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Case courrier 188
4 place Jussieu

75 252 Paris cedex 05

2



Remerciements
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ce thème de recherche, s’est toujours montré à l’écoute et a été très disponible tout
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mon parcours universitaire, qui m’ont donné le goût des mathématiques: Adnène
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3



Résumé

Nous nous intéressons dans cette thèse à l’étude de trois dynamiques en dimen-
sion infinie, liées à des problèmes d’interface aléatoire. Il s’agira de résoudre une
équation aux dérivées partielles stochastiques paraboliques avec différents poten-
tiels singuliers. Trois types de potentiel sont étudiés, dans un premier temps nous
considérons l’équation de la chaleur stochastique avec un potentiel convexe sur
Rd, correspondant à l’évolution d’une corde aléatoire dans un ensemble convexe
O ⊂ Rd et se réfléchissant sur le bord de O. La mesure de réflexion , vue comme la
fonctionnelle additive d’un processus de Hunt, est étudiée au travers de sa mesure
de Revuz. L’unicité trajectorielle et l’existence d’une solution forte continue sont
prouvées. Pour cela nous utilisons des résultats récents sur la convergence étroite
de processus de Markov avec une mesure invariante log-concave.

Nous étudions ensuite l’équation de la chaleur avec un bruit blanc espace-temps,
et un potentiel singulier faisant apparâıtre un temps local en espace. Cette fois le
processus de Markov étudié possède une mesure invariante de type mesure de Gibbs
mais avec un potentiel non convexe. L’existence d’une solution est prouvée, ainsi
que la convergence, vers une solution stationnaire, d’une suite d’approximation,
construite par projections sur des espaces de dimension finie. une étude du semi-
groupe permet d’obtenir des solutions non-stationnaires

Nous combinons enfin les deux précédents modèles. L’existence d’une solution
stationnaire est prouvée ainsi que la convergence d’un schéma d’approximation
comme précédemment.

Mots clés:

Formules d’intégration par parties, équations aux dérivées partielles stochastiques,
temps locaux, formes de Dirichlet, processus de Markov, fonctionnelles additives,
Mosco convergence

Abstract

Stochastic Partial Differential Equations of Parabolic Type
with Singular potential

This thesis deals with some topics linked with interface model, ours aim is to find
solution of some SPDE of parabolic type with singular potential. Firstly We study
the motion of a random string in a convex domain O in Rd, namely the solution of a
vector-valued stochastic heat equation, confined in the closure of O and reflected at
the boundary of O. We study the structure of the reflection measure by computing
its Revuz measure in terms of an infinite dimensional integration by parts formula.
We prove extistence and uniqueness of a strong solution. Our method exploits
recent results on weak convergence of Markov processes with log-concave invariant
measures.

Secondly We consider a stochastic heat equation driven by a space-time white
noise and with a singular drift, where a local-time in space appears. The process we
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study has an explicit invariant measure of Gibbs type, with a non-convex potential.
We obtain existence of a Markov solution, which is associated with an explicit
Dirichlet form. Moreover we study approximations of the stationary solution by
means of a regularization of the singular drift or by a finite-dimensional projection.

Finaly, we extend the previous methods for a SPDE in which the two types of
singularity appear

Keywords:

Integration by parts formulas, Stochastic partial differential equation, local times,
Dirichlet forms, Markov processes, additive functionnal, Mosco convergence
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CHAPTER 1

INTRODUCTION

In this thesis we want to study a class of stochastic processes in infinite dimension,
namely of stochastic partial differential equations (SPDEs) with singular drift coef-
ficients. We consider several non-linear perturbations of a stochastic heat equation
driven by a space-time white noise with a one-dimensional space variable.

We treat three different such perturbations. In chapter 3 we study a SPDE whose
solution takes values in a convex domain in Rd and is reflected at the boundary of
this domain; we call the solution a random string. In chapter 4 we deal with a
SPDE whose solution takes real values and feels the effect of one or several sharp
interfaces, in analogy with the classical skew Brownian motion in one dimension,
and we call this SPDE a skew stochastic heat equation. In chapter 5 we combine
the two previous non-linearities and consider a skew SPDE with reflection.

These non-linearities can be written as derivatives of non-continuous functions in
the sense of distributions, and for this reason the classical theories for existence and
uniqueness in the case of Lipschitz coefficients do not apply. On the other hand, we
restrict to a class of equations which share an important structural property, namely
they are associated with a symmetric Dirichlet form of gradient type. In other
words, the non-linearities we add to our equations are (formally) the gradient of a
scalar functional (the potential) in the Hilbert space H := L2(0, 1) (or L2(0, 1;Rd) in
the case of chapter 3). This makes a number of important technical tools available,
like an explicit invariant measure and the Itô-Fukushima stochastic calculus.

The three equations we consider are presented in increasing order of difficulty.
The random string in a convex domain is associated with a convex potential, and
this allows to obtain a complete well-posedness theory for all initial conditions in
H; in particular, we have pathwise uniqueness and existence of strong solutions.

In the two skew equations, with or without reflection, the convexity of the poten-
tial is lost and we can obtain only weaker results, in particular pathwise uniqueness
is out of reach. As a substitute for uniqueness, we show that the solutions we con-
struct are natural, in the sense that they are the limit in law of processes solving
smooth approximations of the equation, and such approximating equations have
unique solutions. Moreover, we construct also finite-dimensional approximations of
the equations and show convergence in law of stationary solutions. The main tool



CHAPTER 1. INTRODUCTION

for such limit results is the Mosco convergence of the associated Dirichlet forms,
in the version where the invariant measures can also vary, recently developed by
several researchers.

At the beginning of this thesis, in chapter 2 we have collected the main (classical)
definitions and results which are important for us.

1.1 Stochastic heat equations and gradient systems

All equations we consider in this thesis can be interpreted as follows:

∂u

∂t
=

1

2

∂2u

∂θ2
− 1

2
f ′(u) + Ẇ ,

u(t, 0) = u(t, 1) = 0

u(0, θ) = u0(θ), θ ∈ [0, 1]

(1.1.1)

where Ẇ is a space-time white noise, see section 2.2.6 below, and f : R 7→ R (in
chapter 3 it is rather f : Rd 7→ R) is a (bounded) function which will have different
degrees of regularity: smooth, or convex, or only with bounded variation. A very
important fact for us is that equation (1.1.1) is a gradient system in the Hilbert
space H := L2(0, 1) (or H : L2(0, 1;Rd) in the case of chapter 3). Indeed, if we
introduce the potential F : H 7→ R defined by

F (x) :=

∫ 1

0

f(x(θ)) dθ, x ∈ H,

then for all h ∈ H, denoting by 〈·, ·〉 the canonical scalar product in L2(0, 1),

〈∇F (x), h〉 = lim
ε→0

1

ε
(F (x+ εh)− F (x)) =

∫ 1

0

f ′(xθ)hθ dθ = 〈f ′(x), h〉

i.e. ∇F (x) = f ′(x·) and equation (1.1.1) can formally be written as the gradient
system

du = −1

2
∇V (u) dt+ dW, V (x) :=

∫ 1

0

(ẋ)2dθ + F (x),

where (Wt, t ≥ 0) is a cylindrical Wiener process in H, see section 2.2.7 below.
Then, in [17, Chapter 12] it is proved that we have an expression for the invariant
measure of (1.1.1)

ν(dx) =
1∫

e−Fdµ
e−F (x) µ(dx),

where µ is the law of the Brownian bridge (βr, r ∈ [0, 1]), with β0 = β1 = 0. Is
moreover proved in [17, Chapter 12] that the process (u(t, ·), t ≥ 0) is associated
with (the closure of) the following Dirichlet form

D(ϕ, ψ) :=
1

2

∫
H

〈∇ϕ,∇ψ〉 dν

12



1.2. A STOCHASTIC STRING IN A CONVEX DOMAIN

in L2(ν), see section 2.1 below for the main definitions on the theory of Dirichlet
forms.

These results yield the possibility of using a number of tools: the Fukushima
stochastic calculus [27], the Lyons-Zheng decomposition (see section 2.1.6 below),
some powerful a priori estimates on stationary processes (see Lemma 4.6.1 below),
the theory of Mosco-convergence (see section 2.4), a number of integration by parts
formulae in infinite dimension, etc. We also recall that reaction-diffusion SPDEs
like (4.1.4) have been extensively studied, see for instance [13] and the references
thereins.

1.2 A stochastic string in a convex domain

In this chapter we want to prove well-posedness of stochastic partial differential
equations driven by space-white noise and reflected on the boundary of a convex
region of Rd. More precisely, we consider a convex open domain O in Rd with a
smooth boundary ∂O and a proper l.s.c. convex function ϕ : O 7→ R, and we study
solutions (u, η) of the equation

∂u

∂t
=

1

2

∂2u

∂θ2
+ n(u(t, θ)) · η(t, θ)− 1

2
∂ϕ0(u(t, θ)) + Ẇ (t, θ)

u(0, θ) = x(θ), u(t, 0) = a, u(t, 1) = b

u(t, θ) ∈ O, η ≥ 0, η({(t, θ) |u(t, θ) /∈ ∂O}) = 0

(1.2.1)

where u ∈ C
(
[0, T ]× [0, 1];O

)
and η is a locally finite positive measure on ]0, T ]×

[0, 1]; moreover a, b ∈ O are some fixed points, Ẇ is a vector of d independent
copies of a space-time white noise and for all y ∈ ∂O we denote by n(y) the inner
normal vector at y to the boundary ∂O; finally, ∂ϕ0 : O 7→ Rd is the element of
minimal norm in the subdifferential of φ and the initial condition x : [0, 1] 7→ O is
continuous.

Solutions (u, η) of equation (1.2.1) are such that u takes values in the convex
closed set O and evolve as solutions of a standard SPDE in the interior O, while the
reflection measure η pushes u(t, θ) along the inner normal vector n(u(t, θ)), whenever
u(t, θ) hits the boundary. The condition η({(t, θ) |u(t, θ) /∈ ∂O}) = 0 means that
the reflection term acts only when it is necessary, i.e. only when u(t, θ) ∈ ∂O.

This kind of equations has been considered, in the case of O being an interval in
R, in a number of papers, like [51, 21, 29, 64, 14, 19, 18, 35], as a natural extension
of the classical theory of stochastic differential inclusions in finite dimension to an
infinite-dimensional setting. Moreover, such equations arise naturally as scaling
limit of discrete interface models, see e.g. [29]. However, the finite dimensional
situation is very well understood, see [12], while in infinite dimension only particular
cases can be treated, often with ad hoc arguments.

The main results we want to prove in this chapter are summarized in the following

Theorem 1.2.1.

13



CHAPTER 1. INTRODUCTION

1. For all x ∈ C
(
[0, 1];O

)
, the problem (1.2.1) enjoys pathwise uniqueness of

weak solutions and existence of a strong solution.

2. Setting U : H 7→ R

U(x) :=

∫ 1

0

ϕ(xθ) dθ, x ∈ H, ν(dx) :=
1

Z
1K(x) exp(−U(x))µ(dx)

and the bilinear form

E(F,G) :=
1

2

∫
〈∇F,∇G〉 dν, F,G ∈ C1

b (H),

then E is closable in L2(ν) and the closure is a Dirichlet form, associated with
the solution to (1.2.1).

3. The Markov semigroup (Pt)t≥0 associated with the Dirichlet form (E , D(E)) is
Strong Feller, i.e. for any bounded Borel ϕ : H 7→ R

|Ptϕ(x)− Ptϕ(y)| ≤ ‖ϕ‖∞√
t
‖x− y‖H , x, y ∈ H, t > 0.

4. A.s. the reflection measure η is supported by a Borel set S ⊂ ]0,+∞[×[0, 1],
i.e. η(Sc) = 0, such that for all s ≥ 0, the section {θ ∈ [0, 1] : (s, θ) ∈ S} has
cardinality 0 or 1. Moreover, if r(s) ∈ S ∩ ({s} × [0, 1]) then

u(s, r(s)) ∈ ∂O, u(s, θ) /∈ ∂O, ∀θ ∈ [0, 1] \ {r(s)}.

All previous papers on SPDEs with reflection deal with versions of (1.2.1) where u
takes real values, with one or two barriers (one above, one below the solution). This
article seems to be the first to tackle the problem of a random string u confined in a
convex region in Rd. This case is not a trivial generalization of the one-dimensional
one. Indeed, in one dimension the reflection term in (1.2.1) has a definite sign
if there is only one barrier, and is the difference of two positive terms acting on
disjoint supports, if there are two barriers. This makes it easy to obtain estimates
on the total variation of the reflection term. This structure is lost in the case of a
convex region in Rd, since the positive measure η is multiplied by the normal vector
n at the boundary, which moves in the (d − 1)-dimensional sphere Sd−1. See the
beginning of section 3.7 below for a more precise discussion.

In the same spirit, we recall that most of the first papers on this topic make
essential use of monotonicity properties of equation (1.2.1), related with the maxi-
mum principle satisfied by the second derivative and with the existence of a unique
barrier. However more recent works have shown that monotonicity properties are
not so essential: for instance a fourth-order operator, without maximum principle,
replaces the second derivative in [19, 18, 35], and two barriers in R are considered
in [23, 54, 18].

This chapter makes use of an approach based on Dirichlet forms, infinite dimen-
sional integration by parts formulae, and, crucially, a recent result on stability of
Fokker-Planck equations associated with log-concave reference measures, see Theo-
rem 3.4.2 below. This stability result, developed in [3] using recent advances in the

14
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~n

Figure 1.1: A random string of theorem 1.2.1 above

theory of optimal transport, yields convergence of approximating equations to the
solution to (1.2.1), replacing the monotonicity properties used e.g. in [51]. We recall
that a probability measure ν is log-concave if for all pairs of open sets A,B ⊂ H we
have:

log ν((1− t)A+ tB) ≥ (1− t) log ν(A) + t log ν(B)

where (1 − t)A + tB := {(1 − t)a + tb | a ∈ A, b ∈ B} for t ∈ [0, 1]. A Gaussian
measure µ is always log-concave, and a probability measure given by e−Udµ with U
convex is also log-concave, see for instance [2, Theorem 9.4.11].

Another important tool is an integration by parts formula with respect to the law
of a Brownian bridge conditioned to stay in the domain O, proved in [38], extending
the first formula of this kind, which appeared in [64]. See formula (3.6.1) below and
the discussion therein.

We also want to mention that a similar equation, written in the abstract form of
a stochastic differential inclusion

dXt + (AXt +NK(Xt))dt 3 dWt, X0 = x (1.2.2)

has been considered in [6], where A : D(A) ⊂ H 7→ H is a self-adjoint positive
definite operator in a Hilbert space H, K ⊂ H is a closed convex subset with
regular boundary, NK(y) is the normal cone to K at y and W is a cylindrical
Wiener process in H. The authors of [6] assume crucially that K has non-empty
interior in H. Our equation (1.2.1) could be interpreted as an example of (1.2.2)
in the framework of [6], where in our case H = L2([0, 1];Rd) and

K :=
{
x ∈ L2([0, 1];Rd) : xθ ∈ O for all θ ∈ [0, 1]

}
.
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However, in the topology of L2([0, 1];Rd), K has empty interior and therefore the
approach of [6] does not work in our case. Moreover, our results are somewhat
stronger than those of [6], which only deal with the generator and the Dirichlet
form rather than with existence and uniqueness of solutions of the SPDE, as we do.

The content of this chapter has been published in [8].

1.3 A skew stochastic heat equation

In this chapter we consider a stochastic partial differential equation whose solution
(u(t, x), t ≥ 0, x ∈ [0, 1]) takes real values and which is of the form (1.1.1), where
however the function f is bounded with bounded variation, but could have jumps.

Let us consider for instance the case f(y) = α 1(y≥0) with α > 0. In this case
the derivative of f in the sense of distributions is a multiple of a Dirac mass, and
therefore it is not clear how to define f ′(u) in (1.1.1). This class of equations is
however interesting, since the potential becomes in this case

F (x) =

∫ 1

0

f(xθ) dθ = α

∫ 1

0

1(xθ≥0) dθ

and the associated invariant measure ν(dx) =
1∫

e−Fdµ
e−F (x) µ(dx) shows that the

system has a preference for the negative values of the solution and it is clearly of
interest to study such a situation.

The first problem is to give a meaning to the nonlinearity f ′(u) in (1.1.1). This
is done via an occupation times formula in space. Indeed, let us notice that, by
integrating in dθ the non-linearity f ′(u) multiplied by a test function h ∈ C2

c (0, 1),
by an application of the occupation times formula (see e.g. [58][VI.1.6, VI.1.15]) for
the process (u(t, θ), θ ∈ [0, 1]), t > 0 fixed,∫ 1

0

f ′(u(t, θ))hθ dθ =

∫
R
da f ′(a)

∫ 1

0

hr `
a
t (dr) = −

∫
R
f(da)

∫ 1

0

h′r `
a
t (r) dr

where in the last equality we have performed an integrating by parts. Here (`at (r), a
∈ R, t > 0, r ∈ [0, 1]) is the family of local times at a of the process (u(t, θ), θ ∈
[0, 1]), t > 0 fixed, accumulated over [0, r].

We notice that several remarks are in order for this formal discussion. First
of all, it is not clear whether the process (u(t, θ), θ ∈ [0, 1]) is a semi-martingale
with respect to some filtration, so that existence of local times and validity of an
occupation times formula are not trivial. Moreover, even if these points are resolved,
in the occupation times formula one should in fact integrate with respect to the
quadratic covariation 〈u, u〉θ of u in space, and we are here implicitly assuming that
this is equal to θ: why should this be the case? In fact, a part of the work to be
done consists in justifying (in a different way) the claim that the occupation times
formula above makes sense.

We note that for smooth f , an important property of the reaction-diffusion equa-
tion (1.1.1) is the Strong-Feller property, see e.g. (3.4.4) below, namely the tran-
sition semigroup maps bounded Borel functions on the state space into continuous
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functions (for positive time t > 0). A well-known consequence is that the law of the
solution at time t > 0 is absolutely continuous w.r.t. the invariant measure. For
(1.1.1) the invariant measure is equivalent to the law of a Brownian bridge, namely
a semimartingale, whose quadratic covariation is moreover equal to θ. This seems
to justify our claim, at least morally.

However, in our situation, f is not smooth, and the Strong-Feller property can
not be proved with the techniques available in the literature. One of the novelties
of chapter 4 is to show that the law of the solution at time t > 0 is absolutely
continuous w.r.t. the invariant measure, using a comparison argument between
eigenvalues of infinitesimal generators in different L2 spaces (see Proposition 4.2.7
below). This is important and useful in the Fukushima theory of Dirichlet forms,
see e.g. [27, Theorem 4.1.2 and formula (4.2.9)].

Using an integration by parts formula and the Fukushima stochastic calculus,
we show that the following SPDE

∂u

∂t
=

1

2

∂2u

∂θ2
− 1

2

∫
R
f(da)

∂

∂θ
`at,θ + Ẇ ,

u(t, 0) = u(t, 1) = 0,

u(0, θ) = u0(θ), θ ∈ [0, 1]

(1.3.1)

has a weak solution, which is a Markov process associated with a Dirichlet form of
gradient type. More precisely, the main results we want to prove in this chapter are
summarized in the following

Theorem 1.3.1.

1. Setting F : H 7→ R

F (x) :=

∫ 1

0

f(xθ) dθ, x ∈ H, ν(dx) :=
1

Z
exp(−F (x))µ(dx)

and the bilinear form

E(F,G) :=
1

2

∫
〈∇F,∇G〉 dν, F,G ∈ C1

b (H),

then E is closable in L2(ν) and the closure is a Dirichlet form.

2. The Markov process associated with (E , D(E)) is a weak solution to (1.3.1).
In particular for all initial conditions, almost surely, for a.e. t there exists a
bi-continuous family of local times [0, 1] 3 (r, a) 7→ `at,r of (ut(θ), θ ∈ [0, 1]).

3. The Markov semigroup (Pt)t≥0 associated with (E , D(E)) enjoys the absolute-
continuity condition, namely there exists a measurable kernel (pt(x, dy), t ≥
0, x ∈ H) such that for all ϕ ∈ L2(ν), ν−a.s. Ptϕ =

∫
ϕ(y) pt(·, dy) and

pt(x, ·)� ν(·) for all t > 0.
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4. If fn ∈ C1
b (R) and fn → f locally uniformly outside the discontinuity set of

f , then solutions to (1.1.1) with fn replaced by f converge in the sense of
finite-dimensional distributions to our solution to (1.3.1).

5. A stationary process, given by a finite-dimensional collection of interacting
skew Brownian motions, converges in the sense of finite-dimensional distribu-
tions to our stationary solution to (1.3.1).

An important difference between this chapter and the previous one, is that in
this case we can not prove a pathwise-uniqueness result for the solution. The drift-
coefficient is too singular for the standard techniques to apply, and to our knowledge
there is no result on uniqueness for this kind of equations in the literature. However,
we show that the process we construct, which will be a weak solution to our equation
(1.3.1), is canonical. Indeed, we construct smooth approximations of (1.3.1), by
considering drift coefficients f ′n with fn very regular, and we show that the solutions
to such regularized equations converge (in law or in the sense of finite-dimensional
distributions) to the solution to (1.3.1) that we have constructed.

This convergence result is obtained via the classical technique of Mosco-convergen
-ce [48], recently extended by Kuwae and Shioya [43] and Andres-von Renesse [4].
This theory gives a criterion for convergence of resolvent operators of Dirichlet
forms, the classical setting being valid when all Dirichlet forms are defined in the
same L2 space, while the recent extensions concern cases where also the reference
L2 spaces change (and ”converge”), see section 2.4 below.

We also deal with finite-dimensional approximations of equation (1.3.1). Indeed,
we project (in a sense to be made precise) the equation onto finite-dimensional
subspaces of H, we construct associated Markov dynamics and Dirichlet forms,
and we show Mosco-convergence and convergence in distribution of (stationary)
processes to our stationary of (1.3.1). Interestingly, the finite-dimensional dynamics
we find are interacting skew Brownian motions, see [45] and sections 4.1.1-4.5.1
below. This, together with the analogies pointed out in section 4.1.2 below, justify
the name of skew heat equation that we have chosen for (1.3.1).

We remark that the invariant measure ν in this setting is not log-concave, and
the approach based on optimal transport given in [3] can not be used in order to
prove convergence of approximations. Mosco-convergence is a valid alternative in
this situation, also rather simpler to prove, although it yields somewhat weaker
results. In fact, using [3] one can obtain a uniform estimate on the relative entropy
of the approximating transition semigroups with respect to the associated invariant
measures, which we can not prove here.

The content of this paper has appeared in [9].

1.4 A skew reflected heat equation

In this chapter we combine the two non-linearities presented in the two previous
chapters. Namely, we want to consider the following SPDE in one space-dimension
driven by space-time white noise with reflection (e.g. at 0) and with a ”skew” drift
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1.4. A SKEW REFLECTED HEAT EQUATION

coefficient of the form f ′(u) with a bounded f with bounded variation

∂u

∂t
=

1

2

∂2u

∂θ2
+ η(t, θ)− 1

2

∫
R
f(da)

∂

∂θ
`at,θ + Ẇ (t, θ)

u(0, θ) = x(θ), u(t, 0) = b, u(t, 1) = b

u(t, θ) ≥ 0, η ≥ 0, η({(t, θ) |u(t, θ) 6= 0}) = 0

(1.4.1)

where b > 0, (`at,θ, θ ∈ [0, 1]) is the family of local times at a ∈ R accumulated
over [0, θ] by the process (u(t, r), r ∈ [0, 1]), and η is a locally finite non-negative
measure.

Again, one has to show that the above equation makes senses, as for equation
(1.3.1). However, a few additional difficulties arise, because of the presence of
the reflection measure. The main results we want to prove in this chapter are
summarized in the following

Theorem 1.4.1.

1. Setting F : H 7→ R

F (x) :=

∫ 1

0

f(xθ) dθ, x ∈ H, ζ(dx) :=
1

Z
exp(−F (x))µb(dx)

where µb is the law of the Brownian bridge (βr, r ∈ [0, 1]), with β0 = β1 = b,
and the bilinear form

E(F,G) :=
1

2

∫
〈∇F,∇G〉 dζ, F,G ∈ C1

b (H),

then E is closable in L2(ζ) and the closure is a Dirichlet form.

2. The Markov process associated with (E , D(E)) is a weak solution to (1.4.1).
In particular for all initial conditions, almost surely, for a.e. t there exists a
bi-continuous family of local times [0, 1] 3 (r, a) 7→ `at,r of (ut(θ), θ ∈ [0, 1]).

3. If fn ∈ C1
b (R) and fn → f locally uniformly outside the discontinuity set of f ,

then stationary solutions to (1.4.1) with f replaced by fn converge in the sense
of finite-dimensional distributions to our solution to (1.4.1).

4. A stationary process, given by a finite-dimensional collection of interacting
reflected skew Brownian motions, converges in the sense of finite-dimensional
distributions to our stationary solution to (1.4.1).

It is immediately clear that the results we obtain on equation (1.4.1) are some-
what weaker than those obtained for equation (1.3.1). First of all, we lose the
absolute-continuity condition on the transition semigroup (Pt)t≥0, which means in
particular that only solutions outside sets of null capacity can be obtained and
handled: that is why we restrict to stationary solutions, which are anyway well
motivated and allow to avoid taking care of such exceptional sets. The reason for
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this loss is that we can not estimate the Dirichlet form from below with the Gaus-
sian Dirichlet form of the linear stochastic heat equation, because of the indicator
function 1K which appears in the density of ζ with respect to µ.

Moreover we need to consider boundary conditions for u at 0 and 1 equal to
b > 0, in particular different from the reflection level at 0. It is well known that the
probability that the infimum of a standard Brownian bridge from 0 to 0 be greater
than −b is equal to 1− exp(−2b2), and it is 0 if b = 0. Therefore, the conditioning
which defines the probability measure ν makes sense for b > 0 and then has to be
justified with a limit in law as b ↓ 0. This can be done in many situations but fails
here.

In this situation, as in the previous chapter, the invariant measure ζ is not log-
concave, and again the theory of [3] based on optimal transport can not be used.
In fact, even Mosco-convergence is less effective for (1.4.1) than for (1.3.1), because
of the presence of a boundary term in the integration by parts formula with respect
to the invariant measure ζ. For this reason, we need to develop an intermediate
convergence result, in order to handle the case of reflected SPDEs with a smooth
drift f , in particular for the convergence of finite-dimensional approximations. This
is done in Theorem 5.6.2 at the end of the last chapter, and seems to be a result of
independent interest.

1.5 A motivation from pinned random surfaces

In the previous chapters we have considered stochastic dynamics whose invariant
measures are given by a non log-concave probability measure. There is one impor-
tant example that remains out of reach for the moment, the case of the law of a
reflecting Brownian motion and the convergence of stationary dynamics associated
with a pinned interface model near a wall.

We recall a pinning model which has been considered in particular in [20]. For
ε ≥ 0, N ∈ N = {1, 2, . . .}, consider the probability measures Pf

ε,N and Pc
ε,N on

RN
+ := [0,∞)N :

Pa
ε,N(dx) :=

1

Za
ε,N

exp(−Ha
N(x))

N∏
i=1

(
dx+

i + εδ0(dxi)
)

(1.5.1)

where dx+ is the Lebesgue measure on R+, δ0(·) is the Dirac measure concentrated
in 0, Za

ε,N is the normalizing constant, a is a label that may stand for f (free) or c

(constrained), and for x = (x1, . . . , xN) ∈ RN
+ :

H f
N(x) :=

N−1∑
i=0

V (xi+1 − xi), x0 := 0,

Hc
N(x) :=

N∑
i=0

V (xi+1 − xi), x0 := xN+1 := 0,
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where V : R 7→ R ∪ {+∞} is such that exp(−V (·)) is continuous, V (0) <∞ and

κ :=

∫
R
e−V (y) dy < ∞.

Here (x0, . . . , xN) ∈ [0,+∞[N+1 is interpreted as the profile of a one-dimensional
interface separating two regions.

If we introduce the IID sequence (Yi)i such that Yi is a continuous random
variable with density fYi(·) = exp(−V (·))/κ. The law of (Yi)i is denoted by P.
If moreover we set S0 := 0 and Sn := Y1 + · · · + Yn, then Pf

0,N is just the law of
(S1, . . . , SN), under the non–negativity constraint {S1 ≥ 0, S2 ≥ 0, . . . , SN ≥ 0}.
On the other hand Pc

0,N is the law of the same random vector under the further
constraint SN+1 = 0.

If ε > 0, then every trajectory (S1, . . . , SN) ∈ [0,+∞[N has under a reward/penal
-ty given by εk, where k is the number of i ∈ {1, . . . , N} such that Sk = 0. It is
clear that for small ε > 0 the interface has under Pa

ε,N

1.5.1 Scaling limits

Let us define the map XN : RN 7→ C([0, 1]):

XN
t (x) =

xbNtc
σN1/2

+ (Nt− bNtc)
xbNtc+1 − xbNtc

σN1/2
, t ∈ [0, 1], (1.5.2)

where bNtc denotes the integer part of Nt, and set for a = f, c:

Qa
ε,N := Pa

ε,N ◦ (XN)−1. (1.5.3)

We will need a notation for

• The Brownian motion (Bτ )τ∈[0,1];

• The Brownian bridge (βτ )τ∈[0,1] between 0 and 0;

• The Brownian motion conditioned to be non-negative on [0, 1] or, more pre-
cisely, the Brownian meander (mτ )τ∈[0,1], see [58];

• The Brownian bridge conditioned to be non-negative on [0, 1] or, more precisely,
the normalized Brownian excursion (eτ )τ∈[0,1], also known as the Bessel bridge
of dimension 3 between 0 and 0, see [58] .

The main result in [20], later refined in [11], is the following

Theorem 1.5.1. Assume that

σ2 := E
[
|Y1|2

]
<∞ and E [Y1] = 0 (1.5.4)

and that there exists an n such that sup fSn(·) <∞. Then εc > 0 and both the free
and constrained models undergo a wetting (or delocalization) transition at ε = εc.
In particular

1. (The subcritical regime.) If ε ∈ [0, εc) then
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• Qf
ε,N converges weakly in C([0, 1]) to the law of m;

• Qc
ε,N converges weakly in C([0, 1]) to the law of e.

2. (The critical regime.)

• Qf
εc,N converges weakly in C([0, 1]) to the law of a reflecting Brownian

motion, namely |B|;
• Qc

εc,N converges weakly in C([0, 1]) to the law of a reflecting Brownian
bridge, namely |β|.

3. (The supercritical regime). If ε ∈ (εc,∞) then Qa
ε,N converges weakly in

C([0, 1]) to the measure concentrated on the constant function taking the value
zero.

These results characterize the Brownian scaling of the model, including the crit-
ical scaling.

1.5.2 Stochastic dynamics

Let us now suppose that V (·) is sufficiently smooth and let us consider a random
dynamics being reversible with respect to the probability law Qa

ε,N in (1.5.3) below.

This can by done by defining a Dirichlet form of gradient type in L2(Qa
ε,N), as it

is done in the following chapters. This is not particularly difficult, and it turns
out that the stochastic differential equation associated this this Dirichlet form is a
family of interacting sticky Brownian motions.

In the spirit of [31][section 15.2], under a suitable scaling limit compatible with
(1.5.2), one expects to see as N → +∞ in the subcritical or critical regime of
Theorem 1.5.1 a SPDE whose invariant measure is, respectively, a Brownian me-
ander/excursion, a reflecting Brownian motion/bridge. Whereas the former is well
understood, see [64], the latter is still a mistery.

Indeed, it is simple to define a Dirichlet form of gradient type with respect to the
law of a reflecting Brownian motion, but it is much more difficult to give a meaning
to the associated stochastic dynamics. An integration by parts formula has been
written in [66], giving a first hint of what the associated SPDE should look like, but
no rigorous meaning has been obtained yet for that expression. Perhaps the rough
approach [36] will yield a stronger technique, but this has not been attempted yet
for this class of equations.

1.5.3 The link with this thesis

The reason why the aforementioned problem is a motivation for this thesis, is that
the probability measures Pa

ε,N in (1.5.1) and Qa
ε,N in (1.5.3) are not log-concave,

and we hope that some of the techniques of the chapters 4 and 5 could be extended
to give some results in this direction.

The link becomes even more apparent if we note that the Dirac mass δ0 in (1.5.1)
can be approximated by measures

bn e
an1[0,1/n](x) dx+, bn, an > 0, bn → 0,

bne
an

n
→ 1, n→ +∞.
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Therefore, if we define

P̃a
ε,N(dx) :=

1

Za
ε,N

exp(−Ha
N(x))

N∏
i=1

(
1 + ε bn e

an1[0,1/n](x)
)
dx+

i

P̃a
ε,N is an approximation of Pa

ε,N . Moreover the function

f(x) := − log
(

1 + ε bn e
an1[0,1/n](x)

)
= − log (1 + ε bn e

an)1[0,1/n](x)− log (1 + ε bn)1R\[0,1/n](x)

is in the class of non-linear drifts f that we can treat in chapters 4 and 5. Therefore,
we can replace interacting sticky Brownian motions with interacting skew Brownian
motions and still have a reasonable approximation of our system.

Unfortunately our approach does not allow f to change in n in such a singular
way, and indeed the law of the reflecting Brownian motion is not covered by our
results. However, we hope that in a near future the ideas of this thesis will give a
contribution to the solution of this long-standing problem.

23



CHAPTER 1. INTRODUCTION

24



CHAPTER 2

PRELIMINARY MATERIAL

In this chapter we collect some definitions and notations which will be used through-
out the thesis. The material presented here is classical and we give references to
the relevant literature in each section.

2.1 Dirichlet forms of gradient type

The theory of Dirichlet forms is the main tool of this thesis. The classical references
are [27] for finite-dimensional (locally compact) state spaces and [46] for general
state spaces.

2.1.1 Definition and examples

Definition 2.1.1. Let (H,B, γ) a σ-finite measure space. If D ⊂ L2(γ) is a dense
linear space and E : D×D 7→ R a symmetric bilinear function such that E(u, u) ≥ 0
for all u ∈ D, then we call (E , D) a non-negative symmetric bilinear form, or simply
a form. We define the scalar product on D

E1(u, v) :=

∫
u v dγ + E(u, v), u, v ∈ D.

We say that

1. (E , D) is closed in L2(γ) if D is complete w.r.t. E1, i.e. if for any sequence
(un) ⊂ D which is Cauchy w.r.t. E1 there exists u ∈ D such that E1(un −
u, un − u)→ 0.

2. (E , D) is a closable form in L2(γ) if, for any (un) ⊂ D which is Cauchy w.r.t. E1

and converges to 0 in L2(γ), we have that un converges to 0 w.r.t. E1. In other
words, closability means that if ‖un‖L2(γ) → 0 and E(un − um, un − um) → 0
as n,m→ +∞, then E(un, un)→ 0.

Remark 2.1.2. If (E , D) is a closable form in L2(γ), then there exists a unique
closed form (E , D) in L2(γ) such that
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1. D ⊂ D and D is dense in D w.r.t. E1

2. E(u, v) = E(u, v), for all u, v ∈ D.

(E , D) is called the closure of (E , D) in L2(γ) and it is customary to denote it
by (E , D(E)). Notice that, for any form (E , D), the space (D, E1) has an abstract
completion (D, E1). A form is closable if and only if D has an injection in L2(γ)
which extends continuously the canonical immersion i : D 7→ L2(γ) given by the
identity map. Lack of closability means that there exists a sequence (un) ⊂ D such
that un → 0 in L2(γ) and un → v ∈ D\{0} w.r.t. E1.

The proof of closability of (E , D) is a not very exciting but necessary technical
step. A useful criterion is the following

Lemma 2.1.3. Let (E , D) be a non-negative symmetric bilinear form. If for all
(un) ⊂ D such that un → 0 in L2(γ) we have E(un, v) → 0 for all v ∈ D, then
(E , D) is closable.

The closedness of a given form in H can be read on its quadratic functionnal
only. We have the following characterisation

Lemma 2.1.4. A form E si closed in H if and only if the quadratic functional E
is lower semi-continuous

Our main example is the following: we set

(T,B) = (Rd,B(Rd)), D := C2
c (Rd), E(u, v) :=

1

2

∫
〈∇u,∇v〉 dγ,

where C2
c (Rd) is the space of functions in C2(Rd) with compact support and γ is a

Borel measure on Rd. When the form (E , D) of this example is closable, then we
call its closure (E , D(E)) a Dirichlet form.

Example 2.1.5. Consider the case of γ equal to the Lebesgue measure on R. Then
we have

E1(u, u) = ‖u‖2
L2 + ‖u′‖2

L2 =: ‖u‖2
H1 , D := C1

c (R).

Let (fn) ⊂ D be a Cauchy sequence for ‖ · ‖H1 . Then (fn) and (f ′n) are Cauchy in
L2; since L2 is complete, there exist f and g in L2 such that fn → f and f ′n → g
in L2. In order to say that g = f ′ in a weak sense, we have to prove that g only
depends on f and not on the particular sequence (fn); in other words, if any other

sequence f̂n ⊂ D converges to f in L2 and f̂ ′n converges to h in L2, then h must be

equal to g. By taking the difference fn − f̂n, this is equivalent to say that for any
sequence un ⊂ D converging to 0 in L2 such that u′n converges to w in L2 we must
have w = 0.

Notice that closability of (E , D) is equivalent to closability of the linear operator
∇ : C2

c (R) 7→ L2(R) in the norm of L2(R). Moreover, the space D(E) is the
classical Sobolev space W 1,2(R) = H1(R) of all functions in L2(R) such that the
(distributional) first derivative belongs to L2(R).
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2.1.2 Generator and resolvent

We fix throughout this section a closed form (E , D(E)) in L2(γ). We define for
λ > 0:

Eλ(u, v) := λ

∫
u v dγ + E(u, v), u, v ∈ D(E).

Proposition 2.1.6. For all λ > 0 and f ∈ L2(γ), there exists a unique v ∈ D(E)
such that

Eλ(v, g) =

∫
f g dγ, ∀ g ∈ D(E).

