0]3 ,b[0]3 ,c[0]3 )

The initialization is done in an experimental way.

2. Define individual fitness function to indicate the fitness of every chromosome. The
proposed function is expressed as:

fopt = (µ̂[l ](i, j)−µe(i, j))2 (B.1)

whereµ̂[l ](i, j) is given by Eq.3.7 with respect to the estimated hyperparameters at
iterationl andµe is the expected solution.

3. Generating offspring by selection and crossover: 20% of the population which has
best fitness is copied directly to next generation to keep thebest gene. The other
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80% of the population is obtained by crossover operation with a probabilityPc =

0.8. We select randomly one cut-point and then we exchange the right part of two
chromosomes.

4. Mutation operation: only the chromosomes having undergone crossover can be af-
fected by the mutation. It consists in modifying a gene with aprobability Pm=

0.008.

5. Ending condition: if the maximal evolutionary epoch (maximal number of iterations
500) is reached, the GA end.

For the metabolite identification problem, let us denote by:

(a1,b1,a2,b2,c2,a3,b3,c3,a4,b4,c4,d4)

the population representing the parameters of the used fuzzy membership functions. In-
deed,(a1,b1) are the hyperparameters of Eq.4.16, (a2,b2,c2) the hyperparameters of Eq.
4.12, (a3,b3,c3) the hyperparameters of Eq.4.15and(a4,b4,c4,d4) the hyperparameters of
Eq. 4.18. We apply real coding to encode the chromosomes of the population. Therefore,
each individual is represented by a vector of{0,1}. The different steps of GA are:

1. Generating in an experimental way the initial population:

(a[0]1 ,b[0]1 ,a[0]2 ,b[0]2 ,c[0]2 ,a[0]3 ,b[0]3 ,c[0]3 ,a[0]4 ,b[0]4 ,c[0]4 ,d[0]
4 )

2. Define individual fitness function to indicate the fitness of every chromosome. The
proposed function is expressed as:

fopt = (g−1)2 (B.2)

whereg is given by Eq.4.19and 1 is the expected result (c. f Eq. 4.19).

3. Generating offspring by selection and crossover: 20% of the population which has
best fitness is copied directly to next generation to keep thebest gene. The other
80% of the population is obtained by crossover operation with a probabilityPc =

0.8. We select randomly one cut-point and then we exchange the right part of two
chromosomes.

4. Mutation operation: only the Chromosomes having undergone crossover can be af-
fected by the mutation. It consists in modifying a gene with aprobability Pm=

0.008.

5. Ending condition: if the maximal evolutionary epoch (maximal number of iterations
500) is reached, the GA end.

Concerning the computation time, the GA algorithm requiresup to 6h45 to converge with
a 2.66 GHz Intel processor and a matlab codes.
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Evidence theory

The Dempster Shafer (DS) is a mathematical theory of evidence. In a finite discrete space,
DS theory may be red as a generalization of probability theory. Indeed, the probabilities
are assigned to sets as against to mutually exclusive singletons. In probability theory, ev-
idence is only related to one hypothesis [Shafer76]. In DS theory, evidence is related to
sets of events. As a matter of fact, the DS theory is designed to cope with varying levels of
precision regarding the information. To this end, DS theoryprovides tools to represent the
uncertainty of data where an imprecise may be characterizedby a set or an interval and the
resulting output is a set or an interval.

The mass function

Let us denoteΘ the frame of discernment, which is defined as:

Θ = {H1,H2, ...,HN}

It is composed ofN exhaustive and exclusive hypothesesH j , j = 1..N. From the frame of
discernment, letΩ be the power set composed with the 2N propositionsA of Θ:

Ω = { /0,{H1},{H2}, ...,{HN},{H1,H2}, ...,Θ}

The DS evidence theory provides a representation of both imprecision and uncertainty
through the definition of two functions: plausibilityPls and beliefBel, which are both
derived from a mass functionm. This mass functionm allows us to quantify the reliability
degree of a proposition.m is defined for every elementA of Ω and observationY, such that
the mass valuem(A;Y) belongs to the [0, 1] interval with respect to:

m :







m( /0;Y) = 0

∑
A⊂Ω

m(A;Y) = 1

where /0 is the empty set. In the Bayesian theory, the uncertainty about an hypothesis is
calculated by the probability and imprecision associated with uncertainty is assumed to
be null. In the evidence theory, the plausibility value may be explained as the maximum
uncertainty value aboutA whereas the belief value of hypothesisA may be explained as
the minimum uncertainty value aboutA. Therefore, this theory, which allows to represent
both imprecision and uncertainty, appears as a more flexibleand general approach than
the Bayesian one. Indeed, when the mass affected to a compound hypothesis{H1,H2} is
nonzero, it means that we have an option not to make the decision between{H1} or {H2}
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as the Bayesian theory but rather leave the sample in the{H1,H2} class. Applications were
developed in medical signals [Chaabane09, Yazdani09], object detection [Aeberhard11],
image segmentation [Pieczynski07, Ben Chaabane09], and remote sensing classification
[Malpica07].

