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Resumé

Dans cette these, je me suis intéressé a deux aspects de la gestion de porte-
feuille : la maximisation de 'utilité d’un portefeuille financier lorsque on impose
une contrainte sur l’exposition au risque, et la couverture quadratique en marché
incomplet.

Part I. Dans la premieére partie, j’étudie un probleme d’assurance de portefeuille
du point de vue du manager d’'un fond d’investissement, qui veut structurer un
produit financier pour les investisseurs du fond avec une garantie sur la valeur du
portefeuille a la maturité. Si, a la maturité, la valeur du portefeuille est au dessous
d’un seuil fixé, I'investisseur sera remboursé a la hauteur de ce seuil par une troisieme
partie, qui joue le role d’assureur du fond (on peut imaginer que le fond appartient
a une banque et que donc c’est la banque elle méme qui joue le role d’assureur). En
échange de cette assurance, la troisieme partie impose une contrainte sur I’exposition
au risque que le manager du fond peut tolérer, mesuré avec une mesure de risque
monétaire convexe. Je donne la solution complete de ce probleme de maximisation
non convexe en marché complet et je prouve que le choix de la mesure de risque
est un point crucial pour avoir existence d’un portefeuille optimal. J’applique donc
mes résultats lorsque on utilise la mesure de risque entropique (pour laquelle le
portefeuille optimal existe toujours), les mesures de risque spectrales (pour lesquelles
le portefeuille optimal peut ne pas exister dans certains cas) et la G-divergence.
Mots-clés : Assurance de portefeuille ; maximisation d’utilité; mesure de risque
convexe; VaR, CVaR et mesure de risque spectrale ; entropie et G-divergence.

Part II. Dans la deuxiéeme partie, je m’intéresse au probleme de couverture qua-
dratique en marché incomplet. J’assume que le marché est décrit par un processus
Markovien tridimensionnel avec sauts. La premiére variable d’état décrit 'actif fi-
nancier, échangeable sur le marché, qui sert comme instrument de couverture; la
deuxieme variable d’état modélise un actif financier que intervient dans la dyna-
mique de l'instrument de couverture mais qui n’est pas échangeable sur le marché :
il peut donc étre vu comme un facteur de volatilité de I'instrument de couverture,
ou comme un actif financier que ’on ne peut pas acheter (pour de raisons légales
par exemple) ; la troisieéme et derniere variable d’état représente une source externe
de risque qui affecte ’option européenne qu’on veut couvrir, et qui, elle aussi, n’est
pas échangeable sur le marché. Pour résoudre le probleme j’utilise I’approche de la
programmation dynamique, qui me permet d’écrire I’équation de Hamilton-Jacobi-
Bellman associée au probleme de couverture quadratique, qui est non locale en non
linéaire. Je prouve que la fonction valeur associée au probleme de couverture quadra-



tique peut étre caractérisée par un systeme de trois équations integro-différentielles
aux dérivées partielles, dont I'une est semilinéaire et ne dépends pas du choix de
I'option a couvrir, et les deux autres sont simplement linéaires , et que ce systeme
a une unique solution réguliere dans un espace de Holder approprié, qui me permet
donc de caractériser la stratégie de couverture optimale . Ce résultat est démontré
lorsque le processus est non dégénéré (c’est a dire que la composante Brownienne
est strictement elliptique) et lorsque le processus est a sauts purs. Je conclus avec
une application de mes résultats dans le cadre du marché de I'électricité.
Mots-clés : Couverture quadratique ; modele a sauts ; programmation dynamique ;
équation de Hamilton-Jacobi-Bellman ; équations aux dérivées partielles integro-
différentielles ; espaces de Holder ; processus de Lévy ; marché de I’électricité.

Abstract

In this thesis I’'m interested in two aspects of portfolio management: the port-
folio insurance under a risk measure constraint and quadratic hedge in incomplete
markets.

Part I. Istudy the problem of portfolio insurance from the point of view of a fund
manager, who guarantees to the investor that the portfolio value at maturity will be
above a fixed threshold. If, at maturity, the portfolio value is below the guaranteed
level, a third party will refund the investor up to the guarantee. In exchange for
this protection, for which the investor pays a given fee, the third party imposes a
limit on the risk exposure of the fund manager, in the form of a convex monetary
risk measure. The fund manager therefore tries to maximize the investor’s utility
function subject to the risk measure constraint. I give a full solution to this non-
convex optimization problem in the complete market setting and show in particular
that the choice of the risk measure is crucial for the optimal portfolio to exist.
An interesting outcome is that the fund manager’s maximization problem may not
admit an optimal solution for all convex risk measures, which means that not all
convex risk measures may be used to limit fund’s exposure in this way. I provide
conditions for the existence of the solution. Explicit results are provided for the
entropic risk measure (for which the optimal portfolio always exists), for the class
of spectral risk measures (for which the optimal portfolio may fail to exist in some
cases) and for the G-divergence.

Key words: Portfolio Insurance; utility maximization; convex risk measure; VaR,
CVaR and spectral risk measure; entropy and G-divergence.

Part II. In the second part I study the problem of quadratic hedge in incomplete
markets. I work with a three-dimensional Markov jump process: the first compo-



nent is the state variable representing the hedging instrument traded in the market,
the second component models a risk factor which ”perturbs” the dynamics of the
hedging instrument and is not traded in the market (as a volatility factor for ex-
ample in stochastic volatility models); the third one is another source of risk which
affects the option’s payoff at maturity and is also not traded in the market. The
problem can be seen then as a constrained quadratic hedge problem. I privilege here
the dynamic programming approach which allows me to obtain the HJB equation
related to the value function. This equation is semi linear and non local due the
presence of jumps. The main result of this thesis is that this value function, as a
function of the initial wealth, is a second order polynomial whose coefficients are
characterized as the unique smooth solutions of a triplet of PIDEs, the first of which
is semi linear and does not depend on the particular choice of option one wants to
hedge, the other two being simply linear. This result is stated when the Markov
process is assumed to be a non-generate jump-diffusion and when it is a pure jump
process. I finally apply my theoretical results to an example of quadratic hedge in
the context of electricity markets.

Key words: Quadratic Hedge; jump processes; dynamic programming; Hamilton-
Jacobi-Bellman equations; partial integro-differential equations; Lévy processes;
Holder spaces; electricity markets.
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Chapter 1

Introduction (French version)

Dans cette these, composée de deux parties indépendantes, je me suis interessé
a la gestion de portefeuille lorsque des contraintes sont imposées sur les stratégies
d’investissement possibles.

Dans la premiere partie, on étudie un probleme non standard de maximisation
d’utilité de portefeuille. L’idée de fond de ce probleme est la suivante: un manager
d’un fond d’investissement garantit a ses investisseurs que la valeur du portefeuille
a la maturité sera au dessus d’un seuil fixé z. Lorsque ce n’est pas le cas, les
investisseurs seront remboursés a la hauteur de ce seuil par une troisieme partie,
dans le role d’assureur du fond. A ce stade, le payoff terminal pour I'investisseur sera
max(V}, z), out V est la valeur du portefeuille optimal a maturité. Le gestionnaire
du fond choisira la stratégie qui maximise 'utilité du fond au-dessus de cette garantie
z:

Vii=arg sup E[u((Vr—2)")]
Vr, Vo=vo
On observe que le critere appliqué par le gestionnaire du fond est non-standard,
car la fonction d’utilité s’applique seulement au gain réel de l'investisseur. On
peut motiver ce choix sur un exemple tres simple: prenons la fonction d’utilité

exponentielle u(x) = —exp(—x), la garantie fixée & z = 1 et deux portefeuilles dont
le profile & maturité est
vl 1.50 on A V2. 1.40 on A
T 1 080 on A° T71 090 on A°

ot P(A) = 1/2. Un calcul élémentaire prouve que E[u(V})] < E[u(V2)], mais un
investisseur qui est garanti a la hauteur de 1 choisira toujours le portefeuille V%
plutot que ng, ce qui explique notre choix d’appliquer u seulement au gain effectif.
La contrainte imposée par troisieme partie est donnée a travers une mesure de risque
monétaire convexe: le probleme devient donc

Vi=arg sup  E[u((Vr —2)")] tel que p(—(Vr —2)7) < po
Vi, Vo=vo

ol pg est le seuil de risque que 'assureur tolere.
Dans le Chapitre [3] on commence donc par une introduction rapide sur les
mesures de risque, en partant de leur définition axiomatique pour ensuite étudier en

11



12 Chapter 1. Introduction (French version)

détail des classes de mesures de risque tres populaires qui seront utilisés par la suite
dans nos exemples: la Value at Risk (VaR); la Conditional Value at risk (CVaR)
et, de maniere plus générale, les mesures de risque spectrales; la mesure de risque
entropique et les mesures de risque communément appelées G-divergence.

La solution du probleme est exposé dans le Chapitre 4l ol on fait I’hypothese
que le marché est complet. La grande difficulté dans ce probleme est due a sa
nature non convexe. On suppose donc, sans perdre de généralité que z = 0 et on
va introduire deux problemes , cette fois-ci bien convexes, associés au probleme de
depart:

U(A,z"): maximum E [u(Z71)]
sous la contrainte Z € Hy (A, xt)ow Hy (4,2T) =
{ZeL'(¢(P)|E[¢Z] <zT,Z=0o0n A%, Z>0on A}

A(A):  minimum E [£Y]
sous la contrainte Y € Hy (A)ou’ Ha (A) :=
{YeL'(¢P)| p(Y) < po, Y =00n A, Y <0 on A}

ou’ £ est la densité de la probabilité martingale et A € F est un ensemble mesurable.
Ces deux probleémes sont parametrisés par le couple (7, A) € RT x F. On va donc
chercher la solution optimale de la forme V; := Z* + Y™, avec Z* et Y* solutions
optimales des ces deux probleémes, correspondant au couple optimal ((z*)*, A*). En
effet on prouve que si xg est le capital initial & disposition du gestionnaire du fond
alors

Si pour tout A € F, A (A) > —oo alors

sup Elu(XT)] = sup U (4,3 (A))
p(—(X)7)<po, E[¢X] <0 AeF

ow’ z1 (A) = 29— A (A). Side plus sup, u(z) = +oo et inf 4e 7 A (4) > —oc0
alors
sup E[u(X1)] < 400
p(—(X)7)<po, E[gX]<wo

Ce résultat nous donne un algorithme pour résoudre le probleme initial: pour un
ensemble A € F, on calcule d’abord A (A), ensuite U(A,z" (A)) et on maximise
enfin sur tous les ensembles A. Si A* est ce supremum, et Z(A*),Y(A*) sont
les solutions optimales des deux problemes convexes associés, alors une solution
optimale pour le gestionnaire de fond sera V' = Z(A*)14+ + Y(A*)L(4+)e. On
remarque que le probleme initial n’étant pas convexe, on ne peut pas conclure que
cette solution est unique. De plus, si pour un ensemble A donné on peut toujours
trouver le Z(A) associé, la solution optimale Y (A) peut ne pas exister. Dans ce cas,
on n’a pas de solution optimale pour le probléeme initial mais on peut quand méme
parler de solutions e-optimales.



Chapter 1. Introduction (French version) 13

La condition A (A) > —oo pour tout A est fondamental pour obtenir une so-
lution optimale finie: si en effet A (A) = —oo et sup, u(x) = 400 alors on peut
trouver une suite de portefeuilles admissible X, tels que E[u(X,")] — +oco. Pour
cela il est important de bien choisir la mesure de risque p et, comme on montrera
dans le paragraphe , lorsque £ est la densité de la probabilité martingale dans
un modele de Black-Scholes et p = CVaR alors le probleme n’a pas de solution car
A (A) = —oo. En pratique, tester si A (A) > —oo peut ne pas étre facile: on donne
donc une condition nécessaire pour que cela soit verifiée:

Soit Ymin la fonction de penalité minimale associée a la mesure de risque p.
Si

Ymin (£P) < 400

alors

inf A(A) > —oco
AeF

Pour les mesures de risque les plus populaires, la fonction v, est suffisamment
explicite pour pouvoir tester cette condition et déduire si le probleme a une solution
finie. Encore plus difficile peut paraitre la maximisation de U (A, z" (A)) lorsque A
décrit ’ensemble des événements mesurables F. Le résultat suivant prouve qu’on
peut réduire cette maximisation & une sous-classe d’événements mesurables indexée
par un parametre réel:

Si la loi de & n’a pas d’atome et A (4) > —oo pour tout A € F alors

sup Elu(XT)] = sup U({£ < ¢}, 27 (c))
p(—(X)~)<po, EEX]<zo ce[e]

ou £ :=essinf &, & = esssup€ et zt(c) := aT({¢ < c}).

L’existence d'un maximum pour la fonction ¢ — U({¢ < ¢}, 1 (c)) est difficile &
montrer en général pour toute mesure de risque. Cependant ce résultat nous permet
de trouver la solution explicite de notre probleme de départ pour tout une grande
classe de mesures de risque, parmi lesquelles il y a certainement les plus connues
et utilisées en pratique: lorsque p est la mesure de risque entropique (pour laque-
lle la solution optimale existe toujours, Section ; lorsque p est une mesure de
risque spectrale (pour laquelle la solution optimale peut ne pas exister, Section [4.5))
et lorsque p est une mesure de risque de type G-divergence (Section . Pour
conclure, on peut remarquer que 'algorithme de résolution issu du dernier résultat
est facilement implémentable numeriquement: dans le Paragraphe on a pu
effectivement le tester pour la mesure de risque entropique, couplé avec la fonction
d’utilite exponentielle et un modele de Black and Scholes pour obtenir le payoff
optimal pour le gestionnaire de fond (Figure et pour l'investisseur (Figure .

Dans la deuxieme partie de cette theése, je me suis interessé au probleme de couver-
ture quadratique avec contraintes sur les stratégies. Le probleme ensoi est tres clas-
sique dans la littérature et plusieurs méthodes ont été developpées pour le résoudre
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dans un cadre tres général. Ce type de couverture est devenue tres populaire pour
les praticiens car elle est relativement facile & mettre en place lorsque il s’agit de
couvrir une option en marché incomplet, dans lequel il est bien connu que la cou-
verture parfaite est rarement possible. Dans sa formulation générale, le probleme
de la couverture quadratique est le suivant:

Soit H € L2 (Fr,P) et S une semimartingale. Sous des conditions appro-
priées d’intégrabilité, on cherche a

([ " bas, —H)]

lorsque * € R et 6 décrit un ensemble de stratégies que 1'on appellera
”admissibles”

minimiser EF

Si la solution de ce probléeme est connue, elle n’est néanmoins pas explicite pour
tout type de semimartingale. A ma connaissance, une solution semi-explicite est
disponible lorsque S est une martingale ou lorsque S a des propriétés particulieres
(par example lorsque S est aux accroissements indépendants). D’un point de vue
pratique, il est donc important de pouvoir expliciter cette solution ou proposer des
méthodes numériques qui peuvent ’approcher.

Le probleme reste également intéressant lorsqu’on le modifie de la maniere suiv-
ante:

Supposons que S est une semimartingale multidimensionnelle et on cherche

N i )
<1E+/ OtdSt—H> ]
0

a
minimiser EF
lorsque z € R et 6; = 0 pour tout 7 > 1.

Cette formulation est intéressante en pratique car il est possible que 1'on n’ait pas
le droit d’investir dans une certaine classe d’actifs financiers qui, de méme, peuvent
interagir avec la dynamique des actifs qui entrent dans notre portefeuille. Ou aussi
lorsque certains actifs financiers ne sont pas échangés sur le marché ou encore ne
peuvent pas étre considérés comme des actifs financiers tout court (on pense, par
exemple, aux modeles a volatilité stochastique, ou’ le processus de volatilité ne peut
pas étre utilisé comme actif de couverture).

Le modele auquel je m’intéresse est donc le suivant:
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dZ, = u(r,U., Z.)dr +o(r,Uy,, Z,)dW} + / v (r,Up—y Zr—,y) J (dydr)
R
du, = uY(r,U.)dr +oY(r,U,)dB, + / Y (r,U,_,y) N (dydr)
R
dpP, = pf(r,P)dr+oF(r, P,)dW? + / ~P(r, P, y)J (dydr)
R

ou W, B sont deux mouvements Brownien et J, N deux mesures aléatoires de Pois-
son. L’actif financier dans lequel on peut investir est donné par S := exp(Z) et le
probleme de couverture quadratique devient:

Pour une fonction f : R® — R on cherche &

minimiser EF

T 2
<f(UT,PT,ZT) . —/0 thexp(Zt)>

lorsque = € R et # est une stratégie admissible.

Cette formulation explique bien le role de U et P: on imagine que U soit un facteur
de risque qui "perturbe” la dynamique de notre actif financier (comme un facteur
de volatilité par exemple) et P est une autre source de risque qui influence la valeur
de l'option a la maturité. Ce type de probleme est typique dans le marché des
commodités, en particulier du marché de 1’électricité, duquel d’ailleurs je me suis
inspiré: en effet, dans ce marché lactif financier qui représente le prix spot de
I’électricité ne peut pas étre pensé comme un instrument de couverture, méme s’il
influence la dynamique des autres actifs financiers. De plus, on peut bien imaginer
que les options sur livraison d’électricité peuvent dépendre d’un facteur externe de
risque (comme par exemple la température). Dans ce contexte, on notera par U le
prix spot de I’électricité et par P la température, qui donc ne feront pas partie de
la classe d’instruments financiers pour construire le portefeuille de couverture.

Dans le Chapitre [5] on commence & étudier le probleme et donner ses propriétés
générales. Vu la nature Markovienne de notre modele, on utilise les techniques
de la programmation dynamique pour caractériser la stratégie optimale a 'aide de
I’équation de Hamilton-Jacobi-Bellman. Par des arguments de projection orthogo-
nale dans les espaces de Hilbert, on montre d’abord que
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Si v/ denote la fonction valeur du probleme:

2
vf (t,u,p,z,x) := i%fE

<f (Ur. Pr. Z7) — - /t ' 9T_dexp(zr>)

ol (Ur, Pr, Zr) == (UR", PR, Zp"?), alors

vf(t, u,p,z,x) = a(t,u,z)z* + b(t,u,p, 2)x + c(t,u,p, 2)

T 2
(l+/ 9r_dexp(Zﬁ’“’z)> ]
t

et b/ et ¢/ sont deux fonctions qui dépendent de f.

ou

a(t,u,z) = irele

La fonction a ne dépend pas de 'option a couvrir f: elle est donc universelle dans
ce probleme. Elle correspond a la mesure martingale optimale, qui est un outil fon-
damental pour résoudre le probleme de couverture quadratique avec des méthodes
duales. Il est important pour la suite d’avoir des propriétés de régularité sur la
fonction a. En effet on peut montrer que

Il existe une constante C' > 0 telle que
e CT-1) < ¢ (t,u,z) <1, pour tout t,u, z.
De plus, il existe 7% > 0 et Kj;, > 0 tels que si " < T™ alors on a

la(t,u,2') — a(t,u, z)| < Kjj,lz— 2|, pour tout t,u,z

Un théoreme de vérification nous permet de caractériser les fonctions a, b, c et la
stratégie optimale du probléme de couverture quadratique, si les fonctions a, b et
¢ sont les uniques solutions régulieres d’'un systeme de trois PIDEs. L’étude de la
régularité des ces fonctions sera fait dans les Chapitres [0] et

Dans le chapitre 6] on étudie le probléme lorsque on impose une condition de stricte
ellipticité sur la matrice de voltilité o. On étudie d’abord les opérateurs différentiels
associés au processus (Z, U, P) et, en utilisant des techniques de contraction dans des
espaces de Holder appropriés, on arrive a montrer notre résultat principal (Théoreme
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Si T < T alors les fonctions a, b et ¢ sont les uniques solutions de

0 = —% + Asa — Bra — ‘73|n§fﬁ{27rQa—|—7r2ga}
ob
0 = —a—{—Atb—B}b—ﬂ'*th
. Odc 1 (th)2
0 = _8t+Atc_Btc+4 Gra

avec a(T,.) = 1, b(T,.) = —2f et ¢(T,.) = f? dans l'espace de Holder
CU=9)/24124(1=9) ([0, T] x R3) pour un § € (0,1). Ici A— B denotes
Popérateur integro-différentiel associé au processus (U, P, Z) et @, G sont
introduits dans la Définition Le controéle optimal est donné par

1
9*(t,u,p,z7x) = (ﬂ-*(tvuv Z)CC - 2?;2(25711'7]93 Z)>
ol Qualt )
* tal\t, u, z
t ==
" ( o Z) gta(tvua Z)

On retrouve ici une des raisons qui ont fait de la couverture quadratique un outil tres
efficace dans la gestion de portefeuille: en effet, pour trouver la stratégie optimale,
on doit résoudre une équation semi-linéaire (pour la fonction a) une fois pour toutes
et apres on peut déterminer la stratégie optimale en résolvant une équation linéaire
(pour la fonction b), qui est relativement facile au moins numériquement. Cette
structure permet donc de déterminer la stratégie optimale pour plusieurs options a
couvrir au méme temps, qui est numériquement efficace. La régularité de la fonction
valeur permet aussi d’implémenter des schémas numériques tres fiables avec des
bons contréles sur 'erreur d’approximation. De la structure de la fonction valeur,
on retrouve facilement le prix de couverture optimale, simplement en minimisant
sur x:

b(t,u,p,z)

TP 2) = =5

On retrouve ici une autre caractéristique de la couverture quadratique, c’est a dire
la linéarité de la strategie optimale et du prix optimal par rapport & ’option f. Cet
aspect est tres pratique lorsque on veut couvrir une option qui est une complexe
combinaison linéaire d’options simples. Non négligeable est également le fait que la
linéarité du prix optimal par rapport a f est une propriété importante qu’on peut
observer sur le marché au moins pour les options liquides (les options vanille pour
exemple).

Dans le Chapitre[7], je donne un équivalent du résultat précédent lorsque on tra-
vaille avec des processus a sauts purs. Ce cas est tres intéressant dans le contexte
des marchés de commodités car, comme cela a été observé dans plusieurs travaux
empiriques, les mouvements des prix des actifs financiers sont dus essentiellement
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a lactivité des sauts. De plus, la présence de pics dans les courbes des prix et
des queues de distribution tres épaisses ne peuvent pas étre expliqués par un com-
portement Gaussien des actifs au moins a une petite échelle de temps. Le modele
simplifié qu’on va étudier est donc

A2, = (. 2y dr + [ (0. Z,.9) T (dyd)
R

(f (Z%Z) -z - /tT 9rdeXp(Zﬁ’z)>2]

et
vl (t,z,x) = i%fIE

On ne pourra pas s’attendre a une regularité de la fonction valeur comme dans le
cas précédent, qui, on le rappelle, était due a la présence du mouvement Brownien.
Pour avoir la régularité nécessaire, on assume que les petits sauts de la mesure J se
comportent comme dans le cas d’'un processus a-stable avec a € (1,2):

v(dy) = g(y)ly| "

avec g positive, bornée et avec une décroissance appropriée a l'infini, pour
garantir I'intégrabilité de Z.

Le choix d’une mesure de Lévy de ce type est du au fait qu’on pourra montrer com-
ment 'opérateur integro-différentiel associé & Z peut étre approché par I'opérateur
integro-différentiel associé a un processus de Lévy a-stable. Pour ce type de pro-
cessus on a des estimations sur leur densité de probabilité, ce qui nous permet-
tra finalement de réutiliser les techniques de contractions appliquées dans le cadre
précédent:

Bree) = [ ((tz 420D = 9002 1) G0 ey ) via)
Bi'o(z) = / («P(t, z+y) —o(t, z) — ygf(tv Z)ﬂ{|y|<1}> v (dy)

. o+ 0
vi(dy) = |gy(’1+l Lio<yy + |gy(’1+l]l{y<0}

Néanmoins, on remarque que dans ce contexte, on n’a pas besoin de travailler
avec des fonctions valeur deux fois différentiables. Le résultat auquel on parvient
est le suivant:
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Supposons que %'y(t,z,O) =1 pour tout t,z. Si0<d<a—letT <T*
alors les fonctions a, b et ¢ sont les uniques solutions de

Oa Oa

— e —_— —_— 3 2
0 = 5 M@z B:a 71rIelﬁfR {277Qa + 7 ga}
ob ob .
0 = *a*ﬂa Btb*ﬂ' th
B Jdc Jdc 1 (th)2
0 = ot (92_Btc+4 Gia

avec a(T,.) = 1, b(T,.) = —2f et ¢(T,.) = f? dans 'espace de Hélder de
type 2 H OH"S([O, T|xR) et différentiables par rapport a ¢; le controle optimal
est donné par

109:b

0" (t,z,2) == e~ <7r*(t, 7= 560 z)) you wi(t,2) = %

La structure du controle optimal et ses propriétés sont les mémes que dans le cadre
précédent. Par contre, I'hypothese sur la régularité de v au point zero peut paraitre
trés contraignante: a titre d’exemple, la fonction (¢, z,y) := (¢, 2)y la vérifie si
et seulement si 4(¢, z) := 1 qui réduit énormément la classe de modeles qu’on peut
étudier. Cependant, dans la Section du méme chapitre, on montrera que cette
hypothese peut étre supprimée si on impose des conditions de bornitude sur les
dérivées de la fonction v par rapport a y en zéro, ces conditions étant verifiés dans
la plupart des modeles qu’on retrouve en pratique. Dans la Section [7.7] qui conclut
le chapitre, on traite le cas ou’ le processus Z est a variation finie. Dans ce cas, on
n’a plus besoin d’imposer de conditions sur la fonction «: en effet, dans ce cas la,
les équations de Hamilton-Jacobi-Bellman peuvent étre dérivées sans supposer de
régularité particuliere si la fonction de dérive ;x = 0. On va donc faire un changement
de variable L; = ¢(t, Z;) pour que le nouveau processu L n’ait pas de drift. Si on
réécrive le probléme en termes de L et on note par v” la fonction valeur du probleme
alors le résultat qu’on a est le suivant:
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On a v(t,1,2) = 22a®(t,1) + xb"(t,1) + c"(t,1) et si T < T* alors les
fonctions a”, b” et ¢ sont les uniques solutions de

0 = —% — Blal — inf {27TQLaL +772gLaL}
8t TER
L
0 = —aabt—BLbL—w*QLbL
acL Il (QLbL)2
0 = ¢ BT grar

avec a(T,.) = 1, b(T,.) = —2f et ¢(T,.) = f? dans I'espace de Holder de
type 2 H'([0,T] x R) et différentiables par rapport & ¢; le contréle optimal
est donné par

L
. (D) [ ~19%(t,1) N
0*(t,l,z):=e <7r (t,)x 2Gal(t.) , ol
rat(tl)

T D= Gy

Dans le Chapitre [8|on applique les résultats obtenus sur le probléme de la couverture
quadratique a un probléeme pratique du conteste des marchés de ’électricité. Ce
Chapitre est le fruit d’une intense collaboration avec Xavier Warin de I’équipe R&D
de EDF France. Apres avoir donné une breve description de ces marchés (Section
, on introduit dans la Section le ” future” , un produit financier tres populaire
qu’on va utiliser comme instrument de couverture:

Un contrat future de maturité T et durée de livraison d est un produit
qui permet d’acheter de 1’électricité a prix fixé qui sera livré a la date T
pour une période d. Son prix a la date ¢t est noté Fyyr;. Le probleme de

couverture quadratique est
T 2
(f(Fd,T,t) - —/ QudFd,T,t> ]
t

minimiser E

Un modele classique proposé dans la littérature est d’assumer que le prix du future
soit une déformation aléatoire de la courbe des prix a la date O:
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On introduit d’abord

s t
L,={s +/ / yJ(dyds) et A; := / e“dL
0 JR 0

pour ¢ € R, ¢ > 0 et J mesure de Poisson. On prend ensuite Fyr; :=
exp(P(Az)) ou’
1 T+d
®(A) :=log <d ¥(0, s) exp (e”“A) ds>
T

et s = (0, s) est la curve des prix a terme a la date zéro.

