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Abstract. One of the implicit assumptions made in research related to inventory control is to keep pro-
ducts indefinitely in inventory to meet future demand. However, such an assumption is not true for a large
wide of products characterized by a limited lifetime. The economic impact of managing such products led
to substantial work in perishable inventory control literature. Investigations developed so far underline
the complexity of modeling perishable inventory. Moreover, the dependency of the lifetime to temperature
conditions in which products are handled adds more complexity since the lifetime of products stemming
from the same order may vary from product to another. In this context, the ability of Time Temperature
Integrators to capture the effects of temperature variations on products’ lifetime, offers an opportunity
to reduce spoilage and therefore ensure product’s freshness and safety.
The general aim of this thesis is to model perishable inventory systems. Particularly, three different pro-
blem areas are considered. The first one concerns perishable inventory with fixed lifetime, often referred as
Fixed Life Perishability Problem, where an approximate (r,Q) inventory policy is developed. This model
relaxes some assumptions made in previous related works. The second problem considered is a (T, S)
perishable inventory system with random lifetime. Results of this model contribute to the development
of a theoretical background for perishable inventory systems which are based on Markov renewal process
approach. The third area incorporates the impact of temperature variations on products’ lifetime throu-
ghout inventory systems that use TTIs technology. More general settings regarding the demand and the
lifetime distributions are considered throughout simulation analysis. The economic relevance stemming
from the deployment of this technology is therefore quantified.
Keywords : Perishable items, Time-Temperature Integrators, Continuous review, Periodic review, Mar-
kov Process, Simulation

Résumé. L’une des hypothèses implicites faites dans la recherche liée à la gestion des stocks est de
maintenir les produits indéfiniment pour satisfaire la demande future. Toutefois, cette hypothèse n’est
pas vraie pour les produits caractérisés par une durée de vie limitée. L’impact économique de la gestion
de tels produits a conduit à d’importants travaux de recherche. Les investigations développées jusqu’ici
ont souligné la complexité de modéliser les stocks de produits périssables. En plus, la dépendance de
la durée de la vie à la température à laquelle les produits sont maintenus crée un challenge majeur en
terme de modélisation puisque la durée de vie des produits provenant d’une même commande peut varier
d’un produit à un autre. La capacité des nouvelles technologies de contrôle de frâıcheur telles que les
intégrateurs temps - température de capturer les effets des variations de la température sur la durée de
vie offre une opportunité de réduire les pertes et donc d’assurer la frâıcheur des produits vendus.
L’objectif général de cette thèse est de modéliser des politiques de gestion de stock des produits périssables.
En premier lieu, nous nous intéressons à la politique (r,Q) où les produits ont une durée de vie constante.
Le modèle que nous proposons relaxe certaines hypothèses formulées dans les précédents travaux. La
deuxième politique considérée est la politiques (T, S) où les produits ont une durée de vie aléatoire. Enfin,
nous étudions l’impact des nouvelles technologies de control de frâıcheur des produits périssables sur
la gestion des stocks. Nous nous intéressons à la pertinence économique découlant du déploiement des
intégrateurs temps températures dans la gestion des stocks.
Mots clefs : Produits périssables, Intégrateurs Temps-Température, Revue continue, Revue périodique,
Processus de Markov, Simulation
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Introduction

0.1 Problem statement and research questions

Perishable items represent one of most important sources of revenue in grocery industry.

The 2005 National Supermarket Shrink Survey (NSSS, 2005) reported that perishables

account for more than 54% of total store sales which constitute more than $200billion

and approximately 57% of total store shrink. Further, perishables become the main

operating key to achieve and sustain competitive advantages. Accordingly, suppliers are

subject to offer more brands with higher quality while keeping their availability. Even

if such an objective seems to be realizable, perishables, characterized by finite lifetime,

create a serious challenge. Roberti (2005) reported that roughly 10% of all perishable

goods (fresh products and other food products) goes to waste before consumers purchase

it. The $1.7 billion U.S. apple industry is estimated to lose $300 million annually due

to spoilage (Webb, 2006). Thus, suppliers are faced to an important dilemma: offering

to customers what they want so that they can achieve a higher customer service level or

reducing losses by decreasing quantities on shelves which leads to frequent stock outs.

Clearly, the ability to satisfy customer while reducing losses needs the application of

good inventory management principles. Such figures are also available from other indus-

tries, for instance, in 2006, almost 4.6% (1276000 out of 27833000 processed/Produced

units) of platelet units that were collected in the United States were outdated without

being transfused (AABB, 2007). Thus, losing a platelet unit due to expiration is a huge

financial burden for blood centers. Another challenge for blood centers is the limited

pool of platelet donors.

In addition to this problem, perishable products’ lifetime is sensitive to storage conditions

such as temperature and humidity. Typical examples of such products are chilled and
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frozen foods, pharmaceutical and biological products sush as blood. Perishables must

therefore be maintained in an appropriate level of temperature and for a limited period

of time to preserve their freshness. Recently, a technology called Time Temperature

Integrator technology (TTIs) has been developed. This technology is able to evaluate

the effective shelf life of perishables by recording time temperature history. Although

the potential wide benefits that such a technology can offer, most of suppliers are still

not totally convinced of its impact on reducing spoilage (Ketzenberg & Bloemhof, 2008).

Among reasons of that are the limited knowledge and diffusion of TTIs and the lack of

analysis that aim at quantifying the benefits of using such a technology.

In this context, this thesis has contributions in two areas : perishable inventory man-

agement and the benefit of using TTIs on inventory management. More specifically,

this thesis deals with inventory control of perishable items and addresses the value that

TTI scan bring to perishable inventory management. Our goal to answer the following

relevant questions:

1) What are the main existing works developed in perishable inventory management?

2) How can a tradeoff be found between customer satisfaction and spoilage reduction?

3) What is the impact of perishability on inventory management?

4) At which cost level, the deployment of TTIs is cost effective?

0.2 Scope of the dissertation and structure of the

content

In order to achieve our goals, this dissertation will firstly outline the impact of perisha-

bility on inventory management, concentrate on better understanding TTIs technologies

and sketch the major benefits of using TTIs in supply chains. Secondly, we will provide

a comprehensive literature review related to our research topic which enables us to dis-

tinguish two research streams. The first one is perishable inventory systems with fixed

lifetime and the second one is perishable inventory with stochastic lifetime. For both

categories, we will point out the complexity of modeling inventories of perishable items.

Thirdly, based on our literature review, we will propose an inventory model for single

perishable item with constant lifetime. Therefore, throughout numerical investigations,

2



0.2. Scope of the dissertation and structure of the content

we will respond to the first three questions mentioned above. After, we address the

problem of perishable inventory with stochastic lifetime and propose an exact solution

of an inventory model for a single item having a random lifetime under specific condi-

tions. The exact ordering policy we propose will enable us to investigate the impact of

randomness on inventory management. Finally, we will consider the application of TTI

technologies in inventory systems. We will show that TTIs can effectively improve in-

ventory management however, this improvement depends on several system parameters

such as the cost of TTI devices, product purchasing cost, demand distribution, effective

shelf live distribution, etc. More specifically, the content of each chapter of this thesis is

as follows:

Chapter 1: This chapter aims first of all at emphasizing the challenges introduced by

perishability on inventory management in one hand. On the other hand, it provides a

basic understanding of TTIs technologies and presents the qualitative impacts of such

technologies on supply chains. We note here that we consider two types of TTIs: the first

one provides a binary information about a product’s freshness and the second one gives

an information on the remaining shelf life of a product. In the last section, we introduce

the basic concepts related to inventory management which the following chapters are

based on.

Chapter 2: This chapter reviews the literature of inventory management subject to

perishability and emphasizes challenges introduced by the aging of such items. We dis-

tinguish two classes of modeling: perishable inventory with fixed and constant lifetime

and perishable inventory with stochastic lifetime. For each class, we mainly explain the

complexity to keep track products having different ages on hand and give the major

findings. Finally, we explain how we contribute in literature and provide the main mo-

tivations behind different models we propose.

Chapter 3: Based on our literature review of modeling perishable inventory presented

in the Chapter 2, we firstly propose a perishable inventory control model under a con-

tinuous review policy for a single item that is assumed to have a constant lifetime. For

this model, we derive approximate expressions of the key operating characteristics of

the inventory system (such as the expected quantity of perished products, the expected

shortage and the expected inventory level) and obtain a closed form long run average

cost under constant lead time. We then assess the effectiveness of approximations we
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made by a simulation model implemented in the Arena software. Secondly, we extend

this model to the case the undershoots of the reorder point is considered. As for the first

model, the operating costs are formulated and its effectiveness is assessed by simulation

study. For both models, numerical analysis are conducted to illustrate their economic

advantages.

Chapter 4: This chapter considers a periodic review inventory system for perishable

items with random lifetime. We investigate two cases: the first one is the case where

excess demand is completely lost and the second one deals with full backorder. De-

mands arrive according to a Poisson process. The lifetime of each item is exponentially

distributed. The procurement lead time is constant. We model the behavior of this

inventory system as a Markov process which we can characterize the stationary regime.

This model allows us to get some insights on the impact of the parameters on the overall

system performance in terms of costs or profit.

Chapter 5: This chapter investigates the benefits of using TTIs on inventory manage-

ment. We formulate and derive the operating costs of an inventory system with TTIs

technologies. We next explore the benefits of such technology and determine whether

or not the deployment of TTIs is cost effective. To do so, we compare two inventory

models based on information we have on product’s lifetime. The first one deals with

items with fixed lifetime (without technology), the second use a TTI type 1 technology

which enables to monitor products’ freshness and alerts when products are no longer

fresh. The third model considers the deployment of TTI type 2 technology which gives

information on products’ remaining shelf lives.

Chapter 6: This chapter is dedicated to the general conclusions of this work and some

propositions for future research such as multi-echelon, multi-items perishable inventory

systems and dynamic pricing decisions.
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Chapter 1

Challenges on Modeling

Perishability in Inventory

Management Systems

1.1 Introduction

Successful inventory control is recognized today’s as the key to maintain competitive

market conditions. Although inventory is considered as a waste, the traditional mo-

tivation behind holding products is to ensure compliance with customer demand and

to guard against uncertainties arising in demand fluctuations and delivery lead times.

Benefits obtained from quantity discounts, economies of scale and shipment consolida-

tion are among other reasons to keep products in stock. Certainly, an effective inventory

management requires maintaining economical quantity while keeping the ability to carry

out customer demand. However, the trade off between customer satisfaction and main-

taining economical quantity is rather a proven challenge regarding demand fluctuation

and costs induced by shortage.

In addition to this trade off, one of the implicit assumptions made in research related

to inventory is that products can be stored indefinitely to meet future demand. Such

an assumption is not appropriate for a large wide of commodities which are subject

to obsolescence, deterioration and perishability. Drugs, foodstuff, fruits, vegetables,

photographic films, radioactive substances, gasoline, etc are typical examples of such
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commodities. Within this range of products Goyal & Giri (2001) distinguish:

Obsolete items: which refer to items that lose their value through time because of the

rapid changes in technology or the introduction of a new product by a competitor. This

situation corresponds to the case where all items remaining in inventory become simul-

taneously unusable and not reordered at the end of the planning horizon. Style goods

for example, must be sharply reduced in price or otherwise disposed off after the season

is over. Therefore, obsolete inventory is managed as non perishable one but for a finite

planning horizon. Obvious examples of items subject to obsolescence are products in

industries with high rates of technical innovation, such as computers. Also, products in

markets with frequent shifts in consumer tastes fit this pattern, including books, records,

and perfumes.

Deteriorating items: which refer to items that lose their utility or their marginal value

throughout time but can be reordered at the end of their planning horizon. Deteriorat-

ing items are not tied up to shelf lives; their impact on inventory management is usually

modeled as a proportional decrease in terms of its utility or physical quantity. Among

the range of such products, one may find gasoline and radioactive products, etc.

Perishable items: in contrast to deteriorating item, the perishable one may not lose its

value or utility over time. Under such category, one may find foodstuff and pharmaceu-

ticals. The consideration of perishability on inventory management is usually modeled

by associating shelf lives (deterministic or stochastic) to items.

Hereafter, we will consider perishable items. An excellent literature review of inventory

models with deteriorating items can be found in the papers of Raafat (1991) and Goyal

& Giri (2001).

The limited lifetime of perishable products contribute greatly to the complexity of their

management. The major challenge, however, stems from the dependency of the re-

maining lifetime and environmental factors such as temperature. Due to these factors,

shipments leaving the producers with an initial lifetime may arrive at the retailer with

different age categories. These factors are often difficult to assess by merely visual or

tactile inspections. Perceptible changes in color and quality mostly become apparent

only at the end of product’s life. Therefore human-sense-based examinations are hardly

able to aid decision making with respect to the use of products. While the human senses

have only a limited capability to assess the intrinsic product properties, modern sen-
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sor technologies such as Time Temperature Integrators (TTIs) can help to provide the

required information regarding product’s freshness. Such devices enable to track envi-

ronmental parameters such as temperature of individual product. This allows problems

in the supply chain to be identified more rapidly and to predict more precisely the actual

product’s lifetime. However, the value that such a technology can bring to inventory

management of perishable products is not totaly clear.

This chapter is organized as follows: we first outline the major challenges induced by

perishability on inventory management. Then, we focus on understanding perishable

inventory management without TTIs (Section 1.3) and the functionality of TTIs, their

benefits as well as their limitations in cold chain applications (Section 1.4). In Sections

(1.5) and ( 1.6), we give a brief description of notions that are usually used in inventory

management and define the basic ordering policies in the context of non perishable items

which are often used to control the perishable one. Finally, we introduce the context of

our research (Section 1.7).

1.2 Challenges of perishability on inventory man-

agement

Modeling perishable inventory is mainly stimulated by the economic impact of perisha-

bility. In the grocery and pharmaceutical industry, expiration is responsible of 19% and

31% of total unsaleable respectively (Joint Industry Unsaleables Benchmark Survey,

2003). Furthermore, Lystad et al. (2006) reported that about $30 billion are lost due to

perishability in US grocery industry. In the European grocery sector, products that are

not purchased before their sell-by date are estimated to cause yearly costs of billions of

dollars (ECR Europe, 2001). Another investigation in Nordic retail sector (Karkkainen,

2003), reported that the spoilage costs of perishables are up to 10 percent of total

sales. Although this powerful motivation, incorporating the feature of perishability in

inventory management is rather complex issue. Even if the tradeoff between customer

satisfaction and cost minimization could be handled through appropriate control rules,

the limited lifetime of products makes such rules unsuccessful. The main reason of that

is the difficulty to track the different ages of items in stock. The matching policy (which

7
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correspond to the way that the inventory is depleted) is another reason for which inven-

tory management policies that are suitable for non perishables becomes less appropriate

for perishables. When items have infinite lifetime, depleting inventory according to any

matching policy does not affect the overall performance of the ordering policy. However,

for perishables, it is better to deplete inventory according to the lowest shelf life value

first out since this matching policy can help to cut down the amount of expired items.

Moreover, the demand process may change over time, probably due to customer who,

faced to a perishable product, could adopt different behavior. He may substitute item

with reduced lifetime by another if he estimates that the remaining shelf life of product

in question cannot guarantee its safety. Alternatively, the customer may choose to leave

the store if he does not find what he needs. Such behaviors are analyzed in investigations

such as van Woensel et al. (2007) who conducted a survey to study consumer behavior

with regards to out of stock situation of bread category in supermarkets. They find

that around 84% buy another type of bread in the same store while 10% of consumers

decide to buy their bread in another store and 6% decide to buy later. Tsiros & Heilman

(2005) investigate the effect of expiration dates on the purchasing behavior of grocery

store customers. They find that consumers check the expiration dates more frequently

if their perceived risk (of spoilage or health issues) is greater. They also determine that

consumers’ willingness to purchase decreases as the expiration date gets close for all the

products in this study.

1.3 Perishable inventory management without TTIs

Perishable products are sensitive to temperature conditions in which they are handled

and require special storage conditions in order to preserve their freshness. The variation

of temperature arises when items move throughout supply chain actors (manufacturing,

transportation, distribution stages). The freshness of perishable products is tracked by

their lifetime. Once an item reaches its lifetime, it is considered to be lost (no longer safe

for use). In practice, the lifetime is determined by keeping the product in a pre-specified

level of temperature and observing throughout a specified duration the growth of mi-

crobial development under this condition. The time before the microbial development

reaches a certain rate, by which the product is considered unsafe for use, determines its
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expected lifetime. If the product is maintained in appropriate temperature conditions,

this lifetime is expected to be experienced by the product in the supply chain. How-

ever, it may happen that the product is maintained in higher temperature levels than

what is recommended. Such situations may arise when products move from the blast

freezer to the cold store, from the factory cold store to the truck, from the truck to the

supermarket, from the supermarket cold store to the shelves or from the shelves to the

consumer’s home. Frequent or prolonged door opening in vehicles during distribution

or freezer failures are among other causes of temperature variations. In order to take

into account such situations where temperature conditions are not respected, manufac-

turers are taking a large margin of precaution when determining products’ lifetimes.

This product’s lifetime is then used as a basis for the determination of the use by date

information that will be printed on product’s packaging.

To illustrate how the use by date is determined in practice, Figure (1.1) shows an exam-

ple of the distribution of a fresh product’s effective lifetime. The expiry date printed on

Figure 1.1: Example of effective lifetime distribution

a product’s packaging (i.e, the use by date) is based on the margin of precaution that a

manufacturer want to take. As seen from Figure (1.1), the expected product’s lifetime

is equal to 10 days. Manufacturers could fix the use by date to d+10 days (d being the

date of production) in order to sell products within this lifetime (i.e. 10 days). However,
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all products would not be usable up to 10 days depending on conditions in which they

are maintained. By affixing a sell by date of 10 days, manufacturers take therefore a risk

of having (and probably selling) products that will perish before 10 days, the probabil-

ity of this event being 0.4 in the example on Figure (1.1). In order to avoid this risk,

manufacturers must increase the safety margin taken in the determination of the sell by

date. If the margin of precaution is set to 97% for instance, then the product’s lifetime

can be set to 5 days. Again, by choosing a lifetime equal to 5 days, there exists a risk of

selling an unsafe product. Therefore, in order to avoid selling unsafe products, most of

manufacturers take a safety margin equal to 100%. As a consequence, the use by date

is fixed to the minimum realization of the effective lifetime. In our example, 100% of

safety margin (i.e, the use by date is equal to 3 days) guarantees that the product is safe

for use.

Once the “use by date” is determined, it is dispatched between supply chain actors to

guide their stock rotation. In Figure (1.2), we represent an example of a supply chain

with 3 actors (manufacture, distribution center and store) including the final consumer.

The product in this supply chain is perishable with a use by date of m
′

units of time.

Each actor can maintain the product in stock up to a certain threshold of m0, m1, m2

and m3. Once the corresponding threshold is reached for the manufacture, the distribu-

tion center, the store or the final consumer, the product in question should be disposed

off. m0, m1, m2 and m3 are already negotiated throughout contracting between supply

chain actors.

The intention of the use by date is to ensure consumer safety, provide a guide to retailers

when to remove stock from sale, and provide a guide to consumers about the freshness

and quality of the product. This requirement is applied to both locally made and im-

ported products. The “use by date” is an indication by the manufacturer of the length

of time that a product can be kept under specified storage condition before it starts

to noticeably deteriorate, i.e., perishable but still usable. It also used to indicate when

products become unfit for consumption and may present a safety risk, and therefore

should be discarded. Enhancing such quality and safety of products, requires controlled

temperatures and humidity levels, proper stock rotation practices (first in-first out pol-

icy) and proper home storage conditions. However, managing perishable inventory with

fixed lifetime does not afford the opportunity to sell products that are still usable after

10
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their expiration dates. Therefore, it is worthwhile to have a technology that can provide

information about the shelf life in the situation where temperature variations occur and

contribute to improve inventory management.

Manufacture Distribution Center Final consumer

Stock rotation based on m0
Stock rotation based on m1 Remaining lifetime = m3

Use by date of the product = m’

0
m’

Store

Stock rotation based on m2

Manufacture Distribution Center Final consumer

Stock rotation based on m0
Stock rotation based on m1 Remaining lifetime = m3

Use by date of the product = m’

0
m’

Store

Stock rotation based on m2

Figure 1.2: Sharing the product’s lifetime between supply chain actors

1.4 Perishable inventory management with TTIs

Manufacturers, distributors and retailers have a common objective to ensure that the

product they sell to consumers has been stored and transported correctly in order to

guarantee freshness and safety. In addition, the food industry destroys billions of dollars

each year as a result of temperature related perishable shrink, much of which can be

avoided by more appropriate inventory management. Emerging intelligent technology

such as Time Temperature Integrators (TTIs) can help manufacturers, distributors and

retailers to easily recognize potentially spoiled products and better managing their in-

ventories.

Broadly, the TTI technologies fall into two types: TTI type 1 and type 2.

1.4.1 TTI type 1 technology

TTI type 1 technology is a sensor that simulates in real time the biological quality of

products and provides binary information regarding the freshness by changing color ir-

reversibly once a pre-specified level of microbial rate is reached. This technology is used

with the use by date label affixed to product’s packaging. The use by date is necessary

because of the legislative rules and provides information for the FIFO issuing. Prod-

ucts are removed from the stock either when the TTI changes color or when the use

by date is reached whichever occurs first. CheckPoint and eO devices represented in

Figures (1.3) and (1.4) commercialized by Vitsab and Cryolog companies respectively,
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are among examples of TTI type 1. A large number of commercial TTI prototypes have

been developed, and their principles of operation/function, as reported in Taoukis &

Labuza (2003), is based on (i) molecular diffusion, e.g., the 3M MonitorMark and Fresh-

ness Check indicators [by 3M Co., St. Paul, MN]; (ii) polymerization reactions, e.g., the

Lifelines Fresh-Check and Freshness Monitor indicators [by Lifelines Inc., Morris Plains,

NJ]); (iii) enzymatic changes (decreases in pH via controlled enzymatic hydrolysis of a

lipid substrate, leading to a color change in the indicator, e.g., the Vitsab TTI [by Vitsab

A.B., Malmö, Sweden]); and (iv) microbial changes (the acidification of the TTI medium

by selected lactic acid bacteria, which induces a color change in the indicator, e.g., the

Cryolog TTIs [Cryolog S.A., Nantes, France]. This technology can be parameterized to

Figure 1.3: Example of TTI type 1-Vitsab

Figure 1.4: Example of TTI type 1-Cryolog

a specific microbial rate with high accuracy. The second version of TTI type 1 is the one

that can be parameterized to several levels of microbial rates rather than single level as

previously discussed.

Among other examples of TTI type 1, one may find OnV uTM tags provided by Ciba and
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FreshPoint companies (see Figure (1.5)) which are able to provide information about

the shelf life by changing color twice. We find also other types that could provide

Figure 1.5: Example of TTI type 1-Ciba and FreshPoint

Figure 1.6: Example of TTI type 1-FreshPoint

time/temperature dependant rate, thereby revealing a visual signal that indicates the

end of the product’s shelf life (e.g. coolVu tag from FreshPoint company, cf. Figure 1.6).

Thus, this type of TTI can serve as dynamic or active shelf-life labeling instead of, or

complementary to the use by date labeling. This type of TTI would assure the consumer

that the product was properly handled and would thus indicate remaining shelf-life based

on the actual time and temperature conditions. A disadvantage of such tags instead of

tags providing binary information, is that the transition color with time could confuse

consumer (who would like to purchase the freshest items among the available products

on the shelves) over whether the end point had been reached or not.

Generally, TTI type 1 technologies are flexible in size and design and can be printed

directly on the package throughout adhesive labels which are amenable to existing prod-

uct’s packaging systems. They could be applied on item, carton or pallet level and are
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suitable for all perishable products.

This technology could be applied at any location in the supply chain. As a consequence,

TTI type 1 provides an opportunity to manage inventory for only one supply chain actor,

multi actors (e.g. from manufacturers until the store shelves) or for the whole supply

chain including the final consumers. This is, once a TTI type 1 is attached to products

as they are packaged, it immediately begins to indicate the freshness level of products

until the time of perishing. This allows consumers to ensure that the products they are

purchasing are both fresh and safe.

According to Smolander et al. (1999) LifeLines’ TTIs can be found on a variety of prod-

ucts in national U.S. supermarkets. eatZi’s Market and Bakery (in US) uses the labels

on its entire line of prepared meats, Trader Joe’s (in US) uses them on its packaged fresh

meats. The Fresh-Check labels are currently being used in European supermarkets, in-

cluding Monoprix in France, Continente in Spain and Sainsbury in the United Kingdom.

The U.S. Army also uses this technology for monitoring its Meals Ready-to-Eat rations

by attaching TTI labels to each carton of product.

1.4.2 TTI type 2 technology

This sensor is coupled with an RFID (Radio Frequency Identification) tag. It provides

information on items’ remaining shelf lifes. The TTI type 2 captures the timing tem-

perature variations that affect the freshness of products by an RF (Radio Frequency)

reader. Once the time-temperature history is known, then the shelf life is predicted

based on microbiological models. The VarioSens label (see Figure (1.7)) of KSW mi-

crotec company is an example of TTI type 2. We note that TTI type 2 is used without

the use by date label. This technology is actually less used in practice than TTI type 1.

1.4.3 Benefits of using TTI technologies

Common benefits of using TTI technologies:

• TTIs can extend the lifetime of products by reducing the safety margin that producers

take in order to determine the products’ use by date. Hence, products that are perished

before their use by date with a low margin of precaution can be detected by TTI devices
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Figure 1.7: Example of TTI type 2

and be discarded from the inventory. Since with TTI type 1, a used by date label is

affixed to the product’s packaging, this date is grater than the date label chosen when

the technology is not used. This benefit will be analyzed in this he last chapter.

• TTIs can reduce the cost associated with the outdated quantity and the stock outs.

For TTI type 1, when decreasing the margin level, the amount of outdated products

decreases and, as a consequence, the frequency of stock outs decreases also. This leads

to increased sales and profits. For example, according to Scott & Butler (2006), the

French supermarket chain Monoprix uses Fresh-Check indicators (commercialized by in-

dicators Lifelines Inc., Morris Plains, NJ) to nearly 200 of their products over the last

15 years. One of the major motivation of deploying TTI type 1, is to give Monoprix a

competitive advantage since they are only applied to Monoprix products that are sold

alongside competitive brands and products. When a TTI type 2 technology is used the

cost associated with the outdated quantity and the stock outs can be reduced by first

selling products having the least shelf life left. Using a least shelf life first out strategy

based on cold chain RFID data, a distributor for example can direct shipments to spe-

cific stores, or stores group, in the most advantageous location. Indeed, products that

only have one or two days left while the lead time for shipping to some stores is three

days, then products with the shortest lifetime are shipped to the nearest store whereas

those with the longest shelf life to the farthest one.

• TTIs can detect weaknesses regarding temperature abuse in the distribution network

so that decisions can be made to correct temperature to maintain products properly.

• The extent of markdown and the stock rotation could be also improved based on the
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color changes or the remaining shelf life rather than the fixed shelf life information.

Benefits of using TTI type 2:

• Ability to store real-time environmental data (including temperature) and transmit

this information in near real-time, allowing corrective actions to be taken before prod-

ucts are irrevocably damaged. For example, Manor monitors supermarket freezers and

refrigerators in order to decrease shrinkage due to food spoilage and to have a faster

response to equipment failures. Unilever tracks ice cream temperatures from manufac-

ture to retail shelves in order to ensure quality assurance throughout the cold chain

(Estrada-Flores & Tanner, 2008).

• Potential benefits at a retail level, such as an increase in sales, shrinkage reduction,

labor cost reduction and improved transparency in the supply chain. Ballantine tracks

fresh fruit shipments from packing house to retail shelves in order to possess a competi-

tive advantage. Wal-Mart stores, and more recently Carrefour and Metro have adopted

(and asked suppliers to adopt) digital-tagging technologies, including RFID. Neverthe-

less, at this stage Wal-Mart has not required temperature tracking of perishable goods

(Estrada-Flores & Tanner, 2008).

• Benefits in delivery and logistics level: DHL uses RFID to track shipments of temper-

ature sensitive goods. Through the uptake of RFID, DHL aims to increase its competi-

tive advantage and to improve it customers’ confidence in its quality assurance systems

(Estrada-Flores & Tanner, 2008).

1.4.4 Limitations of cold chain monitoring systems based on

TTIs

• Sensor placement : Surface placement of the indicators (affixed to the product or to

pallets) for ease of readability means that they react to changes in the surrounding tem-

perature, which are normally more extreme than those occurring in the product. The

relationship between the surface temperature and the product temperature varies from

product to product, depending on the packaging material, physical properties of the

product, head space, etc. Hence, adjustment of the indicator results to represent the

exact condition of the product is difficult.

• Cost of implementation: The “cost” of TTIs technology has been cited frequently by
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companies as a reason for deploying it. For TTI type 1, the cost of a single tag can

be significant relative to the value of some products when used on consumer packs. In

addition, the, personnel salaries and personnel training required to use such technology

could be a major factor to restrain its deployment. For TTI type 2, the cost of read-

ers, processing and supporting information technology hardware and software, personnel

salaries and personnel training could be a determining factor of deploying it. Besides

these costs, tangible benefits of monitoring temperature during the distribution of per-

ishables, advantages of RFID monitoring to supply chain players remains open questions.

• Legislative rules : Potential conflict between TTI indications and the mandatory expiry

dates required in some countries may occur. Until TTIs are certified as a method used

to indicate the lifetime, controlling authorities and legislation will continue to use expiry

date markings. Hence, the use of TTIs cannot completely eliminate ordinary lifetime

calculations.

• Accuracy : For most cold chain applications, a TTI accuracy of ±0.5 ◦C or better is

expected (Estrada-Flores & Tanner, 2008). However, mass production of TTIs requires

a calibration method that is simple and inexpensive, yet reliable enough to ensure the

desired accuracy in all active tags manufactured. Unlike conventional RFID tags, cold

chain devices require precise adjustment before being placed into service. Tags that are

not properly calibrated will deliver incorrect and potentially misleading remaining shelf

lives.

1.5 Basic notions of inventory management

The fundamental question of inventory control is to answer the following questions: How

much to order? When order should be placed? Answering such questions depends on the

stock situation and different factors and assumptions under consideration. When talking

about the stock situation, it is natural to think of the physical stock on hand. But an

ordering decision can not be based only on the stock on hand. We must also include

the outstanding orders that have not yet arrived. In addition, we have to know how the

system reacts to excess demand (that is, demand that cannot be filled immediately from

the stock). The two common assumptions are that excess demand is either back-ordered

(held over to be satisfied at the future time) or lost (generally satisfied from outside the
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system). Other possibilities include partial back-ordering (part of the demand is back-

ordered and part of the demand is lost) or customer impatience (if the customer’s order

is not filled within fixed amount of time, he cancels). The vast majority of inventory

models assume full back-ordering or full lost sales of excess demand (Nahmias, 2001).

The decision of ordering or not is based on the inventory position defined as follows in

the backorder case:

Inventory position = stock on hand + outstanding orders - backorders.

Naturally, in the lost sales case, the inventory position does not include backorders

Production/Inventory settings

Demand pattern: The demand pattern is the most significant factor that determines

the complexity of modeling. The demand is characterized by two parameters: the time

between successive demands, also called the inter-arrival time and the demand size.

Generally, these two parameters are random variables following some probability dis-

tributions. For examples, the inter-arrival follows an exponential distribution and the

demand size is one at a time or the inter-arrival is constant and the demand size follows

a geometric or a general distribution. Sometimes, the demand may be deterministic in

time. This means that both inter-arrival time and demand size are constant.

Replenishment lead time: The replenishment delivery time is defined as the time

that elapses from the instant an order is placed until it arrives. It is not only the transit

time from an external supplier or the production time in case of an internal order. It

also includes, for example, order preparation time, transit time for the order, adminis-

trative time at the supplier, and time for inspection after receiving the order. It can be

instantaneous, fixed or stochastic.

Type of review policy: In some inventory systems the current inventory position is

known at all times and the decision of ordering or not is taken by checking the inventory

position continuously. We refer to this case as continuous review. An alternative to

continuous review is to consider the inventory position only at certain given points in

time. In general, the intervals between these reviews are constant and we talk about

periodic review.

Relevant costs: Inventory management is based on cost minimization or profit maxi-

mization as criterion of performance. Typically, inventory costs consist of four categories

(Silver et al., 1998):
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• The inventory holding cost: This cost represents the sum of all costs that are propor-

tional to the amount of inventory physically on hand at any point in time. It includes

for example the opportunity cost of the money invested, taxes and expenses of running

a warehouse. In the most of settings, the holding cost is charged per unit of product per

unit of time basis.