We denote v = Rλf . Moreover

1. For all λ > 0 and f ∈ L2(γ), λ‖Rλf‖L2(γ) ≤ ‖f‖L2(γ)

2. The bounded operator Rλ : L2(γ) 7→ L2(γ) is symmetric and injective in L2(γ).

3. For all α, β > 0:

Rα −Rβ = −(α− β)RαRβ = −(α− β)RβRα. (2.1.1)

The family of operators (Rλ)λ>0 in L2(γ) is called the Resolvent family associated
with (E , D(E)).

Proposition 2.1.7. There exists a unique operator L : D(L) ⊂ L2(γ) 7→ L2(γ)
such that, for all λ > 0, Rλ(L

2(γ)) = D(L) and

(λ− L)Rλf = f, ∀ f ∈ L2(γ), Rλ (λ− L)f = f, ∀ f ∈ D(L). (2.1.2)

We write Rλ = (λ − L)−1. Moreover (L,D(L)) is self-adjoint in L2(γ), D(L) ⊂
D(E) and

E(u, v) = −
∫
uLv dγ = −

∫
v Lu dγ, ∀u, v ∈ D(L). (2.1.3)

The operator (L,D(L)) is called the generator of (E , D(E)), while (Rλ)λ>0 is called
the Resolvent family of (L,D(L)).

We have the easy

Proposition 2.1.8. The domain D(L) of L is given by

D(L) = {f ∈ D(E) : the map D(E) 3 g 7→ E(f, g) is continuous w.r.t. E1}.

Finally we can define the so-called Dirichlet form which is likely to be associated
with a Markov process

Definition 2.1.9. A (symmetric) Dirichlet form is a (symmetric) form on L2(H, γ),
which is closed and Markovian ie for each ε > 0, there exists a real function φε on
R, such that:

- φε(t) = t, ∀t ∈ [0, 1]

- −ε ≤ φε(t) ≤ 1 + ε, ∀t ∈ R
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- 0 ≤ φε(t
′)− φε(t) ≤ t′ − t, whenever t < t′

- ∀u ∈ D(E), we have φε(u) ∈ D(E) and E(φε(u), φε(u)) ≤ E(u, u)

In fact Dirichlet form can own more property close of the structure of its process
associated, such as path properties, we enumerate this properties below

Definition 2.1.10. 1. (E ,D(E)) possesses a core C ⊂ L2(H, γ), iff C is a subset
of D(E) ∩ C0(H) such that C is E1 dense in D(E) and dense in C0(H) with
uniform norm. In this case E is said to be regular

2. We say that E possesses the local property if for all u, v ∈ D(E), such that
supp[u] ∩ supp[v] = ∅ imply E(u, v) = 0

it is proved in [46] that the local property is equivalent with the continuity of
the path up to to the lifetime. To finish we introduce the infinite dimensional case
in the following definition

Definition 2.1.11. A symmetric Dirichlet form (E ,D(E)) is quasi-regular on L2(γ)
if:

1. If there exist a familly of compact sets (Fk)k such that lim
k
Cap(Fk) = 0

2. There is a E1 dense subset of D(E) whose elements have E-quasi-continuous
version. u is E-quasi-continuous if there is an increasing sequence of close sets
(Ek)k such that, ∀n the restiction of u on Ek is continuous and lim

k
Cap(Ek) = 0

3. There exist (un)n ∈ D(E) having E-quasi-continuous version (ũn)n and a E-
exceptional set N such that {ũn|n ∈ N} separate the point of H\N

For the definition of Cap(·) see the paragraph 3.7.1 chapter 3 below. These
properties are a subsitute of the local compacteness, of course a regular Dirichlet
form on a locally compact separable metric space is quasi-regular.

2.1.3 The process associated with E

Definition 2.1.12. Let γ be a Borel measure on Rd and (E , D(E)) a Dirichlet form
in L2(γ). A semigroup (Pt)t≥0 in L2(γ), such that [0,∞) 3 t 7→ Ptf ∈ L2(γ) is
continuous for all f ∈ L2(γ), is associated with (E , D(E)) if there exists λ0 > 0 s.t.

Rλf =

∫ ∞
0

e−λ t Ptf dt, ∀ λ > λ0.

In particular, the resolvent family is the Laplace transform in time of the semigroup.
A Markov process X in Rd is associated with (E , D(E)) if

E[f(Xt(x))] = Ptf(x), γ−a.e. x, ∀ f ∈ Cb(Rd), t ≥ 0.

Remark 2.1.13. Recall that∫ ∞
0

e−α t dt =
1

α
, ∀ α > 0.
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Since, in the setting of the previous definition,∫ ∞
0

e−λ t Ptf dt = Rλf = (λ− L)−1, ∀ λ > 0,

then it is customary to write that Pt = etL. This assertion can be made precise, for
instance by means of spectral theory.

Remark 2.1.14. If a process X is associated with (E , D(E)) in L2(γ), then the
transition semigroup (Pt) is symmetric in L2(γ). Indeed, Rλ is symmetric and this
property transfers to (Pt) by the injectivity of the Laplace transform.

Suppose now that moreover the constant functions belong to D(E); in this case
the constant function equal to 1 is in L2(γ), which is possible if and only if γ is
a finite measure. Then γ(·)/γ(Rd) is an invariant reversible finite measure for X.
Indeed we have for all f ∈ L2(γ)

Eλ(Rλf, 1) =

∫
λRλf dγ =

∫
f dγ, ∀ λ > 0,

and again by injectivity of the Laplace transform we have

∫
Ptf dγ =

∫
f dγ,

t ≥ 0.

2.1.4 Examples in finite dimension

The standard Brownian motion

Let now Xt(x) = x+Bt and γ = Ld, Lebesgue measure in Rd. Define

D := C2
c (Rd), E(u, v) :=

1

2

∫
〈∇u,∇v〉 dLd.

Also in this case we have an integration by parts formula

1

2

∫
〈∇u,∇v〉 dLd = −1

2

∫
u∆v dLd, ∀ u, v ∈ D.

Moreover it is well known that the function u(t, x) = E[ϕ(x + Bt)], t ≥ 0, x ∈ Rd,
ϕ ∈ Cb(Rd), satisfies

u(t, x) = ϕ(x) +

∫ t

0

1

2
∆u(s, x) ds, ∀ t ≥ 0, x ∈ Rd.

We can therefore repeat most of the above considerations, obtaining that (E , D)
is closable and B is associated with the Dirichlet form (E , D(E)). Notice that
D(E) = H1(Rd) and E is also known as the Dirichlet integral, from which the name
Dirichlet form comes.

Clearly Ld is not a finite measure and 1 /∈ L2(Ld). However, Ld is still a (not
finite) invariant measure for B; in fact, it is even reversible, in the sense that the
transition semigroup is symmetric in L2(Ld).
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Ornstein-Uhlenbeck processes

Let A be a symmetric matrix in Rd, with strictly negative eigenvalues (−λi)i=1,...,d.
Set U(x) := −〈Ax, x〉, x ∈ Rd. Then D2U = −2A and 2 min{λ1, . . . , λd}I ≤ D2U ≤
2 max{λ1, . . . , λd}I. By the above results, the Ornstein-Uhlenbeck process, unique
solution of

Xt(x) = x+

∫ t

0

AXs(x) ds+Wt, t ≥ 0, x ∈ Rd,

is the process associated with the Dirichlet form (E , D(E)), closure of the form

1

2

∫
〈∇u,∇v〉 dµ, u, v ∈ C2

b (Rd)

in L2(µ), where

µ(dx) =
1

Z
exp (〈Ax, x〉) dx = N (0, (−2A)−1)(dx). (2.1.4)

Therefore µ is the unique invariant probability measure of X and it is moreover
reversible.

Notice also that A can be diagonalized, i.e. there exists a matrix U such that
U∗U = UU∗ = I and U∗AU =diag(−λ1, . . . ,−λd). Setting X̂ := U∗X, x̂ := U∗x,

Ŵ := U∗W , we have that Ŵ has the same law as W and

X̂t(x̂) = x̂+

∫ t

0

diag(−λ1, . . . ,−λd)X̂s(x̂) ds+ Ŵt, t ≥ 0, x̂ ∈ Rd.

In particular, setting x̂it := 〈X̂t, ei〉 and ŵit := 〈Ŵt, ei〉, where (ei) is a basis of Rd

such that U∗AUei = −λiei, we obtain

x̂it = x̂i − λi
∫ t

0

x̂is ds+ ŵit, t ≥ 0, i = 1, . . . , d.

Since the (ŵi) are independent, so are the (x̂i). Therefore, X can be constructed as
a linear function of a vector of independent one-dimensional O.-U. processes, each
with invariant measure N (0, (2λi)

−1).

Reflecting BM

We consider now the set [0,∞[, endowed with the Lebesgue measure, and the form

D := C1
c ([0,∞[), ENeu(u, v) :=

1

2

∫ ∞
0

〈∇u,∇v〉 dx.

Notice that D has no ”boundary condition” at 0. We want to prove closability in
L2([0,∞[). We notice that, as in the previous subsection, we can ”embed” the form
(E , DNeu) in another closed form; indeed, we set

Deven := {f ∈ Cc(R), f(−x) = f(x) ∀ x ∈ R, f|[0,∞[ ∈ C1
c ([0,∞[)},
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and

E(u, v) :=
1

2

∫
R
〈∇u,∇v〉 dx

noting that u′ is continuous and bounded on R\{0}, with a jump at 0 if lim
x→0+

u′(x) 6=
0. If we endow R with the Lebesgue measure, then there is an isomorphism between
(ENeu,1, D) and (E1, Deven). Since we know that (E1, Deven) is closable by the example
of the standard Brownian Motion, then (ENeu, D) is also closable. We obtain a
Dirichlet form (ENeu, D(ENeu)).

We notice the important integration by parts formula:∫ ∞
0

ϕ′(x) dx = −ϕ(0), ∀ ϕ ∈ C1
c ([0,∞[),

which yields

ENeu(u, v) = −1

2

∫ ∞
0

u′′ v dx− 1

2
u′(0) v(0), ∀ u, v ∈ C1

c ([0,∞[).

One can prove from this formula and Proposition 2.1.8 that

D(LNeu) = {u ∈ H2([0,∞[) : u′(0) = 0}, LNeuu =
1

2
u′′.

The condition u′(0) = 0 is called a homogeneous Neumann boundary condition.
Set now Cb,even(R) := {f ∈ Cb(R) : f(−x) = f(x) ∀ x ∈ R} and H1

even(R) :=
{f ∈ H1(R) : f(−x) = f(x) ∀ x ∈ R} and notice that the definition makes sense,
since H1(R) ⊂ C(R), and therefore H1

even(R) = H1(R)∩Cb,even(R). It is easy to see
that the semigroup of the Brownian Motion leaves Cb,even(R) invariant:

PBM
t f(−x) =

∫
N (−x, t)(dy) f(y) =

∫
N (0, t)(dy) f(y − x)

=

∫
N (0, t)(dy) f(−y + x) =

∫
N (0, t)(dy) f(y + x)

=

∫
N (x, t)(dy) f(y) = PBM

t f(x),

for all x ∈ R and f ∈ Cb,even(R). In particular, the resolvent family of BM leaves
invariant both H1(R) and Cb,even(R) and therefore their intersection H1

even(R). We
recall that for all f ∈ L2(R)

Eλ(RBM
λ f, g) =

∫
R
f g dx, ∀ g ∈ H1(R), λ > 0.

We obtain, by restriction to [0,∞[ and to g ∈ C1
c,even(R), since∫

R
u v dx = 2

∫ ∞
0

u v dx, ∀ u, v ∈ Cc(R) ∩ Cb,even(R),

that

ENeu,λ(R
BM
λ f, g) =

∫ ∞
0

f g dx, ∀ g ∈ C1
c ([0,∞[), λ > 0.
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In particular, by injectivity of the Laplace tranform, the semigroup (PNeu
t ) associ-

ated with (ENeu, D(ENeu)) has the representation

PNeu
t f(x) = E[f(|x+Bt|)], ∀ x ∈ [0,∞[, t ≥ 0, f ∈ Cc(R).

In particular, PNeu
t f is the restriction to [0,∞[ of PBM

t f̂ , where f̂(x) := f(|x|),
x ∈ R. Since PBM

t f̂ is smooth and even, we obtain that its derivative w.r.t. x at 0
is 0, i.e. PNeu

t f satisfies the homogeneous Neumann boundary condition.
We have now the classical Skorohod Lemma, see e.g. [58, VI.2.1].

Lemma 2.1.15 (Skorohod). For any continuous function a : [0,∞[ 7→ R such that
a(0) ≥ 0 there exists a unique pair (x, `) of continuous functions from [0,∞[ to
[0,∞[ such that

1. ` is monotone non-decreasing and `(0) = 0,

2.

∫ ∞
0

xt d`t = 0,

3. xt = at + `t, t ≥ 0.

Moreover, we have the explicit representation

`t = sup
s≤t

(as)
−, xt = at + sup

s≤t
(as)

−, t ≥ 0.

We apply this lemma to at := x+Bt, where x ≥ 0 and B is a standard BM. Then
we obtain that there exists a unique pair of continuous processes (Xt(x), Lt)t≥0 such
that X ≥ 0, L0 = 0 and L is monotone non-decreasing, and

Xt(x) = x+Bt + Lt,

∫ ∞
0

Xt dLt = 0.

This condition is equivalent to saying that the measure dLt supported by the set
{t : Xt(x) = 0}.

The process Xt(x) is called the reflecting BM at 0. Indeed, as long as Xt > 0
we have dLt = 0 and therefore dXt = dBt; however, when Xt(x) = 0, then dLt
can be non-zero and gives a kick to the process, keeping it positive. The condition∫ ∞

0

Xt dLt = 0 means that the reflection term dLt acts only when the process hits

the obstacle 0.
We now define for any f ∈ C2

b ([0,∞[): u(t, x) := PNeu
t f(x). We know that u is

smooth and satisfies the homogeneous Neumann boundary condition. We consider
as usual the process [0, T ] 3 t 7→ u(T − t,Xt(x)) and we obtain by the Itô formula
for semimartingales

u(T − t,Xt(x))− u(T, x) =

∫ t

0

(
−∂u
∂t

+
1

2

∂2u

∂x2

)
(T − s,Xs(x)) ds

+

∫ t

0

∂u

∂x
(T − s,Xs(x)) dBs +

∫ t

0

∂u

∂x
(T − s,Xs(x)) dLs.
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By the above considerations∫ t

0

∂u

∂x
(T − s,Xs(x)) dLs =

∫ t

0

∂u

∂x
(T − s, 0) dLs = 0.

We obtain, taking expectation and letting t = T

u(T, x) = E[f(Xt(x))].

Concerning the invariant measure of X, in this case we have that the constant
function 1 does not belong to L2(0,∞). However, the representation of the semi-
group of X in terms of the semigroup of BM shows that the Lebesgue measure on
[0,∞[ is an invariant and reversible measure for X. It is interesting to notice that
we have the representation

1[0,∞[(x) dx = e−U(x) dx, U(x) :=

{
0, x ≥ 0,
+∞, x < 0

The function U is discontinuous but convex.

2.1.5 Hunt process, definition and properties

This part deals with the construction of Hunt process for certain class of Dirichlet
forms. Suppose now that H is a polish space (Lusin is possible) then we saw in the
previous part each Dirichlet forms associated to a Markov process have its generator
(resp. resolvent, and semi-group) which coincide with the generator (resp. resolvent,
and semi-group) of the associated process. In this part we recall the existence of
such process, following [27] and [46]. Let us start with some definition before stating
the main theorem.

Definition 2.1.16. Let M := (Ω,F , (Xt)t∈[0,∞], (Px)x∈H∆
) be a family of stochastic

processes with state space (H∆,B∆). Where (H,B(H)) is a polish space and ∆ be
an extra point, therefore we denote by H∆ := H ∪{∆} and B∆ := B(H)∪{b∪{∆} :
b ∈ B(H)}. M is a Markov process on (H,B(H)) if

(i) For each x ∈ H∆, (Ω,F , (Xt)t∈[0,∞],Px) is a stochastic process with state space
(H∆,B∆) and time parameter set [0,+∞]

(ii) the map x 7→ Px(Xt ∈ b) is B(H)-measurable for each t ≥ 0 and b ∈ B(H)

(iii) There is an admissible filtration (Ft)t such that

P(Xt+s ∈ b|Ft) = PXt(Xs ∈ b),Px − as (2.1.5)

for any x ∈ H, s, t ≥ 0, and b ∈ B(H)

(iv) P∆(Xt = ∆) = 1, t ≥ 0

(v) Finally, if Px(X0) = 1 ∀x ∈ H, the Markov Process M is called normal

Definition 2.1.17. The process M has the strong Markov property iff
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(i) (Ft)t is right continuous

(ii) Pµ(Xσ+s ∈ b|Fσ) = PXσ(Xs ∈ b), Pµ a.s. µ ∈ P(H∆), b ∈ B∆, s ≥ 0 for any
stopping time σ

Finally we have:

Definition 2.1.18. M is a Hunt process iff M is a strong Markov process with
(Ft)t

(i) X∞(w) = ∆, for all w ∈ Ω

(ii) Xt(w) = ∆, ∀t ≥ ξ(w), where ξ(w) := inf{t ≥ 0|Xt(w) = ∆}

(iii) for each t ∈ [0,+∞], there is a map θt from Ω to Ω such that Xs(θt(w)) =
Xt+s(w), s ≥ 0

(iv) for each w ∈ Ω, the sample path t 7→ Xt(w) is right continuous on [0,+∞)→
H∆ and has left limit on (0,+∞)→ H∆

(v) M is quasi-left continuous on (0,+∞), i.e. for any stopping time σn ↑ σ

Pµ(lim
n
Xσn = Xσ, σ < +∞) = Pµ(σ < +∞) (2.1.6)

µ ∈ P(H∆)

A normal strong Markov process satisfying only (iv) is called a Right process.
If the condition (iv) of definition 2.1.18 and quasi-left are weakened by shortening
the time interval (0,+∞) into (0, ξ(w)), then M is said to be a standard process.
Let (E ,D(E) a symmetric Dirichlet form with semigroup (Pt)t, let M be a right
process with transition semigroup (pt)t. So M is properly associated to E if for all
measurable functions f ∈ L2(γ), ptf is E-quasi-continuous measurable version of
Ptf , for all t > 0. Sometimes it is the only tractable notion of uniqueness. So we
can now state the fundamental theorem from [46].

Theorem 2.1.19. Let (E ,D(E)) be a quasi-regular symmetric Dirichlet form on
L2(H, γ). Then there exists a Right (in fact a m-tight special standard see [46] p.
92) process M which is properly associated with (E ,D(E)). Moreover if H is locally
compact and (E ,D(E)) is a regular symmetric Dirichlet then M is a Hunt process.

Let (H∗,B∗) be a measurable space and let i : H → H∗ be a B/B∗-measurable
map. Let µ∗ = µ◦i−1 the image measure of µ under i, let I : L2(H∗, µ∗)→ L2(H,µ)
such that I(u∗) = ũ∗ ◦ i where ũ∗ is a B∗- measurable µ-version of u∗. Define

D(E∗) := {u∗ ∈ L2(H∗, µ∗)|I(u∗) ∈ D(E)}
E∗(u∗, v∗) := E(I(u∗), I(v∗)) u∗, v∗ ∈ D(E∗) (2.1.7)

Definition 2.1.20. Let M = (Ω,F ,Ft, (Px)x∈H∆
) be a process. We define its trivial

extension M̄ = (Ω̄, F̄ , F̄t, (P̄x)x∈E∆
) with state space E in such a way that each
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x ∈ N := E\S is a trap for M . More precisely, add N to Ω as an extra set and
define

Ω̄ := Ω ∪N
F̄ := {B ∪B0|B ∈ F , B0 ∈ B(N)}

ξ̄(ω) :=

 ξ(ω, if ω ∈ Ω

+∞, ifω ∈ N.

X̄t(ω) :=

 Xt(ω), if ω ∈ Ω

ω, if ω ∈ N.

P̄x(B) :=

 Px(B ∩ Ω), if x ∈ H∆

δx(B), if x ∈ E\H∆.

Theorem 2.1.21. Let M = (Ω,F , Xt,Pz, z ∈ H∆) be a right process properly
associated with the quasi-regular Dirichlet form (E ,D(E)) on L2(H,µ). Then there
exists N ⊂ E, N E-exceptional, such that S := H\N is M-invariant and if M̄ is
a trivial extension to H∗of M restricted to S, then M̄ is a Hunt process properly
associated with the regular Dirichlet form E∗,D(E∗)) on L2(H∗, µ∗), where H∗∆ is
taken as the one point compactification of H∗.

The previous theorem extends a result of [27], where the existence of a Hunt
process is proved in locally compact state spaces, for regular Dirichlet forms. This
local compactification method is done in such way that we can transfert results
obtained in locally compact framework to a more general situation.

2.1.6 The Lyons-Zheng decomposition

Let us first describe the heuristic idea. Let X be a reversible process in Rd, i.e. for
all T > 0, setting X̃t := XT−t, (Xt)t∈[0,T ] and (X̃t)t∈[0,T ] have the same distribution.
We suppose e.g. that X solves the SDE

dXt = dWt −∇U(Xt) dt,

where U : Rd 7→ R is a smooth function. Let f be in the domain of the infinitesimal
generator L of X; then for t ∈ [0, T ]:

f(Xt) = f(X0) +

∫ t

0

〈∇f(Xs), dWs〉+

∫ t

0

Lf(Xs) ds

On the other hand by reversibility of X there is a Brownian motion W̃ such that

f(X̃t) = f(X̃0) +

∫ t

0

〈∇f(X̃s), dW̃s〉+

∫ t

0

Lf(X̃s) ds.
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By computing f(X̃t) at time T − t and T we obtain

f(Xt) = f(XT ) +

∫ T−t

0

〈∇f(X̃s), dW̃s〉+

∫ T−t

0

Lf(XT−s) ds,

f(X0) = f(XT ) +

∫ T

0

〈∇f(X̃s), dW̃s〉+

∫ T

0

Lf(XT−s) ds.

We denote by M (respectively M̃) the martingale with respect to the filtration
Ft := σ(Xs, s ≤ t) (resp. F̃t := σ(X̃s, s ≤ t))

Mt :=

∫ t

0

〈∇f(Xs), dWs〉, M̃t :=

∫ t

0

〈∇f(X̃s), dW̃s〉.

We obtain by a subtraction

f(Xt)− f(X0) = −
∫ T

T−t
Lf(XT−s) ds+ M̃T−t − M̃T

= −
∫ t

0

Lf(Xs) ds+ M̃T−t − M̃T

so that

f(Xt)− f(X0) =
1

2
(Mt + M̃T−t − M̃T ).

This is the so-called Lyons-Zheng decomposition. This equality is still true when
the function f is in the domain of the Dirichlet form of X, in particular we obtain
that

〈Xt −X0, h〉 =
1

2
(Mt + M̃T−t − M̃T )

where M and M̃ are martingales with quadratic variation:

〈M〉t = 〈M̃〉t = t‖h‖2.

This remark will be very useful later, since it will allow to obtain tightness estimates
by using Bukholder-Davis-Gundy inequalities. Here is a general theorem for the
Lyons-Zheng decomposition [27, Th. 5.7.1]:

Theorem 2.1.22. Let (E ,F) be a regular Dirichlet form with strong local property
on L2(H,µ), we suppose moreover that the corresponding diffusion (ΩT , FT , Xt,Px)
is conservative, i.e. pt1 = 1 for all x ∈ H . Then for all u ∈ Floc there is a
martingale M [u] such that

ũ(Xt)− ũ(X0) =
1

2
(M

[u]
t +M

[u]
T−t ◦ rT −M

[u]
T ◦ rT ) (2.1.8)

where rT is the time reversal operator and ũ a quasi-continuous version of u
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2.2 White noises

2.2.1 Gaussian measures

Let a ∈ Rd and Q a symmetric d×d matrix with positive eigenvalues. Then we can

define A := −1

2
Q−1, a symmetric matrix with negative eigenvalues. The Gaussian

probability measure N (a,Q) on Rd is defined by

N (a,Q)(dx) =
1√

(2π)d detQ
exp

(
−1

2
〈Q−1(x− a), x− a〉

)
dx

=
1

Z
exp (〈A(x− a), x− a〉) dx

and we have the important formula for the Fourier transform of N (a,Q): if X ∼
N (a,Q) then

E
(
ei〈X,h〉

)
=

∫
ei〈x,h〉N (a,Q)(dx) = exp

(
i〈a, h〉 − 1

2
〈Qh, h〉

)
(2.2.1)

from which, by derivation, one obtains for all h, k ∈ Rd

E(〈X, h〉) = 〈a, h〉, Cov(〈X, h〉, 〈X, k〉) = E(〈X − a, h〉〈X − a, k〉) = 〈Qh, k〉.

Then a is the mean and Q the covariance operator of X. Moreover one obtains the
main property of a Gaussian family {Xi}i∈I : if J,K ⊂ I, J∩I = ∅, and Cov(Xj, Kk)
for all j ∈ J and k ∈ K, then {Xj}j∈J and {Xk}k∈K are independent. In particular,
if {e1, . . . , ed} are eigenfunctions of Q with respective eigenvalues {λ1, . . . , λd}, then
the variables {〈X, ej〉, j = 1, . . . , n} are independent and 〈X, ej〉 ∼ N (〈a, ej〉, λj).

In the same way, let (H, 〈., .〉) be a separable Hilbert, and Q be a symmetric non
negative trace-class operator. Let B(H) the Borel set of H, i.e. the smallest σ-field
of subsets of H containing all set of the form {x ∈ H|〈x, y〉 ≤ α} with y ∈ H and
α ∈ R. Then the Bochner theorem provides the existence of a probability measure
P whose Fourier transform is given by (2.2.1) where a is called the mean, Q is a
trace class operator, called the covariance operator.

2.2.2 White noises

Let H be a separable Hilbert space.

Proposition 2.2.1. There exists a process (W (h), h ∈ H) such that h 7→ W (h) is
linear, W (h) is a centered real Gaussian random variable and

E(W (h)W (k)) = 〈h, k〉H, ∀ h, k ∈ H.

Proof. Let (Zi)i be a i.i.d. sequence of real standard Gaussian variables and (hi)i a
complete orthonormal system in H and set

W n(h) :=
n∑
i=1

〈h, hi〉H Zi, h ∈ H.
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Then it is easy to see that

E(W n(h)W n(k)) =
n∑
i=1

〈h, hi〉H〈k, hi〉H, ∀ h, k ∈ H.

Moreover for all n < m

E
(
(W n(h)−Wm(h))2

)
=

m∑
i=n+1

〈h, hi〉2 → 0

as n,m→ +∞. The conclusion is standard.

Notice that the application H 3 h 7→ W (h) is an isomorphism of Hilbert spaces
between H and a space of Gaussian random variables.

Let now (T,B,m) be a separable measurable space, with m a σ-finite measure
without atoms. We apply Proposition 2.2.1 to H := L2(T,B,m). The process
(W (h), h ∈ H) is called a Gaussian white noise over (T,B,m).

If A ∈ B and m(A) < +∞, then 1A ∈ H and we denote W (A) := W (1A). If
A,B ∈ B with m(A) +m(B) < +∞ then

E(W (A)W (B)) = m(A ∩B).

In particular, if m(A ∩ B) = 0, then {W (A′), A′ ⊆ A} and {W (B′), B′ ⊆ B} are
independent.

It is customary to use the notation

W (A) =

∫
A

W (dt), W (h) =

∫
T

h(t)W (dt).

We have the important property, which follows immediately from the fact that
W : L2(T,m) 7→ L2(Ω) is an isometry:

Proposition 2.2.2. If (An)n∈N ⊂ B is such that Ai ∩ Aj = ∅ for i 6= j and
m(∪nAn) < +∞, then

lim
n→+∞

n∑
i=0

W (Ai) = W (∪nAn) in L2.

Moreover, since Ai∩Aj = ∅ for i 6= j, then the sequence (W (An))n is independent
and, since all variables W (An) are centered, the sequence is orthogonal in L2.

Notice however that W (dt) is, in general, not a signed measure, as this notation
might suggest; indeed, the process h 7→ W (h) does not always admit a modification
such that W (h) is defined on the same set of probability 1 for all h: see Remark
2.2.3 below; however, it is possible to interpret W (dt) as a (random) distribution
in the sense of Schwarz, see subsection 2.2.10.

2.2.3 Finite dimensional white noise

Let us consider first the easiest case: T = {1, . . . , d} and m is the counting measure.
In this case L2(T,B,m) = Rd and the white noise W (h) can be realized as W (h) =
〈W,h〉Rd , where W ∼ N (0, I).
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2.2.4 Brownian motion

Let now T = R endowed with the Borel σ-algebra and the Lebesgue measure λ1.
Then for any choice of two intervals [a, b] and [c, d] in R

E(W ([a, b])W ([c, d])) = λ1([a, b] ∩ [c, d]).

Then the process

Ŵt :=

 W ([0, t]), t ≥ 0,

W ([t, 0]), t < 0.

is a two-sided standard Brownian motion, and W (dt) is simply called white noise
over R. In particular, the process (W ([0, t]), t ≥ 0) is a standard BM.

Remark 2.2.3. In this case we can see very clearly why in general a white noise
can no be written as a signed measure. If was the case, this would imply that the
BM (W ([0, t]), t ≥ 0) has a.s. paths with bounded variation, which is notoriously
false.

2.2.5 Multi-dimensional Brownian motion

Let now T = R × {1, . . . , d} endowed with the Borel σ-algebra and the measure
λ1 ⊗m where m is the counting measure.

Then for any choice of two intervals [a, b] and [c, d] in R and for any i, j ∈
{1, . . . , d}

E(W ([a, b]× {i})W ([c, d]× {j})) = λ1([a, b] ∩ [c, d])1(i=j).

Then the process (Ŵ 1
t , . . . , Ŵ

d
t ), defined by

Ŵ i
t :=

 W ([0, t]× {i}), t ≥ 0,

W ([t, 0]× {i}), t < 0.

is a two-sided standard Brownian motion and W (dt) is simply called white noise
over R. In particular, the process (W 1([0, t]), . . . ,W d([0, t]))t≥0 is a standard BM
in Rd.

2.2.6 Brownian sheet

If T = R2 endowed with the Borel σ-algebra and the Lebesgue measure λ2, then

E(W ([0, t]× [0, t′]) W ([0, s]× [0, s′])) = (t ∧ t′) (s ∧ s′), t, t′, s, s′ ≥ 0.

The process (W (t, s) := W ([0, t] × [0, s]), t, s ≥ 0) is called a Brownian sheet and
W (dt, ds) a space-time white noise. One can also use the notations

W (dt, ds) =
∂2W

∂t∂s
= Ẇ (t, s).

Notice that the same construction can be done if T = Rd: this gives a space-time
white noise with a d-dimensional space variable.
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2.2.7 Cylindrical Brownian motion

Let H be any separable Hilbert space and (ei)i≥1 a complete orthonormal basis
of H. Let us consider a sequence of independent standard real Brownian motions
(wit, t ≥ 0)i. We set for all n ∈ N:

W n
t :=

n∑
i=1

wit ei, 〈W n
t , h〉 =

n∑
i=1

wit 〈h, ei〉, t ≥ 0.

Now, for all h ∈ H we have for n < m

E
(
(〈W n

t , h〉 − 〈Wm
t , h〉)2

)
= E

( m∑
i=n+1

wit 〈h, ei〉

)2
 ≤ m∑

i=n+1

〈h, ei〉2 → 0

as n,m→∞, since
∑
i

〈h, ei〉2 < +∞. Therefore, for all t ≥ 0 the series

〈Wt, h〉 =
∞∑
i=1

wit 〈h, ei〉.

converges in L2(P). Notice that for all h, k ∈ H and s, t ≥ 0 we have

E (〈Wt, h〉 〈Ws, k〉) = E

(
∞∑

i,j=1

wit w
j
s 〈h, ei〉 〈k, ej〉

)
=

∞∑
i=1

E
(
wit w

i
s

)
〈h, ei〉 〈k, ei〉

= t ∧ s 〈h, k〉.
(2.2.2)

Formally, the series

Wt :=
∞∑
i=1

〈Wt, ei〉 ei =
∞∑
i=1

wit ei, t ≥ 0

defines a Brownian motion in H. However, this series does not define a H-valued
variable. In fact, it can be seen that P(Wt ∈ H) = 0; one easily notes that

E
(
‖Wt‖2

H

)
=
∞∑
i=1

E
(
(wit)

2
)

=
∞∑
i=1

t = +∞, t > 0.

Since Wt is not well defined in H, but 〈Wt, h〉 is for all h ∈ H, the process
(〈Wt, h〉, h ∈ H) is called a cylindrical Brownian motion.

2.2.8 Fourier construction of space-time white noise

Let now H := L2(0, 1). Then (2.2.2) becomes

E (〈Ws, h〉 〈Wt, k〉) = s ∧ t
∫ 1

0

hx kx dx, ∀ h, k ∈ H.
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In particular, if 1[0,y] and 1[0,z] denote the indicator functions of two intervals [0, y]
and respectively [0, z] in [0, 1], then for all s, t ≥ 0

E
(
〈Ws, 1[0,y]〉 〈Wt, 1[0,z]〉

)
= s ∧ t 〈1[0,y], 1[0,z]〉 = (s ∧ t) (y ∧ z).

Therefore, the process (〈Wt, 1[0,s]〉, t, s ≥ 0) is a Brownian sheet. Therefore we can
use the representation in terms of the space-time white noise:

〈Wt, h〉 =

∫ t

0

∫ 1

0

h(x)W (ds, dx).

2.2.9 A physicist’s description

Let us start from the white noise in 1 dimension. If (Wt, t ≥ 0) is a standard real
BM, then the classical formula

E(WtWs) = t ∧ s, t, s ≥ 0,

can be interpreted by saying that

E
(
Ẇt Ẇs

)
=

∂

∂t

∂

∂s
t ∧ s =

∂

∂t
1[s,+∞[(t) = δ(t− s)

where δ(t) is the Dirac mass at 0. Since δ(t − s) = 0 if t 6= s and (Ẇt, t ≥ 0) is a
Gaussian process, then Ẇt and Ẇs are independent for t 6= s. In the case of the
Brownian sheet, we have analogously

E(W (t, s)W (t′, s′)) = (t ∧ t′) (s ∧ s′), t, t′, s, s′ ≥ 0,

and therefore

E(W (dt, ds)W (dt′, ds′)) = E
(
Ẇ (t, s) Ẇ (t′, s′)

)
= δ(t− t′) δ(s− s′).

Then, Ẇ (t, s) and Ẇ (t′, s′) are independent, unless (t, s) = (t′, s′).
The Fourier representation of the space-time white noise reads

Ẇ (t, x) :=
∂

∂t
Wt(x) =

∞∑
i=1

dwit
dt

ei(x),

where (ei)i is any complete orthonormal system in L2(R+, dx).

2.2.10 Random distribution

Another possible interpretation of the white noise on Rd is the random distribution
viewpoint. Notice first that the covariance structure implies, e.g. if s ≤ s′, that

E(|W (t, s)−W (t′, s′)|2) = ts+ t′s′ − 2(t ∧ t′) (s ∧ s′) = |t− t′|s+ t′|s− s′|.

Since (W (t, s)−W (t′, s′)) is a Gaussian r.v. then there exists a constant Cm,T such
that

E(|W (t, s)−W (t′, s′)|2m) ≤ Cm,T (|t− t′|m + |s− s′|m), ∀ t, t′, s, s′ ∈ [0, T ].
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Therefore by the Kolmogorov criterion the process (W (s, t), s, t ≥ 0) has an a.s.
continuous modification. The same holds for (W (t1, . . . , td), t1, . . . , td ≥ 0). Now, if
ϕ ∈ C∞c (Rd), then

W (ϕ) =

∫
Rd
ϕ(x)W (dx) = (−1)d

∫
Rd

∂dϕ

∂x1 · · · ∂xd
(x)W ([0, x]) dx,

where [0, x] := [0, x1]×· · ·× [0, xd]. This expression gives a measurable modification
C∞c (Rd) 3 ϕ 7→ W (ϕ)(ω), for P-a.e. ω, of the white noise.

2.3 The stochastic heat equation

Let us now give some results on the stochastic heat equation

∂u

∂t
=

1

2

∂2u

∂x2
+ Ẇ ,

u(t, 0) = u(t, 1) = 0

u(0, x) = u0(x), x ∈ [0, 1]

(2.3.1)

which has already appeared in (4.1.4) above. We recall that Ẇ (t, x) is a space-time
white-noise as in section 2.2.6 above.

For the general theory of SPDEs, see [15, 16].

2.3.1 The deterministic heat equation

Let us start from the heat equation without noise:

∂v

∂t
=

1

2

∂2v

∂x2
,

v(t, 0) = v(t, 1) = 0

v(0, x) = v0(x), x ∈ [0, 1]

(2.3.2)

where v0 ∈ L2(0, 1). We set for all k ≥ 1:

ek(x) :=
√

2 sin(kπx), x ∈ [0, 1]. (2.3.3)

We recall that {ek}k≥1 is a complete orthonormal basis of L2(0, 1). Notice that
{ek}k≥1 is a complete basis of eigenvectors of the second derivative with homoge-
neous Dirichlet boundary conditions:

d2

dx2
ek = −(πk)2ek, ek(0) = ek(1) = 0, k ≥ 1.

Setting

D(A) =

{
f ∈ L2(0, 1) :

∑
k≥1

k4〈ek, f〉2L2(0,1) < +∞

}
.
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Af = −
∑
k≥1

(kπ)2

2
〈ek, f〉 ek, f ∈ D(A),

we obtain a closed operator in L2(0, 1) extending
1

2

∂2

∂x2
on C2

c (0, 1). The solution

of the heat equation (2.3.2) is therefore

v(t, x) =
∑
k≥1

e−t
(kπ)2

2 〈ek, v0〉 ek(x), t > 0, x ∈ [0, 1].

Since |ek(x)| ≤
√

2 and
∑
k≥1

e−t
(kπ)2

2 km < +∞ for all m ∈ N, the above series

converges uniformly on [0, 1] together with all its partial derivatives in t and x. One
can write more compactly, using the semigroup notation,

vt := v(t, ·) = etAv0, t ≥ 0.

2.3.2 Fourier expansion of (2.3.1)

Let us consider the scalar product of both terms of (2.3.1) and ek. Setting ukt :=
〈u(t, ·), ek〉 we obtain  duk = −(kπ)2

2
uk dt+ dW k

t ,

uk0 = 〈u0, ek〉

where

W k
t :=

∫
[0,t]×[0,1]

ek(x)W (ds, dx).