On montre d’abord que la dynamique de ce produit financier satisfait les hypotheses
du modele décrit dans le Chapitre[7]et ensuite on réécrit le probleme de la couverture
quadratique de la maniere suivante:

Le processus Z; := log(Fy ) vérifie TEDS:

ou les coeflicients sont donnés par

Yt zy) = B(@'(2) +ye?) — 2

u(t, z) CeC“I)'(‘l)_l(Z))Jr/| 1 (v(t, z,y) — ye™ @' (@7 (2))) v(dy)
yI<

et le probleme de couverture quadratique se transforme

(f(Z%Z) -z - /tT 9udeXp(Z§’z)>2]

vl (t,z,2) = i%fIE

On peut donc appliquer nos résultats pour caractériser la fonction valeur et déterminer
la stratégie optimale. Cette modélisation permet notamment de couvrir les options
dont le sous-jacent est un future avec durée de livraison différente: par exemple
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Soit p(z) = (G—2)", d #d et

1 T+d'
h(A) = Cl//T ¥(0, 5)e9Ads

Il s’ensuit que ho ®~1(Z;) = Fy ;. En particulier, le probleme de couver-
ture quadratique pour f = po ho ® (Z;) devient

T 2
<(G - Fd’,T,t)+ — X — / Qu—dFd,T,u) ]
t

ce qui correspond a couvrir une option put dont le sous-jacent est Fy r
avec un portefeuille composé de contrats futures avec durée de livraison
d. Cet aspect est intéressant lorsque on veut couvrir des options dont le
sous-jacent n’est pas échangé sur le marché (en effet, les future qui sont
échangés sur le marché ont des durées de livraison standardisées, 1 mois, 3
mois, etc.).

minimiser E

Dans la Section [8.3] on propose un schéma numérique pour résoudre les PIDEs
associées introduites dans le Chapitre . On conclut avec la Section ou’ on
teste nos schémas lorsque le processus de Lévy L est un NIG (Normal Inverse
Gaussian). Pour ce type de processus, qui est trés populaire pour les praticiens, nos
résultats ne peuvent pas s’appliquer directement car les petits sauts de ce processus
se comportent comme les sauts d’un processus a-stable avec o = 1. Cependant, les
résultats numériques qu’on trouve semblent étre tres satisfaisants et suggerent que
la fonction valeur dans ce cas particulier aussi est réguliere.

Les schémas numériques utilisés dans le Chapitre[§lon montré 'importance d’étudier
des PIDE sur un domaine tronqué, de la forme [0,7] x [-Z, Z], avec une condition
de Dirichlet artificielle au bord. Dans le Chapitre [0} qui conclut cette theése, on
s’intéresse donc a une PIDE de la forme

da

0:—a+na+Ata—Bta—H[a} (t,z) € [0,T) x (—Z, Z)
a(T, z) = e z€(-4, %)
a(t,z) = elq(t, 2) (t,z) € [0,T] x (—Z, Z)°

ou ¢ est une fonction réguliere.

Pour simplifier, on suppose que les coefficients du processus Z ne dépendent pas
de U et que la fonction de volatilité o est strictement positive. Analyser cette
PIDE directement peut s’avérer tres compliqué si la mesure de Lévy n’est pas finie.
L’idée est donc de transformer le probleme initial, qui correspond au choix des
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parametres (,u,crz,'y, V(dy)), en remplacant les petits sauts du processus Z par un
mouvement Brownien. A ces nouveaux parametres correspond un nouveau probleme
d’optimisation:

Pour h > 0 on définit v(¢,2) = f\y|<h Y2(t, z,y)v(dy) et les nouveaux

parametres (,u, o? +7h,7,u(dy)]l{h<|y‘}). Soit a” la fonction valeur du
probleme de couverture quadratique lorsque f = 0 et x = 1, correspon-
dant & ces nouveaux parametres. Alors

1. Ha — 0 lorsque h — 0

_ahHQ—a,H
2. || — (Wh)*H1—5,H — 0 lorsque h — 0

ol a est la fonction valeur du méme probleme avec les parametres initiaux
et m* est le contrdle optimal correspondant.

Ce résultat nous donne une premiere approximation pour la fonction a. De
plus, comme la nouvelle mesure de Lévy est finie, on déduit que les opérateurs non
locales, associés au processus Z avec les nouveaux parametres, sont d’ordre zéro.
On va donc tronquer la PIDE qui caractérise la fonction a” plutét que celle de a et
on prouve que

Si la condition de Dirichlet est suffisamment réguliere alors la PIDE

( tr
0=— el na'" + Aba'" — Bha!" — H o' (t,2) €[0,T) x (-Z, Z)
a" (T, z) = e z€ (-4, 2)
a” (t, z) = e"q(t, 2) (t,z) € [0, T] x (—Z, Z)°

a une unique solution a' € C'#/22+5([0, T] x [~ Z, Z]), ot k € (0,1), et
les opérateurs A", B" et H" sont les opérateurs différentiels usuels, corre-
spondant aux nouveaux parametres.

h

r et

Cela nous permet d’évaluer 'erreur entre la fonction a
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Soit
pY* =T ninf {s > t; |ZL*| > Z}

le premier instant de sortie du processus Z (correspondant aux nouveaux
parametres). Pour tout (¢,z) € [0,7] x [-Z,Z] on a

a(t,z) — a'"(t, z)‘ < M Hah — quo P (8" < T)l/2

[0.7)x[~Z.2)°

ol M, est une constante positive qui ne dépend pas de t,z,a", ¢ ou Z. De
plus, il existe une constante My > 0 tel que

M-
P(6" <T) < —3(1+5%)

On a donc une estimation de I'erreur entre la fonction a et a!”, qui est di, & la fois,
a la troncature des petits sauts du processus Z et a la troncature du domaine de
la PIDE. A une constante pres, cette erreur est majorée par la probabilité de sortie
du domaine du processus Z, qui décroit a zéro lorsque Z — +oo0.

En appendice, on trouvera des résultats techniques qui ont été utilisés au cours de
cette thése: sur I'exponentielle stochastique d’une semi-martingale (Appendice ;
sur une équation différentielle cubique (Appendice ; sur les espaces de Holder
(Appendice ; sur la formule de Ito pour les processus a sauts (Appendice @; sur
la densité d’un processus d’Itd a-stable (Appendice .



Chapter 2

Introduction

The main object of this thesis is to propose, investigate and solve some problems
on portfolio management theory. The work is composed of two parts. In the first
one we propose a new problem concerning the utility maximization theory, where
the usual convex structure of the problem is removed (by a modification of the
maximization criterion) and a new type of constraint is imposed on the admissible
strategies, inspired by portfolio insurance problems. In the second one we solve
the quadratic hedge problem for a class of discontinuous Markovian models which
turns out to be well adapted in the context of commodities markets, which partially
inspired this work. The mathematical tools and the methodologies used in the two
parts are completely different. In the first one we privilege the so called ”dual”
formulation which is more adapted in the context of utility maximization theory
when the market is complete, whereas in the second one, where no assumptions are
made on the completeness on the market, we exploit the Markovian structure of the
model in order to implement the well known dynamic programming principle and
the relative Hamilton-Jacobi-Bellman equations.

The thesis starts with a brief but sufficiently complete introduction on risk mea-
sures (Chapter [3), which have become an important tool in finance. After a short
discussion of their properties (Sections we recall some of the most popular
risk measures: the Value at Risk VaR, the Conditional Value at Risk CVaR and
more generally the spectral risk measures (Section ; the entropic risk measure
and the G-divergence (Section . These special risk measures present many nice
properties and are analytically tractable, so that they will be used to deduce explicit
results in our non-standard utility maximization problem. The problem is presented
in Chapter [4] and in Section [4.2] we develop our methodology to solve it and pro-
pose its solution. An important issue of this chapter is to show how the problem
may fail to have a finite solution if the risk measure does not fill a non-degeneracy
assumption. For this we provide a criterion, easy to check, which guarantees the
existence of a finite solution and an algorithm to explicitly compute the optimal so-
lution. We then start to test our results on practical examples: in Section [£.4] we use
the entropic risk measure and we provide a simple numerical experiment; Section
is devoted to the study of the maximization problem when one uses a general
spectral risk measure and we provide a criterion under which the problem has a
finite solution. The special case of the CVaR is treated in Paragraph whereas
the G-divergence case is studied in Section Section [4.7] which concludes the

25
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chapter, is devoted to a comparison with other types of portfolio insurance which
have been studied in the literature.

The second part of the thesis is devoted to the quadratic hedge problem for
discontinuous Markovian models. The problem in all its generality is presented in
Chapter 5|, starting by a short survey on what is already done in the literature (Sec-
tion and what is new in our work. As already pointed out in many previous
works, a fundamental step to solve the quadratic hedge problem is the so called pure
investment problem: basically it is the quadratic hedge problem when one wants
to hedge the option with payoff f = 0. Both the quadratic hedge and the pure
investment problem are introduced in Section together with a general class of
Markovian models used in the thesis. The model consists of a three-dimensional
process (Z,U, P), where exp(Z) is the hedging instrument traded in the market, U
is a risk factor in the dynamics of Z which cannot be used as a hedging instrument
(as a volatility factor for example) whereas P is another factor of risk which influ-
ences the option one wants to hedge and is also not traded in the market. In Section
[.3] we recall many properties of the value function corresponding to the pure in-
vestment problem, and we use them to prove that it is uniformly bounded from
below by a strictly positive constant, and Lipschitz continuous, whereas Section |5.4
shows many general properties on the structure of the quadratic hedge problem.
In Sections 5.5 we first introduce the integro-differential operators related to the
Markovian discontinuous model, and then we characterize the value function of the
pure investment problems as the solution of a semi linear PIDE, provided that this
PIDE has a unique smooth solution. This is done with a verification argument, and
it also give us the optimal strategy for the pure investment problem. We repeat this
procedure in Section for the value function of the quadratic hedge problem. The
existence and uniqueness of the solution of these PIDEs are studied in Chapters
We finally give a survey on the viscosity solution theory and see how it can be
used in our context (Section .

In Chapter [6] we assume that the Markovian model used in the quadratic hedge
problem is a non degenerate jump-diffusion, which is done by assuming strict el-
lipticity on the matrix of the Brownian component. Section is devoted to the
study of the integro-differential operators associated to the jump-diffusion model:
in particular we focus on their behavior when one considers them as operators in an
appropriate Holder space. We obtain some fundamental results on their continuity
in this space. In Section [6.2] we expose the methodology we use to prove that the
HJB equation corresponding to the value function of the pure investment problem
has a unique solution in a Holder space of smooth functions. The proof is a mixture
of contraction techniques in Banach spaces (classical tool for specialists in differen-
tial equations) and probabilistic techniques. Other methods to solve this problem
are discussed in Paragraph especially the ones making use of Backward SDEs
or Sobolev spaces. Once one knows the value function of the pure investment prob-
lem, it is straightforward to characterize the value function of the quadratic hedge
problem. In Section [6.3]| we prove our main result concerning the quadratic hedge
problem for jump-diffusion models: its value function can be characterized as the
solution of a triplet of Partial integro-differential equations, the first of which is semi
linear and it corresponds to the value function of the pure investment problem; the
other two are linear, so relatively easy to solve (at least numerically).
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The results of Chapter [6] are derived by assuming, in particular, that the matrix
of the Brownian component is strictly elliptic. This assumption seems to be very
restrictive if one wants to apply our results, for example, to the quadratic hedge
problem in commodities markets. In these markets, it is popular to model the
stock price as a purely discontinuous process, which basically corresponds to assume
that Brownian component is equal to zero. Motivated by many discussions with
practitioners in commodities markets, in Chapter [7] we assume that the stock price
process is driven by a Poisson random measure. We start Chapter [7] by introducing
a pure jump model for the stock price used for the quadratic hedge problem, for
which we assume some properties on its Lévy measure (Section . In particular
we assume that the small jumps of the process "look like” the jumps of an a-stable
process, i.e. the Lévy measure has a density w.r.t. the Lebesgue measure, which is
assumed to be a weighted deformation of the density of an a-stable Lévy process
with a € (1,2). This is done since many properties are known for these processes,
in particular on their density, and this will allow us to prove the smoothness of the
value function. We proceed then as in Chapter [6] by studying the integro-differential
operators in a new functional space that we call Holder space of type 2. This is
done since in the pure jump case we cannot expect the same regularity for the value
function as before. The fundamental result in this case is that we can replace the
principal term of the HJB solved by the value function with the integro-differential
operator associated to an a-stable Lévy process, for which we know many properties
(Paragraph . We prove (Paragraphs that the value function of the
pure investment problem can be characterized as the unique smooth solution in an
appropriate Holder space of type 2 of a semi linear PIDE. We can finally characterize
the value function of the quadratic hedge problem in the pure jump case (Section
, and, as in Chapter @ we find that it solves a triplet of semi linear PIDEs.
Section [7.7] which concludes the chapter, is devoted to the study of the problem
when the stock price is modeled by a finite variation pure jump process (which
includes the case a € (0,1) excluded before): in this relatively simple case we also
find that the value function is characterized by a triplet of PIDEs which have a
unique solution in the space of Lipschitz continuous functions.

We can finally apply the results provided in Chapter [7] on a practical problem
from the portfolio management in electricity markets. Chapter [§] summarizes an
intense and fruitful collaboration with Xavier Warin of R&D department of EDF
France. We first discuss why financial instruments in electricity markets are gener-
ally modeled by pure jump processes (Section and then we present the future
contract, a popular hedging instrument in these markets (Section [8.2)). Section
is devoted to the numerical methodology used to solve the PIDEs related to the
value function of the quadratic hedge problem. We conclude the Chapter by using
these schemes when the future contract is modeled as a random deformation of the
forward curve, the randomness coming from a NIG process, which corresponds to
the case & = 1 in Chapter [} Although for this case we cannot directly apply our
result and then it should be considered as a degenerate case in some sense, the
numerical results that we obtain are encouraging. In particular we obtain a numer-
ical approximation for the value function of the pure investment problem and its
optimal control and the profiles for the value functions of an at-the-money call and
put options written on the future contract.
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The numerical schemes used in Chapter [§| showed that it is important to study
the PIDEs on a bounded domain and to quantify the truncation error. We do this
analysis in Chapter [ where, to simplify, we assume that the process Z does not
depend on U. In a general framework it is not easy to study these PIDEs on a
bounded domain, unless one assumes that the intensity measure of the process Z is
finite. Since the method can be readapted for all the PIDESs, we just study the PIDE
characterizing the value function of the pure investment problem a. We provide a
first approximation of this value function by cutting the small jumps of the process
Z and replacing them with a Brownian motion. This is equivalent to consider the
model with new parameters, where, in particular, one has a finite intensity measure.
This new model leads to a new value function of the pure investment problem and in
Section [9.2] we are able to give an estimate on the error between the value function
a and the new value function, and prove that we can make this error as small
as we want, provided that the level at which we cut the jumps is small enough.
Once we have approximated this value function, we concentrate on the PIDE that
characterizes this new value function. We first prove that the truncated version
of this PIDE also has a unique smooth solution (Section and finally give an
estimate on the error between the new value function and the unique solution of
the truncated PIDE (Section [9.4).

We conclude the thesis with several appendices in which one can find many
interesting technical results that we used throughout the thesis: on stochastic ex-
ponentials for semimartingales (Appendix ; on a cubic differential equation (Ap-
pendix; on Holder spaces (Appendix; on It6’s formula for pure jump processes
(Appendix @[) and on the density of a-stable Lévy processes (Appendix .
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Chapter 3

An overview on Risk measures

In this chapter we will recall the azxiomatic definition of risk measures and their
main properties (Section . We then describe some of the most popular risk
measures used in finance: the Value-at-Risk (VaR), the Conditional Value-at-Risk
(CVaR) and, more generally, the spectral risk measures (Section ; the Entropic
risk measure and the G-divergence (Section . Since we are more interested in
the use of them in risk management, we restrict ourselves to a brief survey on their
aziomatic definition and their main properties. FExcellent works on the subject can
be found in our references.

Contents

[3.1 Practical needs of the risk measures: empirical evidence| 31
3.2 Law invariant risk measures| . . . . ... ... ... ..., 32

[3.2.1  Definition and main properties] . . . . . . . . .. .. ... 32

[3.2.2  Representation of convex risk measures| . . ... ... .. 33
3.3 VaR, CVaR and spectral risk measures|. . . . ... ... 35
[3.4 G-divergence and entropy| . . . . . ... 000000 37
[3.5 Risk Measures on [L’-spaces |. . . . ... .......... 38

3.1 Practical needs of the risk measures: empirical ev-
idence

The last decade of 1980 has seen the increasing interest for risk measures. Ex-
plicit references to them can be found in many reports by the Basel Committee of
Banking Supervision (BCBS) and the well known Basel accords (Basel Committee,
. The main objective was to find a way to measure the exposure to risks
for investors, banks, and, more generally, for financial institutions. They become a
fundamental tool in risk management for banks and insurance companies since they
use them to compute, for example, minimal capital requirements:

[...]A significant innovation of the revised Framework is the greater use
of assessments of risk provided by banks internal systems as inputs to capital
calculations. In taking this step, the Committee is also putting forward a

31
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detailed set of minimum requirements designed to ensure the integrity of these
internal risk assessments. [...]JBasel Committee (2004)

The above citation suggests a way to define these risk measures: roughly speaking
a risk measure can be thought as the extra capital one needs to add to her portfolio
in order to have a new portfolio with zero risk. The question now is the following:
what is a portfolio with zero risk? This procedure is not yet satisfactory but gives
us an important property for any reasonable definition of risk measure: in order
to define it, one only needs to be able to identify the portfolios with zero risk. In
particular two portfolios with the same risk should keep the same risk exposure
if one adds the same amount of capital to both of them. Remark however that
deciding which portfolios have zero risk is a subjective choice. Following these ideas
Artzner et al.| (1999) first gave a precise definition of what should be a reasonable
definition of a risk measure.

We want to give here a simple example of what should not be a good way to measure
the risk: assume that there are two portfolios, say P; and Ps, at time t = 0, such
that at time ¢t = 1 they have the following distribution:

P 1 on the set A P _ 100 on the set A
1= =1 on the set A€ 271 —100 on the set A¢

where A is a set of possible scenarios with P(A) = 1/2. If we agree to measure
the portfolio’s risk with the probability of being negative then risk(P;) = risk(P),
whereas risk(P; + 1) > risk(P, + 1). It follows that adding the same amount to
both the portfolios changes their risk in a different way. This violate the property
seen before that any reasonable risk measure should have. Remark that any investor
would agree that the portfolio P is more risky than P;, so that this way of measure
the portfolio’s risk is not reasonable.

3.2 Law invariant risk measures

3.2.1 Definition and main properties

We now present the construction of risk measures for bounded random variables

in the static case, by following the ideas of |[Follmer and Schied| (2004). For the
dynamic definition of risk measures we refer to |Frittelli and Gianin| (2004); |Bion-
Nadal (2008, 2009) and references therein. The use of quadratic BSDEs in the
dynamic risk measures theory can be found in Barrieu and El Karoui| (2004} 2008)
and their related bibliography.
Let (92, F, P) be a probability space and L*° := L>°(2,P) the Banach space of (es-
sentially) bounded random variable X : Q@ — R. The multidimensional case has to
be carefully treated because there are some non trivial technical difficulties; however
the main results that we will present can be extended in the multidimensional case
(Jouini et al., 2004; |Ekeland et al., [2009; Ekeland and Schachermayer, |2011)).

Definition 3.1. A law invariant risk measure p on L*°(£) is a functional p :
L>(Q) — R wverifying the following properties:

i). For any X <Y P-a.s. p(X) > p(Y) (Monotonicity)
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it). For any m € R p(X +m) = p(X) —m (Cash Invariance)

We say that p is normalized if p(0) = 0. p is said to be law invariant if
p(X) = p(Y) whenever X Ly

From now on, except when mentioned, we consider all risk measures to be law
invariant.

Definition 3.2. Let p be a risk measure on 1.°°(2).

i). We say that p is convez if for any A € [0,1] and any X,Y € L*°(Q) one has
pOX +(1—N)Y) < Ap(X) + (1 - \p (V) .

i1). We say that a convex risk measure p is coherent if for any m > 0 and any
X € L*>®(Q) one has p(mX) = mp(X)

The financial meaning of Definition [3.1]is clear. More interesting are the condi-
tions given in Deﬁnition condition 7) essentially says that if the risk is measured
with a convex risk measure p then diversification decreases the risk, whereas condi-
tion i) says that proportional portfolios have proportional risks.

The cash invariance and monotonicity property also gives that any risk measure
is Lipschitz continuous : [p(X) — p(Y)| < [|X — Y. An important object related
to risk measures is the so called acceptance set:

A= {X € L] p(X) <0} (3.1)

This set has some interesting properties, in particular the fact that any risk measure
can be recovered from its acceptance set. We list here some properties of A,:

Lemma 3.3. Let X,Y € L™ and A, as in . Then:
i). f XeA,andY > X thenY € A, and inf{x e R| z € A,} > —o0
). p admits the representation :p(X) =inf{zr e R| z+ X € A,}
iii). If p is a convex risk measure then A, is a convex subset of L>
). If p is a coherent risk measure then A, is a convexr cone in L>

Conversely, a risk measure can be defined from a suitable acceptance set: let
A C L™ be a set of bounded random variables which verifies the property i) of
Lemma Then the functional p defined in Lemma i41) is a risk measure,
which is convex if A is a cone, and coherent if A is a convex cone.

3.2.2 Representation of convex risk measures

In this paragraph we will recall some well known results on the representation
of convex risk measures. We keep following Follmer and Schied| (2004) and we refer
to them for the proofs. The general result is the following:
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Theorem 3.4. For any convex risk measure p (not necessarily law invariant) there
exists a functional Ymin : Mi g — [0,1], where My y is the set of normalized finite
additive measures on F, such that

p(X) : sup (EQ [_X] — Ymin (Q)) y X e L
QeM, ¢

The functional Vmin is called the minimal penalty function and it is related to p by

If p is coherent then iy takes values in {0, +o00}.

The above Theorem shows that any risk measure can be characterized by a
functional on M; . However it is preferable to have a representation for which
the minimal penalty takes finite values only on true probabilities, which have to be
o—additive. This is possible if the risk measure has a regular behavior in the sense
of the Definition below:

Definition 3.5. We say that a convex risk measure is continuous from below if for
any X, 7 X we have p(X,) \( p(X), Xn, X € L. We say that it is continuous
from above if for any X, \, X we have p(X,) / p(X)

Theorem 3.6. Let p be a convex risk measure (not necessarily law invariant) con-
tinuous from below. Then

p(X): sup (EQ[~X] = yin (Q)) , X € L=
QeM;

where M is the set of probabilities on (2, F). In this case p is also continuous
from above and satisfies the Fatou’s property

Xn = X P-a.s. then p(X) < liminf p(X,,)

n—oo

Theorems hold true for any convex risk measure not necessarily law
invariant: when it is the case, the minimal penalty functional takes values in a
particular subset of Mji:

Theorem 3.7. Let p be a law invariant convex risk measure. Then

p(X) : sup (E@ [~ X] = Ymin (g)) X eL™
Q«P

if and only if p is continuous from above, or equivalently, if and only p has the
Fatou’s property

Xn — X P-a.s. then p(X) < liminf p(X,,)

n—o0

In the next sections we will present some of the most popular risk measures and
their main properties.
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3.3 VaR, CVaR and spectral risk measures

Let A € (0,1) and X € L. A A-quantile of X is a real number in [g; (X), ¢y (X)]
where

¢, (X) =inf{z e RIP (X < x) > A}
¢y (X) :=sup{z e RIP(X < z) > A}

Definition 3.8. The Value-at-Risk of X at level X is defined as
VaRy (X) :=—¢q} (X)=inf {m e R|IP(X +m < 0) <A} (3.3)

Equivalently we also have that VaRy (X) = —F5'(\) where Fy' is a generalized in-
verse distribution function of X. Since the generalized inverse distribution function
has at most a countable number of discontinuities, this definition does not depend
on the particular choice of this function (right-continuous or left-continuous). We
shall always use the definition

F'(\) == inf{z : F(z) > \} (3.4)
with the convention inf ) = +o0.

It is not difficult to prove that the VaR) is a law invariant risk measure. Many
examples have shown that the VaR is not a convex risk measure. This feature has
some important financial consequences: in risk management diversification in the
portfolio selection should decrease its risk, but if we measure this risk with the VaR
then this is not always the case.

Example 3.9. Let Py and Py the two portfolios in Section|3.1| and assume that Pj
s independent from Ps. It is easy to verify that

(1 ifA<05 [ 100 ifA<05
V“RA(P”_{ ~1 ifA>05 V“R*(Pz)_{ ~100 if A > 0.5
and
505 if 0 < A < 025
1 1. 455 if 025 < A < 05
Vals(GPi+5P) =0 455 if 05 < A < 075
505 if 0.75 < A < 1

If now we take 0.5 < A\ < 0.75 we obtain
1 1 1 1
—45.5 = VGRA(§P1 + §P2) > QVCLRA(Pl) + §VCLR)\(P2) = —50.5

which shows that diversification does not decrease the risk.

In spite of the above example, the VaR is a popular risk measure which is
widely used by practitioners since it has a simple financial interpretation. Our first
example of risk measure which is, at the same time, convex and simple to use, is
the so called Conditional Value-at-Risk:
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Definition 3.10. The Conditional Value-at-Risk of X at level X is defined as

A A
CVaRy (X) ::% /0 VaR, (X) du = —§ /0 F (u)du (3.5)

The following Proposition lists some properties of the CVaR:

Proposition 3.11. Let A € (0,1). The CVaR) is a coherent risk measure and it
admits the representation

1
CVaRy (X) = sup E?[-X], Ho ::{@<<IF’] dQSIP’a.s.}
QGH)\ dP )\

The supremum in the above representation is achieved by the probability

a0 1
dP ::X (1{X<q} + kl{X:lI})

where q is any A-quantile in [q; (X) ,q;\' (X)] and
k_{ 0 fP(X=¢q)=0

A-P(X<q) .
Px=g) otherwise

From the above Proposition we can determine the minimal penalty function for the
CVaR "t

e dQ 1
0 if 75 <5, P-as

400 otherwise (3.6)

It can also be proved that if (2, F, P) is atomless then the CVaR is the smallest
law invariant convex risk measure to be continuous from below that dominates the

VaR (Follmer and Schied, 2004)).