• The ordering cost or the setup cost: This cost is associated with a replenishment and

has two components: a fixed and a variable component. The fixed cost is independent

of the size of the order. It includes costs for order forms, authorization, receiving, and

handling of invoices from the supplier. In production, the fixed cost includes administra-

tive costs associated with the handling of orders and all other costs in connection with

transportation and material handling, interrupted production, etc.

For the variable component it included generally the cost of loading and unloading

truck, expense associated with inspection of orders (counting the number of received

items, quality control, etc) and fuel cost.

• The purchasing cost: is the cost proportional to the order size and incurs on per unit

basis. It can depend, via quantity discounts, on the size of the replenishment. The most

popular types of quantity discounts are: all-units and incremental. In both case there

are one ore more breakpoints defining changes in the unit cost. for all-units, the discount

is applied to ALL of the units in the order while for the incremental, the discount is

applied only to the additional units beyond the breakpoint.

• The Penalty / shortage/ stock out cost: occurs when customer demand cannot be filled

immediately. Customer may choose to wait while his order is backlogged, but he could

also choose some other supplier. If the customer order is backlogged, there are often

extra costs for administration, price discounts for late deliveries, material handling, and

transportation. If the sale is lost, the contribution of the sale is also lost. In any case, it

usually means a loss of good will that may affect the sales in the long run. Among the

more common measures of the penalty cost, there are (see Silver et al. (1998)):

-) The penalty cost per stockout occasion: here, it is assumed that the only cost asso-

ciated with a stockout is a fixed value independent of the magnitude or the duration of

the stockout.

-) The penalty cost per unit short: here the penalty cost is charged per unit basis. That

is, each time a demand occurs that cannot be satisfied immediately, a penalty cost is
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incurred independent of how long it takes to eventually fill the demand.

-) The penalty cost per unit short per unit time: in this case, the penalty cost is charged

not only on per unit of product basis, but also on per unit of time basis. This approach

is appropriate when the time of the back order is important; for example if a back order

results in stopping a production line because of the unavailability of a part.

Most of these costs are difficult to estimate. Therefore, it is very common to replace

them by a suitable service constraint which would be somewhat simpler than finding the

penalty cost in many practical situations.

1.6 Basic inventory management policies

It is not our attention to deeply cover the topic of inventory management in this section.

Several books exist in this context (Silver et al., 1998; Zipkin, 2000). We provide in

this section a brief description of ordering systems related to our research topic. We

choose in this section to describe the most widely practiced control policies for single-

stage, single-item inventory systems which we called the basic policies, i.e., the (r, Q)

and (T, S) policies, since they are typically used in the case of perishable inventory

management.

1.6.1 The (r, Q) policy

An inventory controlled by an (r, Q) review system, means that an order of size Q > 0,

is placed whenever the inventory position drops to the reorder point r. Q > 0 only

if the ordering cost is positive. The demand size can be one unit at a time or may

arrives in batch. When the demand is one unit at a time, orders are triggered exactly

when the reorder point is reached. For a batch of demand size, order are triggered when

the inventory position is equal or below the reorder point r. In addition, orders may

arrive instantaneously or after a replenishment lead time generally denoted by L which

can be deterministic or stochastic. The inventory depletion under this control rule is

represented in Figure (1.8).
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Figure 1.8: Inventory depletion under an (r,Q) ordering policy

1.6.2 The (T, S) policy

An inventory controlled by a (T, S) review system, means that the inventory level is

observed at equal intervals of time, T > 0 and a replenishment order is placed every T

units of time to bring the inventory position to the order-up-to-level S (Figure (1.9)).

Again, T > 0 only if the ordering cost is positive.

We note that the (r, Q) is more reactive that the (T, S) policy. We note also that, in

many practical situations such as multi-items inventory systems, the periodic review is

more attractive than the continuous one since items are often ordered within a common

base period of review. We note that there exist others inventory policies which can be

described as a combination of (r, Q) and (T, S) policies. For example, the (T, r, Q) inven-

tory policy is a combination between the (r, Q) and the (T, S) policies. The (s, S) policy

corresponds to the case where replenishment is made to raise the inventory position to

the order up to level S whenever the inventory position drops to the reorder point s or

lower. The (S − 1, S) is a modified (s, S) inventory policy where s = S − 1.

1.6.3 Optimization

The optimal parameters that minimize the total operating cost (equation 1.1) could be

computed by one of the two fundamental approaches namely the sequential approach
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Figure 1.9: Inventory depletion under an (T,S) ordering policy

and the global one used in inventory management.

Total operating cost = (Ordering cost+ Purchasing cost) /Expected cycle length

+ (Shortage cost) /Expected cycle length

+ Holding cost. (1.1)

The sequential approach consists on computing the optimal order quantity in the case of

deterministic demand and then finding the other parameter. For example, in the (r, Q)

policy, the order Q is determined by the Wilson formula and the reorder level r is calcu-

lated by minimizing the cost function subject to a certain predetermined service level or

cost. By using this procedure, the stochastic variations of the demand or the lead time

(if any) are only taken into account when determining the reorder point (the parameter

S for the (T, S) policy). That is, given Q (or T ), a stochastic model is then used in a

second step to determine the reorder point r (or the order up to level S). In the case

where the global approach is used, the optimal parameters are computed simultaneously

by an iterative algorithm that minimizes the total operating cost. According to Axsater

(1996) and Zheng (1992) it is possible to show that sequential approach will give a cost

increase compared to optimum that is always lower than 12 percent with respect to the

cost parameters in the case of the (r, Q) policy. In our work, we choose to compute

the optimal parameters jointly in a stochastic model (i.e, we use the global approach)
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since the sequential approach does not take into account the stochastic variations of the

demand and also the fact that the product in question is perishable when determining

the optimal order quantity (or the review period).

1.7 Context

The motivation of this work is twofold:

• First, our interest is to investigate the impact of perishability on inventory manage-

ment and to get insights in terms of cost improvement with regard to different costs

parameters such as the ordering cost.

• Second, we study the effectiveness of using TTIs technology on perishable inventory

management. Since this technology appears as an effective tool to reduce spoilage and

its related costs by making sure that only products that are truly spoiled, or subject to

imminent spoilage are removed, our second objective is therefore to study the effective-

ness of different inventory situations where TTIs technology is deployed.

To do so, we place our work in the context of an uncapacitated Distribution Center (DC)

that sells a perishable product which is subject to temperature perturbation (cf. Figure

(1.10)). We assume that the product has constant utility throughout its lifetime and if it

is not used by demand during its lifetime, is disposed off. The DC is managed using an

appropriate inventory control policy (i.e, (r, Q) or (T, S) policies) and orders arrive from

an external supplier to the DC after a constant replenishment lead time. The demand

at the DC is assumed to be probabilistic, but based on a known distribution with known

parameters.

Our aim is to compare between three different scenarios:

Scenario 1: The DC manager take into account the temperature variations and depletes

the inventory based on the use by date printed on products’ packaging. We assume that

product’shelf life is calculated by taking a margin of precaution equal to 100% as de-

scribed in Section (1.3). Once the used by date is reached, products are removed from

the stock if they are not used by demand. We note that this scenario can be used when

temperature variations are negligible.

Scenario 2: The DC manager monitors temperature variations throughout TTI type 1

technology. This technology is affixed to each product’s packaging or to the whole order
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in conjunction with the use by date label. In this scenario, the use by date affixed to

products is greater than the one used in Scenario 1, since as explained before the use of

a TTI technology enables to propose an extended product lifetime. We choose to fix a

use by date with the minimum margin of precaution That is, the use by date is equal

to the date of production plus the maximum realization of the effective shelf life. The

outdated items are removed when the TTI type 1 changes color, or when the use by

date printed on products’ packaging is reached, whichever occurs first. With TTI type

1, the DC-manager could detect any perished item at any time. The TTI labels are

parameterized to change color once a predetermined rate of microbial development is

reached.

Scenario 3: The DC manager monitors temperature variations throughout TTI type 2

technology affixed to each product’s packaging and depletes the inventory based on the

remaining shelf life provided by the RF reader. In this scenario, no use by date code is

printed in product’s packaging.

For these scenarios, we assume that excess demand occurring during the replenishment

lead time is either backordered or fully lost. Holding costs are charged per unit of prod-

uct per unit of time and each demand backordered/ lost incurs a shortage cost per unit

of product. In addition to the holding and the shortage cost, there is a fixed ordering

cost per order and a purchasing cost per unit of product.

When a product perishes at the DC, it is immediately removed from the inventory and

a disposal/outdating cost is charged per unit of perished product. This cost corresponds

to the lost in term of profit for an item that should be sold before perishing. However,

once the item is perished, the contribution of selling that item is lost. This cost could

represent the salvage value of perished items. For example, when talking about a per-

ishable item with one period lifetime, if the order quantity for one period exceed the

total demand in that period, then the inventory has to be disposed off at a lower price.

The disposal /outdating cost could also include the salaries of personnel that inspect

products on hand and withdraw those being perished.

To achieve our goal, we formulate the total inventory operating cost for each scenario
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by the following equation:

Total operating cost = (Ordering cost+ Purchasing cost) /Expected cycle length

+ (Shortage cost+Outdating cost) /Expected cycle length

+ Holding cost. (1.2)

Where, for scenarios 2 and 3, the purchasing cost includes the cost of the TTI tag

affixed to each product’s packaging. At the first level of comparison, we only evaluate

the impact of perishability on inventory management by comparing scenario 1 to a

base case in which the perishability of products is ignored, i.e, products are assumed

to have an infinite lifetime. Then, we evaluate scenarios 2 and 3 where the inventory

is controlled throughout information stemming from TTI type 1 firstly and from TTI

type 2 secondly to scenario 1 where product’s lifetime determined initially within a high

margin of precaution. For all comparisons we made, we choose compute the optimal

total operating cost via the global approach. That is, the optimal parameters for a given

ordering policy are calculated simultaneously.

Distribution

center 

External 

supplier

order

Order delivery DemandDistribution

center 

External 

supplier

order

Order delivery Demand

Figure 1.10: The supply chain we base our research work on

1.8 Conclusion

In this chapter, we have focused on major challenges on modeling perishability on inven-

tory management. We have begun by sketching the complexity of modeling inventory

subject to perishable products and outlined limitations on managing inventory through-
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out a predetermined shelf life. Then, we have provided and overview of the role of

Time Temperature technologies and its impact on supply chain management systems.

We have shown that Time Temperature technologies have many qualitative benefits on

perishable inventory systems such as reducing spoilage and increasing products’ quality

and safety. We have also defined the basic notions of inventory management Including

its operating costs and policies. Finally, we have drawn the general context of our work.

26



Chapter 2

Literature Review of Single Item

Single Stage Perishable Inventory

Management Systems

2.1 Introduction

In this chapter we review the literature of perishable inventory management. Our motiva-

tion is not to replicate the existing works (Nahmias, 1982; Goyal & Giri, 2001; Karaesmen

et al., 2009) but to highlight the complexity of modeling perishable inventory systems

and to outline the major findings and lacks pertaining to the existing literature since

1970s. Perishable inventory systems are studied extensively in literature. Various clas-

sifications have been made depending on products’ shelf life characteristics. Typically,

two categories of models can be distinguished:

1) Inventory models with fixed lifetime where all on hand products with the same age

will be disposed of together at the end of their usable lifetime.

2) Inventory models with stochastic lifetime where each product will fail at the end of

his usable lifetime if it is not consumed by demand.

Accordingly, this chapter is organized as follows: in Section (2.2) we discuss the issuing

policies related to perishable inventory management. In Section (2.3) we review the

literature of perishable inventory with fixed lifetime (cf. Scenario 1 of section (1.7)). In

Section (2.4) we consider the case of stochastic lifetime. Finally, in Section (2.5) we show
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how we contribute to literature by providing motivations behind models we propose.

2.2 Issuing policies of perishable inventory manage-

ment

Before presenting the literature review of perishable inventory management, a funda-

mental question related to the issuing policy of inventory should be considered. The

question being what is the best issuing policy that should be used. There exist three

important matching policies:

• The First-In-First-Out issuing policy (FIFO) means that the first product that enters

to the stock will be used first to satisfy the demand.

• The Last-In-First-Out issuing policy (LIFO) means that the last product that enters

to the stock will be used first to satisfy the demand.

• The Least-Shelf life-First-Out issuing policy (LSFO) means that product with the least

shelf life will be used first to satisfy the demand.

Generally, the inventory is depleted according to FIFO issuing policy, however the LIFO

issuing policy can be used in many real systems. For example, customers who arrive

in a supermarket buy the items having the longest lifetime instead of the shortest one.

In this case, the FIFO assumption is inadequate. The SLFO can be also used when

TTI is deployed and it seems to outperform FIFO and LIFO (Wells & Singh, 1989).

Most of existing papers assume that the inventory is depleted according to the FIFO

issuing policy. The reason of that is the difficulty to build an analytical inventory model

under both LIFO and LSFO policies. The LIFO and LSFO issuing policies could only

be handled throughout dynamic programming approaches. However, with the dynamic

programming approaches, it is more difficult to track the different ages’ categories of the

inventory level in the case of LIFO or LSFO than in the case of FIFO. The literature

on LIFO perishable inventory systems is very scarce. The most relevant work in this

context is the study of Cohen & Prastacos (1978). Their analysis is restricted to the

case where the lifetime of items is equal to 2 units of time. The authors investigate the

effect of the LIFO versus the FIFO depletion in perishable base stock system and show

that the optimal inventory parameters are insensitive to the choice of the issuing policy.
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2.3 Perishable inventory control with fixed lifetime

When items have a fixed lifetime, the problem of finding optimal ordering policy is

well known as the “Fixed Life Perishability Problem” (FLPP) (Nandakumar & Morton,

1993). Several surveys address this problem and classify the existing works based on

the basic notions of inventory management discussed in chapter (1) (Nahmias, 1982;

Karaesmen et al., 2009). The literature review of inventory control with fixed lifetime

conducted by Nahmias (1982) is organized on the basis of demand pattern and relevant

costs, while the review of Karaesmen et al. (2009) was established on the basis of the

demand pattern (deterministic or probabilistic demand), the review schemes (continuous

or periodic review) and on the relevant costs (purchasing cost, ordering cost, outdating

cost, etc). Basically, four approaches were used to obtain analytical models: the dynamic

programming approach, the queueing renewal theory and mathematical modeling.

2.3.1 Perishable inventory based on dynamic programming ap-

proach

Tables (2.1, 2.2) provide a summary of different assumptions used in perishable inven-

tory management and based on dynamic programming approach. Most of these works

deal with the base stock inventory policy which is well known as the critical number

policy in the context of perishable inventory management (Nahmias, 1982). When prod-

ucts cannot be held in stock more than one period, the FLPP is reduced to the known

Newsboy problem (Khouja, 1999). The first work that concerns inventory management

of perishable items is the one of Van Zyl (1964). The author formulates a dynamic

program approach for a product with a lifetime of two periods and derives the optimal

policy when purchasing and shortage costs are charged to order quantity and unsatisfied

demand. Van Zyl (1964) shows that if the old stock increases by one unit, the optimal

order quantity will decrease, but by less than one unit. Nahmias & Pierskalla (1973)

follow Van Zyl and take a different approach. They charge a cost associated with the

outdating (perished items) and the shortage and show that the order quantity for a per-

ishable item is always less than the one of non perishable item which is an unsurprising

result. The work of Nahmias and Pierskalla was extended independently by Fries (1975)
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and Nahmias (1975) to the case where products have three or more units of lifetime.

Nahmias assumes that the cost of outdating is charged to the period in which the or-

der arrives while Fries assumes that outdating cost is charged at the period in which

the outdating occurs. These two models, apparently different, was shown by Nahmias

(1977a) to be identical when the remaining number of periods in the horizon exceeds the

product lifetime. Nahmias and Fries showed that the computation of an optimal policy

requires the resolution of a dynamic program whose state variables has dimension m−1

(where m denotes the product’s lifetime). These works assume that the ordering cost is

proportional to the number of units ordered. Nahmias (1978) relaxed this assumption by

including the fixed ordering cost and emphasizes the difficulty to compute the optimal

policy by multi dimensional dynamic programming approach. This difficulty arises since

the dynamic programming approach needs to track the different ages’ categories of items

in stock. However, direct computation of an optimal policy turns out to be impractical

because of the dimensionality of the dynamic programm generated by the different ages’

categories.

The papers discussed above constitute a succession of works which look for an optimal

ordering policy throughout a dynamic programming approach and enhance the complex-

ity to track the inventory of each age. In order to avoid this difficulty, several researches

have been focused on heuristic approximations. Nahmias (1976) considered only two

ages: the total old quantity of on hand inventory (without distinguishing products age

categories) and the new order. The heuristic gives an expected total cost within 1% of

the optimal. The property of the optimal ordering, established by Fries and Nahmias,

indicates that the ordering policy is more sensitive to change in newer inventory than

the older one, encourages Nahmias (1977b) to derive another bound of the outdated

quantity in order to reduce the state space of the multi dimensional dynamic program.

The new approximation was tested in the case of three period lifetime and leads to a

total cost halfway between the optimal cost and that obtained using the critical num-

ber approximation from (Nahmias, 1976). These heuristics assume that excess demand

is backordered. Nandakumar & Morton (1993) consider the lost sales case and derive

myopic upper and lower bounds on the order quantities for the base stock inventory

policy with fixed lifetime and use these bounds to develop two heuristics. The heuristics

provide a good approximation of the true optimal base stock policy by less than 1%
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average error. The models discussed above deal with the critical number policy which

is known as the base stock model and use the dynamic programming approach. All of

these works assume instantaneous replenishment lead time and no ordering cost except

the paper of Nahmias (1976). When the replenishment lead time is positive, Williams

& Patuwo (1999, 2004) provide a sensitivity analysis of the order quantity regarding to

a positive lead time, ordering, holding, shortage and outdating costs. They show that

the ordering and the shortage costs have greater impact on the incoming quantity than

the holding and the outdating costs.

Article Purchasing cost Ordering cost Shortage cost outdating cost Holding cost

Van Zyl (1964) * *

Nahmias & Pierskalla (1973) * *

Fries (1975) * * * *

Nahmias (1975) * * * *

Nahmias (1976) * * * *

Nahmias (1978) * * * * *

Nahmias (1977b) * * * *

Nandakumar & Morton (1993) * * * *

Williams & Patuwo (1999, 2004) * * * *

Table 2.1: Costs assumptions of perishable inventory management based on dynamic
programming approach
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Article Replenishment policy Planning horizon Type of review Excess demand Lead time distribution Lifetime distribution Demand distribution

Van Zyl (1964) Optimal (S − 1, S) policy Finite/infinite Periodic Lost sales 0 Constant =2 Random

Nahmias & Pierskalla (1973) Optimal (S − 1, S) policy Finite/infinite Periodic Lost sales/backlogg 0 Constant =2 Random

Fries (1975) Optimal (S − 1, S) policy Finite/infinite Periodic Lost sales 0 Constant Random

Nahmias (1975) Optimal (S − 1, S) policy Finite Periodic Backlog 0 Constant Random

Nahmias (1976) Heuristic (S − 1, S) policy Finite Periodic Backlog 0 Constant Random

Nahmias (1978) optimal (s, S) policy Finite Periodic Backlog 0 Constant Random

Nahmias (1977b) Heuristic (S − 1, S) policy Finite Periodic Backlog 0 Constant Random

Nandakumar & Morton (1993) Heuristic (S − 1, S) policy Infinite Periodic Lost sales 0 Constant Random

Williams & Patuwo (1999, 2004) Heuristic (S − 1, S) policy Finite Periodic Lost sales Constant Constant=2 Random

Table 2.2: A summary of perishable inventory management based on dynamic programming approach
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2.3.2 Queuing-based perishable inventory models

Works dealing with queuing-based perishable inventory management are summarized in

Table (2.3). These works do not consider any explicit inventory policy. They focus on

deriving the steady-state distribution of the age of the oldest item in stock which is also

called the virtual outdating process.

Perishable inventory using queue models are basically motivated by their applications

in the case of blood bank management. The shelf life of a donated blood portion is

approximately 21 days, after which the donated blood portions should be disposed off.

Donations of blood portions and demands can be then modeled as an independent Pois-

son processes. The use of queuing models was initiated by Graves (1982) who analyzed

a perishable inventory systems where customer and orders arrive according to a Poisson

processes. When all demand requests are for the same quantity and without considering

any explicit ordering policy, Graves shows that the inventory process is equivalent to

the virtual waiting time process for an M/D/1 queue with a finite waiting room. The

similarity is easy to understand because the resupply time process can be seen as the

server, the inventory as the queue, and the demand request as the customer arriving at

the queue. If customers arrive according to a Poisson process and request an exponential

batch size, the inventory process is equivalent to the virtual waiting time process for an

M/M/1 queue with reneging customers. Later, Kaspi & Perry (1983, 1984) introduced

the concept of virtual death process based on analysis of M/G/1 queue with impatient

customer. The virtual death process is just a reformulation of the age of the oldest item

in stock used by Graves (1982). This concept was used by Perry & Stadje (1999) who

derive explicit expressions of the stationary distribution of two models where arrival of

items and demands are state-dependent and customers are willing to wait. This work

was generalized by Nahmias et al. (2004) by deriving the steady-state distribution of the

virtual outdating process in the context where the demand rate depend on the current

value of the basic virtual outdating process.
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Article Replenishment policy Planning horizon Type of review Excess demand Lead time distribution Lifetime distribution Demand distribution

Graves (1982) No explicit policy Infinite Continuous Lost sales/backlogg Exponential Constant compound Poisson process

Kaspi & Perry (1983, 1984) No explicit policy Infinite Continuous Lost sales/backlogg Renewal Constant Poisson process

Perry & Stadje (1999) No explicit policy Infinite Continuous Lost sales/backlogg Constant /Exponential Constant /Exponential Poisson process

Nahmias et al. (2004) No explicit policy Infinite Continuous Lost sales Renewal Constant Poisson process

Table 2.3: A summary of Queuing-based perishable inventory models
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2.3.3 Perishable inventory systems based on regenerative pro-

cesses tool

Tables (2.4, 2.5) represent a summary of papers dealing with perishable inventory sys-

tems based on regenerative processes. These papers consider the same costs, i.e., the

purchasing, ordering, outdating, shortage and holding costs. According to this table, the

first study using regenerative process approach was introduced by Weiss (1980) and fol-

lowed by several papers dealing with both fixed and random lifetime. The author deals

with the (s, S) ordering policy with zero replenishment lead time. He demonstrated

that under continuous review scheme and lost sales case, there exists an optimal policy

of order up to a positive level S type when the inventory level reaches zero. For the

backorder case, the optimal policy exists and it is of type order to a positive level S

when the inventory level is below zero. In addition, since the replenishment lead time

is instantaneous, the reorder point s is negative. Theoretically, it is always better to

have s < 0 than s > 0, since orders arrive immediately. Based on Weiss’s results, Liu

& Lian (1999) have considered a continuous review (s, S) ordering system with general

inter arrivals time and unit demand size. They construct a Semi Markov Renewal Pro-

cess with two dimensions: the regeneration set space (−1 and S) constitute the first

dimension and the epochs at which the inventory makes a transition between the re-

generative points is the second dimension. The authors show that the total operating

cost (ordering cost plus holding cost plus disposal cost plus backorder cost) is unimodal

in both the reorder point and the order-up to level. The same properties also hold for

the case where demand is discrete in time. This result was shown by Lian & Liu (1999)

who use the queuing theory to derive the optimal (s, S) ordering policy under zero lead

time and discrete time monitoring. The epochs at which demand occurs or item perishes

constitute the moments of the review. With geometric demand distribution, the authors

construct matrix-analytical method and demonstrate numerically that the discrete time

monitoring is a good approximation to the continuous one. Later, Lian & Liu (2001)

extend the model of Liu & Lian (1999) to the case where demand arrives in batch and

proposed a heuristic to manage the case of positive lead time. They show that the cost

function is also unimodal in S. The heuristic is tested against simulation and leads to an

error within one percent. Recently, Berk & Gurler (2008) observed that the distribution
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of the remaining shelf life at epochs when the inventory level hits Q have Markov propri-

eties. They show that the remaining shelf life constitutes an embedded Markov process

under the assumption of Poisson demand distribution. By analyzing this process, they

derived a closed form for the total ordering cost under the (r, Q) inventory type with

lost sales and positive lead time.

Article Purchasing cost Ordering cost Shortage cost Outdating cost Holding cost

Weiss (1980) * * * * *

Liu & Lian (1999) * * * * *

Lian & Liu (1999) * * * * *

Lian & Liu (2001) * * * *

Berk & Gurler (2008) * * * * *

Table 2.4: Costs assumptions of perishable inventory systems based on regenerative
processes tool
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Article Replenishment policy Planning horizon Type of review Excess demand Lead time distribution Lifetime distribution Delmand distribution

Weiss (1980) Optimal (s, S) policy Infinite Continuous Lost sales/backlogg 0 Constant Poisson

Liu & Lian (1999) Optimal (s, S) policy Infinite Continuous Backlog 0 Constant Renewal

Lian & Liu (1999) Optimal (s, S) policy Infinite Continuous Backlog 0 Constant Batch Geometric

Lian & Liu (2001) Heuristic (s, S) policy Infinite Continuous Backlog Deterministic Constant Renewal

Berk & Gurler (2008) Optimal (r,Q) policy Infinite Continuous Lost sales Deterministic Constant Poisson

Table 2.5: A summary of perishable inventory systems based on regenerative processes tool
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2.3.4 Perishable inventory based on mathematical modeling

We provide in Tables (2.6, 2.7) below an overview of research that is based on mathe-

matical modeling.

Optimal perishable inventory systems subject to positive lead time are quite complex to

derive. The papers discussed in the previous sections propose either an exact solution

where the lead time or the fixed ordering cost is omitted. Models based on queuing the-

ory with impatient customers do not consider any explicit expression of the inventory

total cost. Those, based on regenerative processes, take into account the ordering cost

and propose heuristics to hand the situation where the lead time is positive. The lead

time constraint adds more complexity to seek for an optimal ordering policy because

more variable are needed to track the age of inventory. As stated by Schmidt & Nah-

mias (1985) it is unlikely to find an optimal policy under positive lead times. Due to this

complexity, research has been shifted to heuristics approximations. We have mentioned

the heuristic of Lian & Liu (2001) which deals with the (s, S) ordering type and consider

the ordering cost, shortage, holding and outdating cost. The proposed heuristic has not

been benchmarked against other existing heuristics, especially against the model of Chiu

(1995a) who proposes an approximate model under the (r, Q) ordering policy. The (s, S)

can be easily switched to an (r, Q) model by setting Q = S − s and s = r so that the

comparison between the heuristic of Lian & Liu (2001) and the approximate model of

Chiu (1995a) is possible. The approximate model of Chiu (1995a) considers five cost

parameters (purchasing, ordering, holding, outdating and shortage), positive lead time

and allows only one outstanding order. The model was tested against the optimal cost

obtained by a simulation study and it is shown to deviate on average by less than one

percent. However this result does not mean that the approximate expressions proposed

by Chiu concerning the expected outdating quantity, shortage and inventory level are

accurate: the numerical results conducted by Chiu show that the expected outdating

quantity, shortage, inventory level and cycle length deviate from the optimal one by

of 3.78%, −16.64%, −5.84%, −2.24% respectively. This finding is mainly due to the

assumption that there is no perishability during the lead time. Later, Chiu (1999) re-

examines the problem and proposes a more accurate expression of the inventory level.

Another important contribution is the one made by Tekin et al. (2001). The authors
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simplify the problem of positive lead times and introduce the age-based inventory policy.

Their model operates under a (T, r, Q) ordering system. That is, an order of Q units

is placed whenever the inventory level reaches r or when T units of time have elapsed

since the last instance at which the inventory level hits Q. The (r, Q) ordering system

is a special case of a (T, r, Q) policy; in fact when T is set to be exactly the lifetime of

products (T, r, Q) and (r, Q) are similar policies. The basic idea behind involving the

parameter T is to reduce the effect of perishability by taking into account the remaining

shelf life of items on hand which is ignored under the (r, Q) system. That is, in the (r, Q)

inventory policy, the decision of reordering or not is based on the inventory position how-

ever, in the (T, r, Q) the reordering decision take also into account the remaining shelf

lives of items in stock throughout the parameter T which represent a threshold level for

reordering. The age-based inventory policy is suitable for particular items that start

perishing when the order Q is unpacked for use. Typical example of such items, some

foodstuffs kept in a freezer can be stored for a long time while putting them on the

shelves reduces their shelf life. Tekin et al. (2001) find that the (T, r, Q) ordering sys-

tem subject to service level constraint performs well under tight service level for items

with short lifetime. Chiu’s model (Chiu, 1995a) and modified (T, r, Q) of Tekin et al.

(2001) were compared to the optimal (r, Q) policy provided by Berk & Gurler (2008).

The authors found that the approximate model of Chiu performs relatively well within

an average percent deviation from the optimal policy of two percent. Compared to the

age-based (T, r, Q), the optimal (r, Q) policy performs badly if the shortage cost is high.

Furthermore, the (r, Q) ordering system seems to be a good heuristic for a large ordering

cost, shelf lives and small shortage and perishing costs.

Finally, under a periodic review scheme, Chiu (1995b) considers a (T, S) inventory sys-

tem with backorder and develop an upper and lower bound of the expected perishing

quantity per cycle. The lower bound is used to approximate the amount of backorder

per cycle. The author find that the approximate total operating cost deviate from the

optimal one (calculated by simulation) by less than one percent.
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Article Replenishment policy Planning horizon Type of review Excess demand Lead time distribution Lifetime distribution Demand distribution

Chiu (1995a) Heuristic (r,Q) policy Infinite Continuous backlog Deterministic Constant General

Tekin et al. (2001) Heuristic (T, r,Q) policy Infinite Continuous Lost sales Deterministic Constant Poisson

Chiu (1999) Heuristic (r,Q) policy Infinite Continuous backlog Deterministic Constant General

Chiu (1995b) Heuristic (T, S) policy Infinite Continuous backlog Deterministic Constant General

Table 2.6: A summary of perishable inventory based on mathematical modeling

Article Purchasing cost Ordering cost Shortage cost Outdating cost Holding cost

Chiu (1995a) * * * * *

Tekin et al. (2001) * * Service level * *

Chiu (1999) * * * * *

Chiu (1995b) * * * * *

Table 2.7: Costs assumptions of perishable inventory based on mathematical modeling
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2.4 Perishable inventory control with stochastic life-

time

In the previous section, we have reviewed the literature of perishable items with fixed

lifetime; we have also mentioned, in Chapter (1), that the lifetime is random in nature

due to various perturbations that arise when items move through supply chain actors.

Most of works dealing with random lifetime assume that each item of the incoming

order has an exponential lifetime distribution. We provide in Tables (2.8, 2.9) below an

overview of perishable inventory control with stochastic lifetime.