It is easy to see that (W k
t , t ≥ 0)k≥1 is an independent sequence of Brownian motions.

Setting λk = (πk)2/2, we obtain that (ukt , t ≥ 0)k≥1 is an independent family of
Ornstein-Uhlenbeck processes, i.e.

ukt = e−λktuk0 +

∫ t

0

e−λk(t−s) dW k
s , t ≥ 0, (2.3.4)

or, equivalently,

ukt = uk0 − λk
∫ t

0

uks ds+W k
t , t ≥ 0, (2.3.5)

An important remark is the following:∑
k

1

λk
=
∑
k

2

(πk)2
< +∞.

Since ukt ∼ N
(
e−λktuk0,

1

2λk
(1− e−2λkt)

)
, then

E

∥∥∥∥∥
m∑

k=n+1

ukt ek

∥∥∥∥∥
2
 =

m∑
k=n+1

[
e−2λkt

(
uk0
)2

+
1

2λk
(1− e−2λkt)

]
→ 0
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as n,m→ +∞. Therefore the series

ut :=
+∞∑
k=1

ukt ek

converges in L2(Ω;L2(0, 1)) to a well-defined r.v. ut taking values in L2(0, 1). For-
mula (2.3.4) becomes

ut = etAu0 +

∫ t

0

e(t−s)A dWs, u0 ∈ L2(0, 1), t ≥ 0, (2.3.6)

while formula (2.3.5) becomes

〈ut, h〉 = 〈u0, h〉+
1

2

∫ t

0

〈us, h′′〉 ds+ 〈Wt, h〉, t ≥ 0, h ∈ D(A), (2.3.7)

which can be interpreted as a weak formulation of

du =
1

2

∂2u

∂x2
dt+ dW.

2.3.3 Path continuity

Until now we have considered ut as a L2(0, 1)-valued random variable. In fact,
almost sure continuity of (u(t, x) : t ≥ 0, x ∈ [0, 1]) is a fundamental property of
SPDEs with one space-dimension and space-time white noise; in particular this is
crucial for the definition of SPDEs with reflection in the following chapters.

We start by noting that if x ∈ [0, 1] is fixed, then

un(t, x) :=
n∑
k=1

ukt ek(x) =
n∑
k=1

〈ut, ek〉 ek(x) ∈ R

is well defined for all n ≥ 1, t ≥ 0. Let us suppose that u0 = 0, so that uk0 := 0 for
all k ≥ 1. Then

E
(
|un(t, x)− um(t, x)|2

)
=

m∑
k=n+1

E
((
ukt
)2
)
e2
k(x) ≤

m∑
k=n+1

∫ t

0

e−2λk(t−s) ds

=
m∑

k=n+1

1− e−2λkt

2λk
→ 0

as n,m→ +∞. Therefore, there exists a well defined stochastic process (u(t, x), t ≥
0, x ∈ [0, 1]), limit in L2(P) of (un(t, x), t ≥ 0, x ∈ [0, 1]) as n→∞.

Notice that (u(t, x) − u(s, y)) is a real Gaussian variable with 0 mean; in order
to estimate its moments, it is enough to compute the second one, i.e. it is enough
to prove that for some constant C

E
(
|u(t, x)− u(s, y)|2

)
≤ C

(
|t− s|1/2 + |x− y|

)
, ∀ t, s ≥ 0, x, y ∈ [0, 1].
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Since (u(t, x)− u(s, y)) is the limit in L2(P) of (un(t, x)− un(s, y)) as n→∞, then
it is enough to estimate the variance of (un(t, x) − un(s, y)) uniformly in n. First
we have

|un(t, x)− un(s, y)|2 ≤ 2 |un(t, x)− un(s, x)|2 + 2 |un(s, x)− un(s, y)|2.

Now:

E
(
|un(s, x)− un(s, y)|2

)
= E

∣∣∣∣∣
n∑
k=1

uks (ek(x)− ek(y))

∣∣∣∣∣
2


=
n∑
k=1

1− e−2λks

2λk
(ek(x)− ek(y))2 ≤

n∑
k=1

1 ∧ (|x− y| k)2

k2

≤ 1 ∧ |x− y|+
∫ ∞

1

1 ∧ (|x− y| k)2

k2
dk ≤ 3 |x− y|.

With similar computations:

E
(
|un(t, x)− un(s, x)|2

)
=

n∑
k=1

e2
k(x)

[
(1− e−λk(t−s))2 1− e−2λks

2λk
+ e−2λks

1− e−2λk(t−s)

2λk

]
≤ 2

n∑
k=1

1 ∧ (|t− s| k2)

k2
≤ 2

(
1 ∧ |t− s|+

∫ ∞
1

1 ∧ (|t− s| k2)

k2
dk

)
≤ 6

√
|t− s|.

We have used the fact that

(1− e−λk(t−s))2 ≤ (1 ∧ [λk(t− s)])2 ≤ 1 ∧ [λk(t− s)].

Passing to the limit in n→∞, we have.

Lemma 2.3.1. For all m ∈ N there exists a constant Cm < +∞ such that

E
(
|u(t, x)− u(s, y)|2m

)
≤ Cm

(
|t− s|m/2 + |x− y|m

)
, ∀ t, s ≥ 0, x, y ∈ [0, 1].

By the Kolmogorov criterion, we obtain that there exists an a.s. continuous
modification of v, that we call again v, such that in particular for all ε ∈ ]0, 1[ and
T < +∞

sup
x,y∈[0,1], t,s∈[0,T ]

|u(t, x)− u(s, y)|
|t− s| 1−ε4 + |x− y| 1−ε2

< +∞, a.s.

Proposition 2.3.2. There exists an a.s. continuous stochastic process (u(t, x), t ≥
0, x ∈ [0, 1]) such that for all t ≥ 0, u(t, ·) = ut in L2(0, 1), a.s.

Finally, continuity of u0 = (u0(x), x ∈ [0, 1]) implies continuity of (etAu0(x), t ≥
0, x ∈ [0, 1]), while if u0 is merely in L2(0, 1), then we have continuity of (etAu0(x), t
> 0, x ∈ [0, 1]).
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2.3.4 The invariant measure

Since ut can be written as a sequence of independent O.U. processes, it is easy
to extend properties from the single processes to ut. For instance, the unique
probability invariant measure of the sequence is necessarily ⊗+∞

k=1 µλk , which means
that the only probability invariant measure of (ut)t≥0 is the distribution of

β :=
+∞∑
k=1

1

πk
ek Zk ∈ L2(0, 1),

where (Zk)k≥1 is an i.i.d. sequence of N (0, 1) variables. Notice that

E (βx βy) =
+∞∑
k=1

1

(πk)2
ek(x) ek(y), x, y ∈ [0, 1].

Is it possible to compute explicitly this covariance function? Notice that for h ∈
L2(0, 1) we have

f := (−2A)−1h =
+∞∑
k=1

1

2λk
〈h, ek〉 ek =

+∞∑
k=1

1

(πk)2
〈h, ek〉 ek.

Moreover, f is the (unique) solution of the equation
−d

2f

dx2
= h,

f(0) = f(1) = 0,

A trite computation yields

f(x) =

∫ 1

0

(x ∧ y − xy)h(y) dy, x ∈ [0, 1].

Therefore

E (βx βy) =
+∞∑
k=1

1

(πk)2
ek(x) ek(y) = x ∧ y − xy, x, y ∈ [0, 1],

which is the covariance function of a Brownian bridge on [0, 1]: βx := Bx − xB1,
where B is a BM.

2.3.5 The Dirichlet form

Proposition 2.3.3. The solution of (2.3.1) is the Markov process in L2(0, 1) as-
sociated with the Dirichlet form closure of

E(u, v) =
1

2

∫
H

〈∇u,∇v〉H dµ, u, v ∈ C1
b (H).
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It is well-known that the invariant measure µ is the law of a Brownian bridge
(βx)x∈[0,1]; moreover the covariance function

E(βx βy) = x ∧ y − xy, x, y ∈ [0, 1]

is associated with the elliptic equation
−d

2f

dx2
= h,

f(0) = f(1) = 0,

since we have f(x) =

∫ 1

0

(x ∧ y − xy)h(y) dy. Recall now the explicit formula

(2.1.4) for the density of a Gaussian measure in Rd with mean 0 and covariance
Q = (−2A)−1. In our case, we have just proven that Qh = f and therefore

−2Af = −d
2f

dx2
, 〈Af, f〉 = −1

2

∫ 1

0

(f ′)2dx, f(0) = f(1) = 0.

This yields the formal expression for the law of the invariant measure of (2.3.1)

µ(df) =
1

2
exp(−U(f)) df, U(f) =


1

2

∫ 1

0

(f ′)2dx, if f(0) = f(1) = 0,

+∞ otherwise

It is easy to see that

〈∇U(f), α〉 = lim
ε→0

1

ε
(U(f + εα)− U(f)) =

∫ 1

0

f ′α′ dx = −
∫ 1

0

f ′′α dx = 〈−f ′′, α〉

i.e. ∇U(f) = −f ′′ and equation (2.3.1) can be written as a gradient system in
L2(0, 1)

du = −1

2
∇U(u) dt+ dW.

2.3.6 The stochastic convolution

There are a lot of ways to define the stochastic convolution see [61] The process
Z defined in (2.3.6) above is called the stochastic convolution. We recall that the
function

gt(x, y) :=
∞∑
k=1

e−t(πk)2/2 ek(x) ek(y), t > 0, x, y ∈ [0, 1], (2.3.8)

where ek is as in (2.3.3), is C∞ for (t, x, y) ∈ ]0,+∞[×[0, 1] × [0, 1], and is called
the fundamental solution of the heat equation on [0, 1] with Dirichlet boundary
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condition. Indeed, g satisfies

∂g

∂t
=

1

2

∂2g

∂x2
,

gt(0, y) = gt(1, y) = 0,

g0(x, y) = δ(x− y).

(2.3.9)

Indeed, for all t > 0 the series in (2.3.8) converges uniformly with all partial deriva-
tives w.r.t. x and by (2.3.3), for t > 0

∂g

∂t
(t, x) =

∂

∂t

∞∑
k=1

e−t(πk)2/2 ek(x) ek(y) = −
∞∑
k=1

(πk)2

2
e−t(πk)2/2 ek(x) ek(y)

=
1

2

∂2

∂x2

∞∑
k=1

e−t(πk)2/2 ek(x) ek(y) =
1

2

∂2g

∂x2
(t, x)

and for t = 0 and any f, g ∈ L2(0, 1)∫
[0,1]2

f(y) g(x) g0(x, y) dx dy =

∫
[0,1]2

f(y) g(x)
∞∑
k=1

ek(x) ek(y) dx dy

=
∞∑
k=1

〈g, ek〉 〈f, ek〉 = 〈f, g〉 =

∫
[0,1]

f(x) g(x) dx =

∫
[0,1]2

f(y) g(x) δ(x− y) dx dy.

If we use the fundamental solution g of the heat equation defined in (2.3.8) and the
space-time white noise representation W (ds, dy) in terms of the Brownian sheet,
then from (2.3.6) we obtain yet another expression for z,

z(t, x) =

∫ 1

0

gt(x, y)u0(y) dy +

∫ t

0

∫ 1

0

gt−s(x, y)W (ds, dy).

2.4 Mosco convergence

In chapters 4 and 5 we prove convergence in law of stationary processes associated
with a sequence of Dirichlet forms. To this aim, we use the technique of Mosco-
convergence in order to obtain convergence of the transition semigroups.

We recall that Mosco [48] introduced a version of the classical Γ-convergence for
bilinear forms, defined on the same Hilbert space, which turns out to be equivalent
to the convergence of the associated resolvent operators. The original motivation
was to study homogeneization of partial differential equations with oscillating coef-
ficients in a so-called composite medium.

Later, Kuwae and Shioya have [43] extended the study of Mosco convergence
for Dirichlet forms defined on different Hilbert spaces. More generally the authors
present a systematic and functional analytic framework of some topologies on the
set of spectral structures, covering, for example, the behaviour of the spectrum of
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Laplacian operator under a pertubation of the topology of the underlying Rieman-
nian manifold.

Recently, Andres and von Renesse [4] have given a stronger version of Kuwae
and Shioya’s theory, with the aim of constructing a system of interacting two sided
Bessel processes and showing that the associated empirical process converges to an
infinite-dimensional stochastic process (the Wasserstein Diffusion).

Let us now recall the main definition and results of this theory, which will play
an important rôle in the final chapters of this thesis. Let Eβn be the family of forms
defined on the whole Hn by

Eβ(u, v) := β〈u− βRβu, v〉n u, v ∈ Hn (2.4.1)

Where Rβ is the resolvent. These family is called the Deny-Yosida approximation.
We have

D(En) =

{
u ∈ Hn

∣∣∣∣ lim
β→+∞

Eβn (u, u) < +∞
}

En(u, u) = lim
β→+∞

Eβn (u, u) (2.4.2)

the last limit is non-decreasing as β → +∞. Moereover we have

Eβn (u, u) = min
v∈Hn

{
En(v, v) + β‖u− v‖2

n

}
= En(βRβu, βRβu) + β‖u− βRu‖n (2.4.3)

Definition 2.4.1. A sequence of Hilbert spaces Hn converges to a hilbert H if there
is a family of linear maps {Φn : H→ Hn} such that:

lim
n→+∞

‖Φn(x)‖Hn = ‖x‖H, x ∈ H (2.4.4)

A sequence (xn)n, xn ∈ Hn, converges strongly to a vector x ∈ H if there exists a
sequence (x̃n)n in H such that x̃n → x in H and

lim
n→+∞

lim
m→+∞

‖Φm(x̃n)− xm‖Hm = 0 (2.4.5)

and (xn)n converge weakly to x if

lim
n→+∞

〈xn, zn〉Hn = 〈x, z〉H (2.4.6)

for any z ∈ H and sequence (zn)n, zn ∈ Hn, such that zn → z strongly.

Now we can give the definition of Mosco-convergence of Dirichlet forms. This
concept is useful for our purposes, since it was proved in [43] to imply the conver-
gence in a strong sense of the associated resolvents and semigroups.

Definition 2.4.2. If En is a quadratic form on Hn, then En Mosco-converges to the
quadratic form E on H if the two following conditions hold:

Mosco I. For any sequence xn ∈ Hn, converging weakly to x ∈ H,

E(x, x) ≤ lim
n→+∞

En(xn, xn). (2.4.7)
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Mosco II. For any x ∈ H, there is a sequence xn ∈ Hn converging strongly to x ∈ H such
that

E(x, x) = lim
n→+∞

En(xn, xn). (2.4.8)

Now we can give the following

Definition 2.4.3. We say that a sequence of bounded operarors (Bn)n on Hn, con-
verges strongly to an operator B on H, if Hn 3 Bnun → Bu ∈ H strongly for all
sequence un ∈ Hn converging strongly to u ∈ H.

Then Kuwae and Shioya have proved in [43] the following equivalence between
Mosco convergence and strong convergence of the associated resolvent operators.

Theorem 2.4.4 (Mosco [48], Kuwae and Shioya [43]). The sequence (Rn
β)n conver-

ges strongly for all β > 0 to Rβ, if and only if Mosco convergence holds

Proof. • We first prove that strong convergence of the resolvent implies Mosco
convergence. Let u in H and un (resp. ũn) which converges weakly (resp.
strongly) to u. Then we have

En(un) ≥ Eβn (un)

≥ Eβn (ũn) + 2β〈ũn − βRn
βũn, vn − ũn〉n

lim inf
n
E(un) ≥ Eβ(u), β > 0 (2.4.9)

so we get Mosco 1 when β → +∞. Let (un)n converges strongly to u then

E(u, u) ≥ lim
β
Eβ(u, u)

≥ lim
β

lim
n
Eβn (un, un) (2.4.10)

By a diagonal argument we can choose a sequence (βn) such that

E(u, u) ≥ lim
n
Eβnn (un, un)

suppose now that vn = βnR
n
βnun where (vn)n, then

Eβnn (un, un) = En(vn, vn) + βn‖un − vn‖2
n (2.4.11)

we have the result taking the limsup.

• We suppose now that Mosco convergence holds. We have to prove that for
every u ∈ H and every sequence (un)n tending strongly to u, the sequence
vn := Rn

βun converges strongly to v := Rβu. The norm of Rn
β is bounded by

β−1, there is a subsequence of (vn)n, still detoned by (vn)n which converges
weakly to some ṽ ∈ H (lemma 2.2 of [43]). By Mosco II for w ∈ H there is a
sequence (wn)n such that En(wn, wn)→ E(w,w), because vn is a minimizers of
w 7→ En(w,w) + β〈w,w〉n − 2〈w, un〉n.

En(vn, vn) + β〈vn, vn〉n − 2〈vn, un〉n ≤ En(wn, wn) (2.4.12)

+β〈wn, wn〉n − 2〈wn, un〉n

50



2.4. MOSCO CONVERGENCE

By Mosco I we have

E(ṽ, ṽ) + β〈ṽ, ṽ〉 − 2〈ṽ, u〉 ≤ E(w,w) + β〈w,w〉 − 2〈w, u〉

So ṽ = v, and weak convergence of the resolvent holds. Let w ∈ D(E) and
wn → w strongly such that En(wn, wn)→ E(w,w) then the resolvent inequality
for Rn

β yields

En(vn, vn) + β‖vn − un/β‖2
n ≤ En(wn, wn) + β‖wn − un/β‖2

n (2.4.13)

Taking the limit for n→ +∞,

lim sup
n

β‖vn − un/β‖2
n ≤ E(w,w)− E(v, v) + β‖w − u/β‖2

We may let w → u ∈ D(E)

lim sup
n
‖vn − un/β‖2

n ≤ ‖v − u/β‖2

Due to the lower semicontinuity of the norm we have the equality lim
n
‖vn −

un/β‖2
n = ‖v − u/β‖2. Weak convergence plus convergence in norms provide

the strong convergence (lemma 2.3 of [43]).

Theorem 2.4.5 (Andres and von Renesse [4]). Mosco I and Mosco II are equivalent
to Mosco I and the following hypothesis, noted Mosco II’:

Mosco II’ there is a core K ⊂ D(E) such that for all u ∈ K, there is a sequence (un)n with
un ∈ D(En) which converges strongly to u such that E(u, u) = lim

n
En(un, un)

Proof. We saw previously that the strong convergence of the resolvent provides
Mosco I and Mosco II, it is obvious that Mosco II’ follows from Mosco II, indeed if
u ∈ D(E) and (un)n as in Mosco II then there is m ∈ N such that un must be in
D(En), for n ≥ m.

To prove the reciprocal, we remark that one could reproduce the second part of
the previous proof in taking w ∈ K in the inequalities (2.4.12) and (2.4.13) and use
the core property of K. �
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CHAPTER 3

REFLECTED RANDOM STRING IN A CONVEX DOMAIN

3.1 Introduction

In this chapter we want to prove well-posedness of stochastic partial differential
equations driven by space-white noise and reflected on the boundary of a convex
region of Rd. More precisely, we consider a convex open domain O in Rd with a
smooth boundary ∂O and a proper l.s.c. convex function ϕ : O 7→ R, and we study
solutions (u, η) of the equation

∂u

∂t
=

1

2

∂2u

∂θ2
+ n(u(t, θ)) · η(t, θ)− 1

2
∂ϕ0(u(t, θ)) + Ẇ (t, θ)

u(0, θ) = x(θ), u(t, 0) = a, u(t, 1) = b

u(t, θ) ∈ O, η ≥ 0, η({(t, θ) |u(t, θ) /∈ ∂O}) = 0

(3.1.1)

where u ∈ C
(
[0, T ]× [0, 1];O

)
and η is a locally finite positive measure on ]0, T ]×

[0, 1]; moreover a, b ∈ O are some fixed points, Ẇ is a vector of d independent
copies of a space-time white noise and for all y ∈ ∂O we denote by n(y) the inner
normal vector at y to the boundary ∂O; finally, ∂ϕ0 : O 7→ Rd is the element of
minimal norm in the subdifferential of φ and the initial condition x : [0, 1] 7→ O is
continuous.

Solutions u(t, θ) of equation (3.1.1) take values in the convex closed set O and
evolve as solutions of a standard SPDE in the interiorO, while the reflection measure
η pushes u(t, θ) along the inner normal vector n(u(t, θ)), whenever u(t, θ) hits the
boundary. The condition η({(t, θ) |u(t, θ) /∈ ∂O}) = 0 means that the reflection
term acts only when it is necessary, i.e. only when u(t, θ) ∈ ∂O.

The chapter is organized as follows. In section 2 we give a precise definition of
solutions to equation (3.1.1), together with some notation. In section 4 we introduce
the approximating equation and recall the stability results already mentioned above.
In section 5 we prove path continuity of the candidate solution. In section 6 we state
the integration by parts formula we need. In section 7 we prove existence of weak
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solutions of equation (3.1.1), and in section 8 pathwise uniqueness and existence
of strong solutions. Finally, in section 9 we prove some properties of the reflection
measure η.

The content of this chapter has been published in [8].

3.2 Notations and setting

We first discuss the notion of solution of (3.1.1). We consider a convex l.s.c. ϕ :
O 7→ [0,+∞] such that ϕ < +∞ on O. We denote by D(ϕ) := {ϕ < +∞} the
domain of ϕ and by ∂ϕ the subdifferential of ϕ:

∂ϕ(y) :=
{
z ∈ Rd : ϕ(w) ≥ ϕ(y) + 〈z, w − y〉, ∀w ∈ O

}
, y ∈ D(ϕ).

The set ∂ϕ(y) is non-empty, closed and convex in Rd, and therefore it has a unique
element of minimal norm, that we call ∂0ϕ(y). Notice that we do not assume
smoothness of y 7→ ∂0ϕ(y). We can also allow ∂0ϕ(y) to blow up as y → ∂O, but
not too fast. Indeed, throughout the chapter we assume that ∂0ϕ : D(ϕ) 7→ Rd

satisfies ∫
O

|∂0ϕ(y)|2 dy < +∞ (3.2.1)

where dy denotes the Lebesgue measure on O. This assumption is not optimal,
see Remark 3.2.6 below, but already covers interesting cases, like logarithmic diver-
gences or polynomial divergences with small exponent, see [18] or [65] for related
studies in convex subsets of R.

For two vectors a, b ∈ Rd, we denote by a · b their canonical scalar product. We
consider the Hilbert space H := L2([0, 1];Rd), endowed with the canonical scalar
product 〈·, ·〉 and norm ‖ · ‖,

〈h, k〉 :=

∫ 1

0

h(θ) · k(θ) dθ, ‖h‖2 := 〈h, h〉, h, k ∈ H.

Definition 3.2.1. Let x ∈ C
(
[0, 1];O

)
. An adapted triple (u, η,W ), defined on a

complete filtered probability space (Ω,F , (Ft)t,P), is a weak solution of (3.1.1) if

• a.s. u ∈ C(]0, T ]× [0, 1];O) and E[‖ut − x‖2]→ 0 as t ↓ 0

• a.s. η is a positive measure on ]0, T ]× [0, 1] such that η([ε, T ]× [0, 1]) < +∞
for all 0 < ε ≤ T

• a.s. the function (t, θ) 7→ |∂0ϕ(u(t, θ))| is in L1
loc([ε, T ]× ]0, 1[) for all 0 < ε ≤ T

• W = (W 1, . . . ,W d) is a vector of d independent copies of a Brownian sheet

• for all h ∈ C2
c ((0, 1);Rd) and 0 < ε ≤ t

〈ut − uε, h〉 =
1

2

∫ t

ε

〈h′′, us〉 ds+

∫ t

ε

∫ 1

0

h(θ) · n(u(s, θ)) η(ds, dθ)

− 1

2

∫ t

ε

〈h, ∂0φ(us)〉 ds+

∫ t

ε

∫ 1

0

h(θ)W (ds, dθ)

(3.2.2)
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• a.s. the support of η is contained in {(t, θ) : u(t, θ) ∈ ∂O}, i.e.

η({(t, θ) |u(t, θ) /∈ ∂O}) = 0. (3.2.3)

A weak solution (u, η,W ) is said to be a strong solution if (u, η) is adapted to the
natural filtration of W .

We say that pathwise uniqueness holds for equation (3.1.1) if any two weak
solutions (u1, η1,W ) and (u2, η2, Z) coincide. In this article we want to prove the
following result:

Theorem 3.2.2. For all x ∈ C
(
[0, 1];O

)
, the problem (3.1.1) enjoys pathwise uni-

queness of weak solutions and existence of a strong solution.

Next, we want to study some properties of the reflection measure η. We recall
that its support is contained in the contact set, i.e. in the set {(t, θ) : u(t, θ) ∈ ∂O}.
The next result shows that η is concentrated on a subset S of the contact set, such
that each section S ∩ ({s} × [0, 1]), s ≥ 0, contains at most one point. Moreover,
u(s, ·) hits the boundary ∂O at this point and not elsewhere.

Theorem 3.2.3. A.s. the reflection measure η is supported by a Borel set S ⊂
]0,+∞[×[0, 1], i.e. η(Sc) = 0, such that for all s ≥ 0, the section {θ ∈ [0, 1] :
(s, θ) ∈ S} has cardinality 0 or 1. Moreover, if r(s) ∈ S ∩ ({s} × [0, 1]) then

u(s, r(s)) ∈ ∂O, u(s, θ) /∈ ∂O, ∀θ ∈ [0, 1] \ {r(s)}.

This property is analogous to that discovered in [64] for reflected SPDEs in
[0,+∞). We recall that in this one-dimensional setting, sections of the contact set
have been studied in detail in [14]. It would be very interesting to prove the same
kind of results in our multi-dimensional setting.

3.2.1 Notations

We fix now some notations which will be used throughout the chapter. Let E :=
H [0,∞) and define the canonical process Xt : E 7→ H, t ≥ 0, Xt(e) := e(t), and the
associated natural filtration

F0
∞ := σ{Xs, s ∈ [0,∞)}, F0

t := σ{Xs, s ∈ [0, t]}, t ∈ [0,+∞].

We denote by µ the law of the Brownian bridge from a to b in Rd. Let us define

K := {x ∈ L2([0, 1];Rd) : xθ ∈ O, for all θ ∈ [0, 1]}

and for all x ∈ H = L2([0, 1];Rd) we define U : H 7→ [0,+∞] as follows

U(x) :=


∫ 1

0

ϕ(xθ) dθ, if x ∈ K

+∞, otherwise.
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Lemma 3.2.4. The probability measure ν on K

ν(dx) :=
1

Z
exp(−U(x))µ(dx). (3.2.4)

is well defined, i.e. µ(K) > 0 and Z := µ(e−U) ∈ ]0, 1].

We note that U is l.s.c. and convex. For the next Lemma, see [10, Chapter 2].

Lemma 3.2.5 (Yosida approximation). Let Φ : Rd 7→ R ∪ {+∞} be convex lower
semi-continuous, and ∂Φ be the subdifferential of Φ. Set for n ∈ N

Φn(x) := inf
y∈Rd

{
Φ(y) + n ‖x− y‖2

}
, x ∈ Rd.

Then

1. ∂Φn is n-Lipschitz continuous

2. ∀y ∈ D(Φ), Φn(y) ↑ Φ(y), as n ↑ +∞

3. ∀y ∈ D(∂Φn),

lim
n→+∞

∂Φn(y) = ∂0Φ(y), and |∂Φn(y)| ↑ |∂0Φ(y)| as n→ +∞

Then we define Un : H 7→ [0,+∞) as follows

Un(x) :=

∫ 1

0

Φn(xθ) dθ, if x ∈ H. (3.2.5)

Remark 3.2.6. The assumption (3.2.1) on φ is far from optimal. In fact, our
approach covers a more general class of non-linearity; indeed, the proof we give
below yields Theorems 3.2.2 and 3.2.3 under the assumption∫ ∫ 1−δ

δ

|∂0ϕ(xθ)|2 dθ ν(dx) < +∞, ∀δ ∈ (0, 1/2), (3.2.6)

see Lemma 3.7.2 below.

Finally, we need to introduce some function spaces. We denote by Cb(H) the
Banach space of all ϕ : H 7→ R being bounded and continuous in the norm of H,
endowed with the norm ‖ϕ‖∞ := sup |ϕ|. Moreover we denote by FC1 the set of all
functions F of the form

F (w) = f(〈l1, w〉, . . . , 〈ln, w〉), w ∈ H, (3.2.7)

with n ∈ N, li ∈ L2(0, 1) and f ∈ C1
b (Rn).

3.3 The approximating equation

Let us introduce the convex function Φ : Rd 7→ R ∪ {+∞}

Φ(y) :=

 ϕ(y), if y ∈ O

+∞, otherwise
(3.3.1)
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3.3. THE APPROXIMATING EQUATION

and its Yosida approximation Φn, defined as in Lemma 3.2.5. We introduce the
SPDE 

∂un
∂t

=
1

2

∂2un
∂θ2

− 1

2
∂Φn(un(t, θ)) + Ẇ (t, θ)

un(0, θ) = x(θ), un(t, 0) = a, un(t, 1) = b

(3.3.2)

By Lemma 3.2.5, ∂Φn is Lipschitz continuous, and therefore it is a classical result
that for any x ∈ H equation (3.3.2) has a unique solution un, which is moreover
a.s. continuous on ]0,∞[×[0, 1].

Equation (3.3.2) is a natural approximation of equation (3.1.1) and one expects
un to converge to u in some sense as n → ∞. A convergence in law indeed holds
and follows from a general result proven in [3], see the discussion in Theorem 3.4.2
below.

We denote by Pnx the law on E = H [0,∞) of (un(t, ·))t≥0, solution of (3.3.2). We
also define the probability measure

νn(dx) :=
1

Zn
exp(−Un(x))µ(dx), Un(x) :=

∫ 1

0

Φn(xθ) dθ, (3.3.3)

and the symmetric bilinear form (En,FC1)

En(F,G) :=
1

2

∫
〈∇F,∇G〉 dνn, F,G ∈ FC1. (3.3.4)

We denote by (P n
t )t≥0 the transition semigroup associated to equation (3.3.2):

P n
t ϕ(x) := Enx(ϕ(Xt)), ∀ϕ ∈ Cb(H), x ∈ H, t ≥ 0,

and the associated resolvent

Rn
λϕ(x) :=

∫ ∞
0

e−λt Enx [ϕ(Xt)] dt, x ∈ H, λ > 0.

The following result is well known, see [46] and [16].

Theorem 3.3.1.

1. (En,FC1) is closable in L2(νn): we denote by (En, D(En)) the closure.

2. (Pnx)x∈H is a Markov process, associated with the Dirichlet form (En, D(En)) in
L2(νn), i.e. for all λ > 0 and ϕ ∈ L2(νn), Rn

λϕ ∈ D(En) and:

λ

∫
H

Rn
λϕψ dνn + En(Rn

λϕ, ψ) =

∫
H

ϕψ dνn, ∀ψ ∈ D(En).

3. νn is the unique invariant probability measure of (P n
t )t≥0. Moreover, (P n

t )t≥0

is symmetric with respect to νn.

We recall an important property of equation (3.3.2): the associated transition
semigroup (P n

t )t≥0 is Strong Feller, i.e. P n
t maps bounded Borel functions into

bounded continuous functions for all t > 0. Indeed, P n
t satisfies for any bounded

Borel ϕ : H 7→ R

|P n
t ϕ(x)− P n

t ϕ(y)| ≤ ‖ϕ‖∞√
t
‖x− y‖H , x, y ∈ H, t > 0, (3.3.5)

see [13, Proposition 4.4.4].
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3.4 The Dirichlet Form

One of the main tools of this chapter is the Dirichlet form associated with equation
(3.1.1). Recall the definition (3.2.4) of the probability measure ν. Notice that µ is
Gaussian and U is convex. It follows that ν is log-concave, i.e. for all pairs of open
sets A,B ⊂ H we have:

log ν((1− t)A+ tB) ≥ (1− t) log ν(A) + t log ν(B)

where (1− t)A + tB := {(1− t)a + tb | a ∈ A, b ∈ B} for t ∈ [0, 1], see for instance
[2, Theorem 9.4.11]. Notice that νn defined in (3.3.3) above is also log-concave for
the same reason.

Let us consider now the bilinear form

E(F,G) :=
1

2

∫
〈∇F,∇G〉 dν, F,G ∈ FC1. (3.4.1)

Then by [3, Theorem 1.2]

Theorem 3.4.1. In the previous setting we have:

1. The bilinear form (E ,FC1) is closable in L2(µ) and its closure (E , D(E)) is a
Dirichlet form.

2. There is a Markov family (Px)x∈K of probability measures on the canonical path
space (K [0,+∞[,F , (Ft), (Xt)t≥0) associated with E.

3. for all x ∈ K, Px-a.s. (Xt)t>0 is continuous in H and Ex[‖Xt − x‖2] → 0 as
t→ 0.

Let us remark that clearly, since Un ↑ U , we have

νn ⇀ ν. (3.4.2)

A look at the Dirichlet forms (3.3.4) and (3.4.1) suggests that the laws of the
associated processes could also converge. In general this is false, and a number of
papers have been devoted to this problem, see for instance [43] and [41]. However, it
turns out that, in the setting of Dirichlet forms of the form (3.3.4) with log-concave
reference measures, (3.4.2) does imply convergence in law of the associated Markov
processes. This general stability property is one of the main results of [3]. By (3.4.2)
and [3, Theorem 1.5] we have that

Theorem 3.4.2 (Stability). For any sequence xn ∈ H converging to x ∈ K, we
have that

(a) Pnxn → Px weakly in H [0,+∞[ as n→∞,

(b) for all 0 < ε ≤ T < +∞, Pnxn → Px weakly in C([ε, T ];Hw),

(c) for all 0 ≤ T < +∞, Pnνn → Pν weakly in C([0, T ];Hw),

where Hw is H endowed with the weak topology and

Pnνn =

∫
Pny νn(dy), Pν =

∫
Py ν(dy).
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This stability result will be very useful to prove several properties of the solution
to (3.1.1). We notice that, by point (a) of Theorem 3.4.2,

lim
n→∞

P n
t ϕ(x) = Ptϕ(x) := Ex(ϕ(Xt)), ∀ t > 0, x ∈ K, ϕ ∈ Cb(H). (3.4.3)

This already allows to draw an important consequence of Thorem 3.4.2.

Proposition 3.4.3.

• The Markov semigroup (Pt)t≥0 associated with the Dirichlet form (E , D(E)) is
Strong Feller, i.e. for any bounded Borel ϕ : H 7→ R

|Ptϕ(x)− Ptϕ(y)| ≤ ‖ϕ‖∞√
t
‖x− y‖H , x, y ∈ H, t > 0. (3.4.4)

• The Markov process (Px)x∈K associated with (E , D(E)) satisfies the absolute
continuity condition: the transition probability pt(x, ·) = Px(Xt ∈ ·) is abso-
lutely continuous w.r.t. the invariant measure ν

pt(x, ·)� ν(·), x ∈ H, t > 0. (3.4.5)

Proof. The first point follows from (3.3.5) and the weak convergence result of The-
orem 3.4.2-(a). The second claim follows from the first. Indeed, let A ⊂ H be a
Borel set with ν(A) = 0. Then for all t > 0, by invariance ν(Pt1A) = ν(A) = 0, i.e.
Pt1A(x) = 0 for ν-a.e. x ∈ H. But by the Strong Feller property Pt1A is continuous
on K, therefore we obtain that Pt1A(x) = 0 for all x in the support of ν, which
coincides with K.

Finally, we give a result on existence and uniqueness of invariant measures of
(3.1.1).

Proposition 3.4.4. There exists a unique invariant probability measure of the Mar-
kov semigroup (Pt)t≥0, and it is equal to ν.

Proof. It is well known that νn is an invariant probability measure of the Markov
semigroup (P n

t )t≥0. The weak convergence of νn to ν, the convergence formula
(3.4.3) of P n

t to Pt and the Strong Feller property, uniform in n, of P n
t allow to

show that ν is invariant for (P n
t )t≥0.

To prove uniqueness, we use a coupling argument. Let m1 and m2 be two invari-
ant probability measures for (Pt)t≥0 and let q1 and q2 be K-valued random variables,
such that the law of qi is mi and {q1, q2,W} is an independent family. Let uni the
solution of equation (3.3.2) with uni (0, ·) = qi, i = 1, 2. Setting v := un1 (t, ·)−un2 (t, ·),
we have:

d

dt
‖v‖2 = −‖v′‖2 − 〈un1 (t, ·)− un2 (t, ·), ∂Φn(un1 (t, ·))− ∂Φn(un2 (t, ·))〉 ≤ −π2‖v‖2

since 〈p− q, ∂Φn(p)− ∂Φn(q)〉 ≥ 0 by convexity of Φn. Therefore for all n

‖un1 (t, ·)− un2 (t, ·)‖ ≤ e−π
2t/2‖q1 − q2‖, ∀t ≥ 0.
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Passing to the limit as n → ∞, we obtain by Theorem 3.4.2 that (un1 , u
n
2 ,W )

converges in law as n → ∞ to (u1, u2,W ), where (ui,W ) is a weak solution of
(3.1.1) with ui(0, ·) = qi, i = 1, 2. Then we obtain that

‖u1(t, ·)− u2(t, ·)‖ ≤ e−π
2t/2‖q1 − q2‖, ∀t ≥ 0.

Since the law of ui(t, ·) is equal to mi for all t ≥ 0, this implies m1 = m2.

3.4.1 Wasserstein gradient flows

In this paragraph we recall the results of [3] which yield Theorems 3.4.1 and 3.4.2.
Roughly speaking, in [3] and references cited therein, the authors study Markov
processes whose dynamics is given by a stochastic differential equation with non-
linear drift. The non-linearities are gradients of convex functionals, their works is
based on the interpretation of a Fokker-Planck equation as the steepest descent flow
of the relative entropy functional in the space of probability measures endowed with
the Wassestein distance. Let u, v be two probability measures on H, the relative
entropy functional with respect v is:

H(u|v) :=


∫
H

du

dv
log

du

dv
dv, u� v

+∞ otherwise

(3.4.6)

where
du

dv
is the Radon-Nikodym derivative. Let M(u, v) be the set of all coupling

between u and v on H ×H. The Wasserstein distance is defined by:

W2(u, v) := inf

{(∫
H×H

‖x− y‖2dµ(x, y)

) 1
2

: µ ∈M(u, v)

}
.