Proposition 3.12. Let A € (0,1), X € L* and q be a A-quantile for X in
[q; (X)aQ;\r (X)] Then

1 1
CVaRyx(X)=<inf (E[(s—X)T] = As) = <E[(¢g— X)"] —
V(%) = L inf (E [(s— X)*] —As) = JE[(a— X)*] g
The representation given in Proposition [3.12]is much more simple to handle then
the one given in Proposition [3.11] especially in risk management problems, since the
maximization can be carried out over the real line instead of a set of probabilities.
The C'VaR is a special case of the so called spectral risk measure:

Definition 3.13. Let u be a probability measure on (0,1). The related spectral risk
measure is defined as

1
oy (X) = /0 CVaR, (X) p(du) (3.7)

It is straightforward to see that p, is a coherent risk measure continuous from
above, since the CVaR is. In particular, if A € (0,1) and p(du) = dx(du) then
pup = CVaR)y. Furthermore, from the definition of C'VaR we also can write

1 1
d
P (X) = / i()VaRy (X)du  where  ji(u) i= / pldz) g gy
0 u

T

The function £ is right-continuous, non increasing and normalized: fol f(u)du = 1.
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Lemma 3.14. Let (p;); be a family of convex risk measures such that sup; p;(0) <
+00. Then

p(X) := sup pi(X)
7
is a conver Tisk measure.

Using Lemma [3.14] we can define a wide class of risk measures: for any subset
of probability measure M on (0,1) the

1
pat(X) = sup / CVaR(X)p(du) (3.9)
pneEM JO

is a coherent risk measure continuous from above. It can be proved that if (2, F, P)
is atomless then any coherent risk measure continuous from above can be represented
by a subset of probability measures on (0,1) as in (3.9)) (Follmer and Schied, 2004]).

3.4 G-divergence and entropy

In this section we will introduce another class of risk measures which are par-
ticularly simple to handle in risk management problems.
Let G : Rt — R U {400} be a convex, increasing and non constant function,
with G (1) < oo and G (x) /& — 400 when © — +o00. The G—divergence of any
absolutely continuous probability Q < P is defined as

I¢(Q|P):=E [G (‘ﬁ)} (3.10)

By using the G-divergence as penalty function in Theorem we can build a new
risk measure (Csiszar, [1967):

p6(X) == suwp (E?[-X] - Io (Q| P)) (3.11)

Q<P
The fact that G (x) /v — 400 when # — 400 and de la Vallée-Poussin’s criterion
(See, for example, [Doob| (1994), Chapter VI, §17) show that the supremum in the
above definition is achieved by some probability measure Q*. Furthermore, since G
is convex, a Lagrangian-type argument allows us to rewrite the above risk measure

as

pa(X) = inf (E7 [G*(y - X)] — y) (3.12)

yeR
where G* (z) = sup,~( (yz — G (y)). For a detailed proof, see for example, |Csiszar

(1967); Liese and Vajda|(1987);|Follmer and Schied| (2004). For example, if A € (0,1)
and

0 ifo<y<s
+o0o otherwise

Y ify>0

_ A B
Gy) = { then G*(y) = { 0 otherwise

then
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which is nothing but the CVaR) as stated in Proposition |3.12

Another special case is given by G(z) := fzlog(x) for § > 0: I (Q]| P) is the
well known entropy of Q with respect to P. The related entropic risk measure has
the form

ps(X) = BlogE [e‘ﬂ (3.13)

Remark 3.15. A heuristic Taylor expansion yields

1

Small B implies high risk aversion.

3.5 Risk Measures on [L’-spaces

In risk management problems generally one has to deal with unbounded random
variables. The domain of definition of p may be taken equal, for example, to some
LP space (Kaina and Ruschendorf, |2009) or a more general Orlicz space (Section 5.4
in Biagini and Frittelli (2009)). A general theory for risk measures on such spaces
is available and a generalization of the representation given in Theorem [3.4] is also
available. We do not go into details since it is not the scope of this thesis, however it
is not difficult to extend the risk measures introduced in Sections |3.3) to L1(P).
This extension is straightforward for the VaR, the CVaR and, more generally, for
all spectral risk measures.

For the entropic risk measure we first remark that E [exp(—X/f3)] is always well
defined and it may take the value +oco. Furthermore Jensen’s inequality yields
pp(X) > —E[X]!, which allows us to extend the entropic risk measure to L!(P).
Remark that now it takes values in (—oo, +00]. A slight difference appears in the
dual representation: if X € L'(P) then we need to write

ps(X) = sup (EQ [-X]— E© [log <f§>]> (3.14)

Q<P,log( 42 )eL! (Q)

to avoid ambiguities.
For the risk measures issued from the G-divergence, we can remark that

limsupG(z) =0 = G*>0

z—0t

so the right-hand side of (3.12) is well defined and we can use it as the definition of a
wide class of risk measures on IL!(P). This condition is a quite standard assumption
on the function G.

1This is actually true for all law invariant, normalized and convex risk measures which also are
continuous from above if (Q, F, P) is atomless



Chapter 4

Portfolio Insurance

We study the problem of portfolio insurance from the point of view of a fund man-
ager, who guarantees to the investor that the portfolio value at maturity will be above
a fized threshold. If, at maturity, the portfolio value is below the guaranteed level,
a third party will refund the investor up to the guarantee. In exchange for this pro-
tection, the third party imposes a limit on the risk exposure of the fund manager, in
the form of a convex monetary risk measure (Section . To enter in this portfolio
imsurance, the investor pays an initial fized fee. The fund manager therefore tries to
maximize the investor’s utility function subject to the risk measure constraint. We
give a full solution to this non-convex optimization problem in the complete market
setting and show in particular that the choice of the risk measure is crucial for the
optimal portfolio to exist (Section . An interesting outcome is that the fund
manager’s maximization problem may not admit an optimal solution for all convex
risk measures, which means that not all convexr risk measures may be used to limit
fund’s exposure in this way. We provide conditions for the existence of the solution
and we also study the impact of the fee paid by the investor (Section . Explicit
results are provided for the entropic risk measure (for which the optimal portfolio
always exists, Section ; for the class of spectral risk measures (for which the op-
timal portfolio may fail to exist in some cases, Sectz’on and for the G-divergence
(Section @) Finally, in Sectz’on we briefly recall some of the recent work that
have been done in the Portfolio Insurance management and the connections to our
work (De Franco and Tankov, 2011).
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4.1 The Problem

We consider the problem of a fund manager who wants to structure a portfolio
insurance product where the investors pay the initial value vy at time 0 and are
guaranteed to receive at least the amount z at maturity 7'. We assume that if, at
time 7T, the value of the fund’s portfolio Vp is smaller than z, a third party pays
to the investor the shortfall amount z — Vp. In practice, this guarantee is usually
provided by the bank which owns the fund, subject to a fee f. The final payoff for
the investor will be

Payoff = max (Vr, 2) (4.1)

In exchange, the third party imposes a limit on the risk of shortfall —(Vp — 2)7,
represented by a law-invariant convex risk measure p . Let (Q, F, F;, P) be a filtered

Fund manager
Maximizes E[u(VT-2)*]
subject to
Vo P(-(VT1-2)) < po

VT

Investor
Has utility function v |-(V1-z)-
Wants a guaranteed @ <
return z

Bank
Guarantees the fund
Wants to limit exposure

J J

Figure 4.1: The structure of the portfolio insurance.

probability space. We consider an arbitrage-free complete financial market consist-
ing of d risky assets with (F;)-adapted price processes (Sf)éjg;‘,’ﬂd and the risk-free
asset with price process SY = 1. We do not specify the dy_na_bmics of risky assets
and the precise definition of admissible strategies because they are not relevant for
what follows. See Karatzas and Shreve| (1998) for the standard example of a mar-

ket which satisfies our assumptions in the Brownian filtration. For an admissible
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trading strategy 7, the investor’s portfolio value is
T
szr —vo—i-/ TudSy,
0

The unique martingale measure will be denoted by Q, and we define £ := %. The
market completeness implies that for any Fp-measurable random variable X with
E[¢]|X]|] < oo such that E[(X] = vy, there exists an admissible trading strategy =
such that Vi = vg + f(;f m:dS; = X a.s. Since the interest rate is zero, z < vy to
avoid direct arbitrage for the investor.

Without loss of generality we will assume z = 0 in the rest of the chapter.
The attitude of the investor towards gains above 0 is measured, in the spirit of
the Von Neumann-Morgenstern expected utility theory, by a twice differentiable,
strictly concave and strictly increasing function w : [0,4+00) — R, satisfying the
usual condition lim, 4o v/(2) = 0. We suppose u(0) = 0 and we denote u*(y) =
sup,>o(u(x)—zy) the convex conjugate of u and I(y) := (v/) " (y) if y < limgjo v/ ()
and tf(y) = 0 otherwise. Moreover, we assume that the following integrability
condition holds: E[u*(A{)] < oo for all A > 0. Remark that the investor payoff is
given by max(V7,0) and that the utility function u takes value on the positive real
line: in other worlds we are assuming that the utility of the portfolio is given by
u(V; ), as if the investor was indifferent to the portfolio’s value below the guarantee
z=0.

The risks are measured using a convex law-invariant risk measure (not necessar-
ily normalized) and continuous from above p : X — R U {+00} where the domain
of definition X is a subset of L!(¢P) (Chapter [3, Section . To simplify notation
later on, we additionally define p(X) = 400 if X <0 and X ¢ X.

The fund manager therefore faces the following problem:

maximize Eu((VF)")] (4.2)
subject to  p(—(V7)7) <po and Vp:=xp:=vy— f. (4.3)

where pg > p (0) represents the risk tolerance allowed by the third party and f is a
fee that the investor pays to enter in this portfolio insurance. This is a nonstandard
maximization problem, because the objective function is not concave, therefore it
cannot be solved using standard Lagrangian methods. We now assume that the fee
f =0, and we will discuss in Section the case f # 0.

Using the market completeness, the optimization problem f can be
reformulated as the problem to find, if it exists, a X* € H such that

E[u((X*)")] = )s(gE [u(X7T)] (4.4)
where
H:={X c L' (¢P) [E[(X] < wo,p (—X ") < po} (4.5)

To simplify the notation, let us define U (X) := E[u (X T)]. Table summarizes
the assumption made above.
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Complete. Martingale measure: Q ¢ :=

Market dQ/dP

- . v’ vanishing at infinity, ©(0) = 0. We denote
Utlity function I(y) := (v/)"(y) if y < ¢/(0F), 0 otherwise
Integrability conditions for ad- | E[u*(A{)] < oo for all A > 0 where u*(y) =
missible pay-offs sup,>o(u(r) — zy).

p: law invariant convex risk measure continu-

Risk measure . .
ous from above not necessarily normalized

Initial wealth, guarantee, risk tol-

z0, 2= 0, p(0) < po and f =0
erance and fee

Table 4.1: Portfolio Insurance problem: Assumptions.

4.2 The decoupling and the solution

In this Section we will decouple problem — into two convex problems
for which Lagrangian methods are available. Let us start by remarking that for
any X € H we have E [u(X")] = E[u(X14)], where A := {X > 0}. A financial
interpretation of this equality is that only X1 4 remains important for the investor.
This remark suggests the following decoupling: let (4,z27) € F x RT and consider

Py : maximize U(Z)
subject to Z € Hy (A, z") where (4.6)
Hi(A,zh) ={ZeL'((P)|E[¢Z] <a", Z=0o0n A° Z>0on A}

P2 : minimize E [{Y]
subject to Y € Hy (A) where (4.7)
Ho(A):={Y eL'(€P) | p(Y) <po, Y =0o0n A, Y <0on A}

Problem P is a minimization of a linear function over a convex set and, as we will
see later, Problem P; can be viewed as a concave maximization problem under a
linear constraint.

Definition 4.1. For all A € F we define:

U(Azh) = sup  U(Z) (4.8)
ZeM1(Aa™)

B = it B[] (4.9)

2T (A) = z20—- A(A) (4.10)

We will often refer to /A (A) as the value function of problem Ps, to U (A,x) as
the value function of problem Py and to x* (A) as the extra capital.
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We first study Problems P; and P, and then we clarify the relationship between
these problems and problem ((4.4]).

Remark 4.2. Before going on let us investigate the behavior of Py and Ps on
trivial sets. If P(A) = 0 then 0 € Ha (A) and then A (A) < 0 which means that
xt (A) > zg > 0. Therefore, 0 € Hy (A, zT (A)) and U (A, 2T (A)) = u(0).

Lemma 4.3. Suppose P(A) > 0. The unique mazimizer of problem Py is given by
Z(A,zT)=T(AN(A,2%) &) 1a

where X (A, zT) is the unique solution of
E[¢I(A(A,27) &) 14] = a7 (4.11)

The value function U(A,x™) is strictly increasing and continuous in x™, and for
every ¢ > 0 there exists C' < oo such that

UA,z7)<C+cat (4.12)
for all A€ F and all x™ > 0.

Proof.

Introduce the new probability space (A, Fa:={BNA,B¢c F},P(-| A)) and let E4
denote the expectation under the conditional probability P (-| A). The maximizer
of Py, if it exists, is given by

Z(Axt) =W (Az) 14

where W (A, z7) is the maximizer of the following problem on the new probability
space:

stuzpo E4 [u (W)] subject to Eq[EW] = B ()

This is a classical problem of maximizing a concave function under a linear con-
straint which can be solved by Lagrangian methods (see e.g., Karatzas and Shreve
(1998))). Remark first that u* is continuously differentiable and the mapping A —
E[u*(A§)] is convex and finite for all A, so then it is almost everywhere differentiable.
Moreover, from the definition of u*, we have

(u")'(AE) = —AET(AE) = u"(AE) — u(I(AE))

so that £I(\¢) € LY(P). The dominated convergence applies and we deduce that
A = E[u*(A¢)] is differentiable everywhere. In particular E[¢(u*) (A)] = —E [£1 (A&)] <
400 for all A > 0. Therefore, the solution to the above optimization problem is

W (A,zT)=1(\(A4,2%)¢)

where A (A4, 1) is the unique solution of E4 [€] (A\E)] = a1 /P (A).
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To show that x* +— U (A,z%") is strictly increasing, let 2] < 3. Then the
random variable

X =T (A (Aa) €)1, 4 52 =51y
=T (A(Az])¢) AJFm A

belongs to Hy (A, IL‘;), which proves that U (A, xf) <U (A,$2+).
The continuity of
s U (A )

follows from inequality
u(I(AE)) < u™(c€) + c€I(AE) (4.13)

which holds true for any ¢ > 0, and the continuity of ¥ — A(A,z™), which is
straightforward since the function A — E[(1(A)1 4] is strictly decreasing and con-
tinuous. The upper bound on U is also a consequence of , after taking expec-
tations, where C' = E [u*(c€)1 4].

O
We can now clarify the relationship between Problems and P1—Ps.
Theorem 4.4. Assume that
forallAe F, A(A) > —oc0 (4.14)
Then,
)S(lé%U(X) = jtelpj)rU (4,271 (4)) (4.15)
If, in addition, supyu(z) = 0o and
/iXI»Elf]-'A (A) > —oc0 (4.16)
then both sides of are finite.

Proof.
We start with the inequality “<”. Let X™ € H such that U (X") 1 supxcy U (X).
Define A4,, := {X™ > 0} and x,, := E[(X"14,]. We have then

U(X™) =U (X"14n) < U (A", 2y,)

because X"1n € H; (Ap,x,) and U(A™, x,) is the supremum over Hy (Ay, zp).
The random variable Y := X" — X™1 4 belongs to Ha (A,) and verifies

— 2, =E[Y"] > inf E[EY]=A(A,) =20 — 2" (A,
To— T [3 ]—mlﬁmn) [€Y] (Ap) =m0 — a7 (Ay)

It follows z,, < ™t (A,) and since U(A, z™) is nondecreasing in z* we deduce

U(X™) =U(X"gn) U (A%, 2,) < U (A", 24 (Ay)) < ZIEII;U(AJM (4))
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Let us prove the inequality “>”. Select A,, € F such that

U(Ap, x4 (Ay)) T sup U (A, x4 (A)) :=m, when n — +o0
AeF

By the assumption of the Theorem, T (A,) < oo for all n. If for fixed € > 0 we
could find, for all n, X,, € H such that

U(Xp) > U (An, 24 (An)) — € (4.17)

then we are done. If P(A,) > 0, by Lemma there exists an explicit maximizer
of Problem P;, denoted by Z(A,,z"), and recall that U(A,,z") = U(Z(An,zT))
is continuous in x*. Therefore, we can find Y,, € Ha(A,) with E[¢Y,,] sufficiently
close to A(A;,) so that U(Ay,xo — E[Y,]) > U(A,,27(A,)) —e. Then X, =
Z(Ap,zo — E[£Y,)) + Y, satisfies (4.17). If P(A,) = 0 then, as we saw in Remark
taking 0 € H and X,, = 0 satisfies U(X,,) = u(0) = U (An, 2+ (44)).

Finally, the fact that m < oo under Assumption follows directly from the
estimate .

O

Clearly, depends on the particular choice of p and £. In particular, a choice
under which A (A) = —oo for some A is not appropriate in this kind of portfolio
insurance. As we will see later on an example, the use of the CVaR, in the Black
and Scholes model yields A (A) = —oo, whereas the same risk measure coupled with
a bounded ¢ satisfies . A simple example clarifies why assumption is

fundamental in this kind of portfolio insurance:

Example 4.5. Assume that sup, u(z) = +o0o anc fir A € F with P(A) > 0 and
A (A) = —oo. It is then possible to find, for each n € N a random variable Y™ €
Ha (A) such that E[£Y™] < —n. Define now

To+Mn
nziﬂ +Yn
E[¢14] *

It is clear that X™ € H for all n and U (X™) — sup, u(z) = 400, which means
that Problem (4.4) does not admit a maximizer.

Nevertheless, in practice, it may be difficult to check whenever Assumptions
(4.14)—(4.16)) hold true: the following proposition, which is simpler to verify, guar-

antees them but it is not necessary.

Proposition 4.6. Assume that
Ymin (EP) < 400, (4.18)

where Ymin is the minimal penalty function of p defined in (3.2)). Then the condition
(4.16]) holds true.
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Proof.
By definition of 7, in (3.2) and the acceptance set related to p in (3.1) we have,

Ymin (§P) = sup E[—{Y]

YeA,

—po +sup{E[=EY][ Y + po € A,}
—po+sup{E[-EY]| Y +po € A,, Y < 0}
—po+sup{E[—¢Y]| Y +ppe Ay, Y <0,Y =0o0n A}
=—po— L (4)

>
>

from which the result follows.
O

Theorem |4.4] gives us a condition under which the value function of problem (|4.4)
is finite and a way to compute it:

Algorithm 4.7.
1. it Ae F
2. solve Py (A) and find A (A)
3. solve Py (A) with parameter (A, zt (A))
4. mazimize the value function of problem Py U (A,z" (A)) over A € F

The next result establishes a relationship between the maximizers of problem (4.4)
and P1—Ps.

Theorem 4.8. Let (4.14)) hold true.
If X* achieves the mazimum in Problem (4.4) and A* := {X* > 0} then

e A* achieves the maximum in the right-hand side of (4.15))
o V" :=X*— X*1 4+ € Ho (A*) achieves the minimum in Po.
Conversely, let A* € F, P(A*) >0 and Y* € Ha (A*) such that

U (A%, 2" (4%)) =sup U (4,27 (4))

AeF
B[EY] =0 (4) = _inf _EY]
Then a solution of problem is given by
X =T\ 1a+Y" (4.19)

where \* = X\ (A*, 2T (A*)) verifies (4.11). In this case, the payoff for the investor
will be

Payoff =1 (X\*E) 1 g+ (4.20)
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Proof.

Let X* € H be an optimal solution for (£.4), A* = {X* > 0} and Y* = X*I;x- ).
It is clear that Y* € Ho(A*). It is also clear that P(A) > 0, since otherwise
E[(¢X*] < z which of course is not optimal. Theoremand the fact that U (A, zT)
is increasing in 27 (Lemma give:

sup U (A, (4)) =sup U (X) =U (X*) =U (X*14+)
AeF XeH

=U (A%, 20 — E[§Y*]) < U (A*, 27 (A"))

which means that A* achieves the supremum in (4.15). Since U(A,z™) is strictly
increasing in z 7, we shall have z*(A4*) = z¢ — E[¢Y™*], otherwise we would obtain a
strict inequality in the second line of the above estimate, which, of course, yields a
contradiction. It follows then that Y™* achieves the minimum in Ps.

Conversely, assume that A* is a maximizer of and Y* is a minimizer of
Py. We can then solve Problem P; with parameters (A*, 29 — A(A*)) and we know,

by Lemma that its solution is given by [I ()\*f)+]+ 1+. Let then
X* = T(\€) Lpe + Y™

We have p (—(X*)7) = p(Y*) < pg and E [(X*] < xp, i.e. X* € H. Using Theorem
we conclude our proof:

U(X*)=U (X*14+) =U (A", (4")) = %I}U (A,z% (4)) = )S(E%U (X).

g

Remark 4.9. Algorithm [{.7] and Theorem [{.4] give us a way to find an optimal
solution for problem (4.4) if we are able to find a maximizer in (4.15) and the
manimizer in Po.

But what happens in the case when the maximizer in or the minimizer
in Py do not exist? In this case, under Assumption[{.1] following the steps of the
proof of Theorem [{.4), one can show that for all € > 0 there exist A° € F, \°* € R
and Y° € Ha(A®) such that

X :=[I(N\€)] 14 +Y° (4.21)
verifies U (X?) + e > supxecy U (X), i.e. X® is a sequence of e-optimal solutions.

The main difficulty to apply Theorems is to find a maximizer A*. Gen-
erally, maximization of a set-valued function over F is not simple. Our aim now
is to show that this latter maximization may be carried out over a subset of F,
parameterized by a real number. A similar approach was used in |[Jin and Yu Zhou
(2008), where they faced the same difficulty.

Theorem tells us that under Assumption we have

sup U (X) = sup U (A,z7 (A)) = sup sup U(X)
XeH AeF AEF XeH1(Azt(A))
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In order to focus our attention on the set dependence, we will introduce the following
notation:

v(A) = sup U(X) (4.22)
XeH1 (Az+(A))

Let us also define § := essinf { and £ = esssupk.

Theorem 4.10. Suppose that the law of § has no atom and that Assumption (4.14)
holds true. Let A€ F and c € [€,€] such that P(§ < ¢) =P (A). Then

v (A) < w(e), where v(c) :=v({€ < c}) (4.23)
which means that

sup U (X) =supv(A) = sup v(c). (4.24)
XeH AeF ce[&f]

Proof.
We will use the methods developed in Jin and Yu Zhou (2008]) (see the proof of
Theorem 5.1 therein). There are however some important differences in our proof
which are due to the presence of a risk measures in our context.

The theorem will be proved in two steps: in Step 1 we will prove that for every
A € F, there exists ¢ > 0 such that A (A) > A (c) := A ({€ < ¢}) so that z4 (¢) :=
20— AN({€<c}) > x4 (A), and in Step 2 we will find, for every X € H; (A, z7T)
some X € Hy ({€ < ¢}, a7t (¢)) such that U(X) > U (X). We conclude then that
v(c) > v (A)

If P(A) = 1 then the result trivially holds true, whereas if P(A) = 0 we can use
Remark and again the result holds true. Assume then 0 < P(A) < 1 and define
a=P(A%) =1—P(A). Let us fix ¢ € [§,] so that

P<ce=1-a
This is possible since ¢ has no atom. Consider the following sets:

Ar={{<c}nA Ay={{>ctnNA (4.25)

B = {f < C} N A€ By = {f > C} N A°€ (426)
Since P(A1>+IP(A2) = P(Al)—I—]P’(Bl) = 1—a it follows ]P(Ag) = P(Bl) IfrpP (AQ) =0
then A = {{ < ¢} and the result trivially holds true. We can suppose P(A43) > 0.
Step 1. Let Y € Hz(A). Our aim is to construct Y € Ha({¢ < c}) with E[§Y] =
E[§Y] and p(Y) > p(Y'). This will imply that A (A) > A(c) since we can decrease
Y. Introduce the following notation:

1. f1 (t) :P(Y St’ Bl)
2. g1 (1) =P (€ < ] Ay)
3. Z1 = q1(§), that is, L (Z1] A2) = U([0,1]), because £ has no atom.

4. Wy = fl_1 (Z1), that is, the law of W} on As is the same as the law of Y on
Bj.
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Let
1 if Wi =0on A
ki :=
Bfevis,] .
E[eWiia,] otherwise

Observe that since £ < ¢ on Bi, and £ > ¢ on Ay, we have that &k < 1. Now define
Y =Yg, + kEWila,.

By definition, Y = 0 on {¢€ < ¢} and Y <0 on {¢ < ¢}. In addition, since k; < 1,
we easily get that P(=Y > t) <P(-Y > t) for every ¢t > 0:
P(—Y > t) =P(By)P(—Y > t| By) + P(A9)P(—Y > t| Ay)
( )+ P(B1)P(—kW; > t] Ag)
>P(B2)P(=Y > t| Bg) + P(B1)P(—W7 > t| Ay) since k1 < 1
( )+ P(B1)P(-Y > t| By)
(

Let F and F be the distribution functions of, respectively, —Y and —f/, and F~1
and F~1 their generalized inverses (defined in (3-4)). From the above inequal-
ity, they satisfy F~'(u) < F~(u) for all u € [0,1]. Let U be a random vari-
able with uniform distribution on [0,1]. Since p is law invariant, we obtain that
p(Y) = p(—F~YU)) < p(—F~Y(U)) = p(Y) < po and therefore Y € Hy({€ < ¢}).
On the other hand, E[¢Y] = E[¢Y] (this is due to our choice of the constant k).
Since the choice of Y was arbitrary, this means that A (A4) > A(c).

Step 2. Let X be feasible for P; with parameter (A, 24+ (A)), and define
1. f2 (t) :]P(X §t| AQ)
2. g2(t) :=P(§ <t]Bi)

3. Za=g2(§)
4. Wo = fy ' (Zy), that is, the law of Wy on By is the same as the law of X on
As.
Let
1 if Wo =0 on By
ko = E[€X14,] .
E[eWain ] otherwise

Note that now, ko > 1. We define a new random variable X by
zy () —at (4) Lieey
Elflg<g] ™

X = X1y, + koWolp, +

Since E [gf(} = 2 (c) we deduce X € Hy ({€ < ¢}, (¢)). Moreover, since ko > 1,
similar computations as before yield P (X > t) > P (X >t). By definition

+o00
U(X)=E[u(X")] :/0 P (Xt >u™'(t))dt
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and since u~! (¢) is positive,
{x*> ut t)}={x> ut ()}

we conclude that U (X) < U (X)

Theorem allows us to simplify Algorithm [£.7}

Algorithm 4.11.
1. fix c € [€,€] and consider A ={¢ < c}
2. solve Py with parameter ({§ < c}) and find A (c) := A ({ < c})
3. solve Py with parameters ({£ < c},xt(c)), 27 (c) :=x9 — A (c)
4. find c*, if it exists, that mazimizes ¢ — v (c)

The question of the existence of ¢* which maximizes ¢ — v(c), and the related
question of the existence of the optimal pay-off for the fund manager is difficult to
answer for general risk measures. A complete answer to this question will be given
in Section in the case of the entropic risk measure (see Theorem and in
Section for spectral risk measures (Theorem .