Article Purchasing cost Ordering cost Shortage cost Outdating cost Holding cost

Kalpakam & Sapna (1994) * * * * *

Kalpakam & Sapna (1995) * * * * *

Liu & Yang (1999) * * * * *

Kalpakam & Shanthi (2000) * * * * *

Kalpakam & Shanthi (2001) * * * * *

Kalpakam & Shanthi (1998) * * * * *

Kalpakam & Shanthi (2006) * * * * *

Liu & Shi (1999) * * * * *

Lian et al. (2009) * * * *

Liu & Cheung (1997) Fill rate

Gurler & Ozkaya (2008) * * * * *

Table 2.8: Costs assumptions of perishable inventory control with stochastic lifetime
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Article Replenishment policy Planning horizon Type of review Excess demand Lead time distribution Lifetime distribution

Kalpakam & Sapna (1994) Optimal (s, S) policy Infinite Continuous Lost sales Exponential Exponential

Kalpakam & Sapna (1995) Optimal (S − 1, S) policy Infinite Continuous Lost sales General Exponential

Liu & Yang (1999) Optimal (s, S) policy Infinite Continuous backlog Exponential Exponential

Kalpakam & Shanthi (2000) Optimal (S − 1, S) policy Infinite Continuous Lost sales/backlogg Exponential: state-dependent arrival Exponential

Kalpakam & Shanthi (2001) Optimal (S − 1, S) policy Infinite Continuous Lost sales General Exponential

Kalpakam & Shanthi (1998) Optimal (s, S) policy Infinite Continuous Lost sales Exponential Exponential

Kalpakam & Shanthi (2006) Optimal (s, S) policy Infinite Continuous Lost sales Exponential Exponential

Liu & Shi (1999) Optimal (s, S) policy Infinite Continuous backlog 0 Exponential

Lian et al. (2009) Optimal (s, S) policy Infinite Continuous backlog 0 Exponential

Liu & Cheung (1997) Optimal (S − 1, S) policy Infinite Continuous Lost sales/backlogg Exponential Exponential

Gurler & Ozkaya (2008) Heuristic (s, S) policy Infinite Continuous backlog Constant General

Table 2.9: A summary of perishable inventory control with stochastic lifetime
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2.4.1 Perishable inventory systems with exponential lifetime

We find that Kalpakam & Sapna (1994) were the first who studied an (s, S) model

for a Poisson demand distribution where product lifetimes and lead times are assumed

to be an exponential distribution. Under these assumptions, the inventory process be-

comes Markovian. By assuming lost sales and restricting the number of outstanding

replenishment orders to, at most, one at any given time, they derived the steady state

probabilities and obtained the exact cost function and some useful analytical properties

regarding the reorder point s. Kalpakam & Sapna (1995) studied the (S−1, S) ordering

policy under the same assumptions of Kalpakam & Sapna (1994) model but with gen-

eral distribution of the lead time. They used the Markov renewal technique to analyze

the behavior of the inventory level process. The authors obtained steady state system

performance measures so that cost function can be constructed to obtain the optimal

base stock S numerically. Later, Liu & Yang (1999) generalize the model of Kalpakam

& Sapna (1994) and propose a model with backorder and no restriction on the number

of outstanding replenishment orders. The authors use a matrix-geometric approach to

obtain the steady states probabilities and derive the total cost function. After, they

analyze the impact of the operating cost on the optimal s and S. Finally, they show

that when the mean order processing time is too small, the optimal ordering policy can

be obtained from the corresponding zero lead time model. Kalpakam & Shanthi (2000)

consider a modified base stock ordering policy where orders are placed only at demand

epochs. Under an instantaneous replenishment lead time, they derived the expression of

the total operating cost using a matrix recursive scheme. Their model covers complete

lost sales, full backlogging, and partial backordering. Later, the authors (Kalpakam

& Shanthi, 2001) analyze the above modified base stock policy by integrating an arbi-

trary processing lead time. The matrix recursive approach is again used. The authors

observed via numerical investigation that the cost function is unimodal in S and the

matrix recursive approach may lead to significant saving in CPU time.

For the (s, S) ordering policy, Kalpakam & Shanthi (1998) consider the case of Poisson

demand and exponential lifetime and suppose that orders are placed only at demand

epochs. The lead time is exponentially distributed and depends on the order quan-

tity. Recently, this work was generalized to the case of renewal demand (Kalpakam &
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Shanthi, 2006). Liu & Shi (1999) focused on analyzing the reorder cycle length. Under

instantaneous replenishment lead time and renewal demand process, they showed that

the total cost function is convex if the expected cycle length is increasing concave in

S. In keeping with this trend, Lian et al. (2009) studied similar model as Liu & Shi

(1999) except that demand follows a Makovian Renewal process. A comparison between

the Markovian and non Maakovian Renewal demand is made and demonstrated that

the non Markovian renewal demand may leads to a higher cost than in the case of the

Markovian one.

All papers discussed above consider the shortage cost (lost sales or backorder), the only

work subject to service level constraint is the paper of Liu & Cheung (1997). Liu and

Cheung investigate an (S−1, S) inventory policy with Poisson demand, exponential life-

time and lead time where excess demand can be completely lost or partially backordered

and there is no restriction on the number of outstanding orders. The authors choose to

minimize the expected on hand inventory arguing that the outdating and the holding

cost can be minimized if the on hand inventory level is also minimized. That is, no

explicit cost has been considered on their objective function. The structure of the cost

function and instantaneous replenishment lead time simplify considerably the problem

of finding a closed form of the total operating cost.

2.4.2 Perishable inventory systems with general distribution

lifetime

For other distributions of lifetime, Gurler & Ozkaya (2008) studied the (s, S) policy with

random lifetime and constant lead time in order to investigate the impact of randomness

of the shelf life on the total operating costs. The shelf life of each item in the incoming

order is the same but may be constant or random. Various distribution of the lifetime

have been considered, e.g. Gamma, Weibull, Uniform, Triangular,... Gürler and Özkaya

examined firstly the case of zero lead time and after, they proposed a heuristic to deal

with the case of positive and constant lead time. Based on result of Weiss (1980), who

showed that, for a zero lead time and a continuous review, the reorder level s must

be negative, Gurler and Ozkaya derived a closed form of the total operating cost for

both discrete and continuous demand and demonstrated that the cost function is quasi-
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convex in s and S for unit demand. The authors investigated the impact of random

lifetime versus the fixed one and found that the consideration of randomness may leads

to a substantial savings. Finally, the performance of the heuristic of positive and fixed

lead time was compared to the heuristics of Lian & Liu (2001) throughout numerical

investigation. They observed that their proposed heuristic performs slightly better for

unit demand.

2.5 Conclusion

In the present chapter, we reviewed the literature on single item single location perish-

able inventory management systems. Although research on perishable inventory systems

is widely addressed in literature by either considering fixed or random lifetime. The ma-

jor efforts were mostly focused on determining the exact optimal ordering policy and its

properties by assuming instantaneous replenishment lead time. However, we are aware

that in terms of practical point of view, the lead time is typically positive. When the

lead time and the lifetime are assumed to be exponentially distributed, the exact control

policy can be obtained by using Markov Renewal approach (Kalpakam & Sapna, 1994).

If the lead time is deterministic, some effective heuristics have been developed. However,

these heuristics concern the (s, S) and the (S − 1, S) ordering policies. For (S − 1, S)

ordering policy, the heuristics of Nandakumar & Morton (1993) and Nahmias (1976)

are quite robust since they deviate from simulation within one percent. For (s, S) with

fixed lifetime, the heuristics of Lian & Liu (2001) and Gurler & Ozkaya (2008) perform

reasonably. These heuristics are derived when demand follows a renewal process. In the

case of (r, Q) ordering policy, only Chiu (1995a) provides an approximate model. As

we mentioned above, the approximate model of Chiu (1995a) was benchmarked against

the exact solution for a Poisson demand and lost sale case (see Berk & Gurler (2008)).

The result of comparison shows that the approximate (r, Q) model deviate slightly from

the exact one. Such an approximation was not already tested for more general demand

distribution (Gamma, Weibull, Uniform, Triangular, etc) or under the backorder case.

In addition, we find that the approximations made by Chiu are derived under the as-

sumption of no perishability during the lead time and by ignoring the case of batch

demand. That is, Chiu does not consider the case where, at demand epochs, the size
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of demanded items maybe greater than one unit. Accordingly, our contribution to the

literature is three fold:

• We derive a new approximate (r, Q) under positive and fixed lead time and general

demand distribution. The model we propose is more realistic since we take into account

the case of perishability during the lead time. We provide a comparison with the heuris-

tic of Chiu (1995a) and with the classical (r, Q) with infinite lifetime. Our results show

that the proposed (r, Q) model outperforms the model of Chiu and the (r, Q) policy in

which the perishability of products is ignored. Furthermore, we investigate the case of

discrete demand distribution when, at demand epochs, the customer may request more

than one unit. We demonstrate that the consideration of undershoot (the amount by

which the reorder level r is crossed when an order is triggered) is crucial to obtain a

good ordering policy (cf. Chapter 3).

• Although perishable inventory with random lifetime was extensively studied, to the

best of our knowledge the case where the inventory is reviewed periodically and the lead

time is deterministic is not investigated yet. Consequently, our motivation is to provide

an exact analysis of a (T, S) inventory policy under positive lead time. We deal with

the discrete time monitoring instead of the continuous one since it is often used in prac-

tice. We model the behavior of this inventory system as a Markov process which we can

characterize the stationary regime. The proposed optimal (T, S) rule will be compared

to the corresponding optimal policy with fixed and infinite lifetime. We show that the

consideration of randomness may leads to substantial savings (cf. Chapter 4).

• Finally we assess the impact of using TTIs on inventory management and show that

such technology can considerably improve the inventory management but this improve-

ment depends on the cost of TTIs. We are aware of only one cite Ketzenberg & Bloemhof

(2008) that address the value of TTIs in perishable inventory system. The authors formu-

late the replenishment problem as a Markov Decision Process and provided a heuristics

with and without TTIs. They showed that TTIs is quite valuable since it reduces losses

and spoilage. Our study differ from Ketzenberg and Bloemhof’s work since we will for-

mulate an approximate (r, Q) dealing with TTIs type 1 and 2. Also we will consider the
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case of random lifetime throughout simulation and compare the performance of issuing

polices such as FIFO and SLFO (cf. Chapter 5).
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Chapter 3

An (r,Q) Inventory Control with

Fixed Lifetime and Lead time

3.1 Introduction

In this chapter we consider an (r, Q) perishable inventory models with fixed lifetime and

lead time. The aim of these models is to illustrate a fixed lifetime perishable inventory

problem (cf. Chapter (2)) and also to associate such models to scenario 1 developed

in Section (1.7) of Chapter (1), quantitative benefits of using TTIs on inventory man-

agement are not considered in this chapter. As presented in Chapter (2) the fixed life

perishability problem has been studied extensively in literature. Two major findings re-

garding this problem can be outlined: First, the inventory control of perishable products

with fixed lifetime is still a complex problem when products’ lifetime is greater than two

units of time. This complexity arises since most of existing works use multi dimensional

dynamic programming approaches to find optimal control policies. These works (e.g.

Nahmias (1977b); Fries (1975); Schmidt & Nahmias (1985)) conclude that analytical

solution for perishability inventory systems with fixed lifetime cannot be obtained be-

cause the need to track the huge number different ages’ categories. As a consequence,

research has been shifted to heuristics approximation. Second, regarding the (r, Q) in-

ventory policy for perishables with fixed lifetime, Chiu (1995a) was the first who studied

an approximate (r, Q) inventory model where unsatisfied demand is backlogged. Later,

Chiu (1999) extended his work by considering a similar model where he developed a
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more accurate estimation of the expected inventory level per unit time. Recently, Berk

& Gurler (2008) revisited the setting considered by Chiu (1995a) under the assumption

of Poisson demand distribution. They have developed an exact solution for the (r, Q)

inventory policy subject to lost sales case. They have developed an exact solution for

the (r, Q) inventory policy subject to lost sales case. However, in this work the backlog

case has not been treated.

The approximations of the cost elements made by Chiu are derived under the assump-

tion of non occurrence of perishability during the lead time. The consequence of this

assumption, as briefly mentioned in Section (2.3.4) of Chapter (2), is that the approx-

imate expected backlogged quantity deviates on average by −16.64% from the optimal

one. Therefore, we propose in this chapter to re-examine the (r, Q) inventory system

for perishables with fixed lifetime. In keeping with literature’s trend, our interests are

threefold:

• We improve the approximations made by Chiu (1995a, 1999) by considering the oc-

currence of perishability during the lead time. In Section (3.3), we show that our (r, Q)

inventory model outperforms Chiu’s model especially when r < Q and when the replen-

ishment lead time takes a high value.

• We develop in Section (3.2) an approximate (r, Q) model and show that the optimal

average cost associated with our model deviates on average by less than 1% from the

optimal average cost pertaining to an (r, Q) system obtained by a simulation study. This

emphasizes the relevancy of the approximations we made.

•We extend model developed and compare its performance to an (r, Q) inventory policy

that ignores product’s perishability. A sensitivity analysis of the optimal policy with

respect to cost parameters and product’s lifetime is conducted in Section (3.5). The

extension mainly comes from the fact that in the second model we take into account

the undershoot quantity. The undershoot corresponds to the amount below the reorder

level r at the time when a replenishment decision is made.

The rest of the chapter is organized as follows: In Section (3.2), we derive the oper-

ating costs of our model: we develops a new approximation of the expected outdating

units where the assumption of non occurrence of perishability during the lead time is

relaxed. Once the expected perished items are calculated, we then derive the expres-

sions of expected backlogged quantity and the expected on hand inventory. The optimal
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parameters r and Q are calculated by minimizing the total expected average cost. Nu-

merical studies are conducted in Section (3.3) to validate and to compare the proposed

model and Chiu’s model. Then, we extend this model to the case where the undershoot

of the reorder point r is taken into account and compare the extended model to an

(r, Q) model which ignore product’s perishability (Section (3.4)). Finally, this chapter

ends with some conclusions.

3.2 A continuous review (r,Q) model subject to per-

ishability

We study a single stage, single product perishable inventory system. This system that

has been introduced in Section (1.6) of Chapter (1) has the following characteristics:

1. We assume that products have a fixed lifetime, which means that they are held in

stock during m time units, after which, if they are not consumed, are disposed off. This

assumption corresponds to the Scenario 1 introduced in Section (1.7) of Chapter (1) as

previously presented.

2. The total product’s lifetime is dispatched between supply chain actors (cf. Figure

(1.2) of section 1.3) so that the product’s lifetime m1 represents only one part of total

lifetime. For ease of notation, we use hereafter m instead of m1 to represent product’s

lifetime.

4. The inventory is controlled with an (r, Q) continuous review system; an order of size

Q > 0, is placed whenever the inventory level (on hand inventory plus on order minus

back orders) drops to the replenishment level r.

5. We assume that all products coming from the same batch Q have the same life-

time and the lifetime m has a fixed value. In a real case, each product of the batch Q

would have its own distribution according to the temperature perturbations that arise

throughout the supply chain, these distributions are called the effective lifetime. In or-

der to guarantee the freshness of products and to avoid the sanitary risks, we take the

lifetime of the batch Q as the minimum realization of all effective lifetime values.

6. If a unit of product is not used by demand during the m periods of lifetime, it is

discarded and a unit outdate cost of W is charged. As discussed in Chapter (1), W
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corresponds to the loss in term of profit for an item that should be sold before perishing.

7. We assume that there is a constant replenishment lead time of length L units of time.

8. The inventory is depleted from stock according to a FIFO issuing policy and all unmet

demands are backlogged.

9. The demand per unit time, Z, is a nonnegative random variable following a distribu-

tion with mean D, probability distribution function f (z) and cumulative distribution

function F (z). Where z is the realizations of Z. Let Zi, (i = 1, 2, ...) be a sequence

of mutually independent random variables with mean D, probability distribution func-

tion f (z) and cumulative distribution function F (z). The density function of the sum

(Dn = Z1 +Z2 + ...+Zn ) is the n-fold convolution of f (z) with itself and it is denoted

by fn (dn) with mean nD. The cumulative probability distribution is noted by Fn(dn).

Again dn represents the realizations of the random variable Dn.

10. The undershoot of the reorder point is not considered. This means that Q units of

products are ordered exactly when the inventory position hits r (i.e. x1 = x2 = 0 in Fig-

ure (3.2)). Note that this undershoot may be caused by either demand or perishability.

The notations used in the model are as follow:
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Figure 3.1: An (r,Q) inventory policy for perishable products

K : Fixed ordering cost per order

H : Holding cost per unit of product held in stock per unit of time
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Figure 3.2: Cases which they are not considered by our model

C : Purchase cost per unit of product

P : Backlog cost per unit of product

W : Outdate cost per unit of product that perishes in stock

m : Product’s lifetime

L : Replenishment lead time

E[O] : The expected outdating quantity associated with an order

E[T ] : The expected cycle length, i.e., the expected time units that elapses between two

successive instances where the inventory level reaches r

E[S] : The expected backlogged quantity per cycle

E[I] : The expected inventory level per unit time

The goal is to optimize the average total cost per unit of time formulated by the following

equation:

TC(r, Q) =
K + CQ+ PE[S] +WE[O]

E[T ]
+HE[I] (3.1)

Assumption 1-10 are commons with Chiu (1995a). In Section (3.4), assumption (10)

above will be relaxed.

Additional considerations

11. The replenishment level r is less than Q (i.e. r < Q): This assumption was taken

in order to simplify the calculation of the expected outdating quantity associated with

an order. Combined with First-In-First-Out policy, this assumption implies that there
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is at most two age categories of products in inventory during a cycle length.

12. There is no order triggered by perishability i.e., E[O] ≤ r.

3.2.1 Expected outdating quantity

To find an optimal replenishment policy for perishable inventory, a recursive computation

is needed in order to take into account the age distribution of products on hand. As

mentioned by Schmidt & Nahmias (1985), it is unlikely to find an optimal policy, since

the computation of this policy is not realizable when m takes large values. Therefore,

using an approximate information about the different age categories of products can

generate an accurate replenishment policy. Such an approximation has been made by

Nahmias (1982) who considers that the amount of products on hand that will perish in

n time units (n < m) have the same age. However, in this section, we do not use an

approximation about products’ age categories because of assumption (2). Consequently,

the age distribution and the dynamic program solution are not required.

In order to evaluate the expected quantity of outdated products, we will first point out

some confusing aspects on Chiu’s approximation. The author shows that the expected

outdating quantity associated with Q is given by:

E[O] =

∫ r+Q

0

(r +Q− dm+L)fm+L(dm+L)ddm+L

−

∫ r

0

(r − dm+L)fm+L(dm+L)ddm+L (3.2)

Chiu derives this equation by analyzing the on hand inventory after the order of size Q

arrives. The author shows that there is some cases for which the current order Q may

start to perish if is not totally used by demand. By considering these cases, Equation

(3.2) is obtained. Also the author obtains Equation (3.2) by deriving the expected

outdating quantity for the case where the lead time is zero and deduce after the expected

outdating quantity for a constant lead time. However, for both ways, Equation (3.2)

holds under the assumption of no perishability occurs during L.

We believe that this assumption is probably not a very good approximation since:

• There is a small probability to have dm+L < r because the reorder level r is designed

to satisfy the lead time demand and not demand during m + L units of time. As a
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consequence, the second term of (3.2) can be ignored and (3.2) is reduced to the first

one. However, the first term is misleading since it calculates the expected quantity of

perished products associated with the current order and includes the outdated products

from the previous order.

• In case where Q < r (e.g Q = 1 and r is relatively large) orders are placed frequently.

Then, if r is large (which means that there may be a lot of items in stock), it is likely

that a non-negligible number of units already in stock will perish during the lead time.

Accordingly, there is a non null probability of occurrence of perishability during the

lead time with respect to costs parameters. Therefore, our calculation of the expected

outdated quantity differs from (3.2) since the occurrence of perishability during L is not

disregarded.

Let On, n = 1, ..., a sequence of positive random variables representing the outdating

quantity associated with the order indexed by n, for all n ≥ 0. We assume that these

random variables are independent and identically distributed. On represents the total

outdated items per cycle length, where the cycle length is the time separating two

successive instances that the inventory level reaches r. Under the assumptions (11), (12)

and (13), the amount of the outdated units of the order Q is equal to:

On = max(0, r +Q− On−1 − dm+L), ∀n ≥ 1 (3.3)

In order to render Equation (3.3) tractable, we will assume that On−1 = E[On−1] which

gives:

On ≃ max(0, r +Q− E[On−1]− dm+L) (3.4)

If we assume that On, n ≥ 1 are independent and identically distributed, then we have:

On = max(0, r +Q− E[On]− dm+L)

=⇒ E[On] =

∫ r+Q−E[On]

0

(r +Q− E[On]− dm+L)fm+L(dm+L)ddm+L, (3.5)

∀n ≥ 0
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Let, ω(x) =

∫ r+Q−x

0

(r +Q− x− dm+L)fm+L(dm+L)ddm+L (3.6)

The function g is continuous and ω((x) ∈ [0, r +Q] for all x ∈ [0, r +Q] and

dω((x)

dx
= −

∫ r+Q−x

0

fm+L(dm+L)ddm+L ∀x ∈ [0, r +Q] (3.7)

⇒ |
dω((x)

dx
| ≤ 1 ∀x ∈ [0, r +Q] (3.8)

Then, from the fixed point theorem the equation x = ω(x) has a unique solution in [0, r].

The value of x satisfying x = ω(x) is the expected perished units of the order Q received

m units of time before (i.e., E[O]). Now to find out the amount of perished units from

the order Q we consider a large set of values for r and Q, then for each couple (r, Q) the

expected outdated items is determined numerically by the repeated composition of ω(

with itself i time. That is, for any x0 ∈ [0, r] the expected outdating quantity is equal

to:

E[O] = lim
i→+∞

ωi(x0) (3.9)

We note that if E[O] > r, it may happen that orders will be triggered by perishability.

As a consequence, the inventory position will be equal to Q not to r +Q. In that case,

Equation (3.9) is an approximation of E[O].

3.2.2 Expected backlogged quantity

The amount of the backordered demands depends on whether perishability occurs in L

or not. If there is no outdating that occurs during L, a stockout occurs when the total

lead time demand exceeds the replenishment level r. The r units of products are wholly

used to satisfy only one part of demand. The unsatisfied demand can then be filled from

the arriving of the new order Q. Let E[S1] be the expected backlog quantity in this case.

E[S1] can be approximated by:

E[S1] =

∫ ∞

r

(dL − r)fL(dL)ddL (3.10)

If products perish during L, then only r − E[O] are available to satisfy the lead time

demand. In this case, the expected backlog quantity, denoted by E[S2], is approximated
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3.2. A continuous review (r, Q) model subject to perishability

by:

E[S2] =

∫ ∞

r−E[O]

(dL − r + E[O])fL(dL)ddL (3.11)

where E[O] is determined by (E[O] = gi(x0)). The total expected backlog depends on

the probability of occurrence of perishability in L or not. It is easier to see that there

is perishability in L if the remaining shelf life (m + L − T ) is smaller than L. In other

words, there is a perishability in L if D(m + L) − Q + E[O] ≤ r. We deduce that the

total expected backlog is equal to:

E[S] = F̄m+L(r +Q− E[O])E[S1] + Fm+L(r +Q−E[O])E[S2]

= F̄m+L(r +Q− E[O])

∫ ∞

r

(dL − r)fL(dL)ddL

+ Fm+L(r +Q− E[O])

∫ ∞

r−E[O]

(dL − r + E[O])fL(dL)ddL (3.12)

Remark : In Chiu’s model (Chiu, 1995a, 1999), the expected backlogged quantity is equal

to E[S1].

3.2.3 Expected inventory level per unit time

The expected inventory level can be approximated by considering separately the expected

average inventory level during the lead time and the expected average inventory level

from the time an order is received to the time where the next reorder is placed. Again,

as in 2.2, we consider two cases, depending on whether perishability occurs during L or

not.

Case 1: Perishability does not occur during L

In this case, the old products can perish after the new order Q is received, otherwise

they will be used before they perish (Figure (3.3)). The expected inventory level after

the arrival of the new order Q is given by the area A1:

A1 = Fm+L(r +Q− E[O])FL(r − E[O])[(E[T ]− L)r

+
E[T ]− L

2
(Q + r −DL− r −E[O]) + (m− E[T ])E[O]] (3.13)

Note that the expression Fm+L(r+Q−E[O])FL(r−E[O]) is the probability of occurrence

of perishability after order arrival.
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Outdated items

Outdated items

Outdated items

Outdated items

Figure 3.3: Behavior of the inventory where perishability does not occur during L

The expected average inventory level during L in the case where r meet all demand

during L is given by the area A2:

A2 = [Fm+L(r +Q−E[O])FL(r −E[O])

+ F̄m+L(r +Q− E[O])]
L

2

∫ r

0

(2r − dL)fL(dL)ddL (3.14)

The expected average inventory level during the lead time where the inventory is depleted

before the new order arrives is approximated by the area A3:

F̄m+L(r +Q− E[O])
L

2

∫ ∞

r

r2

dL
fL(dL)ddL (3.15)

Case 2: Perishability occurs during L

Using the same reasoning as in case 1, the expected inventory level after the arrival of

the new order Q is approximated by the area A1:

A1 = [Fm+L(r +Q−E[O])F̄L(r − E[O])

+ F̄m+L(r +Q−E[O])][(E[T ]− L)r +
T − L

2
(Q+ r −DL− r)] (3.16)
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Outdated itemsOutdated items

Figure 3.4: Behavior of the inventory where perishability occurs during L

The expected average inventory level during the lead time is approximated by the area

A2:

Fm+L(r +Q− E[O])F̄L(r − E[O])
m+ L− E[T ]

2
(r + E[O]) (3.17)

We note that Equations 3.13, 3.14, 3.15, 3.16 and 3.17 are based on the approximations

developed by Kim & Park (1989) and by including the perishability issue. The total
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expected average inventory level for per unit time can be written as:

E[I] =
Fm+L(r +Q−E[O])FL(r −E[O])[(E[T ]− L)r

E[T ]

+
(E[T ]− L)(Q + r −DL− r − E[O])]

2E[T ]

+
Fm+L(r +Q−E[O])FL(r −E[O])(m− E[T ])E[O]

E[T ]

+
[Fm+L(r +Q−E[O])FL(r −E[O])

E[T ]

L

2

∫ r

0

(2r − dL)fL(dL)ddL

+
F̄m+L(r +Q−E[O])]

E[T ]

L

2

∫ r

0

(2r − dL)fL(dL)ddL

+
F̄m+L(r +Q−E[O])

E[T ]

L

2

∫ ∞

r

r2

dL
fL(dL)ddL

+
[Fm+L(r +Q−E[O])F̄L(r −E[O])

E[T ]
[(E[T ]− L)r]

+
F̄m+L(r +Q−E[O])]

E[T ]
[(E[T ]− L)r]

+
[Fm+L(r +Q−E[O])F̄L(r −E[O])

E[T ]
[
E[T ]− L

2
(Q−DL)]

+
F̄m+L(r +Q−E[O])]

E[T ]
[
E[T ]− L

2
(Q−DL)]

+
Fm+L(r +Q−E[O])F̄L(r −E[O]

E[T ]

m+ L−E[T ]

2
(r + E[O]) (3.18)

Remark : In Chiu’s model (Chiu, 1995a), the expected inventory level per unit time

is given by r +
Q

2
−DL which is shown to be a very rough estimation in the case of

perishable products. Later, Chiu (1999) develops a new approximation which is equal

to:

E[I] = r −DL+
Q

2
+DL

E[S]−E[O]

2(Q−E[O])

In Section (3.3), We use this new approximation to compare the model we propose to

Chiu’s model and to the simulation model.

3.2.4 The expected average total cost

Now, we can formulate the total expected average cost per unit time by Equation (3.1),

where E [O] is given by Equation (3.8), E[S] by Equation (3.12) and E[I] by Equation
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3.2. A continuous review (r, Q) model subject to perishability

(3.18). That is:

TC(r, Q) =
K + CQ + PF̄m+L(r +Q− E[O])

∫∞

r
(dL − r)fL(dL)ddL

E[T ]

+
PFm+L(r +Q− E[O])

∫∞

r−E[O]
(dL − r + E[O])fL(dL)ddL +WE[O]

E[T ]

+ HE[I] (3.19)

Where the expected cycle length in the backlog case is equal to:

E[T ] =
Q− E[O]

D
(3.20)

Due to the complex form of (3.19), investigating analytical properties of the cost function

and deriving the optimal values of r and Q turns out to be impractical. With the actual

form, we are unable to prove analytically that TC (r, Q) is a convex function. For all the

numerical analysis settings considered in Section (3.3), we have verified that TC(r, Q) is

jointly convex in Q and r. Several illustrations of such verifications are given in Figures

(3.5), (3.6),(3.7) and (3.8) below.

Figure 3.5: Convexity of the total expected cost for a fixed value of r (fixed parameters :
Poisson demand with mean D = 10, C = 5, P = 20, K = 50,W = 5, H = 1, L = 1, m =
3)
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Figure 3.6: Convexity of the total expected cost for a fixed value of Q (fixed parameters
: Poisson demand with mean D = 10, C = 5, P = 20, K = 100,W = 5, H = 1, L =
1, m = 3)

Figure 3.7: Convexity of the total expected cost for a fixed value of r (fixed parameters
: Normal demand with mean D = 10, V ariance = 10, C = 5, P = 20, K = 50,W =
5, H = 1, L = 1, m = 3)

3.3 Evaluation of the performance

In this section, we conduct a comprehensive numerical analysis in order to evaluate the

performance of inventory systems subject to perishability. We evaluate Equation (3.19)

by using a simple search algorithm implemented in Mathematica software. We firstly

validate our model by comparing the different key operating characteristics of the model

we have developed in Section (3.2) versus those obtained from a simulation model. The

simulation model has been developed to verify the effectiveness of the proposed model.
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Figure 3.8: Convexity of the total expected cost for a fixed value of Q (fixed parameters
: Normal demand with mean D = 10, V ariance = 10, C = 5, P = 20, K = 100,W =
5, H = 1, L = 1, m = 3)

That is, we use the optimal r and Q of the proposed model as the input parameters for

the simulation model. Secondly we compare the optimal ordering costs obtained from

the simulation versus the proposed model and Chiu’s model. The simulation model is

used as a base case to compare the performance of our model versus the model developed

by Chiu.

We note hereafter by Q1, Qch and Qs the optimal order obtained from the proposed

model, Chiu’s model and the simulation model respectively. r1, rch and rs the optimal

reorder level obtained from the proposed model, Chiu’s model and the simulation model

respectively. TC1, TCch and TCs the optimal total cost of proposed model, Chiu’s model

and the simulation model respectively.

The performance of the proposed model vs the simulation model and vs the model of

Chiu is measured by the percentage differences defined as follows:

∆ysE[S]% = 100
E[S]y −E[S]s

E[S]s

∆ysE[O]% = 100
E[O]y − E[O]s

E[O]s

∆ysE[I]% = 100
E[I]y − E[I]s

E[I]s

∆ysE[T ]% = 100
E[T ]y − E[T ]s

E[T ]s
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∆ysTC(r, Q)% = 100
E[TC]y −E[TC]s

E[TC]s

Where y = 1 or y = ch for the optimal operating cost of the proposed model and Chiu’s

model respectively.

3.3.0.1 Model validation based on a simulation study

The validity of this model is tested by a discrete simulation experiment implemented in

Arena software. During a given period, the sequence of events in the simulation model

is as follows:

1) At the beginning of the period (i.e. unit time), if an order is delivered from the

supplier to the distribution center, it is added to the inventory on hand. A lifetime of

Tnow +m is assigned to this arriving order. Tnow being the time at which the order

enters the DC.

2) Products remaining from the order received m time units before are disposed off, if

they are not used to satisfy demand. The inventory position and the on hand inventory

are reduced by the perished quantity.

3) Demand at the distribution center occurs.

4) If the inventory position reaches the replenishment level r or is below r, a new order

of size Q is placed and will be received L time units after.

Note that at the beginning of the simulation, no order is placed, so the first event is

demand. Since the lead time is positive, the initial inventory must be set high enough

to absorb the lead time demand.

The setting we consider are taken from Chiu (1995a). That is, we compare our model

to the simulation model for the case of Poisson and Normal demand distribution.

Case of Poisson demand distribution

Table (3.1) illustrates the inventory control parameters obtained from the proposed

model and the simulation model for a Poisson demand distribution with mean D = 10,

m = 3, L = 1 and H = 1. The comparison is made for a sample of 24 settings taken

from Chiu (1995a). Table (3.2) presents the same comparison for L = 2 and for high

fixed ordering cost K. For each setting considered, we set the replication length of a

simulation run to be 150000 units time and we use 20 replications in order to get the

average value of parameters associated to each setting. The results support the following
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statements:

1) The total operating costs obtained from the proposed model and the simulation model

are quite close: our model generates a total cost which deviates from the simulation

model by only 0.32% and 0.90% for L = 1 and L = 2 respectively (cf Tables (3.1) and

(3.2)).

2) The proposed expected outdating approximation is higher than the simulated one.

The reason of this overestimation is due to the fact that in our approximation, we

consider that perishability occurs for each cycle whatever its length. However, in the

simulation model it may happen that perishability does not occur especially for short

cycle times.

3) The expected backlogged quantity (E[S]) is underestimated. The underestimation

is attributed to the assumption of no undershoot occurs at the reorder point r. In the

simulation model the undershoot (due to the perishability) may sometimes occur. This

induces a higher amount of backlog demand in the simulation compared to the proposed

model.

4) E[I] and E[T ] of the proposed model are quite close to the simulation values (cf Ta-

bles (3.1) and (3.2)). This indicates that the approximations of the expected outdating

quantity (which is used to estimate E[T ]) and the expected inventory level are quite

good.