The set P2(H) :=

{
u ∈ P(H) :

∫
H

‖x‖2 du < +∞
}

endowed with this distance is a

complete and separable metric space whose convergence implies weak convergence.
If v is log-concave the relative entropy H(· | v) enjoys a crucial convexity property in
terms of Wasserstein distance, named the Strongly Displacement convexity property.
Indeed, for all u0, u1, and ν ∈ P2(H) there is a curve (ut)t∈[0,1] such that u0 = u0

and u1 = u1 and ∀t ∈ [0, 1] W 2
2 (ut, ν) ≤ (1− t)W 2

2 (u0, ν) + tW 2
2 (u1, ν)− (1− t)tW 2

2 (u1, u0),

H(ut|v) ≤ (1− t)H(u0|v) + tH(u1|v)

The Fokker-Planck equation, associated to the SPDE with a convex potential, has
an interpretation as a varational inequation in the Wasserstein space P2(H). We
illustrate this remark in a simple setting. Let (Xx

t )t be the solution of the following
equation

dXx
t = −∇V (Xx

t )dt+ dBt, Xx
0 = x (3.4.7)
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in Rk. If νxt is the law of Xx
t , and ut :=

∫
νxt du

0, then the Itô formula implies that

(ut)t solves the Fokker-Planck equation in the sense of distributions:

dut
dt

= ∆ut +∇ · (∇V ut).

It is proved in [3] that the solution (ut)t of (3.4.1) solves, still in the sense of
distributions, the following variational evolution inequation:

1

2

d

dt
W 2

2 (ut,m) +H(ut|v) ≤ H(m|v), ∀ν ∈ P2(H). (3.4.8)

This equation can be interpreted as a weak formulation of the differential inclusion

dut
dt
∈ −∇H(ut|v),

where ∇H(· | v) is the sub-differential of H(· | v). This is the steepest descent inter-
pretation of the Fokker-Planck equation. The solution of equation(3.4.8) is called
a gradient flow associated with H(·, v), the distance W2 and the initial data u0.
Conversely, the gradient flow of (3.4.8), with potential H(· | ν) and initial datum δx
is the probability kernel of the Markov processes associated with the Diriclet form
(3.4.1) (see [3, theorem 7.3]).

Let (vn)n be a sequence in P(H) of long-concave probabitlity on H weakly con-
verging to v. Let Hn be the smallest closed affine subspace of H containing the
support of vn, for all n, and satisfying:

c‖h‖H ≤ ‖h‖Hn ≤ ‖h‖H ∀h ∈ Hn, n ∈ N (3.4.9)

for some constant c > 0. We denote, moreover, by (unt )t the gradient flows associated
withH(·, vn) in P2(Hn), the distance W2,Hn , and with initial data un0 . So it is proved
in [3, theorem 6.1]

Theorem 3.4.5 (Stability of Gradient flows). In the above setting, if un0 converges
to u0 in P2(H), then, for all t ≥ 0, unt → ut in P2(H), where (ut)t is the gradient
flows associated with H(·|v) and initial datum u0.

3.5 Continuity properties of X

From the general theory of [3] and Theorem 3.4.1 above, one obtains only relatively
mild continuity path properties of X, namely continuity in t with values in L2(0, 1).
However, for the contact condition (3.2.3) to make sense, we need u(t, ·) = Xt to
be jointly continuous, since we need to evaluate u at points (t, θ) ∈ [0, T ] × [0, 1].
This is the content of the main result of this section

Proposition 3.5.1. For any x ∈ K, there exists a modification of u(t, ·) = Xt

which is Px-a.s. continuous on ]0,+∞[×[0, 1] and such that Ex[‖ut(·) − x‖2] → 0
as t→ 0.
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We start by proving continuity of stationary solutions of (3.1.1). To this aim, we
are going to use the approximating equations (3.3.2) and the convergence result of
Theorem 3.4.2-(c) for the stationary solutions. In particular, we are going to prove
tightness of (Pnνn)n in C([0, 1]× [0, T ]).

Lemma 3.5.2. The sequence (Pnνn)n is tight in C([0, 1]× [0, T ]).

Proof. We follow the proof of Lemma 5.2 in [19]. We first recall a result of [26, Th.
7.2 ch 3]. Let (P, d) be a Polish space, and let (Xα)α be a family of processes with
sample paths in C([0, T ];P ). Then the laws of (Xα)α are relatively compact if and
only if the following two conditions hold:

1. For every η > 0 and rational t ∈ [0, T ], there is a compact set Γtη ⊂ P such
that:

inf
α
P
(
Xα ∈ Γtη

)
≥ 1− η (3.5.1)

2. For every η, ε > 0 and T > 0, there is δ > 0 such that

sup
α

P (w(Xα, δ, T ) ≥ ε) ≤ η (3.5.2)

where w(ω, δ, T ) := sup{d(ω(r), ω(s)) : r, s ∈ [0, T ], |r − s| ≤ δ} is the modulus of
continuity in C([0, T ];P ).

We introduce the space H−1(0, 1), completion of L2(0, 1) w.r.t. the norm:

‖f‖2
−1 :=

∞∑
k=1

k−2 |〈f, ek〉L2(0,1)|2

where ek(r) :=
√

2 sin(πkr), r ∈ [0, 1], k ≥ 1, are the eigenvectors of the second
derivative with homogeneous Dirichlet boundary conditions at {0, 1}. Recall that
L2(0, 1) = H, in our notation. We denote by κ the Hilbert-Schmidt norm of the
inclusion H → H−1(0, 1), which by definition is equal in our case to

κ =
∑
k≥1

k−2 < +∞.

We claim that for all p > 1 there exists Cp ∈ (0,∞), independent of n, such that:(
E
[
‖Xn

t −Xn
s ‖

p
H−1(0,1)

]) 1
p ≤ Cp |t− s|

1
2 , t, s ≥ 0. (3.5.3)

To prove (3.5.3), we fix n > 0 and T > 0 and use the Lyons-Zheng decomposition,
see Theorem 2.1.22 above and e.g. [27, Th. 5.7.1], to write for t ∈ [0, T ] and h ∈ H:

〈h,Xn
t −Xn

0 〉H =
1

2
Mt −

1

2
(NT −NT−t),

where M , respectively N , is a martingale w.r.t. the natural filtration of Xn, respec-
tively of (Xn

T−t, t ∈ [0, T ]). Moreover, the quadratic variations are both equal to:
〈M〉t = 〈N〉t = t · ‖h‖2

H . By the Burkholder-Davis-Gundy inequality we can find
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cp ∈ (0,∞) for all p > 1 such that: (E [|〈Xn
t −Xn

s , ek〉|p])
1
p ≤ cp |t−s|

1
2 , t, s ∈ [0, T ],

and therefore(
E
[
‖Xn

t −Xn
s ‖

p
H−1(0,1)

]) 1
p ≤

∑
k≥1

k−2 (E [|〈Xn
t −Xn

s , ek〉|p])
1
p

≤ cp
∑
k≥1

k−2|t− s|
1
2‖ek‖2

L2(0,1) ≤ cp κ |t− s|
1
2 , t, s ∈ [0, T ],

and (3.5.3) is proved. Let us introduce now the norm ‖ · ‖W η,r(0,1) for η > 0, r ≥ 1

‖x‖rW η,r(0,1) =

∫ 1

0

|xs|rds+

∫ 1

0

∫ 1

0

|xs − xt|r

|s− t|rη+1
dt ds.

By stationarity(
E
[
‖Xn

t −Xn
s ‖

p
W η,r(0,1)

]) 1
p ≤

(
E
[
‖Xn

t ‖
p
W η,r(0,1)

]) 1
p

+
(
E
[
‖Xn

s ‖
p
W η,r(0,1)

]) 1
p

= 2

(∫
H

‖x‖pW η,r(0,1) dνn

) 1
p

≤ c

(∫
H

‖x‖pW η,r(0,1) dµ

) 1
p

(3.5.4)

since U ≥ Un ≥ 0, where c = Z−1/p. If r > p ≥ 1 the Jensen inequality for a
concave function gives us, for η ∈ (0, 1/2),(

E
(
‖β‖pW η,r(0,1)

)) r
p ≤ E

(
‖β‖pr +

∫ 1

0

∫ 1

0

|βs − βt|r

|s− t|rη+1
dt ds

)
≤ 1 +

∫ 1

0

∫ 1

0

|s− t|r(
1
2
−η)−1 dt ds < +∞.

The latter term is finite since µ is the law of a Brownian bridge. Let us now fix any
η ∈ (0, 1/2) and γ ∈ (0, 1) such that

γ >
1

1 + 2
3
η
.

From this it follows that α := γη − (1− γ) > 0 and therefore, if r > 0 is such that

r > max

{
2

1− γ
,

1

η − 3
2

1−γ
γ

}
,

then we obtain that

r

2
(1− γ) > 1,

1

d
:= γ

1

r
+ (1− γ)

1

2
< α.

Then by interpolation, see [1, Chapter 7],(
E
[
‖Xn

t −Xn
s ‖

p
Wα,d(0,1)

]) 1
p ≤

≤
(
E
[
‖Xn

t −Xn
s ‖

p
W η,r(0,1)

]) γ
p
(
E
[
‖Xn

t −Xn
s ‖

p
H−1(0,1)

]) 1−γ
p
.
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Since αd > 1, there exists β > 0 such that (α−β)d > 1. By the Sobolev embedding,

Cβ([0, 1]) ⊂ Wα,d(0, 1). Since
r

2
(1−γ) > 1, there is 1 < p < r such that

p

2
(1−γ) =

1 + ζ > 1, and by (3.5.3) and (3.5.4), we find that(
E
[
‖Xn

t −Xn
s ‖

p
Cβ([0,1])

])
≤ c̃ |t− s|

1−γ
2
p.

We consider now, as Polish space (P, d), the Banach space Cβ([0, 1]). By Kol-
mogorov’s criterion, see e.g. [58, Thm. I.2.1], we obtain that a.s. w(Xn, δ, T ) ≤
C δ

ζ
2p , with C ∈ Lp. Therefore by the Markov inequality, if ε > 0

P (w(Xn, δ, T ) ≥ ε) ≤ E [Cp] δ
ζ
2 ε−p,

and (3.5.2) follows for δ small enough.
Finally, since for all t ≥ 0 the law of Xn

t is νn, which converges as n→∞ weakly
in C([0, 1]), tightness of the laws of (Xn)n>0 in C([0, T ]× [0, 1]) and therefore (3.5.1)
follow.

Proof of Proposition 3.5.1. By Theorem 3.4.2, we have Pnνn ⇀ Pν in Cb([0, T ];Hw)
and by Lemma 3.5.2 the sequence (Pnνn)n is tight in C([0, T ] × [0, 1]), so that let-
ting n → +∞ we obtain Pν(C([0, T ] × [0, 1])) = 1. Now, we want to prove that
Px(C(]0, T ] × [0, 1])) = 1 for all x ∈ K. Let ε > 0. By (3.4.5), Px � Pν over the
σ-algebra σ{Xs, s ≥ ε}. Therefore Px(C([ε, T ]× [0, 1])) = 1 for all ε > 0.

3.6 An integration by parts formula

An important tool in the construction of a solution to equation (3.1.1) is the fol-
lowing integration by parts formula on the law µ of the Brownian bridge on the set
K of trajectories contained in O, proved in [38, Theorem 1.1]:∫

K

∂hF dµ =

∫
K

h′ · wF dµ−
∫
∂O

σ(dy)Ea,y,b [n(y) · h(Sw)F (w)] λ(y) (3.6.1)

where F ∈ FC1, h′ · w is the stochastic integral with respect w (= −〈h′′, w〉, if
h′′ ∈ L2(0, 1)), and

1. h is in the Cameron-Martin space of µ

H1
0 =

{
h ∈ C0 |h0 = h1 = 0, ht =

∫ t

0

ḣs ds, ḣ ∈ L2(0, 1)

}
2. Pa,y,b is the law of two independent Brownian motions put together back to

back at their first exit time of O, across y. More precisely, let B and B̂ be two
independent Brownian motion such that B0 = a and B̂0 = b. Let τ(B) and

τ(B̂) be the first exit times from O of B and B̂ respectively. Conditionally on

τ(B) + τ(B̂) = 1, Bτ(B) = y and B̂τ(B̂) = y, define the process X by

Xt =

{
Bt 0 ≤ t ≤ τ(B)

B̂τ(B)+τ(B̂)−t, τ(B) ≤ t ≤ τ(B) + τ(B̂)
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Then X has the law Pa,y,b. For w ∈ C([0, 1];O) we denote by Sw the first time
at which wSw ∈ ∂O, if there is any:

Sw := inf{s ∈ [0, 1] : ws ∈ ∂O}, inf ∅ := 0.

Then wSw = y for Pa,y,b-a.e. w.

3. σ is the surface measure on ∂O, ny is the inward normal vector

4. (pt(x, y))t>0,x,y∈O is the fundamental solution to the Cauchy problem

∂

∂t
− 1

2
∆ = 0

where ∆ is the Laplace operator on O with homogeneous Dirichlet boundary
conditions at ∂O, and

λ(y) :=
1

2p1(a, b)

∫ 1

0

∂

∂ny
pu(a, y)

∂

∂ny
p1−u(b, y) du, y ∈ ∂O.

To prove (3.6.1), the author of [38] assumes that ∂Ω is smooth, and in particular
that

1. for each t > 0 and y ∈ O, pt(·, y) is C1 up to the boundary

2. the restriction to ∂O of harmonic functions on O, and C1 up to the boundary,
are dense in C(∂O)

see [38, Remarks 1.1 and 1.2]. Under this assumption the law of (τ(B), Bτ(B)) is
given for a ∈ O by

Pa(τ(B) ∈ dt, Bτ(B) ∈ dy) =
1

2

∂

∂ny
pt(a, y)σ(dy) dt,

where ∂/∂ny denotes the normal derivative at y ∈ ∂O, see [38, formula (1.4)].
We want to deduce from (3.6.1) the following integration by parts formula for ν.

We set for all bounded Borel F : H 7→ R∫
F (w) Σ(y, dw) :=

1

Z
Ea,y,b

[
F (w) e−U(w)

]
λ(y). (3.6.2)

Proposition 3.6.1. For all F ∈ FC1∫
∂hF dν =−

∫
〈h′′, x〉F dν +

∫
〈h, ∂0ϕ〉F dν

−
∫
∂O

σ(dy)

∫
n(y) · h(Sw)F (w) Σ(y, dw)

(3.6.3)

Proof. If F ∈ FC1, then we apply (3.6.1) with the function Fe−Un , where Un is
defined in (3.2.5), and we obtain∫

K

∂hF e
−Un dµ =−

∫
K

〈h′′, x〉F e−Un dµ+

∫
K

〈h, ∂Φn〉F e−Un dµ

−
∫
∂O

σ(dy)Ea,y,b
[
n(y) · h(S)F e−Un

]
λ(y).

The dominated convergence theorem and Lemma 3.2.5 provide the desired result.
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3.7 Existence of weak solutions

By Theorem 3.4.1 we have a Markov process associated with the Dirichlet form
E defined by (3.4.1), but we still have to show that it is a solution of (3.1.1). In
particular, we have the process X, namely the function u, but not the reflection
measure η. The aim of this section is to construct η and obtain a weak solution of
equation (3.1.1), in particular to prove the following

Proposition 3.7.1. For all x ∈ K there exists a weak solution (u, η,W ) of equation
(3.1.1).

We are going to use Fukushima’s theory [27] and in particular the powerful cor-
respondence between positive continuous additive functionals (PCAF) and smooth
measures, i.e. positive measures which do not charge sets with zero capacity. This
theory is the content of [27, Chapters 4 and 5], to which we refer for all details.

We explain now why construction of a solution of (3.1.1) is not trivial, despite
all information we already have. Since the main difficulty comes from the reflection
term, let us suppose for simplicity that ϕ ≡ 0 and therefore, recalling the definition
(3.3.1) of Φ, we have Φ ≡ 0 on O and Φ ≡ +∞ on Rd \ O. Then the Yosida
approximation Φn of Φ is equal to

Φn(y) = nd2(y,O) := n inf
z∈O
‖y − z‖2, y ∈ Rd

and its differential is ∂Φn(y) = 2nd(y,O)
y − p(y)

|y − p(y)|
, where p(y) ∈ O minimizes the

distance from y, i.e. d(y,O) = ‖y − p(y)‖. Therefore, (3.3.2) becomes

∂un
∂t

=
1

2

∂2un
∂θ2

− nd(un, O)
un − p(un)

|un − p(un)|
+ Ẇ .

By Theorem 3.4.2, we already know that un converges weakly to a process u. In all
papers on reflected SPDEs with real values, one uses at some point that if O ⊂ R

is an interval, then
y − p(y)

|y − p(y)|
belongs to {±1} and is therefore locally constant. In

other words one can decompose the non-linearity

nd(un, O)
un − p(un)

|un − p(un)|
= η+

n − η−n

where η+
n , η

−
n ≥ 0 have well separated supports by the continuity of un. Moreover,

it is not too difficult to obtain bounds on the total variation η+
n , η

−
n , which yield

tightness and therefore convergence of η+
n , η

−
n as n → ∞, as has been done in a

number of papers, see [51, 21, 23, 19, 35, 18] among others.
On the other hand, if un ∈ Rd, then such a decomposition becomes impossible,

since the vector
y − p(y)

|y − p(y)|
varies continuously in Sd−1 and the process

t 7→ Ln(t) :=

∫ t

0

[
nd(un, O)

un − p(un)

|un − p(un)|

]
(s, θ) ds
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has no definite sign. Therefore, convergence of un yields some form of convergence
of Ln to a process L, but, without control on the total variation of Ln, we cannot
even guarantee that L has bounded variation, a necessary condition if we want to
obtain a measure η in equation (3.1.1). This is the main reason why the approaches
available in the literature do not work in our case.

3.7.1 Dirichlet forms and Additive Functionals

We recall here the basics of potential theory which are needed in what follows, refer-
ring to [27] and [46] for all proofs. By Theorem 3.4.1, the Dirichlet form (E , D(E))
has an associated Markov process, which is also a Hunt process. Therefore, by [46,
Theorem IV.5.1], the Dirichlet form is quasi-regular, i.e. it can be embedded into
a regular Dirichlet form; in particular, the classical theory of [27] can be applied.
Moreover, the important absolute continuity condition (3.4.5) allows in the end to
get rid of exceptional sets: see for instance [27, Theorem 4.1.2 and formula (4.2.9)].

We denote by Fλ∞ (resp. Fλt ) the completion of F0
∞ (resp. completion of F0

t in
Fλ∞) with respect to Pλ and we set F∞ := ∩λ∈P(K)Fλ∞, Ft := ∩λ∈P(K)Fλt , where
P(K) is the set of all Borel probability measures on K.

Capacity

Let A be an open subset of H, we define by LA := {u ∈ D(E) : u ≥ 1, ν-a.e. on
A}. Then we set

Cap(A) =

{
inf
u∈LA

E1(u, u), LA 6= ∅,
+∞ LA = ∅,

where E1 is the inner product on D(E) defines as follow

E1(u, v) = E(u, v) +

∫
H

u(x) v(x) dν, u, v ∈ D(E).

For any set A ⊂ H we let

Cap(A) = inf
B open,A⊂B⊂H

Cap(B)

A set N ⊂ H is exceptional if Cap(N) = 0.

Additive functionals

By a Continuous Additive Functional (CAF) of X, we mean a family of functions
At : E 7→ R+, t ≥ 0, such that:

(A.1) (At)t≥0 is (Ft)t≥0-adapted

(A.2) There exists a set Λ ∈ F∞ and a set N ⊂ K with Cap(N) = 0 such that
Px(Λ) = 1 for all x ∈ K \ N , θt(Λ) ⊆ Λ for all t ≥ 0, and for all ω ∈ Λ:
t 7→ At(ω) is continuous, A0(ω) = 0 and for all t, s ≥ 0:

At+s(ω) = As(ω) + At(θsω),

where (θs)s≥0 is the time-translation semigroup on E.
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Moreover, by a Positive Continuous Additive Functional (PCAF) of X we mean a
CAF of X such that:

(A.3) For all ω ∈ Λ: t 7→ At(ω) is non-decreasing.

Two CAFs A1 and A2 are said to be equivalent if

Px
(
A1
t = A2

t

)
= 1, ∀t > 0, ∀x ∈ K \N.

If A is a linear combination of PCAFs of X, the Revuz-measure of A is a Borel
signed measure Σ on K such that:∫

K

ϕdΣ =

∫
K

Ex
[∫ 1

0

ϕ(Xt) dAt

]
ν(dx), ∀ϕ ∈ Cb(K).

The Fukushima decomposition

Let h ∈ C2
0((0, 1);Rd), and set U : K 7→ R, U(x) := 〈x, h〉. By Theorem

3.4.1, the Dirichlet Form (E , D(E)) is quasi-regular. Therefore we can apply the
Fukushima decomposition, as it is stated in Theorem VI.2.5 in [46], p. 180: for any
U ∈ Lip(H) ⊂ D(E), we have that there exist an exceptional set N , a Martingale
Additive Functional of finite energy M [U ] and a Continuous Additive Functional of
zero energy N [U ], such that for all x ∈ K \N :

U(Xt)− U(X0) = M
[U ]
t +N

[U ]
t , t ≥ 0, Px − a.s. (3.7.1)

Smooth measures

We recall now the notion of smoothness for a positive Borel measure Σ on H, see
[27, page 80]. A positive Borel measure Σ is smooth if

1. Σ charges no set of zero capacity

2. there exists an increasing sequence of closed sets {Fk} such that Σ(Fn) < ∞,
for all n and lim

n→∞
Cap(K − Fn) = 0 for all compact set K.

By definition, a signed measure Σ on H is smooth if its total variation measure |Σ|
is smooth. That happens if and only if Σ = Σ1 −Σ2, where Σ1 and Σ2 are positive
smooth measures, obtained from Σ by applying the Jordan decomposition (see [27,
page 221]).

We recall a definition from [27, Section 2.2]. We say that a positive Radon
measure Σ on H is of finite energy if for some constant C > 0∫

|v| dΣ ≤ C
√
E1(v, v), ∀ v ∈ D(E) ∩ Cb(H). (3.7.2)

If (3.7.2) holds, then there exists an element U1Σ such that

E1(U1Σ, v) =

∫
H

v dΣ, ∀ v ∈ D(E) ∩ Cb(H).

Moreover, by [27, Lemma 2.2.3], all measures of finite energy are smooth.
Finally; by [27, Theorem 5.1.4], if Σ is a positive smooth measure, then there

exists a PCAF (At)t≥0, unique up to equivalence, with Revuz measure equal to Σ.
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3.7.2 The non-linearity

We prove first that a.s. the function (t, θ) 7→ |∂0ϕ(u(t, θ))| is in L1
loc([0, T ]× ]0, 1[)

for all T ≥ 0. We start by the following

Lemma 3.7.2. For all δ ∈ (0, 1/2)∫
ν(dx)

(∫ 1−δ

δ

|∂0ϕ(xθ)| dθ
)2

< +∞.

Proof. We have for all θ ∈ [δ, 1− δ], by the definition (3.2.4) of ν∫
ν(dx) |∂0ϕ(xθ)|2 ≤

1

Z

∫
µ(dx) |∂0ϕ(xθ)|2 1{xθ∈O}

=
1

C(θ)

∫
O

|∂0ϕ(z)|2 e−
|z|2

2θ(1−θ) dz

≤ 1

Cδ

∫
O

|∂0ϕ(z)|2 dz < +∞

by (3.2.1). Since this quantity does not depend on θ ∈ [δ, 1−δ], we have the desired
result by Hölder’s inequality:∫

ν(dx)

(∫ 1−δ

δ

|∂0ϕ(xθ)| dθ
)2

≤
∫
ν(dx)

∫ 1−δ

δ

|∂0ϕ(xθ)|2 dθ < +∞.

Now we obtain that

Proposition 3.7.3. The functional

Ct :=

∫ t

0

∫ 1−δ

δ

|∂0ϕ(u(s, θ))| dθ ds, t ≥ 0,

is a well-defined PCAF of X. In particular, the function (t, θ) 7→ |∂0ϕ(u(t, θ))| is
in L1

loc([0, T ]× ]0, 1[) for all T ≥ 0, Px-a.s. for all x ∈ K \N for some N ⊂ K with
Cap(N) = 0.

Proof. Setting

F : H 7→ [0,+∞], F (w) :=

∫ 1−δ

δ

|∂0ϕ(wθ)| dθ,

then by Lemma 3.7.2 F ∈ L2(ν) and moreover we can write Ct =

∫ t

0

F (Xs) ds,

t ≥ 0. Denoting

R1F (x) :=

∫ ∞
0

e−t Ex [F (Xt)] dt, x ∈ K,

then it is well known that

E1(R1F, v) =

∫
H

F v dν, ∀v ∈ D(E),

and therefore (3.7.2) holds. Then, F dν is smooth and the associated PCAF is
(Ct)t≥0.
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3.7.3 The reflection measure

We are going to apply (3.7.1) to Uh(x) := 〈x, h〉, x ∈ H, with h ∈ C2
c ((0, 1);Rd).

Clearly Uh ∈ Lip(H) ⊂ D(E). Our aim is to prove the following

Proposition 3.7.4. There are an exceptional set N and a unique measure η(ds, dθ)
on [0,+∞[×[0, 1] such that for all x ∈ K \N , Px-a.s. for all t ≥ 0

N
[Uh]
t =

=

∫ t

0

∫ 1

0

hθ · n(u(s, θ)) η(ds, dθ) +
1

2

∫ t

0

〈h′′, us〉ds−
1

2

∫ t

0

〈h, ∂0ϕ(us)〉ds
(3.7.3)

where h ∈ C∞c ((0, 1);Rd), and Supp(η) ⊂ {(t, θ) |u(t, θ) ∈ ∂O}.
The main tools of the proof are the integration by parts formula (3.6.3) and a

number of results from the theory of Dirichlet forms in [27]. We start by notic-
ing that, by applying (3.7.1) to Uh(x) := 〈x, h〉, x ∈ H, we obtain, recalling the
definition (3.6.2) of Σ(y, dw):

Lemma 3.7.5. The process N [Uh] is a linear combination of PCAFs of X, and its

Revuz measure is
1

2
Σh, where

Σh(dw) := (〈w, h′′〉 − 〈∂0φ(w), h〉)·ν(dw) +

∫
∂O

σ(dy)n(y)·h(Sw) Σ(y, dw). (3.7.4)

Proof. The integration by parts formula (3.6.1) can be rewritten as

E(Uh, v) =
1

2

∫
v(w) Σh(dw), ∀ v ∈ D(E) ∩ Cb(H).

By [27, Corollary 5.4.1], this implies that
1

2
Σh is the Revuz measure of N [Uh] and

that Σh is a smooth signed measure. By [27, Theorem 5.4.2], this implies that

N [Uh] is Px-a.s. a bounded variation process for all x ∈ K; moreover, the Jordan
decomposition Σh = Σh

1 − Σh
2 , with Σh

i positive measures concentrated on disjoint

sets, corresponds to a decomposition N [Uh] = Nh
1 −Nh

2 with Nh
i a PCAF of X with

Revuz measure
1

2
Σh
i .

Lemma 3.7.6. For all h ∈ C2
c ((0, 1);Rd), the total variation measure |Σh| of Σh is

equal to

|Σh|(dw) = |〈w, h′′〉 − 〈∂0φ(w), h〉| · ν(dw) +

∫
∂O

σ(dy) |n(y) · h(Sw)| Σ(y, dw).

Proof. Now, we can notice that ν(dw) and

∫
∂O

σ(dy) Σ(y, dw) are mutually singular,

since the former measure is concentrated on trajectories not hitting the boundary
∂O, and the latter on trajectories hitting ∂O. Therefore

|Σh|(dw) = |〈w, h′′〉 − 〈∂0φ(w), h〉| · ν(dw) +

∣∣∣∣∫
∂O

σ(dy)n(y) · h(S·) Σ(y, ·)
∣∣∣∣ (dw).
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Now, by considering the sets A := {w : n(w(Sw)) · h(Sw) ≥ 0} and B = {w :
n(w(Sw)) · h(Sw) < 0}, we can see that∣∣∣∣∫

∂O

σ(dy)n(y) · h(S·) Σ(y, ·)
∣∣∣∣ (dw) =

∫
∂O

σ(dy) |n(y) · h(Sw)| Σ(y, dw)

and we have the desired result.

By definition, the total variation measure |Σh| is smooth, and therefore so is the
measure ∫

∂O

σ(dy) |n(y) · h(Sw)| Σ(y, dw),

since it is non-negative and bounded above by |Σh|, for any h ∈ C2
c ((0, 1);Rd). Let

us now consider a non-negative g ∈ C2
c (0, 1) and a basis {e1, . . . , ed} of Rd. Then

the measure

Λg(dw) :=
d∑
i=1

∫
∂O

σ(dy) g(Sw) |n(y) · ei| Σ(y, dw)

is smooth since it is sum of smooth measures. For any interval I b (0, 1) we can
set

ΓI(dw) :=

∫
∂O

σ(dy)1I(Sw) Σ(y, dw). (3.7.5)

Let κ := min
z∈Sd−1

d∑
i=1

|z · ei|. By compactness, κ > 0 and therefore, for g ∈ C2
c (0, 1)

such that g ≥ 1I , we obtain 0 ≤ ΓI ≤ Λg/κ. Hence, ΓI is smooth.
In particular, if {In}n is any countable partition of (0, 1) in intervals In b (0, 1),

then we obtain that the finite measure

Γ(dw) := Γ1(dw) =
∑
n

ΓIn(dw) (3.7.6)

is also smooth and finite by its explicit expression. Now, for any g ∈ C([0, 1]), the
measure

Γg(dw) :=

∫
∂O

σ(dy) g(Sw) Σ(y, dw),

is also smooth, since |g| ≤ ‖g‖∞ 1 implies 0 ≤ |Γg| ≤ ‖g‖∞ Γ1. By [27, Theorem
5.1.4], there exists a PCAF (Agt )t≥0, unique up to equivalence, with Revuz measure
equal to Γg, for any g ∈ C([0, 1]). At the same time, for any interval I ⊆ [0, 1],
there exists a PCAF (AIt )t≥0, unique up to equivalence, with Revuz measure equal
to ΓI . Moreover

|Agt | ≤ ‖g‖∞A1
t , ∀ t ≥ 0, (3.7.7)

since the positive finite measure (‖g‖∞ · Γ1 − Γg)(dx) is finite and smooth and is
therefore the Revuz measure of a PCAF, so that we can conclude by the linearity
of the Revuz correspondence.
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We want now to prove that there exists a finite positive measure η on [0, T ]×[0, 1]
such that

AgT =

∫
[0,T ]×[0,1]

g(θ) η(ds, dθ), ∀T ≥ 0, g ∈ C([0, 1]). (3.7.8)

Let (gn)n be a dense sequence in C([0, 1]). By the Revuz correspondence we have

Agn+gm = Agm + Agn . Let Λ =
⋂
n,m

{Agn+gm = Agm + Agn}, so that Px(Λ) = 1 for

all x ∈ K \N , where N is an exceptional set. By (3.7.7), we obtain that the map
C([0, 1]) 3 g 7→ AgT is linear, continuous and if g ≥ 0 then AgT ≥ 0. Then by the
Riesz representation theorem there exists a Radon measure AT (dθ) on [0, 1], such
that

AgT =

∫
[0,1]

g(θ)AT (dθ), ∀ g ∈ C([0, 1]).

Moreover, At(dθ) satisfies 0 ≤ At(dθ) ≤ AT (dθ) for 0 ≤ t ≤ T . Therefore At � AT .
By the Radon-Nykodim theorem we have

At(B) =

∫
B

Ct(y)AT (dy)

where Ct ∈ L1(AT (dθ)).
Now, the problem is that Ct(y) is defined for AT -a.e. y, and the set of definition

might depend on t. We must show that it is possible to find a version of (Ct)0≤t≤T
defined on the same set of full AT -measure.

We claim that for AT -a.e. θ, t 7→ Ct(θ) is equal to a càdlàg function. Indeed, let
(qn)n be a dense sequence in [0, T ] and set

Λ :=
⋂
n

{
θ : Cqn(θ) ≤ Ct(θ), ∀ t ∈ (qm)m, qn ≤ t, Cqn(θ) = lim

s∈(qm)m↓qn
Cs(θ)

}
.

Notice that AT (Λc) = 0. C· is dA a.e well defined. We denote by C̃·(·) the function
defined on [0, T ]× [0, 1] by

C̃t(θ) := lim
s∈(qn)↓t

Cs(θ), (t, θ) ∈ [0, T [×Λ, C̃T := CT ,

and C̃t(θ) := 0 if t < T and θ /∈ Λ. By continuity of t 7→ A0,t(B), we obtain that

At(B) =

∫
B

C̃t(y)AT (dy).

Moreover C̃·(θ) is càdlàg and non-decreasing and measurable, so that there exists
a measurable kernel (γy(B), y ∈ [0, 1], B ∈ B([0, T ])), such that C̃t(y) − C̃s(y) =
γy(]s, t]) and therefore

At(B)− As(B) =

∫
B

(
C̃t(y)− C̃s(y)

)
AT (dy)

=

∫
B

γy(]s, t])AT (dy), t, s ∈ [0, T ].
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Therefore, the measure η(ds, dy) := γy(ds)AT (dy) on [0, T ]× [0, 1] satisfies (3.7.8).

Now we have to show that the measure η satisfies Supp(η) ⊂ {(t, θ) |u(t, θ) ∈
∂O} and (3.7.4). We set

F : C
(
[0, 1];O

)
7→ R, F (w) := 1{w(θ)/∈∂O, ∀ θ∈[0,1]}

and

Lt :=

∫ t

0

F (Xs) η(ds× [0, 1]), t ≥ 0.

Then, by [27, Theorem 5.1.3], (Lt)t≥0 is a PCAF of X with Revuz measure given by
1

2
f(w) ·Γ(dw), see (3.7.6). On the other hand, Γ({w : w(θ) /∈ ∂O, ∀ θ ∈ [0, 1]}) = 0

by the very definition of Γ; indeed, Σ(y, dw) is the law of a process which visits a.s.
y ∈ ∂O at same time in [0, 1].

Therefore, by the one-to-one correspondence between PCAFs and positive smooth
measures, see [27, Theorem 5.1.3], we conclude that f(w) ·Γ(dw) ≡ 0 and therefore
L ≡ 0. Thus, for η(ds × [0, 1])-a.e. s, u(s, ·) visits ∂O at some θ ∈ (0, 1), and in
particular S(u(s, ·)), i.e. the smallest such θ, is in (0, 1).

Let us now notice that, again by [27, Theorem 5.1.3] and by (3.7.8), for any
bounded Borel G : C

(
[0, 1];O

)
7→ R and for any bounded Borel g : [0, 1] 7→ R, the

process

t 7→
∫ t

0

G(Xs) dA
g
s =

∫
[0,t]×[0,1]

G(Xs) g(θ) η(ds, dθ)

is a PCAF ofX with Revuz measure
1

2
G(w)g(Sw) Γ(dw). Therefore for any bounded

Borel G : C
(
[0, 1];O

)
× [0, 1] 7→ R, the process

t 7→
∫

[0,t]×[0,1]

G(Xs, θ) η(ds, dθ)

is a PCAF of X with Revuz measure
1

2
G(w, Sw) Γ(dw). In particular, if we choose

G(w, θ) := 1{w(θ)/∈∂O}, then the process

t 7→
∫

[0,t]×[0,1]

1{u(s,θ)/∈∂O} η(ds, dθ)

is a PCAF of X with Revuz measure
1

2
1{w(Sw)/∈∂O}Γ(dw) ≡ 0.

Therefore, by the one-to-one correspondence between PCAFs and positive smooth
measures, see again [27, Theorem 5.1.3], we conclude that η({(s, θ) : u(s, θ) /∈
∂O}) = 0, i.e. Supp(η) ⊂ {(s, θ) |u(s, θ) ∈ ∂O}.

It remains to show (3.7.4). We recall that, by (3.7.8), for all Borel I ⊆ [0, 1], the

process t 7→ η([0, t]×I) is a PCAF of X with Revuz measure
1

2
ΓI , see (3.7.5). Now,

it is enough to notice that the CAF in the right hand side of (3.7.4) has Revuz

measure
1

2
Σh, given by (3.7.4). Since N [Uh] has the same Revuz measure, then

by the one-to-one correspondence between PCAFs and positive smooth measures,

N [Uh] and the CAF in the right hand side of (3.7.4) are equivalent.
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3.7.4 Identification of the noise term

We deal now with the identification of M [Uh] with the integral of h with respect to
a space-time white noise.

Proposition 3.7.7. There exists a Brownian sheet (W (t, θ), t ≥ 0, θ ∈ [0, 1]), such
that

M
[Uh]
t =

∫ t

0

∫ 1

0

hθW (ds, dθ), h ∈ H. (3.7.9)

Proof. We recall that, for U ∈ D(E), the process M [U ] is a continuous martingale,
whose quadratic variation (〈M [U ]〉t)t≥0 is a PCAF of X with Revuz measure µ〈M [U ]〉
given by the formula∫

f dµ〈M [U ]〉 = 2E(Uf, U)− E(U2, f), ∀ f ∈ D(E) ∩ Cb(H), (3.7.10)

see [27, Theorem 5.2.3]. Now, if we apply this formula to Uh(x) = 〈x, h〉, then we
obtain ∫

f dµ〈M [Uh]〉 = ‖h‖2

∫
f dν, ∀ f ∈ D(E) ∩ Cb(H).

Therefore, the quadratic variation 〈M [Uh]〉t is equal to ‖h‖2t for all t ≥ 0, and, by

Lévy’s Theorem, (M [Uh] · ‖h‖−1)t≥0 is a Brownian motion. Moreover, the parallel-
ogram law, if h1, h2 ∈ H and 〈h1, h2〉 = 0, then the quadratic covariation between

M [Uh1 ] and M [Uh2 ] is equal to

〈M [Uh1 ],M [Uh2 ]〉t = t 〈h1, h2〉, t ≥ 0.

Therefore, (M
[Uh]
t , t ≥ 0, h ∈ H) is a Gaussian process with covariance structure

Ex
(
M

[Uh1 ]
t M [Uh2 ]

s

)
= s ∧ t 〈h1, h2〉.