4.3 The fee

The question of the role and the amount of the fee f, which the investor pays
to the bank to enter the portfolio insurance scheme, is closely related to the more
general issue of the economic rationality of the three-party structure bank—fund—
investor. From the point of view of the bank, providing the guarantee is equivalent
to providing a put option written on the optimal contingent claim with pay-off
(—X*)* to the investor (we still suppose z = 0), in exchange of the initial fee f.
This transfer of risk from the investor towards the bank makes sense because the
bank, as a large financial institution, can accommodate greater losses than the other
two parties. It is less risk averse than the fund or the investor, and may even be
risk seeking. While the fee leads to an immediate return for the bank, the tail risk
associated to the put option may be reduced by diversification, or it may simply be
kept on the balance sheet as an unhedgeable risk. These and similar considerations
can induce a bank to provide the portfolio guarantee for a fee which is less than
the replication price of the put option. On the other hand, the fee cannot be
greater than the replication price, since in that case it would be optimal for the
fund manager to replicate the guarantee himself, which is not what is observed in
reality.

This leads us to a new formulation where the fee is assumed to be a percentage
of the no-arbitrage price of the put option:

maximize Elu((Vr)")] (4.27)
over vp subject to
p(—(Vp)7) < po and Vy = xg — pEY [(=Vr)*t]. (4.28)
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for p € [0,1]. The case p = 1 corresponds to the situation when the fee is equal to
the price of the put option: since the bank can completely hedge away her risk, we
deduce that the value function does not depend on pg, and therefore on the amount
of risk which is being transferred to the bank, so one can take from the beginning
po = 0 (no risk transfer). In this case, the problem can be transformed into

maximize E [u(V7)] over Vr > 0 and Vy = zg

If the bank asks a fee which completely covers the price of the option she sells, then
the fund manager has no reason to take any risk.

From now on let 0 < p < 1. Assume that problem has a solution, given by
. Since we know that the optimal solution is of the form

V(C) = X(C)lgsc + Y(C)1€>c

for c € [g , E , the price of a put option written on V'(¢) is —A(c). Hence the problem
(4.27)—(4.28]) can be transformed into
maximize E[u(l(Ac))le<c] (4.29)
over ¢ € g, a where ). satisfies
B2 [I(Ae)Le<e] = 0 — (1 = p)A(0) (4.30)

If there exists a ¢* which maximizes the above expression and P(§ > ¢*) > 0 then
the solution of this problem is given by

Vi = T(A(€")E)1e<er + Y (") lgser
where Y (¢*) is the solution of problem P, with parameter {§ < ¢*}. The effect of

the fee on the optimal portfolio will be further analyzed in the specific example of
the entropic risk measure in Section 4.4

4.4 Explicit result: the Entropic risk measure

4.4.1 The result

In this section we show how Theorems (.8 and can be used to solve problem
(4.27)—(4.28)) when one uses the entropic risk measure defined in (3.13)):

pp (X) := plogE {exp <—;X>]
where 8 > 0. From :

ps(X) = sup (EQ [—X] — BEqg [log <§%>]> .
Q<P log(#)eL! (@)

In particular, ymi, (§P) = BE [ log (£)] .
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Theorem 4.12. Let pg to be the entropic risk measure and assume that the state
price density & has no atom and satisfies £log& € LY (P). Assume also that the fee
is a fraction p € [0,1] of the price of the put option corresponding to the guarantee,
as in Section[{.3. Then the optimal claim for the fund manager is given by

VEi=T(A()E) Ligzery — B [10g <17(ﬁc*)§ﬂ ' Lieseny
where
e A(c) is the unique solution of E [€I (A (c)€) Lie<ey] = 70 — (1 — p)A ()
e a(c)=P(£>0)

A (c) = —pE {flog <% \Y 1)}

. . . B¢ o
e 1 (c) is the unique solution of: E K@ v 1) ]1€>C} =e? +a(c)—1.

e ¢* attains the supremum of ¢ — E [u (I (A (c)€)) Lie<ey]

Proof.
Remark first that the condition ¢log¢ € L' (P) implies that Assumptions ([4.16])
holds true (Proposition . The proof is just a simple application of Theorems

Lemma and Lagrangian methods.

We first need to compute the map ¢ — A(c). Fix ¢ and consider the problem:

minimizeE [(Y] over p(Y) < pp, Y =0on Aand Y <0 on A°

where A = {¢ < ¢}. Working on the new space (Ac,f ={BNA°,Bec F},P:= ]P(-|AC)),

we can transform this minimization into

minimize o (c¢)E[EW] over E [exp <—Vﬁv)] <6(c), W <0
e? +a(c) -1
a(c)

d(c) =

where E is the expectation under the new probability P and W is a random variable
on the new space. Using Lagrangian methods we can find the unique optimal

solution:
)

where 7 (¢) is the unique solution of:
B¢ > ] 29
E|[—<V1)Ilgeel =€e8 +alc)—1
(g v)e ”

so then

Yy* (C) =W (C) ﬂ{§>c}‘
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A simple calculation then gives:

8e) = g8 |¢log (5 1))

If now we set z4 (¢,p) := 29 — (1 — p)A(c), by Lemma Problem P; with
parameters ({£ < c},2™ (¢, p)) can be easily solved and its unique solution is given
by

X (c,p) =1 ()‘ (C’p) g) ]]-{ﬁgc}
E[61(X(e,p)€) Le<ey] =27 (e,p).
By using Theorem we find that the optimal ¢* is the maximizer of the function

c=E[u(I(A(0)) Lie<q] -

4.4.2 Numerical example

We will apply Theorem in a simple case. Let the market be composed of
one risky asset, .S, which follows the Black and Scholes dynamics:

dS; = S; (bdt + O'th> So >0

Suppose p = b/o > 0. The unique equivalent martingale measure is given by
Q = &P where

¢ = exp(—pWr — 1i*T/2) = [Srexp (T (0% — 1) /2) /So] x:

We will use the exponential utility function u (z) = 1 — =%, For this example we
take b =0.15, 0 =04, u = 0375, T =1, Sg =5, vg = 3.5, po = 1.5, =1, and
6 = 0.6.

The optimal pay-off is a spread of two options on the log contract log(St): one
option is sold to match the desired risk tolerance and the second one is bought to
obtain the gain profile desired by the investor.

b * b *
X" = [502 log (ST) +Kl} lis,>ey — B [K2 — 3log (ST)] Lig,<s}
where

s* = Spexp (T (b—0?)/2) (c*)__TOQ

0.2_ c*
Ky = ;(WT—;log(So)—log<)\(5 )>>

b —b
Ky = ﬁlog(so) - 0202)T+10g (né*))
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D s* K, K, c* A(ce*) | P(St > s*) | v(c)
0 | 2340 | 1.458 | 5.863 | 2.028 | —0.234 0.981 0.892
0.25 | 2.158 | 1.306 | 6.307 | 2.188 | —0.164 0.989 0.890
0.5 | 1.491 | 1.139 | 8.798 | 3.095 | —0.0202 0.9993 0.887
1 0.491 | 1.111 1 0.886

Table 4.2: Numerical results for different values of p.

pay-off profile ‘ ,/
2 —

pay-off

0/0 0.5 1.0 15 20 25 3.0 35 40 45 5.0

Figure 4.2: Optimal pay-off of the fund manager as function of the stock price value St
for p = 0.

In the case p = 1 we know that the value function does not depend on py (Section
4.3)), and the problem becomes

maximize E[1 — 66X+] over X > 0 an E2[X] =z

whose solution is given by

+
AX“‘< = @log (ST)+K1 H{STZS*}
The numerical values of various quantities of interest for different values of p are
given in Table [4:2] The optimal pay-off of the fund manager as function of St is
shown in Figure[£.2] Figure[4.3shows the value function as function of ¢. Figure

shows the gain for the investor compared to the situation where no risk is allowed.
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Figure 4.3: Value function of Problem P; as function of ¢ for p = 0.
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Figure 4.4: The pay-off profile for the investor for different values of p.
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4.5 Explicit result: the spectral risk measure

4.5.1 The result

In this section we solve the portfolio optimization problem (4.27))—(4.28) when
the risk constraint is given by a spectral risk measure. For a given probability on
[0, 1] the related spectral risk measure is given by (3.7)—(3.8) :

1
pu (X) ::/ CVaRg (X) p(dB) or equivalently
0

! p(d)

1
pu (X) ::/0 wuw)VaR, (X)du where p(u) = /

Following Algorithms we first need to compute the mappings A — A (A)
and ¢ — A(c):

Lemma 4.13. For A € F with P(A) < 1, let Fg be the conditional distribution of
€ on A° and define ay =P (A°). A( > —oo if and only if

lim Fla-z) < 400 (4.31)

In this case

A(4) = —pozrél[%ﬁ]ﬂx) (4.32)
— @A ’ —
r(z) = W/o Fo (1 —u)du (4.33)

Proof.
In order to compute A (A) we reformulate Problem Ps in terms of the conditional
distribution function of ¥ € Ha(A) on A°. Introduce a new probability P via

% = 1“1‘: . Let Fy be the distribution function of Y under this probability and F; !

(0%
its generalized inverse . Using this new probability we can rewrite the ingredients

of our problem as

E[¢Y] = aaR[€Y]

and
1 (B 1 [Bhaa |
CVaRg(Y) = —/ Fyl(u) = —/ Fyt(u/aa)du
B Jo B Jo
£ ZAL
- O‘BA EFy Y (w)du.

Fubini’s theorem gives

pu(Y) - —OéA/ / ]]-{0<aAu<5/\aA}F ( )

_ —aA/O /aAu/BF;l(u)du

1
= —aA/ p(aau) Fyt(u)du
0

pap) .
B

To express ]E[f Y], we make use of the following Lemma:
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Lemma 4.14. Let Fy and Fy be distribution functions on [0,00). Then
1
sip  E[XY] = / Fo () By (w)du.
Xy, Y~Fy 0

The proof of this result is given in Paragraph

We can transform problem P, as

1
A(A) = aq inf/ FoM ) By (1= w)du (4.34)
0
1
subject to — aA/ 1 (aaw) Byt (w)du < po, (4.35)
0

N

where the inf is taken over all generalized inverse distribution functions Fy- Loof
non-positive random variables. Such a function can always be written as

1
Bt (u) = — / ¢ (du), (4.36)

where ( is a positive measure on [0, 1]. By using Fubini’s theorem we can rewrite

problem (4.34)—(4.35) in terms of this measure:
1 s
A (A) = —aqsup </ C(dS)/ Fgl(l — u)du>
0 0
1 s
subject to ayu (/ C(ds)/ u(aqu) du> < po.
0 0

The solution of this problem can easily be shown to be a point mass: { = hd, where
h >0 and z € [0,1] can be found from

A (A) = —aq sup <h /: FoM(1 - u)du> (4.37)

subject to aAh/ w(aqu) du = po, (4.38)
0
The constraint (4.38]) gives us
Po
h=h(z)= =
(@) aa [y m(oas)ds

and using definition (4.33) we get

£0 v A—1
A(A) = -« sup( = /F 1—udu>—— max r (x
W AIG[OJ] O‘Afo p(aas)ds Jo ¢ ( ) po:}cE[O,l] (z)

The function r is differentiable on (0, 1] and may only have a singularity at = = 0;
using I’Hopital’s rule, we get

F7l1—x

r(0%) = lim —*——— d-2)
z—0 u(x)

So A(A) > —oo if and only if 7 is bounded on [0, 1], which is true if and only if

r(07) < +oo.
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]
Corollary 4.15. The function A(c) is given by
E |1y, .
A(c) = —pp max R(z), R(z):= [ Z{l Felo)< }}
0<z<a(c) fO 7 (u) du
Assume that the limit
F'1—x
lim - ) (4.39)

exists. Then

limA(c) = —pg lim —>-——.
1€ ©) e=0t p(z)

Proof.
In order to make the dependence on c explicit, we introduce the notation

A(c) = —po Jnax R(z,c)

where

o) e a(c) Oxl:ﬂgl (1 —u)du
R( ) )'_ foa(C)x/’L(u) du

which holds true from Lemma Noting that Fgl(l —u) = Fg_l(l —a(cu) >c¢
and making a change of variable,

. E 61t Ui (one) B [61{m (1matom<e) ]
o= alc)x B o)z
o () du J () du
B €101 r©)<ato}]
SO () du

The function A(c) can then be rewritten as

A0 = =ro 0<g13;((c) R2), R(2):= I3 p(u) du
S 0

O

The following theorem, which is the main result of this section, characterizes the
solution of the problem (4.4) when the risk constraint is given by a spectral risk
measure via an one-dimensional optimization problem.
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Theorem 4.16. Assume that there exists ¢* with P[§ > ¢*| > 0 such that v(c*) =
max, ..z v(c) with

v(e) = E[u(I(A(c)€))Le<c],
where X(c) is the solution of

pDE[§ﬂ£>c]

E[EI(A(e)€)Le<c] = mo + TP )

Then the solution to the problem (4.4)) is given by

Po
X* =T le<er — 5 Leser-
=¢ f§[§>c ] pu(u)du ¢
Proof. B
From Theorem we need to maximize the function ¢ — v(c) over ¢ € [, &].
Assume that v(c) achieves its maximum at the point ¢* such that A(c*) = —pR(z)

with z < a(c) and let ¢ = a~!(z). Then A(c) is constant on the interval [c,c/],
which means that z*(c) = 27 (),

Hi({§ < e} at(0) cHa ({€<d},27()

and therefore v(c) < v(c¢’). This argument shows that the solution of the optimiza-
tion problem appearing in the right-hand side of (4.24)) does not change if we replace
the expression for A(c) given by Corollary by

pOE[§1£>C]

PR = "R

Applying Lemma [4.3] we then find

v(c) = E[u(I(A(c)§)) Le<cl,
where
IOOE[£H§>C]
fop[g>c} p(u)du

If there exists a ¢* with P({ > ¢*) > 0 which maximizes the value function ¢ — v(c)
then the optimal contingent claim is given by

E[§I(A(0)€)Le<c] = o +

* * Po
X =I(Ac)lecer — 57— Lesor.
S e e
where
_¢1§> .
fép’[ﬁ>0*] f1(w)du

is the optimal solution of Problem P, corresponding to {{ < ¢*}, which can be
deduced from the proof of Lemma [4.13

g
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Remark 4.17. If SUP; ¢ v(c) is attained only by c¢* = £ and

lim E[£ﬂ§>c]

e oo,
=€ fgb[g%] p(u)du

(the latter condition holds, in particular, if & < oc), then infacr A(A) > —o0
but this infimum is not achieved: the extra gain from allowing a risk tolerance is
bounded, but the optimal clatm does not exist. Intuitively, claims which are “almost
optimal” will lead to a very large loss occurring with a very small probability.

If
. E[€]1£>c]
limsup ————— =
et Jo & plu)du
then inf gcx A(A) = —o0: the extra gain from allowing a risk tolerance is un-

bounded.

4.5.2 Proof of Lemma [4.14]

Proof.

It will be easier to work with survival functions Fj(r) = 1 — Fy(x) and Fy(z) =
1 — Fy(x) rather than distribution functions. Let F'(z,y) = P(X > z,Y > y) denote
the 2-dimensional survival function of (X,Y’). By Fubini’s theorem and elementary
bounds on distribution functions,

epcy] = [ [T Faadedy < [ [T win(Fae), Fa)sd,

which means that the maximum of E[XY] is attained when the survival function of
X and Y is equal to min(F(z), F»(y)). But it is straightforward to check that the
survival function of the couple (F; *(U), F, '(U)), where U is uniform on [0, 1], has
exactly this form.

4.5.3 The special case: CVaRg

Definition gives that the CVaRg is a special case of spectral risk measure,
when one takes p (du) = dg (du), which yields pg(x) := %H{Bm:}- The condition

(4.31)) appearing in Lemma becomes

lim BF (1 —x) = B¢

z—0t

Corollary [1.15] Lemmal[4.3]and Theorems[f.10]and [£.16]enable us to give the solution
of Problem (4.4)):

e If £ := essup ¢ < oo, then the value function of problem (4.4)) is:

sup U (X) = sup E |[u(I(A(c)&)) Liece (4.40)
sup S [ fe<et]



Chapter 4. Portfolio Insurance 61

where ) (¢) is the unique solution of

E[€1(esq]
E [H (A () ©) ]l{ﬁéc}} =20 + poﬁ

8

e If £ = 400 then there exists A € F with A (A4) = —oo.

The maximum in (4.40) is always attained for some c¢* € [£, £] because the value

function is continuous and [£, £] is compact. If ¢* < £ then Theorem applies
and then we have a optimal solution for Problem (4.4)). If the maximum is attained
at ¢* = ¢, then, as in Remark the optimal claim does not exist.

Remark 4.18. From (3.6)), the minimal penalty function for the CV ARg is given
by:
0 fQ<l Pas
Ymin (Q) = { & <3

+o00 otherwise

If ¢ is bounded but P (5 > %) > 0 then Ymin (EP) = 400 and we have an example of
a situation where Assumption (4.16)) holds true but the stronger assumption (4.18|)

does not.

4.6 Explicit result: the G-divergence

The goal of this section is to solve problem when p is related to some
G-divergence. Let then G be a convex, increasing and non constant function, with
G(0) = 0, G(1) < 400 and G(x)/x — +oo when © — +o0o. The risk measure
related to G was introduced in Section [3.4}

pa(X):=  sw  (EY[-X]-Ia(Q| P))
QKP, Ia(Q|P)<+o0

or equivalently, by (3.12]):

pa(X) = inf (E[G"(t - X)] - 1)

where G*(u) := sup,so(ut — G(u)). In order to solve problem (4.4) let us first
compute the map A — A (A4). For this we introduce, for ¢t € R

A(At):= inf [E[Y] wh 4.41
(A.0):=, i E[eY] where (1.1
Ho(A,t) :={Y e L'¢P)| E[G*(t+Y)] <po+t, Y =00n A, Y <0on A°}

Lemma 4.19. Let G : R — R* U {400} to be a convez, increasing function with
G(0) =0, G(z)/z — 400 when x + oo and assume that there exists some € > 0
such that G(1 4 ¢) < +o0o. Then

A(A) = ggﬂgA(A,t)
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Proof.
From the definition of A (A) in (4.9) and Ha (A) in (4.7) we have

Ho(A,t) CHa(A), forallt € R

which means that A(A,t) > A(A), so then inf; A(A,t) > A(A). The equality
holds true if we will show that for any Y € Ha (A) there exists a ¢t € R such that
Y € Hy(A,t). For sake of clarity, let us introduce 9 (t) := E[G*(t+Y)] —t. It is
straightforward to prove that 1 is convex. Furthermore for some 7 € (0, 1) we have

lim ()

— =2 E [liminf G(t—l—Y)] -1
t—+o00 t t— 400
> E [liminf ((1 te) (1 n Y) _ G(1+5)D 1
t——+o0 t t
> €
lim @ < E [hmsup G(t—|—Y)} 1
to—oo t——o0
< E[limsup ((1—77) <1+Y>_G(1_77)]>_1
t——o0 t t
< -

which proves that 1 is a coercive function: for any Y € Ha (A) there exists a ty € R
such that

inf (E[G"(t+Y)] - 1) =E[G"(ty +Y)] — ty

so then Y € Ha(A,ty) which concludes our proof.
U

Remark how both the CVaR and the Entropy satisfy the assumptions of Lemma
4. 19
To compute A(A,t) we can use Lagrangian arguments: on the new space

(A, Fo:={ANB|BeF}, P:= ]P’(\A))
we can transform the problem into

minimize asE[€Y] over Y < 0 and (4.42)
cPott— G*(t)(1 — aa)

E[G*(t+Y)) "

where ay := P(A) and E is the expectation under P. Once we know A(A,t) for
all ¢ we first apply Lemma [£.19 and then Algorithm [.11] gives us a way to solve

problem (|4.4)).
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4.7 Portfolio Insurance: a short review

Portfolio insurance is a widely popular concept in financial industry, and there
exists an extensive literature on this topic. When the guarantee constraint is im-
posed in an almost sure way, a common strategy is the option based portfolio in-
surance, which uses put options written on the underlying risky asset as protection.
The optimality of OBPI for European and American capital guarantee is studied in
El Karoui et al.| (2005)). The difficulty of finding a sufficiently long-dated option for
use in OBPI has lead to the appearance of strategies which involve only the under-
lying risky asset, of which the most popular is the Constant Proportion Portfolio
Insurance (CPPI), (Black and Perold, |1992), where the exposure to the risky asset
is proportional to the difference between the value of the fund and the discounted
value of the guaranteed payment. If the price path of the underlying risky asset
admits jumps, the CPPI strategy no longer ensures that the fund value will be a.s.
above the guaranteed level at maturity, unless the portfolio is completely delever-
aged (Cont and Tankov, 2009), which usually imposes too strong a restriction on
the potential gains. The current market practice is therefore to require that the
portfolio stays above the guaranteed level with a sufficiently high probability, or,
for example, that it remains above the guarantee for a certain set of stress scenarios,
chosen from historical data coming from highly volatile periods. A more flexible
approach, which can take into account not only the probability of loss but also the
sizes of potential losses, is to impose a constraint on a risk measure of the shortfall.
This has led to the development of literature on portfolio insurance and, more gen-
erally, portfolio optimization under probabilistic / risk measure constraints.

Emmer et al.| (2001)) study one-period portfolio optimization under Capital-at-Risk
constraint (the Capital-at-Risk is defined as the difference between the mean value
of the portfolio and its VaR). Still in the one-period setting, |Rockafellar and Urya-
sev (2000) provide an algorithm for minimizing the CVaR of a portfolio under a
return constraint. Basak and Shapiro| (2001]) solve the utility optimization prob-
lem under the VaR constraint and Boyle and Tian| (2007) discuss continuous-time
portfolio optimization under the constraint to outperform a given benchmark with
a certain confidence level. Like us, these authors also face some issues related to
the non-convexity of the optimization problem, although the non-convexity appears
for a different reason (non-convexity of the constraint itself). Another stream of
literature (Follmer and Leukert, 1999 [Bouchard et all [2009) considers hedging
problems when the hedging constraint is imposed with a certain confidence level
rather than almost surely. The viscosity solution approach of Bouchard et al.| (2009)
was extended in (Bouchard et al., [2010) to stochastic control problems under target
constraint (that is, for example, under the constraint to outperform a benchmark
with a certain probability) but it does not seem possible to treat risk measure con-
straints in this setting. He and Zhou (2010) have recently introduced a general
methodology for solving law-invariant portfolio optimization problems by reformu-
lating them in terms of the quantile function of the terminal value of the portfolio.
While such a reformulation is in principle possible for our problem by using the
dual representation results for law-invariant convex risk measures (see Follmer and
Schied| (2004) and Jouini et al.| (2006)), the resulting problem is still non-linear and
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non-convex so such a transformation does not necessarily simplify the treatment.
Gundel and Weber| (2007) solve the problem of maximizing the robust utility of a
portfolio under a constraint on the expected shortfall, which includes, in particu-
lar, all coherent risk measures. Rogers (2009)) discusses utility optimization when a
portfolio constraint in the form of a coherent risk measure is present, and goes on
to study optimal contracting problems in this context. The main difference/novelty
of our work from these two studies is that in our approach, the utility function is
only applied to positive gains while the risk measure is only applied to negative
shortfall. This brings us much closer to the reality of portfolio insurance and at the
same time allows to obtain explicit solutions.
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Chapter 5

Quadratic hedge: introduction
and main properties

The Chapter is organized as follows: we first introduce the Quadratic Hedge prob-
lem in its most general formulation and give a review of the literature on the subject.
In Section [5.9 we introduce the general model, the value function associated to the
Quadratic Hedge problem, we define the so called Pure investment problem and we
study the structure of these value functions (Sectz'ons cmd. Next, with a ver-
ification argument, we characterize the value functions of the pure investment and
the quadratic hedge problems as the unique solution of a semi linear partial integro-
differential equations (Sections and @) We finally do a short digression on
the theory of viscosity solutions and how it can be used in this context (Section .
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5.1 Introduction

In incomplete markets the perfect hedge does not exist in general, and most of
the markets are incomplete. In these cases, pricing and hedging an option is a hard
task since one cannot totally hedge away the risk. Once we accept that a residual risk
may affect our hedging strategy, an important issue, especially from a practitioner’s
point of view, is to quantify and control this residual risk. A common way to
measure this residual risk is to compute the expected squared distance between the
option one wants to hedge and the portfolio. The quadratic hedge problem is to

67
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find the optimal portfolio which minimizes this residual risk. In its most general
form the quadratic hedge problem can be formulated as follows: consider a random
variable H € L2 (Fr,P) and a set of admissible strategies, which has to be carefully
specified,

fcXxCL(S) (5.1)

where S is a semimartingale modeling the stock price. Up to appropriate integra-
bility conditions, the quadratic hedge problem becomes

minimize EF

T 2
<a: +/ 0;—dSy — H) ] over x € Rand § € X (5.2)
0

If (x*,0*) achieves this infimum, we call 8* the optimal mean-variance hedging
strategy and x* its price. When one defines

T
A:{.’L’—F/ 9tdSt|IIZ‘€R,0€X}
0

then problem can be viewed as the L2-projection of H on the space A: one
tries to minimize the L2-distance between the contingent claim H and a set of all
admissible portfolios in A.

The quadratic hedge problem is a particular case of the so called utility-based
pricing and hedging problem: for an utility function I/ one tries to solve

T
maximize EF [U <£L' +/ 0:dS; — H)} overx € Rand § ¢ X
0

For a complete overview on the wutility-based indifference price problem we refer
to [El Karoui and Rouge| (2000); Schweizer| (2001); Delbaen et al.| (2002). Assume
now that (xg,0) achieves the maximum in the above problem and consider the
following map P from L? to R:

P:L*(Fr,P)> H 2y €R

Generally this map is not linear, unless one takes U(x) = —x2, which corresponds
to the quadratic hedge problem. Although one cannot speak of pricing rule (the
utility function has to be increasing and this is not the case), the fact that the above
mapping P is linear has several advantages: from a practical point of view, when
one wants to price an entire portfolio, let us say H = ), H;, according to , she
can first compute the prices corresponding to the single positions H;, and then add
them up to obtain the portfolio’s price.

Several methods have been proposed to solve the quadratic hedge problem,
depending on the features of the semimartingale S or on the set of admissible
strategies X. An elegant solution is provided when S is a martingale under the
historical probability P, by using the Galtchouk-Kunita-Watanabe decomposition
(Kunita and Watanabe, 1967} |Galtchoukl [1976)): since H € IL?(IP, Fr), one can find
a predictable process 07 € IL(S) such that

T
H =E" [H] + / 0 dS, + Nyl as.
0
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where N1 :=EF [N%{ | }"T] is a square integrable martingale such that N/ fg 0y_dS,
is still a martingale under P, i.e. (N/?); is strongly orthogonal to the set A. By
using this decomposition it is straightforward to deduce that the problem is
solved by 6* = 07 and x* = EP [H]. Even if the Galtchouk-Kunita-Watanabe de-
composition gives the optimal hedging strategy and the minimal price in problem
(5.2), some important questions naturally arise when one wants to compute it in
practice: firstly, does 8% belong to X? and if it is the case, can it be thought as a
trading strategy, i.e. is it caglad? In many important cases, the answer is positive,
and it is also possible to compute the hedging strategy semi-explicitly, in particular
when S is Lévy process (Cont and Tankovy, 2004)) or, more generally, if S is a general
Markov jump martingale (Cont, Tankov, and Voltchkova, [2007)).

When S fails to be a martingale under PP, problem becomes much more dif-
ficult because the Galtchouk-Kunita- Watanabe decomposition is no longer available.
To solve the quadratic hedge problem many authors have exploited the particular
features of the model S which allow to find the solution of problem , but it
is no longer explicit enough (which is an important question since this procedure
is commonly used in practice). For example, when S is a continuous It6 process,
the solution can be found by making an appropriate change of probability in prob-
lem , and then using the Galtchouk-Kunita-Watanabe decomposition to obtain
the optimal hedging strategy. For a complete review on this procedure we refer to
Laurent and Pham| (1999) or [Pham) (2000).

