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ABSTRACT

Analysis of Υ production in pp
collisions at 7 TeV

with the ALICE Muon Spectrometer

ALICE experiment is a general-purpose detector designed to study the

Quark-Gluon Plasma in heavy-ion collisions at CERN LHC. One of powerful

probe to the QGP is the heavy quarkonium production in heavy-ion colli-

sions compared to the pp collisions. The interests of the heavy quarkonium

production is not limited in heavy-ion physics since its production mecha-

nism in pp collisions is still ambiguous. The aim of this thesis work is to

estimate the production cross section of Υ(nS) in pp collisions at
√
s =

7 TeV in their muon decay channel with the ALICE muon spectrometer.

The ALICE muon spectrometer is located at the forward rapidity region

−4 < y < −2.5. It consists of a set of absorbers, a warm dipole mag-

net, tracking and trigger stations. The online monitoring software for muon

trigger system described in this thesis work has been developed in order

to help efficient data taking. A part of data taken in 2010 has been ana-

lyzed to estimate Υ production cross section. The published J/ψ production

cross section in pp collisions at the same energy is exploited in the estima-

tion method. The preliminary result in the rapidity range 2.5 < y < 4 is

σΥ(1S) × BΥ(1S)→µ+µ− = 0.62± 0.38(stat.)+0.12
−0.21(syst.) nb per rapidity unit.

Keywords: CERN LHC, ALICE, Muon Spectrometer, Υ, cross section

iv



Introduction

In 2010, the proton-proton collisions at the world highest energy1 was suc-

cessfully performed at CERN Large Hadron Collider which is located in the

circular tunnel with 27 km circumference buried under the ground strad-

dled the border of France and Switzerland in Geneva. The CERN LHC

is designed to collide protons at
√
s = 14 TeV energy and lead-ions at

√
s = 5.5 TeV. In autumn in the same year, the lead-ion beam was suc-

cessfully circulated and collided at
√
sNN = 2.76 TeV (half of its nominal

value) for a month. It has been expected that the CERN LHC will open

the new energy regime and help to explore the uncovered physics.

In order to collect and exploit the new data to be produced at LHC

energy, several huge complicated detectors have been designed and built for

a decade. They are ALICE2, ATLAS3, CMS4 and LHCb5, alphabetically. In

particular, ALICE is a detector dedicated to the heavy-ion physics which fo-

cused on the collective phenomena created in the ultra-relativistic heavy-ion

collisions. The ALICE detector has a forward muon arm named the ALICE

muon spectrometer in order to study the processes involving muons, such as

low-mass resonances, heavy quarkonia, open-charm and beauty production,

etc. Especially, heavy quarkonium states like J/ψ, ψ′ (charmonium states)

have provided a powerful tool to characterize new state of matter, such as

the Quark-Gluon Plasma (QGP), via its di-muon decay channel. In addition

to the charmonium states, at LHC energy, the bottomonium states, Υ fam-

1The collision energy
√
s = 7 TeV. The former world record was

√
s = 1.96 TeV at

Tevatron
2A Large Ion Collider Experiment
3A Toroidal LHC ApparatuS
4Compact Muon Solenoid
5LHC beauty
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ily, will be produced with more than an order of magnitude relative to the

previous experiments and, thus, will provide a new probe to the QGP.

In this thesis, a preliminary result on the Υ production via its di-muon

decay channel will be presented in Chapter 4 after the analysis of the data

collected in pp collisions at
√
s = 7 TeV in the year 2010. Also, the de-

tailed description of the software framework developed for the Υ analysis is

presented in Chapter 2, together with the design and performance of the

ALICE sub-detectors as well as the details of the ALICE muon spectrome-

ter. A whole chapter is assigned to describe the on-line monitoring software

development for the ALICE muon trigger system in Chapter 3. In the fol-

lowing chapter, a brief introduction to the strong interaction, QCD phase

diagram, heavy quarkonium in the medium, and its hadroproduction will be

presented. The axial coordinate system of the ALICE experiment, kinematic

variables often used in this thesis and glossary are presented in the Appen-

dices.
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Chapter 1

Heavy Quarkonia and the QGP

1.1 Strong interaction and QCD phase transition

The origin of the strong interaction was started from some ideas introduced

to explain how protons and neutrons can be combined inside a nucleus. The

first idea was that the strength of this kind of force is simply greater than

that of the electromagnetism. In other words, repulsive interaction between

positive charged protons is overwhelmed by the force that binds protons to-

gether inside the atom,

αs ∼ 1(while αem ∼ 10−2)

where αs is the coupling constant of strong interaction, αem is the coupling

constant of electromagnetic interaction. On the other hand, the strong force

does not affect the electrons located at relatively large distance. This leads

to the second idea that the force is effective only at a short distance, namely

the size of proton, ∼ 1 fm. As the quark model has been developed, it is

well known that a hadron, such as proton and neutron, consists of quarks

and it has turned out that the protons and neutrons are bound together

in a nucleus due to the strong interaction between quarks propagated by

gluons. The theory of the interaction between quarks and gluons has been

established and it is called Quantum Chromodynamics (QCD).

The main concept of the QCD is the color charge which is analogous to

3



g

q̄

q

Figure 1.1: The fundamental form of quark-gluon interaction. The color
charge is exchanged at the vertex.

the electric charge of the electromagnetism. It was insufficient to describe the

strong interaction with only electric charge of quarks, which is a fractional

charge. In QCD, a quark carries not only an electric charge, but also a color

charge. There are three kinds of colors: Red, Blue and Green. A striking

feature of QCD is that the color charge is not only carried by the quarks,

but also carried by the gluons. The color charge is exchanged between quarks

via a gluon at a vertex in a process (see Fig. 1.1). This leads to the fact that

there are eight possible gluons in the combination of color and anti-color: it

is called color-octet state,

|1〉 = (rb̄+ br̄)/
√

2 |5〉 = −i(rḡ − gr̄)/
√

2

|2〉 = −i(rb̄− br̄)/
√

2 |6〉 = (bḡ + gb̄)/
√

2

|3〉 = (rr̄ − bb̄)/
√

2 |7〉 = −i(bḡ − gb̄)/
√

2

|4〉 = (rḡ + gr̄)/
√

2 |8〉 = (rr̄ + bb̄− 2gḡ)/
√

6

where r, b and g represent the three kinds of colors: Red, Blue and Green,

respectively. Color-singlet state of gluon is forbidden because white gluon is

not allowed. The color charge of gluons allows gluons to interact between

themselves. This makes higher-order Feynman diagrams of the strong inter-

action not to be neglected and QCD calculation difficult.

The behavior of the coupling strength in QCD depending on the inter-

action distance is unique. On the one hand, in contrast to the electromag-

netism, the longer is the distance between quark and anti-quark pair, the

larger is the attractive strength between them. In other words, the energy

that binds the quark and anti-quark pair together becomes larger when one

tries to separates them. On the limit of the energy (or at a long distance)

4



enough to create a new quark and anti-quark pair, the binding of the orig-

inal quark and anti-quark pair breaks and each quark and anti-quark are

bound with the new quark and anti-quark into new two quark and anti-

quark pairs. This is why an isolated (free) quark has never been observed.

It is known as the confinement that quarks and gluons are always in a state

forming a hadron. On the other hand, the shorter is the distance between

the quark and anti-quark pair, the smaller is the strength of the coupling.

In particular, the coupling strength of the strong interaction becomes weak

as the momentum transfer, Q2, is larger in a process (or vice versa). As a

consequence, quarks become free at high energy which is called asymptotic

freedom [1]. Therefore, the coupling strength of the strong interaction, αs,

is expressed as

αs(Q
2) ∼ A

[
1/ln

(
Q2

Λ2
QCD

)]
where the coefficient A is determined by the number of flavors (u, d, s, c, b

and t) in a process and ΛQCD is the QCD confinement scale which represents

the typical binding energy of a hadron that depends on its mass. Figure 1.2

shows the summary of measurements of strong coupling as a function of the

momentum transfer. The value of ΛQCD is determined by experiments and

known as,

ΛQCD ∼ 200 MeV [3].

At the limit, Q2 � Λ2
QCD, the coupling strength becomes much smaller, and

thus the quarks and anti-quarks (almost) do not feel any constraints between

them as if they are free from the hadronic jail. This is called deconfinement.

This state can also be reached by squeezing hadrons tightly into a very small

area. That is like increasing hadron (in particular, baryon like proton and

neutron) density or energy density. The typical energy density of a nucleus

is

εnucl ∼ 0.15 GeV/fm3

At the limit, ε ∼ 1 GeV/fm3, the quarks and gluons become free states,

such a state of matter is called the Quark-Gluon Plasma (QGP).

The QGP is thought to be existed at the early stage of the evolution

5



Figure 1.2: Summary of measurements of αs as a function of Q [2].
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of Universe after the Big Bang. After a few millionths of a second, at the

temperature of order T ∼ 170 MeV, the quarks and gluons start binding

together confined into hadrons. In addition, the QGP can be found inside

the cores of neutron stars, while unlike the matter formed after the Big

Bang, this matter is cold. The nature of the QGP is an issue of fundamental

interest. Thus the goal of heavy-ion physics is to recreate such a matter

in the laboratory via ultra-relativistic heavy-ion collisions. The term ”ultra-

relativistic” is defined by the requirement to reach or exceed energy densities

ε ∼ 1 GeV/fm3. The required center of mass nucleus-nucleus energy
√
sNN

in heavy-ion collisions turned out to be
√
sNN ≥ 10 GeV [4].

The whole picture of such variation of the state of the matter (hadrons)

is drawn by the lattice calculation of QCD. The recent lattice QCD calcula-

tions at zero net-baryon density predicts that the phase transition from the

hadrons to the deconfinement occurs at the temperature T ∼ 170 MeV. And

it suggests a phase diagram of QCD matter and its states in the plane of

the temperature T and baryon number density (or baryon number chemical

potential µB). At low energies the fireball produced after a collision con-

tains about equal numbers of newly created quark-anti-quark pairs (of zero

net baryon number) and of initial valence quarks that leads to a high µB

value. Conversely, at (designed) LHC energy (5.5 TeV for Pb–Pb collisions),

the initial valence quarks constitute a only 5% fraction of the total quark

density that results in a small value of µB. In the extreme, the matter cre-

ated after the Big Bang evolves toward hadronization (at Tc = 170 MeV)

featuring µB ≈ 0.

A sketch of the QCD phase diagram is shown in Fig. 1.3. The (dom-

inating) black band indicates the phase transition between hadron matter

and the QGP. It interpolates between the extremes of predominant mat-

ter heating (high T , low µB) and predominant matter compression (T →
0, µB>1 GeV). Onward from the later conditions, the transition is expected

to be of first order [6] until the critical point of QCD matter is reached

at 200 ≤ µB(E) ≤ 500 MeV. The relatively large position uncertainty re-

flects the preliminary calculations of lattice QCD. Onward from the critical

point, E, the phase transformation at lower µB is a rapid cross-over [7].

7



Figure 1.3: Sketch of the QCD matter phase diagram in the plane of temper-
ature T and baryo-chemical potential µB. The parton-hadron phase transi-
tion line from lattice QCD ends in a critical point E. A cross-over transition
occurs at smaller µB (see [5] and references therein).
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Figure 1.4: Schematic light cone diagram of the evolution of a high energy
heavy-ion collision, indicating a QGP formation time τ0 [5] (see text).

The hadronic freeze-out points are determined from data obtained in the

nucleus-nucleus collisions at the various incident energy ranges from SIS at

GSI via AGS at BNL and NA49 at CERN SPS to RHIC energies, i.e. 3 ≤
√
sNN ≤ 200 GeV. These points indicate the µB domain of the phase di-

agram that is accessible by the relativistic nuclear collisions. The domain

at µB ≥ 1.5 GeV where a new phase of QCD featuring Color-Flavor Lock-

ing (CFL) and Color Superconductivity [8, 9] is predicted will probably be

accessible only by astrophysical observation.

1.2 Dynamical evolution of a heavy-ion collision in

space-time

The dynamical evolution in space-time of a central heavy-ion collision is

sketched in Fig. 1.4 by means of a schematic 2-dimensional light cone dia-

gram. Soon after the collision of the two nuclei1, the energy density may be

1In ultra-relativistic heavy-ion collisions, such as Pb–Pb collisions at LHC, two nuclei
traveling at relativistic speeds become longitudinally Lorentz-contracted discs.
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sufficiently high enough to allow the formation of a Quark-Gluon Plasma in

the central region. As the system expands, the temperature drops down and

the hadronization takes place. Below the freeze-out temperature, hadrons

stream out of the collision region. The entire process can be summarized

as follows:

• pre-equilibrium (proper time τ0<1 fm/c): hard and soft processes occur

during the parton scattering;

• thermalization (possibly occurring at τ ∼ 1 − 2 fm/c): the multiple

scattering among the quark and gluon constituents of the colliding nu-

cleons and the particles newly produced during the collisions lead to

the thermalization;

• QGP formation (1 < τ < 10 − 15 fm/c): at high energy densities the

system reaches the deconfinement phase with partonic degrees of free-

dom;

• hadronization (τ ∼ 20 fm/c): the temperature of the expanding medium

drops down and, below the critical temperature Tc, the quarks and glu-

ons becomes confined into hadrons;

• freeze-out (τ →∞): the expansion and the temperature fall lead to a

reduction of the inelastic processes among hadrons, until the relative

abundance of hadron species is fixed (chemical freeze-out), and then to

the stop of any interaction which fixes the kinematic spectra (kinetic

freeze-out).

1.3 Observables to probe the QGP

In order to verify the existence of the phase transition and the formation of

the Quark-Gluon Plasma in heavy-ion collisions, physics observable quanti-

ties having the information about the state of the produced medium during

distinct stages of the dynamical evolution have to be identified. Ordered in

sequence of their formation in the course of the dynamics, the most relevant

observables are briefly characterized in what follows:

10



• Suppression of heavy quarkonia (J/ψ and Υ) production by Debye-

screening in the QGP: the vector mesons produced from primordial

creation of cc̄ and bb̄ pairs that would hadronize unimpeded in elemen-

tary collisions but are broken up at a certain temperature thresholds

if immersed into a deconfined QGP.

• Suppression of di-jets (Jet quenching in A–A collisions): two quarks

or gluons are produced in a collision, one of them leaves the medium

directly while the other one traverses the medium and then is atten-

uated. The undisturbed parton hadronizes and forms a jet while the

other one is absorbed in the medium and is not detected (or distorted).

• High-pt particles: a variant of di-jet suppression. High pt particles pro-

duced in primordial qq̄, gg or qq reactions with high momentum trans-

fer are attenuated by gluonic bremsstrahlung (q + q → q + q + g) in

QGP-medium.

• Hydrodynamic collective motion, ”flow”, develops with the onset of

thermal equilibrium. It is created by partonic pressure gradients that

reflect the initial collisional impact geometry via anisotropies in par-

ticle emission called ”directed” and ”elliptic” flow. The latter reveals

properties of the QGP.

• Hadronic ”chemical” freeze-out fixes the abundance ratios of the hadronic

species. Occurring close to, or at hadronization, it reveals the dynam-

ical evolution path in QCD phase diagram and determines the critical

temperature and density of QCD.

• Fluctuations from one collision event to another: it can be quantified

in Pb–Pb collisions due to the high charged hadron multiplicity den-

sity (' 1500 per rapidity unit at LHC energy [10]). This reflects the

existence and position of the critical point of QCD.

• Two particle Bose-Einstein-Correlations: the analog of the Hanbury-

Brown, Twiss (HBT) effect of quantum optics. They result from the

last interaction experienced by hadrons, i.e. from the ”kinetic” freeze-

11



out stage. They reveal information on the overall space-time develop-

ment of the ”fireball” evolution.

1.4 Heavy quarkonium as a probe of the QGP

Heavy quarkonium is a meson state composed of a heavy quark, such as c

quark or b quark, and its anti-quark. There are two kinds of heavy quarko-

nium that have been found2, they are “charmonium” and “bottomonium”.

The charmonium is a cc̄ bound state, such as J/ψ, ψ′, χc, etc. The bot-

tomonium is a bb̄ bound state, such as Υ, Υ′, Υ′′, χb, etc.

1.4.1 The discovery of heavy quarkonia

J/ψ meson is the firstly revealed cc̄ bound state of charmonia with mass

∼ 3.1 GeV/c2 and it was found in 1974. Its discovery was made in differ-

ent laboratories at the almost same time, Brookhaven National Laboratory

(BNL) [11] (see Fig. 1.5a) and Stanford Linear Accelerator Center (SLAC) [12]

(see Fig. 1.5b). The first excited state of J/ψ, the ψ′ (or ψ(2S)) was dis-

covered by the same group at SLAC.

In 1977, new resonance in the higher mass region ∼ 9.5 GeV/c2 was

found via muon pair detection at Fermi National Accelerator Laboratory

(FNAL) [13] (see Fig. 1.6) in proton-nucleus collisions at
√
s = 400 GeV.

The resonance was named Υ and turned out that it is a meson system com-

posed of b quark and its anti-quark. Like the J/ψ case, the first excited state

Υ′ (or Υ(2S)) was directly found [14], and the Υ(3S) state and an evidence

of Υ(4S) state were found at FNAL [15] in turn.

In addition, there had been efforts to find the unhidden c and b quarks

from their quark-antiquark bound states since an isolated quark is not al-

lowed due to the confinement feature of QCD (see Section 1.1). The first

charmed meson named D0 was found in 1976 [16], and the first charged

charmed meson, D+ was discovered [17] after that. The first charmed baryon,

Λ+
c , was also discovered in the same year [18]. For the first bottom meson,

2A bound state of a top quark and its anti-quark, called “toponium”, has not been
found.

12



(a) (b)

Figure 1.5: Mass spectrum showing the existence of J/ψ meson reported by
(a) BNL [11] and (b) SLAC [12].