If we define W (t, θ) := M
[Uh]
t with h := 1[0,θ], t ≥ 0, θ ∈ [0, 1], then W is the desired

Brownian sheet.

3.7.5 From K \N to K

We have so far proved existence of an exceptional set N such that for all x ∈ K \N
there is a weak solution of equation (3.1.1). We show now how to construct a weak
solution for x ∈ N .

Let x ∈ N . By the absolute continuity relation (3.4.5), we have that Px-a.s.
Xε ∈ K \N for ε > 0, since ν(K \N) = 1. Therefore, we can set for all ω ∈ E and
0 < ε ≤ s ≤ t

ηε([s, t]× I)(ω) := η([s− ε, t− ε]× I)(θεω),

where (θt)t≥0 is the time-translation operator of E. Then ε 7→ ηε([s, t] × I) is
monotone non-increasing, since

ηε([s, t]× I)(ω)− ηδ([s, t]× I)(ω) = ηδ−ε([s, t]× I)(θεω), 0 < ε < δ.

As ε ↓ 0, we obtain existence of a σ-finite measure η(ds, dθ) on ]0, T ]× [0, 1], which
satisfies the required properties. A similar argument works for the non-linear part.
The proof of Proposition 3.7.1 is concluded.
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3.8 Pathwise uniqueness and strong solutions

We prove that equation (3.1.1) has a pathwise unique solution. This follows the
lines of [51]. By a Yamada-Watanabe type result from [42], pathwise uniqueness
and existence of weak solutions imply existence and uniqueness of strong solutions
and uniqueness in law.

3.8.1 Pathwise uniqueness

Proposition 3.8.1. Pathwise uniqueness holds for equation (3.1.1).

Proof. Let (u1, η1,W ) and (u2, η2,W ) be two weak solutions of (3.1.1), we denote

z := u1 − u2, π(ds, dθ) = n(u1(s, θ)) · η1(ds, dθ)− n(u2(s, θ)) · η2(ds, dθ),

so for h ∈ C2
c ((0, 1)× [0, T ];Rd) and 0 < ε ≤ T , denoting ∂s =

∂

∂s
and ∂2

θ =
∂2

∂θ2
,

〈hT , zT 〉 − 〈hε, zε〉 =
1

2

∫ T

ε

〈h′′, zs〉 ds−
1

2

∫ T

ε

〈hs, ∂0φ(u1
s)− ∂0φ(u2

s)〉ds

+

∫ T

ε

∫ 1

0

h(s, θ) · π(ds, dθ) +

∫ T

ε

〈∂shs, zs〉ds.
(3.8.1)

Let ζ be an infinitely differentiable even function, with support contained in [−1, 1],

such that

∫
[−1,1]

ζ(x)dx = 1 and
∑
i,j

ζ(xi− xj)yiyj ≥ 0 for any (xi)i≤n and (yi)i≤n ∈

Rn, n ∈ N. Let ψ be an infinitely differentiable function with compact support, we
consider now the function hn,m defined by

hn,m := ((zψ)∗ζn,m)ψ

where ζn(x) := nζ(nx) and ζn,m(t, θ) := ζn(t)ζm(θ). We will study the asymptotic
behaviour of each term in (3.8.1) substituting h by hn,m. First we have

lim
n,m
〈hn,m(t), z(t)〉 = ‖z(t)ψ‖2.

Next ∫ T

ε

〈∂shn,m(s), z(s)〉 ds =

∫ T

ε

∫ t+1/n

(t−1/n)+

ζ ′n(t− s) Γm(s, t) ds dt

where Γm is a symmetric function of (s, t), defined by

Γm(s, t) :=

∫ 1

0

∫ 1

0

z(s, θ) · z(t, υ)ψ(θ) ζm(υ − θ)ψ(υ) dθ dυ.

As ζ ′(s) = −ζ ′(−s) the integral∫ T

ε

∫ min(t+1/n,T )

max(t−1/n,ε)

ζ ′n(t− s) Γm(s, t) ds dt =

∫
[ε,T ]2

1{|t−s|≤1/n} ζ
′
n(t− s) Γm(s, t) ds dt
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vanishes. Therefore if 1/n ≤ ε then as n→ +∞∣∣∣∣∫ T

ε

〈∂shn,m(s), z(s)〉 ds
∣∣∣∣ ≤

∣∣∣∣∣
∫ T

T−1/n

dt

∫ t+1/n

T

ds ζ ′n(t− s) Γm(s, t)

∣∣∣∣∣
+

∣∣∣∣∣
∫ ε+1/n

ε

dt

∫ ε

t−1/n

ds ζ ′n(t− s) Γm(s, t)

∣∣∣∣∣ ≤ K

n
→ 0.

Now, because of the properties of (ui, ηi)

lim
n,m

∫ T

ε

∫ 1

0

hn,m(s, θ) π(ds, dθ) =

∫ T

ε

∫ 1

0

ψ(θ) z(s, θ) · π(ds, dθ)

= −
∫ T

ε

∫ 1

0

ψ2(θ)
{
u2(s, θ) · n(u1(s, θ)) η1(ds, dθ) + u1(s, θ) · n(u2(s, θ)) η2(ds, dθ)

}
≤ 0.

By the convexity of φ we have

lim
n,m

∫ T

ε

〈hn,m(s), ∂0φ(u1
s)− ∂0φ(u2

s)〉 ds ≥ 0.

For the last term, we notice that

∫ T

ε

〈∂2
θhn,m, zs〉ds →

∫ T

ε

〈∂2
θhn, zs〉ds when m →

∞. We first suppose that z is smooth, integrating by parts 〈∂2
θhn(s), z(s)〉 we obtain

〈∂2
θhn(s), z(s)〉 ≤ 〈(zψ)∗ζn, ψ′′ z(s)〉+ 〈(zψ′)∗ζn, ψ′ z(s)〉.

Moreover we obtain the same inequality for z approximating z with smooth func-
tions. As a result

lim inf
n

lim
m

∫ T

ε

〈∂2
θhn,m, zs〉ds ≤

1

2

∫ T

ε

∫ 1

0

|zs|2 (ψ2)′′ds

Finally, we have obtained∫ 1

0

(
z2(T, θ)− z2(ε, θ)

)
ψ2(θ) dθ ≤ 1

2

∫ T

ε

∫ 1

0

z2(s, θ) (ψ2)′′(θ) ds dθ

and letting ε→ 0∫ 1

0

z2(T, θ)ψ2(θ) dθ ≤ 1

2

∫ T

0

∫ 1

0

z2(s, θ) (ψ2)′′(θ) ds dθ.

The rest of the proof consists of choosing a judicious expression for ψ, which can be
done as at the end of the proof of uniqueness in [51]. Finally, we obtain that that
z ≡ 0 and η1 = η2.

3.8.2 Strong solutions

Until now we have dealt with weak solutions. Now we show that all weak solutions
are in fact strong.
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We first recall some results of [42], where a general version of the Yamada-
Watanabe and Engelbert results relating existence and uniqueness of strong and
weak solutions for stochastic equations is given.

For Itô equations, Yamada and Watanabe [62] proved that weak existence and
strong uniqueness imply strong existence and weak uniqueness. Engelbert [24] ex-
tended this result to a somewhat more general class of equations and gave a converse
where the roles of existence and uniqueness are reversed, that is, weak uniqueness,
in the sense that the joint distribution of X and W (such as below) is uniquely
determined, and strong existence imply strong uniqueness. Let us start with some
definitions.

Let S1 and S2 be Polish spaces, and let Γ : S1 × S2 → R be a Borel measur-
able function, let Y be an S2-valued random variable with distribution ν. We are
interested in solutions of the equation

Γ(X ,Y) = 0 a.s., L(Y) = ν (3.8.2)

where (X ,Y) is a couple of random variables with values in S1 × S2. We say that
(X ,Y) is a solution for (Γ, ν) if (3.8.2) holds. Being a solution of (3.8.2) is a
property of the joint distribution of (X ,Y). A measure µ on S1 × S2 is a joint
solution measure if µ(S1 × ·) = ν(·) and∫

S1×S2

|Γ(x, y)| dµ(x, y) = 0. (3.8.3)

Let P(S1 × S2) be the space of probability measure on S1 × S2, we denote by SΓ,ν

the set of all joint solutions.

Definition 3.8.2. A solution (X ,Y) for (Γ, ν) is a strong solution if there exists a
Borel measurable function F : S1 → S2 such that X = F (Y) a.s.

Definition 3.8.3. Pointwise uniqueness holds for (3.8.2) holds if X1, X2 and Y
defined on the same probability space with µX1,Y , µX2,Y ∈ SΓ,ν implies X1 = X2 a.s.

Engelbert, in [24], introduces a weaker notion which is aqnalogous to:

Definition 3.8.4. For µ ∈ SΓ,ν, µ-pointwise uniqueness holds if X1, X2, cY defined
on the same probability space with µX1,Y = µX1,Y = µ implies X1 = X2 a.s.

We can exhibit the following result which corresponds to lemma 2.7 of Kurtz [42]

Lemma 3.8.5. If µ ∈ SΓ,ν and µ-pointwise uniqueness holds, then µ is the joint
distribution for a strong solution. Moreover if there is a µ ∈ SΓ,ν that does not
correspond to a strong solution, then pointwise uniqueness does not hold.

Remark 3.8.6. If we drop any mention of the equation (3.8.2) and simply require
that SΓ,ν is a convex subset of P(S1 × S2) such that µ ∈ SΓ,ν implies µ(S1 × ·) = ν.
If moreover one say that (X ,Y) is a solution for (Γ, ν) if µ(X ,Y) ∈ SΓ,ν, then all the
definitions make sense and the previous results holds.

Let us now consider two Polish spaces E1 and E2,let Si := DEi [0,+∞), be the
Skorohod space of cadlag Ei-valued functions, and let Y be a r.v. in DE2 [0,+∞).
We denote by FYt the σ-algebra σ(Ys; s ≤ t)
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Definition 3.8.7. A process X in DE1 [0,+∞) is compatible with Y if for each t ≥ 0
and h ∈ B(DE2 [0,+∞),

E[h(Y)|FX ,Yt ] = E[h(Y)|FYt ] a.s. (3.8.4)

We have the following result:

Lemma 3.8.8. 1. X is compatible with Y if and only if every (FYt )t-martingale,

is an (FX ,Yt )t-martingale.

2. If Y has independent increments, then X is compatible with Y if and only if
for each t ≥ 0, (Yt+s − Yt)s is independent of FX ,Yt .

3. If X is compatible with Y. If X = F (Y) for some measurable F : S2 → S1,
then X is adapted to Y.

We denote ScΓ,ν the convex subset of P(S1×S2) such that for all µ ∈ ScΓ,ν fullfils
the constraints in Γ, µ(S1 × ·) = ν, and if (X ,Y) has law µ, then X is compatible
with Y . To take into into account the compatibility requirement, we change the
definition of pointwise uniqueness

Definition 3.8.9. Let X1, X2, and Y be defined on the same probability space. Let
X1, X2, be S1-valued and Y be S2-valued. (X1,X2) are jointly compatible with Y if
for all t ≥ 0 and f ∈ B(S2)

E[f(Y)|FX1,X2,Y
t ] = E[f(Y)|FYt ] (3.8.5)

pointwise uniqueness holds for compatible solutions of (Γ, ν), if for every triple pro-
cesses (X1,X2,Y) defined on the same sample space such that µX1,Y , µX1,Y ∈ ScΓ,ν
and (X1,X2) is jointly compatible with Y, X1 = X2 a.s.

Finally we have:

Theorem 3.8.10. If µ ∈ ScΓ,ν. Then µ-pointwise uniqueness holds if and only if
the solution corresponding to µ is strong.

We recall now that a weak solution of equation (3.1.1) is given by a triple
(u, η,W ).

Lemma 3.8.11. We set X := (u, η) and Y := W . Thus defined, X is compatible
with Y.

Proof. Indeed Y is adapted to (FXt )t by equation (3.1.1). Now we recall that for all
h ∈ L2((0, 1)), 〈h,Wt〉 and 〈h, ηt〉 are additive functionals of X. As Mh

t := 〈h,Wt〉
is a (FXt )t-martingale with quadratic variation equals to ‖h‖2t, (Mh

·+t −Mh
t )‖h‖−1

is a Brownian motion independent of FXt . Y , as process valued in the Sobolev space
H−1((0, 1)), has independent increments with respect (FXt )t. One can conclude by
lemma 3.8.8.

In the notation of [42], equation (3.1.1) can be interpreted as a relation our
constraint Γ with on S1 × S2 a Borel function defined on the product of two Polish
spaces S1 and S2, for which pathwise (or pointwise) uniqueness holds by Proposition
3.8.1. Therefore, by [42, Lemma 3.5], reminded above any weak solution of (3.1.1)
is also strong. This concludes the proof of Theorem 3.2.2.
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3.9 The reflection measure

We want now to prove Theorem 3.2.3, following the approach of [64]. Let I ⊆ [0, 1]
be a Borel set. Denote by ψI the indicator function of the set {x ∈ K : x(θ) /∈
∂O, ∀θ ∈ [0, 1]\I}. The key point is the following formula: for all F ∈ Cb(H)∫

∂O

σ(dy)

∫
ψI(w)F (w) Σ(y, dw) =

∫
∂O

σ(dy)

∫
F (w)1I(Sw) Σ(y, dw). (3.9.1)

By the definition of ψI , this follows because Σ(y, dw)-a.s. Sw is the only θ ∈ [0, 1]
such that wθ ∈ ∂O. Let At := η([0, t] × [0, 1]), t ≥ 0. We consider the following
PCAF of X:

(ψI · A)t :=

∫ t

0

ψI(Xs) dAs, t ≥ 0.

Its Revuz measure is
1

2
ψI(w)

∫
∂O

σ(dy) Σ(y, dw).

In particular, by (3.9.1):∫
K

Ex
[∫ 1

0

[FψI ] (Xs) dAs

]
νF (dx)

=
1

2

∫
∂O

σ(dy)

∫
[FψI ] (w) Σ(y, dw) =

1

2

∫
∂O

σ(dy)

∫
F (w)1I(Sw) Σ(y, dw)

which is the Revuz measure of A1I , see (3.7.8). By Theorem 5.1.6 in [27], we obtain
that ψI · A and A1I are in fact equivalent as PCAFs of X, i.e. for all x ∈ K:

η([0, t], I) =

∫ t

0

ψI(Xs) η(ds, [0, 1]) ∀t ≥ 0, Px−a.s. (3.9.2)

Fix x ∈ K. We consider regular conditional distributions (t, J) 7→ γ(t, J) of η on
[0,∞) × [0, 1], w.r.t. the Borel map (t, θ) 7→ t, where t ≥ 0, J ⊆ [0, 1] Borel. In
other words, we obtain a σ-finite measurable kernel (t, J) 7→ γ(t, J) such that:

η([t, T ], J) =

∫ T

t

γ(s, J) η(ds, [0, 1]) (3.9.3)

for all J ⊂ [0, 1] and 0 ≤ t ≤ T < ∞. By (3.9.2) and (3.9.3) there exists a
measurable set S ⊆ R+ such that a.s.:

η
([
R+\S

]
× [0, 1]

)
= 0, and for all s ∈ S : γ(s, [0, 1]) > 0,

γ(s, [an, bn]) = ψ[an,bn](Xs), ∀an, bn ∈ Q ∩ [0, 1]. (3.9.4)

Notice that, since ψI is an indicator function, the right hand side of (3.9.4) can
assume only the values 0 and 1. Therefore the measure I 7→ γ(s, I) takes only
the values 0 and 1 on all intervals I with rational extremes in [0, 1], and the value
1 is assumed, since γ(s, [0, 1]) > 0. Then γ(s, · ) is a Dirac mass at some point
r(s) ∈ [0, 1].
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Let now s ∈ S and qn, pn ∈ Q, such that qn ↑ r(s), pn ↓ r(s). Set In := [qn, pn]:
then

1 = γ(s, In) = ψIn(Xs),

which, by the definition of ψIn , means u(s, θ) /∈ ∂O for all θ ∈ [0, 1]\In; moreover

0 = γ(s, [0, 1]\{r(s)}) = ψ[0,1]\{r(s)}(Xs),

so that u(s, r(s)) ∈ ∂O. Therefore, r(s) is the unique θ ∈ [0, 1] such that u(s, θ) ∈
∂O. Finally, since the support of η is contained in {(t, θ) : u(t, θ) ∈ ∂O} and a.s.

(S × [0, 1]) ∩ {(t, θ) : u(t, θ) ∈ ∂O} = {(s, r(s)) : s ∈ S} := S,

then η
(
(R+ × [0, 1])\S

)
= 0. This concludes the proof of Theorem 3.2.3.
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CHAPTER 4

A SKEW STOCHASTIC HEAT EQUATION

In this chapter we introduce a Stochastic PDE with a possibly non-continuous and
non-convex potential. In particular, we want to consider a potential which (mildly)
favors positive over negative values of the solutions, in analogy with a well-known
one-dimensional process known in the literature as the skew Brownian motion, see
section 4.1.1 below.

4.1 Introduction

4.1.1 The skew Brownian motion

Consider the following stochastic differential equation in R:

Xt = X0 +Bt + βL̃0
t , t ≥ 0, (4.1.1)

where (Bt)t≥0 is a standard Brownian motion in R, and (L̃0
t )t≥0 is the symmetric

local time at 0 of the process (Xt)t≥0, namely

L̃0
t = lim

ε→0

1

2ε

∫ t

0

1(|Xs|≤ε) ds. (4.1.2)

Harrison and Shepp [39] have proved that equation (4.1.1)-(4.1.2) has a unique
solution iff |β| ≤ 1 and there is no solution if |β| > 1. In the former case, the process
(Xt)t≥0 has the law of the skew Brownian motion with parameter α = (1 + β)/2,
i.e. a Brownian motion whose excursions are chosen to be positive, respectively
negative, independently of each other, and each with probability α, resp. 1− α.

In this chapter we want to introduce a stochastic heat equation which has some
analogy with (4.1.1)-(4.1.2). Let us also note that an invariant measure for (Xt)t≥0

is given by

mα(dx) = (1− α)1(x>0) dx+ α1(x<0) dx = C exp(−c1(x>0)(x)) dx,

where c, C are constants depending on α. Moreover (Xt)t≥0 is associated with the
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Dirichlet form in L2(mα)

E(u, v) :=
1

2

∫
R
u′v′ dmα.

For more on the skew BM, we refer to [39, 45], and Exercices III.1.16, VI.1.25,
VI.2.24, VII.1.23, X.2.24, XII.2.16 in [58]. See also sections 4.5.1 and 4.5.2 below.

4.1.2 A skew SPDE

In this chapter we want to study a skew stochastic heat equation, namely the stochas-
tic partial diffential equation (SPDE)

∂u

∂t
=

1

2

∂2u

∂θ2
+
α

2

∂

∂θ
`0
θ + Ẇ ,

u(t, 0) = u(t, 1) = 0,

u(0, θ) = u0(θ), θ ∈ [0, 1]

(4.1.3)

where (`at,θ, θ ∈ [0, 1]) is the family of local times at a ∈ R accumulated over [0, θ] by
the process (u(t, θ), θ ∈ [0, 1]), W (t, θ) is a Brownian sheet over [0,+∞[×[0, 1] and
Ẇ (t, θ) is therefore a space-time white-noise and u0 ∈ L2(0, 1). In fact, we consider
a more general version of equation (4.1.3), see (3.1.1) below.

We recall that the stochastic heat equation is given by

∂v

∂t
=

1

2

∂2v

∂θ2
+ Ẇ ,

v(t, 0) = v(t, 1) = 0

v(0, θ) = u0(θ), x ∈ [0, 1]

(4.1.4)

The process (vt, t ≥ 0) is an-infinite dimensional Ornstein-Uhlenbeck process and it
is associated with the Dirichlet form

E0(ϕ, ψ) :=
1

2

∫
H

〈∇ϕ,∇ψ〉 dµ,

in L2(µ), where H := L2(0, 1), ∇ is the Fréchet gradient on H and µ is the law of
a standard Brownian bridge from 0 to 0 over [0, 1], see [16].

Equation (4.1.3) is naturally associated with a perturbation of E0, defined by
means of the probability measure on H

ν(dx) :=
1

Z
exp

(
−α
∫ 1

0

1(xs>0) ds

)
µ(dx),

with α ∈ R, and of the Dirichlet form

E(ϕ, ψ) :=
1

2

∫
H

〈∇ϕ,∇ψ〉 dν, (4.1.5)

82



4.1. INTRODUCTION

in L2(ν). Equation (4.1.3) is therefore a natural infinite-dimensional version of
(4.1.1): indeed, its invariant measure ν favors paths over [0, 1] which spend more
time in the positive axis than in the negative one. The definition and construction
of this process are non-trivial, for several reasons.

First, the local-time term plays the role of a very singular drift, which further-
more lacks any dissipativity property; this makes a well-posedness result difficult to
expect. Secondly, the explicit invariant measure ν is not log-concave, a condition
which would insure a number of nice properties of the Dirichlet form E and of the
associated Markov process, see e.g. [3] and section 4.2.1 below.

In particular, the process is not Strong-Feller, or at least a proof of this property
is out of our reach, see [13] for a host of examples and consequences of this nice
continuity property. We are at least able to prove something weaker, namely the
absolute continuity of the transition semigroup w.r.t. the invariant measure ν, see
Proposition 4.2.5 below; our proof of this technical step seems to be new and of
independent interest.

We also consider two different regularizations of equation (3.1.1): first we approx-
imate f with a sequence of smooth functions; then we consider finite-dimensional
projections (without regularizing f). In both cases we prove convergence in law of
the associated stationary processes. The main technical tool is the Γ-convergence
(or, in this context, the Mosco-convergence) of a sequence of Dirichlet forms with
underlying Hilbert space depending on n. This notion has been introduced by
Kuwae and Shioya in [43] as a generalization of the original idea of Mosco [48] and
later developed by Kolesnikov in [41] for finite-dimensional and a particular class
of infinite-dimensional problems. Our approach has been largely inspired by the
recent work of Andres and von Renesse, see [4, 5].

4.1.3 Main results

We start by giving the main definition. We consider a bounded function f : R 7→ R
with bounded variation and we want to study the following equation

∂u

∂t
=

1

2

∂2u

∂θ2
− 1

2

∫
R
f(da)

∂

∂θ
`at,θ + Ẇ ,

u(t, 0) = u(t, 1) = 0,

u(0, θ) = u0(θ), θ ∈ [0, 1]

(4.1.6)

where (`at,θ, θ ∈ [0, 1]) is the family of local times at a ∈ R accumulated over [0, θ]
by the process (u(t, θ), θ ∈ [0, 1]).

Definition 4.1.1. Let x ∈ L2(0, 1). An adapted process u, defined on a complete
filtered probability space (Ω,F , (Ft)t,P), is a weak solution of (4.1.6) if

• a.s. u ∈ C(]0, T ]× [0, 1]) and E[‖ut − x‖2]→ 0 as t ↓ 0

• a.s. for dt-a.e. t the process (u(t, θ), θ ∈ [0, 1]) has a family of local times
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R+ × [0, 1] 3 (t, θ) 7→ `at,θ, a ∈ R, such that∫ θ

0

g(u(t, r)) dr =

∫
R
g(a) `at,θ da, θ ∈ [0, 1], t ≥ 0,

for all bounded Borel g : R 7→ R.

• there is a Brownian sheet W such that for all h ∈ C2
c ((0, 1)) and 0 < ε ≤ t

〈ut − uε, h〉 =
1

2

∫ t

ε

〈h′′, us〉L2(0,1) ds+
1

2

∫ t

ε

∫
R
f(da)

∫ 1

0

h′(θ) `as,θ dθ ds

+

∫ t

ε

∫ 1

0

h(θ)W (ds, dθ)

(4.1.7)

A Brownian sheet is a Gaussian process W = {W (t, θ) : (t, θ) ∈ R2
+} defined on

(Ω,F ,P), such that {W (t, θ) : θ ∈ R+} is Ft-measurable for all t ≥ 0, with zero
mean and covariance function

E [W (t, θ)W (t′, θ′)] = (t ∧ t′)(θ ∧ θ′), t, θ, t′, θ′ ∈ R+.

In section 4.2 we study the Dirichlet form E defined by (4.1.5), proving in particular
that it satisfies the absolute continuity condition, namely the resolvent operators
have kernels which admit a density with respect to the reference measure ν. In
section 4.3 we show that the Markov process associated with E is a weak solution
of (4.1.6). Altough for general f a uniqueness result for solutions to (4.1.6) seems
to be out of reach, the process we construct is somewhat canonical, since it is asso-
ciated with the Dirichlet form E and moreover it is obtained as the limit of natural
regularization/discretization procedures, as shown in sections 4.4, respectively 4.5.
Indeed, in section 4.4 we regularize the nonlinearity f and show that the (station-
ary) solutions to the approximated equations converge to the stationary solution of
(4.1.6). In section 4.5 we show convergence of finite-dimensional processes, obtained
via a space-discretization, to the solution of (4.1.6).

4.1.4 Motivations

There is an extensive literature on reaction-diffusion stochastic partial differential
equations of the form

∂u

∂t
=

1

2

∂2u

∂θ2
− 1

2
f ′(u) + Ẇ , t ≥ 0, θ ∈ [0, 1],

see for instance the monography by Cerrai [13]; note that by the occupation times
formula, for smooth f this equation is equivalent to (4.1.6). This kind of equation
has also been used as a model for fluctuations of effective interface models, see [31].
However, in order to give a sense to the above equation, it is typically assumed that
f is smooth or convex. In this chapter we study this equation in the case where f
is neither convex nor necessarily smooth and can even have jumps.
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One of the motivations of this work is given by the problem of extending the
results of [29] on convergence of fluctuations of a stochastic interface near a hard
wall to a non log-concave situation. In particular, it is a long standing problem to
prove the same result as in [29] for a critical pinning model, see e.g. [20], where the
invariant measure converges in the limit to the law of a reflecting Brownian motion.
Such a situation is highly non log-convex and the techniques developed for instance
in [3] do not apply. In this chapter we show that the Mosco-(Γ-)convergence is an
effective tool also in this context.

4.1.5 Notations

We consider the Hilbert space H = L2(0, 1) endowed with the canonical scalar
product

〈h, k〉H :=

∫ 1

0

hθ kθ dθ, ‖h‖2 := 〈h, h〉, h, k ∈ H.

C0 := C0(0, 1) := {c : [0, 1] 7→ R continuous, c(0) = c(1) = 0},

A : D(A) ⊂ H 7→ H, D(A) := W 2,2 ∩W 1,2
0 (0, 1), A :=

1

2

d2

dθ2
.

We introduce the following function spaces:

• We denote by Cb(H) the space of all ϕ : H 7→ R being bounded and uniformly
continuous in the norm of H. We let ‖ϕ‖∞ := sup |ϕ|. Then (Cb(H), ‖ · ‖∞) is
a Banach space.

• We denote by ExpA(H) the linear span of {1, cos(〈·, h〉), sin(〈·, h〉) : h ∈ D(A)}.
• The space Lip(H) is the set of all ϕ ∈ Cb(H) such that:

‖ϕ‖Lip := ‖ϕ‖∞ + sup
x 6=y

|ϕ(x)− ϕ(y)|
‖x− y‖

< ∞.

• The space C1
b (H) is defined as the set of all Fréchet-differentiable ϕ ∈ Cb(H),

with continuous bounded gradient ∇ϕ : H 7→ H.

We sometimes write: m(ϕ) for

∫
H

ϕdm, ϕ ∈ Cb(H).

4.2 The Dirichlet form E

In this section we give a detailed study of the Dirichlet form E , proving in particular
that it satisfies the absolute continuity property, see Proposition 4.2.5 below.

4.2.1 A non-log-concave probability measure

Let β = (βθ, θ ∈ [0, 1]) be a standard Brownian bridge and let us denote its law by
µ. Then µ is a Gaussian measure on the Hilbert space H = L2(0, 1). We consider
a bounded function f : R 7→ R with bounded variation and we define F : H 7→ R:

F (x) :=

∫ 1

0

f(xr) dr, x ∈ H.
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We define the probability measure on H

ν(dx) =
1

Z
exp(−F (x))µ(dx), Z :=

∫
exp(−F ) dµ. (4.2.1)

where Z is normalizing constant. Note that f is not assumed to be convex, and
therefore ν is in general not log-concave, see [3]. Finally we have clearly

1

C
‖ · ‖2

L2(µ) ≤ ‖ · ‖2
L2(ν) ≤ C‖ · ‖2

L2(µ) (4.2.2)

for some constant C > 0, since f is bounded.

4.2.2 The Gaussian Dirichlet Form

We define now

E0(ϕ, ψ) :=
1

2

∫
H

〈∇ϕ,∇ψ〉 dµ, ∀ϕ, ψ ∈ C1
b (H).

Then it is well known that the symmetric positive bilinear form (E0,ExpA(H)) is
closable in L2(µ), see e.g. [17]: we denote by (E0, D(E0)) the closure. We recall that
µ, law of a standard Brownian bridge β, has covariance Q := (−2A)−1, a compact
operator on H which can be diagonalized as follows:

Qh =
∞∑
k=1

λk 〈h, ek〉H ek, h ∈ H,

where

λk :=
1

(πk)2
, ek(x) :=

√
2 sin(kπx), x ∈ [0, 1], k ∈ N∗.

It is well known that the Markov process defined by (4.1.4), i.e. the solution of
the stochastic heat equation, is associated with the Dirichlet form (E0, D(E0)) in
L2(µ). This process is Gaussian and can be written down explicitly as a stochastic
convolution. We recall the following result from [17]:

Proposition 4.2.1. Let Γ := {γ : N∗ 7→ N :
∑
k

γk < +∞}. Then there exists a

complete orthonormal system (Hγ)γ∈Γ in L2(µ) such that

E0(ϕ, ϕ) =
∑
γ∈Γ

Λγ 〈ϕ,Hγ〉2L2(µ), ∀ϕ ∈ D(E0),

where Λγ is given by

Λγ :=
∑
k∈N∗

γk λ
−1
k . (4.2.3)

In particular, the embedding D(E0) 7→ L2(µ) is compact.
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It follows that (Hγ)γ∈Γ is a c.o.s. of eigenvalues of the Ornstein-Uhlenbeck oper-
ator associated with E0. We denote by (P 0

t )t≥0 the associated semigroup in L2(µ),
which can be of course written as

P 0
t ϕ =

∑
γ∈Γ

e−Λγ t 〈ϕ,Hγ〉L2(µ) Hγ, ∀ϕ ∈ L2(µ).

Then we have the following

Proposition 4.2.2. For all t > 0 the operator P 0
t : L2(µ) 7→ L2(µ) is Hilbert-

Schmidt, i.e. ∑
γ∈Γ

e−2Λγ t =
∞∏
k=1

1

1− e−2tπ2k2 < +∞, t > 0. (4.2.4)

In particular, the series

p0
t (x, y) :=

∑
γ∈Γ

e−Λγ tHγ(x)Hγ(y)

converges in L2(µ⊗ µ) and yields an integral representation of P 0
t :

P 0
t ϕ(x) =

∫
ϕ(y) p0

t (x, y)µ(dy), µ−a.e. x, ∀ϕ ∈ L2(µ).

Proof. Let us define Cn, for n ∈ N, as the number of γ ∈ Γ such that
∑
k

γk k
2 = n.

Then ∑
γ∈Γ

e−2Λγ t =
∑
γ∈Γ

∞∑
n=0

1(Λγ=n) e
−2Λγ t =

∞∑
n=0

Cne
−2π2t n.

Now, by a classical formula due to Euler, the generating function of the sequence
(Cn)n≥0 is given by

χ(r) :=
∞∑
n=0

Cnr
n =

∞∏
k=1

1

1− rk2 , |r| < 1.

The infinite product converges, since by taking the logarithm

− log
(

1− rk2
)
∼ rk

2

, k → +∞, |r| < 1,

which is a summable sequence. By choosing r = e−2tπ2

, the first claim follows. The
rest is a trivial consequence of this result.

From (4.2.4) one can obtain the following

Proposition 4.2.3. The embedding D(E0) 7→ L2(µ) is not Hilbert-Schmidt.

Proof. The embedding D(E0) 7→ L2(µ) is Hilbert-Schmidt if and only if∑
γ∈Γ\{0}

1

Λγ

< +∞.
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Again we can write

∑
γ∈Γ\{0}

1

Λγ

=
∑
γ∈Γ

∞∑
n=1

1(Λγ=n)
1

Λγ

=
∞∑
n=1

Cn
n
.

Now, using the generating function χ of the sequence Cn we obtain

∞∑
n=1

Cn
n

=

∫ 1

0

dr
∞∑
n=1

Cnr
n−1 =

∫ 1

0

χ(r)− 1

r
dr,

since C0 = 1. The latter integral converges near 0, but it diverges near 1, since
χ(r) ≥ (1− r)−1. Therefore the above sum is infinite.

4.2.3 The Dirichlet form associated with (4.1.6)

We define the symmetric positive bilinear form

E(ϕ, ψ) :=
1

2

∫
H

〈∇ϕ,∇ψ〉 dν, ∀ϕ, ψ ∈ C1
b (H).

Let us set K := ExpA(H).

Lemma 4.2.4. The symmetric positive bilinear form (E ,K) is closable in L2(ν).
We denote by (E , D(E)) the closure.

Proof. By (4.2.2) we have that

1

C
E0

1 ≤ E1 ≤ C E0
1 . (4.2.5)

Closability of (E0,K) yields immediately the result.

4.2.4 Absolute continuity

Let (Pt)t≥0 be the semigroup associated with the Dirichlet form (E , D(E)) in L2(ν).

We denote by Rλ :=

∫ ∞
0

e−λ t Pt dt, λ > 0, the resolvent family of (Pt)t≥0. In this

section we want to prove the following

Proposition 4.2.5. There exists a measurable kernel (ρλ(x, dy), λ > 0, x ∈ H)
such that

Rλϕ(x) =

∫
ϕ(y) ρλ(x, dy), ν−a.e. x, ∀ϕ ∈ L2(ν),

and such that for all λ > 0 and for all x ∈ H we have ρλ(x, dy)� ν(dy).

We are going to use the following result, see [22, pp. 1543].

Theorem 4.2.6 (Minimax principle). Let (T,D(T )) a self-adjoint linear operator
on the separable Hilbert space H such that T ≥ 0 and (λ−T )−1 is a compact operator
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for some λ > 0. We denote by Sn the family of n-dimensional subspace of H, and
for n ≥ 1 we let λn the number defined as follows

λn := sup
G∈Sn

inf
u∈(G∩D(T ))\{0}

〈u, Tu〉H
〈u, u〉H

. (4.2.6)

Then there exists a complete orthonormal system (ψn)n≥1 such that

T ψn = λn ψn, n ≥ 1.

In other words, the sequence (λn)n≥1 is the non-decreasing enumeration of the eigen-
values of T , each repeated a number of times equal to its multiplicity. Moreover the
sup in (4.2.6) is attained for G equal to the span of {ψ1, . . . , ψn}.

With the help of Theorem 4.2.6, we can first prove the following

Proposition 4.2.7. The operator Pt : L2(ν) 7→ L2(ν) is Hilbert-Schmidt and there
exists a function pt ∈ L2(ν ⊗ ν) such that

Ptϕ(x) =

∫
ϕ(y) pt(x, y) ν(dy), ν−a.e. x, ∀ϕ ∈ L2(ν).

Proof. We recall that an analogous result has been proved in Proposition 4.2.2 for
the semigroup (P 0

t )t≥0 associated with the Dirichlet form (E0, D(E0)) in L2(µ). Now
we want to deduce the same result for (Pt)t≥0.

We apply first Theorem 4.2.6 to the Ornstein-Uhlenbeck operator L0 associated
with (E0, D(E0)) in L2(µ). Since R0

1 := (1− L0)−1 maps L2(µ) into D(E0) and the
embedding D(E0) 7→ L2(µ) is compact by Proposition 4.2.3, then R0

1 is compact
and also symmetric since E0 is symmetric. By Proposition 4.2.3, the spectrum of
(−L0) is pure point, its eigenvalues are (Λγ)γ∈Γ and the associated eigenvectors are
the c.o.s. (Hγ)γ∈Γ. If we call (δ0

n)n≥1 the non-decreasing enumeration of (Λγ)γ∈Γ,
then by the above result we obtain that

δ0
n := sup

G∈Sn
inf

u∈(G∩D(L0))\{0}

E0(u, u)

〈u, u〉L2(µ)

.

In fact, since the sup above is attained for G equal to the span of {ψ1, . . . , ψn} ⊆
D(E0), then we can also write

δ0
n = sup

G∈Sn
inf

u∈(G∩D(E0))\{0}

E0(u, u)

〈u, u〉L2(µ)

.

In the same way, setting

δn := sup
G∈Sn

inf
u∈(G∩D(E))\{0}

E(u, u)

〈u, u〉L2(ν)

,

then (δn)n≥1 is the non-decreasing enumeration of the eigenvalues of (−L) : D(L) ⊂
L2(ν) 7→ L2(ν). Now, by (4.2.2) and (4.2.5), we obtain that

1

C
δ0
n ≤ δn ≤ Cδ0

n, n ≥ 1.
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Therefore for t > 0 ∑
n

e−2tδn ≤
∑
n

e−2t 1
C
δ0
n

and the latter sum is finite by (4.2.4). Therefore Pt : L2(ν) 7→ L2(ν) is Hilbert-
Schmidt, symmetric and non-negative. Then Proposition 4.2.7 follows from a well-
known characterization of operators with such properties.

Proof of Proposition 4.2.5. In [27, Theorem 7.2.1] it is proved that there exist a set
of zero capacity N and a measurable Markov kernel (pt(x, dy), t ≥ 0, x ∈ N c) on

N c, such that the function x 7→
∫
ϕ(y) pt(x, dy) is ν-a.s. equal to Ptϕ and quasi-

continuous on N c for all t, > 0. By quasi-continuity we want to say that there is
a sequence of nondecreasing closed set (Fn)n, with no isolated point, such that the
previous map, restricted on Fn, is continuous for all t > 0 and N c = ∪nFn (see [27]
p.67). By Proposition 4.2.7, for ν-a.e. x we have pt(x, dy) = pt(x, y) ν(dy), with
pt ∈ L2(ν ⊗ ν) and pt ≥ 0, ν ⊗ ν-almost surely. It follows that the kernel ρλ(x, dy)

representing the resolvent operator Rλ :=

∫ ∞
0

e−λ t Pt dt is in fact given for ν-a.e. x

by ρλ(x, dy) = ρλ(x, y) ν(dy), where for ν ⊗ ν-a.e. (x, y)

ρλ(x, y) :=

∫ +∞

0

e−λt pt(x, y) dt.