The idea of looking for a suitable change of probability that makes S a martingale
turns out to be the key tool to solve the quadratic hedge problem in a general setting;:
it can be proved that this suitable martingale measure can be obtained by solving

problem (5.2)) for H =0 and z = 1:

T 2
<1 +/ thSt> ] ,over § € X (5.3)
0

In the literature this problem is known as the pure investment problem. In a general
setting (i.e. S discontinuous semimartingale ) |Cerny and Kallsen| (2007) give many
interesting properties of problem and provide its solution. They derive then
the optimal strategy of problem and, in particular, they find that it is given
by:

minimize E”

t
0 =X+ ey XU =a+ [ 07 as,
0

for some semi-explicit processes &, B, where & does not depend on the particular
option H and it is related to the optimal solution of problem , whereas /3 lin-
early depends on H. This procedure completely characterizes the optimal hedging
strategy in problem but, nevertheless, this solution is no longer explicit for all
types of semimartingale S, unless the stock price S has a particular structure: with
stationary and independent increment (Hubalek, Kallsen, and Krawczyk, 2006) or
affine stochastic volatility models (Cerny and Kallsen, 2008; Kallsen and Vierthauer,
2009)).

Our contribution is to give a systematic way to solve problem (/5.2) when S is a
general Markov jump process but not necessarily a P-martingale by using stochastic
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optimization tools (value function and Hamilton-Jacobi-Bellman equation). All over
the work, we tried to move according to the following objectives:

e Considering a sufficiently general model which allows us to apply our results
to some practical problems (which partially motivated our work)

e Solving problem (/5.2)) and characterizing the optimal hedging strategy in the
more explicit way

e Proving regularity, in a sense which has to be specified, of the optimal hedging
strategy

As we will explain in Chapter |8, portfolio management in electricity markets

motivated our work. We think it is helpful to briefly anticipate the main lines of
that Chapter in order to understand our model on S.
The electricity spot price is generally modeled by a Lévy-driven process whereas a
typical hedging instrument available in this market (the semimartingale S) is the
future contract, which turns out to be Markov jump process and it does not posses
the martingale property under P. Moreover the spot price process may affect the
dynamics of the future contract price, and since the electricity cannot be stored,
one has to consider it as a non hedgeable source of risk like, for example, a volatility
factor. We concentrate on European options written on .S which may also depend
on the spot price at maturity and on some other non hedgeable source of risk like,
for example, the temperature.

The price of our hedging instrument is denoted by S = exp(Z), U denotes the
spot price process and P the temperature, where (Z,U, P) is a R3-valued Markov
jump process. The quadratic hedge problem for practitioners of the electricity
markets can be formulated as follows

<H(UT, Pr,e?T) — 2 — /OT GT_deZT>2] (5.4)

overz €R, e X

minimize E

Problem (5.4) can be also viewed as a constrained quadratic hedge problem: if
S := (S,U, P) then the problem above can be rewritten as

(H(gT) e /O ' 9;_d5;>2

In order to solve problem with the classical instruments of the stochastic
optimization, we will assume that the dynamics of the state variable are of Markov
type with appropriate assumptions on their coefficients. This will allow us to write
and solve the partial integro-differential equation (PIDE) associated to the above
problem in a particular space of smooth functions. A particular attention will be
devoted to the case H = 0 since, as we have seen, this is a fundamental tool to solve
the quadratic hedge problem.

Still inspired by practical problems, we will consider essentially three different cases:
when Z is a jump-diffusion process (Chapter @ and when it is a pure jump process
with infinite/finite variation (Chapter (7). The pure jump case is quite interesting

minimize E over z € R and § € L(S), 2 =63 =0
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since, in commodities markets, upward and downward movements of the stock price
process S (and then Z) are essentially due to jumps. To conclude, we want to point
out that our goal is proving that the value function of problem is smooth
(so that the optimal strategy also is): this is important from a numerical point
of view and also because it will give us a better understanding of the optimal
strategy behavior (their derivatives), which is undoubtedly an important task in
risk management.

5.2 The Model

Let (2, F,F:, P) be a filtered probability space. On this space we introduce
two independent Brownian motions W and B, taking values respectively in R?
and R, and two independent Poisson random measures J and N on R\ {0}, both
independent from W and B. We assume that F; is the natural filtration of J, N,
W and B and that F{ is augmented with the null sets. We also assume F = Fr
where T > 0 is given. Furthermore [Wl, W2]t = At for some A € (—1,1). The
positive Lévy measure on R\ {0} related to J is denoted by v (dy) and it satisfies
the standard integrability condition [ (1 A |y[?) v (dy) < co. The same holds true
for the Lévy measure v, (dy) associated to N. We denote

J(dydt) = J(dydt) — v(dy)dt N(dydt) = N(dydt) — v, (dy)dt
the compensated Poisson measures on R and
J(dydt) :=J (dydt) — dt x v(dy)Lgy <1y, N(dydt) :=N(dydt) — dt x v, (dy)Liy <1y
On this probability space we introduce the family of R3-valued Markov jump pro-
cesses (Z,U, P) as follows:
dZL" =y (r, U, Z0%7) dr + o(r, U, Z6%%) AW + /R v (r U, 2y ) T (dydr)

W =, Ui 40V 0B, + [

RWU (T’ U, y) N (dydr)

dPYP :=u® (r, PYP)dr 4+ o (r, PYP)dW?2 + / AP (r, PEP y)J (dydr) (5.5)
R
with initial conditions Z;"* = z, UP" = w and P/? = p, for t € [0,T) and z,u,p €
R. The stock price process S is given by S = exp(Z).
We make the following assumptions:

Assumption 5.1.
[C]- The coefficients-1.

i). There exists i > 0 such that max (||p|| , ,uUHOO, ,uPHOO) <.

U

ii). The volatility functions 0,0, a" take values in [Omin, Omaz), for some 0 <

Omin < Omaz-

iii). For allt € [0,T] and u,y € R the functions z — u(t,u, z), z — o(t,u, z) and
2z — y(t,u, z,y) belong to C1(R).
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iv). There exist two constants Kp, > 0, ngp > 0 and a positive locally bounded

function p : R — R such that for all y € R we have
ity 2) — e, )] < Ky (12— /] + lu — o))
|a(t,u, 2) —o(t,u, z/)} < K, (|z = 2'| + [u— )
Y(tu,2,y) =yt 2 y)] < Kifp(y) (12 — ') + Ju— ']
forallt €[0,T), 2,2/, u, v € R.

v). Property iv) holds true for uV, oV and 4V (resp. pr,of and ~*) for some
positive constant KY > 0 and some positive locally bounded function pU (resp.
some K¥ >0 and some positive locally bounded function p*)

[11]- Integrability conditions-1. The functions

7 (y) := max <sup (!7 (tu,2,9) |, ’6”“’“’2’” — 1‘) : p(y)>

t,u,z

77 (y) := max (Sllp Yt u, )l PU(?J)>

t,u

TP — Imax | su P P
(y) (My V(. y)ls p (y)>

verify 7,77 € L2(R,v(dy)) and 7V € L2(R, v, (dy)).

[12]- Integrability conditions-2. The function T verifies T € L4*({|y[> 1}, v(dy)).

We define Kpqp := maX(Kﬁp, Kﬁp)7

) 1 ] _
fimutyot+ [ L) and [l = s ] (56
yI< U2
and
2
IT| = /R Plyw(dy),  where  T(y):= inf (e%t»u’z’y) - 1) (5.7)

In the rest of the chapter we denote |7, , = f‘y|>1 T(y)v(dy) whereas HT”%V =

Jg T2 (y)v(dy). The same convention holds for ¥ and 7V (with respect to the Lévy
measure vp(dy) ).

It is well known that there exists a unique semimartingale (U, Z, P) which solves
the SDE (5.5 (see for example |Jacod and Shiryaev| (2003)) or Protter| (2004)).

Let us introduce the set of admissible strategies 6 in problem (5.4): as already
pointed out in (Cerny and Kallsen| (2007), this set has to be carefully chosen: if it
is too wide we may violate the principle of no arbitrage; if it is too small we may
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not be able to find the optimal strategies. We follow Cerny and Kallsen| (2007) to
define a good set of admissible strategies: first let us introduce the sets of simple
caglad strategies:

D= {9 =Y, + ZYil]%qH], Y € L™(F,) and ¢; < ¢j41 are stopping times}
i

D, := {0141 | 0 € D} (5.8)

Dy denotes the L2(IP)-closure of Dy, and for t,u, z,z € [0,T) x R3, § € D; we define
the wealth process as

AXLmE0 g _dins, X g (59)

Here 0 represents the number of shares in the portfolio at time t. We say that a
control 6 is admissible if it is caglad and X}""** e L2(P) for any r,t,u, z, : the set
of admissible strategies is then defined as

X(t,u,p,z) = {9 €Dy | x +/ 0,_dSb"* € L2(P), for all t < s < T} (5.10)
t

Consider a European option of the form f (Ur, Pp, Z7) where f is, for the moment, a
measurable function with f(UR", PP, Z2"%) € L2(P) for all (t,u,p, 2) € [0,T) x R?
(according to problem we have f(.,z) = H(.,€e?)).

The quadratic hedging problem can be formulated as follows:

2
QH: minimize E [( f (U%“,P%P,Z%W) - X%“’“@) ]
over € X(0,u,z,z), r € R

The value function of QH is given by

2
of (t,u,p,z,2) ==  inf EP[O(U;:“,P%”’,Z%“’Z)—X%“’Z’m’e)] (5.11)
HEX(t,u,p,z)

vf (T,u,p,z,x) = (f (U,p, Z) - x)Q

Deeply related to the solution of problem (5.11)) is the so called Pure investment
problem, which essentially is Problem (5.11)) when f = 0:

T 2
(a:—i— / HT_de:“’Z> ] (5.12)
t
T 2
(1o [ 0asi)]
t

W0 (t,u, z,x) ;== inf EF
0eX (t,u,z)

=z inf EF
0eX (t,u,z)

=z2a(t,u, 2)

where

a(t,u,z) = inf E
0eX (t,u,z)

T 2
<1+/ GT_ds;Ev“vZ> ] (5.13)
t

because the set X' (t,u, z) is a cone.
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5.3 The pure investment problem: a priori estimate

Problem QH when f = 0 is known in the literature as the the pure investment
problem. Several properties have been shown for this problem by using its dual
formulation. We recall here the most important ones. For a complete review in a
more general setting we recommend |Cerny and Kallsen| (2007).

Lemma 5.2. Let a be the function defined in (5.13) and 0* the optimal strategy
which achieves the infimum. Then

2
i). alt,u,z) = EF [(1 + [T 9:_dsﬁv“72> ] _ EP [1 + [T e;f_ds,?“’ﬂ and it is strictly
positive.

i1). Define the set

Q) =1 and (ZQS}E“Z) is a martingale

r>t

M,z = | signed Q < P =
o where ZQ := EF [%‘ ]:T}

M, s called the set of all absolutely continuous signed o —martingale mea-

sures. Then .
1
dQ* = ——— <1 + / 9*_de;“7Z> dP
a(t7 u, 2,’) t

belongs to My, .

i11). The function a verifies

1= inf E
QEMt,u,z

() ot an

and the infimum above is achieved by Q*.

In the literature Q* is called Variance-optimal signed martingale measure .

Proof.

i). It can be proved that there exists a unique strategy #* which achieves the infi-
mum in (5.13)) (Cerny and Kallsen) |2007). It follows that for any n € X' (t,u, z) and

e#0
T 2
<1 - / (05 + em_)dsﬁv“vz> ]
t

T 2 T T
</ Ur_dSﬁ’u’Z> + 2¢EF [(1 + / ei_dsﬁ,u,z) / nT_dsﬁ,u,z]
t . \

Dividing by € and taking the limit ¢ — 0 we obtain

T T T
EF [ / 0r_dSh* / mdsﬁ’u’z] = —EP [ / mdsﬁv“ﬂ (5.15)
t t t

a(t,u,z) <EF

which implies

0 < 2EP
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2
If we take 77 = 6* then EF [( I Hj_dSﬁ’"’z> ] — _EP [ T ej_dsiv“ﬂ, which, in

particular, gives
T 2 T
<1+ / ej_dsﬁ’“’2> =E* [1+ / 9:_dsﬁ»w]
¢ t

ii). By using Lemma 3.1 in (Cerny and Kallsen| (2007), we also have a(t,u, z) > 0,
so then the following signed measure Q*:

* T
4Q =Y}, Y= #E [ (1 + / O:de,’“’Z) ’ ]:S]
7 a(t,u, z) ¢

dP
is well defined. It follows that Q* < IP in the sense of signed measures (Jordan-Hahn
decomposition Theorem) and trivially Q*(©2) = 1. Q* is an absolutely continuous
o—martingale measure if and only if Y*S is a P-martingale. This is equivalent to
prove that for any stopping time p taking values in (¢, 7] one has EP [YQ*SQ] =Y, 5

1 T
EF [Y,S,) =———E" | (1 / 0;_dSy™*
sl =gy (1 [ #-0st) s

1 T
— EIP EIP’ / * t,u,2
s (s [, [ o aste])
By taking 7 := T, in (5.15]) we obtain

a(t,u,z) = EF

T
EF {/ Qﬁ,dSﬁ’“’Z(SQ — St)] = —EF [So] + St
t
so then

1 T
E]P’ Y. — EP EIP’ / 0F d t,u,2
[ QSQ] a(t,u,z) < [SQ]+ |: s r— Sr SQ
St P T * t,u,z
—— 2t EF|1+ [ 6r_dstvi| =V;S,
a(t,u,z) t

ii1). Take now any other absolutely continuous o-martingale measure Q with dQ/dP €

L2(P). Then
P [(d@)j P <d@*)2 dQ* <d(Q) d@*)]
dP dP dP \ dP dP

9 d@ T dQ* T
— EIP’ i 0F d t,u,z 7]EP / 0F d tau,z
a<t,u,z>< [dp/t r-5r } [d@ , Ot

=0

zzEP[

since both Q and Q* are martingale measures. It follows that

: p (O] | /dQ N\ 1
Qe [(d@)]‘E <dP>]‘a<t,u,z>

by using 7).
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g

The characterization given in Lemma |5.2}4i7) can be used to deduce an upper and
lower bound for function a:

Lemma 5.3. Let Assumptions [C,Il] hold true and assume that one of the
conditions below also holds true

i). 0 < Omin
ii). 0 < ||, where |T| is defined in[5.7
Then the function a verifies

e CTN < q(t,u,2) <1 (5.16)

where C =2 (|Iall” + |73, ) (max (02,5, |T1)) "

min’

Proof.
Trivially a < 1 whereas from (5.14)) we deduce

a(t,u,z) = sup 7
QEMt,u,z E |:<d(@) :|
dP

If 0,in > 0 then Itd’s formula yields

dSy = S;_(judt + odW, + /(e7 — 1)J(dydt)
R

Girsanov’s Theorem for Markov jump process (Jacod and Shiryaev, [2003)) allows us
to select dQ/dP := &p where d&; = —ftatthl and

1 1
== <u +50° + / (¢ =1 =71gpy<ny) V(d?J))
o 2 R

so that

T 2 7I1? T
E[¢] =1 +/ E [¢2a? (r,UM", Z0"7) ] dr <1 ol 5 ”T”l’”/t E [¢] dr

t man

If instead |I'| > 0 then we can select dQ'/dP := nr where dn; = —n; [ Bi(y)J (dydt)

and

Bi(y) = fR(e'S’ei I);l)/(dy) (,u + %Uz + /R (6'y —1- ’Y]l{\y|§1}) I/(dy))

and again

T =112 + 2 T
E[n7] = 1+/t E [n2B° (r, UM, Zb"*) ] dr < 1+2”“”|F|”TH1’”/t E [n?] dr

Gronwall’s inequality, in both cases, gives a (t,u, z) > e¢¢=T),
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g

In order to solve Problem (|5.11]) by the Hamilton-Jacobi-Bellman approach we also
need some a priori regularity on the function a.

Theorem 5.4. Let Assumptions hold true. The map (t,u,z) — a(t,u,z) is
measurable. Furthermore let us assume that one of the conditions below also holds
true

i). 0 < Omin
it). 0 < |T|, where |T'| is defined in[5.7

Then there exists some T* > 0 and K, =0 depending on T* such that for T <T*
one has
la(t,u, 2") — a(t,u, 2)| < Kfjplz — 2|

forallt € [0,T] and u,z, 2" € R. T* depends on T, 7 and 7Y, Omin, Tmaz and Kz
and T* — +00 when K — 0 and the other constants remain fized.

Proof.

We start by considering the problem when the minimization is only carried
over piecewise constant simple strategies. This corresponds to discretize the value
function vy on a partition of [0,7]. Let thenn € N*and 0 =tg <t; < -+ <togn =T
where t; = ¢T27™. The set of admissible strategies at time t; is given by

2n_1
Dp =90 (tp,TIx Qo R, 0. =Y Oilgp, 1] 0; € L°(F)
j=k
The discretized wealth process is defined as:
AX[EH0 =g, (s;ff’w — sf;j“) , Xy =w k<i<2m (5.17)

We can write the corresponding value function for all k < 2":

2
on—1
vy (u, 2z, ) :zeiergn EF | |z + Z 0 <St§’if’z - Sfj’“"z> = 22al(u,2) (5.18)
2n_1 Zt Ztk,u,z 2
w,z — Ly
ap(u, z) = inf EF [ 1+ Z ;| e g - (5.19)
(mj), mj €L2(Ft;) s

At time ¢, = T we have v}, (u,z,2) = 2?2 and af.(u,2) = 1. If 7} (u,2) is the

optimal strategy in (5.19) then the optimal strategy in (5.18)) is given by
07 (u, z,x) == e “mp(u, 2)x (5.20)
Remark also that

a(tg,u, z) < ag(u,z) (5.21)
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since D} in included in X (¢, u,p, z) defined in (5.10). To simplify the notations we
introduce

Ce :=max(Ce2,Ce3,Ce 1) Cay = max(Cy, 2, Cqz3) (5.22)

where C; and Cpz,; are defined in Corollaries[A.3}{A.4]in Appendix[A} The scheme
of the proof is the following

Step 1: We prove that the functions aj defined above are continuous and con-
tinuously differentiable w.r.t. z with bounded derivative, for all n € N and
0 <k <2" and we give a relation between the Lipschitz constants of a; and

Af+1-

Step 2: We prove that there exists a T* such that if T" < T* then the functions ay
are uniformly Lipschitz w.r.t.z.

Step 3: We consider the linear interpolation of the functions a; and we prove that
this interpolation converges pointwise to the function a defined in (5.13). We
conclude.

Step 1: The functions a; are all continuous and continuously differen-
tiable w.r.t. z. The prove is done by recurrence. Fix k < 2" and let aj the
function defined in where, to simplify the notation, we omit the superscript
n. Assume then

Recurrence hypothesis: forall[=k+1,...,2"

i). a; € C°(R?) and a;(u,.) € CY(R), for all u € R.

ii). There exist a family of positive constants L; > 0 such that |0,a;(u, 2)| < L;
for all u,z € R

Remark that the above assumptions are trivially verified by aon with Lon = 0.
These regularity assumptions on the functions a; allow us to prove a dynamic
programming principle:

Lemma 5.5. Let Assumptions [5.1] stand in force and assume that the recurrence
hypothesis holds true and that for alll=k+1,...,2" —1

tl,u,zi 2
(1 +m <€Z”+1 = 1)) a1 (Uttllﬁa foﬁz)] (5.23)

then ay also verifies the above expression.

The Proof of this Lemma is postponed in paragraph

aj(u,z) = iré]%EP

Lemmatells us that the function ay, verifies (5.23)) provided that the functions q;,
l=Fk+1,...,2" — 1 verify the recurrence hypothesis and ([5.23)). By differentiating
w.r.t. m we find the optimal control

tk,u,zi
EF [(62”““ ‘- 1> Ag+1 (Utt:ﬁa Zf:ff)]
my (u,2) == — (5.24)

Ztk,u,z 2 2 : :
P p -z kol & UsZ
E (e k1 1> Q1 (Utk+17 Ztk+1 >
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Since ag41 is assumed to be Lipschitz we have

Z:k’u’zfz Z:k,u,ziz tk} u.z
E|[e "+ — 1) ag+1 (Utk+1’ > + L1 E | e+ —1 ‘Ztkll’ —z‘
*
77 (u,2)] < e 2
E | (75 77 1) apg (U0, 2000
k+1 tht1? tk+1
cT

e Ztk?u’zfz _
S m HE |:<€ 21 — ]_> Af+1 <Ut:+17 ):| ’ + Lk+1Ce72T2 n'l92n:|

where we used Lemma[A.T] Corollaries given in Appendix[A]and estimation
(5.21)) together with the bounds on a stated in Lemma Consider the process

V. = [akH(U U | U;'w“} < s <tpp

t+1”

It is a bounded martingale with respect to the filtration generated by the Brownian
motion B and the Poisson random measure N. The martingale representation
property yields

Vs =E |ag1 (U,

tk_H:z)} /tk a,dB; /tk/ﬂr N (dydr) (5.25)

for some predictable processes «, 5. By using the It6’s formula and the independence
of the Brownian motions and the Poisson random measures leading the processes
Z and U we obtain

tr,u,z ty,u,z
'E |:(6Ztl;:+1 —z_ 1> k41 (UtkH’ ):| ‘ = ‘E |:<6Zt;}j+1 —F_ 1> Vtk.;.1:|
trt+1
E / eZr 2V | fir —I—/ (e” — Dv(dy) | dr
12 ly|>1

According to (5.22)) we obtain an important estimation on the optimal 7

< CosT2 ™y-n

Ce
75l < CTCe (14 Lgt1) 9gn (5.26)

’

and from ([5.23)) we can also write
tr,u,z 2
Zt]w Tz tk u,z
k+1 i )
E [(e 1) ar (U 218
tr,u,z 2
Zyy - tgu tg,u,z
(e kt1 — 1> Gt1 (Utk+l’ Ztk+1

Lemma 5.6. Let Assumptions stand in force and assume that the recurrence
hypothesis hold true and that for alll =k +1,...,2" — 1 a; verifies (5.23)). Then

ag also verifies the recurrence hypothesis and

005 5 o (15 72°) -
E

eCT

Li:=1L Co—
k k+1+< ec,&5

) [A(Komaz) + ¥ (Kmaz) L1 (Liyy +1)] T2 090 (5.27)
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3 Kmax
() + Co + 2C, + Eopaslomar + I71B,0) + Ce (2572 )

Furthermore

A(Kmam)
Vv Kmam

The Proof of this Lemma is postponed in paragraph

— M for some M >0 when Kpyqz — 0 (5.28)

We have already remarked that aon trivially verifies the recurrence hypothesis:
Lemma tells us that aon_q verifies the dynamic programming and con-
sequently we can use Lemma to prove that asn_1 also verifies the recurrence
hypothesis. By repeating the above argument we conclude that all the functions ay
finally verify the recurrence hypothesis.

Step 2: The functions a; are uniformly Lipschitz w.r.t. z. We now prove
that the constants Lj are uniformly bounded. Let us start by considering the
following ODE:

TN 2
—L'(t) = (CE g:) [A(Komaz) + U (Kmae) LE)(L()* +1)], 0< t < T, L(T) =0

Lemma in Appendix [B] gives a way to compute L, which is a positive and non
increasing function. It follows that for all £ < 27,

trt1

L(ty) =L(tp41) +/ L'(r)dr
ti

oCT

06,5

From (5.27) we deduce Ly < L(tx): our aim is then to prove that the function L
is bounded. Again Lemma [B.1] gives that the function L only depends on y* € R
defined as follows:

A(Kmax)

\I’(Kmaz)

Remark that this y* does not depend on T,n of k. In particular sup,<p L(t) =
L(0) < +oo if and only if T < T'(y*), and we have the explicit form of this T'(y*)

(see (B.2)):

2
ZL(thrl) +7127" <CE > [A(Kmax) + \I/(Kmax)L(thrl)(L(thrl)Z + 1)]

() +y" + =0

M (y)
\II(Kmax)
for some positive constants Mj(y*), Ma(y*). It follows that if 7™ is the unique
solution of T* = T(y*,T*) and T < T*, then L(0) < +oco. We conclude that
SUpP,en p<2n L < L(0) and then

T(y*) = = My(y*)e T :=T(y",T)

sup ‘aﬁ(u, z) — aj(u, z')‘ < L(0)|z — 2]
n,k
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for all u, z,2’, provided that T" < T*. Still from Lemma we have T — +00
when A(Kq:) — 0, and this is the case when K4, — 0 and the other constants
appearing in the definition of A(K,,q,) remain fixed.

Step 3: The linear combination of a; converges pointwise to a. From now
on we will always highlight the dependence of af on n. Let us define the function
a™ (t,u, z) on [0,T] x R? as follows
a" (t,u, z) = 2" (afyy (u,2) — af, (u,2)) (t — tg) + af, (u, z) (5.29)
where k verifies : tp <t <ty
From the properties of aj we have that the interpolation function ™ is continuous,

continuously differentiable in the variable z and under the condition T' < T it is
straightforward to see that

la" (t,u,2) —a” (t,u,2')| < Kfi, |z — 2|, forallt€[0,T],u,z2 €R (5.30)
where Kf;p =
Lemma 5.7. Suppose Assumptions [C,Il] hold true. Fix (t,u,z) € [0,T] x R?,
€ >0 and 6 € D; so that

T 2
(1 +/ érdSﬁ’“’Z> ] <al(t,u,z)+e
t

There exist M > 0 and n € N only depending on 0 such that for all n > n we can

find 65" € D with
T 2
<1 + / Gi’”dsﬁk’“’z)
tg

T 2
<1+/ GrdSi’“’z) ] -E
t

where 0 < k < 2™ wverifies ty, < t < tgr1. The same result still holds true if we
consider ti11 instead of ti.

3L(0).

E

E < Me (5.31)

The Proof of this Lemma is postponed in paragraph

The above result tells us that for all € > 0 there exists n such that for all n > n we
can select two controls =™! € DI and 652 € D} 41 verifying

T 27
<1 —i—/ Gif’ldSﬁk’“’z> <a(t,u,z)+ (M + 1)

tg

ayp (u,z) <E

2
T
apq (u,z) <E (1 + / Him’2d5£k+l’u’z> <a(t,u,z)+ (M +1)e
tk+1

The above estimations and ([5.21)) yield

|afy1(u, 2) — ag(u, 2)| < (M +1)e (5.32)
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so that, for fixed (t,u, z), € > 0 and n > 7 as above we obtain:
™ (t,u,2) — a(t,u, 2)] <2"(t — ti) |agy (u, 2) — af(u, 2)| + |aj (u, 2) — a(t, u, z)|
<(M +1)(T+1)e
Arbitrary € > 0 allows us to deduce that ™ — a pointwise: in particular, if T" < T

then the function a is Lipschitz continuous in the variable z and at least measurable
in the variable ¢,u (since it is the limit of continuous functions).