13



Figure 1.6: Measured di-muon production cross section as a function of the
invariant mass of the muon pair [13]. The closed circles are data points of
unlike sign muon pair and the open circles are that of like sign muon pair.
The solid line is the continuum fit.
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B, its evidence was confirmed by the CLEO collaboration in 1980 [19], and

in the following year, the first evidence for baryons with b quark, Λ0
b , was

reported at CERN [20].

1.4.2 The characteristic of heavy quarkonium

The mass of heavy quarks mQ
3, mc ' 1.5 GeV/c2 and mb ' 4.7 GeV/c2 are

larger than the QCD confinement scale ΛQCD (see Section 1.1). Thus, one

can expect that the strong coupling constant αs will be smaller than 1. Since

the typical velocity (relative with respect to the speed of light, c) of heavy

quarks inside the bound state is small compared to the light quarks (v2 ∼ 1),

v2 ∼ 0.3 for cc̄, v2 ∼ 0.1 for bb̄, the bound system of heavy quarkonium is

non-relativistic. The non-relativistic hierarchy of energy scales,

mQ � p ∼ 1/r ∼ mQv � E ∼ mQv
2

where r is the distance between the heavy quark and the anti-quark, and mQ

is the heavy quark mass (hard scale), p is the momentum (soft scale), and

E is the binding energy (ultra-soft scale). The strong coupling constant, αs,

is small, αs(mQ)� 1 for the mass scale, since mQ � ΛQCD. Also, possibly

αs(mQv)� 1 for the momentum scale if mQv � ΛQCD. The strong coupling

constant, αs, as a function of quarkonium radius r is shown in Fig. 1.7.

The bound state of heavy quarks can be described by the non-relativistic

Schrödinger equation,(
− ∇2

2(mQ/2)
+ V (r)

)
Ψ(r) = EΨ(r)

where mQ/2 is a reduced mass, E is the binding energy, and V (r) is the

static QQ̄ potential in the form of,

V (r) = κr − 4

3

αs
r
,

where r is the distance between the quark and the anti-quark, κ is the string

tension which represents the strength of quark confinement force. The po-

3heavy quarks are denoted by Q; (small) q for light quarks.
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Figure 1.7: The strong coupling constant, αs, as a function of quarko-
nium radius r, with labels indication approximate values of mQv for
Υ(1S), J/ψ, and Υ(2S) [21].
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Figure 1.8: Static QQ̄ potential as a function of quarkonium radius r [21].

tential represents the Coulomb-like behavior, V ∼ 1/r, of the strong inter-

action at short range and the confinement increasing without limit at long

distances, V ∼ r. This is depicted in Fig. 1.8.

1.4.3 Heavy quarkonium in hot medium

The string tension, κ, will decrease as the temperature T approaches the

critical temperature Tc, and it eventually vanishes above Tc. The binding

between Q and Q̄, thus, becomes weak. In addition, the QCD string between

the heavy quarks will be broken at long distances due to the light quark

pairs, qq̄ in such a hot environment. Hence, the heavy quark pairs, QQ̄,

break up into heavy-light quark pairs, Qq̄ and Q̄q. Then, V (r) becomes flat

above some critical distance. For T > Tc, the confining potential disappears.

We thus expect,

Veff(r) = −4

3

αs
r
exp[−r/rD(T )]

17



Table 1.1: Upper bounds on the dissociation temperatures [24].

state χc ψ′ J/ψ Υ′ χb Υ

Tdiss ≤ Tc ≤ Tc 1.2Tc 1.2Tc 1.3Tc 2Tc

where rD(T ) is the Debye screening radius which depends on the temper-

ature. When the screening radius, rD, falls below the binding radius, r, of

heavy quarkonia, the quark and its anti-quark can no longer see each other.

Hence the bound state becomes dissociated [22]. Otherwise, the effective po-

tential still supports the bound state when the radius r is smaller than rD.

The screening radius and radii of heavy quarkonium states depend on

the temperature. By pinning down the dissociation points of heavy quarko-

nia, we can determine the temperature of the QGP medium. In this respect,

the measurement of the dissociation point of individual quarkonium states is

referred to as a QGP thermometer [23]. An upper bound on the dissociation

temperature for the different quarkonium states obtained from a full QCD

calculation [24] are given in Tab. 1.1. All charmonium states are dissolved

in the deconfined phase while the bottomonium 1S state may persist up to

∼ 2Tc.

The dissociation of all charmonium states and the excited bottomonium

states in deconfined medium leads to the reduction of the quarkonium yields

in heavy-ion collisions compared to the pp collisions. However, not all of the

observed quarkonium suppression is due to QGP formation. In fact, quarko-

nium suppression was also observed in proton-nucleus (p-A) collisions where

no hot and dense matter effects are expected, so that part of the nucleus-

nucleus suppression is due to Cold-Nuclear-Matter (CNM) effects. Therefore

it is necessary to disentangle the CNM effects through p-A collisions.

1.4.4 Cold-Nuclear-Matter effects

There are several CNM effects. First, the shadowing effects which modi-

fies the parton distribution functions in the nucleus relative to the nucleon.

In particular, the gluon shadowing effects will plays a crucial role in the

quarkonium production in hadronic collisions. Current shadowing models pa-
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Figure 1.9: The EPS09 gluon-shadowing parameterization [25] at Q = 2mc

and mb. The central value (solid curves) and the associated uncertainty
(shaded band) are shown.

rameterize the various experimental data to the nuclear parton densities.

This effects with the possible range as a function of Bjorken-x4 is shown

in Fig. 1.9 [25]. Second, the nuclear absorption which represents break-up

of the quarkonium state as it passes through the nucleus. The effect oc-

curs after the QQ̄ pair has been produced and while it is traversing the

nuclear medium. The probability to survive from the absorption depends on

the quarkonium absorption cross section. Detailed analyses show that the

quarkonium absorption cross section decreases with increasing energy [26,

27]. In addition, the energy loss of the parton traversing the nucleus before

the hard scattering and a discussion of several types of energy-loss models

is presented in [28].

1.4.5 Experimental results of heavy quarkonium suppression

The studies of charmonium suppression in heavy-ion collisions has been car-

ried out by the several experiments: NA50 and NA60 experiments at CERN

SPS, and PHENIX and STAR experiments at RHIC. The NA50 collabora-

tion showed the results obtained in Pb–Pb collisions at 158 GeV/nucleon

4the momentum fraction carried by a parton compared to the nucleon
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Figure 1.10: The J/ψ/Drell-Yan cross-sections ratio vs. L (see text) for sev-
eral collision systems divided by the nuclear absorption pattern [29].

(see Fig. 1.10) of which J/ψ yield was suppressed with respect to the CNM

effects [29]. The CNM effects has been extracted by extrapolating the J/ψ

production data collected at higher energy (450 GeV) in p-A collisions than

the Pb–Pb collisions and in a slightly different rapidity domain. The sup-

pression pattern was shown as a function of the scale L, the average length

of nuclear matter traversed by the cc̄ state. The magnitude of J/ψ suppres-

sion was measured to be about 40%. However, the observed J/ψ suppres-

sion would be compatible with the suppression of χc and ψ′ resonances if

one considers that the contribution on the J/ψ production from higher res-

onances (χc and ψ′) is ∼ 35%.

The NA60 collaboration measured the J/ψ production in p-A collisions

and Pb–Pb collisions at the same energy. A new evaluation of the quarko-
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Figure 1.11: J/ψ suppression pattern in In–In (circles) and Pb–Pb (triangles)
as a function of Npart. Boxes around the points correspond to the correlated
systematic errors, while the filled box on the right corresponds to the un-
certainty on the absolute normalization of In–In points [30].

nium absorption in CNM was performed and a first attempt to consider the

shadowing was addressed (detailed discussions can be found in [30]). The

outcome of this analysis is that only about 20-30% of the suppression in

the most central Pb–Pb collisions at SPS energies is indeed due to dissoci-

ation in hot QCD matter. The J/ψ suppression pattern observed by NA60

collaboration in In–In and Pb–Pb collisions as a function of Npart, the num-

ber of participant nucleons, is shown in Fig. 1.11.

The PHENIX experiment at RHIC has published the observation of J/ψ

suppression in central Au–Au collisions at
√
sNN = 200 GeV [31]. The result

is shown in Fig. 1.12. The J/ψ suppression is roughly estimated to 40-80%

in central Au–Au collisions at RHIC energy. The suppression is stronger at

forward rapidity than at mid-rapidity and the physical interpretation is on-
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Figure 1.12: The nuclear modification factor R
J/ψ
AA as a function of Npart

in Au–Au collisions observed by PHENIX collaboration for |y| < 0.35 and
1.2 < |y| < 2.2 [31].

going. In order to estimate the CNM contribution to the nuclear modifi-

cation factor R
J/ψ
AA in Au–Au collisions, the d-Au collisions have been uti-

lized [32].

1.5 Production mechanisms of heavy quarkonia

The production of heavy quarkonia in nucleon-nucleon collisions at high en-

ergies, so-called hadroproduction, has not been well explained and predicted.

It is known that the production process of heavy quarkonium can be under-

stood in two steps:

• the creation of heavy quark pair, QQ̄ after the nucleon-nucleon colli-
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Figure 1.13: The leading-order QCD processes.

sions,

• and the subsequent evolution of the QQ̄ pair to form the quarkonium.

The first step, the creation of QQ̄ pair, occurs at short-distance which can

be calculable in perturbation theory. The leading-order QCD processes are:

quark and anti-quark pair annihilation and gluon-gluon fusion (see Fig. 1.13).

The second step involves the long-distance scales that is non-perturbative

transition. The formation of the heavy quarkonium state should be indepen-

dent of the details of the heavy quark pair creation. Therefore, it is natural

to factorize the heavy quarkonium production into the short-distance part

and the long-distance effect, which is called ”factorization”.

The different treatments of the non-perturbative evolution (long-distance

effect) of the QQ̄ pair transformation into a quarkonium have led to various

theoretical models in describing the heavy quarkonium production mecha-

nism. The Color Singlet Model (CSM), the Color Evaporation Model (CEM),

and the Non-Relativistic QCD (NRQCD) approach are the most notable

among them.

The CSM [33] was first proposed shortly after the discovery of the J/ψ.

It is assumed that the QQ̄ pair that evolves into the heavy quarkonium is in

a color singlet state and the quantum numbers, in particular, spin and an-

23



Figure 1.14: Comparison between preliminary measurements from CDF for
J/ψ and the various models, CSM (dotted curves), CEM (dashed curves),
and NRQCD (solid curves) [21]. The CSM fragmentation contribution is also
shown [36].

gular momentum of QQ̄ pair are conserved after the formation of the heavy

quarkonium. The CSM was successful in predicting heavy quarkonium pro-

duction rates at relatively low energy [34]. However, it failed to describe the

data for charmonium measured by CDF collaboration in pp̄ collisions. The

experimental measurement showed large discrepancy between the data and

the CSM prediction by more than one order of magnitude [35] as shown

in Fig. 1.14. It was pointed out that the CSM ignored the fragmentation

processes from a higher state quarkonium or B meson that is dominant at

high energies, such as the Tevatron energies (
√
s = 1.8 TeV) [37]. Recently,

the CSM with corrections at next-to-leading order (NLO) and next-to-next-

to-leading order (NNLO) gives a prediction close to the Υ(1S) production

cross section [38] (see Fig. 1.15).

The CEM was initially introduced in 1977 [39] and was revived in 1996 [40]

after the failure of the CSM. In the CEM, the production rate for the heavy
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Figure 1.15: pt dependence of Υ(1S) production cross section measured by
CDF and the comparison with CSM NLO and NNLO? [38].

quarkonium state is treated as some fraction of the cross section for produc-

ing QQ̄ pairs with the mass below the lowest charm or bottom meson. That

is, the cross section of the heavy quarkonium state is limited by the QQ̄ pair

mass. In the model, it is assumed that the QQ̄ pair neutralizes its color by

interaction with the collision induced color field, that is, by ”color evapora-

tion”, and this color field randomizes the spin of the QQ̄ pair. The latter

assumption leads to the prediction that the quarkonium production rate is

independent of the quarkonium spin that is contradicted by the measure-

ments of non-zero polarization of the quarkonium states. The CEM predic-

tions were fit to the CDF measurement for charmonium states production

including P -wave states, χc, but showed poor result [41, 42] (see Fig. 1.14).

The Non-Relativistic QCD is an effective field theory of QCD [43] which

reproduces accurately full QCD at momentum scales order 1/mQv or larger.

Within the framework of NRQCD, the cross section for the production of a

quarkonium state H can be written as a sum of terms, each of which fac-

tors into a short distance partonic cross section and a long distance matrix
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element:

dσ(H +X) =
∑
n

dσ̂(QQ̄[n] +X)〈OH [n]〉.

The sum includes all color and angular momentum states of the QQ̄ pair,

denoted collectively by n: color singlet or color octet. The short distance co-

efficients dσ̂ are proportional to the cross sections for production of a QQ̄

pair in the state n and with small relative momentum which can be cal-

culated in perturbation theory. The non-perturbative transition probabilities

from the QQ̄ state n into the quarkonium H are given by the vacuum ex-

pectation values of operators in NRQCD. The NRQCD can reproduce the

cross section of charmonium production in pp̄ collisions at Tevatron energies,
√
s = 1.8 TeV (see Fig. 1.14), however, it failed to describe the polarization

of heavy quarkonium as shown in Fig. 1.16.

As we have seen, the mechanism of the hadroproduction of heavy quarko-

nium is still an open question. The efforts for establishing the theory of the

heavy quarkonium production in hadronic collisions have been continued and

its completion will help us to understand the phenomena expected in the

medium created in heavy-ion collisions.
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(a)

(b)

Figure 1.16: (a) Polarization of prompt J/ψ as a function of pt measured
by CDF (blue points with black error bars). The blue band (magenta line)
is the prediction from NRQCD [44] (the kT factorization model [45]). (b)
Polarization of inclusive Υ(1S) as functions of pt measured by CDF (green)
and D0 (black). The yellow band (magenta curves) is the prediction from
NRQCD [46] (the kT factorization model [45]).
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Chapter 2

ALICE Detectors

ALICE [47] is a general-purpose particle detector to study the physics phe-

nomena that can arise in heavy-ion collisions as well as in proton-proton

collisions at CERN LHC. The crucial requirement of its design is to be op-

timized to track and identify particles in an environment with very high

charged-particle multiplicities created in the central heavy-ion collisions, up

to 8,000 charged particles per rapidity unit at mid-rapidity1. ALICE has

been built by an international collaboration including currently over 1,000

members from 116 institutes in 33 countries.

The unique features of the ALICE detector are the tracking and parti-

cle identification over a wide range of momenta, from the very low (∼100

MeV/c) transverse momentum, pt, up to high (∼100 GeV/c) pt, therefore

it is feasible to reconstruct short-lived particles such as hyperons2, D and B

mesons. Its layout, shown in Fig. 2.1, consists of a central detector system

(|η| 6 0.9) seated in a magnetic field of 0.5 T and several additional detec-

tors at the large rapidity region. The central system is optimized to track

and identify hadrons, electrons and photons, and the forward detectors com-

plement the rapidity coverage of the central detectors (up to η = 5.1) and

provide the interaction trigger, and the detection and identification of muons

as well.

1Upper value was predicted at the moment of the design
2Any baryon containing one or more strange quarks, but no charm or bottom quark
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2.1 Central Detectors

The central system, covering mid-rapidity (|η| 6 0.9) over the full azimuth, is

installed inside a large solenoidal magnet constructed for the L3 experiment

at LEP [48]. The nominal field of the solenoid is 0.5 T. The central sys-

tem includes, from the interaction point to the outside (with full azimuthal

coverage): the Inner Tracking System (ITS), the Time-Projection Chamber

(TPC), the Transition-Radiation Detector (TRD), and the Time-Of-Flight

(TOF). Tracking and particle identification in the central region depend on

these four detectors. There are additional central detectors covering smaller

acceptance than those mentioned above: High-Momentum Particle Identifi-

cation Detector (HMPID), Photon Spectrometer (PHOS), Electromagnetic

Calorimeter (EMCal) and the ALICE Cosmic Ray Detector (ACORDE). The

detector parameters of the central detectors are summarized in Tab. 2.1.

2.1.1 Inner Tracking System

ITS [49] is designed to localize a primary vertex with a resolution better

than 100 µm, so that we can reconstruct secondary vertices from the decays

of hyperons, D and B mesons, and to track and identify low momentum

particles (< 200 MeV/c) in order to improve the momentum and angular

resolution for particles reconstructed by TPC and to reconstruct particles

traversing dead regions of TPC.

The ITS surrounds the Interaction Point (IP)3 as well as the beam pipe

and consists of six cylindrical layers of silicon detectors, as shown schemat-

ically in Fig. 2.2. It covers the rapidity range of |η| < 0.9. The first layer

has an extended coverage (|η| < 1.98) to provide a continuous rapidity cov-

erage for the measurement of charged-particle multiplicity together with the

Forward Multiplicity Detectors (FMD). It consists of Silicon Pixel Detectors

(SPD) and Silicon Drift Detectors (SDD) for the innermost four layers, and

double-sided Silicon micro-Strip Detectors (SSD) for the outermost two lay-

ers. Except SPD, all the layers, SDD and SSD, identify particles via dE/dx

measurement in the low momentum region. This gives ITS a stand-alone

3where the collisions occur.
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Figure 2.2: Layout of Inner Tracking System.

capability as a low-pt particle spectrometer.

ITS detectors provide a resolution on the impact-parameter measurement

adequate for heavy-flavored particle detection (better than 60 µm for pt> 1

GeV/c). The measurement of open charm and open beauty produced in the

collisions can be possible together with TRD. A similar technique can be

used to separate directly produced J/ψ mesons from those produced in B-

decays.

In particular, SPD plays a crucial role of triggering the minimum bias

event in proton-proton collisions and Pb–Pb collisions with V0 (some details

about V0 detector are described in Section 2.2.4).