Case of Normal demand distribution

Table (3.3) summarizes the results of comparison between our model and the simulation

model. We observe that the proposed model achieves an optimal cost lower than simula-

tion by 13% on average. This finding is due to the fact that in our model, the undershoot

of the reorder point is ignored. However in the simulation model the undershoot may

occur, that is why the percentage difference between the total cost stemming from the

simulation and our model is very high. The occurrence of the undershoot (assumption

10 in Section (3.2) will be relaxed in Section (3.4) in order to propose a more accurate

cost expression.
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3.3.0.2 Comparison with the simulation model and Chiu’s model

Tables (3.4) and (3.5) show the results of comparison of the model we propose to the

optimal solution obtained from the simulation model and the model developed by Chiu.

We observe that the total operating cost of the model we propose is closer to the sim-

ulation one, in comparison with Chiu’s model, especially in cases where L takes higher

values (i.e. our model performs better than Chiu’s for L = 2 rather than L = 1). This

finding is due to the fact that Equation (3.2) calculates the total perished items during

m+ L minus the total perished products coming from the r oldest units and under the

condition that dm+L ≤ r. However, the probability to have dm+L ≤ r is very small,

in other words, Chiu (1995a) considers the total outdating of all orders that perish in

m+ L and not the outdating quantity for one order. As a consequence, Equation (3.2)

overestimates the perished quantity associated with an order so the optimal order Qch is

underestimated and the total operating cost of Chiu’s model is higher than the real op-

timal average total cost (the simulation cost). With respect to the cost parameters, the

optimal reorder level r could be less than Q (for example test problem 4 in Table (3.5)).

Now if we compare our model to Chiu’s model for the case where the assumption r < Q

holds, then we observe that ∆1sTC(r, Q)% = 0.25% and ∆chsTC(r, Q)% = 0.28%. This

confirms that Chiu’s model performs better for the case where r > Q since our model

does not take into account this case.
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Test Cost

problem parameters

C = 5, W = 5 P K

1 20 10

2 20 50

3 20 100

4 40 10

5 40 50

6 40 100

C = 15, W = 15 P K

7 20 10

8 20 50

9 20 100

10 40 10

11 40 50

12 40 100

C = 5, W = 15 P K

13 20 10

14 20 50

15 20 100

16 40 10

17 40 50

18 40 100

C = 15, W = 5 P K

19 20 10

20 20 50

21 20 100

22 40 10

23 40 50

24 40 100

Average percent deviation

from the simulation model

Proposed model

(r1, Q1) E[S] E[O] E[I] E[T ] TC1(r1, Q1)

(14, 15) 0.187 0.076 11.739 1.492 71.459

(13, 21) 0.336 0.465 13.468 2.053 93.526

(12, 25) 0.618 0.978 14.513 2.402 115.364

(15, 16) 0.104 0.173 13.128 1.583 73.170

(14, 21) 0.202 0.611 14.551 2.039 96.025

(14, 24) 0.238 1.207 15.923 2.279 119.266

(14, 15) 0.187 0.076 11.739 1.492 172.480

(12, 20) 0.537 0.248 12.273 1.975 196.781

(11, 23) 0.861 0.465 12.737 2.253 220.949

(14, 15) 0.187 0.076 11.739 1.492 174.988

(14, 18) 0.189 0.248 13.160 1.775 199.777

(13, 21) 0.336 0.465 13.468 2.053 225.674

(14, 15) 0.187 0.076 11.739 1.492 71.969

(13, 20) 0.330 0.344 13.184 1.966 95.482

(11, 24) 0.881 0.611 13.186 2.339 118.697

(15, 16) 0.104 0.173 13.128 1.583 74.262

(14, 19) 0.192 0.344 13.628 1.866 98.229

(13, 22) 0.345 0.611 14.097 2.139 123.019

(14, 15) 0.187 0.076 11.739 1.492 171.969

(13, 20) 0.330 0.344 13.184 1.966 195.482

(11, 24) 0.881 0.611 13.186 2.339 218.697

(15, 16) 0.104 0.173 13.128 1.583 174.261

(14, 19) 0.192 0.344 13.628 1.866 198.229

(13, 22) 0.345 0.611 14.097 2.139 223.019

4.85% 10.25% 1.84% 0.29% 0.32%

Simulation model

(r1, Q1) E[S] E[O] E[I] E[T ] TCs(r1, Q1)

(14, 15) 0.188 0.066 11.995 1.493 71.667

(13, 21) 0.348 0.422 13.874 2.065 93.340

(12, 25) 0.790 0.951 14.574 2.405 116.676

(15, 16) 0.104 0.146 13.467 1.585 73.335

(14, 21) 0.207 0.586 14.843 2.053 95.789

(14, 24) 0.329 1.149 16.024 2.285 120.578

(14, 15) 0.188 0.066 11.995 1.493 172.578

(12, 20) 0.539 0.238 12.479 1.988 195.770

(11, 23) 0.935 0.432 12.851 2.258 221.062

(14, 15) 0.188 0.066 11.995 1.493 175.096

(14, 18) 0.193 0.218 13.448 1.781 199.272

(13, 21) 0.348 0.422 13.874 2.065 224.684

(14, 15) 0.188 0.066 11.995 1.493 72.109

(13, 20) 0.338 0.340 13.479 1.978 95.322

(11, 24) 1.019 0.582 13.263 2.342 119.629

(15, 16) 0.104 0.146 13.467 1.585 74.256

(14, 19) 0.193 0.302 13.927 1.873 97.893

(13, 22) 0.358 0.573 14.297 2.150 122.634

(14, 15) 0.188 0.066 11.995 1.493 172.136

(13, 20) 0.338 0.340 13.479 1.978 194.737

(11, 24) 1.019 0.582 13.263 2.342 219.621

(15, 16) 0.104 0.146 13.467 1.585 174.281

(14, 19) 0.199 0.298 13.897 1.869 198.193

(13, 22) 0.358 0.573 14.297 2.150 222.300

Poisson demand with mean D = 10 ;L = 1 ;m = 3 ;H = 1

Table 3.1: Comparison of the proposed model with the simulation one for L = 1
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Test Cost

problem parameters

C = 5, W = 5 P K

1 20 100

2 20 150

3 20 200

4 40 100

5 40 150

6 40 200

C = 15, W = 15 P K

7 20 100

8 20 150

9 20 200

10 40 100

11 40 150

12 40 200

C = 5, W = 15 P K

13 20 100

14 20 150

15 20 200

16 40 100

17 40 150

18 40 200

C = 15, W = 5 P K

19 20 100

20 20 150

21 20 200

22 40 100

23 40 150

24 40 200

Average percent deviation

from the simulation model

Proposed model

(r1, Q1) E[S] E[O] E[I] E[T ] TC1(r1, Q1)

(22, 26) 1.146 1.411 14.933 2.459 120.660

(21, 28) 1.625 1.665 14.815 2.634 140.436

(21, 30) 1.807 2.235 15.601 2.776 158.699

(24, 25) 0.632 1.665 16.165 2.334 126.981

(24, 26) 0.688 1.937 16.491 2.406 148.316

(23, 28) 1.011 2.235 16.477 2.576 168.472

(21, 23) 1.383 0.624 12.991 2.238 228.410

(20, 25) 1.867 0.784 12.911 2.422 249.980

(19, 28) 2.503 1.177 13.319 2.682 269.705

(22, 23) 1.040 0.784 13.778 2.222 238.092

(23, 24) 0.790 1.177 15.038 2.282 260.071

(22, 25) 1.094 1.177 14.603 2.382 281.735

(22, 23) 1.040 0.784 13.778 2.222 125.205

(21, 26) 1.477 1.177 14.172 2.482 145.978

(20, 28) 2.022 1.411 14.080 2.659 165.112

(23, 24) 0.790 1.177 15.038 2.282 133.008

(23, 24) 0.790 1.177 15.038 2.282 154.916

(23, 26) 0.888 1.665 15.699 2.434 176.152

(22, 23) 1.040 0.784 13.778 2.222 225.205

(21, 26) 1.477 1.177 14.172 2.482 246.186

(20, 28) 2.022 1.411 14.080 2.659 265.112

(23, 24) 0.790 1.177 15.038 2.282 233.008

(23, 24) 0.790 1.177 15.038 2.282 254.916

(23, 26) 0.888 1.665 15.699 2.434 276.152

5.90% 12.43% 0.65% 0.56% 0.90%

Simulation model

(r1, Q1) E[S] E[O] E[I] E[T ] TCs(r1, Q1)

(22, 26) 1.172 1.264 14.93 2.474 119.926

(21, 28) 1.784 1.541 14.769 2.646 140.765

(21, 30) 2.134 2.134 15.425 2.787 160.151

(24, 25) 0.552 1.468 16.377 2.353 124.503

(24, 26) 0.600 1.743 16.732 2.426 145.633

(23, 28) 1.049 2.076 16.499 2.592 167.865

(21, 23) 1.391 0.533 12.852 2.247 226.833

(20, 25) 1.939 0.693 12.79 2.431 248.979

(19, 28) 2.783 1.088 13.097 2.691 270.243

(22, 23) 1.023 0.669 13.761 2.233 235.864

(23, 24) 0.754 1.020 15.078 2.298 256.793

(22, 25) 1.104 1.040 14.557 2.396 279.482

(22, 23) 1.023 0.669 13.761 2.233 123.701

(21, 26) 1.559 1.056 14.051 2.494 145.174

(20, 28) 2.250 1.304 13.928 2.670 165.449

(23, 24) 0.754 1.020 15.078 2.298 130.596

(23, 24) 0.754 1.020 15.078 2.298 152.354

(23, 26) 0.855 1.493 15.823 2.451 173.552

(22, 23) 1.023 0.669 13.761 2.233 223.705

(21, 26) 1.559 1.056 14.051 2.494 245.190

(20, 28) 2.250 1.304 13.928 2.670 265.434

(23, 24) 0.754 1.020 15.078 2.298 230.596

(23, 24) 0.754 1.020 15.078 2.298 252.354

(23, 26) 0.855 1.493 15.823 2.451 273.540

Poisson demand with mean D = 10 ;L = 2 ;m = 3 ;H = 1

Table 3.2: Comparison of the proposed model with the simulation one for L = 2
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3.4. Consideration of the undershoot in an (r, Q) perishable inventory

C P K W r1 Q1 TCs(r1, Q1) TC1(r1, Q1) Percentage deviation %

5 20 10 5 13 16 109.709 71.579 34.756

5 20 50 5 13 21 100.432 93.224 7.177

5 20 100 5 12 25 130.325 115.157 11.638

5 40 10 5 15 16 77.528 72.547 6.424

5 40 50 5 14 20 105.617 95.447 9.629

5 40 100 5 13 24 130.117 118.758 8.730

15 20 10 15 14 16 159.569 172.081 -7.841

15 20 50 15 13 19 190.574 196.342 -3.027

15 20 100 15 12 23 237.104 218.755 7.739

15 40 10 15 15 16 159.579 173.844 -8.939

15 40 50 15 14 19 198.480 197.803 0.341

15 40 100 15 13 22 232.394 222.636 4.199

5 20 10 15 14 16 95.951 72.081 24.877

5 20 50 15 13 19 113.713 95.342 16.156

5 20 100 15 12 23 145.653 118.755 18.467

5 40 10 15 15 16 94.854 73.844 22.150

5 40 50 15 14 19 122.933 97.841 20.411

5 40 100 15 13 22 143.397 122.636 14.478

15 20 10 5 14 16 140.265 172.999 -23.337

15 20 50 5 12 19 173.248 196.799 -13.594

15 20 100 5 11 23 217.800 221.187 -1.555

15 40 10 5 14 16 142.253 174.965 -22.996

15 40 50 5 14 18 173.211 199.511 -15.184

15 40 100 5 13 21 209.000 225.463 -7.877

Average percentage deviation 12.980

Normal demand with mean D = 10;V ariance = 10;L = 2 ;m = 3 ;H = 1

Table 3.3: Comparison of the proposed model with the simulation one for a normal
demand distribution

3.4 Consideration of the undershoot in an (r,Q) per-

ishable inventory

By its definition, an (r, Q) inventory policy assumes that an order is placed when the

inventory position reaches the reorder point, i.e., there is no undershoot of the reorder

point. In order for this to be true, the state of the system must be examined after

every demand and the demand size must be at maximum equal to one. However, it may

happen that the number of units requested when a demand occurs, i.e., the quantity

demanded, is greater than one unit. Thus, the use of an (r, Q) inventory system im-

plicitly requires that an order of size Q is placed when the inventory position falls to or

below the reorder point r. The amount below the reorder level r at the time when a

69



An (r, Q) Inventory Control with Fixed Lifetime and Lead time

Test problem

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Average percent

from the deviation

simulation solution

Simulation model

(rs, Qs) TCs(rs, Qs)

(14, 15) 71.436

(13, 21) 93.340

(12, 25) 116.342

(16, 13) 72.819

(14, 21) 95.789

(13, 23) 120.290

(14, 14) 171.901

(12, 20) 195.770

(11, 23) 221.062

(16, 12) 173.259

(14, 18) 199.272

(13, 21) 224.684

(14, 14) 71.786

(13, 21) 95.281

(12, 23) 119.211

(16, 12) 73.125

(14, 19) 97.893

(13, 22) 122.634

(14, 14) 171.619

(13, 20) 194.737

(12, 23) 219.037

(16, 12) 172.953

(14, 20) 197.507

(13, 22) 222.300

Proposed model

(r1, Q1) TC1(r1, Q1) ∆1sTC(r,Q)%

(14, 15) 71.459 0.03

(13, 21) 93.526 0.20

(12, 25) 115.364 0.85

(15, 16) 73.170 0.48

(14, 21) 96.025 0.25

(14, 24) 119.266 0.86

(14, 15) 172.480 0.34

(12, 20) 196.781 0.51

(11, 23) 220.949 0.05

(14, 15) 174.988 0.99

(14, 18) 199.777 0.25

(13, 21) 225.674 0.44

(14, 15) 71.969 0.25

(13, 20) 95.482 0.21

(11, 24) 118.697 0.43

(15, 16) 74.262 1.53

(14, 19) 98.229 0.34

(13, 22) 123.019 0.31

(14, 15) 171.969 0.20

(13, 20) 195.482 0.38

(11, 24) 218.697 0.16

(15, 16) 174.261 0.75

(14, 19) 198.229 0.36

(13, 22) 223.019 0.32

0.44%

Chiu′s model

(rch, Qch) TCc(rch, Qch) ∆chsTC(r,Q)%

(15, 13) 71.219 0.30

(13, 21) 93.649 0.33

(11, 25) 116.077 0.23

(16, 13) 72.531 0.40

(14, 20) 96.192 0.42

(13, 23) 120.017 0.23

(14, 13) 171.841 0.03

(12, 19) 196.731 0.49

(11, 22) 221.417 0.16

(16, 12) 173.434 0.10

(14, 18) 199.943 0.34

(13, 20) 226.415 0.76

(15, 13) 71.598 0.26

(12, 20) 95.514 0.24

(11, 23) 119.276 0.05

(16, 12) 73.023 0.14

(14, 18) 98.426 0.54

(13, 21) 123.851 0.98

(13, 15) 171.598 0.01

(12, 20) 195.514 0.40

(11, 23) 219.276 0.11

(16, 12) 173.023 0.04

(14, 18) 198.426 0.46

(13, 21) 223.851 0.69

0.32%

Poisson demand with mean D = 10 ;L = 1 ;m = 3 ;H = 1

Table 3.4: Comparison with Chiu’s model and simulation for L = 1

replenishment decision is made can seriously lead to a consistent error when estimating

the main performances of the (r, Q) inventory system. As a consequence, care must be

taken when deriving the key operating characteristics of the (r, Q) policy. In this section,

we relax the assumption of non occurrence of the undershoot of the reorder point. We

re-examine the problem of computing numerically the total operating cost studied in

Section (3.2) and show that the ignorance of the undershoot of the reorder point can

seriously affect the inventory costs especially the shortage cost.

The first work regarding the estimation of the mean and the variance of the under-

shoot was conducted by Ross (1970). Hill (2008) showed that the non consideration of

the undershoot may introduce a consistent bias in estimating the main performances

of the inventory system. For the (r, Q) policy, the undershoot occurs when customer

may request a batch demand rather than one unit or when the inventory is checked
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3.4. Consideration of the undershoot in an (r, Q) perishable inventory

Test problem

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Average percent

from the deviation

simulation solution

Simulation model

(rs, Qs) TCs(rs, Qs)

(23, 25) 119.456

(22, 27) 140.055

(22, 28) 159.42

(25, 26) 124.404

(25, 26) 145.246

(25, 27) 165.934

(22, 23) 226.701

(21, 24) 248.620

(20, 26) 269.188

(24, 22) 234.756

(23, 24) 256.793

(23, 24) 278.551

(22, 23) 123.701

(22, 25) 145.058

(21, 27) 165.002

(24, 24) 130.460

(24, 25) 151.991

(24, 25) 173.241

(22, 23) 223.705

(22, 25) 245.058

(21, 27) 264.987

(23, 24) 230.477

(24, 25) 252.000

(23, 25) 273.446

Proposed model

(r1, Q1) TC1(r1, Q1) ∆1sTC(r,Q)%

(22, 26) 120.660 1.00

(21, 28) 140.436 0.27

(21, 30) 158.699 0.45

(24, 25) 126.981 2.03

(24, 26) 148.316 2.07

(23, 28) 168.472 1.51

(21, 23) 228.410 0.75

(20, 25) 249.980 0.54

(19, 28) 269.705 0.19

(22, 23) 238.092 1.40

(23, 24) 260.071 1.26

(22, 25) 281.735 1.13

(22, 23) 125.205 1.20

(21, 26) 145.978 0.63

(20, 28) 165.112 0.07

(23, 24) 133.008 1.92

(23, 24) 154.916 1.89

(23, 26) 176.152 1.65

(22, 23) 225.205 0.67

(21, 26) 246.186 0.46

(20, 28) 265.112 0.05

(23, 24) 233.008 1.09

(23, 24) 254.916 1.14

(23, 26) 276.152 0.98

1.01%

Chiu′s model

(rch, Qch) TCch(rch, Qch) ∆chsTC(r,Q)%

(22, 24) 121.773 1.90

(21, 27) 142.318 1.59

(20, 29) 161.379 1.21

(24, 23) 127.876 2.72

(23, 24) 150.741 3.65

(22, 27) 171.389 3.18

(21, 22) 229.236 1.11

(20, 24) 251.689 1.22

(19, 26) 272.285 1.14

(24, 19) 237.302 1.07

(23, 22) 262.112 2.03

(22, 24) 285.026 2.27

(22, 22) 126.277 2.04

(20, 25) 147.969 1.97

(19, 27) 167.903 1.73

(24, 21) 133.438 2.23

(23, 23) 157.242 3.34

(22, 25) 179.349 3.41

(22, 22) 226.277 1.14

(20, 25) 247.969 1.17

(19, 27) 247.969 6.86

(24, 21) 233.438 1.27

(23, 23) 257.242 2.04

(22, 25) 279.349 2.11

2.18%

Poisson demand with mean D = 10 ;L = 2 ;m = 3 ;H = 1

Table 3.5: Comparison with Chiu’s model and simulation for L = 2

periodically. Baganha et al. (1996) tested approximations of the mean and the variance

of the undershoot distribution and showed that the lower the coefficient of variation

of demand distributions, the higher the errors in the approximations. Johansen & Hill

(2000) consider a periodic review (r, Q) inventory policy with normal demand distribu-

tion and investigate the cost saving when the undershoot is incorporated. They find that

for the lost sales case, the consideration of the undershoot may save 2− 3% of the total

inventory cost. Other works dealing with inventory control with undershoot consider the

estimation of its mean and variance (e.g. Morris et al. (1988); Janssen & de Kok (1999)).
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Figure 3.9: An (r, Q) inventory policy for perishable items

3.4.1 Model description

Again, we assume that items have a fixed lifetime of m units of time and the inventory

is controlled with an (r, Q) review system. The depletion of the inventory over time

is represented in Figure (3.9). We also assume that there is a replenishment lead time

of length L units of time and once order arrives, all items in the same batch Q have

the same ages. The inventory is depleted according to a FIFO issuing policy and all

unmet demands are backlogged. The demand per unit time, z, is a nonnegative random

variable following a distribution with mean µz and standard deviation σz , probability

distribution function f (z) and cumulative distribution function F (z).

We use the same notations as in Section (3.2)

Additional notations

The undershoot distribution of the reorder point follows a nonnegative random variable

u with mean µu, standard deviation σu and pdf g(u). φ(τn), Φn(τn) : The pdf and the

cdf of the sum of the random variable τn = u+ dn respectively.

Q2 : The optimal order quantity for the proposed model with undershoots.

r2 : The optimal reorder level for the proposed model with undershoots.

TC2 : The average total cost for the proposed model.

The goal is to optimize the average total cost per unit of time formulated by Equation

(3.1).
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3.4. Consideration of the undershoot in an (r, Q) perishable inventory

The distribution of u can be approximated by the asymptotic residual lifetime distribu-

tion of the renewal process generated by demand per unit time. Following Tijms (1994),

the mean and the standard deviation are denoted by:

µu ≃
E[z2]

2E[z]
, σ2

u ≃
E[z3]

3E[z]
−

E[z2]

2E[z]
(3.21)

Equation (3.21) holds if the order size Q satisfy the following inequations (Tijms, 1994):



















Q > (3/2)(cvz)
2µz , if (cvz)

2 > 1

Q > µz , if 0.2 < (cvz)
2 ≤ 1

Q > µz/2cvz , if 0 < (cvz)
2 ≤ 0.2

Where cvz is the coefficient of variation of z.

Expected outdating and backlogged quantities

following the same reasoning as in Subsections (3.2.1) and (3.2.2), the expected outdating

quantity E[O] and the expected backlogged quantity E[S] are given by:

E[O] = lim
i→+∞

ωi(x0) (3.22)

Where ω(x) =

∫ r+Q−x

0

(r +Q− x− y)φ(y)dy (3.23)

and φ(τm+L) = (g ⊗ fm+L)(τm+L) =

∫ ∞

0

g(x)fm+L(τm+L − x)dx (3.24)

And

E[S] = Φ̄m+L(r +Q− E[O])

∫ ∞

r

(τL − r)φ(τL)dτL

+ Φm+L(r +Q− E[O])

∫ ∞

r−E[O]

(τL − r + E[O])φ(τL)dτL (3.25)

Where Φ̄(.) = 1− Φ(.)
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Figure 3.10: Expected inventory level

3.4.2 Expected inventory level per unit time

Again, we fellow the reasoning of Subsection (3.2.3), however due to the undershoot

occurrence, the expected inventory level is slightly different.

Case 1 : Perishability does not occur during L

In this case, the old products can perish after the new order Q is received, otherwise

they will be used before they perish. The expected inventory level after the arrival of

the new order Q is given by the area A1+A2 as shown in Figure (3.10):

A1 + A2 = α{E[T ]− L}{r − µu}

+ α
E[T ]− L

2
{Q− µzL− E[O]}+ α{m− E[T ]}E[O] (3.26)

Where α = Φm+L(r+Q−E[O])ΦL(r−E[O]) is the probability of occurrence of perisha-

bility after order arrival. The first term, Φm+L(r+Q−E[O]), is the probability that the

order Q perishes after m units of time. The second term guarantees that the amount of

perished products coming from the order Q occurs after receiving the new order Q.

The expected average inventory level during L where r meet all demand during L is
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3.4. Consideration of the undershoot in an (r, Q) perishable inventory

donated by the area A3+A4:

A3 + A4 = (α+ Φ̄m+L(r +Q−E[O]))[
L

2

∫ r

0

∫ r−u

0

(dL)fL(dL)g(u)ddLdu

+ L

∫ r

0

∫ r−u

0

(r − u− dL)fL(dL)g(u)ddLdu] (3.27)

The expected average inventory level during the lead time where the inventory is depleted

before the new order arrives is approximated by the area A5:

A5 = Φ̄m+L(r +Q− E[O])
L

2

∫ r

0

∫ ∞

r−u

(r − u)2

dL
fL(dL)g(u)ddLdu (3.28)

Now, the total inventory level per cycle length is equal to:

E[I1] =
A1 + A2 + A3 + A4 + A5

E[T ]
+

µz

2
(3.29)

Case 2 : Perishability occurs during L

Using the same reasoning as in case 1. The expected inventory level after the arrival of

the new order Q is approximated by the area A1+A2:

A1 + A2 = [Φm+L(r +Q− E[O])Φ̄L(r − E[O]) + Φ̄m+L(r +Q−E[O])].

[{E[T ]− L}{r − µu}+
E[T ]− L

2
{Q− µzL}] (3.30)

The expected average inventory level during the lead is approximated by the area A5:

A5 = Φm+L(r +Q−E[O])Φ̄L(r − E[O])
m+ L− E[T ]

2
{r − µu + E[O]} (3.31)

Now, the total inventory level per cycle length is equal to:

E[I2] =
A1 + A2 + A5

E[T ]
+

µz

2
(3.32)

We note that Equation (3.28) is also based on the approximation developed by Kim

& Park (1989) and by including the perishability issue. The total expected average

inventory level for per unit time is the sum of E[I1] + E[2].
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An (r, Q) Inventory Control with Fixed Lifetime and Lead time

3.4.3 The expected average total cost

The total expected average cost per unit time is now formulated by Equation (3.1),

where E[O] is the solution of equation E[O] = ω(E[O]), E[S] by Equation (3.25) and

E[I] is the sum of Equation (3.29) and (3.32) and

E[T ] =
Q− E[O]

µz

(3.33)

Investigating analytical properties of the cost function (3.1) is difficult, however several

numerical examples indicate that TC2(r, Q) is jointly convex in Q and r. Figure (3.11)

below is an illustration of the convexity of TC2(r, Q). For the other numerical analysis

settings used in Section (3.5), we have also verified the convexity of TC2(r, Q).

Figure 3.11: Variation of the total expected cost (fixed parameters : Normal demand
N(10, 3), C = 5, P = 20, K = 150,W = 5, H = 1, L = 1, m = 3)
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3.5. Evaluation of the performance of the proposed model with undershoots

3.5 Evaluation of the performance of the proposed

model with undershoots

In this section, we are focusing on two comparisons:

- In order to validate our new model where the undershoot of the reorder point is taken

into account, we compare the different key operating characteristics of our model versus

those obtained from a simulation model.

- We compare between the expected total cost pertaining to the model we propose and

the expected total cost pertaining to the classical (r, Q) inventory policy that does not

take into account the perishability of products. We study the behavior of the proposed

model by varying the different cost parameters and the lifetime m.

Let Qc, rc and TCc be the optimal order quantity, the optimal reorder level and the

average total cost for the classical (r, Q) model (which ignores the perishability of prod-

ucts) respectively. Denotes by Q2, r2 and TC2 the optimal order quantity, the optimal

reorder level and the average total cost for the proposed (r, Q) model.

3.5.1 Comparison with the simulation model

We suppose that demand is normally distributed with mean µz = 20 and standard

deviation σz = 5. we set L = 2 and m = 6.

For normal demand distribution we have:























µu =
µ2
z + σ2

z

2µz

σ2
u =

µ2
z + 3σ2

z

3
− µ2

u

Assumption (3) implies that the pdf of τm+L is normally distributed with mean µu +

(m+ L)µz and standard deviation
√

σ2
u + (m+ L)σ2

z .

The performance of the proposed model in comparison with the simulation model is

measured by the average percentage differences defined as follows:

E[X ]% = 100
E[X ]−E[X ]simulation model

E[X]simulation model
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An (r, Q) Inventory Control with Fixed Lifetime and Lead time

Where X = O, S, I, T or TC(r, Q).

Table (3.6) illustrates the inventory control parameters obtained from the proposed

model and the simulation model. We set the replication length of a simulation run to

be 150000 units time and we use 20 replications. (These two simulation parameters

are chosen in order to have an accurate estimation of the main parameters of system

performance). Basically, the major conclusion drawn from the simulation experiments

are:

1) The inventory control parameters obtained from the proposed model and the simu-

lation model are almost the same: our model generates a total cost smaller than the

simulated one but this underestimation is insignificant since the average deviation is

only 0.19%.

2)The proposed expected outdating approximation is higher than the simulated one. The

reason of this overestimation is due to the fact that in our approximation, we consider

that perishability occurs for each cycle whatever its length. However, in the simulation

model it may happen that perishability does not occur especially for short cycle times.

3) E[I] and E[T ] are slightly different from the simulation values.

4)The non consideration of the undershoot can seriously affect the costs especially the

expected backlog quantity.
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Test Cost Ordering Policy

problem parameters (r, Q)

C = 5 W = 15 P K

1 10 400 (46, 103)

2 10 500 (43, 109)

3 10 600 (41, 114)

4 50 400 (60, 93)

5 50 500 (60, 96)

6 50 600 (59, 99)

C = 5 W = 30 P K

7 10 400 (45, 101)

8 10 500 (43, 106)

9 10 600 (41, 110)

10 50 400 (60, 88)

11 50 500 (59, 93)

12 50 600 (59, 94)

Average percent deviation from

the simulation solution

Simulation model

E[S] E[O] E[I] E[T ] TC(r,Q)

6.776 0.522 57.349 5.125 250.638

9.240 0.767 57.193 5.413 269.459

11.190 1.106 57.583 5.646 287.575

0.960 0.821 66.287 4.610 267.014

0.965 1.185 67.815 4.742 288.426

1.202 1.493 68.202 4.876 309.676

7.418 0.341 55.410 5.034 251.961

9.067 0.519 55.829 5.275 271.230

10.851 0.677 55.773 5.467 289.682

0.959 0.433 63.833 4.379 270.708

1.137 0.739 65.361 4.614 291.634

1.133 0.831 65.849 4.659 313.002

Proposed model with undershoot

E[S] E[O] E[I] E[T ] TC(r,Q)

6.669 0.554 57.036 5.122 250.312

8.909 0.808 57.339 5.410 269.226

10.600 1.140 59.726 5.643 286.896

0.898 0.910 67.063 4.605 267.637

0.915 1.270 68.474 4.737 289.056

1.123 1.558 68.771 4.872 309.839

7.353 0.368 54.520 5.032 251.193

8.875 0.555 55.281 5.272 270.633

10.521 0.716 55.626 5.464 289.271

0.886 0.486 65.176 4.422 270.038

1.078 0.808 65.924 4.610 292.230

1.083 0.910 66.400 4.655 313.782

4.326 % 6.818 % 1.179% 0.150% 0.194%

Proposed model without undershoot

E[S] E[O] E[I] E[T ] TC(r,Q)

0.588 0.427 58.325 5.129 239.130

1.345 0.773 58.207 5.411 255.947

2.201 1.275 58.633 5.636 273.515

0.002 0.922 68.301 4.604 258.206

0.002 1.478 68.677 4.726 280.748

0.004 1.939 69.059 4.853 300.724

0.776 0.213 56.415 5.039 238.811

1.316 0.427 56.844 5.279 256.890

2.096 0.641 56.832 5.468 274.499

0.001 0.427 65.406 4.429 259.117

0.003 0.773 66.332 4.611 280.653

0.003 0.922 66.800 4.654 302.687

92.628 % 14.887% 1.816% 0.224% 4.203%

Normal demand N(20, 5); L=2; m=6; H=1

Table 3.6: Comparison of the proposed model with the simulation one
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3.5.2 Comparison 1: TC2(r2, Q2) vs. TCc(rc, Qc)

In this subsection, we compare the proposed model to the classical model which can be

written as:

TCc(rc, Qc) =
K + CQc + PE[S1]

E[T ]
+HE[I] (3.34)

Where:

E[S1] =

∫ ∞

r

(τL − r)φ(τL)dτL (3.35)

E[T ] = Q/µz and

E[I] =
{E[T ]− L}{r − µu}+

E[T ]−L
2
{Q− µzL}

E[T ]

+
L

2T [T ]

∫ r

0

∫ r−u

0

(dL)fL(dL)g(u)ddLdu

+
L

E[T ]

∫ r

0

∫ r−u

0

(r − u− dL)fL(dL)g(u)ddLdu

+
L

2E[T ]

∫ r

0

∫ ∞

r−u

(r − u)2

dL
fL(dL)g(u)ddLdu (3.36)

We note that the expression of E[I] is derived from Kim and Park’s approximation

(Kim & Park, 1989) and by integrating the undershoot distribution. We note also that

the commonly known r− µzL+Q/2 expected inventory level is inappropriate since the

undershoot is not taken into account.

We suppose that demand is Normally distributed with mean µz = 10 and standard

deviation σz = {1, 2}. we set L = 1, m = 3 and H = 1.

For a Normal demand distribution, we have: µu = (µ2
z + σ2

z)/2µz and σ2
u = [(µ2

z +

3σ2
z)/3]− µ2

u. Assumption (3) implies that the pdf of τm+L is also Normally distributed

with mean µu + (m+ L)µz and standard deviation
√

σ2
u + (m+ L)σ2

z .