O
5.3.1 Proof of Lemma [5.5
Proof.
If (5.23) holds true, then, by differentiating w.r.t. ™ we obtain
ai(u,z) = (5.33)

EP Z:llflyzfz 1 Ul ghuwz
€ A1\ Y10 Pty

Ztl,u,z P 2 ‘ ‘
P t - 1,u 1,U,2
E (e 141 - 1) aj+1 (Utlﬂv Ztl+1 )

for all [ > k. From the definition of a; in (5.19) we can write

P tlvu tl,’u,Z
E” [a (Ui, 20007) | -

2
J

2m—2 e
‘ sz‘,l, gl
ar(u, z) = inf - E||1+ Z ;| et i =1 +
j=k

(TkseyTon 1)

2"—1 ti,u,z ti,u,z t
joE YRRl koWZ tp,u,z
27T2n,1 1+ E Uy <€th+1 th — 1) ]E]:tznfl |:(6Zt2n thnfl — 1):|

i=k

tk,u,z_ tE,u,z 2
et (50

where E*en-1 [...] stands for the conditional expectation w.r.t. Fi,, ,. We can
now minimize the above expression w.r.t. mon_1: by using the Markov property of

(U, Z) and (5.33]) we obtain

2
2" -2 th,u,z th,u,z
. ; — 4y t t
ak(uv z) = inf E 1+ § : T\ € L Y -1 azr-1 (Utzkvﬂ:?ilv Zt;ﬁf)
(T ey Ton _2) s

Remark that the right hand side of the above expression is well defined since agn_1
is supposed to verify the recurrence hypotheses. We can repeat the procedure for
Ttgn_gs Tton_gy - -+ Tty and finally we obtain

Ztk,u,z 2 2 ; :
¢ - ko U kW, Z
<1 + Tk (6 b+l - 1)) Ak+1 (Utk+1’ Ztk+1 )

which concludes our proof.

= inf E
ak(u, 2) = inf
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5.3.2 Proof of Lemma 5.6l

Proof.
We know that

Ztk,u,z 2 : : 2
t - kU kU2
E |:<€ kel - 1) Af+1 (Utk+1’ Ztk+1 >:|
tr,u,z 2
Ztk’ Tz tr,u tr,U,2
k+1 . ) Uy
(e 1> Qg1 (Utkﬂ, Zy

provided that a;, [ > k verifies the assumptions of Lemma [5.5] It is straightforward
to see that ay is continuous: for this one can use the fact that agy1 is continuous
and the estimations on the exponential of Z given in Corollary Appendix [A]
We now prove that ay is also differentiable w.r.t. z and give an estimation of this
derivative. To simplify, let us call

o (0,2) =E [onr (U1 20807) | -
E

k+17 Ttk

[ Z:k’uyz—z ti,u th,u,2
ag (u, z) :=E [ ("1 7 —1) agsq (Utij’Zth,ﬁl, )

Ok (u, z) =K _ak+1 (Uttk,u Ztk,u,z>]

Ztk,u,z » 2 . .
— t - kU kH U,2
Br (u7 Z) =E (6 ket - 1) Ak+1 <Utk+1’ Ztk+1 )

so that ap = 6 — (a)?/Bk. Remark that

k+17 Tt

thu,z
ag(u, z) =e ’E [eztkﬂ ki1 (Utt’“u Zt’“’u”z)] — 0k (u, 2)

tL,u,2
ﬁk(u) Z) :€_2Z]E |:(€Ztk+l )26%4-1 (Ut}wu Ztk7u7z>:| . 5]@(”, Z) N QOlk

trr1’ “try
Proving that J; is continuously differentiable is trivial and we obtain

825k(u, Z) =E [azakJrl(Utk’u Ztk’u’Z)DZtk’u’z}

tetr1? “teta trt1

where DZ is the derivative of the flow Z with respect to z (see Appendix [A]):

$ 0 " 0 r 0 r T
DZ;’U’Z — 14 / DthL’Z 12 dr + g dWTl + M] (dydr)
] 0z 0z r 0z

where Ay, /02 1= A /D2 (r, UP", Z2™?). We can prove that oy, and fy, are differen-
tiable with the same type of computations, so we just detail them for 8. For this,
let us assume that «; is differentiable, so we only need to prove that

2 . 22::7?2 teu b, u,2
Br(u,z) :=E | "+1 agyq Uil Zig
is differentiable w.r.t. z. We start with

B(u,z+¢e)— p(u,z2)

9

tet1

1
—E [Dﬁzfﬁl’“’z /0 ¢ (Uf:jj, ZiE 4 rsDﬁZ‘s’tk’“’z) dr]
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where ¢(u,2) = €**(2ap41(u, 2) + 0zap11(u,2)) and DyZg™™* = (Z§"*Te
Z%%*) /e, From Lemma and Corollary we get

t P t t P t
Zppuwrte sy ziewE o and DyZp™M — DZ"* whene — 0
k+1 k+1 k+1 k+1

Corollaries and the recurrence hypothesis on ag,1 allow us to apply domi-
nated convergence:

trt+1 tet1? Tt tr41 trt+1 tp+1? Tt

1
Dﬁzf,tk,u,z/ (p <Utk,u Ztk,u,z + TEDﬁza,tk,’u,Z) d?“ i> Dzé:,tk,u,z()o (Utk,u Ztk,U,Z)
0

le+1 tet1? gt
uniformly integrable we are done: first we have

If we prove that the family ¢ — Dy Z;>"*"* fol © (Ut’“u ZpE g raDﬁZflﬁ“;u’z> dr is

1
‘Dﬁzgvtkvuvz / QO (Utkau Ztkvu7z + TEDﬁZE7tk7U7Z> d,r,
0

tot+1 tot1? Tt lkt1

L 2 th u,2 1 ( tg u,zte tk,u,z)
<k + ‘Z;’:’?Z—’_a — Zf]’:’qi’z e2Ztk+1 e2r Dty Ztyoi1 dr
- I o+ + 0

L 2 tg u,z+e tr,u,z
< Lt1 + eQZtkH B 62Ztk+1
- £

1+v

Take now the test function g(z) = = for some v > 0. The Cauchy-Schwarz

inequality yields

1
E |:g <'DﬁZa’tk7U,Z/ 0 (Utk,u Ztk,u,z + TéDuZS’tk’u’z> dr
0

)<

th+1 tht1? Tt tk+1
14+v 1—v
+ —
Lk 1 +2 I+v u,z+¢e u,z 2 2 u,z+e u,z ﬁ 2
S a E ||e"+1 — e k1 E ||e "+1 + e k1
2e

Recall that the exp(Z) admits a fourth moment: if we select 0 < v < 1/3 then

1—v
1+v 3
1—v

E Dexp(Zu’Z+6) +exp(Z,7 )

tet1 th+1

e < gg, for any 5. We use again Corollary to deduce that

)=

for some positive M which depends on u, z but not on e: with the de La Vallée-
Poussin criterion (See, for example, [Doob| (1994)), Chapter VI, 17) we finally prove
that the family e — Dy Z7, | fol ©(Uty 1> Ziyy HreDyZ;, | )dr is uniformly integrable
for € < gp. Dominated convergence applies and we can pass to the limit ¢ — 0 and
get

is uniformly bounded in &, provided that

1
. [g <’DﬁZtezfrl /0 SD(kaﬂ + T(katsl - ka+1))d7“

B(u,z—i—e)—ﬁ(u,z) 0
€

tp,u,z
E | D72 et (Qak+1(Ut’“’” Z"5) 4 Qg (U Zt’“’“’z))]

tet1 tet1? Tt tet1? Tty
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The continuity of 8,3 can be proved by using the continuity of ap+1 together with
its derivative and the estimations on eZ and DZ given in Corollaries and
this is enough to prove that aj is continuously differentiable w.r.t. z: aj verifies
part i) of the recurrence hypothesis.

We now give an estimate on the derivative of a; w.r.t. z. From now on, in or-
der to lighten the notations, we omit the superscript (tx,u,z) so that (U, Z) :=

(Ut’“’ ZEw Z) exp(Z) == exp(Zf:fi’z) and DZ = DZ;’::?Z By using the deriva-

tetr1? “teta
tive of flow DZ we obtain

O.ar, (u, z) =K [0,a11(U, Z)DZ] + 27; (u, 2)E [e?*(DZ — V)ag41(U, Z)]
+27} (u, 2)E [(e?7% — 1) 0.a141(U, Z)DZ]
+2(rf (u, 2))°E [(e?77* — 1) e?*(DZ — 1)ay11(U, Z)]
+ (g, (u, 2))*E {(eZ z ) 0zap+1(U, Z)DZ]

where 77, is defined in (5.24). We can rearrange the terms above to obtain

0ay (u, z) =E {(1 + 7, (u, 2) ) (e#77 1))28zak+1(U, Z)DZ] (5.34)
+27} (u, 2)E [e#7*(DZ = 1)ag+1(U, Z)] (5.35)
+2(m} (u, 2))°E [(e77* = 1) e *(DZ — 1)ay11(U, Z)] (5.36)

and we know that |7*ty|| < e“TCe (1 + Lgy1) /Ce .
Let us start with (5.36)): by recalling that 0 < axy; < 1 and using Corollaries
[A3HA A we have

|2(7r2‘k(u,z))2E [(eZ*Z —1)e?*(DZ — V)ay41(U, Z)] |
<2||mz |2, (B [|e”* =1 1DZ - 1] + E[|e*~* - 1] |DZ - 1]])
<t | CHEC T,
For we have
‘27@; (u, z)E [eZ_Z(DZ — Dar1(U, Z)] ’
<2||7 ||, (E[le”* = 1|[DZ - 1[] + [E[(DZ — 1) ar1(U, 2)]])
<2||7 |, (CH2CHLPT2705 0 + [BI(DZ = Vag i1 (U, )] + Lia CL2C T2 70, 0 )

The term |E[(DZ — 1)ag+1(U, 2)]| can be estimated by using the martingale repre-
sentation in and we obtain
E[(DZ — 1)ap1(U, 2)]| < Cg.3T27"I9-n < Cg,T27"09-n
hence
|27} (u, 2)E [e?*(DZ — 1)ag41(U, Z)] |
<27ty CY/ (03/2 Lol Lk+1c;/2) T2y
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For we use Lemma in Appendix
‘E [(1 + 7, (u, 2) (eZ_Z — 1))2 0zax41(U, Z)DZ} ‘
<Ly E {(1 +m, (777 — 1))2 |DZ’} < Liy1 (1 + Cyz el ) T2 "09-n)

where

* * « 3+ K
Odz’e(ﬂ-k) =Caz + 2‘7Ttk|(ce + Kmaz(Tmas + ||TH§,V)) + |7Ttk|206 <m>

2

From the estimations for ((5.34)—(5.35)—(5.36)) and the bound on |77, | we will obtain,
for some constants A and ¢; to be determined, a polynomial expression in Lgy1:

|azak (uv Z)|

€CT

<Lj41 + max ((Ce

2
5) R 1) (A + Lk+1 (Cl + Csz+1 + C3Li+l)) T2_n292—n
€,

CT\ 2

3

=Lj1 + (Ceg> <A + 3 max(cy, c2,¢3) Liy1 (LzH + 1)) T27"99n
e,5

since Ce > Ce2 > C¢ 5. Precise computations yield

Ai=20 (612 + ¢ )

> 3 3+ K
5 max(cl, €2, C3) = 5 (A + Cg. + 2(06 + Kmaw(Uma:L* + ||T||§,y)) + Ce <2max>>

Furthermore from the definition of Cy, in (5.22) we have Cy, — 0 when K40 — 0
(see Corollary [A.4). We focus on this by writing A = A(K,ez) so then

A(Kma:c)
V Kmam

If we set V(K nae) =: %max(cl, 2, c3) then the following estimate holds true:

— M for some M > 0 when K, — 0

GCT

2
o) [AGEuar) + W) i (L + 1) T2 "0

10apll = Ly = Liss + (ce

The above estimation proves that ay also verifies the part i) of the recurrence
hypothesis.

O

5.3.3 Proof of Lemma

Proof.
From definition of Dy is (5.8)), we have

N
0, =Y, ]l{fre]t,gm}} + Z Yi]l{TG]q,%H]}

i=m
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87

for some NV € N, V; € L*(F,,P) whereas (¢;); are stopping times. Our idea here is
build a strategy which follows 6 along the time: for n € N let

92” = étj forall k <j <27

Obviously there are windows of the time grid on which the two strategies do not
coincide. By using this strategy we can write

[ T 2 T 9

L t th

[ T 2 T .
<|E <1+ 9_rdS$k’“’Z> ~E <1+ / ei’”dsﬁ’““’z)

L tk th |

i T 2 T 9
e[ ffaseny] e[ fase) ]

L 23 t

_ _ 2]
The strategy 6 is bounded: the function s — E®%? [(1 + fsT Hr,dSr>

ous: there exist n such that for all

(1+

E

T 2
/ HT_dSﬁk’“’Z) -E
Lk

is continu-

n > 71 one has

T 2
<1+ / Gr_dsﬁ’“’z> ]
t

<e

since |t — tx| < 27™. We can concentrate then on the first term:

T 2
E <1+ a‘rdsiva) —E
tx
N .
<E ( [ o) dSﬁk“’z)
L bk _
- h
<E < [ G—0) de,k’“’Z>
L tk -
- h
<E ( | o) dS,%“’Z)
L tk -

T 2
<1 + [ Hi’”dsﬁk’““>
tg

T _
97‘— dsﬁk YUy 2

tg

T —
| @ -y dsiees

+ 2E Hl—l—
tg

|

T 2
+2(alth,u,2) + )2 E [(/ (6, — 65" dsﬁk,u,z> ]
122

T 2732
( | o) dsﬁk’“’z)
tg

[N

+2(1+4¢)2E

We conclude our proof if we show that for some 7 and for all n > n we have

E

( /tT (0

2
- 67 dsﬁkv“vZ> ] < é? (5.37)

The Doob-Meyer decomposition and Assumptions [C, I;] yield

T 2
E [( [ o) dsﬁk”"z)
tg

T
< ME |:/ (9;7 _ gif)2 Sg_drtkﬂhz

ti

1
2
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for some M > 0. Since 6, — 05" — 0 and

’(ér — Hf’")QSf <M sup S?cL'(P)

rel0,T7]

for some M’ > 0 depending on the bounds of 6, we can apply dominated convergence
to deduce that

E

T 2
(/ (6,— —6") dSﬁ’“’”’Z> ] — 0 when n — +o00
173

which proves ([5.37)).

g

The Proof of Theorem actually gives us some important elements on the struc-
ture of the pure investment problem: we found a sequence of bounded controls (as

stated in (5.24):
E ZZ:J‘:Z*Z 1) q® pleu  gtiuz
€ - A1 \Yigsrr Pt

Ztk,u,z P 2 ‘ ;
tea1 e n kU kU2
E <e 1) ap (Ui 20

T (u, z) == —

such that
2”*1 Ztk,u,z_Ztk,u,z ?
ap(u,z):=E [ | 14+ Z U (Uttf’u7 fouz> <e tivr Tt 1)
j=k
and
eCT _
sup sup |7}, < ——=C. (1 + K ) :=11I 5.38
neN h<an H k Hoo 0'72nm vV ‘F‘ e ( lzp) ( )

from the bound (5.26) and the fact that Ly < L(0) < K, if T" < T*. Con-
sider now the function a” introduced in (5.29)): according to the fact that a™ — a
pointwise and ((5.32)) we also deduce that for any ¢ € [0, T

a(t,u,z) = lim ay(u,z) where ty <t < tgy1
n—oo
In particular this implies that (7™),, is a minimizing sequence in Problem ([5.13)), or
equivalently, by using (5.20)), the sequence 67 := 0"(r,U,_, Z,_, X?"), where

2m—1
0" (r,u,z,z) :=e “x Z 7 (U 2) Lirelty, ton]} (5.39)
k=0

is a minimizing sequence in problem ([5.12]). Remark that since 7™ is bounded the
strategy 6" is admissible.



Chapter 5. Quadratic hedge: introduction and main properties 89

5.4 The structure of the quadratic hedge value function

In this Section we will discuss the structure of the value function introduced in
(5.11). We define FtwpP? .= f(U%u,Pitp’p, Z;u’z) and

T
S = {/ 0,_dS, |0 € X(t,u,p, z)} (5.40)
t

In what follows Pr® denotes the L2-projection into the space of stochastic integrals
S. Remark that the projection is well defined since S is a convex closed subset
in the Hilbert space L?(IP). With these notations, we can see the quadratic hedge
problem as the projection of the random variable F' — x on S:

vf(t, u,p, z,z) =EF [(PrS(Ft’“’p’Z - x))ﬂ =EP [(PrS(Ft’“’p’z) - mPrS(l))Q}
—=E" | (Pro(1)))°] 2? - 287 [PrS(F*»*)PrS(1)] 2 + EF | (P15 (FH4))°|

From the definition of Pr® we first obtain

T 2
(1 +/ HT_dS}E’“’Z) ] =a(t,u,z)
t

which does not depend on the particular structure of the function f. In conclusion,
if we define

P S 21— P
E [(Pr (1)) } = ee/’\}%,fu,z)E

b (t,u,p, z) = — 2EP [Prs(f(U;“, pLP, Z%“’Z))Prs(l)} and
2
oIt p.2) = | (PeSI(OR P 2

then the value function v/ admits the following quadratic decomposition:
Uf(ta u,p, 2, 33) =a (ta u, Z) ‘T2 + bf(t’ u, p, Z):E + Cf(tv u, p, Z) (541)

This quadratic structure for the value function is well known in the literature ( see
for example |Jeanblanc et al.| (2011))). From Lemma [5.3| we have a > 0 so then it is
straightforward to obtain the optimal price in ([5.11]):

bf(t
z*(f) == argminv’ (t,u,p, 2, x) = bt up, 2)

— 5.42
z€R 2a(t,u, z) (5.42)

which is a linear function of the payoff f since b is. The following Lemma proves
the stability of the optimal price z*(f) and the optimal hedging strategy under
small perturbation of the function f:

Lemma 5.8. Let fi1, fo be two measurable functions with fi(U%“,P:tp’p,thp’"’z) S
L2(P) for all t,u,p, z, i = 1,2. Then for anyt < T and (u,p,z) € R3

2" ()t p, ) =2 ()t p, ) < altou, 2)72 | (1 = R)UR PR7. 25)
’(Ufl - vf2) (t,u,p,z,x)’ <

2 (w4 [[(h + PR, PP 2

2

2) H(fl — f2)(UF", PP, Z7"7)

2
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Fiz now (t,u,p, z,x) and let f, such that H(fn — f)(U%u,Pthp,Z;u’z) , 0, n—

oo. If 0™ is the optimal control in (5.11)) when one uses f,, then, for all e > 0, there
exists some N > 0 such that for any n > N one has

T 2
(f(U;“,P;P,Z;“»Z)—x— /t GQdS}E’“’Z> ]

vf(tauvpvz7x)_]EP <e

Proof.
Let Af := (fi— fo) (UR", PRP, Z5"*). From the definition of b/ and z*(f) we obtain

V2 [Prs (Af)ﬂ 2

lx*(f1)(t, u,p, z) — z*(f2)(t,u, p, 2)| gafl(t, u, z)E [Pr3(1)2]
<a(t,u,2)" 2| Ay
and from we obtain
‘vfl (t,u,p,z,x) — va(t,u,p,z,x)‘

<2 (@2 (t,w, 2)lal + ||(f + f2)UF", PP, Z5)

) 1851,

Jefprs o]

<2 (w4 || (f1 + PO, PR, Z5)

We conclude the proof by remarking that

T 2
0<E (f (U;U7P§;P’Z%u7z) . _/ eﬁdsi,u,z> ] o (b, 2, 2)
t

=E

T 2
(= 5+ 5 (v g 2) o= [ opas) ] o (tu,p,2,0)

t

<E[(f = f)2] + 2B [(f — £)2]"* o/ (t, u, p, 2, 2)1/2
<M+ |2)) [ fn = fllo + |07 — 7]

and by using the above estimation on |v/» — vf| we deduce that, for some positive
constant M which depends on t,u,p, z and = we find

T 2
(swierte oo [ o astes)
t

<M ||(fa = HIUR" PP, 25)

ol (t,u,p, 2, z) — EF

2
which concludes our proof.

g

Remark 5.9. Lemma can be improved since, as stated in Lemma we have
e=CT < a(t,u, z) for some positive constant C, so then

()t p,2) = & (), 2)| < €CT12 (= ) (UL, PRP, 27

The message coming from the above Lemma is really interesting: one can ”replace”
a potentially non-smooth payoff function f with some smooth functions f,, by
controlling the error on the value function and the optimal quadratic hedge price

by [If = fall,-

2
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5.5 The pure investment problem: verification

When f = 0 in problem we have seen that the value function is given by
vO(t,u, z,z) = a(t,u, z)x®. We can characterize the function a as the solution of a
semi linear partial integro-differential equation (PIDE). For this, let us introduce
the differential operators associated to the process (U, P, Z):

Definition 5.10. Let ¢ : [0,T] x R® — R be a smooth function. We denote

0 0 0
App = — <“af +MU8¢ +upaf,>

52 52 52 52
L 2790 P\20"¢ vy2? % pOoy
( + (0 ) 55 +(07) » Aoo

—_

\w

0 dyp
Bip = <so tu,p+7",2+7) — ot u,p,z) — ( Pai +5 > ]l{|y<1}> v(dy)
Oy
(SO (t,u+Y,p,2) — o(t,u,p, 2) — Wauﬂ{y|g1}> vn(dy)
3 [
= Noo?

+ /]R (e7—1) (@(t, w,p+7, 24+ 7) — ot u,p, 2) Ly <1y) v(dy)

Grp =020 + / (&7 — 1)%p(t,u,p, z + 7)v(dy)
R

where p stands for u(t,u,z) and so on.

We introduce the functional spaces with which we will work throughout this section:

O CY%4([0,T) x R?), the Holder space of type 1, defined in Paragraph where
Le0,3)\{1,2}.

O HY([0,T] x R3), the Holder space of type 2, defined in Appendix [C] paragraph
where [ € [0, 3).

Recall that CY/24([0,T] x R3) ¢ H([0,T] x R3). With the following theorem we
characterize the function a as the solution of a semi linear PIDE, provided that
it has a unique smooth solution. This procedure is also known as the verification,
which in general is the ”easiest” part in a stochastic optimization problem.

Theorem 5.11. Let Assumptions [5.1] hold true and T < T* as stated in Theorem

(5.4). Let also

Hp] := g 1n<f {21Qp + 12Gp} (5.43)
where
- CT
Im=—-—— 1+ K} 5.44
mm \% ‘F‘ ( - hp) ( )

and C. is given in (5.22)).
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Case o,in > 0
Assume that the PIDE

[

0==%

+ Ao — Bro —Hlp] (T u,z) =1 (5.45)

has a unique solution ¢ € C*2T1542(]0,T] x R?) for some r € (0,1), which
also is strictly positive.

Case 0,,00—0
Suppose that the intensity measure v(dy) (respectively vy (dy)) has a density
w.r.t. the Lebesque measure: v(dy) = g(y)|y|~ 10 dy (respectively v, (dy) =
gn (W) |y|~Fdy ), where o € (1,2) and g (respectively gy ) is a bounded, mea-
surable and positive function. Assume that the PIDE has a unique
solution ¢ € H*T ([0,T] x R?), for some x € (0,1), which also is strictly
positive and continuously differentiable w.r.t. t.

Then ¢ = a defined in (5.13)) and the optimal strategy in problem (5.12) is given by

t
0 = e 27" (t,Up_, Zy ) XY, XV =a+ / 0;_dsS, (5.46)
0
where
* Qta(t> u, Z)
t =" 5.47
w(tu2) = Gl (5.47)

18 the minimizer in the operator H.

Proof.

We start with the case oy, > 0. Let then ¢ € C*/2+15+2(]0, T] x R?) be the unique
solution of and define w(t, z,z) := x2p(t,u, z). Take now the minimizing
sequence 0™ of the problem introduced in . If X™ is the wealth process
stated in corresponding to 0™ then, from It6’s formula, we obtain

t+h B
E [w(t + h,Upth, Zitn, Xi4p)] = w(t, u, z,2) + E {/ (X;Z)zaif(s, USZS)ds] +
t

t+h
E / Aso + By) (s,Us—, Zs)ds] +
t
b Do
E / (2,LLX" @+ 020, _e%—p+20° X" 8) (s,Us, Zs )ds]
t
t+h
I / / (€7 = 1)% (s, Us, Zs— + W)V(dy)ds} +
t R
t+h
E / QOS_GZS‘X?/ (€7 = 1) (@(s,Us, Zs— +7) — (s, Us, Zs_) Lgy|<1}) V(dy)ds}
L/t R

where (U, Z, X™) stands for (U"*, Zt#, Xtw#m), Since ¢ € C*/2+H1542([0, T x R?)
(which implies that ¢ and its derivatives are bounded) we can omit the martingale
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part after taking expectation. Fix now (s,w): if X' (w) = 0 then the expression in
the expectation above becomes

02(05625)2(p(8, Us, Zs) + (GS_eZS‘)Q/ (e7 — 1)2 o(s,Us, Zs— +v)v(dy) >0
R

since ¢ is positive. If X” (w) # 0 we can introduce 7" := 6%e%~ /X, and, after
simple calculations, we deduce that the expression in the expectation turns out to

be non negative (since ¢ verifies the PIDE ((5.45)) and |7"| < II as proved in ([5.38))).
We deduce

E [w(t + h7 Ut-i-ha Zt—i—ha X{L_l,-h)} > U)(t, u, z, I)

2
The continuity of w gives w(t + h, Upyn, Ziyn, X['p,) — <ac + ftT Hf,dST> when
h — T —t. Since ¢ is bounded we also have

[ w(t + B, Usns Zevns Xin)| < 19l 51[1p} X2 e L}(P)
se(t, T

This is true since X" is a stochastic exponential (from the definition of 8™ in (5.39))
and 7™ is bounded:
dX" = 7" X" e~ Zr-dexp(Z,)

so that we can apply Lemma 3.1 in [Pham (1998) to prove that sup,cp 1 |X7? e
2
L!(P). Dominated convergence yields w(t,u,z,z) < E [(x + ftT QQ_dSu) } Since

A" is a minimizing sequence in problem , by taking the limit n — oo we finally
obtain w(t,u, z,z) < vo(t,u, z,z). To prove the equality, we use the strategy 6* in
, which is admissible since 7* is bounded, and then it belongs to X (t,u,p, 2).
Remark that

€CT

o2 VI

man

~ 2 =
7l < (1 + Kty + Iy, + K 713, ) < T

With a similar argument as before we can prove that
E {w(t + h, Ui, Zian, Xf_T_ )} = w(t,u,z,)

and then, by letting h — T — t, we deduce

T 2
(a:-f—/ Gr_dSu> ] > vo(t,u, z,x)
t

which implies w(t, u, z, x) = vo(t, u, z,z). We conclude ¢ = a and 0* is the optimal
policy for the stochastic control problem in (|5.12]).

If 0par = 0 then (U, Z) is a pure jump process. In this case, one can use the It6’s
formula for pure jump process given in Appendix [D]and repeat the same argument.

w(t,u,z,x) =E

g
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Theorem characterizes the function a as the solution of PIDE , pro-
vided that we can prove that it has a unique smooth solution which also is strictly
positive. In Chapter [] we will prove that this PIDE has a unique smooth solution
when o, > 0, whereas Chapter 7] is devoted to the analysis of this PIDE when

Omaz = 0.

Remark 5.12. The function a does not depend on the variable p, so the operators
in Definition appearing in PIDE (5.45)) can be simplified.