2.1.2 Time-Projection Chamber

TPC [50] is the main tracking detector of the central barrel consisting of

multi-wire proportional chambers and is cylindrical in shape with an inner

radius of about 80 cm, an outer radius of about 250 cm, and an overall

length in the beam direction of 500 cm. The TPC 3D-layout of the field

cage is shown in Fig. 2.3.

The information provided by this detector, together with the other cen-

tral barrel detectors, ITS, TRD and TOF, allows to measure charged-particle
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Figure 2.3: A 3D view of TPC field cage and service support wheels.

momenta, particle identification via dE/dx (see Fig. 2.4), and vertex deter-

mination with sufficient momentum resolution and good track separation.

The phase space covered by TPC in pseudo-rapidity is |η|< 0.9 for tracks

with full radial track length; up to |η| = 1.5 for reduced track length (at in-

nermost radius). A large pt range is covered from low pt of about 0.1 GeV/c

up to 100 GeV/c with good momentum resolution.

The maximum occupancies of TPC are about 40% at the innermost ra-

dius; 15% at the outermost radius for an extreme charge particle multiplicity

density of dNch/dη = 8,000 in Pb–Pb collisions that leads to the correspond-

ing interaction rates of up to 200 Hz. In pp collision runs, due to the drift

time ∼ 90 µs, at a pp luminosity of about 5×1030 cm−2s−1, the correspond-

ing interaction rate is limited of about 350 kHz.

2.1.3 Transition-Radiation Detector

The main purpose of TRD [51] is to provide electron identification in the

central barrel for momenta above 1 GeV/c. Below this momentum electrons

can be identified via specific energy loss measurement in TPC. Above 1
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Figure 2.4: A dE/dx spectrum versus momentum of TPC in pp collisions
at
√
s = 7 TeV. The lines are a parameterization of the Bethe-Bloch curve.

GeV/c transition radiation from electrons passing a radiator can be exploited

to obtain the necessary pion rejection capability. In conjunction with data

from ITS and TPC it is possible to measure the production of light and

heavy vector-meson resonances and the di-lepton continuum both in pp as

well as in Pb–Pb collisions.

The TRD is designed to derive a fast trigger for charged particles with

high momentum. It is part of the Level 1 trigger and can significantly en-

hance the recorded Υ-yields and high-pt J/ψ in the di-electron mass spec-

trum. The mass resolution of about 100 MeV/c2 for Υ measurement, the

expected momentum resolution of 3.5 (4.7)% at 5 GeV/c (depending on mul-

tiplicity). The maximum occupancy is 34% at the highest simulated multi-

plicity density of dNch/dη = 8,000 including secondary particles. The layout

of TRD is depicted in Fig. 2.5.

2.1.4 Time-Of-Flight Detector

TOF [52] detector is a large array equipped with the Multi(10)-gap Resistive

Plate Chamber (MRPC) [53] for particle identification (PID) in the interme-
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Figure 2.5: A schematic 3D drawing of TRD layout in the ALICE space
frame.

diate momentum range, below about 2.5 GeV/c for pions and kaons, up to

4 GeV/c for protons, with a good π, K and proton separation (see Fig. 2.6).

The rapidity coverage is |η| < 0.9 and the maximum occupancy for Pb–

Pb, is not exceeding the 10-15% level at the high charged-particle density

of dNch/dη = 8,000. The time resolution provided by the MRPC is better

than about 40 ps with an efficiency ∼ 100%. A schematic layout of one

super-module inside the ALICE space frame is shown in Fig. 2.7.

2.1.5 High-Momentum Particle Identification Detector

HMPID [54], based on Ring Imaging Cherenkov (RICH) counters [55], pro-

vides hadron identification with pt > 1 GeV/c. The aim is to enhance the

PID capability of ALICE by enabling identification of charged hadrons be-

yond ITS and TPC (dE/dx) and TOF. The detector was optimized to ex-

tend the useful range for π/K and K/p discrimination up to 3 GeV/c and

5 GeV/c, respectively. It was designed as a single-arm array in azimuthal

coverage 1.2◦ < φ < 58.8◦ results in the acceptance of 5% in phase space.
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Figure 2.6: Particle identification of TOF via measured particle β(= v/c)
versus momentum in pp collisions at

√
s = 7 TeV.

Figure 2.7: A schematic drawing of one TOF super-module in the ALICE
space frame.
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Figure 2.8: View of modules of HMPID mounted on the cradle.

The picture of HMPID is shown in Fig. 2.8.

2.1.6 Photon Spectrometer

PHOS [56] is designed to detect and identify photons consisting of electro-

magnetic calorimeter and a Charged-Particle Veto (CPV) detector. The ra-

pidity coverage is |η| < 0.12 and the azimuthal coverage is 220◦ < φ < 320◦.

It is positioned on the bottom of the ALICE setup at a distance of 460 cm

from the interaction point. The layout of PHOS is shown in Fig. 2.9. The

two-photon invariant mass resolution of PHOS at the π0 peak is 3.5% and

the achieved timing resolution is about 2 ns.

2.1.7 Electromagnetic Calorimeter

EMCal [57] is a large Pb-scintillator sampling calorimeter with cylindrical

geometry, located adjacent to the ALICE magnet coil at a radius of ∼ 4.5

meters from the beam line. It covers |η| ≤ 0.7 and ∆φ = 107o, and is po-

sitioned approximately opposite in azimuth to the PHOS. The integration

layout of EMCal is shown in Fig. 2.10.

The detector increases the electromagnetic calorimeter coverage and en-
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Figure 2.9: View of modules of PHOS.

Figure 2.10: Schematic integration drawing of the end view of the ALICE
central barrel.
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Figure 2.11: Photograph of ACORDE scintillator modules on the upper faces
of the magnet yoke of ALICE.

hances the capability of jet physics. It provides a trigger for hard jets, pho-

tons and electrons. It also measures the neutral energy component of jets,

enabling full jet reconstruction both in pp and Pb–Pb collisions.

2.1.8 ALICE Cosmic Ray Detector

ACORDE [58] consists of scintillator counters and is placed on the upper

surface of the L3 magnet (see Fig. 2.11). It provides a Level 0 trigger signal

for the commissioning, calibration and alignment of the tracking detectors. It

is designed to detect single atmospheric muons and multi-muon events (so-

called muon bundles) and to study high-energy cosmic rays in combination

with TPC, TRD and TOF.

2.2 Forward Detectors

The large rapidity systems include Muon Spectrometer (a detailed discussion

of this detector is provided in the next section), Photon Multiplicity Detec-
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tor (PMD), and Forward Multiplicity Detector (FMD) covering the rapidity

region up to η = 5.1 (see Fig. 2.12). T0 and V0 will provide fast trigger

signals and Zero-Degree Calorimeter (ZDC) will measure the nucleus-nucleus

centrality together with V0 (see Fig. 2.13). The detector parameters of the

forward detectors are summarized in Tab. 2.2.

2.2.1 Zero Degree Calorimeter

ZDC [62] provides the estimation of the number of participant nucleons re-

lated to the geometry of Pb–Pb collisions by measuring the energy car-

ried in the forward direction (at 0◦ relative to the beam direction) by non-

interacting nucleons.

The detector consists of two hadronic ZDCs (ZN for neutron and ZP for

proton) located at 116 m on either side of the IP and two small electromag-

netic calorimeters (ZEM) placed at about 7 m from the IP on both sides of

the LHC beam pipe, opposite to the muon arm (see Fig. 2.14). The ZEM

complement the hadronic ZDCs to distinguish two classes of events: the cen-

tral events with small number of spectators; and the very peripheral events.

2.2.2 Photon Multiplicity Detector

PMD [63] measures the multiplicity and spatial distribution (in η−φ plane)

of photons in the pseudo-rapidity region of 2.3 < η < 3.7. These measure-

ments provide estimations of transverse electromagnetic energy and the re-

action plane on an event-by-event basis.

2.2.3 Forward Multiplicity Detector

FMD [64] is to provide charged-particle multiplicity information in the pseudo-

rapidity range −3.4 < η < −1.7 and 1.7 < η < 5.0. It helps to increase the

pseudo-rapidity coverage of ALICE together with SPD layers: −3.4 < η < 5.0

(see Fig. 2.12). FMD2 and FMD3 each consist of both an inner and an outer

ring of silicon sensors and are located on either side of ITS detector. FMD1

is placed further from the IP opposite to the muon spectrometer to extend

the charged particle multiplicity coverage. The layout of FMD is shown in
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(a)

(b)

Figure 2.12: Simulated pseudo-rapidity coverage of FMD rings (1 inner, 2
inner and outer, and 3 inner and outer) along with two SPD layers. The
multiplicity distribution is produced by (a) PYTHIA [59] in pp collisions at√
s = 14 TeV; (b) HIJING [60, 61] in Pb–Pb collisions at

√
sNN = 5.5 TeV.
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Figure 2.13: V0 amplitude distribution split in event centralities determined
by ZDC: 0-5%, 5-10%, 10-20%, and 20-30%.

Figure 2.14: Schematic top view of the side of ALICE beam line opposite
to the muon arm. The locations of the neutron (ZN), proton (ZP) and elec-
tromagnetic calorimeters (ZEM) are shown.
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Figure 2.15: Layout of FMD rings. FMD3 and FMD2 are located on each
side of ITS; FMD1 is much further away from IP.

Fig. 2.15.

2.2.4 V0 Detector

V0 detector [64] provides:

• minimum-bias triggers both in pp and Pb–Pb collisions;

• an indicator of the centrality of the collision via the multiplicity recorded

in the event [65] together with ZDC (see Fig. 2.13);

• a trigger of the interaction of protons with the residual gas of the vac-

uum chamber which can help to eliminate false events [66];

• a good signal to reject a large part of the false muon triggers with the

absence of minimum-bias trigger from V0C alone [67].

It also participates in the measurement of luminosity in pp collisions with

a good precision of about 10% [68].

It consists of two arrays of scintillator counters, called V0A and V0C,

which are installed on either side of the ALICE IP at a small angle. The
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V0A detector is located 340 cm from the IP on the side opposite to the

muon spectrometer whereas V0C is fixed to the front face of the hadronic

absorber, 90 cm from the IP. They cover the pseudo-rapidity ranges 2.8 <

η < 5.1 (V0A) and -3.7 < η < -1.7 (V0C).

2.2.5 T0 Detector

T0 detector [64] is designed to:

• generate a start time (T0) for TOF detector;

• measure the vertex position (with a precision ±1.5 cm) for each inter-

action;

• provide a L0 trigger when the position is within the preset values that

can help discriminate against beam-gas interactions.

It can also generate so-called wake-up signal to TRD, prior to L0.

T0C, one of the arrays, is placed 72.7 cm from the IP and covers the

pseudo-rapidity range −3.28 ≤ η ≤ −2.97. T0A, the other of the arrays

covering the pseudo-rapidity range of 4.61 ≤ η ≤ 4.92, is located 375 cm on

the opposite side of the IP grouping together with FMD, V0 and PMD (see

Fig. 2.16).

2.3 Muon Spectrometer

Muon spectrometer [69, 70, 71] is designed to detect and identify muons

in the pseudo-rapidity range −4.0 < η < −2.5. It is feasible to measure

the whole spectrum of heavy quark meson resonances, such as charmonia

(J/ψ, ψ′) and bottomonia (Υ family) as well as low mass vector mesons

(φ, ρ) in their µ+µ− decay channel. In addition to vector mesons, it is

available to study the production of the open (heavy) flavors (charm and

beauty) with this detector at LHC energy in which the semi-leptonic decay

is dominant.

The layout of the muon spectrometer is shown in Fig. 2.17. It consists

of a set of absorbers, a warm dipole magnet, 10 tracking chambers and 2
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Figure 2.16: Layout of T0 detectors.

Figure 2.17: Muon spectrometer longitudinal section
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(a) (b)

Figure 2.18: (a) Graphite and (b) steel envelope for the front absorber

trigger stations. In order to reduce the flux of hadrons in the heavy-ion

environment, the large amount of absorber material is required, and thus

muons with the momenta above 4 GeV/c are only detectable in the muon

spectrometer. However, measurement of charmonia with pt down to 0 is pos-

sible since the muon spectrometer is located at large rapidity region where

muons are Lorentz boosted. For Υ measurement, the required mass resolu-

tion is 100 MeV/c2 to resolve the Υ resonances. This requirement deter-

mined the bending strength of the warm dipole magnet (∼ 3 Tm) as well

as the spatial resolution of the tracking chambers (∼ 70 µm). The tracking

chambers are designed to handle the high multiplicity environment expected

in heavy-ion collision with a high granularity read-out (∼ 1× 106 channels).

The trigger system has a selective feature for single- and di-muon to achieve

the maximum trigger rate (∼ 1 kHz).

2.3.1 Absorbers and dipole magnet

Front absorber

The front absorber is located at 90 cm from the IP inside the solenoid L3

magnet. Its length is 4.13 m. The volume of the absorber is made out of

carbon, concrete and steel having a conical geometry, see Fig. 2.18. It is

designed to limit multiple scattering and energy loss by traversing muons,
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but also to protect other ALICE detectors from secondaries produced within

the absorbing material itself [72]. For this, It is covered by a 10 mm layer

of tungsten at the front end of the cone (close to ITS) and in the sector

between 10.5o and 12.5o where faces TPC. A tungsten cover of 100 mm

thickness at the back end absorbs most of the low energetic electrons created

inside the absorber. An additional ring of 100 mm of tungsten is added to

the 2o cone to improve the shielding against particles from the beam pipe.

Beam shield

A tube made out of tungsten, lead and steel surrounds the beam pipe to

reduce background particles emerging from the beam pipe. It forms a cone

with an opening angle of 2◦ close to the IP while a cylinder of 58 cm di-

ameter at 5.5 m from the IP. The length of the beam shield is ∼ 18 m.

Muon filter

An iron wall of 1.2 m thickness is located in front of the first trigger cham-

ber (about 15 m distance from the IP) to provide an additional protection

to the trigger chambers: it is called muon filter. Together with the front ab-

sorber, it stops muons with p < 4 GeV/c. The view of muon filter is shown

in Fig. 2.19 along with a warm dipole magnet.

Dipole magnet

A warm dipole magnet is located at ∼ 10 m distance from the IP hous-

ing the third tracking station and providing the bending power necessary to

measure the momenta of muons which is important. The direction of mag-

netic field is horizontal perpendicular to the beam pipe: x-axis. The central

value of magnetic strength is 0.67 T and the integral of field is 3.0 Tm (in

4.97 m). The magnet is also used as a support for the front absorber and

beam shield. An additional radial space of 10− 15 cm is provided to house

the support frames of the tracking chambers inside the magnet. The view

of the warm dipole magnet is shown in Fig. 2.19.
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Figure 2.19: View of the muon filter (left) and dipole magnet (right).

2.3.2 Tracking system

Tracking chambers

The tracking chambers were designed to achieve a spatial resolution of about

100 µm, necessary for an invariant mass resolution of the order of 100 MeV/c2

at the Υ mass [73, 74] and to operate at the maximum hit density of about

5× 10−2cm−2 expected in central Pb–Pb collisions.

All these requirement were fulfilled by the use of cathode pad chambers.

They are arranged in five stations: two are placed before, one inside and two

after the dipole magnet. The first station is located right behind the front

absorber to measure the exit points of the muons. Each station consists of

two chamber planes has different size with two kinds of types: the first two

stations are based on a quadrant structure [75, 76], with the readout elec-

tronics distributed on their surface; for the other stations, a slat architecture

was chosen, see Fig. 2.20, with the electronics implemented on the side of

the slats. The slats and the quadrants overlap to avoid dead zones on the

detector. Each chamber has two cathode planes, which are both read out to

provide two-dimensional hit information.4 The segmentation of the readout

4The clusterization of hits and tracking algorithms are discussed in [77, 78].
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pads is implemented following the fact that the hit density decreases with

the distance from the beam pipe, and thus larger pads are used at larger

radii. This helps to keep the occupancy below 5%.

Tracking electronics

The design of the electronics of the tracking system was driven by two main

requirements:

• to read about one million channels up to a rate of the order of kHz;

• and to achieve a space resolution of the tracking chambers of at least

100 µm.

The electronics chain is divided in three parts:

• the front-end boards (FEB or FEE) called MAnas NUmérique (MANU);

• the readout system called Cluster Read Out Concentrator Unit System

(CROCUS);

• and the interface with the general ALICE trigger called Trigger CRO-

CUS Interface (TCI) [79].

The FEE is based on a chip called Multiplexed ANALogic Signal proces-

sor (MANAS). The channels of four of these chips are read out by the Muon

Arm Readout Chip (MARC). This chain is mounted on MANU chip on each

FEE. Thus, total 1.08× 106 channels of the tracking system are treated by

about 17,000 MANU cards. In order to achieve the required space resolu-

tion, the gain of each channel has to be precisely known (checked just after

the assembly of the boards) and they are controlled in periodic calibration

runs during the data taking (called pedestal run) and stored for the use in

off-line track reconstruction.

The Protocol for ALICE Tracking Chambers (PATCH) buses provide the

connection between the MANUs and the CROCUS crate. Each chamber is

read out by 2 CROCUS (one for half chamber) leading to a total number

of 20 CROCUS. The main tasks of the CROCUS are to concentrate and

format the data from the chambers, to transfer them to the DAQ and to
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(a) Quadrant structure

(b) Slat structure

Figure 2.20: View of two kinds of tracking station: (a) station 2 (quadrant
type); (b) stations 4 and 5 (slat type).
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dispatch the trigger signals. Each CROCUS crate houses five frontal (FRT)

data readout boards. Each FRT drives up to 10 PATCH buses and collects

the data sent by the MANUs. The data from each FRT are transferred to

the data concentrator (CRT) board where they are encapsulated and then

sent to the DAQ. Therefore, a CROCUS is able to read up to 50 PATCH

buses with rates of the order of kHz.