As shown in Table (3.7), TCc(rc, Qc) is always lower than TC2(r2, Q2). This is not

surprising since the outdating cost is not considered in TCc(rc, Qc).

3.5.2.1 Comparison 2: i.e. TC2(r2, Q2) vs. TC2(rc, Qc)

In the presence of perishability, if the inventory manager decides to ignore the perishable

feature of products held in inventory, he/she would incur a cost equal to TC2(rc, Qc).

This stems from the fact that the inventory control decisions are not optimised in pres-
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3.5. Evaluation of the performance of the proposed model with undershoots

ence of perishability. If one compares TC2(rc, Qc) to TC2(r2, Q2) (cf. Table (3.7) and

(3.8)), the following results are obtained:

1- The (r, Q) policy which does not optimize inventory control parameters, (TC2(rc, Qc)),

is inappropriate to control the inventory of perishable products. Table (3.7) shows that

the percentage difference of using this policy is significantly high for the entire range of

parameters considered.

2- The optimal ordering quantity increases as K increases for both the proposed and the

classical model. However, this increase is higher for the classical policy in comparison

to the proposed model. This can be explained intuitively by the fact that perishable

products call for a smaller order quantity.

3- r2 is slightly smaller than rc. The reason is because of the small probability of occur-

rence of perishability during the lead time.

4- Results of Table (3.9) show that the expected average total cost is highly sensitive

to the product lifetime m. The percentage difference between the two policies is signifi-

cantly large when m decreases. When m increases the proposed model tends to converge

to the classical one.

5- For a fixed value of P , the percentage difference becomes high as the setup cost K

increases. However, if K becomes very high the outdate cost W has no longer effect on

r2 and Q2. The average total cost reaches a steady state (Figure (3.12)).

6- For a fixed value ofK, the percentage difference (TC% = 100[TC2(rc, Qc)−TC2(r2, Q2)]/TC2(rc, Qc))

increases as the backlog cost P increases (Figure (3.13)).
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Figure 3.12: Percentage difference TC% with respect to K
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Figure 3.13: Percentage difference TC% with respect to P

3.6 Conclusion

The problem of inventory control for perishable products with fixed lifetime is known to

be difficult. As mentioned by Schmidt & Nahmias (1985) it is unlikely to find or to use

an optimal and exact policy. Hence, research has been shifted on finding ways to develop

heuristic approaches. Our contribution is therefore to provide a comprehensive heuristic

approach dealing with a large wide range of perishable products with fixed lifetime and

constant replenishment lead time.

In this chapter, we have proposed a continuous review inventory model for perishable

products with limited lifetime and operating under a constant lead time. Allowing the

backordering case, a new approximation of the outdating quantity of products was pre-

sented. The effectiveness of model we have proposed was validated by simulation; our

results are closer to the simulation values and outperforms the model of Chiu notably

for large values of the lead time. When considering the underhsoot of the reorder point

r, we have shown that the proposed model performs better than the conventional (r, Q)

policy especially for a product with short lifetime.

Possible further research can be addressed on the same problem by relaxing some as-

sumptions. An interesting extension of this work can be addressed on the (s, S) policy

which accommodate the undershoot on the way where we order up to S rather than

a fixed quantity. Another perspective would be to extend the model by giving a more

accurate expression of the expected backlog quantity or considering the lost sales case.
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3.6. Conclusion

Test problem Cost parameters

C = 5 W = 5 P K

1 10 50

2 10 100

3 10 150

4 10 200

5 20 50

6 20 100

7 20 150

8 20 200

9 40 50

10 40 100

11 40 150

12 40 200

C = 5 W = 15 P K

13 10 50

14 10 100

15 10 150

16 10 200

17 20 50

18 20 100

19 20 150

20 20 200

21 40 50

22 40 100

23 40 150

24 40 200

C = 5 W = 30 P K

25 10 50

26 10 100

27 10 150

28 10 200

29 20 50

30 20 100

31 20 150

32 20 200

33 40 50

24 40 100

35 40 150

36 40 200

Proposed model

r2 Q2 TC2(r2, Q2)

16 24 95.428

14 27 115.526

13 31 133.061

10 35 149.057

18 22 98.796

17 26 120.198

16 28 139.667

16 29 157.923

20 21 101.472

19 24 124.339

19 26 145.291

18 27 165.070

16 22 96.891

14 27 117.610

12 30 135.813

9 34 152.126

18 21 100.251

17 24 122.814

16 26 143.129

15 28 162.068

19 20 103.685

19 22 127.536

18 25 149.393

18 26 169.939

16 21 97.973

14 25 119.550

12 28 138.466

8 41 154.402

18 20 101.963

17 23 125.451

16 25 146.612

15 27 166.292

19 20 105.620

19 21 130.645

15 23 153.503

17 25 175.042

Classical model

rc Qc TCc(rc, Qc)

17 35 91.632

16 48 103.691

15 58 113.075

14 67 121.028

19 34 93.058

18 47 104.947

17 57 114.848

17 66 122.894

20 35 94.343

20 47 106.630

19 57 116.233

19 66 124.363

17 35 91.632

16 48 103.691

15 58 113.075

14 67 121.028

19 34 93.058

18 47 104.947

17 57 114.848

17 66 122.894

20 35 94.343

20 47 106.630

19 57 116.233

19 66 124.363

117 35 91.632

16 48 103.691

15 58 113.075

14 67 121.028

19 34 93.058

18 47 104.947

17 57 114.848

17 66 122.894

20 35 94.343

20 47 106.630

19 57 116.233

19 66 124.363

Percentage difference

TC2(rc, Qc) TC%

109.899 13.17%

152.949 24.47%

183.488 27.48%

207.098 28.03%

116.415 15.13%

173.426 30.69%

215.219 35.10%

248.099 36.35%

130.182 22.05%

209.306 40.59%

273.414 46.86%

320.852 48.55%

122.259 20.75%

177.412 33.71%

215.016 36.84%

243.554 37.54%

130.793 23.35%

200.201 38.65%

249.028 42.52%

288.227 43.77%

147.453 29.68%

239.556 46.76%

310.437 51.88%

364.019 53.32%

140.798 30.42%

214.106 44.16%

262.306 47.21%

298.239 48.23%

152.36 33.08%

240.364 47.81%

299.741 51.09%

348.418 52.27%

173.36 39.07%

284.931 54.15%

365.97 58.06%

428.77 59.18%

Normal demand N(10, 2); L = 1; m = 3; H = 1; TC% = 100
TC2(rc, Qc)− TC2(r2, Q2)

TC2(rc, Qc)

Table 3.7: Comparison of the proposed model with classical (r, Q) for normal demand
distribution with cv = 0.2
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Test problem Cost parameters

C = 5 W = 5 P K

1 10 50

2 10 100

3 10 150

4 10 200

5 20 50

6 20 100

7 20 150

8 20 200

9 40 50

10 40 100

11 40 150

12 40 200

C = 5 W = 15 P K

13 10 50

14 10 100

15 10 150

16 10 200

17 20 50

18 20 100

19 20 150

20 20 200

21 40 50

22 40 100

23 40 150

24 40 200

C = 5 W = 30 P K

25 10 50

26 10 100

27 10 150

28 10 200

29 20 50

30 20 100

31 20 150

32 20 200

33 40 50

24 40 100

35 40 150

36 40 200

Proposed model

r2 Q2 TC2(r2, Q2)

16 25 93.184

15 28 112.264

13 31 129.621

12 33 145.816

18 23 95.4379

17 26 115.765

16 28 134.607

16 29 152.649

19 22 97.3946

18 25 118.898

18 27 138.825

18 27 158.101

16 24 93.7521

14 27 113.524

13 29 131.404

11 32 147.897

18 22 96.1744

17 25 117.342

16 27 136.783

15 28 155.326

19 20 98.5818

18 24 120.613

18 25 141.354

17 27 161.102

16 21 94.2531

14 26 114.629

13 28 133.018

5 37 150.329

18 21 96.8492

17 24 118.788

16 26 138.892

15 27 157.859

19 20 99.0663

18 23 122.232

17 25 143.897

17 25 164.166

Classical model

rc Qc TCc(rc, Qc)

17 34 90.967

16 47 103.154

15 58 112.619

14 67 120.666

18 34 92.120

18 47 104.484

17 57 114.040

17 65 122.213

19 34 93.190

19 47 105.560

18 57 115.260

18 65 123.407

17 34 90.967

16 47 103.154

15 58 112.619

14 67 120.666

18 34 92.120

18 47 104.484

17 57 114.040

17 65 122.213

19 34 93.190

19 47 105.560

18 57 115.260

18 65 123.407

17 34 90.967

16 47 103.154

15 58 112.619

14 67 120.666

18 34 92.120

18 47 104.484

17 57 114.040

17 65 122.213

19 34 93.190

19 47 105.560

18 57 115.260

18 65 123.407

Percentage difference

TC2(rc, Qc) TC%

105.966 12.06%

151.223 25.76%

183.855 29.50%

207.409 29.70%

112.539 15.20%

173.983 33.46%

215.512 37.54%

246.119 37.98%

121.795 20.03%

210.64 43.55%

273.951 49.32%

317.194 50.16%

116.367 19.43%

174.838 35.07%

215.598 39.05%

244.074 39.40%

124.557 22.79%

200.929 41.60%

249.551 45.19%

285.829 45.66%

135.525 27.26%

239.322 49.60%

309.585 54.34%

358.422 55.05%

131.968 28.58%

210.259 45.48%

263.213 49.46%

299.071 49.73%

142.585 32.08%

241.348 50.78%

300.609 53.80%

345.394 54.30%

156.119 36.54%

282.345 56.71%

363.035 60.36%

420.263 60.94%

Normal demand N(10, 1); L = 1; m = 3; H = 1; TC% = 100
TC2(rc, Qc)− TC2(r2, Q2)

TC2(rc, Qc)

Table 3.8: Comparison of the proposed model with classical (r, Q) for normal demand
distribution with cv = 0.1
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Lifetime

m

2

3

4

5

6

7

8

Our model

r2 Q2 TC2(r2, Q2)

16 19 144.177

16 26 120.200

18 32 110.530

18 39 106.510

18 45 105.168

18 47 104.952

18 47 104.947

Classical model

rc Qc TCc(rc, Qc)

18 47 104.947

18 47 104.947

18 47 104.947

18 47 104.947

18 47 104.947

18 47 104.947

18 47 104.947

Percentage difference

∆

27.21%

12.69%

5.05%

1.47%

0.21%

0.00%

0.00%

Fixed parameters: C = 5; P = 20; K = 100; W = 5; L = 1; m = 3; Normal demand N(10, 2)

∆ = 100[TC2(r2, Q2)− TCc(rc, Qc)]/TC2(r2, Q2)

Table 3.9: Variation of the expected total cost with m
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Chapter 4

Impact of Random Lifetime in

Periodic Review Perishable

Inventory Systems

4.1 Introduction

In this chapter we consider a periodic review inventory policy where items have a random

lifetime. We assume that the lifetime is modeled by an exponential distribution. The

memoryless property of the exponential distribution allows us to use Markov renewal

theory which simplifies our analysis and then, get some useful insights on the impact of

considering items’ lifetime randomness on inventory management.

Perishable inventory systems with periodic review have been studied independently by

Fries (1975) and Nahmias (1975). Both consider the zero lead time case and constant

lifetime. By using a dynamic programming approach, they show that the base stock

policy is a good approximation of the real optimal policy. However, due to the in-

tractability of the age distribution of items available in stock, the computation of the

optimal S becomes difficult. Henceforth, research has been directed towards heuristic

approximations. For example, Nahmias (1977b) suggests to group older on hand items

together in order to reduce the state space. This approximation is based on the prop-

erty of the optimal ordering policy in which the order quantity decreases by less than

one unit when the on hand inventory increases by one unit. This means that the order
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quantity is more sensitive to the fresh available inventory rather than the older inven-

tory. Nandakumar & Morton (1993) derive myopic upper and lower bounds on the order

quantities for the base stock inventory policy with fixed lifetime and use these bounds to

develop two heuristics. The heuristics provide a good approximation of the true optimal

base stock policy by less than 1% average error.

For a stochastic products’ lifetime and constant lead time, the existing efforts deal-

ing with perishable inventory consider only the continuous review inventory policies.

Kalpakam & Sapna (1994) have studied an (s, S) model with Poisson demand, exponen-

tial lead time and exponential lifetime. Based on Markov chain technique, the exact cost

function was obtained. Some extensions of this model have been considered. Kalpakam

& Shanthi (1998) proposed a similar model in which orders are placed only at demand

epochs. Later, the authors consider the case of renewal demand (Kalpakam & Shanthi,

2006). Liu & Yang (1999) have considered a similar model and derived the total ex-

pected cost function.

To the best of our knowledge, the periodic review perishable inventory with stochastic

lifetime is not studied yet. Our motivation is to provide the exact analysis of the order

up to level policy for an item with random lifetime which allows us to get some insights

on the impact of the parameters on the overall system performance in terms of costs.

The procurement lead time is constant and excess demand are completely lost or fully

backordered. The embedded Markov Renewal Process is used to derive the steady state

probabilities and obtain the operating costs. The two proposed policies are compared

to the classical (T, S) systems which ignores the perishability of items (infinite lifetime)

and to the (T, S) system where products’ lifetime are deterministic. Our numerical in-

vestigations show that the ignorance of randomness leads to a higher cost.

The remainder of this chapter is organized as follows: in Section (4.2), we derive the

steady state probabilities of the inventory process and obtain the expected total operat-

ing cost under the full lost sales case. Section (4.3) concerns the full backorders case. In

Section (4.4), we develop an algorithm to compute the optimal T and S that minimizing

the total operating cost. In Section (4.5), we conduct numerical analysis. Finally, the

chapter end with conclusion in section 5.
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4.2. The (T,S) model with full lost sales

4.2 The (T,S) model with full lost sales

4.2.1 Transition probabilities

We study a (T, S) perishable inventory policy with random lifetime and fixed lead time.

The inventory level is observed at equal intervals of time, T and a replenishment order

is placed every T units of time to bring the inventory level to the order-up-to-level S.

The demand follows a Poisson distribution with rate λ. The lifetime of each item is

exponentially distributed with rate δ. An order triggered at the beginning of the period

T arrives after a fixed lead time L, where L ≤ T . Note that the condition L ≤ T ensures

one outstanding order at any time. Figure (4.1) shows the inventory depletion through

time.

T

L

S

TimeT

L

S

T

L

S

Time

Figure 4.1: Periodic review inventory policy for perishable products

Notations

K : Fixed ordering cost per order.

H : Holding cost per unit of item held in stock per unit of time.

C : Purchase cost per unit of item.

b : Lost sale/backorder cost per unit of item.

W : Outdate cost per unit of item.

L : Replenishment lead time.

E[O] : The expected outdating quantity per unit time.

E[S] : The expected lost sales per unit time.

E[I] : The expected inventory level per unit time.
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N = {i, 0 ≤ i ≤ S} : state space of the inventory level in the lost sales case.

pi,j(t) : Transition probability from the state i to the state j at time t, where (i, j) ∈ N.

P (i) steady state probability that the inventory level is i just at order arrival.

The expected average total cost per unit of time can be formulated by the following

equation:

TC(T, S) =
K

T
+ C(λ+ E[O]−E[S]) +HE[I] +WE[O] + bE[S] (4.1)

Let I(t) be the process of the on hand inventory level at time t and {nT + L, n = 0, 1, 2...}

denotes the successive epochs at which the replenishment occurs. Let In = I(nT + L)

and define the transition probability from the state i ∈ N to the state j ∈ N at time t,

where nT + L ≤ t < (n + 1)T + L, i.e,

pi,j(t) = P{I(t) = j | In = i, nT + L ≤ t < (n + 1)T + L}

The process (I) = {I(t), nT + L ≤ t ≤ (n+ 1)T + L, n = 0, 1, 2, ...} is a generalized death

process with rate λ+jδ. Note that (I) = {I(t), nT ≤ t ≤ (n+1)T, n = 0, 1, 2, ...} is not a

death process since the procurement lead time is not exponential. As a consequence, the

process {In, n = 0, 1, 2, ...} is a discrete Markov chain. We are interested in the steady

state probability denoted by:

P (i) = lim
n→∞

Probability{In = i} for all i ∈ N

Since the process (I) = {I(t), nT + L ≤ t ≤ (n+ 1)T + L, n = 0, 1, 2, ...} is a puregener-

alized death process, we can then write Kolmogorov’s Forward Equations for the lost

sales case:

dpi,j(t)

dt
=







−(λ+ iδ)pi,j(t) if i = j, (i, j) ∈ N

−(λ+ jδ)pi,j(t) + (λ+ (j + 1)δ)pi,j+1(t) if 0 ≤ j ≤ i− 1, (i, j) ∈ N

(4.2)

Taking Laplace transform of the above equations, we obtain:







(z + λ+ iδ)pi,j(z) = 0 if i = j, (i, j) ∈ N

(z + λ+ jδ)pi,j(z) = (λ+ (j + 1)δ)pi,j+1(z) if 0 ≤ j ≤ i− 1, (i, j) ∈ N

(4.3)

Taking the initial condition pi,i(0) = 0 and solving the above equations recursively, we
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4.2. The (T,S) model with full lost sales

get:

pi,j(z) =
1

λ+ jδ

i
∏

k=j

λ+ kδ

z + λ + kδ
(i, j) ∈ N (4.4)

This equation have i− j root. To invert it, we note that it is easy to decompose pi,j(z)

into a sum of simple functions, then after simplification, we get:

pi,j(t) =











































e−(λ+iδ)t(eδt − 1)i−j
i
∏

n=j+1

(λ+ nδ)

(i− j)! δi−j
if 0 < j ≤ i− 1, (i, j) ∈ N

1−

i
∑

k=1

pi,k(t) if j = 0, i ∈ N

0 otherwise.

(4.5)

At time (n+1)T a replenishment is triggered. Starting from the state i at time nT +L,

the probability transition from i to j at time (n + 1)T is given by pi,j(T − L). Now, at

time (n+ 1)T + L the replenishment of size S − j occurs and j −m,m ≤ j, (j,m) ∈ N

items are either demanded or perished during L units of time. Figure (4.2) shows the

probability transition from the state j at time (n + 1)T to the state l = S − j +m at

time (n+ 1)T + L. Hence,

pj,l(L) = pj,m(L) =











































e−(λ+jδ)t(eδt − 1)j−m
j
∏

n=m+1

(λ+ nδ)

(j −m)! δj−m
if 0 < m ≤ j, (j,m) ∈ N

1−
i
∑

k=1

pi,k(t) if m = 0, j ∈ N

0 otherwise.

(4.6)

To find the transition probability from the state i at time nT+L to l at time (k+1)T+L,

we sum over all possible transitions from i to j at time (n + 1)T to the state l at time

(n+ 1)T + L, that is:

pi,l(T ) =
i
∑

j=0

pi,j(T − L)pj,l(L) (4.7)

Where (i, l) ∈ N, l = S − j +m and m ≤ j
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Figure 4.2: Transition probabilities

4.2.2 Steady state probability

The process {In, n = 0, 1, 2, ...} is an aperiodic irreducible discrete Markov chain with

finite state space, therefore the steady state probability P (i), i ∈ N exists and it is

unique. Analytically, computing P (i) is not straightforward, the well known generating

function technique cannot lead to a closed-form expressions of the stationary probabili-

ties. Henceforth, we opt for a numerical solution. To do so, we use a simple algorithm

of fixed point iteration defined as follows:

Let Z the transition matrix where Z(i, j) = pi,j(T − L) and A the transition matrix

where A(i, j) = pi,j(L
−).

A =























1 0 0 · · · 0

p1,0(L) p1,1(L) 0 · · · 0
...

...
...

. . .
...

pS−1,0(L) pS−1,1(L) pS−1,2(L) · · · 0

pS,0(L) pS,1(L) pS,2(L) · · · pS,S(L)























(4.8)
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At time nT +L the replenishment of size S−i occurs, denote by D the Matrix transition

probability from the state i to the state l at exactly nT + L. D(i, l) = A(i, S − l).

D =























0 · · · 0 0 1

0 · · · 0 p1,1(L) p1,0(L)
... . .

. ...
...

...

0 · · · pS−1,2(L) pS−1,1(L) pS−1,0(L)

pS,0(L) pS,1(L) pS,2(L) · · · pS,S(L)























(4.9)

Finally the matrix Z is given by:

Z =























1 0 0 · · · 0

p1,0(T − L) p1,1(T − L) 0 · · · 0
...

...
...

. . .
...

pS−1,0(T − L) pS−1,1(T − L) pS−1,2(T − L) · · · 0

pS,0(T − L) pS,1(T − L) pS,2(T − L) · · · pS,S(T − L)























(4.10)

P (i) verify the following equation: P = P× Z ×D, where P = {P (i), i ∈ N}.

4.2.3 Expected operating costs

The stationary probabilities are computed numerically, we can now formulate the oper-

ating costs. Starting from any state i just at order arrival, the inventory level will be in

state j, (j ≤ i) at time t (t ≤ T ) if i− j items are used. This occurs with a probability

of pi,j(t). The inventory level at time t is then jpi,j(t). It is easy to see that E[I] is given

by the expected inventory level time t integrated from 0 to T :

E[I] =
1

T

S
∑

i=0

P (i)

(

i
∑

j=0

j

∫ T

0

pi,j(t)dt

)

. (4.11)

Using the same reasoning as for the expected inventory level, the expected amount of

perished items is equal to:

E[O] =
1

T

S
∑

i=0

P (i)

(

i
∑

j=0

jδ

∫ T

0

pi,j(t)dt

)

= δE[I]. (4.12)
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The expected lost sales is slightly different from E[I] and E[O]. To derive the expected

amount of lost sales per unit time, we need the expected time with lost demand. Let

Tlost be this time, 0 ≤ Tlost ≤ T . Suppose that the inventory level is in the state i just

at order arrival. To reach the state 0 at time t+ dt, t ≤ T , i− 1 items should be either

demand or perished during t and the last item available will be demanded or perished

at time dt. That is, the time of lost is given by:

Tlost =

S
∑

i=1

P (i)

(
∫ T

0

(λ+ δ)(T − t)pi,1(t)dt

)

. (4.13)

Since the demand rate is λ, the expected lost sales per unit time is equal to:

λ

T
Tlost. (4.14)

Replacing E[I], E[O] and E[S] in Equation (4.1), the average total cost per unit of time

is :

TC(T, S) =
K

T
+ C(λ+ E[O]− E[S]) +HE[I] +WE[O] + PE[S]

=
K

T
+ λC + (H + δ(W + C))

1

T

S
∑

i=0

i
∑

j=0

∫ T

0

P (i)× jpi,j(t)dt

+
λ

T
(b− C)

S
∑

i=1

∫ T

0

P (i)× (λ+ δ)(T − t)pi,1(t)dt. (4.15)

4.3 The (T,S) model with full backorders

4.3.1 Transition probabilities

We adopt the same notations as in the case of full lost sales. The inventory is again

reviewed periodically. Each T units of time, an order is triggered to bring the inventory

level up to level S. The order arrives after a constant lead time L and excess demand is

fully backordered. Holding costs are charged at rate H per unit per unit time and each

demand backordered incurs a shortage cost b per unit. In addition to the holding and

the backorder cost, there is a fixed ordering cost K and a purchasing cost C per unit.

Figure (4.3) shows the behavior of the inventory level throughout time. Recall that I(t)
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T

L

S

TimeT

L
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Time

Figure 4.3: Periodic review inventory policy for perishable products

denotes the process of the on hand inventory level at time t, {nT + L, n = 0, 1, 2, ...} are

the successive epochs at which the replenishment occurs and In = I(nT + L).

For any t, nT + L ≤ t < (n+ 1)T + L, the transition probability from a state i ≤ S to a

state j ≤ i at time t, is given by: pi,j(t) = P{I(t) = j | In = i, nT + L ≤ t < (n + 1)T + L}.

Again, the process (I) = {I(t), nT + L ≤ t ≤ (n+ 1)T + L, n = 0, 1, 2, ...} is a general-

ized death process with rates λ + jδ and λ for 0 ≤ j ≤ i and j ≤ i < 0 respectively.

Hence, we can write Kolmogorov’s Forward Equations for the backorders case:

dpi,j(t)

dt
=































−(λ+ iδ)pi,j(t) if i = j, (i, j) ∈ N

−λpi,j(t) if i = j < 0

−(λ+ jδ)pi,j(t) + (λ+ (j + 1)δ)pi,j+1(t) if 0 ≤ j ≤ i− 1, (i, j) ∈ N

−λpi,j(t) + λpi,j+1(t) if j ≤ i < 0

(4.16)

Taking the Laplace transform of above equations and under the initial condition pi,i(0) =

0 we obtain:

pi,j(z) =















































1

λ+ jδ

i
∏

k=j

λ+ kδ

z + λ+ kδ
if 0 ≤ j ≤ i− 1, (i, j) ∈ N

1

λ

(

λ

z + λ

)j i
∏

k=j

λ+ kδ

z + λ+ kδ
if j < 0, i ∈ N

1

λ

i
∏

k=j

λ

z + λ
if j ≤ i ≤ 0

(4.17)
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It is easy to compute the inverse of Laplace transform for the first and the last term

of Equation (4.17). The inverse of Laplace transform of the second term can not be

expressed as a simple form. However, we observe that starting from a positive inventory

level i, the inventory level should reach the state 0 before it reaches the state j < 0.

Hence there exist a time u ≤ t at which the inventory level is on the state 0. Now from

the probability transition from the state 0 to the state j is denoted by the inverse of

Laplace transform of the third term of Equation (4.17). This yields to:

pi,j(t) =































































































e−(λ+iδ)t(eδt − 1)i−j
i
∏

n=j+1

(λ+ nδ)

(i− j)! δi−j

if 0 < j ≤ i− 1, (i, j) ∈ N

(λ+ δ)
∏i

n=1(λ+ nδ)

(i− j)! δi−j

∫ t

0

e−(λ+iδ)u(eδu − 1)i−j
(λ(t− u))j

j!
e−λ(t−u)du

if j < 0, i ∈ N

(λt)j

j!
e−λt

if j ≤ i ≤ 0

0 otherwise.

(4.18)

To find the transition probabilities between the states of the process {In, n = 0, 1, 2, ...},

we have to consider the time (n+1)T at which an order is triggered. Following the same

reasoning of the case of full lost sales, the transition probabilities from a state i at time

nT + L to a state l at time (n+ 1)T + L is equal to:

pi,l(T ) =

i
∑

j=−∞

pi,j(T − L)pj,l(L). (4.19)

Where i ≤ S, l ≤ S.

4.3.2 Steady state probabilities

Since we compute the steady state probabilities numerically, we have to define a state

which corresponds to the maximum backorders that can be reached. Denotes by M

this state. When M is reached, all demands are lost. The integer M is taken in the

way that the amount of lost sales can be ignored. In other words, we approximate the

96



4.3. The (T,S) model with full backorders

full backorders case to the partial one. It is clear that the process {In, n = 0, 1, 2, ...}

is a discrete irreducible Markov chain with finite state space. Hence, the steady state

probabilities P (i), i ∈ {−M, ..., S} exist and they are unique. Recall that Z is the

transition matrix where Z(i, j) = pi,j(T−L) and A the transition matrix where A(i, j) =

pi,j(L
−).

At time nT , n ∈ {0, 1, 2, ...} an order of size S − i is triggered. Let D be the transition

probabilities from a state i at time nT to a state j at time nT + L. The matrix D is

given by: D(i, j+S+M +1− i) = A(i, j) for all (i, j) ∈ {1, 2, ..., S+M +1} and j ≤ i.

As in the case of full lost sales, we have P = P × Z × D, where P = {P (i), i ∈

0, 1, ..., S+M+1}. Having the matrix P, we can now get the steady states probabilities

of the on hand inventory level and those when the backlog occurs (negative on hand

inventory). To do so, we denote by G and B the steady states probabilities for the case

where the on hand inventory is positive and negative respectively. G and B are related

to P by the following equation:







G(i−M − 1) = P (i) for i ∈ {M + 2, ..., S +M + 1}

B(i) = P × Z × A(M − i+ 1) for i ∈ {1, ...,M}
(4.20)

Notre that P × Z × A is 1 ×M matrix. The matrix G is defined for i ∈ {1, ..., S} we

have to add the steady state probability that the on hand inventory is zero. That is,

G = [P (M + 1) G]

4.3.3 Expected operating costs

The expected inventory level per unit time and the expected amount of perished items

are given by Equations (4.11) and (4.12) except that P (i) is replaced by G(i). The

expected amount of backordred demand is given by:

E[S] =

M
∑

i=1

iB(i) (4.21)
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The total operating cost is equal to

TC(T, S) =
K

T
+ C(λ+ E[O]) +HE[I] +WE[O] + bE[S]

=
K

T
+ λC + (H + δ(W + C))

1

T

S
∑

i=0

i
∑

j=0

∫ T

0

G(i)× jpi,j(t)dt

+
b

T

M
∑

i=1

iB(i). (4.22)

4.4 Optimization

In this section, we derive an algorithm to compute the optimal parameters T and S

that minimize the total operating cost. Since the steady state probabilities are com-

puted numerically, the convexity of the total cost for both full lost sales and backorders

cannot proved analytically. Nevertheless, several numerical examples demonstrate that

the total cost is a jointly convex function in T and S for given costs parameters, de-

mand and lifetime rate. The set of parameters that we have considered are the following:

λ = {5, 10, 15}, 1/δ = {2, 3, 6}, K = {10, 50, 100}, b = {20, 40, 60}, C = W = {5, 10, 15}

and H = 1. We report in Figure (4.4, 4.5) two illustrations of convexity of both lost

sales and backorders cases. The input parameters of costs, demand and lifetime are

taken from the above sets. We assume hereafter the convexity of the total operating
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Figure 4.4: Convexity of the total operating cost for with full lost sales (fixed parameters
: λ=10, C = 5, b = 40, K = 100,W = 5, H = 1, L = 1)

cost with full lost sales and full backorders. The following notations are used in this
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Figure 4.5: Convexity of the total operating cost for with full backorders (fixed param-
eters :λ=10, C = 5, b = 20, K = 100,W = 5, H = 1, L = 1)

section:

TCk, TCc, TCs: Total operating cost for the model we propose, for the classical and

simulation models respectively.

Tk, Tc, Ts: Optimal review period for the proposed policies and for the classical and

simulation models respectively.

Sk, Sc, Ss: Optimal order up to level for the proposed policies and for the classical model

respectively.

E[I]k, E[I]c expected inventory level associated with the proposed model and the clas-

sical one respectively.

E[S]k, E[S]c expected lost sales/backorders associated with the proposed model and the

classical one respectively.

To compute Tk and Sk, we need first the following theorems:

Theorem 4.1 If there exists an optimal policy of type order up to a positive level S,

then TCk ≤ λb and Tk < +∞.

Proof: The proof concerns only the lost sales case since, when backorder is allowed,

the proof is similar. Following arguments of theorem 1 of Weiss (1980), if we never order

then TCk = λb and Tk = +∞. If we order to a positive level S, then, lim
T→+∞

pi,j(T − L) = 0

for all 0 ≤ i ≤ S and 1 ≤ j ≤ S and pi,0(T − L) = 1 for all 0 ≤ i ≤ S. That is, the

steady state probabilities P (i) = 0 for all 0 ≤ i < S and P (S) = 1 at order arrival. This

means that demands are always lost before order arrives and we always order S items
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at time of review. E[I]k and E[O] becomes independent of T and increasing the review

period T will only increases E[S]k. So that lim
T→+∞

TCk(T, S) = λb. Since the optimal

policy minimize the total cost, then Tk < +∞ and TCk ≤ λb, if not the optimal policy

will be of the type never order and Tk = +∞.

Theorem 4.2 If there exists an optimal policy for a given order up to level S, then

Tk ≤ Tc.

Proof: Trivial case: Using theorem 1, if the optimal order is of type never order, then

Tk = Tc = +∞. If the optimal policy is of type order up to S then, Tk < +∞. Rewrite

the total operating cost TCk(T, S) as follow:

TCk(T, S) =
K

T
+ C(λ+ E[O]−E[S]) +HE[I] +WE[O] + bE[S]

= TCc(T, S) + (W + C)E[O] + (b− C)(E[S]k − E[S]c) + h(E[I]k − E[I]c).