Remark 5.13. If S is a martingale under the historical probability P then from
Lemma 5.2 we obtain

T
a(t,u,z) = EF [1 +/ G:de,’“’z] =1
¢

This fact can be also seen on the HJB equation (5.45)): by applying Ité’s formula to
S we find

1
o+ 50'2 + / (67 —1- ’Yﬂ{\y|§1}) V(dy) =0

since it is a martingale. It follows that the non linear operator H in (5.43) will only
depend on Oa, the first derivative of a, and then it is straightforward to deduce the
unique solution of PIDE[5.45 is given by a = 1.

5.6 The quadratic hedge problem: verification

As in Section our aim is to characterize the function v given in (5.11)) as the
unique solution of a PIDE. From ([5.41]) we know that v; has the following structure

vf(t, u,p, z,x) = a(t,u, 2)x® + b(t,u,p, 2)x + c(t, u,p, 2)

We already know that a verifies the PIDE ([5.45) if it is smooth enough to apply
1t6’s formula.

Theorem 5.14. Let Assumptions hold true and T < T* as stated in Theorem
(5.4). Suppose that f is continuous and that the PIDE (j5.45) has a unique smooth

solution which also is strictly positive.

Case o, > 0
Assume that the PIDEs

A b(T,.) = —2f (5.48)
e 1(Qyb)? 42
0= —a + Atc - BtC + 1 gta 3 C(T7 ) - f (549)

have a smooth solutions b, c € CYHR/2H1L2H5([0, T] x R3) for some x € (0, 1),

where 7 is given in (5.47)).
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Case 0q2=0
Suppose that the intensity measure v(dy) (respectively vy(dy)) has a density
w.r.t. the Lebesque measure: v(dy) = g(y)|y|~ 1+ ¥dy (respectively v, (dy) =
9n()|y|~ 10 dy ), where o € (1,2) and g (respectively g, ) is a bounded, mea-
surable and positive function. Assume that the PIDEs f have a
unique solutions b,c € H**([0,T] x R3), for some x € (0,1), which also are
continuously differentiable w.r.t. t.

Then the value function of the problem (5.11)) is
vf(t, u,p, z,x) = a(t,u, 2)x® + b(t,u,p, 2)x + c(t,u,p, 2)

where a is the unique smooth solution of (|5.45)), whereas b, c are, respectively, the
unique smooth solution of PIDES (5.48)—(5.49)). Furthermore the optimal strategy
in problem (5.11)) is given by

194

0 =e %= (n*(t,Up_, Zy )X — =2t U, P, Zy_) (5.50)
2 gta

t
XU =r+ / 0r_dS,
0

Proof.

As in the proof of Theorem let us consider the case oyin > 0. We start
with we(t, u,p, z,2) := a(t,u, 2)z* + b(t,u, p, 2)x + c(t,u, p, z), where a is solution
of (5.45), whereas b and c are, respectively, the solutions of (5.48|) and Since

a > 0 then

0 = :L‘2 [g?—Ata%—Bta] —|—I’|:g(t)—./4tb+8tb:| + [(;j—AtC—FBtC]

+ inf [fe® (2Qiax + Qub) + 6%e**Gyal
feR

Let now 6 € X (t,u,p, z) and apply It6’s formula to w(t+h, Usrn, Piyhy Zith, Xf+h).
We skip the computations, since they are similar to the ones we did in the proof of

Theorem [5.11} by using the continuity of f we obtain

tau pt,p otu,z tau,z,x,0 2
wf(tvuapaz7$)SE <f<UT 7PT72T >_XT )

From the arbitrariness of § we deduce w¢(t,u, p, z,x) < v¢(t,u, p, z,x). The equality
is obtained by using 6* in ([5.50). When ¢4, = 0 one can use [t0’s formula for pure
jump processes stated in Appendix [D] to complete the proof.

O

The above result proves that one can characterize the value function of problem
by solving a triplet of PIDEs, provided that they have a unique smooth
solution. This system has a "triangular” structure: the first one, which is semi
linear, only depends on the function a; the second one is linear in b whenever we
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know a and the third one is again linear in ¢ when we know a and b. The optimal
strategy of problem has an affine structure
0F = e 1= <7r*(t, Ui, Z )XY — 1%(t, Ui, P, Zt_))
2 gtCL

where the multiplier 7* does not depend on the particular form of the payoff profile
f, so it is universal. This simplifies the implementation of the above strategy to
solve problem : firstly one computes the function a, which does not depend
on f, by solving a semi linear PIDE and then one only has to solve a linear PIDE
for the function b. This also allows to compute the hedge ratios for different options
at the same time once one has computed the function a.

In general it is not possible to find explicit solution for PIDE , so one has to
employ numerical schemes. However the triangular structure for the functions a,b
and c largely simplifies the problem: first one computes numerically the function a
and then uses it to compute the function b, which is relatively simple since it solves
a linear PIDE. Remark as well that in order to compute the optimal strategy and
the optimal quadratic hedge price (defined in ) one does not need the function
c.

5.7 Viscosity solutions

In Sections [5.5 and [5.6l we characterized the value functions a and v/ in terms of
solution of PIDESs; however, at this point, we do not know whenever the functions
a,b and c are smooth or not, and in general semi linear partial differential equations
do not have smooth solutions. To give an idea of this difficulty, we would like to
recall a really simple example taken from |Cannarsa and Sinestrari (2004), which
explains how even relatively simple non linear differentiable equations may fail to
have smooth solutions. Let u : [-1,1] — R a smooth function verifying u(—1) =
u(1) =0 and (v/)? =1 in (—1,1). If such a u exists then one can find zg € (—1,1)
with u/(x) = 0, which contradicts the fact that (u/(x0))? = 1. So there is no solution
to the above problem. However one can easily check that the function u(x) = |z|—1
verifies the above equation everywhere except at x = 0. For many applications it
may be sufficient to know that the problem above has a solution, provided that
one gives a precise sense of what is a non-smooth solution of a differential problem,
or, in other word, provided that one relaxes the notion of classical solution. Other
examples of this type, issued in particular from stochastic optimization problems
(Pham), [2007), prove that the classical notion of solution of a differential equation
was too restrictive and not appropriate for a wide class of interesting differential
problems.

The general theory of viscosity solutions is a well adapted context in which one
can give a precise sense for a non-smooth solution of a differential equation. Espe-
cially in the case of stochastic control problems and related differential equations,
the notion of viscosity solutions allows to characterize in a unique way the value
function.

Nowadays the theory of viscosity solutions has been highly developed and many
references can be found in the literature. To our knowledge the notion of viscosity
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solution in the diffusion case has been introduced by |Lions| (1983). A complete
review of this theory has been done in |Crandall, Ishii, and Lions (1992) to sum
up ten years of intense research on the viscosity solutions theory applied to second
order semi linear partial differential equations. These ideas were afterwards adapted
to semi linear partial integro-differential equations, as for example PIDE (|5.45|)
(see Barles, Buckdahn, and Pardoux| (1997)); Pham| (1998); Jakobsen and Karlsen
(2005); Barles and Imbert| (2008) and references therein). Let us start with the
basic definition of viscosity solution for a second order parabolic PIDEs:

Definition 5.15. Let A C R" a possibly unbounded domain and T < co. Consider
the PIDE

(89: + F(t,w,v(w), Dv, D*v,v(.)) =0, (t,w) € [0,T) x A

v =1 on the parabolic boundary [0,T] x 0AU{T} x A

where F : [0,T) x AX R xR" x §" x Cg([O, T)x A) is a given functional, ¥ : A — R.
and Cg([O,T) x A) denotes the space of twice continuously differentiable functions
with polynomial growth at infinity with power p. A locally bounded map v is a
viscosity sub-solution (resp. super-solution) of the above PIDE if for any w € A
and any ¢ € C’;([O,T) x A) such that w is a local mazimizer of v* — ¢ (resp.
minimizer of vs — @) one has

88;0 + F(t, w, U*(w)v Dgo(w), D290(w)v7 30()) S 0, (sub—solution), U*(T7 ) = ¢*(T, )
855 . F(t,w,v*(w),Dcp(w),DQCP(w)U’SO(')) >0, (super-solution), v.(T,.)=1.(T,.)

where v* (resp vy ) is the upper (resp lower) semi-continuous envelope of v . A map
v 18 a viscosity solution if it is at the same time a super-solution and sub-solution
of the above PIDE.

Remark 5.16. We omitted to list some necessary assumptions on the functional
F. One can find them, for example, in |Jakobsen and Karlsen| (2006) or Barles
and Imbert (2008) when the non local component is a Lévy operator as B given in

definition [5.10.

It is clear at this point how the notion of viscosity solution relaxes the classical
definition of smooth solution for PIDEs: according to the above definition, one
only asks that the solution has to be locally bounded. Equivalent definitions of
viscosity solution can be stated in terms of the so called sub and superjet (see for
this (Crandall, Ishii, and Lions| (1992) where there is no non-local component, or
Pham)| (1998) when a non local component is allowed). Proving the existence of a
viscosity solution is a relatively simple task under mild conditions on the functional
F'. The main difficulties arise when one wants to prove its uniqueness: in many cases
this is done by proving a so called ”comparison theorem” or ”maximum principle”,
which allows us to compare a sub-solution and a super-solution on the entire domain.
In its general form this is stated as follows:

if v is a sub-solution and v’ is a super-solution with v* < v/ on the
parabolic boundary of [0,7] x A then

v* <ol on [0,T] x A
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This comparison result depends on the form of the functional F'. In the literature
a key tool to prove the above comparison theorem is given by the Jensen-Ishii
Lemma (Jensen) 1988; [Ishii, [1989) and its extension to more general cases (see for
example Jakobsen and Karlsen| (2006); [Pham|(1998); Barles and Imbert| (2008))). We
point out that, although general comparison principles are stated for many types of
functionals F', the uniqueness problem remains an open problem in many situations,
even when the non-local component is not allowed. We can say that the viscosity
approach shifts the difficulty of proving the existence of a solution (which was the
hard task in classical setting) to its uniqueness.

The viscosity solutions theory turns out to be well adapted to stochastic opti-
mization problems when one can prove a so called dynamic programming principle.
In the rest of the section we will present it for the problem . Since what
follows is not fundamental for our work, we will do it in the simple case where Z
does not depend on U. The principle can be stated as follows:

Dynamic programming principle: for any h > 0 and (¢, z,z) € [0,T) x R?

0 . 0 tu,z tau,z,x,0
v (t,z,x) = Heth;{(:t,z,x)E [1} (t +h, Z X )] (5.51)
where X1 (¢, z, z) is the set of admissible controls on the time window [t, ¢+ h]. To
prove the above principle one needs some a priori regularity on the value function v°
(or equivalently on the function a). For example, if we could prove that the function
a is continuous then holds true by using Proposition 3.2 in Pham|(1998). We
do not insist on this but we just focus on the fact that when the admissible strategies
are not bounded, as in our case, proving the dynamic programming principle is a
delicate task, in particular when the state variable process can jump.

Fix (t,z,x) and let ¢ be a smooth function with appropriate polynomial growth
such that

0= (UO - ¢>(t7 2, .’IJ) = sup (UO - w)(t/a Z/, .’IJ,)
[0,T]xR2

It follows

O < 3 f ]E [ (t h, Zt,z ’Xt,Z,.'E,e) _ t, ’ i|
= e m(te) U+ R 2, X Y(t, z, )

We can now apply It6’s formula and, by letting h — 0", we obtain
1 1
0> —0) — pud1p — 5028§¢ - (Gezﬂ@gw + 502(9€Z)28§@ZJ + 0%0e7 0% ) +
/ (¢(t7 Z+7,x+ 062(6’y - 1)) - ¢(t’ 2, .73‘) - (7821/} + 962(67 - 1))8$¢) ﬂ{y|§1}y(dy)>

for any # € R. From the fact that v° = 22a(t, z) we deduce that

0
= S(t.2) + Ap(t,2) - Be(t, 2) — inf {27Q(t,2) + 7°Gip(t,2)} <0
for any smooth ¢ verifying 0 = (a — ¢)(t, z) = sup(a — ¢)(t', 2’). Remark that since
© > a then

- 2
;rel]%{QTngo(t,z) + m°Gp(t,2)} > —o0
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It follows that the function a is a viscosity sub-solution of

da
— — 4 Aa — Ba — inf {27Qa + 7°Ga} =0
ot ﬂER{ Q g }
For the super-solution one has to take care of the fact that inf, g {27TQQO + 772590}
can take the value —oo: in fact the test function ¢ is bounded from above by a and
then we do not know whenever Gp(t, z) is strictly positive or not. We do not detail
it but it can be proved that a is a super-solution and then a viscosity solution of

0

max (_a + Aa — Ba — inf {277Qa + ﬂzga} , inf {27TQa + 7r2ga}> =0 (5.52)
ot meR TER

Remark that at this point we never used any strict elliptic condition on the

volatility coefficient of Z. This is one of the reasons to use the viscosity approach

when the coefficient o of the processes in (5.5) may be degenerate. We do not dis-

cuss here the uniqueness of the (viscosity) solution of (5.52)) since we will not use
this PIDE in the sequel.

We conclude this Section with the following remark: the viscosity solution approach
is a powerful tool to characterize the value function of a stochastic optimization
problem, provided that one can prove the dynamic programming principle (for the
existence) and a comparison principle (for the uniqueness). However finding the
optimal control remains a open problem: from we deduce that this optimal
control depends on the derivative of the value function which is not defined if the
value function is not differentiable.






Chapter 6

Smooth solutions: the
jump-diffusion case

The Chapter is organized as follows: we start by giving some regularity properties
of the differential operators introduced in Definition (Section . To prove
the regularity of the value function a, we introduce an iterative sequence (Paragraph
6.2.1), for which we first give some fundamental a priori properties (Paragraph
6.2.9), and then we prove its convergence to the function a in an appropriate Holder
space (Paragraph . We also compare our methods with two other ones, which
make use of, respectively, BSDEs theory and Sobolev spaces, that may be used in
some cases to prove that the function a is smooth. We conclude the Chapter with
Section where we prove that the value function of the quadratic hedge problem
s smooth.

Contents
[6.1 Holder regularity of the differential operators| . . . . . . 101
6.2 Smoothness and characterization of the function al . .. 106
6.2.1 'The approximation sequence| . . . . .. ... ... .... 106
6.2.2  Weak convergence and uniqueness| . . . . . . ... .. .. 107
6.2.3 Characterization of the functiona . . ... ... ... .. 111
624 Comments. . .. ... ... ... .. .. .. ... .. ... 115

6.1 Holder regularity of the differential operators

This chapter is devoted to the analysis of the PIDE ([5.45) when 0,5, > 0. We
will always assume that Assumptions hold true together with the following:

Assumption 6.1.
[C]-The coefficients. There exists some m > 0 such that for all t,t' € [0,T] and
u, 2,y € R we have

‘M(tvua Z) - M(t,au7 Z)‘ + ‘U(t/fu'vz) - U(tlauv Z)| < m’t - t/’
‘7(757 u, Z?:U) - ’7(t/>u7 2y y)| < mp(y)’t - t,‘

101
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and the same holds true for the coefficients of U (respectively P) where one uses
positive constants mY and pU (resp. 0 < m¥ and p¥).
[I]-Integrability condition There exists some § € (0,1) such that

/|y|<1 (72—6@) + (TP(y))z_é) v(dy) +/ (TU(y))Q_‘SVn(dy) < 400

ly|<1

[ND]-No degeneracy. There volatility functions are uniformly bounded from be-
low by some positive constant: 0 < Opmin < Omaz-

Recall that, according to Theorem [5.11] we need to prove that the following
PIDE

O:—%—FACL—BG—%[G], Q(T,U,Z):l (61)

has a unique smooth solution which also is strictly positive. We also recall the
functional spaces used throughout this chapter:

O CY24([0,T] x R3), the Hélder space of type 1, defined in Paragraph where
le0,3)\{1,2}.

O H([0,T] x R3), the Holder space of type 2, defined in Appendix [C| paragraph
where [ € [0, 3).

Remark that CY/24(]0, T] x R?) ¢ H'([0,T] x R?). In the rest of the chapter || 12,
denotes then the Holder norm relatively to the Holder space of type 1 (see definition
(C.3)), whereas [ [, 5 is relative to the Holder space of type 2 (see definition |C.7).

In this section we will study the operators defined in Definition and we
prove that they are Lipschitz continuous in their appropriate Holder space. This
regularity is needed is order to prove that PIDE (6.1]) has a unique smooth solution.

Lemma 6.2. Suppose that Assumptions [Cl,Il] and Assumptions —C hold
true and fix k € (0,1). Then

B,Q, G : Cr*LrH2(0 T) x R?) — C%/25([0, T] x R?)

Moreover there exist a positive constant M > 0 and two functions o,s : (0,1) — RT
such that for all e € (0,1), r € (0,1)

1900z + 1960 lejze < M (7 Ntll ot rs + € ol
1Bl e < M ((0(r) + € 75()) @lopagesn + € ) Il )
for all € CH2HLAH2([0, T) x R3).

Let now § € (0,1) given in Assumption [6.1-[I], which is now supposed to hold true:
there exists a positive constant M > 0 such that for all e,r € (0,1) and for all
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© € H>79([0,T] x R®) one has
196l + 196l < M Il 1
1B¢lloc < M (o) +<(r)e =) lpllasar + 50V I0ler)

The constant M does not depend on ¢, € or r. Furthermore o(r) — 0 when r — 0
whereas <(r) — +oo if T or TV are not integrable around zero, respectively, w.r.t.

v(dy) and v, (dy).
Proof.

From now on M > 0 denotes a positive constant which only depend on the market
parameters given in Assumptions but not on . It may also change from line to
line.

For the operator Q we can use the definition of fi given in Assumptions to
rewrite it in the following form

1 50p 0
QQO = <N + 70'2 + / (e'y —1-— ’71{\y|§1}) V(dy)) @+ o2 87 + Aoo P 8}?

0y 0
/ d9/ T—1) ( (tup+9'y z+9’y)+7P(’D(t,u,p-f—ﬁvp,z—k@’y)) v(dy)
ly|<1 0z Op

Hence it is straightforward to deduce

196 lejze <M (1000200 + 1Dell o) < M Nl iupsyjz e

and then we use Proposition to conclude

K/2,k — o K/24+1,k+2 (L)
190l j2e < M (7" Il +e o]l

For G we obtain

196 1ejz < M (7 Ntll o ra + € ol

From the above definition of Q it is straightforward to see that ||Qy| . <
M |l¢lly i and also |G|l < M [l < M el 5

We can start our analysis of B. We first write By := Ty + Jip where

0 Op
It(p = /IR <Q0(t, u,p+ /yPa Z+ 7) - @(ta u, p, Z) - (r}/Pa;: + 78 > ]]‘{|y|<1}> V(dy)

0
Jip = /R (@(t, u++Y,p,z) — ot u,p,z) - VUaiﬂ{wg}) vn(dy)

If we prove the result for Z and J then it also holds true for B by applying triangular
inequality. Since similar computations can be done for Z and J, we give details
only for J;. Define

= Y (y)* %, ™V (y)?v an r) = Y (y)v
o(r) = /| (W) valdy) + /|| (1)?vn(dy), and <(r) / (9)vn(dy)

r<[y|
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The integrability conditions stated in Assumptions [5.1}I1] yield that o(r) — 0
when 7 — 0 and ¢(r) — +oo if 7V is not integrable around zero.

We start with the estimations in the Hélder space of type 1. For any r € (0, 1)
we have

0/
Tip = / ao' / a6 / P2 1 w04V . 2yalidy)
y|<r a
dp Oy
do v t 0 - X1 W (d
e fan [ s (au< et 015.2) = S 1) ) ()
It follows that for some M > 0

1T ¢l < M (o(r) [ D¢l + () [1Dz¢ll )

Similarly we can prove that

(T, <M ( (HD ol + @%T) +(r) (IIstolloo + <sto>§g'f29T))
T2 < M (o) (D20l + (D252 ) + ) (1D2ll + (D) (552 )

By adding up the above estimations we obtain

1Tl /20 <M (00 1llezsn s + S 1Pl ey 2inn)

<M ((o(r) + €55 lelhyainnen + € 050 el

by applying Proposition[C.2] A similar result can be obtained for Zy with, of course,
some different functions p and ¢ involving the functions 7 and 7.

We can prove the estimations in the Holder space of type 2 by slightly modifying
the previous argument:

0
TJip = / d9/ < (t,u+67Y,p,z) — (’0> vn(dy)
y\<r Ou

0
/ d@/ < (t U+ 9’7 y Dy % ) 8g0]1{|y|<1}> Vn(dy)
<|y|<1 u

It follows
1-6
170l < M (or)(Dap) g2 +5(r) [ Daol

We conclude by applying Proposition so then

17¢lloe < M ((e0r) + )= lllysr + () llelloo)



Chapter 6. Smooth solutions: the jump-diffusion case 105

For the non linear operator ‘H we have the following

Lemma 6.3. Suppose that Assumptions [Cl, I1] hold true and fix B > 0. Then
H: HFP(0,T] x R?) — HP([0,T] x R?)
and there exists a positive constant M > 0 such that

1l gm < Mllollyypm
[H]e + 9] = Hgllloo < M 1911

for all v, € H'TB([0,T] x R?).
Suppose in addition that Assumptions C also holds true and fizx k € (0,1). Then
H o CFETERT2((0,T] x R3) — CF/25([0, T] x R?)
and there exists a positive constant M > 0 such that
||’H[90”|n/2,n <M ||<P”(n+1)/2,m+1
for all ¢ € CF/ZFLA+2([0,T] x R3).

Proof.
If we define H(q, g) := inf|;|<{2mq + 72g} then H[p| = H(Qyp, Gyp). From Lemma
[6.2] we obtain

HAlloo < M (1Q¢llos +119¢ll00) < M llell11 5,0

Let now w = (t,u,p, z) € [0,7] x R? and assume now 0 < H[p](w) — H[e](w'): it
follows

Hlp)(w) — Hlg)(w') < 21" (Qp(w) — Qp(w)) + (%) (Geo(w) — Gy (w'))

where 7* € [~II, ] is the minimizer for H[p](w'). A similar estimation can be
stated if H]p](w) — H[p](w") < 0. We deduce then

HIp) D, < M (20, + (610, ) <M (I¢lism + 19l 50)

by using the definition of Q and G. Together with the estimation for ||#H[y]|,, we
obtain [|H[¢lll5 g < el 45,

For the second estimation we use the concavity of H to obtain

H[Y] < Hlp+ ¢] — Hg] < sup {27Q¢ + n°Gyp}

|| <IT
so then

1Hle + 9] = Hgllloo <M (R0l + 119 Mlo0) < M ¥l 5

again from Lemma [6.2
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For the estimation in the Holder space of type 1 C*/2%([0, T] x R?) we have

1Moo + (HIPD ity = 1RO s < MU0l st < M1l 12y 100
whereas with the same type of computations we obtain
K/2 K/2 K/2
MDD <M (D02 + (DALY < MUl /2144

which concludes our proof.

g

6.2 Smoothness and characterization of the function a

6.2.1 The approximation sequence

In this section we will prove that PIDE (6.1]) has a unique, smooth and strictly
positive solution. First of all let us transform the PIDE as follows: for n > 0

0
_Wf*A@—B@—H[w] +n0 =0, @(T,u,z)=e" (6:2)
In particular, if ¢ is a solution of the above PIDE then e " y(t,u, 2) is a solution

of .

Let now & € (0,1), which we will determine later on, and fix o € C*/21A42([0, T x
R?). Consider the sequence (¢"), oy defined recursively by

¢’ = o

0
_ason—i-l_'_A(pn—i-l_'_n(pn—i-l — B(Pn+7‘[[ﬁ,0n] (63)

g0n+1(T, u, Z) — enT

This sequence is well defined in the Holder space C%/2+15+2(10, T] x R?): by re-
currence, if " € C*2TLA42([0,T] x R?) then by Lemmas and [6.3| we have
Bip" +Hy[p"] € C*/2%(]0, T] x R?) and we can apply Theorem 5.1 in [Ladyzenskaja
et al.| (1967), a classical result on second order parabolic PDE, to deduce that "1
is well defined in the Holder space C*/2t15+2([0, T] x R?) and

H(anrl HH/Q"FLH-"-Q < M <€77T + ”B(pn + H[(pn]HH/Z,fc) (64)

Furthermore we can write
Pt w) = e
T
b [ et [ o -t T .6) (B+H) (5, (6.5)
t R2
where w = (u,z) and ® is the fundamental solution of the linear parabolic PDE

(Friedman, 1964; Ladyzenskaja et al.,|1967)). Estimations on the derivative of ® are
also available:



Chapter 6. Smooth solutions: the jump-diffusion case 107

Lemma 6.4. There exist some positive constant mi, mo such that the following
estimations hold true:

i). For2r+s<2,s<t

242045

tHw (t7w787§)| < ml(t_ 8) 2 eXp | —mog—(—

t—s
ii). For2i+j =2
| DiD}, @ (t,w, 5,€) — DiD;,®(t,w', 5,€)]

., |2
< my (Jw—w'(t =) F 4w -t - 97 ) e (m“jEM
— S

for any a € (0,1), ¢ € [0,1] and /' € [0,q].
iii). For2i+j=1,2
| DiD;,®(t, w, 5,6) — DiDL,®(t',w,5,6)]

442i+j 2—2i—j+a

<m|t' —s|7 2 |t—t|7 2 exp(_m2>

Ifs<t' <t

A detailed proof of this Lemma can be found in |Ladyzenskaja et al. (1967), Ch. IV,
§13.