The trigger signals, coming from the Central Trigger Processor (CTP),

are distributed to each MANU through CROCUS by TCI. The main goals

of the TCI are to decode the trigger signal, to generate the Level-1 reject

in the Frontal Fan-out Trigger (FFT) and to manage the busy signals of all

the CROCUS crates. All these signals are sent to 20 CROCUS via 5 Frontal

Trigger Dispatching (FTD) cards.

Geometry Monitoring System (GMS)

Dedicated runs without magnetic field is carried out at the beginning of

each data taking period to align the tracking chambers with straight muon

tracks, thus determining the initial geometry of the system. However, the

displacements and deformations of the tracking chambers from the initial

geometry caused by the magnetic fields are unavoidable. Measuring these

displacements is highly important to achieve the required mass resolution.

The GMS is an array of 460 optical sensors installed on platforms placed

at each corner of the tracking chambers to monitor the position of all the

tracking chambers. It measures and records the displacements and deforma-

tions of the tracking chambers with respect to the initial geometry during

data taking. And these measurements will be implemented into the off-line

reconstruction.

The GMS is consist of 3 parts:

• Longitudinal Monitoring System (LMS) monitoring the relative posi-

tions between the chamber planes;

• Transverse Monitoring System (TMS) monitoring the flatness of the

planes supporting chambers;
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Figure 2.21: General view of the GMS setup. The lines on this figure rep-
resent the optical lines.

• and External Monitoring System (EMS) monitoring the displacement

of the whole spectrometer.

The GMS setup is shown in Fig. 2.21.

2.3.3 Trigger system

Trigger chambers

Trigger chambers are consist of 4 chamber planes arranged in two stations

(one meter apart from each other) placed behind the muon filter at about

16 m distance from the IP. Each plane consists of 18 RPCs with 2 mm

single-gas-gap. The hits on RPC are read out by segmented strips provid-

ing two-dimensional information: x-strip (horizontal strip); y-strip (vertical

strip). Due to the magnetic field produced by the warm dipole magnet, the

x-strips measure the bending deviation (bending plane: x−z plane) and the

y-strips measure the non-bending deviation (non-bending plane: y−z plane).

The view of the two trigger stations is shown in Fig. 2.22.
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Figure 2.22: View of the two trigger stations.
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Trigger electronics

The RPCs are equipped with the front-end boards (FEE). From the FEE,

the signals are sent to the local trigger board based on programmable cir-

cuits. Each local trigger board forms a trigger zone and thus there are total

234 trigger zones. Figure 2.23 shows a schematic view of the trigger zone po-

sitions in one plane of trigger chambers, as seen from the interaction point.

The trigger zone density reflects the strip segmentation which is finer in the

region close to the beam pipe, where a higher particle multiplicity is ex-

pected; moving from the beam pipe outwards, the strip pitch is about 1, 2

and 4 cm in the bending plane and about 2 and 4 cm in the non-bending

plane.

The information in one trigger zone includes 4 detector planes, thus the

local trigger algorithm reconstruct a single muon trigger track to calculate

the momentum of the track. The least requirement of the track reconstruc-

tion is hits on at least 3 planes out of 4 planes for both bending and non-

bending planes. The momentum of the track is determined by the devia-

tion (the displacement of hit on the last plane with respect to the hit on

the first plane) of the trigger track relative to a straight track with infi-

nite momentum representing how much the track is bent by Lorentz force

due to the magnetic field of dipole magnet (see Fig. 2.24). All the refer-

ences are pre-calculated and stored in the local trigger board: called Look-

Up-Table (LUT). The maximum measurable deviation is fixed to ±8 strips

in the bending plane; and ±1 strips in the non-bending plane (which en-

sures that the track comes from the IP). The threshold on the deviation is

programmable remotely and the value of pt thresholds ranges from 0.5− 4.2

GeV/c. Low-(0.5− 1.0 GeV/c) or high-(1.0− 4.2 GeV/c) pt trigger cut can

be changed in data taking period for a physics purpose.

The trigger electronics is organized in 3 levels: 234 local trigger boards,

16 regional trigger boards and a global trigger board. The signals of 9− 16

local boards (trigger momentum decisions: low- or high-pt) are gathered by

a regional board. 16 regional boards are connected with the global trigger

board which decide the final 5 trigger signal to be transferred to CTP (in ∼
800 ns after the collision) out of 6 trigger decisions: single muon low-/high-
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Figure 2.23: Map of the trigger zones boards as seen from the interaction
point.
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Figure 2.24: The schematic longitudinal view of the muon spectrometer. The
track deviation relative to a particle with infinite momentum is computed
and then the deviation cut performed by means of look-up tables.

pt; like-sign di-muon low-/high-pt; unlike-sign di-muon low-/high-pt. These

are controlled by 2 Di-muon-trigger Alice Readout Controller (DARC) boards:

each DARC for half of the detector planes (outside or inside). Only one

DARC board is connected to CTP and transfers 5 trigger signals to CTP.

And dead channels can be masked and LUT can be update by JTAG board.

The schematic view of the trigger electronics organization is shown in Fig. 2.25.

The FET generator is used to generate a pulse to FEEs for the test pur-

pose or for the check the electronics. In any cases, it is called calibration

run, and the all electronics read out the signal generated by FET as well as

the scalers containing the information relate to the corresponding electronics.

Analyzing these scalers, we can check the status of the trigger electronics,

see Sec. 3.3.

2.4 The ALICE off-line framework

The ALICE off-line framework, AliRoot [80] is a software framework based

on Object-Oriented technique for programming with the extended detector

specific classes and libraries of ALICE grouped with ROOT framework [81]
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Figure 2.25: The schematic view of the trigger electronics.
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Figure 2.26: Schematic view of the AliRoot framework.

as a supporting framework. It is complemented by the AliEn [82, 83] system

which gives access to the computing resources distributed all over the world,

so called Grid. Its architecture is shown in Fig. 2.26.

The AliRoot framework is used for simulation, alignment, calibration, re-

construction, visualization and analysis of the experimental data. The main

simulation class is AliSimulation which provides interfaces to event genera-

tors and geometry builder (magnetic field generator and access to the align-

ment as well). The event simulation provided by AliRoot framework has the

following options:

• Interfaces to several external generators, such as PYTHIA [59] for pp

collisions, HIJING [60, 61] for A–A collisions. Several event generators

are available via the generic generator interface class; TGenerator.

• η and pt parameterizations for the cases in which the expected transverse-

momentum and rapidity distributions of particles are known. Primary

particles and their decay can be produced by sampling from parame-

terized spectra;
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Figure 2.27: Geometry of the ALICE detector in the AliRoot simulation.

• Event merging (so called Cocktail) combines signal events and under-

lying events.

In order to obtain the detector response for the simulated events, AliRoot

provides different Monte Carlo packages: GEANT 3 [84, 85], GEANT 4 [86]

and FLUKA [87]. They are interfaced to the Virtual Monte Carlo class in

ROOT to be able to use them to simulate the ALICE detector via the

AliRoot framework. The virtual geometry of ALICE detectors are built in

the packages as shown in Fig. 2.27 including support structures, absorbers,

shielding, and beam pipe. The magnetic field of the solenoid and the warm

dipole magnet can be described in the simulation as well. At the beginning

of the simulation, the ideal geometry of ALICE is generated. The modifi-

cations of the geometry can be made by accepting the adjustments (mea-

sured by calibration or alignment data stored in the Off-line Conditions Data

Base (OCDB) [88]) of the parts of the detector different from the ideal one.

The simulated particle transport is performed in this modified geometry. The

same procedure can be repeated for reconstruction. In this cycle, we can also
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Figure 2.28: Interaction of the reconstruction code with the other parts of
AilRoot.

test the effect of detector misalignment and the alignment algorithms which

can be useful for real data reconstruction. During the reconstruction of real

data, the best geometry is loaded from the OCDB. The first reconstruc-

tion (called pass 1 ) is performed with the alignment data from the survey

(calibration or geometry monitoring). The subsequent reconstructions (called

pass 2, 3, and so on) can be performed with the optimized alignment data

improving the reconstruction quality.

The reconstruction uses the digits (the output of the simulation) or the

raw data produced in data taking, as an input (see Fig. 2.28). The out-

put of the reconstruction is the Event Summary Data (ESD) containing,

for example, lists of reconstructed charged particle tracks, particles recon-

structed in the calorimeters and so on. The main reconstruction class is

AliReconstruction which provides interfaces to the reconstruction and con-

figuration of the reconstruction procedure. The sequence of the reconstruc-

tion steps are:

• reconstruction executed for each detector separately;
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• primary vertex reconstruction;

• track reconstruction and particle identification;

• secondary vertex reconstruction.

The detailed description of the reconstruction and particle identification in

all the ALICE detectors can be found in [89].

2.4.1 Correction framework

The Correction framework [90] is the official ALICE procedure used for cor-

rection purpose. The simulated data which will be described in Chap. 4, the

official Physics Data Challenges in 2009 (PDC09) for the test purpose of the

analysis in both steps of Monte Carlo data and reconstructed one, and the

real data taken in 2010 at LHC with 7 TeV energies (LHC10g period) to be

corrected were used as the input to create the acceptance times efficiency

correction map and to perform the correction process of Υ analysis in this

framework. This framework consisting of classes which is developed with the

purpose of assisting the ALICE users in deriving the corrections. The classes

can be grouped into two categories:

• Container classes to store both real and simulated data over binned

N-dimensional grids, then to derive the acceptance times efficiency cor-

rection maps and correct the observed data;

• Selection classes to give the general selection common to several anal-

yses, at different stages of the selection process.

The container classes are the core of Correction framework and the selection

classes are a tool which guide the user in applying selections.

Container classes

The general schema of the Correction framework container classes is shown

in Fig. 2.29. These classes are used to store counts over N-dimensional grids

(or histograms) while looping on real or simulated event samples at various

selection levels (MC or Reco). The dimension of the grid can be any, not
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Figure 2.29: The general scheme of the container classes of the Correction
framework.

restricted to a certain maximum dimensions. The list of the container classes

used in this analysis is reported below, together with a brief description. For

all of them, additional information is documented in the header/implementation

file of the classes. All these classes inherit from TNamed class in ROOT.

• AliCFFrame: The base class of the Correction framework. It defines the

structure (or frame) of the N-dimensional grid. The structure is defined

by the number of dimensions of the grid corresponding to the number

of variables, the number of bins and binning in each dimension.

• AliCFGridSparse: The class containing N-dimensional grid of histograms.

This class is based on THnSparse class in ROOT, which makes an effi-

cient use of memory for multi-dimensional histograms which are sparsely

filled. This class allow to perform basic operations such as addition,

multiplication, division, scaling (in the case of conventional TH1, 2,

3 histograms), integration, projection (or slice), etc. In particular, the

projection creates a 1-dimensional histogram corresponding to a vari-

able (ivar), as well as 2- or 3-dimensional histograms to get the cor-
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relation between the variables (ivar1 and ivar2 or ivar1, ivar2 and

ivar3) by using the methods:

virtual TH1D* Project(Int_t ivar) const;

virtual TH2D* Project(Int_t ivar1, Int_t ivar2) const;

virtual TH3D* Project(Int_t ivar1, Int_t ivar2,

Int_t ivar3) const;

In addition, one can slice into a histogram with some cuts on the vari-

ables for their analysis purpose, like:

virtual TH1D* Slice( Int_t ivar1, Int_t ivar2=-1,

Int_t ivar3=-1, Double_t *varMin,

Double_t *varMax) const;

• AliCFContainer: The class books and fills a group of N-dimensional

grids. Any number of analysis steps can be configured for either real

data or simulated one (for both MC and Reco). The efficiency between

two different steps can then be derived by dividing the contents of the

two corresponding grids, to be then applied to the appropriate set of

observed data. The filling of the grid corresponding to step, istep, is

performed by calling the following function:

virtual void Fill(Double_t *var, Int_t istep, ...);

• AliCFEffGrid and AliCFDataGrid: The classes handle the acceptance

times efficiency map and the uncorrected/corrected data, respectively.

The acceptance times efficiency corresponding to two different steps,

for example, istep1 (reconstructed data as a numerator) and istep2

(Monte Carlo simulated data as a denominator) can be derived by call-

ing the method in the former:

virtual void CalcualteEfficiency(Int_t istep1, Int_t istep2);

In the acceptance times efficiency calculation, binomial errors are al-

ways assumed. The latter is used to deposit the measured (uncorrected)
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Figure 2.30: A typical flow of the correction process.

data stored in an AliCFContainer at a given step, and then the cor-

rection can be performed (by using the result stored in the AliCFEff-

Grid) via the method:

virtual void ApplyEffCorrection(const AliCFEffGrid &eff);

A typical flow of the correction process is shown in Fig. 2.30.

Selection classes

A set of classes handling general selections at Event or Particle-level has

been prepared. The selection classes are based on the code in PWG0 Ali-

Root repository, AliPWG0Helper and AliESDtrackCuts. The base class for

selection classes is AliCFCutBase, which derives from AliAnalysisCuts. The

list of some selection classes used in this thesis work is the following:

• AliCFParticleGenCuts: Non-kinematic basic selections on generated

particles, for example, PDG code, decay mode, vertex, charge, etc.

• AliCFTrackKineCuts: Kinematic selections on both generated and re-

constructed tracks, for example, momentum range, charge, rapidity, etc.
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2.4.2 Dedicated classes for Υ analysis

A set of codes dedicated for Υ analysis based on the Correction framework

has been composed and committed to AliRoot package. It consists of two

classes:

• AliCFMuonResUpsilon: The class, based on AliAnalysisTaskSE class,

that accumulates information with the event selections from the simu-

lation data, for example PDC09 data, as well as the real data into N-

dimensional grids and filling a AliCFContainer-type object. This class

has a capability to read both type of data, Event Summary Data (ESD)

type and Analysis Of Data (AOD) type (a detailed description of these

data types can be found in [80]) stored in the local path or on the re-

mote storage connected with Grid (thanks to the interface with AliEn).

In addition, the physics selection (see Sec. 2.4.2 for more details) task

is introduced in this stage for the real data analysis;

• upsilonCORRFW: The class performs the main tasks with the AliCFCont-

ainer-type object built in the AliCFMuonResUpsilon class, for exam-

ple, creating an efficiency correction map; fitting the data point in case

of reconstructed/real data; then performing the efficiency correction.

An additional C++ macro is required to configure variables of the AliCFCont-

ainer-type object, together with their bins and binning and selection cuts

based on the selection classes of the Correction framework. In addition, this

macro provides the input and output management for the analysis. In partic-

ular, it has an interface to the Grid connection offered by the AliEn plug-in.

The list of variables in AliCFContainer-type object used in this analysis is

the following:

• For event selection,

– the number of event with/without event selections or cuts for qual-

ity check including the physics selection;

– the event trigger side of the collisions (beam-beam, beam-empty,

and empty-empty) according to the fired trigger classes5;

5ALICE DAQ/CTP configures the trigger classes during data-taking as following the
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• For Υ or µ+µ− candidates,

– pt, rapidity and invariant mass of Υ at the generation level in

case of Monte Carlo simulated data, and µ+µ− pair candidates

at the reconstruction level in both cases of Monte Carlo or real

data;

• For single muon tracks,

– kinematics of single muon tracks: momentum, charge, pseudo-rapidity

(η), z-component of vertex, Rabs (the radius from the beam line

at the end of the front absorber), etc.;

– a digit for track-trigger matching on each muon track with low-

/high-pt cut at trigger electronics level.

The comparison of the results between ESD and AOD was performed with

the simulation in order to make sure that the result is consistent with dif-

ferent data type, and then take advantage of AOD. Since AOD is produced

from ESD with only interesting kinematics and parameters for a specific

analysis purpose, for example, we produce muon AODs in which there are

nothing but only muon tracks, thus the size of AOD is much reduced than

ESD that leads to reduce the computing resources, especially the size of

storage required to store data as well as the computing time to process the

data. As shown in Fig. 2.31 and Fig. 2.32, the results of two different data

types with the same data set seem to be consistent each other.

Physics selection

A dedicated class for the physics selection, AliPhysicsSelection, selects

events that:

• have the correct event type (tagged as physics during data taking);

detector partitions. During 2010 data taking the main trigger classes were [91]: CINT-
type for minimum bias events and CMUS-type for muon events. According to the col-
lision type, the trigger classes are separated as A (beam-empty), B (beam-beam), C
(empty-beam) and E (empty-empty). Therefore we can figure out the interested physics
events with the name of those trigger classes, for example CMUS1-B-NOPF-ALL for
muon event after the beam-beam interaction.
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(a)

(b)

Figure 2.31: The (a) pt and (b) rapidity distribution of simulated Υ(1S) and
corresponding reconstruction efficiency obtained from ESD type data.
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(a)

(b)

Figure 2.32: The (a) pt and (b) rapidity distribution of simulated Υ(1S) and
corresponding reconstruction efficiency obtained from AOD type data.
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• have the interaction trigger, i.e. trigger on bunch crossings, for example

CINT1-B triggered events;

• fulfill the on-line trigger condition (hardware trigger);

• are not flagged as beam-empty (or beam-gas) event by either V0A or

V0C;

• for pp collisions, are not flagged as beam-gas based on the correlation

of SPD clusters and tracklets;

• for Pb–Pb runs, are not identified as debunched events by the ZDC

timing cut.