If an item is demanded under the classical policy, it is also demanded under the proposed

policy provided that the on hand inventory level is positive. If a demand is lost under

the classical policy, it also lost under the proposed one. So that E[I]k ≤ E[I]c and

E[S]k ≥ E[S]c because of perishability. For any T > Tc, TCc is an increasing function

of T since TCc is convex. (W + C)E[O] + (b − C)(E[S]k − E[S]c) + h(E[I]k − E[I]c)

is also an increasing or a decreasing function of T (see Figure (4.6)). Given S, the

more T is high, the more the probability of an item perishes or demanded is high which

increases the expected amount of perished items, the amount of lost sales and the expected

inventory level during T . Similarly, for the classical model, the amount of lost sales and

the expected inventory level during T increase with T . However, we may find a value

of T (say T
′

) after which, E[O], E[I] and E[S] become independent of T . So that

increasing the review period will only increase the amount of lost sales. Let us now

return to our function (W + C)E[O] + (b−C)(E[S]k −E[S]c) + h(E[I]k −E[I]c), once

T
′

is reached E[O], E[S]k − E[S]c and E[I]k − E[I]c start to decrease for any T > T
′

.

That is (W + C)E[O] + (b − C)(E[S]k − E[S]c) + h(E[I]k − E[I]c) is an increasing or

decreasing function with T . To prove that Tk ≤ Tc, we have to consider two cases.

Case 1: (W + C)E[O] + (b− C)(E[S]k − E[S]c) + h(E[I]k − E[I]c) is an increasing or

decreasing function for any T > Tc or for any T > T
′

. TCc increases after T > Tc, as
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a consequence, TCk increases for any T > Tc, so that Tk ≤ Tc.

Case 2: (W + C)E[O] + (b − C)(E[S]k − E[S]c) + h(E[I]k − E[I]c) is an decreasing

function for any T > Tc. In this case, the amount of perished items becomes constant

and increasing T will only increases the amount of lost sales. That is, T
′

is the first time

at which the inventory is completely depleted. Following the proof of theorem 3 of Weiss

(1980), the optimal review period for which the inventory level is completely depleted is

inf{T ∈ ζ, TCk ≥ bλ}, where ζ is the subest of stopping times such that for any T ∈ ζ

the inventory level is zero. If T
′

≥ Tc, then for any T ≤ T
′

, TCk is a decreasing function

because TCc and TCk − TCc decrease. Hence, Tk ≤ Tc.

TCk- TCc

TCc

TCk

1 2 3 4 5 6
Review Period T0

20

40

60

80

100

120
Total cost

Figure 4.6: Total cost for a given S (fixed parameters : λ=10, C = 5, b = 40, K =
50,W = 5, H = 1, L = 1, S = 25)

The optimal parameters (Tk, Sk) are computed by a simple research algorithm imple-

mented in Matlab software. We first calculate Tc for a given S, then Tc is used as an

upper bound of Tk (cf. Theorem 2) which reduces considerably the time of computation.

Then, using Algorithm (1), we compute Tk. Finally we select the couple (Tk, Sk) that

minimizes the total operating cost. Note that Algorithm (1) can be also used to compute

Tc since we know that Tc has
√

2K/Hλ as a lower bound. We choose the upper bound

to be 2
√

2K/Hλ then, by setting Tmin =
√

2K/Hλ and Tmax = 2
√

2K/Hλ, Tc can be

easily computed.
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Algorithm 1 Computing Tk for a given S

Set ε = 10−3 and compute Tc

Set Tmin = L, Tmax = Tc

repeat

z0 = TCk(
Tmax − Tmin

3
, S) and z1 = TCk(

2(Tmax − Tmin)

3
, S)

if z0 ≤ z1 then

Tmax = Tmin +
2(Tmax − Tmin)

3
else

Tmin = Tmin +
Tmax − Tmin

3
end if

until Tmax − Tmin ≤ ε
Set Tk = Tmin.

4.5 Numerical analysis

In this section, we conduct a numerical analysis to show the impact of perishability on

the optimal policy with respect to cost parameters. We compare firstly the optimal T

and S obtained from our model to the classical (T, S) inventory system in which the

perishability is ignored. Secondly, we compare our model to the optimal (T, S) system

with fixed lifetime to show the impact of random lifetime versus the deterministic one.

The optimal order up to level S and the review period T of the model with deterministic

lifetime are computed using a simulation experiment. To the best of our knowledge, the

exact optimal total operating cost when the lifetime is constant is not investigated yet.

There is only the paper of Chiu (1995b), in which an approximate solution is presented.

Hence, we choose the simulation in order to derive the exact solution. The simulation

model is built on Arena software. The order of events has the following sequence 1)

An order arrives 2) Perished products are discarded 3) Demand is observed 4) Inventory

Position is reviewed 5) An order is triggered. We set the replication length of a simulation

run to 200000 units of time and use 10 replications to estimate the optimal parameters

T and S.

The detailed results are summarized in Tables 4.1, 4.2, 4.3 and 4.4 for a Poisson demand

with mean λ = 10, mean lifetime 1/δ = 3, holding cost H = 1 and a lead time L = 1.

The cost parameters of Table 4.1 and 4.3 are chosen in order to ensure that the optimal

policy is of type order up to a positive level S (cf. Theorem 1). Those of Tables 4.2

and 4.4 are taken from Chiu (1995b). Note that the setting parameters taken from Chiu

102



4.5. Numerical analysis

does not guarantee the existence of an optimal policy of type order up to a positive level

S when excess demand are lost. That is why the costs parameters of Table 4.1 and 4.3

which correspond to the lost sales case are slightly different of those of the backorders

case (Table 4.2 and 4.4). Table 4.1 presents the results of comparison of the proposed

model to the classical one for a full lost sales case. Table 4.2, shows the same comparison

but for the full backlog. Table 4.3 and 4.4 represent the comparison between our model

and simulation for the full lost sales and backlog respectively. The constant lifetime is

taken as 1/δ. The performance of the proposed policies is measured by the percentage

difference defined by:

TC% = 100
TCk(Ti, Si)− TCk(Tk, Sk)

TCk(Ti, Si)
. (4.23)

Where TC is the optimal cost given by Equation (4.15) or (4.22) and i is c for the

classical model and s for the simulation model.

4.5.1 Comparison with inventory model when perishability is

ignored

In general, we observe that the consideration of lifetime randomness achieves a good

improvement. With respect to cost parameters, our results indicate a maximum im-

provement of 27% when excess demand are lost (cf.Table 4.1) and 51% when backorders

are allowed (cf.Table 2). That is, the ignorance of perishability may lead to a higher

cost.

Impact of the ordering cost K.

From Table (4.1), we underline that the percentage difference increases as the fixed or-

dering cost K increases. However, when K is very high, the percentage difference may

decrease. For example, when K = 200, C = 5, b = 40 and W = 5, we find (Tk, Sk) =

(2.473, 51), TCk(Tk, Sk) = 229.908, (Tc, Sc) = (6.317, 81), TCk(Tc, Sc) = 125.907 and

TC% = 21.258%. In comparison with test problem number 3 (cf.Table 1), we observe

that TC% decreases. This finding can be explained by the fact that for a higher value

of K, the period of review T increases in order to reduce the effect of K on the total

cost. Now, when T increases, the expected amount of lost sales also increases. As a
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consequence, the order up to level S should increase to reduce the effect of lost demand

on the total cost, so the expected perished items behaves similarly (because of S). It

may happen that for a higher value of K, it is better to loose demand rather than to

hold items in stock. That is, the expected amount of perished items may increase with

K but not so much compared to the expected lost sales. This leads to a decreasing order

quantity per unit time (λ−E[S]k+E[O]) with K. Hence, the percentage difference will

decrease with the expected order quantity.

For the backorder case, we observe from Table 2 an increasing percentage difference

with K. As explained for the lost sales case, when K increases, T increases. This yields

to more backlogged demands. The order up to level S should be set higher enough to

balance the cost associated with the expected amount of backlog demand. That is, the

inventory manger has to hold more items in stock, which leads to more perished items.

Therefore, the percentage difference increases with the ordering cost K. Again, when

K is very high, the percentage difference may decrease. For example, when K = 150,

C = 5, b = 20 and W = 5, we find (Tk, Sk) = (2.397, 44), TCk(Tk, Sk) = 196.249,

(Tc, Sc) = (5.635, 71), TCc(Tc, Sc) = 114.657 and TC% = 12.57%. In comparison with

test problem number 3 (cf.Table 3), we also observe that TC% decreases.

Impact of the outdating cost W.

Typically, the percentage difference increases with W . This finding is expected since

to reduce the impact of the outdating cost, the expected order quantity (λ − E[S]k +

E[O]) coming from (Tk, Sk) decreases with W . Moreover, the expected order quan-

tity coming from (Tc, Sc) is constant so that TCk(Tc, Sc) increases linearly with W .

Thus, TC% = 100(1− TCk(Tk, Sk)/TCk(Tc, Sc)) increases with W . Note that when

W becomes very high, the optimal ordering policy will be of type never order and

TCk(Tk, Sk) = λb , then lim
W→+∞

TC% = 100 for the backorder case

We see also that TC% decreases with W (e.g. comparison of test problem 4 and 6 of

Table 4.1 to test problem 16 and 18 respectively). The reason of this result is that

the expected order quantity of the proposed model maybe greater than the expected

order quantity coming from the parameters (Tc, Sc). This implies that increasing W

will reduce the expected order quantity until it reaches the expected order coming from

(Tc, Sc). Then, TC% attains its minimum and start increasing with W . To see more

clearly this finding, let us take the parameters of test problem number 4 (cf. Table 4.1)
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and variate W . We have (λ − E[S]k + E[O] = 14.04, 13.54, 13.28, 12.72, 12.43 for

W = 0, 5, 10, 15, 20 respectively. The expected order quantity coming from (Tc, Sc) is

13.21 and TC% = 11.31, 8.56, 7.69, 7.83, 8.56 respectively.

When backorder is allowed (cf. Tables 2), we find the same behavior as for the lost sales

case. That is, the percentage difference increases with W due to the same reasons as for

the lost sales case.

Impact of the purchasing and shortage costs C and b.

Two observations emerge from Table 4.1 and 4.2 regarding the purchase and the lost

sales/backorder costs. We find that the percentage difference decreases when C increase.

Indeed, it is more beneficial to loose/to backorder demand rather than to satisfy it, since

demand satisfaction incurs a carrying and an outdating cost. For an increasing lost

sales/backorder cost, the percentage difference behave similarly. This result is expected

intuitively, since to reduce the amount of lost sales/backorders, the inventory manager

have to buy more items which leads to more perished products and higher percentage

difference.

4.5.2 Comparison with the inventory model with deterministic

lifetime

When we compare the proposed policies (with lost sales and backorders) to the (T, S)

policy with deterministic lifetime, we find the same insights as for the case where the

perishability is ignored (classic (T, S) policy) when the costs parameters vary. In Table

4.3 and 4.4, Tk and Ts are integers. We choose to round the optimal period to nearest

integer in both the proposed policies and the simulation model in order to reduce the

computational efforts on estimating Ts and to facilitate the comparison. In addition, the

optimal period is chosen to be an integer rather than a real number in practice. The main

conclusion that can be drawn from Table 3 and 4 is that, generally, the consideration of

the randomness of lifetime achieves an improvement on the total operating cost (with

respect to costs parameters) between zero and 14.81% for the lost sales case and between

zero and 12.57% for the backorders case.

The small percentage difference for some cases (e.g. test problem number 13 from Table

4.3) is mainly attributed to the fact that we approximate the optimal review period
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to the nearest integer which, in fact, leads to the same optimal review period for both

models. This finding concerns only the exponential lifetime distribution. It will be

therefore interesting to consider a general distribution under a periodic review policy

and investigate whether or not a general lifetime distribution provides similar results as

the exponential lifetime.

4.6 Conclusion

We have considered a periodic review inventory system working under a (T, S) inventory

policy with lost sales and backorders. Using a Markov renewal process, we firstly derived

various performance measures and secondly developed an algorithm in order to optimize

the total operating cost. We thereafter conducted a numerical study in which we have

compared the considered (T, S) inventory systems with stochastic lifetimes with those

with infinite and constant lifetime. The numerical results show that the consideration of

lifetime’s randomness may lead to a significant improvement of the total optimal cost.

We also find that the proposed policies may deviate slightly from the (T, S) policies with

fixed lifetime.

It would be interesting to use the results in this chapter in order to develop closed-

form solutions of the stationary probabilities, instead of the numerical method derived

here. Another ambitious work would be to extend the results in case of general lifetime

distributions.
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Test problem Cost parameters

C = 5, W = 5 b K

1 40 10

2 40 50

3 40 100

4 60 10

5 60 50

6 60 100

C = 10, W = 5 b K

7 40 10

8 40 50

9 40 100

10 60 10

11 60 50

12 60 100

C = 5, W = 10 b K

13 40 10

14 40 50

15 40 100

16 60 10

17 60 50

18 60 100

C = 10, W = 10 b K

19 40 10

20 40 50

21 40 100

22 60 10

23 60 50

24 60 100

Proposed model

Tk Sk TCk(Tk, Sk)

1.000 30 114.976

1.320 34 151.621

1.818 41 183.303

1.000 32 120.039

1.279 36 157.320

1.736 43 190.214

1.000 28 178.307

1.213 30 216.771

1.664 35 251.705

1.000 30 186.631

1.145 32 225.728

1.582 38 262.517

1.000 28 130.866

1.161 30 169.581

1.639 36 205.114

1.000 31 138.165

1.118 32 177.341

1.549 38 214.392

1.000 26 191.789

1.093 27 231.390

1.516 31 269.441

1.000 29 202.851

1.023 29 242.792

1.426 34 282.981

Classical model

Tc Sc TCc(Tc, Sc)

1.348 32 75.0174

3.056 49 93.5088

4.385 62 107.101

1.329 33 76.0215

2.989 50 94.8864

4.279 63 108.735

1.303 31 124.662

3.025 48 143.015

4.368 61 156.511

1.270 32 125.813

3.020 50 144.606

4.318 63 158.402

1.348 32 75.0174

3.056 49 93.5088

4.385 62 107.101

1.329 33 76.0215

2.989 50 94.8864

4.279 63 108.735

1.303 31 124.662

3.025 48 143.015

4.368 61 156.511

1.270 32 125.813

3.020 50 144.606

4.318 63 158.402

Percentage difference

TCk(Tc, Sc) TC%

123.276 6.73%

190.995 20.62%

243.439 24.70%

131.278 8.56%

215.102 26.86%

285.805 33.45%

186.380 4.33%

259.073 16.33%

311.673 19.24%

195.584 4.58%

287.727 21.55%

358.919 26.86%

140.704 6.99%

217.886 22.17%

275.082 25.44%

149.682 7.69%

242.824 26.97%

318.558 32.70%

203.033 5.54%

285.340 18.91%

342.723 21.38%

213.250 4.88%

315.382 23.02%

391.514 27.72%

Poisson demand with mean λ = 10; 1/δ = 3; L = 1; H = 1; TC% = 100
TCk(Tc, Sc)− TCk(Tk, Sk)

TCk(Tc, Sc)

Table 4.1: Comparison of the proposed model with the classical (T, S) policy: case of
full lost sales
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Test problem Cost parameters

C = 5, W = 5 b K

1 20 10

2 20 50

3 20 100

4 40 10

5 40 50

6 40 100

C = 15, W = 5 b K

7 20 10

8 20 50

9 20 100

10 40 10

11 40 50

12 40 100

C = 5, W = 10 b K

13 20 10

14 20 50

15 20 100

16 40 10

17 40 50

18 40 100

C = 15, W = 10 b K

19 20 10

20 20 50

21 20 100

22 40 10

23 40 50

24 40 100

Proposed model

Tk Sk TCk(Tk, Sk)

1.000 28 109.976

1.447 33 144.561

1.970 39 173.527

1.000 32 117.858

1.342 36 154.193

1.825 43 185.804

1.000 25 235.695

1.237 27 273.532

1.745 31 306.820

1.000 29 250.914

1.103 30 290.346

1.527 35 328.403

1.000 27 123.629

1.348 30 160.268

1.820 34 191.831

1.000 30 135.072

1.229 33 173.495

1.637 38 208.672

1.000 24 246.381

1.229 26 285.052

1.735 29 319.443

1.000 28 265.626

1.021 28 305.581

1.407 32 345.910

Classical model

Tc Sc TCc(Tc, Sc)

1.360 31 73.987

3.146 48 91.752

4.536 61 104.833

1.286 32 75.561

3.067 50 94.042

4.383 63 107.638

1.360 31 173.987

3.055 47 191.766

4.536 61 204.833

1.286 32 175.561

3.066 50 194.042

4.383 63 207.638

1.360 31 73.987

3.146 48 91.752

4.536 61 104.833

1.286 32 75.561

3.067 50 94.042

4.383 63 107.638

1.360 31 173.987

3.055 47 191.766

4.536 61 204.833

1.286 32 175.561

3.067 50 194.042

4.383 63 207.638

Percentage difference

TCk(Tc, Sc) TC%

115.614 4.88%

169.537 14.73%

203.922 14.91%

126.436 6.78%

206.841 25.45%

265.170 29.93%

246.661 4.45%

310.207 11.82%

351.382 12.68%

260.327 3.62%

354.175 18.02%

417.142 21.27%

131.138 5.73%

191.032 16.10%

227.652 15.74%

143.381 5.80%

230.508 24.73%

291.156 28.33%

262.185 6.03%

331.383 13.98%

375.112 14.84%

277.273 4.20%

377.842 19.12%

443.127 21.94%

Poisson demand with mean λ = 10; 1/δ = 3; L = 1; H = 1; TC% = 100
TCk(Tc, Sc)− TCk(Tk, Sk)

TCk(Tc, Sc)

Table 4.2: Comparison of the proposed model with the classical (T, S) policy: case of
full backorders
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Test problem Cost parameters

C = 5, W = 5 b K

1 40 10

2 40 50

3 40 100

4 60 10

5 60 50

6 60 100

C = 10, W = 5 b K

7 40 10

8 40 50

9 40 100

10 60 10

11 60 50

12 60 100

C = 5, W = 10 b K

13 40 10

14 40 50

15 40 100

16 60 10

17 60 50

18 60 100

C = 10, W = 10 b K

19 40 10

20 40 50

21 40 100

22 60 10

23 60 50

24 60 100

Proposed model

Tk Sk TCk(Tk, Sk)

1 30 114.976

1 30 154.976

2 42 183.904

1 32 120.039

1 32 160.039

2 47 191.480

1 28 178.307

1 28 218.307

2 39 254.018

1 30 186.631

1 30 226.631

2 44 266.906

1 28 130.866

1 28 170.866

2 40 208.079

1 31 138.165

1 31 178.165

2 45 219.175

1 26 191.789

1 26 231.789

2 36 274.255

1 29 202.851

1 29 242.851

1 29 292.851

Simulation model

Ts Ss TCs(Ts, Ss)

1 28 75.876

2 36 102.680

2 36 127.680

1 29 77.017

2 37 106.222

2 37 131.222

1 28 125.650

2 34 153.466

2 34 178.466

1 29 127.034

2 36 158.102

2 36 183.102

1 28 76.013

2 35 104.734

2 35 129.734

1 29 77.263

2 36 109.043

2 36 134.043

1 27 125.773

2 34 155.015

2 34 180.015

1 28 127.241

2 35 160.414

2 35 185.414

Percentage difference

TCk(Tc, Sc) TC%

116.158 1.02%

166.349 6.84%

191.349 3.89%

123.553 2.84%

185.762 13.85%

210.762 9.15%

178.307 0.00%

231.607 5.74%

256.607 1.01%

187.167 0.29%

253.283 10.52%

278.283 4.09%

130.866 0.00%

187.053 8.65%

212.053 1.87%

139.237 0.77%

209.135 14.81%

234.135 6.39%

192.071 0.15%

249.513 7.10%

274.513 0.09%

203.252 0.20%

274.960 11.68%

299.960 2.37%

Poisson demand with mean λ = 10; 1/δ = 3; L = 1; H = 1; TC% = 100
TCk(Tc, Sc)− TCk(Tk, Sk)

TCk(Tc, Sc)

Table 4.3: Comparison of the proposed model with simulation: case of full lost sales
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Test problem Cost parameters

C = 5, W = 5 b K

1 20 10

2 20 50

3 20 100

4 40 10

5 40 50

6 40 100

C = 15, W = 5 b K

7 20 10

8 20 50

9 20 100

10 40 10

11 40 50

12 40 100

C = 5, W = 10 b K

13 20 10

14 20 50

15 20 100

16 40 10

17 40 50

18 40 100

C = 15, W = 10 b K

19 20 10

20 20 50

21 20 100

22 40 10

23 40 50

24 40 100

Proposed model

Tk Sk TCk(Tk, Sk)

1 28 109.976

2 39 148.546

2 39 173.546

1 32 117.858

1 32 157.858

2 46 186.434

1 25 235.695

2 33 282.722

2 33 307.722

1 29 250.914

1 29 290.914

2 41 334.422

1 27 123.629

1 27 163.629

2 36 192.205

1 30 135.072

1 30 175.072

2 43 211.640

1 24 246.381

1 24 286.381

2 30 320.510

1 28 265.626

1 28 305.626

2 39 355.101

Simulation model

Ts Ss TCs(Ts, Ss)

1 27 74.733

2 35 99.434

2 35 124.434

1 29 76.468

2 36 104.541

2 36 129.541

1 27 174.879

2 34 202.237

2 34 227.237

1 28 176.782

2 35 209.160

2 35 234.160

1 27 74.806

2 34 100.901

2 34 125.901

1 28 76.645

2 36 106.968

2 36 131.968

1 27 174.952

2 33 203.300

2 33 228.300

1 28 176.919

2 35 210.981

2 35 235.981

Percentage difference

TCk(Ts, Ss) TC%

110.507 0.48%

151.109 1.70%

176.109 1.46%

120.404 2.11%

180.557 12.57%

205.557 9.30%

236.752 0.45%

282.961 0.08%

307.961 0.08%

251.442 0.21%

317.500 8.37%

342.500 2.36%

123.629 0.00%

167.698 2.43%

192.698 0.26%

137.259 1.59%

197.699 11.45%

222.699 4.97%

249.874 1.40%

297.060 3.59%

322.060 0.48%

265.626 0.00%

333.698 8.41%

358.698 1.00%

Poisson demand with mean λ = 10; 1/δ = 3; L = 1; H = 1; TC% = 100
TCk(Tc, Sc)− TCk(Tk, Sk)

TCk(Tc, Sc)

Table 4.4: Comparison of the proposed model with simulation: case of full backorders
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Chapter 5

Impact of TTIs on Perishable

Inventory Management

5.1 Introduction

As explained in Chapter (1), one of the main functionalities of TTI technologies is to

be enable to simulate in real time the impact of changing temperature conditions on

products’ freshness. By using this technology, supply chain actors would have accurate

information on the real freshness of handled products, i.e., binary information regarding

the product’s lifetime through color changes when a TTI type 1 is used and the effective

product’s lifetime when a TTI type 2 is used.

Actually, since this technology is not used, supply chain actors are taking a high margin

of precaution when determining products’ lifetimes, i.e., the lifetime is fixed to a smaller

value than what it could be effectively. The determination of the product lifetime as-

sumes that the product will be maintained under time and temperature conditions that

are“reasonably expected during transportation and storage”. Once determined, this date

is printed and affixed to the packaging of the product, in the form of a “Use by/consume

by” label. Basically, the benefit of using TTIs technology on inventory management is

to extend the lifetime of products. In fact, as explained in Chapter (1) the lifetime of a

product is dispatched between supply chain actors to guide their stock rotation. For each

actor products are removed before pre-specified remaining lifetime for the downstream

parts is reached. Let us call this pre-specified remaining lifetime “the traditional sell by
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date”. If an actor uses TTI type 1, then the duration of holding products in stock will

be extended since with TTI type 1 the color change can be calibrated to appear when a

predetermined remaining product’s lifetime is reached. In the worst storage conditions,

the color will change at the same time as the traditional sell by date is reached. When

TTI type 2 is used, products’ effective lifetime can be tracked and therefore the effects

of variation in temperature exposure on products’ lifetime is captured. The duration of

holding products in stock can be extended by removing items when the traditional sell

by date is reached.

The aim of this chapter is to answer the question of whether the use of TTIs technolo-

gies can effectively reduce the total inventory operating cost. We analyze the impact

of this technology on the performance of an inventory system subject to temperature

perturbations.

To better clarify the type of analysis we conduct in this chapter, Figure (5.1) shows the

different models we consider. We study separately the impact of using TTI technologies

on continuous and periodic review inventory management, i.e. TTI technologies-based

(r, Q) and (T, S) inventory control. Remember that those inventory control systems

have been studied in Chapters (3) and (4). Our interest now is to compare two different

scenarios where the inventory is controlled throughout information stemming from TTI

type 1 firstly and from TTI type 2 secondly to a base case where the inventory is man-

aged on the basis of fixed lifetime determined initially with a high margin of precaution.

The comparison is based on an economic framework which considers costs related to

inventory control.

5.2 General framework

In this section, we present the framework we consider to evaluate the potential savings

associated with the deployment of TTI technologies on inventory management. The set-

ting we consider in our study is a Distribution Center (DC) that provides a perishable

product to retailers and receives replenishments from an external supplier. As Figure

(5.2) shows, the supplier ships products to the DC where they are maintained until they

are demanded by retailers or perished. The sojourn time of products at the DC is a

duration already negotiated throughout contracting between supply chain actors and
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Impact on TTIs technologies on Inventory 

management 

Inventory controlled by an (r,Q)

policy

Inventory controlled by a (T,S)

policy

(r,Q) policy with fixed lifetime 

(without TTIs technology)

(r,Q) policy with TTI type 1

(r,Q) policy with TTI type 2

(T,S) policy with fixed lifetime 

(without TTIs technology)

(T,S) policy with TTI type 1

(T,S) policy with TTI type 2

Figure 5.1: Types of models we consider in this chapter

correspond to a certain percentage of the whole lifetime of products (cf. Figure (1.2) of

Chapter ??chap2)). Consequently, the DC has to offer to its retailers products with a

remaining lifetime at least equal to the remaining lifetime thta is specified in the con-

tract. Products that reach their sojourn time are deposed off and salvaged at a price W .

TTI technologies are used by the DC. Since the accuracy of information stemming from

the deployment of these technologies depends on the placement of the tag, we distin-

guish three different level of the placement of the TTIs: The tag could be affixed to

each individual item, at pallet level or to the whole order (if an order represents one

pallet). In our models, we analyze the lower and the upper bound of an investment in

TTI technologies. We consider the case where tags are affixed to each individual product

and the case where only one tag is used and affixed to the whole order. In practice, tags

are affixed to each individual product. Only in the (r, Q) policy the case where the tag

is affixed to the whole order is studied in this chapter.

We represent the effective lifetime (ELT) of each item or of the whole batch at order

arrival as a random variable x with probability mass function as shown on Figure (5.3).

Each item or each order has a lifetime in the interval [mmin, mmax]. That is, if an item is

exposed to high temperature perturbations, its lifetime will be equal to mmin which cor-
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responds to the worst storage conditions. mmin represents also sojourn time of products

at the DC when TTI technology is not used. Our interest is to compare a TTI-based

External 

supplier

order

Order delivery
DemandDistribution

center 

Perturbation 

External 

supplier

order

Order delivery
DemandDistribution

center 

Perturbation 

Figure 5.2: General framework of our study

m min m max
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Days0.0

0.2
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Effective lifetime distribution

Figure 5.3: Effective lifetime (ELT) of each item at order arrival

inventory management to a base case in which the product’s time and temperature his-

tory is not tracked by any technology. Accordingly, for the base case, as it is the case in

actual real settings where TTI technologies are not used, the product’s shelf life is fixed
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to mmin to avoid any risk of selling products already perished to retailers (cf. Section

1.3 of Chapter (1)). When a TTI technology is used, we distinguish two situations de-

pending whether the DC manager uses TTI type 1 or TTI type 2. Therefore, our goal

is to compare three different scenarios described as follows:

Scenario 1: In this scenario no technology is used. It corresponds to the case where the

DC manager ignores temperature variations or they are insignificant. The perishability

of products is taken into account throughout the use by date label affixed to each indi-

vidual product’s packaging. The oldest products are sold before their use by dates first.

In this case, the First-In-First-Out issuing policy is optimal. On receipt, the remaining

shelf life of replenishment is known and fixed to the minimum shelf life of mmin periods.

This scenario corresponds to an inventory control system with fixed shelf life, we call

it Model 1. It represents the base case. We assume that the cost associated with the

printed date on product packaging is negligible.

Scenario 2: The DC manager is aware of temperature variations. He chooses to de-

ploy TTIs type 1 technology affixed to the whole order of to each individual product in

order to control effectively his inventory. That is, a TTI type 1 with one color change

is attached to each product’s packaging records temperature variations and microbial

growth. Therefore it allows to take decisions based on visual color change. The func-

tionality of a TTI with one color change (green or red) can be described as follows:

- The first initial color (green) serves as an indication of the freshness of product.

- The second color (red) indicates when a product has to be removed from the stock.

By using this technology the sojourn time of products in stock will be extended com-

pared to scenario 1. In particular, this allows the DC manager to reduce spoilage by

selling products that are considered as perished in scenario 1 but can be still usable when

TTI type 1 is used. The lifetime of products is printed when retailers-demand occurs.

This printed lifetime is already negotiated throughout contracting between the DC and

its retailers.

The issuing policy used for this scenario is FIFO since the DC manager does not know

when TTI type 1 will change color. This scenario represents an inventory management

with TTI Type 1 which will be referred as Model 2.

The cost stemming from the deployment of TTIs type 1 technology (cost of the tag)

is assumed to be proportional to the unit purchasing cost if the tag is affixed to each
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product. The case where the tag is affixed to the whole batch, the cost of the tag is

added to the ordering cost. The fixed costs of investments necessary to implement the

technology such as personnel salaries and personnel training are deliberately not part of

this work since they could be easily integrated to the model.

Scenario 3: The DC manager uses a TTI type 2 in order to take into account the

temperature variations. Since, with TTI type 2, the remaining lifetime is known, the

DC manager depletes his inventory according to the least remaining shelf life first out.

This scenario corresponds to an inventory management with TTI Type 2 which will be

referred hereafter as Model 3.

We assume that the cost associated with the implementation of TTIs type 2 technology

to be proportional to the unit purchasing cost if the tag is affixed to each product. The

case where the tag is affixed to the whole batch, the cost of the tag is added to the

ordering cost. The fixed costs of investments necessary to implement the technology

(such as the cost of readers, processing and supporting information technology hardware

and software, personnel salaries and training) is again deliberately not part of this work

due to the same reasons as explained in Scenario 2.

5.3 Comparison between a TTI-based (r,Q) inven-

tory control model to an (r,Q) inventory control

model with fixed lifetime

In this section, we compare the (r, Q) policy with fixed lifetime developed in Section

(3.4) of Chapter (3) which we call hereafter Model 1 to an (r, Q) inventory system where

the lifetime is monitored by TTIs. Recall that the model developed in Section (3.4) of

Chapter (3) is the following: the inventory is controlled by an (r, Q) inventory policy

where orders arrive after a positive replenishment lead time L and excess demands are

backlogged. The total operating cost of this model is denoted by Equation (3.1).

The remaining of the section is organized as follows: in Subsection (5.3.1), we study the

performance of Model 2 and Model 3 when the tag is affixed to the whole batch Q. In

Subsection (5.3.2) we conduct a sensitivity analysis of the performance of the technology

with regard to the costs parameters, demand and lifetime distribution.
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5.3. Comparison between a TTI-based (r, Q) inventory control model to an
(r, Q) inventory control model with fixed lifetime

5.3.1 The technology is affixed to the whole order Q

5.3.1.1 The TTI type 1 is affixed to the whole order Q

We study here the performance of the technology where only one tag is affixed to the

whole order. For this case, analytical model can be derived. We use the same notations

and assumptions as in Section (3.4) of Chapter (3) and we add the following notions:

Notations

t1 : Unit TTIs label cost, t1 : is considered to be an additive cost per order and modeled

as t1 = η%C.

QTTI1 : The optimal order quantity for model with TTI type 1.

rTTI1 : The optimal reorder level for model with TTI type 1.

TCTTI1 :The average total cost for the proposed model with TTI type 1.

Our interest is to derive an (r, Q) inventory model in which the lifetime of products is

monitored by TTI type 1. We suppose that all products in the same batch Q have the

same age and each batch has a probabilistic age denoted by Equation (5.1). Further-

more:

1) The TTI type 1 technology is affixed to the whole order (Q) and provides a binary

information regarding product’s freshness.