Moreover Rλϕ is continuous on N c for all ϕ ∈ L2(ν). This allows to prove that
ρλ(x, dy)� ν(dy) for all x ∈ N : indeed, if B is a measurable set such that ν(B) = 0,
then ρλ(x,B) = 0 for ν-a.e. x and therefore, by density and continuity, for all
x ∈ N c. As in [27], we can set ρλ(x, dy) ≡ 0 for all x ∈ N , and the proof is
complete.

4.3 Existence of a solution

In this section we want to prove the following

Proposition 4.3.1. The Dirichlet form (E , D(E)) is quasi-regular and the associ-
ated Markov process is a weak solution of equation (4.1.6).

4.3.1 The associated Markov process

We have first the following

Lemma 4.3.2. The Dirichlet form (E , D(E)) is quasi-regular.

Proof. By (4.2.5) and by [46, Definition IV.3.1], quasi-regularity of (E , D(E)) follows
from quasi-regularity of (E0, D(E0)), which in turns follows from the fact that this
Dirichlet form is associated with the solution to the stochastic heat equation (4.1.4).

By [46, Theorem IV.3.5], quasi-regularity implies existence of a Markov process
associated with (E , D(E)).
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Existence of local times

Proposition 4.3.3. Almost surely, for a.e. t there exists a bi-continuous family of
local times [0, 1] 3 (r, a) 7→ `at,r of (ut(θ), θ ∈ [0, 1]).

Proof. Let us recall that ν is equivalent to the law µ of (βr, r ∈ [0, 1]), where β is a
Brownian bridge over [0, 1]. Since β is a semi-martingale, for µ-a.e. x there exists
a family of local times `ar such that∫ r

0

g(xs) ds =

∫
R
g(a) `ar da, r ∈ [0, 1],

and the map [0, 1]× R 3 (r, a) 7→ `ar ∈ R is continuous. In particular, setting

S := {w ∈ C([0, 1]) : w has a bi-continuous family of local times (`ar)(r,a)∈[0,1]×R},

then ν(S) = 1 and therefore

Ex
[∫ t

0

1(us∈Sc) ds

]
=

∫ t

0

Px(us ∈ Sc) ds =

∫ t

0

ps(x, S
c) ds = 0

since the law of (us(θ), θ ∈ [0, 1]) by Proposition 4.2.7 is absolutely continuous w.r.t.
ν. Therefore, the time spent by (us, s ≥ 0) in Sc is a.s. equal to 0.

We need now an integration by parts formula on the Dirichlet form E . We recall
the definitions

F (x) :=

∫ 1

0

f(xr) dr, ρ(x) := exp(−F (x)), x ∈ H,

where f : R 7→ R is a bounded function with bounded variation.

Proposition 4.3.4. For any h ∈ D(A) and ϕ ∈ C1
b (H)

E[ρ(β) ∂hϕ(β)] = E
[
ρ(β)ϕ(β)

(
−〈h′′, β〉+

∫
R×[0,1]

f(da)hr `
a(dr)

)]
. (4.3.1)

Proof. Let h ∈ D(A) and ε ∈ R, by the occupation time formula:

F (β + εh) =

∫ 1

0

f(βr + εhr) dr =

∫
R

∫ 1

0

f(a+ εhr) `
a(dr) da

=

∫
R×R×[0,1]

da f(da) `a(dr)1(a≥s−εhr) a.s.

where (`a(r), a ∈ R, r ∈ [0, 1]) is the local times family of β. Therefore

d

dε
F (β + εh)

∣∣∣∣
ε=0

= −
∫
R×[0,1]

f(da)hr `
a(dr).

Then by using the Cameron-Martin formula

E[ρ(β)ϕ(β + εh)] = E[ρ(β − εh)ϕ(β) exp
(
−ε〈h′′, β〉 − ‖h‖2ε2/2

)
]

and by differentiating w.r.t. ε at ε = 0 we conclude.
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We want now to show that the process associated with E satisfies (4.1.6). We are
going to apply (3.7.1) to Uh(x) := 〈x, h〉, x ∈ H, with h ∈ C2

c ((0, 1);Rd). Clearly
Uh ∈ Lip(H) ⊂ D(E). Our aim is to prove the following

Proposition 4.3.5. There is an exceptional set N such that for all x ∈ H \ N ,
Px-a.s. for all t ≥ 0

N
[Uh]
t =

1

2

∫ t

0

〈h′′, us〉 ds+
1

2

∫
]0,t]×[0,1]

∫
R
f(da)h′r `

a
s,r ds dr (4.3.2)

where a.s. for all s > 0

−
∫

[0,1]

∫
R
h′r ϕ(a) `as,r dr =

∫ 1

0

hr ϕ(us(r)) dr, ∀ϕ ∈ Cb(R).

Proof. The main tools of the proof are the integration by parts formula (4.3.1) and
a number of results from the theory of Dirichlet forms in [27]. We start by applying
(3.7.1) to Uh(x) := 〈x, h〉, x ∈ H. By approximation and linearity we can assume

that h ∈ D(A), h′′ ≥ 0 and therefore h ≥ 0 as well. The process N [Uh] is a CAF of

X, and its Revuz measure is
1

2
Σh, where

Σh(dw) :=

(
〈w, h′′〉 −

∫
R×[0,1]

f(da)hr d`
a
r

)
ν(dw) (4.3.3)

and `ar is the bi-continuous family of local times of the Brownian bridge. Remark
that we have the estimate

E

((∫
R×[0,1]

f(da)hr d`
a
r

)2
)
< +∞

since f(da) has globally bounded variation, h is bounded and `a1 is in Lp for any
p ≥ 1.

By linearity, it is enough to consider the case h ≥ 0. Then the measurable

function Φ(w) :=

∫
[0,1]×R

hr d`
a
r f(da) is non-negative, and Φ dν is a measure with

finite energy, since∫
|v|Φ dν ≤ ‖Φ‖L2(ν) ‖v‖L2(ν) ≤ ‖Φ‖L2(ν)

√
E1(v, v), ∀ v ∈ D(E) ∩ Cb(H),

see (3.7.2) above. In particular, Φ dν is a smooth measure. By theorem 5.1.3 of
[27], there is an associated PCAF, denoted by Nt. Notice that the process

Nn
t :=

∫ t

0

(Φ ∧ n)(Xs) ds

is a well defined PCAF with Revuz measure Φ ∧ n dν and Nn
t ≤ Nt, since Nt −Nn

t

is a CAF with a non-negative Revuz measure. By monotone convergence we find

92



4.3. EXISTENCE OF A SOLUTION

for all non-negative ϕ ∈ Cb(H)∫
H

ϕΦ dν = lim
n

∫
H

ϕΦ ∧ n dν = lim
n

Eν
[∫ 1

0

ϕ(Xt) (Φ ∧ n)(Xt) dt

]
= Eν

[∫ 1

0

ϕ(Xt) Φ(Xt) dt

]
.

Therefore, t 7→
∫ t

0

Φ(Xs) ds is a PCAF with Revuz measure Φ dν and must therefore

be equivalent to t 7→ Nt.

4.3.2 Identification of the noise term

We deal now with the identification of M [Uh] with the integral of h with respect to
a space-time white noise.

Proposition 4.3.6. There exists a Brownian sheet (W (t, θ), t ≥ 0, θ ∈ [0, 1]), such
that

M
[Uh]
t =

∫ t

0

∫ 1

0

hθW (ds, dθ), h ∈ H. (4.3.4)

Proof. We recall that, for U ∈ D(E), the process M [U ] is a continuous martingale,
whose quadratic variation (〈M [U ]〉t)t≥0 is a PCAF of X with Revuz measure µ〈M [U ]〉
given by the formula∫

f dµ〈M [U ]〉 = 2E(Uf, U)− E(U2, f), ∀ f ∈ D(E) ∩ Cb(H), (4.3.5)

see [27, Theorem 5.2.3]. Now, if we apply this formula to Uh(x) = 〈x, h〉, then we
obtain ∫

f dµ〈M [Uh]〉 = ‖h‖2

∫
f dν, ∀ f ∈ D(E) ∩ Cb(H).

Therefore, the quadratic variation 〈M [Uh]〉t is equal to ‖h‖2t for all t ≥ 0, and, by

Lévy’s Theorem, (M [Uh] · ‖h‖−1)t≥0 is a Brownian motion. Moreover, the parallel-
ogram law, if h1, h2 ∈ H and 〈h1, h2〉 = 0, then the quadratic covariation between

M [Uh1 ] and M [Uh2 ] is equal to

〈M [Uh1 ],M [Uh2 ]〉t = t 〈h1, h2〉, t ≥ 0.

Therefore, (M
[Uh]
t , t ≥ 0, h ∈ H) is a Gaussian process with covariance structure

Ex
(
M

[Uh1 ]
t M [Uh2 ]

s

)
= s ∧ t 〈h1, h2〉.

If we define W (t, θ) := M
[Uh]
t with h := 1[0,θ], t ≥ 0, θ ∈ [0, 1], then W is the desired

Brownian sheet.

Proof of Proposition 4.3.1. Quasi-regularity has been proved in Lemma 4.3.2. First
we apply the Fukushima decomposition (3.7.1) to the function Uh(x) := 〈x, h〉 and
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CHAPTER 4. A SKEW STOCHASTIC HEAT EQUATION

identify the terms using propositions 4.3.6 and 4.3.5 and the above results. It
remains to prove that the process (Xt)t≥0 satisfies the desired continuity properties.
To this aim, we use the result of Lemma 4.6.1 below. We notice that for any
η ∈ (0, 1/2) and p > 1

1

C

∫
H

‖x‖pW η,p(0,1) ν(dx) ≤ E
(
‖β‖pW η,p(0,1)

)
≤ E

(
|βr|p +

∫ 1

0

∫ 1

0

|βs − βt|p

|s− t|pη+1
dt ds

)
≤ 1 +

∫ 1

0

∫ 1

0

|s− t|p(
1
2
−η)−1 dt ds < +∞.

Then by Lemma 4.6.1 and by Kolmogorov’s criterion in the Polish space Cβ([0, 1])
we obtain that under Pν the coordinate process has a modification in C([0, T ]×[0, 1])
for all T > 0.

Finally, in order to prove continuity of a non-stationary solution, we use the
absolute-continuity property of proposition 4.2.5. Let us consider the set C :=
C([0, 1]) endowed with the uniform topology. Let S ⊂ ]0,+∞[ be countable and
satisfying ε := inf S > 0 and supS <∞, and define BS ⊂ C ]0,+∞[ as

BS :=
{
ω ∈ C ]0,+∞[ : the restriction of ω to S is uniformly continuous

}
,

then we know that Pν(BS) = 1, i.e. Px(BS) = 1 for ν-a.e. x. For all x ∈ N c, where
N is exceptional, the law of Xε under Px is absolutely continuous w.r.t. ν for all
ε > 0. Then PXε(BS−ε) = 1, Px-almost surely. Taking expectations, and using the
Markov property, we get Px(BS) = 1. Arguing as in [59, Lemma 2.1.2] we obtain
that P∗x (C(]0,+∞[;C)) = 1, where P∗ν denotes the outer measure.

4.4 Convergence of regularized equations

In this section we consider a smooth approximation fn of f and and we study
convergence in law of un to u, where

∂un

∂t
=

1

2

∂2un

∂θ2
− 1

2
f ′n(un) + Ẇ ,

un(t, 0) = un(t, 1) = 0,

un(0, θ) = un0 (θ), θ ∈ [0, 1].

(4.4.1)

By a Γ-convergence technique, we shall prove convergence in law of the stationary
processes.

Since f is bounded and with bounded variation, then it is continuous outside a
countable set ∆f . Moreover we can find a sequence of smooth functions fn : R 7→ R
such that

1. (fn)n is uniformly bounded

2. fn → f as n→ +∞ locally uniformly in R \∆f .
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We define the probability measure on H

νn(dx) =
1

Zn
exp(−Fn(x))µ(dx), Zn :=

∫
exp(−Fn) dµ, (4.4.2)

where Zn is a normalizing constant. Again, νn is not necessarily log-concave, see
[3]. Setting

ρ0 := 1, ρn :=
dνn
dµ

, n ≥ 1, ρ :=
dν

dµ
,

we find that 0 < c ≤ ρn ≤ C < +∞ and 0 < c ≤ ρ ≤ C < +∞ on H, since fn and
f are bounded for all n ∈ N. We have then the simple

Lemma 4.4.1. There is a canonical identification between the Hilbert spaces L2(ν)
and L2(νn) for all n ∈ N and for positive constants c, C

c

C
‖ · ‖2

L2(ν) ≤ ‖ · ‖2
L2(νn) ≤

C

c
‖ · ‖2

L2(ν). (4.4.3)

Proof. This is obvious since 0 < c ≤ ρn ≤ C < +∞ and 0 < c ≤ ρ ≤ C < +∞.

In particular we can consider L2(νn) as being a copy of L2(ν) endowed with a
different norm ‖ · ‖L2(νn). We shall use this notation below.

We define the symmetric positive bilinear form

En(ϕ, ψ) :=
1

2

∫
H

〈∇ϕ,∇ψ〉 dνn, ∀ϕ, ψ ∈ C1
b (H),

Let us set K := ExpA(H).

Lemma 4.4.2. The symmetric positive bilinear forms (En,K) is closable in L2(νn).
We denote by (En, D(En)) the closure.

Proof. The proof is identical to that of Lemma 4.2.4.

We recall that the Dirichlet form (En, D(En)) is associated with the solution of
equation (4.4.1), see e.g. [17].

4.4.1 Convergence of Hilbert spaces

We recall now the following definition, given by Kuwae and Shioya in [43].

Definition 4.4.3. A sequence of Hilbert spaces Hn converges to a hilbert H if there
is a family of linear maps {Φn : H→ Hn} such that:

lim
n→+∞

‖Φn(x)‖Hn = ‖x‖H, x ∈ H (4.4.4)

A sequence (xn)n, xn ∈ Hn, converges strongly to a vector x ∈ H if there exists a
sequence (x̃n)n in H such that x̃n → x in H and

lim
n→+∞

lim
m→+∞

‖Φm(x̃n)− xm‖Hm = 0 (4.4.5)

and (xn)n converge weakly to x if

lim
n→+∞

〈xn, zn〉Hn = 〈x, z〉H (4.4.6)

for any z ∈ H and sequence (zn)n , zn ∈ Hn, such that zn → z strongly.
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Lemma 4.4.4.

1. The sequence of Hilbert spaces L2(νn) converges to L2(ν), by choosing Φn equal
to the natural identification of equivalence classes in L2(νn) and L2(ν).

2. un ∈ L2(νn) converges strongly to u ∈ L2(ν) if and only if un → u in L2(ν).

3. un ∈ L2(νn) converges weakly to u ∈ L2(ν) if and only if un → u weakly in
L2(ν).

Proof. 1. We have to prove that for all x ∈ L2(ν) we have ‖x‖L2(νn) → ‖x‖L2(ν) as

n → ∞. Since e−Fn/Zn converges a.s. to e−F/Z and it is uniformly bounded,
then the result follows by dominated convergence.

2. Let (un)n converges strongly to u ∈ L2(ν) so there is a sequence (ũn)n in L2(ν)
tending to u in L2(ν) such that:

lim
n

lim
m
‖ũn − um‖L2(ν)m = 0. (4.4.7)

Then we have:

lim
m
‖u− um‖L2(ν) ≤ lim

n
‖u− ũn‖L2(ν) +

C

c
lim
n

lim
m
‖um − ũn‖L2(νm) = 0,

so that un → u in L2(ν). Conversely, if un → u in L2(ν) then we can consider
ũn = u for all n ∈ N and (4.4.7) holds.

3. Let un ∈ L2(νn) be a sequence which converges weakly to u ∈ L2(ν), i.e. for
all v ∈ L2(ν) and any sequence vn ∈ L2(νn) strongly convergent to v

〈un, vn〉L2(νn) → 〈u, v〉L2(ν), n→ +∞.

Let vn := v ·ρ·ρ−1
n , then by the dominated convergence theorem ‖vn−v‖L2(ν) →

0 and by the previous point vn ∈ L2(νn) converges strongly to v. So we have

〈un, v〉L2(ν) = 〈un, vn〉L2(νn) → 〈u, v〉L2(ν), n→ +∞.

Viceversa, let us suppose that for all v ∈ L2(ν) we have 〈un, v〉L2(ν) → 〈u, v〉L2(ν)

and let us consider any sequence vn ∈ L2(νn) strongly convergent to v. Setting
wn := vn · ρn · ρ−1, by dominated convergence ‖wn − v‖L2(ν) → 0 and therefore
〈un, vn〉L2(νn) = 〈un, wn〉L2(ν) → 〈u, v〉L2(ν) and the proof is finished.

4.4.2 Convergence of Dirichlet Forms

Now we can give the definition of Mosco-convergence of Dirichlet forms. This con-
cept is useful for our purposes, since it was proved in [43] to imply the convergence
in a strong sense of the associated resolvents and semigroups.

Definition 4.4.5. If En is a quadratic form on Hn, then En Mosco-converges to the
quadratic form E on H if the two following conditions hold:

96



4.4. CONVERGENCE OF REGULARIZED EQUATIONS

Mosco I. For any sequence xn ∈ Hn, converging weakly to x ∈ H,

E(x, x) ≤ lim
n→+∞

En(xn, xn). (4.4.8)

Mosco II. For any x ∈ H, there is a sequence xn ∈ Hn converging strongly to x ∈ H such
that

E(x, x) = lim
n→+∞

En(xn, xn). (4.4.9)

We recall that a sequence of bounded operarors (Bn)n on Hn, converges strongly
to an operator B on H, if Hn 3 Bnun → Bu ∈ H strongly for all sequence un ∈ Hn

converging strongly to u ∈ H, see definition 2.4.3. Then Kuwae and Shioya have
proved in [43] the following equivalence between Mosco convergence and strong
convergence of the associated resolvent operators.

4.4.3 Mosco convergence

Proposition 4.4.6. The Dirichlet form En Mosco-converges to E on L2(ν).

Proof. The proof of the condition Mosco II is trivial in our case; indeed, for
all x ∈ D(E), we set xn := x ∈ D(En) for all n ∈ N; by dominated convergence
E(x, x) = lim

n
En(x, x). If x /∈ D(E), then again xn := x /∈ D(En) satisfies E(x, x) =

lim
n
En(x, x) = +∞.

Let us prove now condition Mosco I. We first assume that u ∈ D(E). By the
integration by parts formula (4.3.1) we have for any v ∈ K = ExpA(H)

2E(u, v) = −
∫
H

u · Tr(D2v) dν +

∫
H

u

(
〈·, A∇v〉H −

∫
R×[0,1]

f(da)∇rv `
a(dr)

)
dν.

Let un ∈ L2(νn) a sequence converging weakly to u, then we know from Theorem
4.4.4 that un → u weakly in L2(ν). By the compactness of the embedding D(E0) 7→
L2(µ) proved in Proposition 4.2.3, un → u strongly in L2(ν). By linearity it is
enough to consider v(x) = exp(i〈h, x〉H), h ∈ D(A), x ∈ H. Notice that ∇v = i v h.
Then we can write∫

R×[0,1]

f(da)∇rv(β) `a(dr) = i v(β)

∫
R×[0,1]

f(da)hr `
a(dr).

Moreover by the occupation times formula

〈∇v(β), f ′n(β)〉H = i v(β)

∫ 1

0

hr f
′
n(βr) dr = i v(β)

∫
R×[0,1]

hr `
a(dr) f ′n(a) da.

Since f ′n(a) da ⇀ f(da), by dominated convergence we obtain

2E(u, v) = lim
n→∞

(
−
∫
H

un · Tr(D2v) dνn +

∫
H

un(〈x,A∇v〉H + 〈∇v, f ′n〉) dνn
)
.
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We can suppose that each un is in D(En) (else En(un, un) = +∞) so we have for
any v ∈ K \ {0}

lim
n→+∞

(
En(un, un)

)1/2

≥ lim
n→+∞

En(un, v)√
En(v, v)

=
E(u, v)√
E(v, v)

and by considering the sup over v we obtain the desired result.
Suppose now that u /∈ D(E) and let L2(νn) 3 un → u ∈ L2(ν) weakly, then we

know from Theorem 4.4.4 that un → u weakly in L2(ν). By the compactness of the
embedding D(E0) 7→ L2(µ) proved in Proposition 4.2.3, un → u strongly in L2(ν).
If lim inf

n→∞
En(un, un) < +∞, then we also have lim inf

n→∞
E(un, un) < +∞. But since

E is lower semi-continuous in L2(ν), then E(u, u) < +∞, which is absurd since we
assumed that u /∈ D(E). �

4.4.4 Convergence of stationary solutions

We denote by Pnνn the law of the stationary solution of (4.4.1) and by Pν the law of
the Markov process associated with E and started with law ν. We have the following
convergence result

Proposition 4.4.7. The sequence Pnνn converges weakly to Pν in C([0, T ]× [0, 1]).

Proof. Let us first prove convergence of finite-dimensional distributions, i.e.

lim
n→+∞

Enνn(f(Xt1 , . . . , Xtm)) = Eν(f(Xt1 , . . . , Xtm)),

for all f ∈ C((C([0, 1])m). The Mosco convergence of the Dirichlet forms En pro-
vides the strong convergence of the semi-group and, by the Markov property, the
convergence of the finite dimensional laws. Indeed let f be in C((C([0, 1])m) of the
form f(x1, . . . , xm) = f1(x1) · . . . · fm(xm) then

P n
t1

(f1 · P n
t2−t1(f2 · . . . (fm−1P

n
tm−tm−1

fm) . . .))

→ Pt1(f1 · Pt2−t1(f2 · . . . (fm−1Ptm−tm−1fm) . . .)), strongly.

Then by the Markov property

Enνn(f(Xt1 , . . . , Xtm)) = 〈1, P n
t1

(f1 · P n
t2−t1(f2 · . . . (fm−1P

n
tm−tm−1

fm) . . .))〉Hn
→ 〈1, Pt1(f1 · Pt2−t1(f2 · . . . (fm−1Ptm−tm−1fm) . . .))〉H = Eν(f(Xt1 , . . . , Xtm)).

We need now to prove tightness in C([0, T ]× [0, 1]). We first recall a result of [26,
Th. 7.2 ch 3]. Let (P, d) be a Polish space, and let (Xα)α be a family of processes
with sample paths in C([0, T ];P ). Then the laws of (Xα)α are relatively compact
if and only if the following two conditions hold:

1. For every η > 0 and rational t ∈ [0, T ], there is a compact set Γtη ⊂ P such
that:

inf
α
P
(
Xα ∈ Γtη

)
≥ 1− η (4.4.10)
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2. For every η, ε > 0 and T > 0, there is δ > 0 such that

sup
α

P (w(Xα, δ, T ) ≥ ε) ≤ η (4.4.11)

where w(ω, δ, T ) := sup{d(ω(r), ω(s)) : r, s ∈ [0, T ], |r − s| ≤ δ} is the modulus of
continuity in C([0, T ];P ).

We consider now, as Polish space (P, d), the Banach space Cθ([0, 1]). Since Pnνn
is stationary, (4.4.10) is reduced to a condition on νn. In fact we have(∫

H

‖x‖pW η,p(0,1) dνn

) 1
p

≤
(
C

c

∫
H

‖x‖pW η,p(0,1) dµ

) 1
p

.

Now, since the Brownian bridge (βr)r∈[0,1] is a Gaussian process with covariance
function r ∧ s− rs, then

E
(
‖β‖pW η,p(0,1)

)
≤ E

(
‖β‖pp +

∫ 1

0

∫ 1

0

|βs − βt|p

|s− t|pη+1
dt ds

)
≤ Cp

(
1 +

∫ 1

0

∫ 1

0

|s− t|p(
1
2
−η)−1 dt ds

)
< +∞.

For any η < 1/2, θ < η and p > 1/(η − θ) we have by the Sobolev embedding
Theorem that W η,p(0, 1) ⊂ Cθ([0, 1]) with continuous embedding, so that

sup
n

∫
H

‖x‖p
Cθ([0,1])

dνn <∞.

By Lemma 4.6.1 below we obtain existence of a constant K independent of n such
that

Enνn
[
‖Xt −Xs‖pCθ([0,1])

]
≤ K |t− s|ξ, ∀n ≥ 1, t, s ∈ [0, T ].

By Kolmogorov’s criterion, see [58, Thm. I.2.1], we obtain that a.s. w(Xn, δ, T ) ≤
C δ

1−ξ
2p , with C ∈ Lp. Therefore by the Markov inequality, if ε > 0

P (w(Xn, δ, T ) ≥ ε) ≤ E [Cp] δ
1−ξ

2 ε−p,

and (4.4.11) follows for δ small enough.

4.5 Convergence of finite dimensional approximations

From now on we turn our attention to another problem: convergence in law of
finite dimensional approximations of equation (4.1.6). We want to project, in a
sense to be made precise, (4.1.6) onto an equation in a finite dimensional subspace
of H := L2(0, 1). To be more precise, we consider the space Hn of functions in
L2(0, 1) which are constant on each interval [(i− 1)2−n, i2−n[, i = 1, . . . , 2n and we
endow Hn with the scalar product inherited from H.

Notice that Hn is a linear closed subspace of L2(0, 1), so that there exists a
unique orthogonal projector Pn : L2(0, 1) 7→ Hn, given explicitly by

Pnx := 2n
2n−1∑
i=0

1[i2−n,(i+1)2−n[ 〈1[i2−n,(i+1)2−n[, x〉. (4.5.1)
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We call µn the law of Pnβ; then µn is a Gaussian law on H with zero mean and
non-degenerate covariance operator PnQPn, where Q is the covariance operator of
µ, which has been studied in detail in section 4.2.2. In what follows we write

PnQPn = (−2An)−1, An : Hn 7→ Hn.

We also define πn as

πn(dx) =
1

Zn
exp(−F (x))µn(dx) =

1

Zn
exp

(
− 1

2n

2n−1∑
i=0

f(x(i))

)
µn(dx). (4.5.2)

where Zn := µn(exp(−F )) is a normalization constant.
Then, a natural approximation of E defined on Hn is given by the following

symmetric bilinear non-negative form

Λn(u, v) :=
1

2

∫
〈∇u,∇v〉Hn dπn, u, v ∈ C1

b (Hn) (4.5.3)

with reference measure πn. Then we have

Λn(u, v) =
1

2

∫
〈∇(u ◦ Pn),∇(v ◦ Pn)〉H

1

Zn
exp(−F ◦ Pn) dµ, u, v ∈ C1

b (Hn).

(4.5.4)
We write

f(y) = f0(y) +
k∑
j=1

αj 1(y≤yj), y ∈ R (4.5.5)

where f0 is smooth and bounded and αj, yj ∈ R. Clearly, f has a jump in each yj
of respective size αj. We have the following integration by parts formula∫

∂hϕdπn = −
∫
ϕ 〈x,Anh〉 πn(dx) +

∫
ϕ(x) 2−n

2n−1∑
i=0

hi f
′
0(x(i))πn(dx)

−
∫
ϕ(x)

2n−1∑
i=0

hi
∑
j

2
1− e−αj 2−n

1 + e−αj 2−n
πn(dx ; x(i) = yj),

(4.5.6)

where we use the notation

πn(A ; x(i) = yj) := lim
ε↓0

1

2ε
πn(A ∩ {|x(i)− yj| ≤ ε}).

This suggests that the associated dynamic solves the stochastic differential equation

dX i =
1

2

(
(AnX)i − f ′0(X i)

)
dt+

∑
j

1− e−αj 2−n

1 + e−αj 2−n
d˜̀i,yj
t + 2−

n
2 dwit (4.5.7)

where (˜̀i,a
t , t ≥ 0) is the symmetric local time of (X i(t), t ≥ 0) at a.
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4.5.1 Skew Brownian motion

Let (Xt)t≥0 be the skew Brownian motion defined in (4.1.1) with |β| < 1 and L̃0

equal to the symmetric local time. If (Lat )t≥0,a∈R is the right-continuous version
of the family of local times of the semimartingale (Xt)t≥0 defined by the Tanaka
formula [58, Theorem VI.1.2]:

(Xt − a)+ = (X0 − a)+ +

∫ t

0

1(Xs>a) dXs +
1

2
Lat

(Xt − a)− = (X0 − a)− −
∫ t

0

1(Xs≤a) dXs +
1

2
Lat

(4.5.8)

then a simple computation shows that in this case (1 + β)L̃0
t = L0

t . Indeed, by the
occupation times formula

L̃0
t = lim

ε→0

1

2ε

∫ t

0

1(|Xs|≤ε) ds =
L0
t + L0−

t

2
,

see also [58, VI.1.25]. On the other hand, by the same formula for a < 0 we have

(Xt)
+ = (X0 − a)+ +

∫ t

0

1(Xs>0) dBs +
1

2
L0
t

(Xt − a)− = (X0 − a)− −
∫ t

0

1(Xs≤a) dBs − βL̃0
t +

1

2
Lat

taking the difference of the two formulae above and letting a ↑ 0, we obtain

L0
t − L0−

t

2
= β L̃0

t

(see also [58, Theorem VI.1.7]). Then we obtain

L0
t = (1 + β) L̃0

t .

This allows to compute the scale function of X; indeed, setting γ :=
1 + β

2
and

s(x) :=

{
(1− γ)x, x ≥ 0
γx, x < 0,

then we can see that

s(Xt) = s(X0) +

∫ t

0

(
(1− γ)1(Xs>0) + γ1(Xs≤0)

)
dBs,

with the different local times canceling out. (In fact we recall that the scale function
is defined up to an affine transformation).

Lemma 4.5.1. The process (Xt)t≥0 is associated with the Dirichlet form

D(u) :=
1

2

∫
R
(u̇)2 exp(−α1]−∞,0]) dx

in L2(exp(−α1]−∞,0]) dx), where α ∈ R is defined by
1− e−α

1 + e−α
= β ∈ ]− 1,+1[.
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Proof. The form (D,C1
b (R)) is closable in L2(exp(−α1]−∞,0]) dx) since it is equiva-

lent to the standard Dirichlet forms associated with the Brownian motion. By the
same argument, the closure of (D,C1

b (R)) is regular and therefore there exists an
associated Hunt process (Xt)t≥0. We want now to prove that this process is a weak
solution of (4.1.1). The following integration by parts formula∫

ϕ′ exp(−α1]−∞,0]) dx =− (1− e−α)ϕ(0)

= 2
1− e−α

1 + e−α
lim
ε↓0

1

2ε

∫ ε

−ε
ϕ exp(−α1]−∞,0]) dx,

together with the Fukushima decomposition, shows that Xt is a semimartingale and
that it satisfies (4.1.1) for quasi-every initial point X0 = x, i.e. for all x outside
a set N of null capacity. However, we can in fact choose N = ∅ by noting that
the transition semigroup of the skew Brownian motion with −1 ≤ β ≤ 1 has
an explicit Markov transition density with respect to the Lebesgue measure (see
III.1.16, VII.1.23, XII.2.16 in [58]). Therefore X satisfies the absolute continuity
assumption and we can use [27, Theorem 4.1.2 and formula (4.2.9)].

Theorem 4.5.2. The form Λn, defined in (4.5.3), is a regular Dirichlet form in
L2(πn), and the associated Markov process is a weak solution of (4.5.7). Moreover
such solution is unique in law.

Proof. As in the proof of Lemma 4.5.1, Λn is a regular Dirichlet form with the strong
local property because it is equivalent to the Dirichlet form of a finite dimensional
Ornstein-Uhlenbeck process. So by [27] there is a continuous Hunt process associ-
ated to Λn.

By the integration by parts formula (4.5.6) and the Fukushima decomposi-
tion, the Hunt process associated with Λn has the following property: the process
(〈h,Xt〉)t≥0 is a semi-martingale

〈h,Xn
t 〉 − 〈h,Xn

0 〉 = Mh
t +Nh

t (4.5.9)

and the Revuz measure of the bounded-variation CAF Nh is

Σh(dx) =
1

2
〈Anx− f ′0(x), h〉 πn(dx) +

2n−1∑
i=0

hi
∑
j

1− e−αj 2−n

1 + e−αj 2−n
πn(dx ; x(i) = yj).

(4.5.10)
Because of the structure of Σh, the process Nh can be written as

Nh
t =

∫ t

0

1

2
〈AnXs − f ′0(Xs), h〉 ds+

2n−1∑
i=0

hi
∑
j

1− e−αj 2−n

1 + e−αj 2−n
˜̀i,yj
t ,

where ˜̀i,yj
t is adapted to the natural filtration of (Xt, t ≥ 0). We want now to show

that in fact ˜̀i,yj
t is adapted to the natural filtration of (X i

t , t ≥ 0). Since X i
t is a

semimartingale, by Tanaka’s formula

|X i
t − yj| = |X i

0 − yj|+
∫ t

0

sign(X i
s − yj) dX i

s + L
yj
t (X i) (4.5.11)
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where Lyj(X i) is the local time of X i
t at yj. Since |〈ei, ·〉−yj| ∈ Λn, then Lyj(X i) is

an additive functional of X. Now we can compute the Revuz measure of Lyj(X i),
using theorem 5.4.2 of [27]. With an integration by parts formula we see that for
all ϕ smooth enough:

Λn(|〈ei, ·〉 − yj|, ϕ) =
1

2

∫
sign(xi − yj) ∂iϕ(x) dπn

= −1

2

∫
sign(xi − yj)

(
(Anx)i − f ′0(xi)

)
ϕ(x) dπn −

∫
ϕ(x) πn(dx;x(i) = yj).

By comparison with (4.5.11), we see that πn(dx;x(i) = yj) is the Revuz measure of

t 7→ L
yj
t (X i) and therefore by (4.5.10) the processes (L

yj
t (X i), t ≥ 0) and (`

i,yj
t , t ≥ 0)

are equal up to a multiplicative constant.
We want now to prove uniqueness in law for (4.5.7). We define the exponential

martingale

Mt := exp

(
−2

n
2
−1

∫ t

0

〈AnXs − f ′0(Xs), dws〉 − 2n−3

∫ t

0

‖AnXs − f ′0(Xs)‖2ds

)
.

Then under the probability measure MT ·Px, by the Girsanov theorem the canonical
process is a solution in law of

dX i =
∑
j

1− e−αj 2−n

1 + e−αj 2−n
d˜̀i,yj
t + 2−

n
2 dŵit, t ∈ [0, T ],

where the Brownian motions (ŵit, t ≥ 0)i are independent; therefore we have reduced
to an independent vector of skew-Brownian motions and uniqueness in law holds for
such processes by the pathwise uniqueness proved by Harrison and Shepp in [39].

Moreover, by the property recalled in the proof of Lemma 4.5.1, the transition
semigroup of the skew-Brownian motion satisfies the absolute continuity condition
and therefore all the above statements are true for all initial conditions.

Excursion construction of the skew Brownian motion

To conclude this part we just give the excursion construction of the skew Brownian
motion. We denote by (W,F ,P) the Wiener space and by U ⊂W the space of all
functions w such that +∞ > R(w) > 0, where R(w) := inf{t > 0|w(t) = 0}. U
is the trace of the Borel σ-field . Then the excursion process (es, s > 0), for the
Brownian motion, is defined as follow:

es(w) : r 7→ Bτs−(w)+r(w)1(r≤τs(w)−τs−(w)) (4.5.12)

if τs(w)− τs−(w) > 0. Note that τs =
∑
u≤s

R(eu) and τs− =
∑
u<s

R(eu), Lt is defined

as the inverse of τt. we prove now the the process

Xα
t (w) = Yτs−(w)|es(t− τs−(w));w)|, t ∈ [τs−(w), τs(w)[ (4.5.13)

is a skew brownian motion. (Ya)a is countable family of independent Bernoulli
random variables with parameter α indexed by a denumerable set.
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Proposition 4.5.3. The processus Xα is a Markov process, with transition semi-
group:

pt(0, y) = (1 + β) gt(y)1(y>0) + (1− β) gt(y)1(y<0)

pt(x, y) = 1(x>0)[ gt(y − x) + β gt(x+ y)1(y>0) + (1− β) gt(y − x)1(y<0)]

+ 1(x<0)[ gt(y − x)− β gt(x+ y)1(y<0) + (1 + β) gt(y − x)1(y>0)],

where gt(·) is the density of the Gaussian law N (0, t).

See exercice III.1.16 and exercice XII.2.16 in [58].

4.5.2 Scale function and speed measure

In this chapter we calculate the speed function of the process

Xt = X0 +Bt +

∫
l̃at (x)f ′(da) (4.5.14)

where (l̃at )t,a is the symmetric local time of X, and f is the function

f(y) =
k∑
j=1

βj 1(y≤yj), y ∈ R (4.5.15)

with |βj| < 1 and y1 < · · · < yk < yk+1 := +∞; we define a continuous piecewise
linear function s : R 7→ R, such that s(x) = x for x < y1, s′ is well-defined and
constant on ]yj, yj+1[, j = 1, . . . , k, and satisfies

s′+(yj) = s′−(yj)
1− βj
1 + βj

, j = 1, . . . , k, (4.5.16)

where s′+ and s′− denote respectively the right and left derivative of s. Then by a
calculation similar to that performed in section 4.5.1 we can see that

s(Xt) = s(X0) +

∫ t

0

s′(Xu) dBu, t ≥ 0,

i.e. s is the scale function of s, where s′ is defined by
s′+ + s′−

2
(we recall again

that the scale is unique up to an affine transformation). Indeed, by the Itô-Tanaka
formula applied to the semimartingale X we obtain

s(Xt) = s(X0) +

∫ t

0

s′(Xs) dXs +
1

2

∫
R
l̃at s
′′(da)

= s(X0) +

∫ t

0

s′(Xs) dBs +

∫
R
s′(a) l̃at f

′(da) +
1

2

∫
R
l̃at s
′′(da),

see [58, VI.1.25]. By (4.5.16), βj(s
′
+(yi) + s′−(yi)) = s′−(yi) − s′+(yi) and therefore

for all t > 0∫
R
s′(a) l̃at f

′(da) =
k∑
1

βj
s′+ + s′−

2
(yj) l̃

yj
t =

k∑
1

s′− − s′+
2

(yj) l̃
yj
t

= −1

2

∫
R
l̃at s
′′(da)
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and therefore

s(Xt) = s(X0) +

∫ t

0

s′(Xs) dBs, t ≥ 0.