In this thesis work, we used AliVEvent::kMUON for muon trigger among the

options defined in AliVEvent::EOfflineTriggerTypes. In order to activate

the physics selection in the user analysis, add the task AliPhysicsSelection-

Task in C++ macro by using:

gROOT->LoadMacro(

"$ALICE_ROOT/ANALYSIS/macros/AddTaskPhysicsSelection.C");

AliPhysicsSelectionTask* physSelTask = AddTaskPhysicsSelection();

Then, we can use the result of the selection inside AliCFMuonResUpsilon

class with the following line:

// for minimum bias event

Bool_t isSelected = (((AliInputEventHandler*)

(AliAnalysisManager::GetAnalysisManager()->

GetInputEventHandler()))->IsEventSelected()

& AliVEvent::kMB);

// for muon analysis

Bool_t isSelected = (((AliInputEventHandler*)

(AliAnalysisManager::GetAnalysisManager()->

GetInputEventHandler()))->IsEventSelected()

& AliVEvent::kMUON);

More detailed discussion can be found in [92].
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Chapter 3

Online DQM for Muon Trigger

Data Quality Monitoring (DQM) is an important aspect of every High-Energy

Physics experiment. It is evident that a feedback on the quality of the data

which are actually recorded for offline analysis is of great importance, es-

pecially in the era of LHC where the detectors are extremely complicated

devices. The Data Acquisition and Test Environment (DATE) [93, 94], which

is the main DAQ software framework of ALICE, provides a low-level moni-

toring package which forms the basis of any high-level monitoring framework

for ALICE. It exposes a uniform Application Programming Interface (API)

for accessing on-line raw data on DAQ nodes as well as data written in files.

It gives the possibility of selecting the event sampling strategy for on-line

streams in order to balance the required computing resources.

In this chapter, the development of software for online DQM of the raw

data, produced by ALICE Muon Trigger system, will be described. The aim

of this software is to provide information of data-taking status as well as

the status of the electronics of muon trigger to shifters. It is designed to be

able to display the quality of the data by decoding the raw data format,

which contains hits, scalers and bits presenting the status of the system at

each stage: from detector to signal trigger.

This online monitoring tool was developed on the two different frame-

works: firstly, the Monitoring Of Online Data (MOOD) and subsequently,

it was adapted to the Automatic MOnitoRing Environment (AMORE), and

both of them are based upon the DATE. This tool publishes monitor ob-
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jects, which are defined from the necessity of the detector group, such as raw

data structure, data size, multiplicity of electronics participating in the cor-

responding data, efficiency of 4 trigger RPC planes, 6 global trigger output

and corresponding scalers generated via the muon trigger algorithm, in the

form of histograms. In addtion, any anomalies, for example, the raw data

in the non-standard structure and size, and the error arised in the trigger

algorithm calculation, found in the course of the decoding are displayed in

a way easily recognizable.

3.1 Interactive Data Quality Monitoring: MOOD

MOOD [95] is the project aimed to serve the interactive DQM needs of AL-

ICE. It is written in C++ and makes heavy use of the ROOT framework

which provides Graphic User Interface (GUI) and the analysis tools such as

histograms and graphs. The interface to the DAQ is provided by the DATE

monitoring library. MOOD provides a framework by the template feature of

C++. This helps that any user class derived from an Abstract Base Class

(ABC) can redefine the pure virtual functions of the base class and execute

the custom code; while it makes whole MOOD package strongly dependent

on each detector code developed by users. The base classes of MOOD are:

TMMainFrame is the main class for the modules and provides the generic GUI

functionalities, such as menu bar, status bar, and so on; TMBaseModule is

the ABC that can be derived for any detector modules. The following virtual

functions drive the monitoring process:

• InitMonitors: This is used to acquire configuration/values settings from

the GUI and store them in C++ variables so that user code can access

them at runtime. For example, if a user enters a value in a textbox,

the value should be copied in a variable by this function.

• ResetMonitors: This function is called when the histograms is needed

to be reset, for example when the Reset button is pressed.

• UpdateMonitors: This function is called to update the screen. User

code selects the appropriate pad where a histogram should be drawn
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and issues a screen drawing command.

• PreMonitor: This function is excuted after the update of the screen.

It follows that analysis is done on all the events in the background

while the update of screen is being processed.

• PostMonitor: The code in this function is executed before the update

of the screen.

• MonitorEvent: Actual analysis for monitoring is taken place in this

function. The event fragments are accessible by MOOD API that can

help user code to be able to subsequently decode the payload, to per-

form analysis and to store the results, usually by filling histograms.

MOOD API provides all the information for the event, for example

event type and trigger masks, which are available by DATE. These in-

formation can be expolited to differentiate the behavior of MonitorEvent

according to the event type: physics event or calibration event, for in-

stance.

• UpdateMonitors: This function is excuted periodically at a given time

or by request.

• ConstructMonitors and ConstructGUI: They are helpful for each mod-

ule to book the histograms and to create GUI.

There are two mode of monitoring operations supported by MOOD, see

Fig. 3.1.

• By pressing Get Event button the following call sequence is imple-

mented: InitMonitors, PreMonitor, MonitorEvent, PostMonitor, and

UpdateMonitors.

• By filling a number N in Maximum number of events textbox or a

period M in terms of number of events in Update period textbox, the

total number of events N to be monitored as well as the update period

M of the screen and pressing the Start Event Loop button the follow-

ing call sequence is implemented: InitMonitors, N/M× (PreMonitor,

M×MonitorEvent, PostMonitor, UpdateMonitors).
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Figure 3.1: Example of MOOD screen view.
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MOOD has been playing an important role during the commissioning phase

with its solid design and supports by the project team in ALICE. From

the beginning of LHC running, the role has been handed over to the new

automatic DQM framework, AMORE, which has been doing a great role

since the data taking started.

3.2 Automatic Data Quality Monitoring: AMORE

In such a complex system of ALICE, a large number of information (for ex-

ample, histograms) is produced, distributed and consumed by users simul-

taneously which cannot be fulfilled with an interactive server-client scheme

where MOOD is based on. And the heavy dependence on the detector code

of MOOD can be a serious obstacle of the development, especially for the

beginners.

Upon these requirements, AMORE [96] features the publish-subscribe sch-

eme involving many-to-many connection between publishers (amoreAgents),

subscribers (amoreClients), and the intermediate pools for data exchange

(amorePools). It is designed to be independent on the detector codes as well

by introducing reflective programming1. The comparison between features of

MOOD and AMORE are shown in Fig. 3.2.

The 3-tiers of publish-subscribe scheme of AMORE are described as the

following (see Fig. 3.3):

• amoreAgents as publishers have access to raw data, process the data

to produce the MonitorObjects, and publish them on the pools.

• amorePools are implemented as the MySQL [98] database servers for

the exchange of MonitorObjects. This allows the transactions of Moni-

torObjects between amoreAgents and amoreClients without any di-

rect transfers.

• amoreClients can subscribe to MonitorObjects on any amoreAgents,

thus amoreClients will recieve regular updates on the contents of the

1In computer science, reflection is the process by which a computer program can
observe and modify its own structure and behavior at runtime. The first notion of
computational reflection was introduced in [97].
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Figure 3.2: The comparison between the features of MOOD and AMORE.

Figure 3.3: Publish-subscribe scheme of AMORE.
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subscribed MonitorObjects.

The amoreAgents decode and transform the raw data into physical quan-

tities, and store in the form of MonitorObjects. For the moments, it suf-

fices to consider the MonitorObjects as histograms. The amoreAgents dis-

patch the MonitorObjects to amorePools. Each amoreAgent can connect to

only one amorePool for this purpose. The amoreAgents can also access to

MonitorObjects published by other amoreAgents.

To accomplish the execution of user code, the amoreAgent subsequently

calls member functions of an abstract based class, called PublisherModule.

User code implements the pure virtual functions of this class in derived

classes and a specific part of the agent, called Publisher, calls these derived

member functions. The same approach is followed throughout the framework

where large parts of user-defined code are to be executed. For this purpose,

specialized abstract base classes exist for a subscriber and for a generic GUI

client.

Each amoreAgent is represented by a table in a database. Each row of

the agent table is associated with a MonitorObject that is published by

the agent at any given moment. As with the DATE software environment,

MySQL is used to define the configuration of the framework, namely the

initial conditions for each agent, such as the operating node, the associated

pool and the data source.

It is practical to define an abstraction that can unify the various types of

histograms and other less utilized but still useful data types. The base class,

named MonitorObject, is abstract and holds an interface which is common

for all the derived classes. For example there are functions to retrieve the

identity of the MonitorObject or to reset it. The derived classes are mostly

template-based, for example a MonitorObjectScalar<ScalarType>, that can

be instantiated for all the C++ fundamental data types. The same holds

for various types of histograms which are instantiated using the relavant

ROOT data types, for example 1-, 2- and 3-dimensional histograms; 1- and

2-dimensional histogram profiles.

The publishing interface follows the general form,

void Publish(MonitorObject<Type>*&, "unique name", ...);
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where the first argument is a refence to a pointer of a templated MonitorOb-

ject as described above. The second argument is a character string repre-

senting the MonitorObjects unique name. A unique identification for every

MonitorObject is the form of a pair with amoreAgent name and MonitorOb-

ject name with a qualified pathname, such as

/amore/<amoreAgent name>/<MonitorObject name>.

Finally, a variable number of arguments follow in the sense of several over-

loaded Publish function definitions with different number of arguments.

The subscription interface follows the general form,

void Subscribe(MonitorObject<Type>*&, "unique name");

A shortly typed version of the subscription function also exists, namely

void Subscribe("unique name");

In this case, as there is no direct pointer handle, user code queries the sub-

scription backend executing in C++ pseudocode the following operation

MonitorObject<Type>* pointer=

dynamic_cast<MonitorObject<Type>*>

(gSubscriber->GetMonitorObject("unique name"));

where gSubscriber is the interface to the subscription backend.

3.3 Development of online DQM software for Muon

Trigger

There exists an online DQM tool for ALICE Muon Trigger system developed

on both framework, MOOD and AMORE as mentioned at the beginning

of this chapter. Only MOOD-based version of the tool for detector experts

was prepared during the commissioning phase of the detector. It provides de-

tailed information useful for experts in the form of one and two dimensional

histograms. For example, the hit multiplicity of each FEB on each trigger

station can be monitored as shown in Fig. 3.4a. Each pad can be zoomed
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(a)

(b)

Figure 3.4: An example view of (a) hit multiplicity panel and (b) trigger
algorithm panel of MOOD expert version. There is a missing column in both
figures due to the problem with a regional trigger board. A mal-functioning
local trigger board can be found in (b).

79



in by clicking the pad which is implemented by the ROOT user interface

class TButton in which one can easily find out noisy channels or errors on

the specific electronics. In addition, it provides a detailed checks for trigger

algorithm and two dimensional histograms for the hit multiplicity of strips

and local trigger boards as shown in Fig. 3.4b.

Although the expert version is useful and extended, it takes much of

time to load and update its own histograms that makes it hard to display

the histograms without delay in a short time interval. In addtion, some of

histograms are not appropriate for the non-experts, who take shifts during

the data taking. These prevent it from being used in that period, therefore,

a fast and easy-to-use version, called shift version of the online DQM tool

is required.

The development of the shift version based on MOOD was started check-

ing and reporting the raw data structure of ALICE Muon Trigger at the

beginning. First of all, it was mandatory to understand the mechanism of

payload decoder and the structure of raw data coming from the electron-

ics through the Detector Data Link (DDL). By understanding them, we can

display any histograms containing the information as we want to see. In

addition, it was necessary to know how to construct GUI in order to imple-

ment the histograms in MOOD, and eventually, to construct a new GUI for

shift version. After the implementation of the shift version of MOOD was

complete, the conversion into AMORE had started. The name of AMORE

module for shift is MTRUI3, where MTR is the detector code in AMORE

framework. The general scheme of AMORE modules for trigger system is

described in Fig. 3.5. The shift version of MOOD and AMORE are now in-

stalled at the ALICE control room. The screen view of the shift version of

MOOD and AMORE is shown in Fig. 3.6.

3.3.1 Payload decoder

The payload decoder translates the raw data of standard structure provided

by ALICE. An ALICE raw event includes an event header of 17 words (1

word = 32 bits) and the DDL structure [99]. The DDL sub-event begins

with an equipment header of 7 words followed by a Common Data Header
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Figure 3.5: A general scheme of AMORE modules for trigger system. Green-
colored boxes represent the publish process while green-colored boxes repre-
sent the subscribe process. Yellow-colored box indicates the raw data flow
from the detector. amoreAgentMTR01 is a amoreAgent responsible for pub-
lishing the MonitorObjects of muon trigger system. There are 3 subscribers:
MTRUI1 and MTRUI2 for expert view; MTRUI3 for shift view.
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(a)

(b)

Figure 3.6: Example view of the shift version of (a) MOOD and (b)
AMORE.
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(CDH) of 8 words. For Muon Trigger, the equipment is referred as Dimuon-

trigger Alice Read-out Controller (DARC). The data flow of ∼21,000 strips

is concentrated in two DARCs, Right-DARC and Left-DARC. An overall

view of a DDL event of Muon Trigger is shown in Fig. 3.7. The DDL event

header contains 8 additional words, followed by 8 regional controller struc-

tures, including the 16 local controller structures. There are two types of

data structure depending on the type of the trigger. For a physics trigger,

only data from the detectors are read out while for software triggers (the

events from calibration run) additional information (from scalers) is read out

as well. The scalers allow to check the counting rate of detector: noise from

detector and FEE and background from cosmic-ray. There are extra words

for the DARC, global trigger board, regional trigger boards and local trigger

boards.

DARC header. It consists of a word (32 bit) containing trigger occur-

rence (2 bits) and global trigger output (6 bits). The global output con-

tains the 6 single and dimuon triggers: single muon high/low-pt, like-sign

dimuon high/low-pt, and unlike-sign dimuon high/low-pt. These global infor-

mation are present in one DARC header (one DDL from R-DARC), in the

other header, the words for global trigger board are set to zero. In addition,

the header contains global board data occurrence bit, separator words, and

scaler words (8 words for DARC and 10 words for global trigger boards)

if the case of software event. The separator words are written at the end

of each trigger board words, therefore it is also called End of Words. For

DARC header, the separator is 0xDEADFACE and 0xDEADBEEF should

be set at the end of global header.

Regional board header. The regional board header consists of 4 words:

DARC status word, Regional word, and 2 words of regional input corre-

sponding to the 16 local trigger boards data. The DARC status word con-

tains flags for Level 0, Level 1 and Level 2 trigger accepted/rejected (1 bit

each), regional trigger occurrence (1 bit) and etc. The value of the DARC

status word will be set to 0xCAFEDEAD when the regional trigger board

is masked or could not be readout. In the regional word, the output of re-
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Figure 3.7: Schematic view of the DDL raw event for trigger chambers.

84



gional board is filled in 8 bits: 2 bits for single high-pt muon; 1 bit for

unlike-sign dimuon pair of high-pt muon; 1 bit for like-sign dimuon pair of

high-pt muon; 2 bits for single low-pt muon; 1 bit for unlike-sign dimuon

pair of low-pt muon; 1 bit for like-sign dimuon pair of low-pt muon. 2 bits

of low-pt and 2 bits of high-pt for each local board are sent as the input of

regional tigger board. And 10 additional scaler words will be added when

calibration run is performed. The separator word for the regional header is

0xBEEFFACE.

Local board structure. The local board structure format contains 5 words:

16 bits each (× 8) corresponding to position along x and y axis in the

4 planes of 2 stations and a word containing bits for trigger information

from the local trigger board decisions and deviations. Additional 45 scaler

words are added if the case of software event. The end of word for each

local header is 0xCAFEFADE.

In AliRoot software package, there are several classes prepared for decod-

ing the raw data. A detailed description can be found in [100]. The main

decoding classes used for Muon Trigger are:

• AliRawReader is an abstract base class for reading raw data. Depend-

ing on the raw data format, file (DDL format or ROOT format) or

stream provided by DATE, there are derived classes: AliRawReaderFile

(or AliRawReaderRoot), and AliRawReaderDate. These derived classes

implement the method to access the spectific detector part of raw data

by using the equipment identification number (ID) of the read-out elec-

tronics of detectors. For Muon Trigger case, the equipment IDs of two

DARCs, R-DARC and L-DARC of Muon Trigger are 0xB00 and 0xB01,

respectively. For AMORE, the AliRawReaderDate class interfaced with

a method provided by AMORE core is used to access the raw data.

In case of MOOD, the class TDATEEventParser provides a method,

GetEquipmentById, to help access the spectific detector part of raw

data and dump a buffer containing the header of read-out electronics

of each detectors identified by their ID number. This is implemented

in TMBaseModule. In addition, AliRawReader provides some methods
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which help to obtain the information about the event: GetRunNumber

to get the run number of data currently reading, GetType to get the

event type of data (physics event or calibration event), and GetEventId

to get the number of events.

• AliMUONDDLTrigger is a dedicated class for Muon Trigger that pro-

vides interfaces to access each electronics part of raw data. The ref-

erences to each part of raw data in memory and their sizes received

from AliRawReaderDate (or TDATEEventParser) can be stored in this

class.

The actual examples of setting raw reader and handing it over to the de-

coder in both MOOD and AMORE are the following:

// for MOOD

const equipmentHeaderStruct* const equipmentHeader =

GetEquipmentById(iEquipmentId));

...

UInt_t* buffer = (UInt_t*)equipmentHeader +

(sizeof(equipmentHeaderStruct) + CDH_SIZE)/4;

fMTRDecoder->Decoder(buffer,iEquipmentId);

where GetEquipmentById method returns the pointer to the raw data of

the corresponding equipment and the size of buffer, equipmentHeader is a

struct type named equipmentHeaderStruct defined in the library which

corresponds to the raw data in AliRoot package, sizeof returns the size in

bytes, and CDH SIZE is defined as 8×4 (= 32 bytes). To get the size of the

buffer in words, we divide the calculated size by 4. Then, the decoder was

called with the buffer and the equipment ID.

// for AMORE

SetRawReader(new AliRawReaderDate(GetEvent()->DATEEvent()));

...

UChar_t data[GetEquipmentDataSize()];

GetDecoder()->Decode((UInt_t *)data, GetEquipmentId());
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where SetRawReader function set a raw reader with the data from DATE,

a buffer to store the data was allocated with the size of the data, and then

the buffer and the equipment ID were handed over to the decoder module.