The belief and plausibility functions, derived fromm, are respectively defined fromΩ
to [0, 1]:

Bel(A/Y) = ∑
A⊂Ω,B⊆A

m(B;Y) (C.1)

Pls(A/Y) = ∑
A⊂Ω,B∩A 6= /0

m(B;Y) (C.2)

DS Combination

In the case of problems taking into account both uncertain and imprecise data, it should
be useful to combined the information obtained from severalsources in order to get more
relevant information. DS theory offers tools to combine theknowledge given by different
sources. The orthogonal rule also called Dempster’s rule ofcombination is the first com-
bination defined within the framework of evidence theory. Let us denotem(Y1),...,m(YL),
L masses of belief coming fromL distinct sourcesYl , l = 1...L. The belief functionm re-
sulting from the combination of theL sources by means of Dempster’s combination rule is
defined by:

m(A) = m(A;Y1)⊕m(A;Y2)⊕ ...⊕m(A;YL) (C.3)

where⊕ is defined by:

m(A;Y1)⊕m(A;Y2) =
1

1−K ∑
B
⋂

C=A

m(B;Y1).m(C;Y2) (C.4)

and
K = ∑

B
⋂

C= /0
m1(B).m2(C) (C.5)

K is often interpreted as a measure of conflict between the different sources and is in-
troduced as a normalization factor. The larger isK, the more the sources are conflicting
and the less sense has their combination. TheK factor indicates the amount of evidential
conflict. If K = 0, this shows a complete compatibility and if 0< K < 1, it shows partial
compatibility. Finally, the orthogonal sum does not exist whenK = 1. In this case, the
sources are totally contradictory, and it is no longer possible to combine them.
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Résumé:
Les techniques d’acquisition des signaux médicaux sont en constante évolution et four-
nissent une quantité croissante de données hétérogènes quidoivent être analysées par le
médecin. Dans ce contexte, des méthodes automatiques de traitement des signaux médi-
caux sont régulièrement proposées pour aider l’expert dansl’analyse qualitative et quanti-
tative en facilitant leur interprétation. Ces méthodes doivent tenir compte de la physique
de l’acquisition, de l’a priori que nous avons sur ces signaux et de la quantité de données
à analyser pour une interprétation plus précise et plus fiable. Dans cette thèse, l’analyse
des tissus biologique par spectroscopie RMN et la recherchedes activités fonctionnelles
cérébrales et leurs connectivités par IRMf sont explorées pour la recherche de nouveaux
bio-marqueurs. Chaque information médicale sera caractérisée par un ensemble d’objets
que nous cherchons à extraire, à aligner, et à coder. Le regroupement de ces objets par la
mesure de leur similitude permettra leur classification et l’identification de bio-marqueurs.
C’est ce schéma global d’indexation et de recherche par le contenu d’objets pour la dé-
tection des bio-marqueurs que nous proposons. Pour cela, nous nous sommes intéressés
dans cette thèse à modéliser et intégrer les connaissancesa priori que nous avons sur ces
signaux biologiques permettant ainsi de proposer des méthodes appropriées à chaque étape
d’indexation et à chaque type de signal.

Mots clès: Identification de bio-marqueurs, spectres HSQC, images fMRI, indexation,
détection et alignement d’objet, codage et mesure de similarité, détection de changement.

Abstract:
The medical signal acquisition techniques are constantly evolving in recent years and pro-
viding an increasing amount of data which should be then analyzed. In this context, auto-
matic signal processing methods are regularly proposed to assist the expert in the qualitative
and quantitative analysis of these images in order to facilitate their interpretation. These
methods should take into account the physics of signal acquisition, thea priori we have
on the signal formation and the amount of data to analyze for amore accurate and reli-
able interpretation. In this thesis, we focus on the two-dimensional 2D Heteronuclear Sin-
gle Quantum Coherence HSQC spectra obtained by High-Resolution Magic Angle Spin-
ning HR-MAS NMR for biological tissue analysis and the functional Magnetic Resonance
Imaging fMRI images for functional brain activities analysis. Each processed medical in-
formation will be characterized by a set of objects that we seek to extract, align, and code.
The clustering of these objects by measuring their similarity will allow their classification
and then the identification of biomarkers. It is this global content-based object indexing
and retrieval scheme that we propose. We are interested in this thesis to properly model
and integrate thea priori knowledge we have on these biological signal allowing us to pro-
pose thereafter appropriate methods to each indexing step and each type of signal.

Keywords: Biomarker identification, HSQC spectra, fMRI images, indexing, object
detection and alignment, object coding and similarity measurement, change detection.
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