4.5.3 Convergence of the Hilbert spaces

Proposition 4.5.4. The sequence of Hilbert spaces (L2(πn))n converges to L2(ν)
in the sense of Definition 4.4.3.

Proof. According to Definition 4.4.3, we have first to define a map Φn : L2(ν) 7→
L2(πn). We consider now the Borel σ-field B on L2(0, 1), completed with all µ-null
sets (we use the same notation for the completed σ-field).

Setting β̄ := Pnβ, let us introduce the filtration Fn := σ(β̄i2−n , i = 1, . . . , 2n)
and the linear map Φn : L2(µ) 7→ L2(µn) defined as follows: Φn(ϕ) = ϕn, where

ϕn(β̄i2−n , i = 1, . . . , 2−n) = E(ϕ(β) | Fn). (4.5.17)

Then ϕn is well defined µn-a.e. For any ϕ ∈ L2(µ) the sequence (ϕn)n is a martingale
bounded in L2(µ), therefore converging a.s. and in L2(µ). Now, since L2(µ) ≡ L2(ν)
and L2(µn) ≡ L2(πn) with equivalence of norms (uniformly in n), then the map Φn

is still well defined and sup
n
‖ϕn‖L2(πn) < +∞ for all ϕ ∈ L2(ν). We have to prove

that ‖ϕn‖L2(πn)→‖ϕ‖L2(ν) as n→ +∞.
We first prove that F (β̄n) converges a.s. to F (β), where βn := β̄br2nc, r ∈ [0, 1].

We have that

F (βn) = 2n
2n−1∑
i=1

f(βi2−n) =

∫ 1

0

f(βbr2nc) dr.

Now by dominated convergence it is enough to prove that a.s. f(βnr ) →
n→+∞

f(βr)

for a.e. r ∈ [0, 1]. By (4.5.5), f is continuous outside the finite set ∆f = {yj}.
For all a ∈ R, a.s. {r ∈ [0, 1] : βr = a} is a compact set with zero Lebesgue
measure and therefore a.s. U := {r ∈ [0, 1] : βr ∈ ∆f} also has zero Lebesgue
measure. Therefore for all r ∈ [0, 1] \ U , f(βnr ) →

n→+∞
f(βr) and by dominated

convergence F (βn) converges a.s. to F (β). In particular, by dominated convergence

Zn = µn(e−F ) = E(e−F (β̄n)) converges to Z = E(e−F (β)).
Now, let us prove that ‖ϕn‖L2(πn) → ‖ϕ‖L2(ν). Since Zn →

n→+∞
Z, we have to

prove that

E
(
ϕ2
n(β̄n) e−F (β̄n)

)
→

n→+∞
E
(
ϕ2(β) e−F (β)

)
.

We have shown above that ϕn(β̄n) converges to ϕ(β) in L2. Therefore (ϕ2
n(βn))n

is uniformly integrable and so is also (ϕ2
n(β̄n) e−F (β̄n))n, since (e−F (β̄n))n is bounded

in L∞. We can then conclude since a u.i. sequence converging a.s. converges in
L1.

4.5.4 Mosco convergence

We want now to prove that Λn Mosco converges to E . In [4, Thm. 3.5], Andres and
von Renesse have proved that Theorem 2.4.4 still holds if one replaces the condition
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Mosco II with the following condition Mosco II’.

Definition 4.5.5 (Mosco II’ ). There is a core K ⊂ D(E) such that for any x ∈ K
there exists a sequence xn ∈ D(Λn) converging strongly to x and such that E(x, x) =
lim

n→+∞
Λn(xn, xn).

Theorem 4.5.6. The Dirichlet form Λn Mosco-converges to Λ as n→ +∞.

Lemma 4.5.7. Let un ∈ L2(πn) be a sequence which converges weakly to u ∈ L2(ν),
and such that lim inf

n
Λn(un, un) < +∞, then there is a subsequence of (un ◦ Pn)n

converging to u in L2(ν).

Proof. By passing to a subsequence, we can suppose that lim sup
n

Λn(un, un) < +∞.

By (4.5.4), we have that E0(un ◦ Pn, un ◦ Pn) ≤ CΛn(un, un), for some constant
C > 0, and therefore lim sup

n
E0(un ◦ Pn, un ◦ Pn) < +∞. By Proposition 4.2.1,

the inclusion D(E0) ⊆ L2(ν) is compact, so that we can extract a subsequence
vnk := unk ◦ Pnk converging in L2(ν). This subsequence vnk ∈ L2(πnk) converges
strongly to u ∈ L2(ν), since Φn(un ◦ Pn) = un, by the definition of Φn given in the
proof of Proposition 4.5.4.

Proof of Theorem 4.5.6. Let us consider the following regularization of f : we fix a
function ρ : R 7→ R such that ρ(x) = 1 for all x ≤ 0, ρ(x) = 0 for all x ≥ 1, ρ is
monotone non-increasing and twice continuously differentiable on R with 0 ≤ ρ′ ≤ 1;
then we set

fn(y) = f0(y) +
k∑
j=1

αj ρ(n(y − yj) + 1(αj<0)), y ∈ R. (4.5.18)

Notice that fn ↓ f pointwise as n ↑ +∞. Now we define the measure

π̃n(dx) =
1

Zn
exp(−Fn(x))µn(dx) =

1

Zn
exp

(
− 1

2n

2n−1∑
i=1

fn(x(i2−n))

)
µn(dx);

note that π̃n is not normalized to be a probability measure, in fact π̃n ≤ πn since
fn ≥ f . We also define the Dirichlet form

Λ̃n(ϕ, ψ) :=
1

2

∫
〈∇ϕ,∇ψ〉 dπ̃n, ∀ϕ, ψ ∈ D(Λn).

The form Λ̃n is clearly equivalent to Λn on D(Λn). Moreover Λ̃n(u, u) ≤ Λn(u, u)
for all u ∈ D(Λn).

Let us show first condition Mosco II’. For v ∈ K := ExpA(H), we have that

v(w) =
k∑

m=1

λk exp(i〈w, hm〉)

and we can suppose that v 6= 0. We set vn := v|Hn . Then it is easy to see that
vn converges strongly to v; indeed, setting ṽn := v ◦ Pn, we have Φm(ṽn) = vn for
m ≥ n by construction; therefore

‖Φm(ṽn)− vm‖L2(πm) = ‖vn − vm‖L2(πm) ≤ C‖v ◦ Pn − v ◦ Pm‖L2(µ),
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which tends to 0 as m→ +∞ and then n→ +∞. Moreover

Λn(vn, vn) =
1

2

∫
‖Pn∇v‖2

H dπn → E(v, v),

so that Mosco II’ holds.
Let us prove now Mosco I. Let un ∈ L2(πn) be a sequence converging weakly to

u ∈ L2(ν); we can suppose that u ∈ D(E) and that lim inf
n

Λn(un, un) < +∞; then

by lemma 4.5.7, up to passing a subsequence, we can suppose that un → u strongly.
Since Λ̃n ≤ Λn, we have

lim inf
n→∞

Λn(un, un) ≥ lim inf
n→∞

Λ̃n(un, un).

Now for any vn ∈ D(Λn)

Λ̃n(un, un) ≥
(
Λ̃n(un, vn)

)2

Λ̃n(vn, vn)
. (4.5.19)

Suppose that v 6= 0 and v ∈ ExpA(H) is a linear combination of exponential
functions. We set vn := v|Hn . Then arguing as above we have Λ̃n(vn, vn)→ E(v, v).

Now we prove that Λ̃n(un, vn) → E(u, v). By linearity, we can suppose that v =
exp(i〈·, h〉). Integrating by parts we see that

2 Λ̃n(un, vn) = −i
∫
un(x) vn(x) 〈Anx− f ′n(x), Pnh〉 πn(dx).

+ ‖Pnh‖2
H

∫
unvn dπn

the last term converges easily. The claim follows if we prove that∫
un(x) vn(x) 〈nρ′(n(x− y)), Pnh〉 πn(dx)→

∫
u(x) v(x) 〈`y· , h〉 ν(dx).

Note that, with the notation βn = Pnβ,∫
ϕ(x) 〈nρ′(n(x− y)), h〉πn(dx) = E(ϕ(βn) 〈nρ′(n(βn − y)), h〉).

Now

|〈nρ′(n(βn − y))− nρ′(n(β − y)), Pnh〉| ≤ n sup
|r−s|≤2−n

|βr − βs| ‖h‖∞.

Moreover, if h has support in [ε, 1− ε], then∣∣∣∣〈nρ′(n(β − y)), hn〉 −
∫ 1

0

hn d`
y

∣∣∣∣ =

∣∣∣∣∫ hn(r)

(∫
nρ′(n(a− y)) (`a − `y)(dr) da

)∣∣∣∣
=

∣∣∣∣∫ 1−ε

ε

h′n(r)

(∫
nρ′(n(a− y)) (`a(r)− `y(r)) da

)
dr

∣∣∣∣
≤ ‖h′‖ sup

|a−y|≤1/n

sup
r∈[ε,1−ε]

|`a(r)− `y(r)|.
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We want now to show that these quantities converge to 0 in L2 as n→ +∞. Indeed,
since (β1−r, r ∈ [0, 1]) has the same law as (βr, r ∈ [0, 1]), we can write

E

(
sup

|r−s|≤2−n
|βr − βs|2

)
≤ 2E

(
sup

|r−s|≤2−n,r,s≤ 3
4

|βr − βs|2
)

= 2E

(
sup

|r−s|≤2−n, r,s≤ 3
4

|Br −Bs|2
p1/4(B3/4)

p1(0)

)
≤ 4E

(
sup

|r−s|≤2−n, r,s≤ 3
4

|Br −Bs|2
)

≤ C(2−n)1/2

by Kolmogorov’s continuity criterion for the standard Brownian motion (Br)r≥0.
For the other term, we also reduce to a known result on the local time (`at )a∈R,t≥0

of Brownian motion:

E

(
sup

|a−y|≤1/n

sup
r∈[ε,1−ε]

|`a(r)− `y(r)|2
)

= E

(
sup

|a−y|≤1/n

sup
r∈[ε,1−ε]

|`a(r)− `y(r)|2 pε(B1−ε)

p1(0)

)

≤ ε−1/2 E

(
sup

|a−y|≤1/n

sup
r∈[ε,1−ε]

|`a(r)− `y(r)|2
)
≤ C(1/n)1/2,

see [58] p.225-226. It only remains to prove that

lim
n

∫
un vn 〈Anx− f ′0(x), Pnh〉 πn(dx) =

∫
u (〈x,Ah〉− 〈f ′0(x), h〉) ν(dx). (4.5.20)

The term containing f ′0(x) gives no difficulty; as for

∫
un vn 〈·, AnPnh〉 dπn, we have∫

un vn 〈·, AnPnh〉 dπn =
1

Zn

∫
un vn 〈·, AnPnh〉 e−Fn dµn.

Now, notice that by an integration by part formula, we have for all g ∈ C1
b (H)∫

g 〈·, AnPnh〉 dµn =

∫
∂Pnhg dµn.

Moreover ∫
〈·, AnPnh〉2dµn = ‖Pnh‖2 ≤ ‖h‖2.

Therefore, the linear functional L2(µ) 3 g 7→
∫
g 〈Pn·, AnPnh〉 dµ is uniformly

bounded in n and converges on C1
b (H), a dense subset in L2(µ). By a density

argument, this sequence of functionals converges weakly in L2(µ).
We recall now that L2(πn) 3 un converges strongly to u ∈ L2(ν). We want to

show that (unvne
−Fn) ◦ Pn → uve−F in L2(µ). Indeed by lemma 4.5.7, from any

subsequence of (un◦Pn)n we can extract a sub-subsequence converging to u in L2(ν)
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and ν-almost surely. On the other hand (vne
−Fn) ◦ Pn converges pointwise to ve−F

and ((vne
−Fn) ◦ Pn)n is uniformly bounded, so we conclude with the dominated

convergence theorem. Therefore, we obtain that

lim
n

∫
unvne

−Fn 〈·, AnPnh〉 dµn =

∫
uve−F 〈·, APh〉 dµ, (4.5.21)

and (4.5.20) is proved.
Finally we prove that if lim inf

n
Λn(un, un) < +∞, then u ∈ D(E). Indeed for

all un ∈ D(Λn) we have un ◦ Pn ∈ D(E), moreover (un)n converges weakly to u
then (un ◦ Pn)n converges weakly to u in L2(ν); then, as at the end of the proof of
Proposition 4.4.6, by the compact injection of D(E) in L2(ν) we have that u ∈ D(E),
which ends the proof.

Remark 4.5.8 (some extension). Using an monotone argument as in chapter 5
to reach Mosco I, the last results still true (by approximation with step function)
if f is bounded, with bounded variation. The finite dimensional diffusion, in the
interface approximation, was studied in [44]. Let φ ∈ C1

b (R), we have the following
integration by part formula ∫

R
φ′e−fdx =

∫
R
φe−f df (4.5.22)

The Dirichlet form Λ(u, v) = 1/2

∫
u′v′e−fdx is associated to a SDE of the form

Xt = X0 + wt +

∫
R
l̃at dm(a) (4.5.23)

Where the support of m is the support of df . If |m({x})| < 1 for all x ∈ R, pathwise
uniqueness holds.

4.5.5 Convergence in law of stationary processes

We denote now by (Qn
πn)n the law of the stationary solution of equation (4.5.7)

started with initial law πn. We want to prove a convergence result for (Qn
πn)n to Pν ,

the stationary solution to equation (4.1.6). We define the space H−1(0, 1) as the
completion of L2(0, 1) with respect to the Hilbertian norm

‖x‖2
H−1(0,1) :=

∫ 1

0

dθ 〈x,1[0,θ]〉2L2(0,1),

and the linear isometry J : H−1(0, 1) 7→ L2(0, 1) given by the closure of

H−1(0, 1) ⊃ L2(0, 1) 3 x 7→ Jx := 〈x,1[0,·]〉L2(0,1).

Lemma 4.5.9. The sequence Qn
πn converges weakly to Pν in C([0, T ];H−1(0, 1)).

Proof. We define Sn := Qn
πn ◦ J

−1, i.e. the law of (JXn
t )t≥0, where Xn

t has law

Qn
πn . Since J maps L2(0, 1) continuously into H1(0, 1), we obtain that πn

n ◦ J−1
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satisfies condition (4.6.1) below. Therefore by Lemma 4.6.1 below, (Sn)n is tight in
C([0, T ]× [0, 1]) and therefore (Qn

πn)n is tight in C([0, T ];H−1(0, 1)).
Let us now prove convergence of finite dimensional distributions. As in the proof

of Proposition 4.4.7, let f ∈ Cb(Hm) of the form f(x1, . . . , xm) = f1(x1) · · · fm(xm).
By the Markov property, it is enough to prove that

P n
t1

(f1 · P n
t2−t1(f2 · . . . (fm−1P

n
tm−tm−1

fm) . . .))

→ Pt1(f1 · Pt2−t1(f2 · . . . (fm−1Ptm−tm−1fm) . . .)), strongly.

Arguing by recurrence, we only need to prove that, if L2(πn) 3 vn → v ∈ L2(ν)
strongly, and g ∈ Cb(H), then g · vn converges strongly to g · v. Recalling that Φm

is a conditional expectation and using the notation of definition 4.4.3 and (4.5.1),
we have

‖Φm(g · ṽn)− g · vm‖Hm
≤ ‖Φm(g · ṽn − g ◦ Pm · ṽn)‖Hm + ‖g · (Φm(ṽn)− vm)‖Hm
≤ ‖(g − g ◦ Pm)ṽn‖H + ‖g‖∞‖Φm(ṽn)− vm‖Hm .

Since the conditional expectation is a contraction in L2 and g◦Pm converges almost
surely to g if m → +∞. Then we obtain the convergence in law of the finite
dimensional laws .

4.6 A priori estimate

We prove in this section an estimate which has been used above to prove tightness
properties in C([0, T ]× [0, 1]). We consider here a probability measure γ on H and
Dirichlet form (D, D(D)) in L2(γ) such that C1

b (H) is a core of D and

D(u, v) =
1

2

∫
〈∇u,∇v〉 dγ, ∀u, v ∈ C1

b (H).

Let us define for η ∈ ]0, 1[ and r ≥ 1 the norm ‖ · ‖W η,r(0,1), given by

‖x‖rW η,r(0,1) =

∫ 1

0

|xs|rds+

∫ 1

0

∫ 1

0

|xs − xt|r

|s− t|rη+1
dt ds.

Then we have the following

Lemma 4.6.1. Let (Xt)t≥0 be the stationary Markov process associated with D, i.e.
such that the law of X0 is γ. Suppose that there exist η ∈ ]0, 1[, ζ > 0 and p > 1
such that

ζ >
1

1 + 2
3
η
, p > max

{
2

1− ζ
,

1

η − 3
2

1−ζ
ζ

}
,

and ∫
H

‖x‖pW η,p(0,1) γ(dx) = Cη,p < +∞. (4.6.1)

Then there exist θ ∈ ]0, 1[, ξ > 1 and K > 0, all depending only on (η, ζ, p), such
that

E
[
‖Xt −Xs‖pCθ([0,1])

]
≤ K |t− s|ξ.
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Proof. We follow the proof of Lemma 5.2 in [19]. We introduce first the space
H−1(0, 1), completion of L2(0, 1) w.r.t. the norm:

‖f‖2
−1 :=

∞∑
k=1

k−2 |〈f, ek〉L2(0,1)|2

where ek(r) :=
√

2 sin(πkr), r ∈ [0, 1], k ≥ 1, are the eigenvectors of the second
derivative with homogeneous Dirichlet boundary conditions at {0, 1}. Recall that
L2(0, 1) = H, in our notation. We denote by κ the Hilbert-Schmidt norm of the
inclusion H → H−1(0, 1), which by definition is equal in our case to

κ =
∑
k≥1

k−2 < +∞.

We claim that for all p > 1 there exists Cp ∈ (0,∞), depending only on p, such that(
E
[
‖Xt −Xs‖pH−1(0,1)

]) 1
p ≤ Cp κ |t− s|

1
2 , t, s ≥ 0. (4.6.2)

To prove (4.6.2), we fix T > 0 and use the Lyons-Zheng decomposition, see e.g. [27,
Th. 5.7.1], to write for t ∈ [0, T ] and h ∈ H:

〈h,Xt −X0〉H =
1

2
Mt −

1

2
(NT −NT−t),

where M , respectively N , is a martingale w.r.t. the natural filtration of X, respec-
tively of (XT−t, t ∈ [0, T ]). Moreover, the quadratic variations are both equal to:
〈M〉t = 〈N〉t = t · ‖h‖2

H . By the Burkholder-Davis-Gundy inequality we can find

cp ∈ (0,∞) for all p > 1 such that: (E [|〈Xt −Xs, ek〉|p])
1
p ≤ cp |t− s|

1
2 , t, s ∈ [0, T ],

and therefore(
E
[
‖Xt −Xs‖pH−1(0,1)

]) 1
p ≤

∑
k≥1

k−2 (E [|〈Xt −Xs, ek〉|p])
1
p

≤ cp
∑
k≥1

k−2|t− s|
1
2‖ek‖2

L2(0,1) ≤ cp κ |t− s|
1
2 , t, s ∈ [0, T ],

and (4.6.2) is proved. By stationarity(
E
[
‖Xt −Xs‖pW η,p(0,1)

]) 1
p ≤

(
E
[
‖Xt‖pW η,p(0,1)

]) 1
p

+
(
E
[
‖Xs‖pW η,p(0,1)

]) 1
p

= 2

(∫
H

‖x‖pW η,p(0,1) dγ

) 1
p

= 2 (Cη,p)
1/p. (4.6.3)

By the assumption on ζ and p it follows that α := ζη − (1− ζ) > 0 and

p

2
(1− ζ) > 1,

1

d
:= ζ

1

p
+ (1− ζ)

1

2
< α.
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Then by interpolation, see [1, Chapter 7],(
E
[
‖Xt −Xs‖pWα,d(0,1)

]) 1
p ≤

≤
(
E
[
‖Xt −Xs‖pW η,p(0,1)

]) ζ
p
(
E
[
‖Xt −Xs‖pH−1(0,1)

]) 1−ζ
p
.

Since αd > 1, there exists θ > 0 such that (α−θ)d > 1. By the Sobolev embedding,
Wα,d(0, 1) ⊂ Cθ([0, 1]) with continuous embedding. Then we find that

E
[
‖Xt −Xs‖pCθ([0,1])

]
≤ K |t− s|ξ

with ξ :=
p

2
(1− ζ) > 1 and K a constant depending only on (η, ζ, p).

4.7 Polar sets

We conclude this study by a property, we obtain for the skew stochastic heat equa-
tion, due to (4.2.5) and the absolute continuity of the semi-group, indeed we saw
that E and E0 have the same sets with null capacity. We now recall three different
notions of exceptional sets in the Hunt probabilistic potential theory: that of polar
set, semi-polar set and set with potential zero.

1. A set N is polar if there is a set Ñ which is nearly Borel such that Px(σN <
∞) = 0 for all x ∈ H, where σN = inf{t > 0 : Xt ∈ N}.

2. A setN is semi-polar if there a sequence of thin sets (An)n such thatN ⊂ ∪nAn.
By thin set we mean that for each An there is a nearly Borel set Ãn such that
Ãrn = ∅, where Ãrn = ∅ is the set of all regular point of Ãn.

3. A universally Borel set N has zero potential if for all x ∈ H, Rα(x,A) = 0.

A set N ⊂ H is exceptional if there is a nearly Borel set Ñ ⊃ N such that
Pν(σÑ < ∞) = 0. A set N is properly exceptional if N is nearly Borel, ν(N) = 0
and H\N is invariant for X. We have the following theorem (see [27] p.137).

Theorem 4.7.1. Let N a subset of H.

1. If N is exceptional, then N is contained in a properly exceptional set B. B can
be taken Borel.

2. Assume that any compact set is of finite capacity. Then a set N ⊂ H is
exceptional if and only if Cap(N) = 0.

The following theorem gives a criterion for a set to be polar.

Theorem 4.7.2. The following conditions are equivalent:

1. A set is polar if and if it is exceptional

2. Rα(x, .) is absolute continuous with respect to ν for each α > 0 and x ∈ H
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3. pt(x, .) is absolutely continuous with respect to ν for all t > 0 and x ∈ H

Finally, we can enunciate a interesting property of the solution of (4.1.6). Indeed
theorems 4.7.1 and 4.7.2 say that the polar sets are the sets with zero capacity,
moreover we have seen that the Dirichlet forms E0 and E are equivalent in 4.2.5 so:

Corollary 4.7.3. The solution X of (4.1.6) has the same Polar sets as the infinite
dimensional Ornstein-Uhlenbeck process (4.1.4).
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CHAPTER 5

THE REFLECTED SKEW SPDE

5.1 Introduction

In this chapter we want to combine the two kinds of non-linearity of the previous
two chapters, namely we want to study the following reflected skew heat equation

∂u

∂t
=

1

2

∂2u

∂θ2
+ η(t, θ)− 1

2

∫
R
f(da)

∂

∂θ
`at,θ + Ẇ (t, θ)

u(0, θ) = x(θ), u(t, 0) = b, u(t, 1) = b

u(t, θ) ≥ 0, η ≥ 0, η({(t, θ) |u(t, θ) 6= 0}) = 0

(5.1.1)

where u takes values in [0,+∞[, b > 0, (`at,θ, θ ∈ [0, 1]) is the family of local times
at a ∈ R accumulated over [0, θ] by the process (u(t, r), r ∈ [0, 1]), and η is a locally
finite measure. Moreover we suppose that f : R 7→ R has the form

f(y) = f0(y) +
k∑
j=1

αj 1(y≤yj), y ∈ R (5.1.2)

where f0 is continuous and bounded with its first and second derivative and αj, yj ∈
R. Clearly, f has a jump in each yj of respective size αj (as previously, using a
monotone argument, some fact in this chapter still true if f is a bounded function
with bounded variation).

5.1.1 Definition of stationary solutions

We start by giving the main definition.

Definition 5.1.1. Let x ∈ L2(0, 1). An adapted process u, defined on a complete
filtered probability space (Ω,F , (Ft)t,P), is a weak stationary solution of (5.1.1) if

• a.s. u ∈ C([0, T ]× [0, 1]) and u(t, 0) = u(t, 1) = b for all t ≥ 0
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• (u(t+ T, x))t≥0,x∈[0,1] has the same law as (u(t, x))t≥0,x∈[0,1] for all T ≥ 0.

• a.s. for dt-a.e. t the process (u(t, r), r ∈ [0, 1]) has a family of local times
[0, 1]× R 3 (r, t) 7→ `at,θ, a ∈ R, such that∫ θ

0

g(u(t, r)) dr =

∫
R
g(a) `at,θ da, θ ∈ [0, 1], t ≥ 0,

for all bounded Borel g : R 7→ R.

• there is a Brownian sheet W such that for all h ∈ C2
c ((0, 1)) and t ≥ 0

〈ut − u0, h〉 =
1

2

∫ t

0

〈h′′, us〉L2(0,1) ds+
1

2

∫ t

0

∫
R
f(da)

∫ 1

0

h′(θ) `as,θ dθ ds

+

∫ t

0

∫ 1

0

h(θ)W (ds, dθ) +

∫ t

0

∫ 1

0

h(θ) η(ds, dθ)

(5.1.3)

The techniques we adopt are a combination of those of chapters 2 and 3.

5.1.2 The invariant measure

We consider now the one dimensional reflected SPDE studied in [51], and consider
now the maps F : H → R such that

F (x) :=

∫ 1

0

f(xθ) dθ, x ∈ H.

We denote by qb the law on Let K be the set defined by

K := {x ∈ L2([0, 1]) : xθ ≥ 0, for all θ ∈ [0, 1]}

and qb is the law of the Bessel bridge of dimension 3 from b to b over [0, 1]. If β
denotes a Brownian bridge from 0 to 0 over [0, 1], we call µb the law of (b + β).
Then it is well known that, for b > 0, the law of (b + β) conditioned on {b + βr ≥
0,∀ r ∈ [0, 1]}, is equal to qb, the law of the Bessel bridge of dimension 3 from b to
b over [0, 1]. Namely, we have

qb = µb( · |K), b > 0. (5.1.4)

The formula makes sense for b > 0 since in this case µb(K) = 1 − exp(−2b2) > 0.
For the rest of the paper we fix b > 0. Then we can define the probability measure
ζ on K

ζ(dx) :=
1

Z
exp(−F (x)) qb(dx). (5.1.5)

We recall the integration by part formula for qb, proved in [64]. Let h ∈ C2
c (0, 1),

then ∫
∂hF dqb = −

∫
F (w) 〈h′′, w〉 dqb −

∫ 1

0

dr ht α(b, r)

∫
F dqrb (5.1.6)
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where qrb(dw) is the law of qb conditioned on {wr = 0} and

α(b, r) =
1√

2πr3(1− r)3

2b2

1− e−2b2
e−b

2/(2r(1−r)), b > 0, r ∈ ]0, 1[.

We also fix a sequence fn of smooth bounded functions such that fn ↓ f and we
define

Fn(x) :=

∫ 1

0

fn(xθ) dθ, ζn(dx) :=
1

Z
exp(−Fn(x)) qb(dx).

Theorem 5.1.2. Let ϕ be C1
b (H), and h ∈ C2

c (0, 1). Then we have the following
integration by parts formula:∫

K

∂hϕdζ =−
∫
K

ϕ(w)

(
〈h′′, w〉dζ −

∫
R
f(da)

∫ 1

0

hr d`
a
r

)
ζ(dw)

− 1

Z

∫ 1

0

hr α(b, r)

∫
K

ϕ e−Fdqrb .

(5.1.7)

Proof. The desired result follows easily by (5.1.6), arguing as in the proof of
Proposition 3.6.1 �

Let us consider now the closure in L2(ζ) of the bilinear form

E(F,G) :=
1

2

∫
〈∇F,∇G〉 dζ, F,G ∈ C1

b (H). (5.1.8)

Since f is assumed to be bounded, the norm associated with this bilinear form in
L2(ζ) is equivalent to the analogous norm associated with the case f ≡ 0, i.e. with
the Dirichlet form of the reflected SPDE studied in [64]. By this equivalence results,
arguing as in Lemmas 4.2.4 and 4.3.2 above we obtain

Lemma 5.1.3. In the previous setting we have:

The bilinear form (E , C1
b (H)) is closable in L2(ζ) and its closure (E , D(E)) is a

quasi-regular Dirichlet form.

In particular we obtain by [46] existence of a Markov process properly associated
with (E , D(E)).

5.2 Existence of a stationary solution

In this section we follow the technique of section 4.3 above. However in this set-
ting we do not have for equation (5.1.1) the absolute-continuity relation proved in
Proposition 4.2.7 for equation (4.1.6) above. Therefore the results will be limited
to a stationary solution, unlike what we had in section 4.3.

5.2.1 Existence of the Local Time

Let us recall that ζ is absolutely continuous with respect to the law qb of (er, r ∈
[0, 1]), where e is a Bessel bridge of dimension 3 over [0, 1] from b to b. Since e is
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a semi-martingale, for qb-a.e. x there exists a measurable family of local times `ar
such that ∫ r

0

g(xs) ds =

∫
R
g(a) `ar da, r ∈ [0, 1],

In particular, setting

CL := {w ∈ C([0, 1]) : w has a measurable family of local times (`ar)(r,a)∈[0,1]},

then ζ(CL) = 1. Then we have the following

Proposition 5.2.1. Pζ-almost surely, for a.e. t there exists a measurable family of
local times [0, 1] 3 (r, a) 7→ `at (r) of (ut(θ), θ ∈ [0, 1]).

Proof. Let A ⊂ H a measurable set with ζ(A) = 0. Then

Eζ
[∫ t

0

1(us∈A) ds

]
=

∫ t

0

Pζ(us ∈ A) ds = t ζ(A) = 0.

Therefore, the time spent by (us, s ≥ 0) in A is a.s. equal to 0. In order to
conclude, we choose A as the complement of the set of trajectories with the desired
property.

We want now to show that the process associated with E satisfies (5.1.1). We are
going to apply (3.7.1) to Uh(x) := 〈x, h〉, x ∈ H, with h ∈ C2

c ((0, 1);Rd). Clearly
Uh ∈ Lip(H) ⊂ D(E). Our aim is to prove the following

Proposition 5.2.2. There is a unique measure η(ds, dθ) on [0,+∞[×[0, 1] such
that Pζ-a.s. for all t ≥ 0

N
[Uh]
t = −

∫ t

0

Gh(us)ds+

∫ t

0

∫ 1

0

hθη(ds, dθ) +
1

2

∫ t

0

〈h′′, us〉ds (5.2.1)

where h ∈ C∞c ((0, 1);Rd), and Gh is the map w 7→
∫
R

∫ 1

0

hθ dl
a
θ(w) f(da) defined

ζ-almost surely by Proposition 5.2.1. And Supp(η) ⊂ {(t, θ) |u(t, θ) ∈ ∂O}

Proof. The main tools of the proof are the integration by parts formula (5.1.7) and
a number of results from the theory of Dirichlet forms in [27]. We start by applying
(3.7.1) to Uh(x) := 〈x, h〉, x ∈ H. By approximation and linearity we can assume

that h ∈ D(A), h′′ ≥ 0 and therefore h ≥ 0 as well. The process N [Uh] is a CAF

of X, and its Revuz measure is
1

2
Σh, where, in the notations introduced in section

5.1.2

Σh(dw) :=

(
〈w, h′′〉 −

∫
R×[0,1]

f(da)hr l
a(dr)

)
ζ(dw)

+

∫ 1

0

dr α(b, r)hr
1

Z
exp(−F (w)) qrb(dw)

=: Σh
1(dw) + Σh

2(dw)
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where Σh
1(dw) and Σh

2(dw) are mutually singular measures, with Σh
2 ≥ 0. Arguing

as in the proof of Proposition 3.7.4 we can prove that there exists a non-negative
measure η(dt, dx) with the desired properties. Moreover by Tanaka’s formula we
have the estimate

Eζ

((∫
R

∫ 1

0

hθ dl
a
θ(w) f(da)

)2
)
< +∞

since ζ � µb, f(da) has globally bounded variation, h is bounded and la1 is in
Lp(µb) for any p ≥ 1. Then we can conclude arguing as in the proof of Proposition
4.3.5.

We now state the existence result of weak solution for (5.1.1).

Proposition 5.2.3. The stationary Markov process associated with E is a weak
solution of (5.1.1).

Proof. Continuity of almost all paths follows from the a priori estimate of Lemma
4.6.1 and by analogs of (4.4.10) and (4.4.11). We argue as in section 4.3 above, by
using the Fukushima decomposition, Proposition 5.2.2 and by identifying the noise
term with a cylindrical Brownian motion as in Proposition 4.3.6 above.

Remark 5.2.4. There is an ipp when b = 0, see [64], so the previous treatment
works for null Dirichlet boundary condition. Nevertheless we cannot prove at the
moment the Mosco convergence in this case.

5.3 The approximating SPDE

As in the proof of the integration by part formula (5.1.7) we consider the approxi-
mation of F by a sequence of functionals Fn defined as follow:

Fn(x) :=

∫ 1

0

fn(xs) ds,

where as before the function fn is bounded, continuously differentiable and fn ↓ f
pointwise, see (4.5.18). The approximating dynamics

∂u

∂t
=

1

2

∂2u

∂θ2
+ η(t, θ)− 1

2
f ′n(u) + Ẇ (t, θ)

u(0, θ) = x(θ), u(t, 0) = b, u(t, 1) = b

u(t, θ) ≥ 0, η ≥ 0, η({(t, θ) |u(t, θ) 6= 0}) = 0

(5.3.1)

This equation has been solved in [51] and [21] where existence of a strong solution
which has continuous path, for a solution which vanishes at the boundary.

This dynamic has a closed Dirichlet forms which is equivalent to the one of the
reflected SPDE corresponding to f ≡ 0.
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5.3.1 Mosco convergence of stationary approximating SPDEs

In the setting of definition 4.4.3, we can now see that the Hilbert spaces L2(ζn)
converge to L2(ζ). More precisely, analogously to Lemma 4.4.4 (and with identical
proof) we have the following

Lemma 5.3.1.

1. The sequence of Hilbert spaces L2(ζn) converges to L2(ζ), by choosing Φn equal
to the natural identification of equivalence classes in L2(ζn) and L2(ζ).

2. un ∈ L2(ζn) converges strongly to u ∈ L2(ζ) if and only if un → u in L2(ζ).

3. un ∈ L2(ζn) converges weakly to u ∈ L2(ζ) if and only if un → u weakly in
L2(ζ).

Let us consider now the closure in L2(ζn) of the bilinear form

En(F,G) :=
1

2

∫
〈∇F,∇G〉 dζn, F,G ∈ C1

b (H). (5.3.2)

We now prove Mosco convergence of En to E in the sense defined in section 4.4.2.

Proposition 5.3.2. The Dirichlet form EnMosco-converges to E on L2(ζ).

Proof. The proof of the condition Mosco II is trivial in our case; indeed, for
all x ∈ D(E), we set xn := x ∈ D(En) for all n ∈ N; by dominated convergence
E(x, x) = lim

n
En(x, x). If x /∈ D(E), then again xn := x /∈ D(En) satisfies E(x, x) =

lim
n
En(x, x) = +∞.

Let us prove now condition Mosco I, by following the simple monotonicity argu-
ment in the proof of Theorem 4.5.6 above. Recall that fn ↓ f pointwise as n ↑ +∞.
Now we define the measure

ζ̃n(dx) =
1

Z
exp(−Fn(x)) qb(dx), (5.3.3)

where Z =

∫
exp(−F ) dζ is the normalization constant of ζ in (5.1.5); in particular

ζ̃n is not normalized to be a probability measure, in fact ζ̃n ≤ ζn since fn ≥ f . We
also define the Dirichlet form

Ẽn(ϕ, ψ) :=
1

2

∫
〈∇ϕ,∇ψ〉 dζ̃n, ∀ϕ, ψ ∈ D(En). (5.3.4)

The form Ẽn is clearly equivalent to En on D(En). Moreover Ẽn(u, u) ≤ En(u, u) for
all u ∈ D(En).

Let now un ∈ L2(ζn) be a sequence converging weakly to u ∈ L2(ζ); we can
suppose that u ∈ D(E) and that lim inf

n
En(un, un) < +∞; then by lemma 4.5.7, up

to passing a subsequence, we can suppose that un → u strongly.
Since Ẽn ≤ En, we have for m ≤ n

lim inf
n→∞

En(un, un) ≥ lim inf
n→∞

Ẽm(un, un) ≥ Ẽm(u, u).
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Therefore, letting m→ +∞ we obtain by monotone convergence

lim inf
n→∞

En(un, un) ≥ lim
m→∞

Ẽm(u, u) = E(u, u),

i.e. the condition Mosco I. �

5.3.2 Convergence in law of stationary approximating SPDEs

Arguing as in section 4.5.5, we obtain the following

Proposition 5.3.3. The stationary solutions of (5.3.1) converge in law to the sta-
tionary solution of (5.1.1).

5.4 Approximation by a finite-dimensional SDE

From now on we turn our attention to another problem: convergence in law of
finite dimensional approximations of equation (5.1.1). As in section 4.5 above, we
want to project, in a sense to be made precise, (5.1.1) onto an equation in a finite
dimensional subspace of H := L2(0, 1). Again, we consider the space Hn of functions
in L2(0, 1) which are constant on each interval [(i − 1)2−n, i2−n[, i = 1, . . . , 2n and
we endow Hn with the scalar product inherited from H. We recall that there exists
a unique orthogonal projector Pn : L2(0, 1) 7→ Hn, given explicitly by

Pnx := 2n
2n−1∑
i=0

1[i2−n,(i+1)2−n[ 〈1[i2−n,(i+1)2−n[, x〉.