2) Products are picked from stock based on the FIFO issuing policy

3) The ELT (effective lifetime) of the batch Q is a discrete random variable x with cumu-

lative probability distribution function Ψ(x). The set of realization of x is {mmin, mmin+

1, ..., mmax} where mmax is the maximum effective lifetime that can be reached before

the product becomes unsafe for use and mmin is the minimum realization of x. When a

realization of ELT is reached, products whose age equal to this realization are discarded.

The probability that the batch Q perishes at exactly x = mmin, x = mmin + 1,...,

x = mmax is denoted by the following equation:



















x=mmin with probability Ψ(mmin + 1)

... .̇.

x=mmax with probability 1−Ψ(mmax)

(5.1)

Let E[O]TTI1, E[S]TTI1 and E[I]TTI1 be the expected perished quantity, the expected

backlogged quantity and the expected on hand inventory respectively when TTI type 1
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is used.

The expected total outdating units per cycle will have the same expression as Equation

(3.22) except that we should calculate E[O] for each value of ELT and then we sum

over all possible realizations of ELT. That is, E[O]TTI1 is the solution of the following

equation:

y = Ψ(mmin + 1)ωmmin
(y) +

∑

mmin+1≤i
i≤mmax−1

(Ψ(i+ 1)−Ψ(i))ωi(y)

+ (1−Ψ(mmax))ωmmax
(y)

Where ωi(y) =

∫ r+Q−y

0

(r +Q− y − τi+L)φ(τi+L)dτi+L for mmin ≤ i ≤ mmax

(5.2)

For the expected backlogged quantity, we need to know whether orders perish or not

during the lead time L. However, this information depends on the remaining effective

lifetime of orders. Since, the ELT has more than one realization, the probability of

occurrence of perishability during L is not tractable. To overcome this difficulty, we as-

sume that the expected perished quantity in L is equal to E[O]TTI1. Therefore E[S]TTI1

the expected backlogged quantity can be written as:

E[S]TTI1 =

∫ ∞

r−E[O]TTI1

(τL − r + E[O]TTI1)φ(τL)dτL (5.3)

To derive the expression of the expected inventory level per unit of time, we have to

compute the expected inventory level for all possible realizations of the random variable

x representing the ELT. Since the probabilities of occurrence of perishability are in-

tractable, we may approximate the expected inventory level based on equations derived

in (3.4) of Chapter (3). If we define the average ELT, M , by:

M = mminΨ(mmin + 1) +
∑

mmin+1≤i
i≤mmax−1

i(Ψ(i+ 1)−Ψ(i)) +mmax(1−Ψ(mmax)) (5.4)

Then, E[I]TTI1 may be approximated by the summation of Equations (3.29) and (3.32)

in which we substitute m by M .
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5.3. Comparison between a TTI-based (r, Q) inventory control model to an
(r, Q) inventory control model with fixed lifetime

Now the total expected cost can be formulated by the following equation

TCTTI1(r, Q) =
K + η%C + CQ+ PE[S]TTI1 +WE[O]TTI1

E[T ]TTI1
+HE[I]TTI1 (5.5)

Where E[O]TTI1 is computed by Equation (5.2), E[S]TTI1 by Equation (5.3), E[I]TTI1

by Equations (3.29) and (3.32) where m = M and finally E[T ]TTI1 by
Q− E[O]TTI1

µz

5.3.1.2 Validation by simulation experiment

Tables (5.1) and (5.2) illustrate the operating costs of the analytical model of the special

case (equation 5.5) and the simulation results where a Normal demand distributions with

mean µz = 20 and cv = {0.1, 0.25} are considered. The effective lifetime distribution is

discrete and the batch Q has an age between mmin = 3 and mmax = 11. The probability

that Q perishes at 3, 4,..., and 11 units of time is equal to 0.1%, 0.85%, 3.95%, 20%,

25%, 31%, 18% and 1.05% respectively. The lead time is equal to 1 units of time in

Table (5.1) and to 2 in Table (5.2). We set the replication length of the simulation run

to be 90000 units of time and use 10 replications. These two simulations parameters

are chosen in order to have an accurate estimation of the main parameters of system

performances. We observe that our results are closer to the simulation especially when

the coefficient of variation of the demand distribution is equal to 0.1 and L = {1, 2}(cf.

Tables (5.1),(5.2)). The expected backlogged and perished quantities per cycle (E[S]TTI1

and E[O]TTI1 ) deviate on average about 2% and 0.1% from the optimal one if L = 1

and about 5% and 0.7% if L = 2. At the same time, the total cost is only lower

than the optimal total cost by less than 1%. This indicates that the approximations

we made in Subsection (5.3.1) perform well. When the coefficient of variation of the

demand distribution increases (cv = 0.25), our approximations become rough (mainly

the expected backlogged quantity) with respect to different costs parameters (cf. Table

(5.1),(5.2)). The average percentage difference of the expected backlogged quantity

increases as the coefficient of variation of demand distribution increases. However, this

increase is higher for the case where L = 1 than in the case where L = 2. The main

reason of the underestimation of the expected backlogged quantity can be attributed to

our assumption about the undershoot distribution. The mean and the variance of the

undershoot variable may not converge to its expected values as stated in Equation (2)
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because the batch Q (limited by the perishability) is not large enough in order to have a

long cycle length compared to the unit of time. Further details about the performance

of the approximation of the mean and the variance of the undershoot can be found in

(Baganha et al., 1996).
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Ordering policy (r,Q) model with TTI type 1 Simulation model

Test problem

1

2

3

4

5

6

Average percent deviation

7

8

9

10

11

12

Average percent deviation

Cost parameters

N(20,2) P K

25 150

25 200

25 250

50 150

50 200

50 250

N(20,5) P K

25 150

25 200

25 250

50 150

50 200

50 250

(rTTI1, QTTI1)

(36, 81)

(35, 92)

(35, 100)

(39, 80)

(38, 91)

(38, 99)

(39, 81)

(38, 91)

(37, 99)

(42, 80)

(42, 89)

(41, 97)

E[S]TTI1 E[O]TTI1 E[I]TTI1 E[T ]TTI1 TCTTI1(rTTI1, QTTI1)

0.588 0.022 57.101 4.049 197.860

0.790 0.050 61.471 4.597 209.432

0.801 0.102 65.443 4.995 219.810

0.222 0.026 59.767 3.999 200.157

0.317 0.060 64.134 4.547 211.804

0.324 0.121 68.096 4.944 222.301

0.709 0.046 59.451 4.048 201.060

0.896 0.101 63.368 4.545 212.632

1.125 0.185 66.322 4.941 223.173

0.344 0.055 62.079 3.997 204.114

0.350 0.120 66.529 4.444 215.877

0.461 0.219 69.479 4.839 226.586

E[S] E[O] E[I] E[T ] TC(rTTI1, QTTI1)

0.605 0.022 56.490 4.049 197.351

0.842 0.052 60.991 4.597 209.255

0.872 0.102 64.913 4.995 219.632

0.181 0.025 58.982 3.999 198.842

0.293 0.061 63.475 4.547 210.882

0.312 0.120 67.455 4.944 221.541

-2.073% -0.117% 0.985% 0.000% 0.306%

0.791 0.046 59.483 4.048 201.587

0.988 0.100 63.462 4.545 213.231

1.227 0.182 66.426 4.941 223.782

0.402 0.055 61.982 3.997 204.752

0.416 0.119 66.437 4.444 216.525

0.547 0.217 69.397 4.840 227.356

-12.505% 0.754% 0.010% -0.005% -0.295%

Fixed parameters: η%=0; L=1, H=1, C = 5 and W = 10 Effective lifetime between 3 and 10 units of time

Table 5.1: Performance of the (r, Q) inventory with TTI type 1 for L=1
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Ordering policy (r,Q) model with TTI type 1 Simulation model

Test problem

1

2

3

4

5

6

Average percent deviation

7

8

9

10

11

12

Average percent deviation

Cost parameters

N(20,2) P K

25 150

25 200

25 250

50 150

50 200

50 250

N(20,5) P K

25 150

25 200

25 250

50 150

50 200

50 250

(rTTI1, QTTI1)

(55, 83)

(55, 93)

(54, 102)

(58, 83)

(58, 92)

(58, 100)

(59, 83)

(58, 93)

(57, 100)

(63, 83)

(63, 91)

(62, 97)

E[S]TTI1 E[O]TTI1 E[I]TTI1 E[T ]TTI1 TCTTI1(rTTI1, QTTI1)

0.877 0.024 57.644 4.149 199.173

0.885 0.056 62.514 4.647 210.490

1.155 0.113 65.636 5.094 220.710

0.373 0.031 61.526 4.148 202.287

0.377 0.067 65.823 4.597 213.649

0.385 0.133 69.679 4.993 223.998

1.072 0.060 61.192 4.147 204.044

1.301 0.132 64.871 4.643 215.369

1.569 0.219 67.134 4.989 225.763

0.486 0.085 65.928 4.146 208.281

0.495 0.170 69.758 4.541 219.807

0.625 0.281 72.003 4.886 230.425

E[S] E[O] E[I] E[T ] TC(rTTI1, QTTI1)

0.928 0.025 56.484 4.149 198.313

0.942 0.056 61.492 4.647 209.783

1.258 0.115 64.907 5.094 220.502

0.360 0.031 59.476 4.149 200.067

0.374 0.068 63.974 4.597 211.762

0.406 0.132 67.901 4.994 222.410

-5.353% -0.772% 2.243% -0.004% 0,588%

1.141 0.060 60.469 4.147 203.735

1.376 0.130 64.433 4.643 215.348

1.654 0.218 66.886 4.989 225.942

0.541 0.086 64.473 4.146 207.481

0.558 0.169 68.402 4.541 219.160

0.698 0.258 70.395 4.837 230.097

-7.591% 2.796% 1.454% 0.181% 0.148%

Fixed parameters: η%=0; L=2, H=1, C = 5 and W = 10 Effective lifetime between 3 and 10 units of time

Table 5.2: Performance of the (r, Q) inventory with TTI type 1 for L=2
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5.3. Comparison between a TTI-based (r, Q) inventory control model to an
(r, Q) inventory control model with fixed lifetime

5.3.1.3 The TTI type 2 is affixed to the whole order Q

When a TTI type 2 is used, we have an additional information about products’ effective

lifetimes: the TTI technology type 2 provides the remaining lifetime of products available

in stock. The inventory manager can profit from this additional information and issue

products based on a Least Shelf Life First Out (LSFO) policy. We are focusing in this

subsection on modeling an (r, Q) inventory system with TTI type 2 technology. To

understand how TTI type 2 can help the inventory manager to reduce losses due to

perished products and by deploying the LSFO instead of the FIFO issuing policy, we

assume that all items coming from the same batch Q have the same age as in the case

where TTI type 1 is used. If, at order arrival, the available on hand inventory has an

age smaller than the age of the new batch Q, the order Q will be used to satisfy the

demand after depleting the available on hand inventory. If the on hand inventory has

an age larger than the age of the new batch Q then the order Q is depleted first. If

the FIFO is used, it may happen that the available stock has an age greater than the

new order Q. However, because of the FIFO policy the remaining available stock just

before order arrives is used first. As a consequence, with the FIFO policy, the amount

of outdated products is always greater than the amount of outdated products with the

LSFO policy. Contrary to the TTI type 1, it is not easy to derive the expected operating

costs because the age distribution of the on hand inventory is intractable. In terms of

modeling of the (r, Q) model with TTI type 2, we opt for the simulation experiment to

calculate the operating costs. The simulation model is built on the Arena software. The

order of events has the following sequence:

1) An order arrives

2) Perished products are discarded

3) Demand is observed

4) Inventory Position is reviewed

5) An order is triggered.
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5.3.1.4 Evaluation of the performance when the technology is affixed to the

whole order Q

Additional Notations

QTTI2 : The optimal order quantity for model with TTI type 2.

rTTI2 : The optimal reorder level for model with TTI type 2.

TCTTI2 : The average total cost for the for model with TTI type 2.

Q1 : The optimal order quantity for (r, Q) model without TTIs.

r1 : The optimal reorder level for (r, Q) model without TTIs.

TC1 : The average total cost for (r, Q) model without TTIs.

The results of comparison between the total operating cost of models with TTI type 1 and

2 and the model without TTI( see Section (3.4) of Chapter (3)) are summarized in Table

(5.3). Without loss of generality, we set C = 5, P = 10, and W = 10. The batch Q has

an effective lifetime that varies between 3 and 11 units of time. The probability that an

order arrives with an age equal to {3, 4, ..., 11} is {0.05, 0.1, 0.85, 3.95, 20, 26, 30, 18, 1.05}

respectively. Since the cost of the tag attached to the whole order is modeled as η%C,

the ordering cost K in our example represents the real ordering cost plus η%C. We note

that the optimal ordering policy does not change with η. That is when the cost of the

tag is equal to C (so η = 100), we obtain the same ordering policy. Table (5.3) shows

that with one tag, the technology leads to a cost saving of 14%. Cleraly, we see here the

potential savings of of the LSFO issuing policy in comparison with the FIFO one.

The (r,Q) model with TTI type 1 The (r,Q) model with TTI type 2 Percentage difference

rTTI1 QTTI1 TCTTI1(rTTI1, QTTI1)

60 80 202.287

rTTI2 QTTI2 TCTTI2(rTTI2, QTTI2)

58 83 199.524

∆1% ∆2% ∆3%

14,656 15,822 1,366

Normal demand N(20, 2); L = 2; H = 1; C = 5; P = 50; K = 150; W = 150; r1 = 54; Q1 = 54; TC1(r1, Q1) = 237.025; m = 3

∆1% = 100
TC1(r1, Q1)− TCTTI1(rTTI1, QTTI1)

TC1(r1, Q1)

∆2% = 100
TC1(r1, Q1)− TCTTI2(rTTI2, QTTI2)

TC1(r1, Q1)

∆3% = 100
TCTTI1(rTTI1, QTTI1)− TCTTI2(rTTI2, QTTI2)

TCTTI1(rTTI1, QTTI1)

Table 5.3: Performance of TTI technologies when it is affixed to the oder Q

124



5.3. Comparison between a TTI-based (r, Q) inventory control model to an
(r, Q) inventory control model with fixed lifetime

5.3.2 The technology is affixed to each product in the batch Q

We assume in this section that a TTI tag is affixed to each unit of product. The general

aim of this section is presented on Figure (5.4). We shall evaluate the performance of

The inventory manager takes into account

perishability of products when controlling

inventory and optimizes it appropriately.

The total cost is denoted by TC1(r1 ,Q1)

The inventory manager chooses to deploy 

TTIs type 1 to improve the inventory 

control.

The total cost is denoted by TC2(r2,Q2)

The inventory manager chooses to deploy 

TTIs type 2 to improve the inventory 

control.

The total cost is denoted by TC3(r3,Q3)

TTI is usedTTI is not used

Comparison 1:TC1(r1,Q1) versus TC2(r2,Q2)

Comparison 2: TC1(r1,Q1) versus TC3(r3,Q3)

Comparison 3: TC2(r2,Q2) versus TC3(r3,Q3)

The inventory manager takes into account

perishability of products when controlling

inventory and optimizes it appropriately.

The total cost is denoted by TC1(r1 ,Q1)

The inventory manager chooses to deploy 

TTIs type 1 to improve the inventory 

control.

The total cost is denoted by TC2(r2,Q2)

The inventory manager chooses to deploy 

TTIs type 2 to improve the inventory 

control.

The total cost is denoted by TC3(r3,Q3)

TTI is usedTTI is not used

Comparison 1:TC1(r1,Q1) versus TC2(r2,Q2)

Comparison 2: TC1(r1,Q1) versus TC3(r3,Q3)

Comparison 3: TC2(r2,Q2) versus TC3(r3,Q3)

Figure 5.4: Different types of comparison

the technology by varying the mean and the variance of the demand and other cost

parameters. We would like to answer the question: at which case of demand parameters

and costs the technology is more attractive?

As a first step of analysis, since we have modeled the cost of the tag as a percentage of

the purchasing cost C, we will evaluate the performance by varying C and the holding

cost H . Intuitively, we think that the technology (type 1 or 2) performs better when the

purchasing cost is high.

Secondly, we will keep the same cost C but we will varies the mean of the demand. We

would like to know how the performance of the technology varies with the mean of the

demand. We think that the technology (type 1 or 2) performs better when the mean of

the demand increases.

Finally, we keep the same mean of the lifetime and evaluate the performance for different

variance of the lifetime. Here, we think that TTI type 2 performs better than TTI type

1 when the lifetime’s variance increases.

Notations
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Q2 : The optimal order quantity for the model with TTI type 12.

r2 : The optimal reorder level for model with TTI type 1.

TC2 : The average total cost for the proposed model with TTI type 1.

Q3 : The optimal order quantity for the model with TTI type 2.

r3 : The optimal reorder level for model with TTI type 2.

TC3 : The average total cost for the proposed model with TTI type 2.

Throughout this section, we assume that the demand follows a Poisson distribution with

mean λ = 5; 10; 15 and the replenishment lead time = 1 unit of time.

5.3.2.1 Sensitivity analysis with regard to the purchase cost C

Tables (5.4) and (5.5) show the performance of TTI type 1 and type 2 when the pur-

chase cost increase. We expect to find that when C increases, the performance of the

technology increases too. Results of Table (5.4) and (5.5) are unexpected. The perfor-

mance of the technology decrease as C increases. This finding is attributed to the fact

that when C increase, the holding cost H increases too. Hence, to reduce the impact of

the holding cost, the optimal policy for both Model 2 and Model 3 calls for a smaller

order Q. In our case, with respect to the cost of the technology, for C = 5;Q = 48 and

for C = 10;Q = 41. Therefore, when Q decreases, the technology (type 1 or type 2)

performs worse.

η% ∗ C cost of the tag Model 2 Model 3 Model 1 vs Model 2 Model 1 vs Model 3 Model 2 vs Model 3

r2 Q2 TC2(r2, Q2) r3 Q3 TC3(r3, Q3)

0 0 13 48 87.95 14 61 84.87 18.98 22.07 65.88

5 0.25 13 48 90.52 14 61 87.38 16.41 19.55 70.97

10 0.5 13 48 93.09 14 61 89.89 13.84 17.04 76.05

15 0.75 13 48 95.66 14 61 92.40 11.27 14.53 81.13

20 1 13 48 98.23 14 61 94.91 8.70 12.02 86.21

25 1.25 13 48 100.80 14 61 97.42 6.13 9.51 91.30

30 1.5 13 48 103.38 14 61 99.94 3.56 7.00 96.38

35 1.75 13 48 105.95 14 61 102.45 0.99 4.49 101.46

40 2 13 48 108.52 14 61 104.96 -1.59 1.97 106.54

Fixed cost: C=5;K=100;P=20;W=0;=H=0.1*C=0.5. Model 1: r1=13; Q1 =25; TC1(r1, Q1) =106.933

Table 5.4: Performance of TTI technologies for C = 5

5.3.2.2 Sensitivity analysis with regard to the mean of the demand

As shown in Table (5.6), when the mean of the demand decreases, the performance of

the technology increases. This result can be explained by the fact that when the mean
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5.3. Comparison between a TTI-based (r, Q) inventory control model to an
(r, Q) inventory control model with fixed lifetime

η% ∗ C cost of the tag Model 2 Model 3 Model 1 vs Model 2 Model 1 vs Model 3 Model 2 vs Model 3

r2 Q2 TC2(r2, Q2) r3 Q3 TC3(r3, Q3)

0 0 12 41 151.72 12 47 149.53 14.80 16.99 134.74

5 0.25 12 41 156.79 12 47 154.53 9.73 11.99 144.80

10 0.5 12 41 161.85 12 47 159.53 4.67 6.99 154.86

15 0.75 12 41 166.91 12 47 164.53 -0.40 1.99 164.93

20 1 12 41 171.98 12 47 169.53 -5.46 -3.01 174.99

25 1.25 12 39 177.04 12 47 174.53 -10.52 -8.01 185.05

30 1.5 12 39 182.09 12 47 179.53 -15.57 -13.01 195.10

35 1.75 12 39 187.14 12 47 184.53 -20.62 -18.01 205.15

40 2 12 39 192.19 12 47 189.52 -25.67 -23.01 215.20

Fixed cost: C=10;K=100;P=20;W=15;=H=0.1*C=1. Model 1: r1=12; Q1 =24; TC1(r1, Q1) =166.519

Table 5.5: Performance of TTI technologies for C = 10

of the demand decreases, the coefficient of variation of the demand increases. Therefore,

with a high variability of the demand, the technology performs better.

When we compare between Model 2 and Model 3, we observe that Model 3 is more

attractive especially for a small mean of demand because the depletion of inventory with

the lowest shelf life first becomes a frequent case. That is, the LSFO policy is used

frequently.

Mean demand 15 (high) 10 (average) 5 (small)

Purchasing cost 10 10 10

r Q TC r Q TC r Q TC

TC Model 2 18 54 212.25 12 41 151.72 6 23 89.45

TC Model 3 18 58 211.06 12 47 149.59 6 28 85.94

TC Model 1 (lifetime=3) 18 35 222.33 12 24 166.51 5 14 109.64

Model 1 vs Model 2 (%) 4.53 8.89 18.41

Model 1 vs Model 3 (%) 5.07 10.16 21.61

Model 2 vs Model 3 (%) 0.56 1.40 3.92

Fixed cost: C=10;K=100;P=20;W=15;=H=0.1*C=1; cost of TTI typ1 = Cost of TTI type 2= 0

Table 5.6: Performance of TTI technologies for different mean of demand

5.3.2.3 Sensitivity analysis with regard to the variance of the lifetime

Here, we keep the same mean of the lifetime but we vary its standard deviation.

We observe in Table (5.7) that the performance of Model 3 vs Model 1 is insensitive to

the variance of the lifetime. This explains the ability of TTI type 2 to capture products

that have the smallest shelf life and therefore allows the DC manager to deplete the

inventory throughout the LSFO policy. When the TTI type 1 is used, we observe that

the performance decreases as the variability the lifetime distribution increases. Since

with TTI type 1, the FIFO issuing policy is used, an increase in the variability of the

lifetime leads to more perished products. With TTI type 1, the DC manager is not able
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to know if he have to allocate the oldest products on hand but may be they have the

youngest age or if he have to allocate the youngest products that they just arrived but

may be they have the oldest age to the present demand.

The better performance of TTI type 2 in comparison with TTI type 1 can be explained by

the use of the LSFO policy instead of the FIFO policy when TTI type 2 is deployed. The

LSFO depletion reduces the amount of perished products and the impact of perishability

on the total cost will be lower than in the case of FIFO policy. We deduce that TTI

type 2 is more attractive than TTI type 1 especially for a higher variance of the lifetime

distribution. We note that Ketzenberg & Bloemhof (2008) is a more closely related

Lifetime distribution Variance=0.5; mean=6 Variance=0.95; mean=6 Variance=3;mean=6

r Q TC r Q TC r Q TC

Model 1 (lifetime=3) 12 22 119.29 12 22 119.29 12 22 119.29

Model 2 12 40 101.45 12 39 102.81 12 31 106.24

Model 3 13 44 99.63 12 47 99.60 12 47 99.5594

Model 1 vs Model 2 14.95 13.82 10.94

Model 1 vs Model 3 16.48 16.51 16.54

Model 2 vs Model 3 1.80 3.12 6.29

Fixed cost: C=5;K=100;P=20;W=15;=H=1

Table 5.7: Performance of TTI technologies with the variability of the lifetime distribu-
tion

study to our work. The authors evaluate the value of RFID technology that provide

information about the lifetime of products at the time of receipt and the remaining

lifetime of inventory available for replenishment. They find that the highest value of

RIFD is decreasing the spoilage of products. However, in their works Ketzenberg &

Bloemhof (2008) do not consider the cost of implementation related to the deployment

of the technology. To our knowledge no paper has been published and answer the

question of whether the TTI technologies is cost effective or not.
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5.4. Comparison between TTI-based (T, S) inventory control to a (T, S)
inventory control with fixed lifetime

5.4 Comparison between TTI-based (T, S) inventory

control to a (T, S) inventory control with fixed

lifetime

The general setting is a Distribution Center (DC) that provides a perishable product

to retailer and receives replenishments from an external supplier. The DC manage his

inventory using a (T, S) replenishment policy. That is, the inventory level is observed at

equal intervals of time, T and a replenishment order is placed every T units of time to

bring the inventory level to the order-up-to-level S. The demand follows a probabilistic

random variable with mean λ. An order triggered at the beginning of the period T ar-

rives after a fixed lead time L and excess demands are completely lost. We assume that

replenishments from the supplier to the DC are exposed to fluctuating environmental

parameters caused by temperature variations that affect the shelf life of each item in the

consignment. Our interest is to compare is to compare three different scenarios discussed

in Section (5.2).

Notations

K : Fixed ordering cost per order.

H : Holding cost per unit of product held in stock per unit of time.

C : Purchase cost per unit of product.

P : Lost sales cost per unit of demand lost.

W : Outdate cost per unit of product that perishes in stock.

t1 : The unit TTI type 1 tag cost.

t2 : The unit TTI type 2 tag cost.

mmin : Minimum Product’s lifetime.

L : Replenishment lead time.

T1, T2, T3: Optimal review period for scenarios 1, 2 and 3 respectively.

S1, S2, S3: Optimal order up to level for scenarios 1, 2 and 3 respectively.

E[I]1, E[I]2, E[I]3: The expected inventory level per unit time for scenarios 1, 2 and 3

respectively.

E[O]1, E[O]2, E[O]3: The expected outdating quantity per unit time for scenarios 1, 2

and 3 respectively.
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E[S]1, E[S]2, E[S]3: The expected lost sale per unit time for scenarios 1, 2 and 3 re-

spectively.

TC1, TC2, TC3: The total operating cost per unit time for scenarios 1, 2 and 3 respec-

tively.

We simulate three (T, S) inventory policies, i.e., Model 1, 2 and 3. The simulation ex-

periment allows us to choose a real representative distribution of the shelf life and to

capture the impact of issuing policies (FIFO and LSFO) on inventory management. For

each model, we record the number of outdated items, the number of excess demand

during the replenishment lead time and the inventory level per unit time. Then, we

calculate the total operating inventory cost for the three models as follow:

TC1(T, S) =
K

T
+ C(λ− E[S]1 + E[O]1) + PE[S]1 +WE[O]1 +HE[I]1 (5.6)

TC2(T, S) =
K

T
+ (C + t1)(λ−E[S]2 + E[O]2) + PE[S]2 +WE[O]1 +HE[I]2 (5.7)

TC3(T, S) =
K

T
+ (C + t2)(λ−E[S]3 + E[O]3) + PE[S]3 +WE[O]3 +HE[I]3 (5.8)

5.4.1 Results and discussion

The simulation model is implemented in Arena software and validated by the exact

(T, S) inventory policy with full lost sales developed in Section (4.2) of Chapter (4).

The order of events is the following:

i) Place replenishment order if necessary.

ii) Observe demand or remove expired units from inventory.

iii) Receive replenishment.

We set the replication length of a simulation run to 100000 units of time which is suffi-

ciently enough for the three models to exhibit their steady-state behavior. The setting

input parameters we consider are the following:

The demand follows a Poisson distribution with mean λ = 10.

The replenishment lead time = 1 unit of time.

C ∈ {5, 15} .
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5.4. Comparison between TTI-based (T, S) inventory control to a (T, S)
inventory control with fixed lifetime

K ∈ {50, 100, 150}.

P ∈ {20, 40} .

W ∈ {5, 15} .

mmin = 3.

mmax ∈ {8, 9} .

The probability mass function of the shelf life has a mean = 6 and variance ∈ {0.5, 0.95, 3}

as shown in figures (5.5, 5.6, 5.7).

Our first objective is to assess the performance of FIFO (model 2) and LSFO (model

3) issuing policies in comparison with the FIFO issuing policy used in the case of fixed

shelf life inventory management. This constitutes the first level of comparison in which

we do not consider the cost of the tag associated with Model 2 and 3. That is, we use

the same purchasing cost for the three models. The second level of comparison consists

on evaluating the performance of the TTI technologies by including the cost of the tag

so that we can answer the question whether or not TTI-based inventory management is

cost effective. Finally, we compare the performance of the technology when we deployed

in an (r, Q) or in a (T, S) policy.

5.4.2 Impact of the issuing policy on inventory management

In general, we find that both TTI type 1 and type 2 can reduce considerably the total

operating inventory cost. This reduction is mainly due to the decreased number of

unsealable products and the decreased number of out-of-stocks. In Tables (5.8), (5.9),

and (5.10), we report the results of comparison between the three models over a range

of costs parameters and shelf life variances. We find that both Model 2 and Model 3

perform better than Model 1 over the entire range of cost parameters. Model 2 achieves

a cost reduction of 10% on average, minimum = 2% and maximum = 21% from Model

1 (cf. Table (5.8)). Model 3 achieves a better performance than Model 2. The average

percent deviation from Model 1 is about 12 %, minimum = 2% and maximum = 24% (cf.

Table (5.8)). This confirms that the TTI-based inventory management is more efficient

than an inventory management with fixed shelf life. Hence, without TTI technologies,

the DC manager holds less products in order to reduce outdating. Extended lifetime

provided by TTI technologies reduces outdating quantity and enables the DC manger
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to enhance the total operating cost.

When comparing Model 2 to Model 3, we observe that Model 3 performs better than

Model 2 since the LSFO issuing policy allows the DC manger to sell items with the least

shelf life first and thus reduce the amount of outdated items. Hence, units held in stock

with the lowest shelf life are allocated to demand first which creates an opportunity

to reduce the amount of outdated products. Such opportunity could not be realized

throughout TTI type 1. The improvement is about 1% on average, minimum = 0.1%

and maximum = 3% (cf. Table (5.8)). However, when the variance of the shelf life

increases, Model 3 yields an average performance of 4% from Model 2 (cf. Table (5.10)).

Although the high variability of shelf life (which means high temperature perturbations),

TTI type 2 enables the DC to better reduce the amount outdated products than TTI

type 1 (cf. Table (5.8), (5.9), and (5.11)) so it achieves substantial cost savings. This

result is explained by the fact that the high variability of shelf lives induces more age

categories of items in stock. Since TTI type 2 can capture the remaining shelf life of

items, the DC manager can reduce the impact of this variability by using LSFO issuing

policy. However, since TTI type 1 provides a binary information to the DC manger by

changing color, the situation where replenished items arrive at the DC with remaining

shelf lives lower than products on hand could not be captured. In other words, a unit of

inventory held in stock at the DC may expire while a “younger” unit is used to satisfy

demand.

5.4.3 Sensitivity analysis regarding the cost of the TTI tag

In this subsection we compare the three models when the cost of the TTI tag is included.

The unit TTI tag cost varies between 0 and 6. We observe that TTI type 1 remains

attractive with respect to the unit TTI type 1 cost. The performance decreases as the

cost of the tag increases. When the TTI type 1 cost is equal to 3.44, Model 1 and 2 have

the same cost. In addition, when the variance of the shelf life increases from 0.5 to 3,

the performance of TTI type 1, i.e. Model 2, decreases. For example if the variance is

equal to 3, Model 2 performs better than Model 1 only if the cost of TTI type 1 is lower

than 2.52 (cf. column 10 of Table (5.11)). This result is due to the fact that TTI type 1

can not allow the DC manger to switch between items to sell those having lowest shelf
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inventory control with fixed lifetime

life first.

In the case of TTI type 2, we find that Model 3 yields a better performance in comparison

with Model 2 for the same cost of TTI tag. Again, as Model 2, the improvement achieved

by Model 3 decreases as the cost of TTI type 2 increases. When the unit TTI cost

becomes 3.9, Model 3 and Model 1 have the same total inventory cost. We find also that

the performance of Model 3 varies slightly as the variance of the shelf life increases. That

is, Even if the DC manger has more ages categories of products in stock (because high

variance of shelf life induce more products’ age categories), the LSFO issuing policy

enables him to efficiently match products with the lowest shelf life with demand. In

conclusion, the TTI-based inventory management achieved its goal of reducing the total

inventory operating cost.

