B. , C. T. Benson, and C. W. Curtis, The program is best left overnight to do the calculation for E 8 On the degrees and rationality of certain characters of finite Chevalley groups, Bibliography [ Trans. Amer. Math. Soc, pp.165-251, 1972.

]. C. Bon05 and . Bonnafé, Quasi-isolated elements in reductive groups, Comm. Algebra, vol.33, issue.7, pp.2315-2337, 2005.

J. [. Borel and . Siebenthal, Les sous-groupes ferm??s de rang maximum des groupes de Lie clos, Commentarii Mathematici Helvetici, vol.23, issue.1, pp.200-221, 1949.
DOI : 10.1007/BF02565599

URL : http://www.digizeitschriften.de/download/PPN358147735_0023/PPN358147735_0023___log15.pdf

]. N. Bou02 and . Bourbaki, Lie groups and Lie algebras. Chapters 4?6, Elements of Mathematics, 1968.

]. R. Car72 and . Carter, Simple groups of Lie type, Pure and Applied Mathematics, vol.28, 1972.

]. C. Che05 and . Chevalley, Classification des groupes algébriques semi-simples, With the collaboration of Cartier, A. Grothendieck and M. Lazard, 2005.

W. [. Collingwood and . Mcgovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, 1993.

P. Deligne and G. Lusztig, Representations of Reductive Groups Over Finite Fields, The Annals of Mathematics, vol.103, issue.1, pp.103-161, 1976.
DOI : 10.2307/1971021

G. [. Digne, J. Lehrer, and . Michel, On Gel'fand-Graev characters of reductive groups with disconnected centre, J. Reine Angew. Math, pp.491-131, 1997.

J. [. Digne and . Michel, On Lusztig's parametrization of characters of finite groups of Lie type, Astérisque, vol.6, pp.181-182, 1990.

D. , M. J. Dyer, and G. I. Lehrer, Representations of finite groups of Lie type Reflection subgroups of finite and affine Weyl groups, Trans. Amer. Math. Soc, vol.21, issue.11, pp.363-5971, 1991.

M. Geck, Basic Sets of Brauer Characters of Finite Groups of Lie Type II, Journal of the London Mathematical Society, vol.2, issue.2, pp.47-255, 1993.
DOI : 10.1112/jlms/s2-47.2.255

D. [. Geck and . Hézard, On the unipotent support of character sheaves, Osaka J. Math, vol.45, issue.3, pp.819-831, 2008.

. Ghl-+-96-]-m, G. Geck, F. L. Hiss, G. ¨-ubeck, G. Malle et al., CHEVIE ? A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput, vol.7, pp.175-210, 1996.

N. [. Geck and . Jacon, Representations of Hecke algebras at roots of unity, Algebra and Applications, vol.15, 2011.
DOI : 10.1007/978-0-85729-716-7

G. [. Geck and . Malle, On the existence of a unipotent support for the irreducible characters of a finite group of Lie type, Transactions of the American Mathematical Society, vol.352, issue.01, pp.429-456, 2000.
DOI : 10.1090/S0002-9947-99-02210-2

]. S. Goo07 and . Goodwin, On generation of the root lattice by roots, Math. Proc. Cambridge Philos. Soc, vol.142, issue.1, pp.41-45, 2007.

D. Hézard, Sur le support unipotent des faisceaux-caractères, 2004.

J. E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, vol.21, issue.21, 1975.
DOI : 10.1007/978-1-4684-9443-3

]. N. Kaw85 and . Kawanaka, Generalized Gelfand-Graev representations and Ennola duality, Algebraic groups and related topics, Adv. Stud. Pure Math, vol.6, pp.175-206, 1983.

G. [. Kazhdan and . Lusztig, Representations of Coxeter groups and Hecke algebras, Inventiones Mathematicae, vol.4, issue.2, pp.165-184, 1979.
DOI : 10.1007/BF01390031

G. Lusztig, Irreducible representations of finite classical groups, Inventiones Mathematicae, vol.3, issue.3, pp.125-175, 1977.
DOI : 10.1007/BF01390002

N. [. Lusztig and . Spaltenstein, Induced Unipotent Classes, Journal of the London Mathematical Society, vol.2, issue.1, pp.41-52, 1979.
DOI : 10.1112/jlms/s2-19.1.41

URL : http://jlms.oxfordjournals.org/cgi/content/short/s2-19/1/41

]. G. Mal91 and . Malle, Darstellungstheoretische Methoden bei der Realisierung einfacher Gruppen vom Lie Typ als Galoisgruppen, Representation theory of finite groups and finite-dimensional algebras, Progr. Math, vol.95, pp.443-459, 1991.

D. [. Malle and . Testerman, Linear algebraic groups and finite groups of Lie type, Cambridge Studies in Advanced Mathematics, vol.133, 2011.
DOI : 10.1017/CBO9780511994777

]. J. Mic11 and . Michel, Homepage of the development version of the GAP part of CHEVIE, 2011.

]. K. Miz80 and . Mizuno, The conjugate classes of unipotent elements of the Chevalley groups E 7 and E 8, Tokyo J. Math, vol.3, issue.2, pp.391-461, 1980.

]. A. Pre03 and . Premet, Nilpotent orbits in good characteristic and the Kempf-Rousseau theory, J. Algebra, vol.260, issue.1, pp.338-366, 2003.

T. Shoji, Green functions of reductive groups over a finite field The Arcata Conference on Representations of Finite Groups, Proc. Sympos. Pure Math, pp.289-301, 1986.

]. N. Spa82 and . Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol.946, 1982.

R. [. Springer and N. J. Steinberg, Conjugacy classes, Birkhäuser Boston Inc. Lecture Notes in Mathematics, vol.3, issue.69, pp.167-266, 1968.
DOI : 10.1017/S1446788700027622

]. R. Ste68a and . Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the, 1968.

]. G. Wal63 and . Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. Math. Soc, vol.3, pp.1-62, 1963.