Let again β denote a Brownian bridge from 0 to 0 over [0, 1]. Then it is well known
that, for b > 0, the law of (b+ β) conditioned on {b+ βr > 0,∀ r ∈ [0, 1]}, is equal
to qb, the law of the Bessel bridge of dimension 3 from b to b over [0, 1]. Moreover,
as b ↓ 0 we obtain that q0 is the law of the Brownian bridge conditioned to be
non-negative over [0, 1].

We generalize the notations of section 4.5 above: we call µbn the law of Pn(b+ β)
for b ≥ 0; then µbn is a Gaussian law on H with mean equal to the constant function b
and non-degenerate covariance operator PnQPn, where Q is the covariance operator
of µ. In what follows we write

PnQPn = (−2An)−1, An : Hn 7→ Hn.

We also define ξn as

ξn(dx) =
1

Zn
1K(x) exp(−F (x))µbn(dx), b ≥ 0. (5.4.1)

where Zn is a normalization constant and K := {x ∈ L2(0, 1) : x ≥ 0}. Note that
ξn(dx) = πn(b+ dx |K), where πn is defined as in (4.5.2).

A natural approximation of E defined on Hn is given by the following symmetric
bilinear non-negative form

Λn(u, v) :=
1

2

∫
〈∇u,∇v〉Hn dξn, u, v ∈ C1

b (Hn) (5.4.2)
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with reference measure ξn. Then we have

Λn(u, v) =
1

2

∫
〈∇(u ◦ Pn),∇(v ◦ Pn)〉H

1

Zn
exp(−F ◦ Pn) dµb, u, v ∈ C1

b (Hn).

(5.4.3)
We have the following integration by parts formula∫

∂hψ dξn = −
∫
ψ 〈x,Anh〉 ξn(dx) +

∫
ψ(x) 2−n

2n−1∑
i=0

hi f
′
0(xi) ξn(dx)

−
∫
ψ(x)

2n−1∑
i=0

hi
∑
j

2
1− e−αj 2−n

1 + e−αj 2−n
ξn(dx ; x(i) = yj),

−
∫
ψ(x)

2n−1∑
i=0

hi ξn(dx ; x(i) = 0)

(5.4.4)

where we use the notation

ξn(A ; x(i) = yj) := lim
ε↓0

1

2ε
ξn(A ∩ {|x(i)− yj| ≤ ε}).

This shows that the dynamics associated with Λn solves the stochastic differential
equation

dX i
t =

1

2

(
(AnX)i − f ′0(X i)

)
dt+

∑
j

1− e−αj 2−n

1 + e−αj 2−n
d˜̀i,yj
t + d`i,0t + 2−

n
2 dwit (5.4.5)

where (˜̀i,a
t , t ≥ 0) is the symmetric local time of (X i(t), t ≥ 0) at a, and moreover

X i ≥ 0, d`i,0t ≥ 0,

∫ ∞
0

X i
t d`

i,0
t = 0.

Then (X i
t)i is a vector of interacting Reflected skew Brownian motions.

5.4.1 Reflected Skew Brownian motion

We want here to study the following SDE in R: for all t ≥ 0

Xt = X0 +Bt + β l̃1t + lt, Xt ≥ 0, dlt ≥ 0,

∫ t

0

Xs dls = 0, (5.4.6)

where |β| < 1, (Bt)t≥0 is a standard Brownian motion in R and l̃at is the symmetric
local time of (Xt)t≥0 at a ∈ R. Then we have the

Proposition 5.4.1. Equation (5.4.6) satisfies existence and uniqueness in law of
the pair (Xt, Bt)t≥0 for all X0 ≥ 0. Moreover (2lt)t≥0 is the local time of (Xt)t≥0 at
0.

Proof. By the Itô-Tanaka formula we have

Xt = (Xt)
+ = (X0)+ +

∫ t

0

1(Xs>0) dXs +
1

2
L0
t =
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Let us set γ = (β + 1)/2 and

s(x) =

{
(1− γ)(x− 1) + γ, x ∈ [1,+∞[
γx, x ∈ [0, 1[.

(5.4.7)

Applying the symmetric Itô-Tanaka formula, we have arguing as in section 4.5.1

s(Xt) = s(X0) +

∫ t

0

s′(Xs) dBs + γ lt, t ≥ 0,

where

s′(x) :=
s′+ + s′−

2
(x) = (1− γ)1(x>1) +

1

2
1(x=1) + γ1(x<1)

is the symmetric derivative. Then, setting Yt := s(Xt) and

f(x) := s′ ◦ s−1(y) =

 1− γ, y ∈ ]γ,+∞[
1/2, y = γ
γ, y ∈ [0, γ[

(5.4.8)

we have that Y satisfies the SDE

Yt = Y0 +

∫ t

0

f(Ys) dBs + γlt, (5.4.9)

with the additional constraint

Yt ≥ 0, dlt ≥ 0,

∫ t

0

Ys dls = 0.

Note now that f is bounded below by a positive constant. Let At be the time change
defined as follow:

Ct :=

∫ t

0

f 2(Ys) ds, CAt = t, t ≥ 0,

then Wt :=

∫ At

0

f(Ys) dBs is a Brownian motion, and setting Lt := γ `At we have

Zt := YAt = Z0 +Wt + Lt, Zt ≥ 0, dLt ≥ 0,

∫ t

0

Zs dLs = 0. (5.4.10)

Therefore, the law of the process (Zt,Wt)t≥0 is determined by the Skorokhod Lemma,
see lemma 2.1.15 below. Since

A′t =
1

C ′At
=

1

f 2(Zt)
, t > 0,

then

At =

∫ t

0

f−2(Zs) ds, ACt = t, t > 0,

and therefore Xt = s−1(ZCt), t ≥ 0. This gives existence and uniqueness in law of
(Xt, Bt)t≥0.

�
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Lemma 5.4.2. The process (Xt)t≥0 is associated with the Dirichlet form

D(u) :=
1

2

∫
R+

(u̇)2 exp(−α1[1,+∞[) dx

in L2(exp(−α1[1,+∞[)1R+ dx), where α ∈ R is defined by
1− e−α

1 + e−α
= β.

Proof. The form (D,C1
b (R+)) is closable in L2(exp(−α1[1,+∞[)1R+ dx) since it is

equivalent to the standard Dirichlet forms associated with the reflected Brownian
motion. By the same argument, the closure of (D,C1

b (R+)) is regular and therefore
there exists an associated Hunt process (Xt)t≥0. We want now to prove that this
process is a weak solution of (5.4.6). The following integration by parts formula∫

R0

ψ′ exp(−α1[1,+∞[) dx =(1− e−α)ψ(1)− ψ(0)

together with the Fukushima decomposition, shows that Xt is a semimartingale and
that it satisfies (5.4.6) for quasi-every initial point X0 = x, i.e. for all x outside a
set N of null capacity.

Theorem 5.4.3. The form Λn, defined in (5.4.2), is a regular Dirichlet form in
L2(ξn), and the associated Markov process is a weak solution of (5.4.5). Moreover
such solution is unique in law.

Proof. As in the proof of Lemma 5.4.2, Λn is a regular Dirichlet form with the strong
local property because it is equivalent to the Dirichlet form of a finite dimensional
Ornstein-Uhlenbeck process. So by [27] there is a continuous Hunt process associ-
ated to Λn.

By the integration by parts formula (5.4.4) and the Fukushima decomposi-
tion, the Hunt process associated with Λn has the following property: the process
(〈h,Xt〉)t≥0 is a semi-martingale

〈h,Xn
t 〉 − 〈h,Xn

0 〉 = Mh
t +Nh

t (5.4.11)

and the Revuz measure of the bounded-variation CAF Nh is

Σh(dx) =
1

2
〈Anx− f ′0(x), h〉 ξn(dx) +

2n−1∑
i=0

hi
∑
j

1− e−αj 2−n

1 + e−αj 2−n
ξn(dx ; x(i) = yj)

+
2n−1∑
i=0

hi ξn(dx ; x(i) = 0).

(5.4.12)

Because of the structure of Σh, the process Nh can be written as

Nh
t =

∫ t

0

1

2
〈AnXs − f ′0(Xs), h〉 ds+

2n−1∑
i=0

hi
∑
j

1− e−αj 2−n

1 + e−αj 2−n
˜̀i,yj
t

+
2n−1∑
i=0

hi `
i,0
t
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where ˜̀i,yj
t and `i,0t are adapted to the natural filtration of (Xt, t ≥ 0). We want

now to show that in fact ˜̀i,yj
t is adapted to the natural filtration of (X i

t , t ≥ 0), we
pose in the sequel y0 = 0. Since X i

t is a semimartingale, by Tanaka’s formula

|X i
t − yj| = |X i

0 − yj|+
∫ t

0

sign(X i
s − yj) dX i

s + L
yj
t (X i) (5.4.13)

where Lyj(X i) is the local time of X i
t at yj. Since |〈ei, ·〉−yj| ∈ Λn, then Lyj(X i) is

an additive functional of X. Now we can compute the Revuz measure of Lyj(X i),
using theorem 5.4.2 of [27]. With an integration by parts formula we see that for
all ϕ smooth enough:

Λn(|〈ei, ·〉 − yj|, ψ) =
1

2

∫
sign(xi − yj) ∂iψ(x) dξn

= −1

2

∫
sign(xi − yj)

(
(Anx)i − f ′0(xi)

)
ψ(x) dξn

−
∫
ψ(x) ξn(dx;x(i) = yj) +

∫
ψ(x) ξn(dx;x(i) = 0).

By comparison with (5.4.13), we see that ξn(dx;x(i) = yj) is the Revuz measure of

t 7→ L
yj
t (X i) and therefore by (5.4.12) the processes (L

yj
t (X i), t ≥ 0) and (˜̀i,yj

t , t ≥ 0)
are equal up to a multiplicative constant.

We want now to prove uniqueness in law for (5.4.5). We define the exponential
martingale

Mt := exp

(
−2n/2−1

∫ t

0

〈AnXs − f ′0(Xs), dws〉 − 2n−3

∫ t

0

‖AnXs − f ′0(Xs)‖2ds

)
.

Then under the probability measure MT ·Px, by the Girsanov theorem the canonical
process is a solution in law of

dX i =
∑
j

1− e−αj 2−n

1 + e−αj 2−n
d˜̀i,yj
t + d`i,0t + 2−n/2dŵit, t ∈ [0, T ],

where the Brownian motions (ŵit, t ≥ 0)i are independent; therefore we have reduced
to an independent vector of skew-Brownian motions and uniqueness in law holds
for such processes by the pathwise uniqueness proved below.

Moreover, by the property recalled in the proof of Lemma 5.4.2, the transition
semigroup of the reflected skew-Brownian motion satisfies the absolute continuity
condition and therefore all the above statements are true for all initial conditions.

5.5 Convergence of finite-dimensional approximations

We prove here the Mosco convergence for the skew reflected heat equation. In this
situation the technique adopted in the previous chapter does not work directly. The
additional difficulty arises when we integrate by parts in the proof of Mosco I, since
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we obtain now a boundary term containing an integral with respect to ξn(dx ; x(i) =
0), see (5.4.12) above. Since in Mosco I we have sequences un converging weakly (or
even strongly) in L2(ξn), and since the measure ξn(dx ; x(i) = 0) is singular with
respect to ξn, we have no way of controlling the limit of the integrals.

We are therefore going to use a different method to prove convergence of the
regularized versions of (5.4.5), i.e. for the equations where f is replaced by fm
for fixed m, where reflection at zero remains unchanged. Therefore prove first
convergence in law of a finite dimensional approximation of equation (5.3.1), and
then we exploit this result to prove Mosco convergence of the finite dimensional
approximations to the skew reflected heat equation. In order to perform the first
step, we use a result based on semi-convexity of the finite dimensional approximation
of equation (5.3.1). An abstract result is proved in Theorem 5.6.2 below, here we
shall verify the assumptions of this result and use it.

5.5.1 A further approximation

We introduce the notation

ξn,m(dx) =
1

Z
1K(x) exp(−Fm(x))µbn(dx), b > 0.

Here Z =

∫
exp(−F ) dζ is the normalization constant of ζ(dx) defined in (5.1.5)

above, and therefore ξn,m is not necessarily a probability measure. In fact, for m ≥ n
we have Fn ≥ Fm and therefore ξn,m ≥ ξn = ξn,n.

We first prove the following convergence of Hilbert spaces

Proposition 5.5.1. The sequence of Hilbert spaces (L2(ξn))n converges to L2(ζ) in
the sense of Definition 4.4.3. Moreover, for fixed m ∈ N, the sequence of Hilbert
spaces (L2(ξn,m))n converges to L2(ζ̃m) (see the definition of ζ̃m in (5.3.3) above).

Proof. Let first b > 0. We want to use the result of Proposition 4.5.4 above. Indeed,
L2(ξn) is in fact isometric to a subspace of L2(πn), where we use the notation (4.5.2).
The isometry is defined by setting L2(ξn) 3 ϕ 7→ C ϕ(·+b)1K(·+b) ∈ L2(πn), where

C := 1/
√
Zn. As n → +∞, we obtain by the convergence of L2(πn) to L2(ν) the

convergence of L2(ξn) to L2(ζ). The same argument yields the second assertion.

Let (Λn,m, D(Λn,m)) be the Dirichlet form in L2(ξn,m) associated with the refer-
ence measure ξn,m

Λn,m(u, v) :=
1

2

∫
〈∇u,∇v〉Hn dξn,m, u, v ∈ C1

b (Hn)

Then we have

Proposition 5.5.2. For fixed m ∈ N, the sequence of Dirichlet forms (Λn,m)n∈N
Mosco converges in L2(ξn,m) as n→ +∞.

Proof. We are going to use the result of Theorem 5.6.2 below. We must therefore
check that Hypothesis 5.6.1 below holds.
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Arguing as in (5.4.5), we can see that the dynamics associated with Λn,m in
L2(ξn,m) is

dX i
t =

1

2

(
(AnX)i − f ′m(X i)

)
dt+ d`i,0t + 2−

n
2 dwit,

with X i ≥ 0, d`i,0t ≥ 0 and

∫ ∞
0

X i
t d`

i,0
t = 0.

Since fm is smooth with bounded second derivative, then it is easy to see that
this is a semiconvex gradient system in Hn, i.e. a gradient system with a potential
whose Hessian is bounded from below. Then, it is easy to see by Itô’s formula that
for some constant c ≥ 0

d ‖Xt(x)−Xt(y)‖2 ≤ c ‖Xt(x)−Xt(y)‖2 dt

i.e. ‖Xt(x) − Xt(y)‖ ≤ ect‖x − y‖, where of course X0(x) = x and X0(y) = y.
Then (5.6.1) below holds. The points (2), (3), (4) and (6) of Hypothesis 5.6.1 below
are easy to check in our situation. We must now check the assumptions (5) of
Hypothesis 5.6.1.

We consider now h ≥ 0 and we write the integration by parts formula∫
∂hψ dξn,m =−

∫
ψ

(
〈x,Anh〉 − 2−n

2n−1∑
i=0

hi f
′
m(xi)

)
ξn,m(dx)

−
∫
ψ(x)

2n−1∑
i=0

hi ξn,m(dx ; x(i) = 0) =: −
∫
ψ dΣh

n,m,

(5.5.1)

we call σhn,m the non-negative measure

σhn,m :=
2n−1∑
i=0

hi ξn,m(dx ; x(i) = 0)

and γhn,m the signed measure(
〈x,Anh〉 − 2−n

2n−1∑
i=0

hi f
′
m(xi)

)
ξn,m(dx) = Σh

n,m(dx)− σhn,m(dx).

By arguing as in (4.5.21) above, we obtain that (γhn,m)n∈N satisfy (5.6.3)-(5.6.4)

below as n → +∞. Then, it is enough to prove that (σhn,m)n∈N satisfies the same
properties as n→ +∞. By the integration by parts formula (5.5.1) and the result for

(Σh
n,m−σhn,m)n∈N, we have that

∫
ψ dσhn,m converges as n→ +∞ for all ψ ∈ C1

b (H).

Moreover σhn,m is a non-negative measure, and therefore its total-variation is simply

equal to the integral of the constant function equal to 1, which belongs to C1
b (H).

Arguing again as in the proof of Theorem 4.5.6 above, we conclude that (σhn,m)n∈N
is convergent and therefore tight in H.

By Theorem 5.6.2, we have P n,m
t ϕ(xn)→ Pm

t ϕ(x) as n→ +∞ for all ϕ ∈ Cb(H),
where (P n,m

t )t≥0 (respectively (Pm
t )t≥0) is the semigroup associated with Λn,m (resp.

Λm) and Kn 3 xn → x ∈ K.
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We denote by (Rn,m
λ )λ>0 (resp (R̃m

λ )λ>0) the resolvent family of Λn,m (resp Ẽm).
Now, we have to prove that for all λ > 0 the resolvent operator Rn,m

λ converges

strongly to R̃m
λ as n → +∞ in the sense of Definition 2.4.3, namely that for all

sequence (fn)n ∈ L2(ξn,m) converging strongly to f ∈ L2(ζ̃m), then Rn,m
λ fn converges

strongly to Rm
λ f .

Following Proposition 4.5.4 above and the notations introduced therein, we can
define a map Ψn : L2(µb) 7→ L2(µbn) defined as follows:

Ψn(ϕ) = ϕn, ϕn(b+ β̄i2−n , i = 1, . . . , 2−n) = E(ϕ(b+ β) | Fn).

Let us denote for simplicity of notations Hn := L2(ξn,m), H := L2(ζ̃m), Rn := Rn,m
λ

and R := Rm
λ . We know from Proposition 5.5.1 that Hn converges to H, the map

Φn : H 7→ Hn which appears in definition 2.4.1 above being equal to Φn(f) :=
Ψn(f 1K)1K .

Let fn ∈ Hn converging strongly to f ∈ H; then we have to prove that Rnfn
converges strongly to Rf . Namely, we have to prove that there is a sequence
(pn)n ⊂ H such that pn → Rf in H and:

lim
n

lim sup
m
‖Φm(pn)−Rmfm‖Hm = 0. (5.5.2)

As fn converges strongly, there is a sequence f̃n in H such that f̃n → f in H and

lim
n

lim sup
m
‖Φm(f̃n)− fm‖Hm = 0.

Let us show that fn ◦ Pn → f in H and

lim
n

lim sup
m
‖Φm(fn ◦ Pn)− fm‖Hm = 0,

where Pn is the projection defined in (4.5.1). The latter formula is clear, since, for
m ≥ n we have Φm(fn ◦ Pn) = fn, by the definition of Ψm above. Now it is enough
to see that fn ◦ Pn → f in H. Let us extend by convention all functions defined on
K setting them equal to 0 on H \K. Then

‖f − fn ◦ Pn‖H ≤ C ‖f − fn ◦ Pn‖L2(µb)

≤ C ‖f − Φn(f̃m) ◦ Pn‖L2(µb) + C ‖Φn(f̃m) ◦ Pn − fn ◦ Pn‖L2(µb).

Now, by the definition of Ψn above we have that (Ψn(f̃m)◦Pn)n is a martingale and

it converges to f̃m in L2(µb) as n→ +∞. On the other hand

‖Φn(f̃m) ◦ Pn − fn ◦ Pn‖L2(µb) ≤ C ‖Φn(f̃m)− fn‖Hn ,

so that we find

lim sup
n
‖f − fn ◦ Pn‖H ≤ lim

m
‖f − f̃m‖H + lim

m
lim sup

n
‖Φn(f̃m)− fn‖Hn = 0.

We set therefore pn := R(fn ◦ Pn). We must now prove that pn → Rf in H and
that (5.5.2) holds.
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Suppose that g ∈ Lip(H); then (Rng) ◦ Pn converges to R in H as n → +∞.
Indeed the convergence holds pointwise on H, as a consequence of theorem 5.6.2
below. Moreover the sequence ((Rng) ◦ Pn)n is bounded by ‖g‖∞, so that we can
conclude with the dominated convergence theorem.

Let pk = R̃m
λ (fk ◦Pk), so we have, using theorem 5.6.2 and the Jensen inequality

‖Φn(pk)−Rnfn‖Hn ≤ ‖Φn(pk)−Rng‖Hn + ‖Rnfn −Rng‖Hn
≤ Cn ‖Φn(pk) ◦ Pn − (Rng) ◦ Pn‖L2(µb) + ‖fn − g‖Hn .

By theorem 5.6.2 and by g ∈ Lip(H) we have

‖Φn(pk) ◦ Pn − (Rng) ◦ Pn‖L2(µb) → ‖pk −Rg‖L2(µb) ≤ C‖fk ◦ Pk − g‖H.

In the same way

‖fn − g‖Hn ≤ C ‖(fn − g) ◦ Pn‖L2(µb) → C‖f − g‖H, n→ +∞.

A density argument provides the claim. By Theorem 2.4.4 above on the equivalence
between strong convergence of resolvent families and Mosco convergence of Dirichlet
forms, we obtain the desired result. �

5.5.2 Mosco convergence

Proposition 5.5.3. The Dirichlet form Λn Mosco-converges to E on L2(ζ).

Proof. The proof of the condition Mosco II is trivial in our case; indeed, for
all x ∈ D(E), we set xn := x ∈ D(Λn) for all n ∈ N; by dominated convergence
E(x, x) = lim

n
Λn(x, x). If x /∈ D(E), then again xn := x /∈ D(En) satisfies E(x, x) =

lim
n

Λn(x, x) = +∞.

Let us prove now condition Mosco I, by following the simple monotonicity argu-
ment in the proof of Theorem 4.5.6 above. Let un ∈ L2(ξn) be a sequence converging
weakly to u ∈ L2(ζ); we can suppose that u ∈ D(E) and that lim inf

n
Λn(un, un) <

+∞; then by lemma 4.5.7, up to passing a subsequence, we can suppose that un → u
strongly.

Since Λn,m ≤ Λn, we have for m ≤ n

lim inf
n→∞

Λn(un, un) ≥ lim inf
n→∞

Λn,m(un, un) ≥ Ẽm(u, u).

Therefore, letting m→ +∞ we obtain by monotone convergence

lim inf
n→∞

Λn(un, un) ≥ lim
m→∞

Ẽm(u, u) = E(u, u),

i.e. the condition Mosco I. �

5.5.3 Convergence in law of stationary processes

We denote now by (Qn
ξn)n the law of the stationary solution of equation (4.5.7)

started with initial law ξn. Arguing as in section 4.5.5, we want to prove a conver-
gence result for (Qn

ξn)n to Pζ , the stationary solution to equation (5.1.1). We define
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the space H−1(0, 1) as the completion of L2(0, 1) with respect to the Hilbertian
norm

‖x‖2
H−1(0,1) :=

∫ 1

0

dθ 〈x, 1[0,θ]〉2L2(0,1),

and the linear isometry J : H−1(0, 1) 7→ L2(0, 1) given by the closure of

H−1(0, 1) ⊃ L2(0, 1) 3 x 7→ Jx := 〈x, 1[0,·]〉L2(0,1).

Lemma 5.5.4. The sequence Qn
ξn converges weakly to Pζ in C([0, T ];H−1(0, 1)).

The proof is identical to that of Lemma 4.5.9.

5.6 Convergence for semi-convex systems

In this section we prove a convergence result which is needed in the proof of Propo-
sition 5.5.2 above. We consider a family of Markov processes (Xn

t )t≥0, such that
Xn takes values in a convex subset Kn of a closed affine subspace Hn ⊂ H, each
endowed with the scalar product 〈., .〉H inherited from H. For all n, νn is on Hn

with support Kn ⊂ Hn. We assume that

Hypothesis 5.6.1. There exists c > 0 such that for all n ∈ N:

1. The transition semigroup (P n
t )t≥0 of Xn acts on Lip(Kn) and for all ϕ ∈

Lip(Kn):

|P n
t ϕ(x)− P n

t ϕ(y)| ≤ ect [ϕ]Lip(Kn) ‖x− y‖H , x, y ∈ Kn, t ≥ 0. (5.6.1)

2. The following bilinear form is closable:

En(ϕ, ψ) :=
1

2

∫
〈∇Hnϕ,∇Hnψ〉Hn dνn, ∀ ϕ, ψ ∈ C1

b (Hn).

and the closure (En, D(En)) in L2(νn) is a Dirichlet form with associated semi-
group (P n

t )t≥0.

3. For all h in a dense subset Dn ⊂ Hn there exists a finite signed measure Σn
h on

Hn such that: ∫
∂hϕ dνn = −

∫
ϕ dΣn

h, ∀ ϕ ∈ C1
b (Hn). (5.6.2)

4. νn converges weakly on H to a probability measure ν, with convex topological
support K ⊆ H

5. For all h in a dense subset D ⊂ H there is a sequence hn ∈ Dn with hn → h in
H and there exists a finite signed measure Σh on H and a sequence of compact
sets (Jm)m in H such that:

lim
n→∞

∫
ϕdΣn

hn =

∫
ϕdΣh, ∀ ϕ ∈ Cb(H), (5.6.3)

∣∣Σn
hn

∣∣ (H\Jm) ≤ 1

m
. ∀ n,m ∈ N. (5.6.4)
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6. The following bilinear form is closable:

E(ϕ, ψ) :=
1

2

∫
〈∇Hϕ,∇Hψ〉H dν, ∀ ϕ, ψ ∈ ExpD(H).

and the closure (E , D(E)) is a Dirichlet form with associated semigroup (Pt)t≥0.
Moreover Lip(H) ⊂ D(E) and E(ϕ, ϕ) ≤ [ϕ]2Lip(H).

By (5.6.2) and (5.6.3), we have the following integration by parts formula for ν:∫
∂hϕdν = −

∫
ϕdΣh, ∀ h ∈ D, ∀ ϕ ∈ C1

b (H), (5.6.5)

We define for all ϕ ∈ Cb(Kn) the resolvent of Xn:

Rn
λϕ(x) :=

∫ ∞
0

e−λt P n
t ϕ(x) dt, x ∈ Kn, λ > 0.

Under hypothesis 5.6.1 we have:

Theorem 5.6.2. Suppose that Hypothesis 5.6.1 hold. Then for all φ ∈ Cb(H) and
x ∈ K: Rn

λφ(xn)→ Rλφ(x) as n→∞.

We describe the idea of the proof: for ϕ ∈ Lip(H), by the uniform Feller property
(5.6.1) we have that Rn

λφ is an equicontinuous and equibounded family. By Arzelà-
Ascoli’s Theorem we can extract converging subsequences on compact sets with large
mass with respect to νn and Σn

h. Now we consider the formula which characterizes
Rn
λφ for λ > 0:

λ

∫
Rn
λϕ ψ dνn + En(Rn

λϕ, ψ) =

∫
ψ ϕdνn, ∀ ψ ∈ D(En).

We would like to pass to the limit, but En contains the gradient of Rn
λϕ. However,

if ψ = exp(i〈·, h〉) ∈ ExpD(H), with i2 = −1, then we can use the integration by
parts formula (5.6.2) and write:

En(Rn
λϕ, ψ) = −i

∫
Rn
λϕ ψ dΣn

h → −i
∫
F ψ dΣh, n→∞,

where F is a pointwise limit of (Rn
λϕ)n. Using (5.6.5), the latter expression is equal

to E(F, ψ), i.e. we obtain:

λ

∫
F ψ dν + E(F, ψ) =

∫
ψ ϕdν, ∀ ψ ∈ ExpD(H),

which is very close to characterize F as the λ-resolvent of E in L2(ν) applied to ϕ.
The proof of Theorem 5.6.2 makes these arguments rigorous.

In the following proofs we use a number of times, often without further mention,
the following easily proven fact.

Lemma 5.6.3. Let E be a Polish space, (Mn : n ∈ N ∪ {∞}) a sequence of finite
signed measures on E and (ϕn : n ∈ N ∪ {∞}) a sequence of functions on E, such
that:
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1. for all ϕ ∈ Cb(E):

lim
n→∞

∫
ϕdMn =

∫
ϕdM∞

2. there exists a sequence of compact sets (Jm)m in E such that:

lim
m→∞

sup
n∈N
|Mn| (E\Jm) = 0.

3. (ϕn : n ∈ N ∪ {∞}) is equi-bounded and equi-continuous

4. ϕn converges pointwise to ϕ∞ on ∪mJm
Then:

lim
n→∞

∫
E

ϕn dMn =

∫
E

ϕ∞ dM∞.

Proof. We notice that by Arzelà-Ascoli’s Theorem, ϕn converges uniformly to ϕ
on Jm for all m ∈ N. Moreover, by the Banach-Steinhaus Theorem the norms of

the functionals Cb(E) 3 ϕ 7→
∫
E

ϕdMn are bounded, therefore |Mn|(E) ≤ C < ∞
for all n ∈ N. Then:∣∣∣∣∫

E

ϕn dMn −
∫
E

ϕ∞ dM∞

∣∣∣∣ ≤ ∣∣∣∣∫
E

(ϕn − ϕ∞) dMn

∣∣∣∣+

∣∣∣∣∫
E

ϕ∞ (dMn − dM∞)

∣∣∣∣
and the second term in the right hand side tends to 0 by our first assumption. Now:∣∣∣∣∫

E

(ϕn − ϕ∞) dMn

∣∣∣∣ ≤∫
Jm

|ϕn − ϕ∞| d|Mn|+
∫
E\Jm

|ϕn − ϕ∞| d|Mn|

≤ sup
Jm

|ϕn − ϕ∞| C + ‖ϕn − ϕ∞‖∞ |Mn| (E\Jm) .

Taking the limsup as n→∞ and then letting m→∞ we have the claim. �

Proof of Theorem 5.6.2. We divide the proof in several steps.

Step 1. We recall that ΠKn : H 7→ Kn is 1-Lipschitz in H, and therefore, by (5.6.1)
for all λ > c

‖(Rn
λψ) ◦ΠKn‖∞ ≤ ‖ψ‖∞, [(Rn

λψ) ◦ΠKn ]Lip(H) ≤
1

λ− c
[ψ]Lip(H), ∀ ψ ∈ C1

b (H).

(5.6.6)
Fix ψ ∈ C1

b (H). Let (nj)j be any sequence in N and (xk)k a countable dense set
in H. With a diagonal procedure, we can find a subsequence (mi)i and a function
F : {xk, k ∈ N} 7→ R such that Rn

λψ(ΠKn(xk)) → F (xk) as n = mi → ∞ for all
k ∈ N. By (5.6.6), F is Lipschitz on {xk, k ∈ N} and therefore can be extended to
a function in Ψλ,ψ ∈ Lip(H) and:

Ψλ,ψ(x) = lim
i→∞

Rmi
λ ψ(ΠKmi

(x)) ∀x ∈ H. (5.6.7)

Finally, by a diagonal procedure, we can suppose that such limit holds along the
same subsequence for all λ ∈ N. Notice that in fact we are going to prove that the
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limit exists as n → ∞ for all λ > c. We define ∆ := Span{Ψλ,ψ : ψ ∈ C1
b (H), λ ∈

N} ⊂ Lip(H).

Step 2. We would like to apply the integration by parts formula (5.6.5) to Ψλ,ψ,
which is not in C1

b (H) but only in Lip(H). However, notice that for all ϕ,Φ ∈
C1
b (H): ∫

ϕ∂hΦ dν = −
∫

Φ ∂hϕdν −
∫
ϕΦ dΣh, ∀ h ∈ D. (5.6.8)

If now Φ ∈ Lip(H), then there exists a sequence (Φm)m ⊂ C1
b (H) such that:

lim
m

Φm(x) = Φ(x), ∀ x ∈ H, ‖Φm‖∞ + [Φm]Lip(H) ≤ ‖Φ‖∞ + [Φ]Lip(H).

By (5.6.8) we have that ∂hΦm converges weakly in L2(ν) to an element of L∞(ν)
that we call ∂hΦ and with this definition (5.6.5) holds for all Φ ∈ Lip(H). Moreover,
we obtain in this way that ∇HΦ ∈ L∞(H, ν;H) is well defined and:

E(Φ,Φ) ≤ lim inf
m

E(Φm,Φm) ≤ lim inf
m

[Φm]2Lip(H) ≤ [Φ]2Lip(H).

Moreover, for all Φ ∈ Lip(H) it is possible to find a multi-sequence (ΦM)M ⊂
ExpD(H), where M = (m1, . . . ,m5) ∈ N5, such that ΦM converges to Φ pointwise
and:

sup
M

(
‖ΦM‖∞ + [ΦM ]Lip(H)

)
< ∞, lim

M
E(ΦM ,Ψ) = E(Φ,Ψ), ∀ Ψ ∈ Lip(H),

(5.6.9)
where lim

M
means that we let m1 →∞, then m2 →∞ and so on until m5 →∞ (see

[17, Proposition 11.2.10] for similar results).

Step 3. We want to prove now that for all λ ∈ N and Ψλ,ψ as in the first step:

Eλ(Ψλ,ψ, v) := λ

∫
Ψλ,ψ v dν + E(Ψλ,ψ, v) =

∫
ψ v dν, ∀ v ∈ ∆. (5.6.10)

First we prove (5.6.10) for v ∈ ExpD(H). Fix h ∈ D and hn ∈ Dn as in Hypothesis
5.6.1 and set:

ϕn(k) := exp(i〈hn,ΠHnk〉Hn), ϕ(k) := exp(i〈h, k〉H), k ∈ H,

where i ∈ C with i2 = −1 and ΠHn denotes the orthogonal projection from H to
Hn. By Hypothesis 5.6.1: ‖k − ΠHnk‖H → 0 for all k ∈ H. Indeed, this is true for
all k ∈ D since there is a sequence kn ∈ Hn such that kn → k and by density of D in
H we conclude, since ΠHn is 1-Lipschitz continuous in H. Therefore ϕn(k)→ ϕ(k)
for all k ∈ H.

Since Rn
λ is the resolvent operator associated with En:

Enλ (Rn
λψ, ϕn) := λ

∫
Rn
λψ ϕn dν

n + En(Rn
λψ, ϕn) =

∫
ψ ϕn dν

n.

Notice that ∇Hnϕn = i hn ϕn. Then, by the integration by parts formula (5.6.2):

2 En(Rn
λψ, ϕn) =

∫
Rn
λψ ‖hn‖2

Hn ϕn dν
n − i

∫
Rn
λψ ϕn dΣn

hn .
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Since νn ⇀ ν and Σn
hn ⇀ Σh as n→∞, by (5.6.3) and Lemma 5.6.3:

lim
n→∞

∫
g ‖hn‖2

Hn ϕn dν
n − i

∫
g ϕn dΣn

hn =

∫
g ‖h‖2

H ϕdν − i
∫
g ϕ dΣh,

for all g ∈ Cb(H). The crucial fact is now the following: by (5.6.3)-(5.6.4), (5.6.6)
and Lemma 5.6.3, we can substitute g with Rn

λψ in the last formula and prove that:

lim
i→∞

∫
Rmi
λ ψ ϕmi dΣmi

hmi
=

∫
Ψλ,ψ ϕ dΣh. (5.6.11)

In particular we obtain:∫
ψ ϕdν = lim

i→∞

∫
ψ ϕmi dν

mi =

∫
Ψλ,ψ

(
λ +

1

2
‖h‖2

)
ϕdν − i 1

2

∫
Ψλ,ψ ϕ dΣh

andthe last expression is equal to Eλ(Ψλ,ψ, ϕ) by the integration by parts formula
(5.6.5), i.e. we have proven (5.6.10) for v = ϕ. By linearity we obtain (5.6.10) for
all v ∈ ExpD(H). By (5.6.9) we obtain (5.6.10) for all v ∈ ∆.

Step 4. Finally, we want to show that (E , D(E)) coincides with (Ẽ , D(Ẽ)) con-
structed in the previous step. To this aim we show first that D(Ẽ) contains all
Lipschitz functions on K and in particular ExpD(H).

Consider ψ ∈ Lip(H) ⊂ D(En): by the general theory of Dirichlet Forms,

ψ ∈ D(Ẽ) ⇐⇒ sup
λ>0

∫
λ (ψ − λR̃λψ) ψ dν < ∞.

By (5.6.1) we have:∫
λ (ψ − λRn

λψ) ψ dνn = En(λRn
λψ, ψ) ≤ [ψ]2Lip(H),

so that letting n→∞: ∫
λ (ψ − λR̃λψ) ψ dν ≤ [ψ]2Lip(H),

and therefore Lip(H) ⊂ D(Ẽ). Since by construction ∆ ⊂ Lip(H), then the closure
of (E ,Lip(H)) is (Ẽ , D(Ẽ)). Now, in order to prove the density of ExpD(H) in D(Ẽ),
we remark that the density with respect to the norm-topology is equivalent to the
density in the weak topology, which follows from (5.6.9) and from the density of
Lip(H) in D(Ẽ).

Notice that the limit Dirichlet form (E , D(E)) does not depend on the subse-
quences (nj)j and (mi)i chosen in step 1, since it is the closure of (E ,ExpD(H)).

Then (Ẽ , D(Ẽ)) = (E , D(E)) is the Dirichlet form we wanted to construct and
Rλ = R̃λ is the associated resolvent operator. In particular the limit in (5.6.7)
does not depend on the subsequence (mi)i and

Rλψ(x) = lim
n→∞

Rn
λψ(ΠKn(x)) ∀x ∈ K, λ ∈ N.
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We can now repeat the argument of step 1 and step 3 and obtain that the latter
formula holds for all λ > c. (E , D(E)) is a Dirichlet Form, because Rn

λ is given
by a Markovian kernel, so that Rλ is also Markovian and the result follows from
Theorem 4.4 of [46]. The Feller property follows from (5.6.1). By the density of
Lip(H) in Cb(H), Rn

λψ(ΠK(x)) converges to Rλψ(x) for all ψ ∈ Cb(H). �
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Flour XXXIII - 2003 (ed. J. Picard), 103–274, Lect. Notes Math., 1869,
Springer.

[32] T. Funaki, Lectures on probability theory and statistics. Lectures from
the 33rd Probability Summer School held in Saint-Flour. Lecture Notes
in Mathematics, 1869. Springer-Verlag, Berlin, (2005).

[33] T. Funaki, K. Ishitani, (2007), Integration by parts formulae for Wiener
measures on a path space between two curves, Probab. Theory Related
Fields, 137, no. 3-4, 289–321.

[34] D. Geman, J. Horowitz (1980), Occupation Densities, Ann. Probability,
8, no. 1, pp. 1-67.
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