At the beginning of decoding, the decoder takes over the data stored

in the buffer and deal it with AliMUONDDLTrigger class. And as mentioned

above, this class has interfaces to the additional classes corresponding to

each trigger electronics which provide essential methods that can be used to

obtain the information in the raw data at each electronics level. They are

AliMUONDarcHeader, AliMUONRegHeader, and AliMUONLocalStruct. To get

the header of DARC, for example, a method, GetDarcHeader in AliMUONDDL-

Trigger class can be used, like

AliMUONDarcHeader* darcHeader = fDDLTrigger->GetDarcHeader();

where fDDLTrigger is an instance of AliMUONDDLTrigger class. In a sim-

liar way, the global trigger output in the DARC header can be extracted

by using GetGlobalOutput method in AliMUONDarcHeader class. The other

useful information for checking the status of electronics and data quality are

available via these classes.

3.3.2 Monitoring objects

In this section, the implemented monitoring objects in the shift version of

DQM software for Muon Trigger are listed.

Raw data structure. As described above, in both cases of physics and

calibration event, the structure of the raw data is solid and each level of

the raw structure is separated by the separator. However, keeping eyes on

the structure is not unimportant since some corruptions had been found

in the structure during the commissioning phase due to the failures of the

electronics or the network. By checking the End of Words of each header:

0xDEADFACE (DARC); 0xDEADBEEF (global board); 0xBEEFFACE (re-

gional boards) and 0xCAFEFADE (local boards), we can estimate the cor-

rupted rate of the raw data structure, and then it will be displayed in the

monitoring module as shown in Fig. 3.8 (for MOOD implementaion) and

Fig. 3.9 (for AMORE). In addtion, the size of the raw data, simply called
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Figure 3.8: Example screen view of raw data structure of MOOD implemen-
tation for the shift version. The event type of this example is figured out
physics run (top-left), and therefore the size of DDL is 824 (bottom). Some
of End of Words errors are shown (top-right).

DDL from each side of DARC, can be also another good key to assure the

quality of data. For calibration run, the size of DDL should be 6682 due to

the additional scalers while 824 (without scalers) for physics run.

Multiplicities of fired electronics for calibration events. Whenever cal-

ibration run is performed, the output of electronics should be consistent un-

less there are problems: 20992 fired strips, 234 local trigger decisions, 16 re-

gional trigger decisions, and 6 global trigger decisions. Therefore the changes

in the multiplicity of each trigger level could be a good indicator for the sta-

tus of electronics. We can check these numbers from the input of header at

each trigger board level. For example, Right-side DARC header has the out-

put of global trigger board as its input and global header has the output

of regional trigger boards as the input, and so on. From this, we can figure

out how many trigger boards are fired by the pulse or hits. The fired strips

are shown in case of calibration run with MOOD shift module in Fig. 3.10
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(a) (b)

Figure 3.9: Example plots of raw data structure of AMORE implementa-
tion. The green bars indicates the purity of the raw data structure at each
electronic level. From the left to the right, DARC, Global, Regional and Lo-
cal board. (a) No corruption is showed in the left panel. (b) In the right
panel few corrupted rates of raw data structure in the regional and local
structures are indicated in red color (Tested data was obatined during the
cosmic ray test phase and there were few corruptions on separation words
at Regional and Local words which are now fixed).
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Figure 3.10: Example screen view of fired strip multiplicities with MOOD
shift module.

and the multiplicities of each trigger level with AMORE shift module in

Fig. 3.11.

Trigger efficiency. The ratio of the trigger rate of 4 trigger planes over the

4 planes divided by the trigger rate of 3 trigger planes over the 4 planes,

which is referred to as trigger efficiency 44/34, should be consistent in both

physics run (much below the 100% but converge around some point) and

calibration run (∼100%) as shown in Fig. 3.12. This is not implemented in

MOOD shift version, but shown in MOOD expert and AMORE shift/expert

modules.

Global trigger output. The 6 muon trigger decisions: single muon low-

/high-pt, like-sign dimuon low-/high-pt and unlike-sign dimuon low-/high-

pt trigger, are displayed as well as the single muon trigger choice whether

low-pt or high-pt. If there is some errors in the global trigger algorithm,

these events are indicated after the verification on the trigger algorithm. See

Fig. 3.13.
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(a) (b)

Figure 3.11: Example plots of fired trigger boards with AMORE shift mod-
ule. (a) The multiplicities of each trigger boards are 6 for global board, 16
for regional boards, 234 for local boards and 20992 for strips (from left).
(b) The zoomed-in view of the strip multiplicity shows that fluctuation of
the number of strips in muon trigger chambers event-by-event with small
deviations.
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Figure 3.12: Example plot of the trigger efficiency 44/34 as a function of
time implemented in AMORE shift module. The green line is the ratio for
physics run over time (in minutes) and the red line indicates the overall
average of the ratio at the given time which looks become stable as time
goes. In this example, the calibration runs are included between the physics
runs that leads to the slight increase of the overall fraction (in red).

Global scalers for calibration events. We can check the status of global

trigger board by monitoring the global scalers from the header of DARC

board for calibration events. As shown in Fig. 3.14, global trigger output

in green bars for calibration run is consistent for all trigger decisions. In

addition, L0 scaler, clock scaler and L0 hold scaler are provided in MOOD

for further check.
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Figure 3.13: Example plots of global trigger output of MOOD implementa-
tion (left) and AMORE implementation (right). The white bar (left) and
grey bar (right) represent the single muon choice which not transferred to
CTP. For AMORE, red bar will be shown up if there is any errors of global
trigger algorhtim (global trigger output are re-calculated with the input from
lower level trigger boards in the decoder, and then it is compared with the
output of global trigger board).

Figure 3.14: Example plots of global scaler shown in MOOD (left) and
AMORE (right) for calibration run. The red line represents global scalers
read-out during calibration event and the green bars represent global out-
put of calbration run.
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Chapter 4

Data Analysis

The aim of this thesis work is to measure the total cross section and the

differential cross section of Υ(nS) in µ+µ− channel in pp collisions at 7 TeV

energy with the ALICE muon spectrometer. The differential cross section of

Υ(nS) production in pp collisions as a function of the transverse momentum

pt and the rapidity y, can be expressed as the following:

dσpp→Υ(nS)

dpt
=

1

BΥ(nS)→µ+µ− · 〈A× ε〉Υ(nS)→µ+µ−
·

dNΥ(nS)→µ+µ−

dpt
· σpp

Npp

dσpp→Υ(nS)

dy
=

1

BΥ(nS)→µ+µ− · 〈A× ε〉Υ(nS)→µ+µ−
·

dNΥ(nS)→µ+µ−

dy
· σpp

Npp

where

• σpp is the total cross section of pp collisions at LHC energy, derived

from σV0AND
1. The recent measurement of ALICE in pp collisions at

7 TeV energy shows σpp = 62.3± 0.4(stat.)± 4.3(syst.) mb [102].

• Npp is the number of minimum bias events corresponding to the muon

sample used in the analysis. Together with σpp, we can determine the

integrated luminosity: Lpp = Npp/σpp. The integrated delivered lumi-

nosity to ALICE by LHC in 2010 is Lpp ≈ 0.5 pb−1 [103].

• BΥ(nS)→µ+µ− is the probability for each Υ(nS) to decay into muon

1Measurable cross section of two V0 detectors via van der Meer (vdM) Scan (also
known as Vernier Scan) [101]

94



Table 4.1: The mass and branching ratio of the charmonium, J/ψ and bot-
tomonium states, Υ(nS), quoted from the Particle Data Group (PDG) [2].

States J/ψ Υ(1S) Υ(2S) Υ(3S)

Mass (GeV/c2) 3.10 9.46 10.02 10.36
BQQ̄→µ+µ− (%) 5.93± 0.06 2.48± 0.05 1.93± 0.17 2.18± 0.21

pair (see Tab. 4.1).

• 〈A×ε〉Υ(nS)→µ+µ− is the average value of geometrical acceptance multi-

plied by the reconstruction efficiency of Υ(nS) with the ALICE muon

spectrometer. We can quantify 〈A × ε〉 correction factor by using the

simulation with a realistic detector configuration corresponding to the

data used for the analysis and taking the average value for whole data

periods.

• dNΥ(nS)→µ+µ−/dpt or dNΥ(nS)→µ+µ−/dy is the number of reconstructed

Υ(nS) (signal) detected via µ+µ− decay in a given pt or y range. In

order to extract the number of signal precisely, we performed a fit to

the invariant mass spectrum of µ+µ− pair.

This chapter contains the Monte-Carlo(MC)-based-analysis performed dur-

ing the data taking period in 2010. Thanks to the MC production, we were

able to build and test a C++-based-analysis-framework especially for Υ anal-

ysis (described in Sec. 2.4.2). In this chapter, we present a prediction on the

yield of Υ(nS) when we have a certain amount of statistics, and finally a

detailed discussions about the calculation of Υ(nS) production cross section

with a part of the data collected in 2010 in pp collisions at
√
s = 7 TeV.

4.1 Monte Carlo based analysis: PDC09

In order to build and test a C++ based analysis framework for Υ analysis,

we used a PDC09 2 production. Among several periods in this production,

2A massive MC production in pp collisions at
√
s = 10 TeV performed by ALICE

Collaboration. At the time beginning of this analysis work, there were several scenar-
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we chose LHC09a10 period in which generated µ+µ− events from random

species were mixed. This is called a MUON cocktail.

We analyzed this MC production regarding it as a real data and ex-

tracted Υ signals by fitting. Then we produced a transverse momentum dis-

tribution or a rapidity distribution. A benefit of analyzing MC production

is that we have a concrete knowledge at the generation level, thus we can

easily make sure that the analysis procedure is working properly by com-

paring the result we obtained from the reconstruction distribution with the

one at the generation level.

The total number of event generated of this production is 3,420,400 with

the following kinematic selection cuts applied at the stage of event genera-

tion:

• geometrical acceptance cuts on the polar angle of muons, 171◦ < θµ <

178◦,

• muon pt threshold, pµt > 0.5 GeV/c.

4.1.1 Signal extraction

The reconstructed µ+µ− invariant mass distribution of PDC09 production in

the mass range [0; 15 (GeV/c2)] is depicted in Fig. 4.1. Above the µ+µ− con-

tinuum in this spectrum, several significant peaks were seen: low mass reso-

nances (φ and ρ), cc̄ mesons (J/ψ and ψ(2S)), and bb̄ mesons (Υ(1S), Υ(2S)

and Υ(3S)). We were focusing on the bb̄ mesons, Υ family, in this analysis.

At first, it was crucial to find an appropriate distribution function for de-

scribing the shape of the spectrum in the Υ(nS) mass range [7; 12 (GeV/c2)]

in order to obtain the number of Υ(nS) signal. We chose the following distri-

bution functions as candidates for the signal shape: the normalized Gaussian

distribution function, the Crystal Ball function [104], and the normalized

Gaussian distribution function convoluted with the inverted-Landau distri-

bution function. The (single or double) exponential function is suitable to

describe the µ+µ− continuum. In Tab. 4.2, the definitions of each function

and the parameters were summarized.

ios related to the possible beam energy in pp collisions at LHC after the accident in
September 2008, and the most promising one was 10 TeV.
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Figure 4.1: The µ+µ− invariant mass distribution of PDC09 production in
the mass range [0; 15 (GeV/c2)] with logarithmic scaled Y-axis.

Table 4.3: The summary of the fit results of three different fit functions used
in the fit to simulated Υ(1S) signal shown in Fig. 4.2.

Function Mean (GeV/c2) σ (MeV/c2) χ2/ndf

3×Gaussians 9.484± 0.002 89± 2 2.71
Crystal Ball + Gaussian 9.479± 0.002 92± 1 1.35

Gauss⊗Landau + 2×Gaussians 9.464± 0.000 94± 2 1.23

In order to test these functions, we performed a fit to the simulated

Υ(1S) signal with each function. There were tails around the mean value

of Υ due to the energy-loss of muon tracks. By adding one or two Gaussian

functions, we can take into account the tails into the fit. The fit results were

shown in Fig. 4.2 and summarized in Tab. 4.3. We chose the Gaussian con-

voluted with Landau function for the fit to Υ(1S) signal shape since it gave

better χ2/ndf, mean and standard deviation (mass resolution which is close

to the designed value). For the fit to the continuum (background), single

exponential function was chosen.

The global fit function used for Υ family in PDC09 production was ex-
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(a) 3 Gaussians (b) Crystal Ball + Gaussian

(c) Gauss⊗Landau + 2 Gaussians

Figure 4.2: The µ+µ� invariant mass distribution (with logarithmic scaled
Y-axis) of simulated Υ with the three different fits: mainly (a) Gaussian, (b)
Crystal Ball and (c) Gaussian convoluted with Landau functions. In order
to reproduce tails additional Gaussian functions were accumulated. Each fit
gave χ2/ndf: (a) 2.71, (b) 1.35 and (c) 1.23.
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Figure 4.3: The µ+µ− invariant mass distribution of PDC09 production
(with logarithmic scaled Y-axis) with the global fit in the mass range [7;
12 (GeV/c2)].

pressed as following,

fglobal(m) = fexp(m)︸ ︷︷ ︸ + fG ⊗ fL(m) + fG(m) + fG(m)︸ ︷︷ ︸ .
background signals

For Υ(2S) and Υ(3S) fit, the normalized Gaussian function was used. Here,

the additional Gaussian functions were omitted since the entries in the tails

are low in PDC09 production. We performed a fit to the µ+µ− invariant

mass distribution (shown in Fig. 4.1) with the global fit in the Υ family

mass region [7; 12 (GeV/c2)]. The signals extracted by the global fit for each

resonance were: NΥ(1S) = 1199±54, NΥ(2S) = 193±21, and NΥ(3S) = 121±18.

The mass resolution of Υ(1S) was 91±7 MeV/c2 close to the designed value

because an ideal detector configuration was used in PDC09 production, and

this was used to fix the mass resolution for Υ(2S) and Υ(3S) in the fit with

the assumption that the mass resolutions of Υ(nS) are similar one another.

Figure 4.3 showed the µ+µ− invariant mass spectrum with the global fit.

The fit results were summarized in Tab. 4.4.
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Table 4.4: The summary of fit results of the global fit shown in Fig. 4.3.

States Nsig Mean (GeV/c2) σ (MeV/c2)

Υ(1S) 1,199±54 9.496±0.007 91±7
Υ(2S) 193±21 10.07±0.01 91 (fixed)
Υ(3S) 121±18 10.38±0.02 91 (fixed)

The pt- and rapidity-dependence of Υ(1S) were also acquired by differen-

tiating the Fig. 4.3 as a function of pt (with 2 GeV/c intervals in pt range

[0; 10 GeV/c] and with 5 GeV/c intervals up to 20 GeV/c) and rapidity

(with 0.3 intervals in rapidity range [-4.0; -2.5]) as shown in Fig. 4.4. The

number of Υ(1S) extracted from the fit were summarized in Tab. 4.5. At

some bins, we can not perform the “2-dimensional” correction on each pt

and rapidity bin since they have not enough statistics. Thus we performed

the “1-dimensional” correction on pt- and rapidity differential distribution,

instead.

Accumulating the extracted number of Υ(1S) in Tab. 4.5, we were able

to produce pt- and rapidity-dependence of NΥ(1S) (dNΥ(1S)/dpt and dNΥ(1S)

/dy) of the PDC09 production as shown in Fig. 4.5. The dNΥ(1S)/dpt and

dNΥ(1S)/dy at the generation level were plotted in the same panels and it

was shown that the generated and reconstructed distributions were not ex-

actly the same, thus it was necessary to perform a simulation with the same

configuration of PDC09 production to evaluate the reconstruction efficiency

factor, and then proceed a correction procedure in order to reproduce the

distributions at the generation level from the reconstruction spectra.

4.1.2 〈A× ε〉 correction

MC event generations were performed to produce Υ(1S) signals including

its family, Υ(2S) and Υ(3S) for the estimation of the acceptance times ef-

ficiency of the ALICE muon spectrometer in rapidity range −4 < y < −2.5.

These MC events were generated in pp collisions at
√
s = 10 TeV energy.

The kinematics of this generation were simulated with the parameterization

phenomenologically scaled from the CDF experiment data in pp̄ collisions at
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(a) pt-dependence

(b) Rapidity-dependence

Figure 4.5: (a) pt- and (b) rapidity-dependence of NΥ(1S) for PDC09 produc-
tion. Black square points represented the distribution of dN/dy or dN/dpt of
Υ(1S) at the generation level; cyan triangle points represented those of
Υ(1S) at the reconstruction level.
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Table 4.6: The number of generated Υ with two different configurations in
the pt range [0; 20 (GeV/c)].

Simulation conf. 4π y-cut

NGen
Υ→µ+µ− 100,000 100,000

NGen
Υ→µ+µ−(−4 < y < −2.5) 4,658 29,507

NRec
Υ→µ+µ−(−4 < y < −2.5) 4,381 27,749

1.96 TeV energy [105]. µ+µ− decay mode was enforced to each generated Υ

and polarization was not considered in this simulation.

Two different simulations were performed in order to obtain the inte-

grated acceptance times efficiency and the pt- or rapidity-differential accep-

tance times efficiency. Total 100,000 events were produced for each simula-

tion configuration.

• 4π simulation for evaluating the integrated acceptance times efficiency:

Υ was generated in the full phase space, −8 < yΥ < 8.

• y-cut simulation for evaluating the pt- or rapidity-differential accep-

tance times efficiency: Υ was generated in a specific rapidity range,

−4.1 < yΥ < −2.3 (slightly larger than the ALICE muon spectrometer

acceptance, −4 < y < −2.5.

The statistics of these simulations were summarized in Tab. 4.6.