In Table (5.12) we compare between Model 2 and Model 3 where the cost of TTI type 1

is fixed to 0.5 and the cost of TTI type 2 varies from 0.5 to 2. We observe that Model

3 outperforms Model 2 over a wide range of unit TTI type 2 costs. This performance

increases with the variance of the shelf life. Clearly, when the shelf life’s variance =

0.5, Model 3 achieves the same total inventory operating cost as Model 3 when the unit

TTI type 2 cost = 0.9. For a shelf life’s variance = 3, Model 3 generates a similar total

inventory operating cost as Model 2 if the unit TTI type 2 cost = 1.9. This demonstrates

that TTI type is more suitable to take into account temperature variations and hence to

reduce the inventory cost. In addition, our results indicate that costs of commercialized

TTI tags (which are less than 0.5 for TTI type 1 and less than 1 for TTI type 2 as shown

in Chapter( 1)) are reasonable prices.
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Figure 5.5: Effective lifetime distribution, mean =6, variance= 0.50
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Figure 5.6: Effective lifetime distribution, mean =6, variance= 0.95
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Figure 5.7: Effective lifetime distribution, mean =6, variance= 3
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Costs parameters (T, S) inventory control without TTI (T, S) inventory control with TTI type 1 (T, S) inventory control with TTI type 2 Percentage difference

Test N ◦ C K P W T1 S1 E[I]1 E[O]1 E[S]1 TC1(T1, S1) T2 S2 E[I]2 E[O]2 E[S]2 TC2(T2, S2) T3 S3 E[I]3 E[O]3 E[S]3 TC3(T3, S3) ∆1 vs. 2% ∆1 vs. 3% ∆2 vs. 3%

1 5 50 20 5 2 34 14.155 0.239 0.390 97.388 3 45 20.678 0.018 0.221 90.840 3 45 20.711 0.000 0.220 90.675 6.72 6.89 0.18

2 5 100 20 5 2 34 14.155 0.239 0.390 122.388 4 53 24.087 0.081 0.327 104.803 4 53 24.319 0.001 0.309 103.957 14.37 15.06 0.81

3 5 150 20 5 3 33 12.078 0.528 1.859 145.240 4 53 24.087 0.081 0.327 117.303 5 62 28.697 0.017 0.347 114.069 19.23 21.46 2.76

4 5 50 40 5 2 37 16.204 0.435 0.229 103.564 3 48 23.261 0.032 0.102 93.827 3 48 23.323 0.000 0.101 93.510 9.40 9.71 0.34

5 5 100 40 5 2 37 16.204 0.435 0.229 128.564 4 58 27.977 0.159 0.122 108.842 4 58 28.457 0.003 0.109 107.301 15.34 16.54 1.42

6 5 150 40 5 2 37 16.204 0.435 0.229 153.564 4 58 27.977 0.159 0.122 121.342 5 68 33.393 0.057 0.119 118.119 20.98 23.08 2.66

7 15 50 20 5 3 24 7.951 0.062 3.037 191.034 4 40 15.891 0.013 1.514 186.224 4 42 17.086 0.000 1.276 185.969 2.52 2.65 0.14

8 15 100 20 5 6 23 4.579 0.036 6.214 203.034 5 40 15.076 0.018 2.400 197.438 6 47 17.916 0.000 2.382 196.500 2.76 3.22 0.47

9 15 150 20 5 6 23 4.579 0.036 6.214 211.367 7 42 12.877 0.027 4.031 204.992 7 48 16.700 0.000 3.167 203.970 3.02 3.50 0.50

10 15 50 40 5 2 34 14.155 0.239 0.390 203.673 3 47 22.376 0.026 0.134 192.919 3 47 22.429 0.000 0.133 192.415 5.28 5.53 0.26

11 15 100 40 5 2 34 14.155 0.239 0.390 228.673 4 55 25.633 0.106 0.224 208.364 4 57 27.586 0.002 0.137 206.049 8.88 9.89 1.11

12 15 150 40 5 2 34 14.155 0.239 0.390 253.673 4 55 25.633 0.106 0.224 220.864 5 66 31.763 0.040 0.176 216.954 12.93 14.48 1.77

13 5 50 20 15 2 32 12.803 0.153 0.562 99.301 3 44 19.872 0.015 0.277 90.990 3 45 20.711 0.000 0.220 90.676 8.37 8.69 0.35

14 5 100 20 15 2 32 12.803 0.153 0.562 124.301 4 52 23.378 0.072 0.383 105.567 4 53 24.319 0.001 0.309 103.963 15.07 16.36 1.52

15 5 150 20 15 3 30 10.677 0.305 2.165 149.249 4 52 23.378 0.072 0.383 118.067 5 62 28.697 0.017 0.347 114.242 20.89 23.46 3.24

16 5 50 40 15 2 35 14.840 0.295 0.324 107.088 3 48 23.261 0.032 0.102 94.148 3 48 23.323 0.000 0.101 93.511 12.08 12.68 0.68

17 5 100 40 15 2 35 14.840 0.295 0.324 132.088 4 57 27.174 0.139 0.151 110.247 4 58 28.457 0.003 0.109 107.330 16.54 18.74 2.65

18 5 150 40 15 2 35 14.840 0.295 0.324 157.088 4 57 27.174 0.139 0.151 122.747 5 67 32.577 0.047 0.147 118.664 21.86 24.46 3.33

19 15 50 20 15 3 23 7.508 0.043 3.213 191.519 4 40 15.891 0.013 1.514 186.356 4 42 17.086 0.000 1.276 185.969 2.70 2.90 0.21

20 15 100 20 15 6 22 4.199 0.023 6.367 203.377 5 40 15.076 0.018 2.400 197.618 6 47 17.916 0.000 2.382 196.504 2.83 3.38 0.56

21 15 150 20 15 6 22 4.199 0.023 6.367 211.710 7 39 11.141 0.014 4.439 205.168 7 48 16.700 0.000 3.167 203.975 3.09 3.65 0.58

22 15 50 40 15 2 33 13.474 0.192 0.468 205.939 3 46 21.513 0.022 0.174 193.175 3 47 22.429 0.000 0.133 192.416 6.20 6.57 0.39

23 15 100 40 15 2 33 13.474 0.192 0.468 230.939 4 55 25.633 0.106 0.224 209.425 4 57 27.586 0.002 0.137 206.068 9.32 10.77 1.60

24 15 150 40 15 2 33 13.474 0.192 0.468 255.939 4 55 25.633 0.106 0.224 221.925 5 65 30.978 0.032 0.216 217.320 13.29 15.09 2.07

Average percent deviation 10.57% 11.615% 1.233%

∆1 vs. 2% = 100(TC1 − TC2)/TC1; ∆1 vs. 3% = 100(TC1 − TC3)/TC1; ∆2 vs. 3% = 100(TC2 − TC3)/TC2

Table 5.8: Comparison between Scenarios 1, 2 and 3 for a shelf life with variance =0.5
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Costs parameters (T, S) inventory control without TTI (T, S) inventory control with TTI type 1 (T, S) inventory control with TTI type 2 Percentage difference

Test N ◦ C K P W T1 S1 E[I]1 E[O]1 E[S]1 TC1(T1, S1) T2 S2 E[I]2 E[O]2 E[S]2 TC2(T2, S2) T3 S3 E[I]3 E[O]3 E[S]3 TC3(T3, S3) ∆1 vs. 2% ∆1 vs. 3% ∆2 vs. 3%

1 5 50 20 5 2 34 14.155 0.239 0.390 97.388 3 44 19.803 0.050 0.282 91.202 3 45 20.708 0.000 0.219 90.658 6.35 6.91 0.60

2 5 100 20 5 2 34 14.155 0.239 0.390 122.388 4 53 23.912 0.161 0.350 105.772 4 53 24.317 0.000 0.308 103.936 13.58 15.08 1.74

3 5 150 20 5 3 33 12.078 0.528 1.859 145.240 4 53 23.912 0.161 0.350 118.272 5 62 28.706 0.007 0.349 114.001 18.57 21.51 3.61

4 5 50 40 5 2 37 16.204 0.435 0.229 103.564 3 48 23.140 0.086 0.106 94.382 3 48 23.322 0.000 0.101 93.524 8.87 9.69 0.91

5 5 100 40 5 2 37 16.204 0.435 0.229 128.564 4 58 27.684 0.265 0.135 110.047 4 58 28.470 0.001 0.111 107.362 14.40 16.49 2.44

6 5 150 40 5 2 37 16.204 0.435 0.229 153.564 4 58 27.684 0.265 0.135 122.547 5 67 32.662 0.019 0.142 117.808 20.20 23.28 3.87

7 15 50 20 5 3 24 7.951 0.062 3.037 191.034 3 36 14.380 0.019 1.061 186.730 4 41 16.502 0.000 1.393 185.968 2.25 2.65 0.41

8 15 100 20 5 6 23 4.579 0.036 6.214 203.034 5 39 14.489 0.046 2.550 198.154 6 46 17.277 0.000 2.511 196.499 2.40 3.22 0.84

9 15 150 20 5 6 23 4.579 0.036 6.214 211.367 7 39 11.096 0.038 4.466 205.622 7 49 17.341 0.000 3.039 203.970 2.72 3.50 0.80

10 15 50 40 5 2 34 14.155 0.239 0.390 203.673 3 46 21.413 0.065 0.178 193.832 3 47 22.437 0.000 0.133 192.422 4.83 5.52 0.73

11 15 100 40 5 2 34 14.155 0.239 0.390 228.673 3 46 21.413 0.065 0.178 210.498 4 57 27.591 0.001 0.137 206.029 7.95 9.90 2.12

12 15 150 40 5 2 34 14.155 0.239 0.390 253.673 4 55 25.367 0.195 0.250 223.011 5 66 31.834 0.015 0.174 216.488 12.09 14.66 2.92

13 5 50 20 15 2 32 12.803 0.153 0.562 99.301 3 44 19.803 0.050 0.282 91.699 3 45 20.708 0.000 0.219 90.659 7.66 8.70 1.14

14 5 100 20 15 2 32 12.803 0.153 0.562 124.301 4 52 23.206 0.146 0.409 107.261 4 53 24.317 0.000 0.308 103.939 13.71 16.38 3.10

15 5 150 20 15 3 30 10.677 0.305 2.165 149.249 4 52 23.206 0.146 0.409 119.761 5 62 28.706 0.007 0.349 114.066 19.76 23.57 4.76

16 5 50 40 15 2 35 14.840 0.295 0.324 107.088 3 48 23.140 0.086 0.106 95.246 3 48 23.322 0.000 0.101 93.525 11.06 12.67 1.81

17 5 100 40 15 2 35 14.840 0.295 0.324 132.088 3 48 23.140 0.086 0.106 111.913 4 58 28.470 0.001 0.111 107.373 15.27 18.71 4.06

18 5 150 40 15 2 35 14.840 0.295 0.324 157.088 4 56 26.109 0.218 0.205 125.136 5 67 32.662 0.019 0.142 117.996 20.34 24.89 5.71

19 15 50 20 15 3 23 7.508 0.043 3.213 191.519 3 36 14.380 0.019 1.061 186.919 4 41 16.502 0.000 1.393 185.969 2.40 2.90 0.51

20 15 100 20 15 6 22 4.199 0.023 6.367 203.377 5 39 14.489 0.046 2.550 198.610 6 46 17.277 0.000 2.511 196.499 2.34 3.38 1.06

21 15 150 20 15 6 22 4.199 0.023 6.367 211.710 7 38 10.557 0.033 4.601 205.972 7 49 17.341 0.000 3.039 203.972 2.71 3.65 0.97

22 15 50 40 15 2 33 13.474 0.192 0.468 205.939 3 46 21.413 0.065 0.178 194.483 3 47 22.437 0.000 0.133 192.423 5.56 6.56 1.06

23 15 100 40 15 2 33 13.474 0.192 0.468 230.939 3 46 21.413 0.065 0.178 211.150 4 57 27.591 0.001 0.137 206.034 8.57 10.78 2.42

24 15 150 40 15 2 33 13.474 0.192 0.468 255.939 4 54 24.630 0.177 0.299 224.909 5 66 31.834 0.015 0.174 216.638 12.12 15.36 3.68

Average percent deviation 9.821% 11.67% 2.135%

∆1 vs. 2% = 100(TC1 − TC2)/TC1; ∆1 vs. 3% = 100(TC1 − TC3)/TC1; ∆2 vs. 3% = 100(TC2 − TC3)/TC2

Table 5.9: Comparison between Scenarios 1, 2 and 3 for a shelf life with variance =0.95
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Costs parameters (T, S) inventory control without TTI (T, S) inventory control with TTI type 1 (T, S) inventory control with TTI type 2 Percentage difference

Test N ◦ C K P W T1 S1 E[I]1 E[O]1 E[S]1 TC1(T1, S1) T2 S2 E[I]2 E[O]2 E[S]2 TC2(T2, S2) T3 S3 E[I]3 E[O]3 E[S]3 TC3(T3, S3) ∆1 vs. 2% ∆1 vs. 3% ∆2 vs. 3%

1 5 50 20 5 2 34 14.155 0.239 0.390 97.388 3 44 19.567 0.152 0.300 92.246 3 45 20.709 0.000 0.223 90.717 5.28 6.85 1.66

2 5 100 20 5 2 34 14.155 0.239 0.390 122.388 3 44 19.567 0.152 0.300 108.913 5 63 29.454 0.002 0.296 103.913 11.01 15.10 4.59

3 5 150 20 5 3 33 12.078 0.528 1.859 145.240 4 53 23.080 0.438 0.477 122.112 6 69 31.683 0.004 0.462 113.662 15.92 21.74 6.92

4 5 50 40 5 2 37 16.204 0.435 0.229 103.564 3 48 22.691 0.259 0.118 96.097 3 49 24.213 0.000 0.075 93.520 7.21 9.70 2.68

5 5 100 40 5 2 37 16.204 0.435 0.229 128.564 3 48 22.691 0.259 0.118 112.763 4 58 28.449 0.000 0.109 107.282 12.29 16.55 4.86

6 5 150 40 5 2 37 16.204 0.435 0.229 153.564 4 60 27.625 0.705 0.169 128.078 5 68 33.576 0.008 0.116 117.709 16.60 23.35 8.10

7 15 50 20 5 3 24 7.951 0.062 3.037 191.034 3 33 12.650 0.029 1.476 187.270 4 41 16.495 0.000 1.395 185.970 1.97 2.65 0.69

8 15 100 20 5 6 23 4.579 0.036 6.214 203.034 5 33 11.007 0.056 3.504 199.644 6 48 18.512 0.000 2.258 196.468 1.67 3.23 1.59

9 15 150 20 5 6 23 4.579 0.036 6.214 211.367 7 33 7.979 0.041 5.335 206.893 7 48 16.702 0.000 3.166 203.961 2.12 3.50 1.42

10 15 50 40 5 2 34 14.155 0.239 0.390 203.673 2 36 16.299 0.028 0.173 196.175 3 47 22.399 0.000 0.137 192.489 3.68 5.49 1.88

11 15 100 40 5 2 34 14.155 0.239 0.390 228.673 3 45 20.311 0.173 0.245 213.218 4 57 27.580 0.000 0.140 206.082 6.76 9.88 3.35

12 15 150 40 5 2 34 14.155 0.239 0.390 253.673 3 45 20.311 0.173 0.245 229.885 5 66 31.880 0.005 0.173 216.299 9.38 14.73 5.91

13 5 50 20 15 2 32 12.803 0.153 0.562 99.301 3 43 18.836 0.131 0.366 93.597 3 45 20.709 0.000 0.223 90.717 5.74 8.64 3.08

14 5 100 20 15 2 32 12.803 0.153 0.562 124.301 3 43 18.836 0.131 0.366 110.264 5 63 29.454 0.002 0.296 103.934 11.29 16.39 5.74

15 5 150 20 15 3 30 10.677 0.305 2.165 149.249 4 49 20.667 0.326 0.760 126.089 6 69 31.683 0.004 0.462 113.706 15.52 23.81 9.82

16 5 50 40 15 2 35 14.840 0.295 0.324 107.088 2 38 18.073 0.047 0.094 97.297 3 49 24.213 0.000 0.075 93.520 9.14 12.67 3.88

17 5 100 40 15 2 35 14.840 0.295 0.324 132.088 3 47 21.905 0.230 0.153 115.176 4 58 28.449 0.000 0.109 107.287 12.80 18.78 6.85

18 5 150 40 15 2 35 14.840 0.295 0.324 157.088 3 47 21.905 0.230 0.153 131.843 5 68 33.576 0.008 0.116 117.790 16.07 25.02 10.66

19 15 50 20 15 3 23 7.508 0.043 3.213 191.519 3 33 12.650 0.029 1.476 187.557 4 41 16.495 0.000 1.395 185.970 2.07 2.90 0.85

20 15 100 20 15 6 22 4.199 0.023 6.367 203.377 6 32 8.781 0.036 4.707 200.075 6 48 18.512 0.000 2.258 196.468 1.62 3.40 1.80

21 15 150 20 15 6 22 4.199 0.023 6.367 211.710 7 32 7.517 0.032 5.463 207.235 7 48 16.702 0.000 3.166 203.961 2.11 3.66 1.58

22 15 50 40 15 2 33 13.474 0.192 0.468 205.939 2 36 16.299 0.028 0.173 196.451 3 47 22.399 0.000 0.137 192.490 4.61 6.53 2.02

23 15 100 40 15 2 33 13.474 0.192 0.468 230.939 3 44 19.567 0.152 0.300 214.944 4 57 27.580 0.000 0.140 206.086 6.93 10.76 4.12

24 15 150 40 15 2 33 13.474 0.192 0.468 255.939 3 44 19.567 0.152 0.300 231.610 5 66 31.880 0.005 0.173 216.344 9.51 15.47 6.59

Average percent deviation 7.971% 11.700% 4.193%

∆1 vs. 2% = 100(TC1 − TC2)/TC1; ∆1 vs. 3% = 100(TC1 − TC3)/TC1; ∆2 vs. 3% = 100(TC2 − TC3)/TC2

Table 5.10: Comparison between Scenarios 1, 2 and 3 for a shelf life with variance =3
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Variance =0.5 Variance =0.95 Variance =3

TTI cost TC1 TC2 ∆1 vs. 2% ∆1 vs. 3% TC1 TC2 ∆1 vs. 2% ∆1 vs. 3% TC1 TC2 ∆1 vs. 2% ∆1 vs. 3%

0 122.747 118.664 21.86 24.46 125.136 117.996 20.34 24.89 131.843 117.790 16.07 25.02

0.25 125.244 121.140 20.27 22.88 127.639 120.466 18.75 23.31 134.362 120.263 14.47 23.44

0.5 127.741 123.615 18.68 21.31 130.142 122.935 17.15 21.74 136.881 122.736 12.86 21.87

0.75 130.238 126.090 17.09 19.73 132.646 125.404 15.56 20.17 139.401 125.209 11.26 20.29

1 132.735 128.565 15.50 18.16 135.149 127.873 13.97 18.60 141.910 127.682 9.66 18.72

1.25 135.232 131.040 13.91 16.58 137.652 130.343 12.37 17.03 144.411 130.155 8.07 17.15

1.5 137.729 133.508 12.32 15.01 140.156 132.812 10.78 15.45 146.911 132.628 6.48 15.57

1.75 140.226 135.974 10.73 13.44 142.659 135.281 9.19 13.88 149.412 135.101 4.89 14.00

2 142.717 138.440 9.15 11.87 145.162 137.751 7.59 12.31 151.913 137.574 3.29 12.42

2.25 145.201 140.906 7.57 10.30 147.666 140.220 6.00 10.74 154.414 140.047 1.70 10.85

2.5 147.684 143.372 5.99 8.73 150.169 142.689 4.40 9.17 156.914 142.520 0.11 9.27

2.75 150.168 145.838 4.41 7.16 152.672 145.159 2.81 7.59 159.415 144.993 -1.48 7.70

3 152.652 148.304 2.82 5.59 155.175 147.628 1.22 6.02 161.916 147.466 -3.07 6.13

3.25 155.136 150.770 1.24 4.02 157.679 150.097 -0.38 4.45 164.417 149.939 -4.67 4.55

3.5 157.620 153.236 -0.34 2.45 160.182 152.566 -1.97 2.88 166.918 152.412 -6.26 2.98

3.75 160.104 155.702 -1.92 0.88 162.685 155.036 -3.56 1.31 169.418 154.886 -7.85 1.40

4 162.588 158.167 -3.50 -0.69 165.189 157.505 -5.16 -0.27 171.919 157.356 -9.44 -0.17

4.25 165.072 160.633 -5.08 -2.26 167.692 159.974 -6.75 -1.84 174.420 159.814 -11.03 -1.73

4.5 167.556 163.099 -6.66 -3.83 170.195 162.444 -8.34 -3.41 176.921 162.272 -12.62 -3.30

4.75 172.517 168.031 -9.82 -6.97 172.699 164.913 -9.94 -4.98 179.421 164.729 -14.22 -4.86

5 174.987 170.497 -11.39 -8.54 175.202 167.382 -11.53 -6.55 181.922 167.187 -15.81 -6.43

5.25 177.458 172.963 -12.97 -10.11 177.705 169.852 -13.12 -8.12 184.423 169.645 -17.40 -7.99

5.5 179.928 175.429 -14.54 -11.68 180.208 172.321 -14.72 -9.70 186.924 172.103 -18.99 -9.56

5.75 182.398 177.895 -16.11 -13.25 182.694 174.790 -16.30 -11.27 189.419 174.561 -20.58 -11.12

6 184.869 180.361 -17.68 -14.82 185.181 177.259 -17.88 -12.84 191.902 177.019 -22.16 -12.69

Fixed parameters: C=5, K=150,P=40,W=15, TC1=157,09

Table 5.11: Performance of TTI technologies with fixed TTI cost

5.4.3.1 Comparison between the performance of the technology in an (r, Q)

and in a (T, S) policy

In Table (5.13), we compare the performance of TTI type 1 and type 2 when this

technology is deployed in an (r, Q) inventory policy or in a (T, S) inventory policy. The

results show that the technology is more attractive when it is deployed in a (T, S) policy

because with this policy the ordering quantity is variable while in the (r, Q) is fixed.
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5.4. Comparison between TTI-based (T, S) inventory control to a (T, S)
inventory control with fixed lifetime

Variance =0.5 Variance =0.95 Variance =3

Cost of TTI type 2 TC1 TC2 ∆2 vs. 3% TC1 TC2 ∆2 vs. 3% TC1 TC2 ∆2 vs. 3%

0.5 127.741 123.615 3.2301 130.142 122.935 5.5382 136.881 122.74 10.334

0.55 124.11 2.8426 123.429 5.1588 123.23 9.973

0.6 124.605 2.455 123.923 4.7793 123.72 9.6117

0.65 125.100 2.0675 124.416 4.3998 124.22 9.2503

0.7 125.595 1.68 124.91 4.0203 124.71 8.889

0.75 126.090 1.2925 125.404 3.6409 125.21 8.5276

0.8 126.585 0.905 125.898 3.2614 125.7 8.1663

0.85 127.080 0.5175 126.392 2.8819 126.2 7.8049

0.9 127.575 0.13 126.886 2.5024 126.69 7.4436

0.95 128.070 -0.2576 127.38 2.123 127.19 7.0822

1 < 0 127.873 1.7435 127.68 6.7209

1.05 < 0 128.367 1.364 128.18 6.3596

1.1 < 0 128.861 0.9845 128.67 5.9982

1.15 < 0 129.355 0.605 129.17 5.6369

1.2 < 0 129.849 0.2256 129.66 5.2755

1.25 < 0 130.343 -0.1539 130.15 4.9142

1.3 < 0 < 0 130.65 4.5528

1.35 < 0 < 0 131.14 4.1915

1.4 < 0 < 0 131.64 3.8301

1.45 < 0 < 0 132.13 3.4688

1.5 < 0 < 0 132.63 3.1075

1.55 < 0 < 0 133.12 2.7461

1.6 < 0 < 0 133.62 2.3848

1.65 < 0 < 0 134.11 2.0234

1.7 < 0 < 0 134.61 1.6621

1.75 < 0 < 0 135.1 1.3007

1.8 < 0 < 0 135.6 0.9394

1.85 < 0 < 0 136.09 0.578

1.9 < 0 < 0 136.58 0.2167

1.95 < 0 < 0 137.08 -0.1446

2 < 0 < 0 < 0

Fixed parameters: C=5, K=150,P=40,W=15, Cost of TTI type 1 = 0.5

Table 5.12: Comparison between Model 2 and Model 3

The variability on the order quantity leads to better performance of the technology.

(r,Q) model (T,S) model

r Q TC T S TC

Model 1 12 24 143 2 35 157.0884

TC Model 2 13 41 117.05 4 56 125.14

TC Model 3 13 52 110.67 5 67 118.00

Model 1 vs Model 2 18.14% 20.34%

Model 1 vs Model 3 22.61% 24.89%

Model 2 vs Model 3 5.45% 5.71%

Fixed cost: C=5;K=150;P=40;W=15;H=1; Poisson demand with mena= 10; L=1.

Table 5.13: Performance of TTI technologies with the variability of the lifetime distri-
bution
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5.5 Conclusion

In this chapter, we have proposed firstly an (r, Q) inventory model with TTI type 1.

For this model, we have used simulation to compare approximate outdating, shortage,

inventory level, and cycle time with the simulated average counterparts. The results

suggest that approximations we made are reasonably accurate. We have also compared

separately an (r, Q) and a (T, S) inventory systems where TTI type 1 and type 2 are used

to a base case corresponding to an inventory system controlled by an (r, Q) and (T, S)

inventory without TTI technologies. We have found that the use of TTI technologies

can considerably improve the inventory management but this improvement depends on

the TTI’s cost.

The performance of TTI technologies is mainly attributed to its ability to capture the

impact of temperature variations on the remaining shelf life of products. However there is

another alternative to improve the total operating inventory cost by decreasing the selling

price of products as the lifetime decreases. Therefore, an interesting future investigation

can be addressed to the comparison of two inventory systems: one with TTI technologies

and the other with dynamic pricing to show whether or not the TTIs technology is still

attractive.
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Chapter 6

Conclusions and Perspectives

One significant challenge for many manufacturing organizations is managing invento-

ries of products that frequently outdate. Academics and practitioners are continually

seeking for the best tradeoff between customer satisfaction and reducing the amount of

outdating products to find feasible and effective perishable inventory systems. The lim-

ited lifetime of products contribute greatly to the complexity of their management. The

major challenge, however, stems from the dependency of the product’s lifetime and the

environmental storage conditions such as temperature. The variations in temperature

often lead to drops in product’s lifetime. Consequently, orders leaving the manufactures

with a homogeneous lifetime may arrive at the retailer with different lifetime’s levels.

Modern sensor technologies such as TTIs that are able to register this type of informa-

tion can help to assess the lifetime of products and therefore aid to efficiently manage

perishable inventories.

The purpose of this Ph.D. dissertation is to develop new models to control the inventory

of perishable products and also to quantify the benefit of using TTI technologies on

inventory management. To achieve our goal, we have considered both continuous and

periodic review inventory systems with deterministic lead time in order to obtain insights

on the impact of perishability on inventory management and also to use such models as

a base case when the performance of the inventory is enabled by TTI technologies. Our

main contributions are detailed in five chapters:

Chapter (1) constitutes an introduction for this Ph.D thesis. Indeed, we have focused on

understanding the complexity of incorporating the feature of perishability on inventory

management and how the lifetime is determined. Then, we have described the benefits

and the limitations of the deployment of TTI technologies on inventory management.



Conclusions and Perspectives

Finally we have identified three different scenarios to manage perishable inventory de-

pending whether TTI technologies are used or not to assess the products’ lifetime.

Chapter (2) is an overview of research in single item single location perishable inventory

management. We have provided a classification of works based on product’s lifetime

assumption (deterministic or stochastic lifetime) and the approach used to characterize

the optimal or near optimal policy. Our literature review revealed that inventory control

of perishable products is extremely difficult and most of effort is dedicated to covering

research that specifically deals with fixed lifetime case. Based on this literature review,

we identified and emphasized some of the important research directions allowing us to

choose the topics to be considered in priority in this thesis.

Chapter (3) aimed at developing a new (r, Q) inventory policy for perishables with fixed

lifetime. The literature review conducted in Chapter two showed a gap in the body

of knowledge for this type of policy. Prior studies did not attempt to consider the case

where perishability may occur during the lead time neither the case of undershoots at the

reorder point in the determination of an appropriate perishable inventory control policy.

New insights are gained when considering the perishability during the lead time and re-

laxing the assumption of undershoots of reorder point. Particularly, we have shown that

the model we have proposed outperforms the existing works and the traditional (r, Q)

inventory policy which ignores the perishability of products. In addition, our analysis

showed that the consideration of undershoots of the reorder point lead to a more accu-

rate cost expression.

Next we have developed a periodic review inventory model for perishables with random

lifetime (chapter (4)). The stochastic behavior of this inventory system is modeled as a

Markov renewal process and the exact cost expression is obtained. The proposed model

is tested under varying operating conditions such as product’s lifetime (deterministic

versus stochastic lifetime) and the cost parameters. The main conclusion that can be

drawn from this chapter is that, with respect to cost parameters, the consideration of

the randomness of the lifetime leads to substantial saving.

Finally, we have focused on the value of TTIs technology to manage perishable inventory.

Since no analytical closed form expression for perishable inventory with TTIs technol-

ogy exists, a carefully designed simulation study under varying operating conditions was

conducted to evaluate the impact of using such technology. A two different models (for-
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mulated in Chapter 1) where the inventory is controlled by information stemming from

TTI type 1 and from TTI type 2 are compared to a to a base case for which the inven-

tory is managed on the basis of fixed lifetime. This work demonstrates that use of TTIs

technology can considerably improve the inventory management but this improvement

depends on the TTIs’ cost. Clearly, the ability of TTIs technology to capture the impact

of temperature variations on product’s lifetime allows suppliers to generate significant

value from this technology by allocating products that have the least lifetime or products

that experience the highest temperature abuse to customer demand first. Consequently

this technology helps to reduce the amount of perished products and therefore leads to

the best total operating cost in comparison with an inventory system without TTIs.

Perspectives

Although much work is accomplished in perishable inventory management, there are

identifiable areas for potential future research. In addition to the perspectives given in

chapter (3), (4) and (5), we provide here three fruitful research topics that capture our

attention:

• As shown in Chapter (2), the majority of research on perishable inventory management

concerns single product, however, in many sectors such as grocery, it is more likely to find

inventory management systems that deals with multiple perishable products rather than

single product. The Join replenishment is a typical solution for these types of situations.

Works on Joint Replenishment Problem (JRP) is restricted to non perishable products.

Khouja & Goyal (2008) provide an excellent literature review for the JRP. Generally,

two types of policies are wieldy studied: the periodic polices and the can-order systems

denoted by (s, c, S). Such policy operated as follows: For any item i, if its inventory

drops to it reorder point s, a reorder is triggered. Other items are inspected and any

item j at or below it can-order point c is include in the reorder. Items are reordered up

to S. Melchiors (2002) shows that the can-order policies performs better when the major

ordering cost is relatively low and the periodic replenishment policies performs better

when the major ordering cost is relatively high. Investigating the JRP for perishables

is one of possible future research direction. Particularly, the impact of perishability on

the performance of periodic review and the can-order policies is an interesting direction

for future topics.

• The second area of future research can be addressed to the case of multi-echelon per-
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ishable inventory problems. A blood bank that replenishes multiple hospitals may be

seen for example as a central warehouse multi-retailers inventory systems. Although

multi-echelon inventory for non perishable products is largely studied, models dealing

with multi echelon perishable inventory systems are very limited, probably due to the

complexity of the optimal ordering policy for a single stage (see chapter 2). Moreover,

there is no work that investigates continuous replenishment policies with perishables

for multi-echelon even if continuous replenishment policies are mainly studied for single

stage. Particularly, for one warehouse multi-identical retailers controlled by the (r, Q)

policy, good approximate solutions exists (see Seifbarghy & Jokar (2006), and Thangam

& Uthayakumar (2008)). Such solutions are derived under the assumption of Poisson

distribution process for the demand at the warehouse. We think that such ordering rules

could be extended to the case of perishable products with stochastic lifetime since the

lifetime of products will not affect this assumption and therefore the same analysis can

be used to obtain an approximate two echelon inventory system for perishables.

• Pricing has become one of the most management issue extensively studied in the last

decade, especially for perishable products facing uncertain demand. The tradeoff be-

tween determining the best selling price and maximizing the revenue is the following:

For a low selling price, potential revenue will be lost; but if the price is set too high,

demand will be low and perishable products may be wasted when they expire. A de-

tailed review on dynamic pricing with or without possibilities of inventory replenishment

is provided by Elmaghraby & Keskinocak (2003). Even if several models dealing with

optimal pricing and inventory allocation policies have been proposed in literature, the

problem of dynamic pricing decisions that aims at reducing the amount of outdated

product and shortages remain an open research topic. Interesting future research would

be to combine inventory models with pricing to address the potential economic impact

with more sophisticated pricing decisions and disposing strategies which incorporate the

age of products. Another important research stream would be to consider a dynamic

pricing decisions and the use of TTI technology, where for example the selling price

change as the TTI color change, to obtain more effective inventory systems.
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