The mass resolution, in particular, was an important criterion in the

analysis of Υ, since 100 MeV/c2 resolution was the least requirement to re-

solve the Υ states. In this simulation, and the PDC09 production as well, a

residual mis-alignment of the detector was taken into account at the recon-

struction level in the simulation while an ideal alignment was used at the

generation level. This was one of the scenarii concerning our detector status

at the commissioning phase in which we assumed that our apparatus suffers

few deteriorations. In addition, since we only generated Υ events without un-

derlying events, we had to take into account the fact that the primary vertex

was not able to be reconstructed by SPD (since there were not any other

generated primary particles to be referred to reconstruct a primary vertex in
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SPD) if we set a Gaussian distribution to the primary vertex in the simula-

tion. That led to the fact that, consequently, the mass resolution of Υ could

be worse than it was expected. In order to avoid this effect, the deviation of

the primary vertex in the simulation had to be constrained without any dis-

placements from the interaction point: (0, 0, 0)3. For instance, the effect of

the standard deviation of z-component of the primary vertex of Υ, σVz , was

shown in Fig. 4.6. The Gaussian distribution convoluted with the Landau

distribution was used to fit to the invariant mass distribution of Υ in order

to obtain the mass resolution. For the case we set σVz = 5.3 cm, the mass

resolution we obtained was 149.1 MeV/c2 (worse than the designed value);

while the mass resolution of the case σVz = 0 cm was 83 MeV/c2 (better

than the designed value). In this simulation, σVz = 0 cm was set since it

gave the mass resolution close to the one of PDC09 production, which was

91±7 MeV/c2.

Assuming that we generated N number of Υ → µ+µ− events, the only

events with that both µ+ and µ− are in the ALICE muon spectrometer

acceptance (−4 < y < −2.5) can be reconstructed. We define:

• geometrical acceptance, A, as the ratio of the number of generated

events with µ+µ− inside the muon spectrometer, Ngen∈det
Υ→µ+µ− , over the

total number of generated events, Ngen
Υ→µ+µ− ,

• reconstruction efficiency, ε, as the ratio of the number of reconstructed

events, Nrec
Υ→µ+µ− , over the number of generated events with µ+µ− in-

side the muon spectrometer, Ngen∈det
Υ→µ+µ− .

Thus, the acceptance times efficiency of the ALICE muon spectrometer for

Υ→ µ+µ− can be defined as,

(A× ε)Υ→µ+µ− =
Nrec

Υ→µ+µ−

Ngen
Υ→µ+µ−

.

The integrated acceptance times efficiency of the process Υ(1S)→ µ+µ−

in the ALICE muon spectrometer was calculated with the Υ(1S) dataset

3Each digit represents the standard deviation of the Gaussian distribution of a pri-
mary vertex, (σVx , σVy , σVz ).
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(a) σVz = 5.3 cm

(b) σVz = 0 cm

Figure 4.6: The effect of the distribution of z-component of a primary vertex,
σVz , on the mass resolution in the simulation. The case (a) σVz = 5.3 cm
showed that the mass resolution of Υ was 149.1 MeV/c2, while (b) σVz =
0 cm showed that the mass resolution was 83 MeV/c2. The mass resolution
of Υ in PDC09 production was 91±7 MeV/c2.
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Table 4.7: The integrated acceptance times efficiency of Υ → µ+µ− in the
ALICE muon spectrometer obtained from different simulations: in pp colli-
sions at

√
s = 10 TeV energy (produced for the PDC09 analysis) and in pp

collisions at
√
s = 14 TeV energy (the result of ALICE Physics Performance

Report volume II [89]).

4π PPR vol. II

Integrated Acceptance 4.66%
Integrated Acceptance × Reconstruction Efficiency 4.38% 4.41%

produced into full phase space (4π dataset) as defined above. The compari-

son with the acceptance times efficiency in ALICE Physics Performance Re-

port volume II [89] estimated from a simulation performed in pp collisions

at
√
s = 14 TeV was shown in Tab. 4.7. Considering the difference of the

beam energy between two results, we were able to conclude that they are

in the agreement.

We obtained the pt- and rapidity-dependence of the acceptance times ef-

ficiency as well by using the y-cut dataset (see Fig. 4.7) for the purpose

of correcting the dNΥ(1S)/dy and dNΥ(1S)/dpt obtained from PDC09 pro-

duction. The correction worked properly since the corrected dNΥ(1S)/dy and

dNΥ(1S)/dpt were well agreed with the generated ones as shown in Fig. 4.8.

This correction procedure was applied to Υ analysis with the real data (see

Sec. 4.3.5).

4.2 Expectation for Υ states

We performed a new simulation for Υ states with the realistic configuration

including the current mis-alignment measurement and a fast simulation to

draw the mass continuum deduced from the real data sample, LHC10e pe-

riod data, in order to foresee the expectation of yield of Υ states for L = 1

pb−1

In order to determine the number of generated Υ states for L = 1 pb−1,
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(a) d(A× ε)/dpt (b) d(A× ε)/dy

Figure 4.7: pt- and rapidity-differential acceptance times efficiency obtained
from y-cut data set to be used for the correction on the dNΥ(1S)/dy and
dNΥ(1S)/dpt of PDC09 production (see Fig. 4.5).

(a) pt dependence (b) Rapidity dependence

Figure 4.8: (a) pt and (b) rapidity distribution of Υ of PDC09 production
after correction (red marker).
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Table 4.8: A summary of the predicted production cross section of Υ states
including direct and feedback in pp collisions at

√
s = 7 TeV and the esti-

mation of the expected number of Υ(nS) produced for L = 1 pb−1.

Υ(1S) Υ(2S) Υ(3S)

σpp→Υ(nS)BΥ(nS)→µ+µ− 11 nb 2.9 nb 1.6 nb

Nexpected
Υ(nS) 440 116 74

we estimated with the following expression,

NΥ→µ+µ− = L · σpp→ΥBΥ→µ+µ−(A× ε)Υ→µ+µ− ,

where, L is the integrated luminosity, σpp→ΥBΥ→µ+µ− is the cross section

of Υ production with µ+µ− decay in pp collisions and the integrated (A×
ε)Υ→µ+µ− . With the assumption of the integrated A×ε ≈ 4% (deduced from

the estimation at
√
s = 10 TeV in Tab. 4.7) and a predicted cross section

of Υ states at
√
s = 7 TeV [106] (quoted in Tab. 4.8), the expected number

of Υ states with L = 1 pb−1 were: 440 for Υ(1S), 116 for Υ(2S), and 74

for Υ(3S) (summarized in Tab. 4.8). With these numbers, we performed the

simulation to generate each Υ state. The µ+µ− invariant mass distribution

for the expected Υ states from the simulation with L = 1 pb−1 are shown

in Fig. 4.9. The mass resolution of Υ(1S) with the current mis-alignment

was ∼ 230 MeV/c2, given by the Gaussian function fit. It was much worse

than the designed value, ∼ 100 MeV/c2, thus it is difficult to separate the

Υ resonances clearly.

For the background to be combined with the Υ signals, we performed a

fast simulation by using Monte Carlo random generation with the µ+µ− con-

tinuum extracted from a real data, LHC10e period data. The µ+µ− invariant

mass distribution of the LHC10e period data in mass range [4; 15 (GeV/c2)]

was shown in Fig. 4.10c. The two exponential functions were used to fit the

continuum in order to extract the normalization for the background and the

shape of the continuum to be used for the Monte Carlo random generation

for L = 1 pb−1. The mass region around Υ [8; 11 (GeV/c2)] was excluded

in the fit. The following relation was used to deduce the normalization for
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Figure 4.9: The µ+µ− invariant mass distribution of Υ states, Υ(1S) (green),
Υ(2S) (cyan), and Υ(3S) (red) of the simulation with current mis-alignment.
The resonances are not separable due to the worse mass resolution, ∼
230 MeV/c2.
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Table 4.9: Fit results of the predicted µ+µ− mass spectrum for L = 1 pb−1

shown in Fig. 4.11. S/B and Significance were calculated in the range [Mean
- 2σ; Mean + 2σ]

NΥ(1S+2S+3S) Mean (GeV/c2) σ (MeV/c2) S/B Signif. χ2/ndf

449 ± 51 9.47± 0.03 227± 30 0.42 5.05 0.92

the Monte Carlo random generation:

Ncont

∣∣∣∣
L=1 pb−1

=
L(= 1 pb−1)

LLHC10e
·NLHC10e

cont [4; 15(GeV/c2)],

where L/LLHC10e was the scaling factor with LLHC10e = 22 nb−1 and NLHC10e
cont [4;

15 (GeV/c2)] = 974 (integration of the fit function over the given mass

range) leading to:

Ncont

∣∣
L=1 pb−1 = 44, 273.

The shape of the background for the Monte Carlo random generation with

this normalization was shown in Fig. 4.10d. Figure 4.11 showed the com-

bined spectrum of Υ states with the continuum for L = 1 pb−1. Two expo-

nential functions (for the background) and Gaussian functions (for Υ states)

were used for the fit and the fit results were summarized in Tab. 4.9.

Here, we were able to conclude that the current alignment needs to be

improved in order to separate the Υ resonances and the expectation for

Υ(nS) analysis with L = 1 pb−1 showed sufficient performance to measure

the Υ(nS) production cross section, even with the current alignment.

4.3 Υ production cross section estimation

4.3.1 Method

We introduced an indirect method to calculate the Υ production cross sec-

tion in pp collisions at
√
s = 7 TeV by using the J/ψ production cross
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(a) LHC10e continuum (b) MC continuum

(c) LHC10e continuum (log-scaled) (d) MC continuum (log-scaled)

Figure 4.10: The µ+µ� continuum of (a) LHC10e and (b) MC random gen-
eration from LHC10e continuum. Double exponential function (red curve) is
used to fit to the LHC10e continuum in mass range [4; 15 (GeV/c2)]. MC
continuum is produced by a fast simulation from the LHC10e continuum.
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Figure 4.11: An expected µ+µ− mass spectrum for L = 1 pb−1. This is
obtained from the combined spectrum of Υ(1S+2S+3S) and MC continuum
from LHC10e. Double exponential function and Gaussian function are used
to fit to the spectrum.
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section measured at the same energy. With a given rapidity range, ∆y,

σ∆y
pp→Υ

σ∆y
pp→J/ψ

=
Ncorrected,∆y

Υ→µ+µ−

Ncorrected,∆y
J/ψ→µ+µ−

=
N∆y

Υ→µ+µ−

〈A× ε〉Υ→µ+µ− · BΥ→µ+µ−
·
〈A× ε〉J/ψ→µ+µ− · BJ/ψ→µ+µ−

N∆y
J/ψ→µ+µ−

.

The measured production cross section of J/ψ for a rapidity range, 2.5 <

y < 44 is

σpp→J/ψ(2.5 < y < 4) = 6.31± 0.25(stat.)± 0.80(syst.)+0.95
−1.96(pol.) µb [107].

The advantage of this method was that we do not need to take into account

the number of minimum bias event and its cross section in pp collisions

in order to integrate the beam luminosities. Particularly, it would not be

easy for a beam with high intensity in which high pile-up is expected. The

disadvantage was that, to a certain extent, the Υ production cross section

depends on the statistical and systematic uncertainties of the measurement

of J/ψ production cross section.

4.3.2 Data selection

We analyzed a part of data taken in 2010 in pp collisions at
√
s = 7 TeV:

LHC10g period data. Not all of runs, but selected runs in this period af-

ter Quality Assurance (QA) were used in this analysis. The QA for muon

analysis consisted of three steps to build up a run list :

• selecting runs from ALICE e-logbook [108] with the following condi-

tions: runs taken in a physics-run-partition of which including (at least)

muon trigger, SPD and V0 as trigger detectors, and (at least) muon

trigger/tracker, SPD and V0 as read-out detectors, having significant

number of muon triggered events with L3 and dipole magnets ON (−/−
or +/+) during a data-taking period, and tagged as a good run after

4The ALICE muon spectrometer covers a negative η range, and thus a negative y
range. However, since in pp collisions the physics is symmetric with respect to y = 0,
we dropped the negative sign when quoting rapidity values in the result.
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Table 4.10: Event statistics of LHC10g period for qualified runs taken from
the Run Condition Table [109]. The total/analyzed number of events be-
fore/after applying physics selection and the number of µ+µ− pair events
analyzed in this analysis were shown. Note that the time sharing during
this period was: 5 seconds for Min-bias and 114 seconds for Muons in every
120 seconds.

Run Min-bias events Muon events

135658 781,904 3,023,001
135704 517,258 2,142,017
135709 78,372 314,980
135712 25,116 130,667
135748 763,481 2,566,267
135761 285,485 1,139,315
135795 226,342 874,110
136177 4,347 27,643
136180 3,662 49,297
136189 46,029 664,396
136372 531,750 1,673,702
136376 423,106 1,193,929

Total 3,686,852 13,799,324
Analyzed 3,635,450 13,610,609
PhysSel 3,341,830 10,887,138

Nµ+µ−

event - 497,979

data quality monitoring;

• rejecting runs having issues reported by DAQ operator or detector ex-

pert concerning detector malfunctioning and involving luminosity scans;

• building a table with the information about run quality for all subsys-

tems which is called Run Condition Table (RCT) [109]. More detailed

description about the QA for muon analysis can be found in [110].

Event statistics of LHC10g after QA was summarized in Tab. 4.10.

4.3.3 Event selection

The analysis cuts used in this analysis for event selection were:
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• we accepted events having at least two muon tracks for di-muon anal-

ysis;

• geometrical acceptance cut, −4.0 < ηµ < −2.5, and a cut on the radius

at the end of front absorber, 17.6 < Rabs
µ < 89.5 cm, to select a good

muon track passing through the muon spectrometer. Especially, Rabs

cut was used not only for reducing hadronic background from K, π de-

cays, but also for reducing multiple scattering from the absorber itself.

In order to help the understanding of the geometrical cuts, a schematic

view was presented in Fig. 4.13;

• muon trigger pµt cut on at least one muon track. In this analysis, high

pµt (pµt > 1 GeV/c) trigger cut was required on both muon tracks in

order to reduce background, and thus improved the significance of the

signal. Especially, high pµt trigger cut was efficient for Υ analysis since

from the simulation the survival rate of Υ signal with respect to pµt >

1 GeV/c cut was ∼ 90% while that of J/ψ was less than 60%, see

Fig. 4.12

4.3.4 Extracting signals

The analysis cuts defined above were equally applied to both J/ψ and Υ in

the analysis. The invariant mass distributions in the J/ψ and Υ mass regions

were plotted and the functions used for fitting to the distributions in order

to extract the number of signal of each resonance were: exponential function

for background, Crystal Ball function and Gaussian distribution function for

J/ψ and Υ signal, respectively. Here, the higher states of Υ(1S) were taken

into account to the fit since they were not negligible even with such a low

statistics, unlike the higher resonance of J/ψ, ψ(2S). For the fit of Υ reso-

nances, three Gaussian functions were used in this analysis. The mean values

of Υ(2S) and Υ(3S) were quoted from the Particle Data Group (PDG) [2]

(see Tab. 4.1) and their mass resolutions (standard deviations) were fixed

with the same value obtained from the Υ(1S) fit which was ∼ 200 MeV/c2.

In particular, the normalization of the higher states were derived from the
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(a) (b)

Figure 4.12: The reconstructed µ+µ� pairs of J/ψ and Υ simulation with
different pt trigger cuts: (0, 0) and (Hpt, Hpt). Hpt represents pt

µ > 1
GeV/c. The survival rates with respect to (Hpt, Hpt) for each resonance
are: (a) ∼ 59% for J/ψ and (b) ∼ 90% for Υ.

Figure 4.13: A schematic view of muon spectrometer together with muon
tracks traversing within its geometrical acceptance and Rabs as well (see
text).
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Table 4.11: The summary of parameters for fitting to J/ψ and Υ mass dis-
tributions. The ratio of S (signal) and B (background), and significance of
the signal were obtained in the range [Mean− 2σ; Mean + 2σ].

States J/ψ Υ(1S + 2S + 3S)

Nsignal 3237± 107 18± 11
Mean (GeV/c2) 3.125± 0.003 9.492± 0.229
σ (MeV/c2) 80± 3 199± 91

S/B 5.489 0.562
Significance 11.570 2.622

Table 4.12: The extracted NΥ(1S+2S+3S) from the invariant mass distribu-
tions with different binnings.

# bins 60 75 100 150

NΥ(1S+2S+3S) 14± 7 18± 11 19± 6 21± 7

CMS result of the Υ(nS) production cross section [111] as following:

NΥ(2S) = NΥ(1S) ×
σpp→Υ(2S)

σpp→Υ(1S)
' NΥ(1S) × 0.26,

NΥ(3S) = NΥ(1S) ×
σpp→Υ(3S)

σpp→Υ(1S)
' NΥ(1S) × 0.14.

The invariant mass distributions of J/ψ and Υ(1S + 2S + 3S) together with

the fit were shown in Fig. 4.14 (see Tab. 4.11 for the fit results).

We had to make sure that the number of signal we extracted from the

fit showed consistency with different binnings of the invariant mass distribu-

tion. In Fig. 4.15, we plotted the invariant mass distributions with different

binnings in order to see the effect of a binning on the number of signal, par-

ticularly for Υ(1S+2S+3S). NΥ(1S+2S+3S) for each binning was summarized

in Tab. 4.12 and showed consistency within the errors.

4.3.5 〈A× ε〉 estimation

We performed a realistic simulation taking into account the same detector

condition when the data were collected. There is a collection of objects that
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(a)

(b)

Figure 4.14: The invariant mass distributions in the (a) J/ψ and (b) Υ mass
region, [2; 5(GeV/c2)] and [7; 12(GeV/c2)], respectively. The fit parameters
were summarized in Tab. 4.11
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(a) 60 bins (b) 75 bins

(c) 100 bins (d) 150 bins

Figure 4.15: The invariant mass distribution of Υ(1S+2S+3S) with different
number of bins: (a) 60, (b) 75, (c) 100, and (d) 150 bins. They showed the
consistent number of signal for Υ(1S + 2S + 3S) within the errors.
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stores sub-detector conditions corresponding to each data taking run. This

collection is called the Off-line Conditions Database (OCDB). By specifying

a run number which we want to simulate, we can take the corresponding

OCDB objects into the simulation. In this way, we assumed that one can

estimate precisely the acceptance times efficiency as close to an ideal value.

A guideline of the OCDB settings for the realistic simulation, especially for

muon analysis is presented here [112].

We produced 5,000 events of each J/ψ and Υ(1S) in µ+µ− decay mode

in a rapidity range −4.1 < y < −2.4 for each run in the LHC10g period.

The same kinematic cuts as described in Sec. 4.3.3 were applied to these

events when we counted the number of generated/reconstructed events in

order to evaluate the acceptance times efficiency. We also studied the ef-

fect of low pt
µ (pt

µ > 0.5 GeV/c) and high pt
µ (pt

µ > 1 GeV/c) trigger

cuts on the acceptance times efficiency applying the different combination of

these trigger cuts: (0, 0), (Lpt, 0), (Lpt, Lpt), (Hpt, 0), (Hpt, Lpt), and (Hpt,

Hpt)
5 (see Fig. 4.16). As expected, the combination involving high pt trig-

ger cut decreased the acceptance times efficiency for J/ψ significantly while

it was not true for Υ(1S). The average values of the acceptance times ef-

ficiency we obtained with (hpt, hpt) combination for each J/ψ and Υ(1S)

were 〈A× ε〉(Hpt,Hpt)
J/ψ ∼ 14% and 〈A× ε〉(Hpt,Hpt)

Υ(1S) ∼ 22%, respectively. The ac-

ceptance times efficiency for each run from the simulation was summarized

in Tab. 4.13 and 4.14. The ratio of (A × ε)J/ψ and (A × ε)Υ(1S) as a func-

tion of run in LHC10g (see Fig. 4.17) showed a consistent trend versus runs

that lead to the fact that we were able to safely use the average value of

the acceptance times efficiency in the calculation of the Υ(nS) production

cross section.

4.3.6 Results

We obtained a very preliminary result of the Υ(1S + 2S + 3S) production

cross section by using the Eq. 4.1 with the 〈A× ε〉 for J/ψ and Υ obtained

by realistic simulation (as described in Sec. 4.3.5), the branching ratio of

which J/ψ and Υ decay into µ+µ− (quoted in Tab. 4.1), and the number

5“0” meant that any of pt trigger cut was not required.
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(a) (A× ε)J/ψ for each run

(b) (A× ε)Υ(1S) for each run

Figure 4.16: The acceptance times efficiency as a function of run in LHC10g
period for (a) J/ψ and (b) Υ(1S). The effects of pt trigger cut combinations
were presented: (0, 0), (Lpt, 0), (Lpt, Lpt), (Hpt, 0), (Hpt, Lpt), and (Hpt,
Hpt). “Lpt” represented the low pt trigger cut (pt > 0.5 GeV/c) and “Hpt”
represented the high pt trigger cut (pt > 1 GeV/c).
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Figure 4.17: The ratio of (A× ε)J/ψ and (A× ε)Υ(1S) as a function of run in
LHC10g. Showing a consistent trend versus runs was important because this
meant that we were able to safely use the average value of the acceptance
times efficiency in the calculation of the Υ(nS) production cross section.
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of signals extracted in Sec. 4.3.4. The result was:

σΥ(1S+2S+3S)(2.5 < y < 4) = 52.6± 32.4(stat.) nb. (4.1)

We also estimated the Υ(1S) production cross section by applying a scaling

factor, 0.716± 0.017 (the ratio of Υ(1S) cross section over Υ(1S + 2S + 3S)

cross section, obtained from the CMS result) to Eq. 4.1. The result was:

σΥ(1S)(2.5 < y < 4) = 37.7± 23.2(stat.) nb. (4.2)

We compared our preliminary result with the CMS and LHCb [113] mea-

surements of Υ(1S) in µ+µ− decaying channel with different rapidity accep-

tances: |y| < 2 (CMS) and 2 < y < 4.5 (LHCb). In order to make the

comparison easier, all the results were expressed as the cross section multi-

plied by the branching ratio, σΥ(1S)×BΥ→µ+µ− . Unfortunately, we were not

able to measure the rapidity-differential production cross section of Υ(1S)

due to the insufficient statistics. Instead, we normalized our result to the

rapidity unit by dividing the production cross section by 1.5 (the rapidity

range of our apparatus, 2.5 < y < 4), thus we had:

dσΥ(1S) × BΥ→µ+µ−

dy
(2.5 < y < 4) = 0.62± 0.38(stat.) nb. (4.3)

The estimation of any systematic uncertainties did not carry out in this

analysis. However, if we consider the systematic uncertainties coming from

the J/ψ production cross section measurement, the Eq. 4.1, including the

polarization, we had the systematic errors for this estimation: +19.7%, −
33.5%. Consequently,

dσΥ(1S) × BΥ→µ+µ−

dy
(2.5 < y < 4) = 0.62± 0.38(stat.)+0.12

−0.21(syst.) nb. (4.4)

Figure 4.18 showed the rapidity-differential production cross section of

Υ(1S) measured in pp collisions at
√
s = 7 TeV by CMS and LHCb com-

pared with our preliminary result. The corresponding integrated luminosities

were L = 3 pb−1 for CMS and L = 32.4 pb−1 for LHCb, respectively. As

shown in Fig. 4.18, our preliminary result was consistent with the measure-
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Figure 4.18: The rapidity-differential production cross section of Υ(1S) mea-
sured in pp collisions at

√
s = 7 TeV. The data points of CMS (corre-

sponding integrated luminosity L = 3 pb−1) and LHCb (corresponding inte-
grated luminosity L = 32.4 pb−1) were described by green triangles and cyan
squares, respectively. The error bars included the statistical uncertainties and
systematics. The black point represented our preliminary result estimated
with LHC10g data. Statistical errors and systematic errors were indicated
by black and yellow bands, respectively.

ments done by other experiments within the uncertainties. However, as the

large statistical errors reflected the insufficient statistics, we needed to have

more data in the future for the precise Υ measurement.
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Chapter 5

Conclusion

The ALICE experiment is a general-purpose detector that has been built

to search for, especially, the Quark-Gluon Plasma in heavy-ion collisions by

using the highest energy beams in the world produced at LHC. The one of

the most promising evidence for the existence of the QGP is the suppression

of yield of heavy quarkonia production in heavy-ion collisons compared to

pp collisions. The measurement of heavy quarkonia is crucial not only for

heavy-ion physics, but also for pp physics since their production mechanism

in hadronic collisions is still ambiguous. J/ψ has been well measured in the

previous experiments, while Υ was only observed. Its measurement at LHC

is expected to be feasible, and thus will reveal a new characteristic of the

QGP and provide a new input to models of heavy quarkonia production as

well.

J/ψ and Υ meansurement in their muon decay can be done in the AL-

ICE experiment by using the forward muon spectrometer equipped with a

set of absorbers, a warm dipole magnet, tracking and trigger stations. The

ALICE muon spectrometer was well commissioned and now it is fully opera-

tional in pp and Pb–Pb collisions. The first measurement of J/ψ production

cross section in leptonic decay channel, µ+µ− and e+e−, in pp collisions at
√
s = 7 TeV has been published [107]. Also the first observation of the J/ψ

suppression in Pb–Pb collisions has been performed recently [114].

In this thesis work, we participated in the development of the online

monitoring software for shifters of muon trigger system based on two dif-
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ferent DQM framework: MOOD and AMORE. The MOOD was heavily uti-

lized at the commissioning phase, AMORE, a new DQM framework based

on the publish-subscribe model upon a monitor-object (histogram) pool, now

becomes a standard for the online DQM in the ALICE experiment. Two

different versions of the online monitoring software for shifters have been

developed and installed in the machines at the ALICE control room.

We started the data analysis for Υ by performing a simulation in order

to obtain a the acceptance times efficiency correction factor. The PDC09

production, an official massive MC production, was used for testing the cor-

rection procedure developed specially for Υ analysis based on the correction

framework. A part of data (∼ 13% of total muon events) collected in 2010,

LHC10g period, was analyzed in this thesis. Although the statistics was not

enough to perform further analysis for Υ, we estimated the total Υ(1S) pro-

duction cross section, which was a very preliminary result. Our estimation

showed an agreement with the CMS and LHCb measurement.

In 2011, we collected more statistics and observed a clear Υ signal as

shown in Fig. 5.11. This analysis was performed at the Laboratoire de Physi-

que Corpusculaire in Clermont-Ferrand based on the committed analysis code

developed in this thesis work. Further analysis, such as pt- and rapidity-

differential production cross sections and polarization in pp collisions as well

as nuclear effect in Pb–Pb collisions for Υ, will be proceed, and more pre-

cise result of the production cross section of Υ in pp collisions will be done

together with the improved detector alignment by using the GMS as well as

the sigle muon analysis with magnetic field ON in near future.

1lopez@clermont.in2p3.fr
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Appendix A

ALICE coordinate system

The ALICE coordinate system is a right-handed orthogonal Cartesian system

with point of origin x, y, z = 0 at the IP as shown in Fig. A.1. The axis,

azimuthal angle φ and polar angle θ are defined as follows [115]:

• x-axis is perpendicular to the beam direction aligned with the horizon-

tal. Positive x is pointing to the LHC ring center from the IP,

• y-axis is perpendicular to the x-axis and the beam direction. Positive

y is pointing upward from the IP,

• z-axis is parallel to the beam direction. Positive z is pointing toward

the Point 1 of LHC from the IP,

• φ (azimuthal angle) increases with rotating counter-clockwise from x

around the z-axis (φ = 0 ∼ 2π),

• θ (polar angle) increases from z(θ = 0) to −z(θ = π) through (positive)

x− y plane.
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Figure A.1: The ALICE coordination system.
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Appendix B

Kinematic variables

B.1 Transverse momentum

The transverse momentum, pt, is the component of momentum of a particle

in x− y (transverse) plane (perpendicular to the beam direction) is defined

by (see Figure):

pt =
√
p2
x + p2

y

where px and py are the components of momentum in x- and y-axes.

B.2 (Pseudo-)Rapidity

Rapidity, y, is defined as

y =
1

2
ln

(
E + pz
E − pz

)
where E is the energy of a particle and pz is the z-axis component of mo-

mentum. If the mass and momentum of a particle are unknown, pseudo-

rapidity is useful. It is defined by

η = −ln

[
tan

(
θ

2

)]
where θ is the polar angle of a particle defined in Sec. A.
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Appendix C

Error propagation

C.1 Sum (or Difference)

If the dependent variable x is the sum (of difference) of N measured quan-

tities, u, v, ... , the propagation of the uncertainties are given by:

σx =
1

N

√
σ2
u + σ2

v + ....

C.2 Multiplication (or Division)

If the dependent variable x is the multiplication (or division) of measured

quantities, u and v, the propagation of the uncertainties are given by:(σx
x

)2
=
(σu
u

)2
+
(σv
v

)2
.
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Appendix D

Glossary

ABC Abstract Base Class

ACORDE ALICE Cosmic Ray Detector

ADC Analog Digital Converter

AGS Alternating-Gradient Synchrotron

ALICE A Large Ion Collider Experiment

AMORE Automatic Monitoring Environment

AOD Analysis of Data

API Application Programming Interface

BNL Brookhaven National Laboratory

CDH Common Data Header

CEM Color Evaporation Model

CERN Conseil d’Européenne Recherche Nucléaire

CFL Color-Flavor Locking

CMS Compact Muon Solenoid

COM Color Octet Model

CPV Charged Particle Veto

CROCUS Cluster Read Out Concentrator Unit System

CRT Data Concentrator

CSM Color Singlet Model

CTP Central Trigger Processor

DAQ Data Acquisition
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DARC Di-muon-trigger ALICE Read-out Controller

DATE Data Acquisition and Test Environment

DCA Distance of Closest Approach

DDL Detector Data Link

DQM Data Quality Monitoring

ECS Experiment Control System

EMCAL Electromagnetic Calorimeter

ESD Event Summary Data

FEE Front-End Electronics

FFT Frontal Fan-out Trigger

FMD Forward Multiplicity Detectors

FNAL Fermi National Accelerator Laboratory

FRT Frontal readout boards

FSM Finite State Machines

FTD Frontal Trigger Dispatching cards

GMS Geometry Monitoring System

GSI Gesellschaft für Schwerionenforschung

GUI Graphic User Interface

HMPID High Momentum Particle Identification Detector

IP Interaction Point

ITS Inner Tracking System

LEP Large Electron Positron collider

LHC Large Hadron Collider

LO Leading Order

MANAS Multiplexed Analogic Signal processor

MANU MANAS Numérique

MARC Muon Arm Readout Chip

MOOD Monitoring of Online Data

MTR Muon Trigger

NA49 North Area experiment 49

NLO Next-to-leading Order

NNLO Next-to-next-to-leading Order

NRQCD Non-Relativistic QCD
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OCDB Off-line Conditions Data Base

PATCH Protocol for ALICE Tracking Chambers

PDC Physics Data Challenges

PHOS Photon Spectrometer

PID Particle Identification

PMD Photon Multiplicity Detector

PMT Photo Multiplier Tube

PPR Physics Performance Report

PS Proton Synchrotron

PWG Physics Working Group

QA Quality Assurance

QCD Quantum Chromodynamics

QGP Quark Gluon Plasma

RCT Run Condition Table

RICH Ring Imaging Cherenkov counters

RHIC Relativistic Heavy-Ion Collider

RPC Resistive Plate Chamber

SDD Silicon Drift Detectors

SIS Schwerionen-Synchrotron

SLAC Stanford Linear Accelerator Center

SPD Silicon Pixel Detectors

SPS Super Proton Synchrotron

SSD Silicon micro-Strip Detectors

T0 Time ZERO

TCI Trigger CROCUS Interface

TOF Time of Flight

TPC Time Projection Chamber

TRD Transition Radiation Detector

UML Unified Modeling Language

V0 VZERO

VDM Van deer Meer scan

ZDC Zero Degree Calorimeter
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ABSTRACT IN FRENCH

Analyse de la production de Υ dans
les collisions pp à 7 TeV

avec le spectromètre à muons de
l’expérience ALICE

L’expérience ALICE est une des quatre grandes expériences fonctionnant

auprès du LHC au CERN et dont le but principal est l’étude du plasma

de quarks et de gluons (ou QGP) produit dans les collisions d’ions lourds.

Une des observables priviligiées pour sonder le QGP est la production des

quarkonia lourds qui doit être modifiée dans les collisions d’ions lourds com-

parée aux collisions pp. L’intérêt des quarkonia n’est pas limitée aux colli-

sions d’ions lourds puisque leur mécanisme de production dans les collisions

pp n’est pas encore très bien compris. Le but de ce travail de thèse est

l’estimation de la section efficace de production des Υ(nS) en collision pp à

une énergie de
√
s = 7 TeV à l’aide du canal de désintégration en dimuon

avec le spectromètre à muons de l’expérience ALICE. Le spectromètre à

muons dans ALICE est situé à grande rapidité −4 < y < −2.5. Il consiste

en un système d’absorbeurs, un dipôle chaud, des stations de trajectographie

et de déclenchement. Ce travail de thèse décrit une contribution au logi-

ciel de conrôle en ligne (online monitoring) du système de déclenchement

des muons qui a été développé dans un esprit d’efficacité. Une partie des

données enregistrées en 2010 a été analysée pour estimer la section efficace

de production du Υ. La section efficace de production du J/ψ publiée par

ALICE à la même énergie est exploitée par la méthode d’estimation. Le

résultat préliminaire obtenu dans l’intervalle en rapidité 2.5 < y < 4 est

σΥ(1S) × BΥ(1S)→µ+µ− = 0.62 ± 0.38(stat.) ±0.12
0.21 (syst.) nb par unité de ra-

pidité.
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ABSTRACT IN KOREAN

CERN 거대 강입자 가속기 실험에서
ALICE 뮤온 분광기를 이용한

Υ 입자 생성 연구

ALICE 실험은 다목적의 검출기로써 CERN LHC에서 행하는 중이온 충

돌 실험을 통한 쿼크-글루온 플라즈(QGP) 연구를 위해 고안되었다. 중이온

충돌에서의 무거운 쿼코늄 생성은 QGP의 여러 탐색 방법 중 하나이다. 이

러한 무거운 쿼코늄들에 대한 관심은 비단 중이온 충돌 실험에서만 국한 되

지 않는다. 왜냐하면 양성자 충돌에서의 무거운 쿼코늄들의 생성 원리 또한

여전히 볼명확하기 때문이다. 본 논문의 목적은 7 TeV 에너지의 양성자 충

돌에서 뮤온쌍으로 붕괴하는 Υ(nS)의 생성 단면적을 ALICE 뮤온 분광기를

이용하여 측정하는 것이다. ALICE 뮤온 분광기는 전방 신속도 지역(−4 <

y < −2.5)에 위치해 있고, 다양한 흡수체들, 쌍극 자석, 입자 추적 장치 및

트리거 장치로 이루어져 있다. 원활한 데이터 수집을 돕기 위해 뮤온 트리거

장치를 위한 실시간 데이터 감시 소프트웨어를 개발했고, 이에 대한 상세한

과정이 논문에 기술되어 있다. Υ 분석에는 2010년도 데이터 중 일부분이 사

용되었다. Υ 생성 단면적 계산 과정에는 앞서 발표된 같은 충돌 에너지에서

의 J/ψ 생성 단면적이 이용되었다. 신속도 범위 2.5 < y < 4에서의 사전 결과

는 단위 신속도당 sigmaΥ(1S)×BΥ(1S)→µ+µ−
= 0.62± 0.38(stat.)+0.12

−0.21(syst.) nb

이다.

주제어: 거대 강입자 가속기, ALICE 검출기, 뮤온 분광기, Υ, 생성 산란 단면적
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