6.2.2 Weak convergence and uniqueness

Our aim now is to prove that the sequence defined in (6.3 converges in a (bigger)
Holder space of type 2. The method we will develop can also be used to prove that

PIDE (6.1) has at most one solution. The main result of this paragraph is the
following

Proposition 6.5. Let Assumptions hold true and § € (0,1) given in As-
sumptions [I] There exists a n* > 0 such that for any n > n* the sequence

(¢")n defined in (6.3)) verifies
™™ ="y = T [l" = @Ol 87
for some B € (0,1) which does not depend on n, ©° or p'. In particular o™ — ¢*
in H*=9([0, T] x R?), the Hoélder space of type 2, for some p* € H?>7([0,T] x R?).
Furthermore for any v € (0,1) there exists some positive constant M, which depends
on v,n and the other parameters given in Assumptions such that
’@*(t, U, Z) - w*(tlv u, Z)’ < Mv|t - t,|U’ fOT any t, t,a u, z

and
| D" (t,u,2) = D" (¢, u, 2)| < M|t —#[°72, for any t,t',u, z
where Do* = (Oyp*, 0,*) is the spatial gradient of @*.
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Proof.
Let us start by remarking that A"+ .= "+l — " verifies

gtN“ + A AT g AT = BT 4+ Hy[0"] — "]

A" =0

For sake of compactness let us call r(s,w) = (BA™ + H[p"] — H["1]) (s, w),
w := (u,z) € R?% according to (6.5) we can write

T
A = =t [ ST —t,w, T — déd
() = [0 [ (T 0T - s €0 )

Let us also recall the definition of the || ||,_s ;; norm:

1-6
1olla—sr = I0lloe + 1 Dwtlloe + (Du)l o)

We easily obtain ||A"+H| < My~tr|l and |[Dp A < M ||r||,, by using
Lemma [6.4}4). The last thing we need to estimate is

| DA™ (¢, w) — Dy A" (0|
= /tT e M=) /RQ |Dy®(T — t,w,T — 5,£) — DW®(T — t, ', s(t, )| r(s, £)déds
From Lemma [6.4i) we have
/RZ Du®(T — t,w, s — £,€) — Du®(T — t,ul,s — £,6)|r(s + £,6)dE (6.6
<l /RQ |Dy®(T — t,w,T — 5,&)| + | Dy®(T — t, ', T — s,&)| dé

<M |7l (s =)'/

and also

/ |qu>(T_t7w7T_31§) —Dw(I)(T—t,U)/,T—8,5)‘?”(8,(5)61{ (67)

<l o — wy/ / da\DQ (Tt + 6(w — '), T — 5,6)| dedo
<M 7]l Jw — w'|(s
Using the above estimation we obtain

|Duw®(T — t,w, 5,§) — Dy®(T — t,w', T — s5,&)| r(s,&)dE
2
<M |l [ = w'[0(s — 1) %"
so that finally
| Dy A" (t, w) — Dy A" (t, 0|
T
:/ e =) / |Dy®(T — t,w,T — 5,€) — Dy ®(T — t,w', T — 5,€)| r(s, §)déds
t R2

T
<M |irl|, o — w10 / (s — )~ @/2ds < M||r|l, Jw — o'
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or, equivalently <DwA"+1)SE;T) < M ||Ir||o- We can now add up the previous esti-
mations to deduce

1A |y g < MBA™ + A" = H™ ]
1Al = My~ [[BA™ + H[e"] = A" )|

[e.9]

Lemma |6.3| gives
182"y < M (o) + 6V =) 1A o4 + () A7)
whereas from Lemma [6.3] and Proposition we obtain
IPle™] - M < M 1AM g < M (7 A% 54+ 127
so then
187y gy < M (o) + €706 ) 1Ay g1 + €75 (r) A7)
1A < M0~ (o) + €756 ) 1A ly_s g + € s() 1471 )

Select €* and r* small enough such that 2M (o(r*) + (¢*)!~%¢(r*)) := B < 1. Re-
mark that we can do it since o(r) — 0 and M does not depend on 7 or e. Select
also

(€)"ts(r)
B

If we define an equivalent norm on H2~°([0,T] x R?) as follows

n*>2M

[ lo—smm = llomsm + 7l o

then for n > n* then we obtain HA”+1H2_M g < BIA" o5, g which implies

1Ay < B 10" = o
or equivalently

n+1

" ="y s < A+ [0 = Oy 5 B”

which in particular proves that (¢"), is a Cauchy sequence in H2>7([0,T] x R?)
and then converges to some ¢*. Remark that 5 does not depend on 7, whereas the
function ¢! does.

Let us prove the regularity of ¢* w.r.t. t. To simplify, assume that n = 0: from

(6.5) we get
| D™ (t,w) — D™ (', w)|

T
SHB@TL_'_HSOnHm/ / ‘DWQ(T_tawaT_Sag)_Dw(I)(T_tlvva_37€)’d£dS
t R2

t
+\|B¢”+H<p"||oo// |DW®(T — ¢/, w, T — s,£)| déds
t' JR2
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for ¢ < t. The operators B, H are continuous and since @™ — ¢*, we have

186" + He"lloo < M (14 6%llp_s.0)

Furthermore
t t
/ |Dy®(T — ', w,T — s,€)|déds < M | (s —t)"?ds < M|t —t'|'/?
tl RQ t/

again from Lemma [6.4}i). We deduce then
}Dwgo’"”“(t, w) — Dw<p"+1(t’, w)‘

T
<M (yt — |12 4 / / |Dw®(T — t,w, T — 5,§) — Dp®(T —t',w,T — s,&)| d§ds>
t JR?
The above integral can be estimated as in (6.6)—(6.7): we finally obtain
| D" (t, w) — Dy (', w)| < M (|t — |2 |t — t’\”/2)

for any 0 < v < 1. It follows then that D,,p" is Holder continuous w.r.t. ¢ so that
we let n — co we deduce

| Du™(t,w) = Dup™ (¢, w)| < Mt — /|7
We the same argument we can prove
"t w) — "t w)| < Mt —#|
and by taking the limit n — oo we obtain the same property for ¢*.

O

Remark 6.6. Proposition gives us a fundamental property of the sequences
defined in when n > n*. However this is not restrictive: if ¢" is a sequence
corresponding to some n < n* we can always transform it into @™ := exp((n*—n)t)p"
and then deduce all the properties for . With an abuse on language we will then
say that the above Lemma holds for every n > 0, where, of course, one has to modify
the constant which may change with 7.

Corollary 6.7. Let Assumptions |5. 1} . 0. 1| hold true. The PIDE ) has at most
one solution in the Hélder space C*2TLrH2(]0, T] x R?).

Proof.

Proving that the PIDE has a unique solution is equivalent to prove that PIDE
has a unique solution. Suppose then that ¢?, i = 1,2 are two solution of PIDE
(6.2). Consider then the sequences ™ where ¢%' = ¢’ for i = 1,2. By construction
it is clear that ¢™® = ¢* for all n. Let A" := ™! — p™2: with the same type of

computation given in the proof of Proposition it is possible to prove that

A"y s = @B ot =&,y

for some 7 big enough and 8 € (0,1). In particular A™ — 0 in H>79([0,T] x R?),
and since A" = ¢! — ¢? we conclude that ¢! = ¢2.
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l
We can let n — oo in (6.5)) to deduce, for n = 0,
T ~ ~
Pt =148 | [ (B M) (6,08 250 (63)
t
where ~ ~ ~ _ N
AZEE = e, O, Z809)dr 4 o(r, U2, 240 )}
) ) ) (6.9)
dutt = GV, Usdr + oY (r, UY)dB,

since the operators B and G are continuous in H2~°([0,T] x R?). We also have the
optimal 7 related to * in the right hand side of the above equality:

(6.10)

The regularity of ¢* shows that 7 is well defined and trivially bounded. Further-
more, from the definition of @ and G, we have that 7 essentially depends on ¢* and
its derivative w.r.t. z. In particular it is straightforward to deduce that 7 is Holder
continuous: more precisely, for any t,u,u’, z, 2/

|7(t,u,2) — 7(t, 0, 2)| < M (\U S N z’]1*5>

since ¢* € H279([0,T] x R?). Furthermore, by using the regularity condition w.r.t.
t given in Proposition we also have

|7t u,2) — 7 (' u, 2)| < Mt —t/|/?
for any t,t',u, z and any v € (0,1). The above Holder conditions implies that

# e cU=9/21=9(1p 7] x R?)

6.2.3 Characterization of the function a

We now have all the elements to prove that the PIDE (6.1) has a unique smooth
solution:

Theorem 6.8. Let Assumptions hold true. The PIDE (6.1) has a unique
and strictly positive solution a € CU=0)/2+1.2+(1=0)([0, T] x R?), where § € (0,1) is
given in Assumptions[6.1-[I]. Moreover

le™ —ally_s p < MB", n— o0
for some M >0 and 8 € (0,1).

Proof.

Let ¢* be the limit of the sequence @™ when 1 = 0, as stated in Proposition [6.5
and 7 given in which, as we know, belongs to C(1=9/21=9(]0, T] x R?). For
sake of clarity we summarize here the scheme of the proof:
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Step 1. We prove that ¢* is the unique viscosity solution of

*

Oy

o+ Ap* — Bp* —27Qu* — #2Gp* =0, ¢ (T,.)=1 (6.11)

Step 2. We prove that PIDE (6.11) has a unique smooth solution

Step 3. We deduce that p* € C(1=9)/2+1.2+(1=9) ([0, T'] x R?), it is strictly positive
and, from Theorem [5.11} we conclude that ¢* = a.

Step 1. From and the Markov property of the process (U . Z ) given in
we have

t+h N - - -
Pt =B | [ B4R (5000 20 ds g0+ 1T 25
t

In Proposition [6.5| we proved that ¢* Holder continuous w.r.t ¢ so that the right
hand side of the above equality is well defined. Remark that the above equality is
nothing but the dynamic programming principle. Let now (¢, u, z) € [0, T] x R? and
take Wy, Wy € C12([0, 7] x R?) such that

0=p*(t,u,z) — Vi(t,u,2) = t%z/nzc/(@* — W) (¢, 2

0=p"(t,u,2) — VUy(t,u,2) = min (" — Uo)(t' v, 2)
! u/ !

t7 320

It follows then
t+h N N ~ <4
Uy (t,u, 2) <E [/ (B+H) " (5,007, 2L ) ds + Wy (t+ 0,01, th,fﬂ
t
t+h _ 5 N .
Uo(t,u, 2,a) >E { / (B+H) " (5,08, 285 ) ds + Wy (t+ b, O}, fo,fﬂ
t

We can now apply It6’s formula to obtain

g g
—%—l—A\Pl—Bgo*—’Hcp*SO and —%—l—A\PQ—Bgo*—H@*ZO

and by definition of &

v

- aTl + AT — Byt — 270" — #2G¢* <0
v

- 6—5 + AT, — By* — 270" — #2G¢* > 0

According to Definition we deduce that ¢* is a viscosity solution of . We
do not detail it here but one can prove that ¢* is the unique viscosity solution of
the above PIDE. We refer to Barles et al. (1997) or [Pham (1998)) for uniqueness
results, which are stated in a more general context.
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Step 2. Remark that the PIDE is linear, so we can hope to prove that its
unique viscosity solution is a classical solution. For this, let n > 0 and consider
the map Z,, as follows: for ¢ € C1+(179)/2:24(1=9)([0, T| x R?), =, (¢)) denotes the
unique solution of

— azgiw) + AZ, (V) + 0, (¥) = By + 27 Q¢ + 72Gy) (6.12)

Ep()(T,.) = e

Since # € C(1=9/2179((0, T] x R?) and ¢ € C1+(179)/2.2+(1-9) ([0, T] x R?), we can
apply Lemma [6.2] to deduce that

Bip + 22 Qi + #2Gy € C1=0/2179([0, T] x R?)

Theorem 5.1 in |Ladyzenskaja et al| (1967) (as in paragraph [6.2.1) proves that =,
is well defined and maps CT+1-9)/2.240=9) ([0, T] x R?) into itself. Moreover there
exists some M > 0 not depending on 7 or ¥ such that

1En (W)l 1=y 241,24 (1—6) S M (enT + By +27Qy + frzg@bH(k(S)/z,(pa))

which proves that =, is well defined.

If we prove that =, is a contraction in C*T(179)/2:2+(1=9)([0, T] x R?) and * de-
notes its unique fixed point, then e~ (t,u, z) € C1+1=9)/22+(1=0)([0, T] x R?).
Moreover it satisfies the PIDE : by the uniqueness of the viscosity solution,
proved in Step 1, we deduce ¢*(t,u, 2) = e"Mp*(t,u, 2).

To prove that =, is a contraction we use the method introduced in Chapter III of
Bensoussan and Lions| (1984). Fix ¢y, 1y € C1H(1-9)/2.2+(1=9) ([0 T] x R?): by using
Lemma [6.2] and the regularity of 7, we have

HEn(wl) - En(d’l)”(1_,5)/24_1’24_(1_5) (6.13)
SM <}|8(¢1 - w2) + 27?9(% - 77/}2) + ﬁ2g(¢1 - w2)H(1_5)/27(1_5))
<M (o) + (V€ ) I =l asysnzvasy € OV i = i)

for some positive M which does not depend on 7 or 1, ¥s. Moreover, the Feynman-
Kac formula gives

T
E,(1) — Ey(t1) =E U e "1 (B4 27Q + #2G) (v1 — ) (s, Us, ZS)]
t
where the process (U, Z) is given in (6.9). It follows
120 (¥1) = En(¥1)ll (6.14)
<M~ (||B(1 — 2) + 28 Q01 — 2) + 772G (1 — )| )
<My (o) + ()Y o1 = Vil aosyornorams + € E ) lor = val..)
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Take now r* and €* small enough to verify
2M (o(r) + () ()’ ) < w

for some w € (0,1). Remark that we can do it since go(r) — 0 when r — 0 and

0 > 0. Select also

n> o ST
w

If we introduce the norm

on C1*(1=0)/2,2+(1=9) ([0, T] x R?), which is equivalent to || 114 (1-6) /2,24 (1-6)» then
from (6.13) and (6.14)) we obtain

1Eq (1) = En(@1)ll, 5 < @ llor = ¢ully 5

which proves that =, is a contraction. As we already said, this proves that ¢*
belongs to C1+(1-9)/2,2+(1=0)([0, T] x R?).

n = IHia=s)/2,2401—5) T 111 lloo

Step 3. The process
5 ~ t,u,z t,u,z ~
dXz,u,z,x — 7}3— X;ff727ze—Z57 deZS 7 X;f,u,z,m T

is well defined since 7 is bounded. If follows that the function
R 2
w(t,u,z,z) :=E {(Xélu’z’x> } (6.15)

is also well defined, continuous and w(t,u, z,x) = x2@(t,u, z) for some @. The
Markov property of the process (U, Z, X) gives

w(tousza) =B [w (14 0 U5 2235 X5

and, as before, it is not complicated to prove that ¢ is a viscosity solution of
99
ot

Again the uniqueness of the viscosity solution yields ¢* = ¢. In particular

+ Ap — By —27Q¢p — #2Gp =0, @(T,.)=1

2 % _ 2~ _ otz 0 _ 2
" (t,u,z) = 2°P(t,u, 2) = B | ( X} > v (t,u, z,x) = xa(t, u, 2)

From the above estimation and Lemma [5.3|we deduce e =T < a(t,u, 2) < ¢*(t, u, 2)
for all ¢, u, z.

To summarize, we proved that ¢* € C1(1-0)/2.240-9)([0, T] x R?), it is the
unique solution the PIDE and it is strictly positive: we can then apply Theorem
to deduce a = ¢* and characterize the optimal strategy of problem .
Finally we use Proposition to obtain that ¢™ — a in H>7%([0,T] x R?), which
concludes our proof.

where v° is the value function defined in (5.12)), since X is an admissible portfolio.

g
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6.2.4 Comments

Another method to prove that PIDE has a solution is provided by the
theory of backward stochastic differential equations with jumps (BSDEs). For a
complete review on different aspects of BSDEs see for example [El Karoui et al.
(1997); Rong (1997); [Royer| (2006)); |Crépey and Matoussi (2008). We do not go
deeper in details but we think it is interesting to see how this method works. We
just make a (short) digression which essentially uses the ideas developed in |Barles
et al.| (1997). They start from a semi linear PIDE

o+ Lo — f(t,x,Dp,Bp) =0, o(T,.)=g

where £ is the Dynkin operator associated to some (eventually discontinuous) pro-
cess X:

dX, = bx(X,)ds + ax (X,)dW, +/ Bx (X, e)P(de,ds)
E

for some Brownian motion W and some Poisson measure P with Lévy measure
A(de). B is a first-order non local operator:

By = /T ((t, + Bx (. €)) — o(t, )z, €)M(de)

They prove then that the (unique) solution ¢ of this non linear PIDE can be related
to the unique solution of a BSDE with jumps: (¢, x) := Ytt’x where (Y, X, a) is the
unique solution of

—dY® = f(t,z,YI®, 8L ol®) — SLeaw, — / ol (e) P(de, ds)
E
and where the ”driver” f has the particular form
(6.2, Y.8.0) = £(t.2. Y., [ ale)i(@Ade)

E

for some 4. Under classical assumptions for BSDEs they prove existence and regu-
larity for the solution ¢. In our context the process X is (U, Z) whereas the driver
f will be the non linear operator H :

f(t, (u,2),Y, %, «) ::ir;ff(w, (u,2),Y, S, a)
f(r,x,Y, %, a) =Y (2mji(t,u, z) + o°n? + n° /(6'7 — 1)%v(dy))

+X (270 (t,u, 2)) + / a(y) (2m(e” — 1)y <1y + (7 = 1)?)) v(dy)
R

Unfortunately they do not fulfill all the assumptions given in Barles et al. (1997)):

in particular the dynamics of the process X is not stationary so we cannot directly

apply their result. Also the comparison theorem cannot be directly applied since

the driver is not increasing in the o argument: this is due to the fact that we do

not control the sign of 7(¢,u, z).
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Another possibility would be to use the theory of weak solutions, i.e. to work in
(weighted) Sobolev spaces instead of Holder spaces. A complete review on the use
of Sobolev spaces in the resolution of PIDEs can be found in |Bensoussan and Lions
(1984])), Ch III, §1-§3. For example they prove that a wide class of semi linear PIDEs
has a unique solution in some appropriate weighted Sobolev space over the parabolic
domain [0,7] x R2. This method presents at the same time a great advantage and
a serious disadvantage compared to our method. Let us start by presenting its
advantage: in Bensoussan and Lions (1984)), the existence is obtained by proving
that ¥ — =, (V) is a contraction in the weighted Sobolev space W»LPA(([0, T] x R")
for n big enough, where =, (V) is the (unique) solution of

—0E, (V) + AZ, (V) + 95, (V) = (B+H)T

Let us assume, to simplify, that p = oo (Bensoussan and Lions| (1984), Ch III, §3,
Theorem 3.3), so we look at L°°-norms. To prove the contraction they only need an
estimation on ||B(¥1 — Wa)||, and ||H[¥1] — H[¥2]||, to ensure that the sequence
U, 11 = E,(V,) converges in this Sobolev space.

In our case things are more complicated: firstly the space

oo

2
p € C2([0,T] x R™), Y ) || DIgl|, < o0
=0 (4)

is not a Banach space: we cannot prove that the map Z,, is a contraction in this
space. In other words, having a control on HDQEn(\Ill — \IIQ)HOO is not enough to
ensure that the sequence V¥, = Z,(V,) converges in a classical sense. For this,
we need to have a control, for example, on (D*E, (¥ — \Ilg)>gT) for some 5 € (0,1).
As we have already done several times, we can use and find

D*E, (¥ — Uy)(t,w) — D, (¥ — Uy)(t,w')
T
= / e =) / (D*®(T — t,w, T — s,&) — D*®(T — t,w', T — s,€))r(s, £)dsdé
t R2

where r = (B+ H) (¥; — Usy). If we use the estimation given in Lemma |6.4] then
|D?Z,,(¥1 — Uy)(t, w) — D*E, (U1 — W) (¢, w')|

T
<M |r|l o, /t /RQ |D*®(T — t,w,T — 5,&) — D*®(T — t,w',T — 5,£)| dsd§

T
N/ (s — 1) P24

t

which of course is not finite. To make this term finite we need to exploit the
regularity of r in its arguments: contrary to Bensoussan and Lions| (1984), in our
case some Holder regularity on r is needed (Lemmas [6.2{6.3). The message coming
for this short digression is that the use of Holder spaces is more constraining if
compared to the use of Sobolev spaces.

On the other side the main difficulty when one uses Sobolev spaces is to find
good embeddings into some space of real and, possibly, smooth functions. In my
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knowledge embedding results are stated in bounded domains, which also verify the
so called cone condition (Adams and Fournier} 2009). Also it is not immediate to
find embeddings in the parabolic case: in Bensoussan and Lions| (1984) for example
the Sobolev space is defined as

W2LPA((0, T]XR") = {u e 17 ([0,7] —» W2rA®")) ‘gﬁj e1” ([0,7] - LM (")) }
for which direct embeddings are not available in my knowledge. We want to remark,
however, that the ideas developed by these authors are quite universal and can be
applied in different context, as we just did.

Before we conclude, we want to point out that, however, our model does not
fulfill the assumptions of Theorem 3.3 (Bensoussan and Lions, |1984) concerning the
regularity of the non local operator B: for these authors it has to be defined, in its
general form, as follows:

Bf = / (F@+y) — F(2) — (. Df) Ly ey) Mz, dy)

where M (z,dy) = co(z,y)m(dy) is an unbounded measure, for some measure m(dy)
and 0 < ¢y < 1. In our case this is not always true: for this we should be able to
invert the jump function ~ and rewrite B, for example, as

Bf = / (F@+1) - F(2) — (0 D) Lyjeny) v(r~ (@ 1) Dy~ (&, y)dy

This can be done if, for example, the Lévy measure has a density with respect to
the Lebesgue measure, which is not always the case.

We conclude the section with a technical result concerning the sequence defined in
, which will be used in Chapter @ For sake of simplicity we prove it under the
assumption that the coefficients of the process Z do not depend on the process U,
but it can be easily extended to the general case.

1-9)
Lemma 6.9. Let Assumptions E hold true and ¢} € o5 2+(1=9) (10, T x
R) be the sequence given in (6.3]). There exist a positive constant M > 0 depending
on n such that

n+1

sup |||, < M

neN ’

Proof.

Before we start the proof let us remark that ||¢" — all,_s z — 0, n — oo, which in
particular proves that

sup [|" [, g < M
neN ’
for some positive M. The proof will be completed if we can prove that sup,,cy HE)ZQ s HOO <

oo. Consider ¢}, the sequence corresponding to n = 0. To simplify the notations
we will omit the subscript. For any A > 0 we obtain

t+ A
) =N - [ (A= B — M) (5,2)ds
t
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or equivalently

4+

t+ A
A@"H(s, 2)ds = aanrl(t, z) — (p"Jrl(t + A, 2) +/ (Be™ + H[e"]) (s, 2)ds
¢ ¢

From the definition of A we get

1 t+A 262(,0n+1
_Z = A" Nl
- /t 0?5, 2)ds = A(3) (6.16)
where
t+A 88077/4’1
AW =) - A+ [ n (s)ds
t z
t+
+ (Be" + H[p"]) (s,2)ds

t
o t+A da t+A
e a(t,z) —a(t+ A z) + / ua(s, z)ds + / (Ba + Hlal) (s, z)ds
t t

so then supyqsup, [A"(A)/All < mlallyy s /2,24 1-s) for some positive con-
stant m. If sup,ey [|¢" [y g = oo then for any positive R > 0 we could find some
n € N and (t,2) € [0,T] € R such that, for example, 2¢"*1(t,z) > R (the same
argument stands in force is the second derivative is negative). In particular, the
continuity of 9%¢™*! proves that for some small \, we will have

t+A 2, n+1 AT
o2 < )\/ 8 (s,2)ds < =2 /5)\)

Since the above inequality trivially contradicts the fact that A"(A)/\ is uniformly
< M, for some posmve M. Obvi-
ously thls constant depends on n when one consider the sequence in ) for some
n > 0.

g

6.3 Smoothness and characterization of the function v/

According to Theorem we now need to prove that the PIDEs ((5.48)—([5.49))
have a unique smooth solution.

Theorem 6.10. Let Assumptz'onsn hold true and § € (0,1) given in Assump-
tions [ |. Assume also that f € He 2+ R3 . The value function vl defined in
admzts the decomposition given in .

vf(t, u,p, z,x) =a(t, u, z)a?2 + b(t, u,p, 2)x + c(t,u,p, 2)
Uf(Ta u,p, =z, 1’) :(f(uvpa Z) - $)2

where a € C(1=9/241.2+(1=0) ([0 T x R?) is the unique solution of so it does not
depend on f, and

b,ce 0(1_6)/2+1’2+(1_5)([0,T] % RS)
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are the unique solutions of the following linear parabolic PIDFEs

0= Ab—Bib— Qb BT, =-2f  (6.17)
. dc 1(Q:b)? 2
0=-— a + Atc - BtC + 1 gta C(T7 ) - f (618)

where 7 is defined in (5.47)).

Remark 6.11. The result also holds true if f € H2T%(R3), for some other 0 < k.
In this case one would have

b, = Cli//2+1,fi/+2([07T] % RB)
where k' = min(1 — 0, k).

Proof.

We first prove that PIDEs — have a unique solution and then we use
Theorem [5.14] to conclude.

We already know that the unique solution of PIDE in is the function a in
(5.13) and it belongs to the Holder space C'(1=9)/2+1.2+(1=9) (|0, T| x R?) (Theorem
6.8). Tt follows that 7 € C(1=9)/2(-9)([0,T] x R?) (n* is Lipschitz continuous in
the space variable (u, z)). We can then rewrite the PIDE into:

0= _gl; + Ab — Bb — W*Qb+77ba b(Tv ) - _2f€nT <619)

and use the contraction principle as in the proof of Theorem let =,(¢) be the
unique smooth solution of

0
= 572n(W) + AZy(¥) + 0=y (¥) = BY + 7" Q, on [0, T) x R?
Ey()(T,.) = —2fe™

where 1 € C(1=9)/2+1.2+(1=9) (|0, T] x R?). We skip the details, which are the same
as in the proof of Theorem but it is possible to select 7 big enough such that =,
is a contraction in the Holder space C(1=9)/2+12+1=0)([0 T x R3): its fixed point 1*
is then the unique solution of , or, equivalently, e~9)* is the unique solution
of . For the PIDE ([6.18) we can proceed in the same way to deduce that it
has a unique smooth solution in C(1=9)/2+12+1=0)([o T] x R3).

O

Theorem holds true for smooth payoff functions. When f € HY (R3) for some
B € (0,1], it is possible to find a sequence f, € C£°(R?), the space of infinitely
differentiable functions with bounded derivatives, such that:

). [fnllge < 21fllge and [[fll5. < liminf, || foll5.
ii). [[fn — fllgr. — 0, m — oo for any 5’ < 3

See for example Mikulevicius and Pragarauskas| (2009) for a complete proof. We
can then replace f with f,, and use the argument exposed in Chapter [ Section [5.4]
to control the error.






Chapter 7

Smooth solutions: the pure
jump case

The Chapter is organized as follows: in Section [7.1] we modify the model proposed
m by taking o = 0, and assume that Z is an infinite variation jump process.
We then recall the quadratic hedge problem and the pure investment problem, by
deriving the PIDE verified by the value function a (Paragraph . We study the
integro-differential operators associated to the model, by proving their continuity in
the appropriate Hélder space of type 2, (Paragraph . We finally introduce a
special sequence of smooth functions and we prove that they converge to the value
function a in an appropriate functional space, which allows us to characterize the
value function a and the pure investment optimal strategy, under a particular as-
sumption on the jump size function appearing in the dynamic of Z (Paragraph
. We then explain how to relax that particular assumption, and show that it
is not too restrictive as it may seem (Section . We finally study the quadratic
hedge problem by characterizing its value function and the optimal strategy (Section
@). We conclude the Chapter by studying the case when Z is a finite variation

pure jump process (Section .
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7.1 Infinite activity processes: the model

In Chapter |5 we introduced a R3-valued Markov process and the quadratic hedge
problem was stated in terms of the value functions a and vf. We also gave some
a priori estimates and properties, in particular for the function a, and we finally
deduced, with a verification argument, what type of PIDEs these functions have to
satisfy. Chapter [6] was devoted to a complete analytic study of these PIDEs in the
case of jump-diffusion processes, i.e. omin > 0. By using viscosity solution theory
and contraction principles in Holder spaces, we ended up with a complete charac-
terization of the quadratic hedge problem in terms of unique smooth solution of a
system of PIDEs. The fundamental Assumption o,,;, > 0 has been used in order
to apply a classical result of existence and uniqueness of smooth solutions for lin-
ear PDEs. Nevertheless, it is possible, under appropriate assumptions on the jump
activity of the Poisson random measure, to repeat those arguments, even under the
assumption ¢ = 0. This is the goal of this Chapter.

We propose a simplified model which allows us to focus on the main features of
the quadratic hedge problem in the pure jump case: for this we denote then

dzt* ==p (r, Zﬁ’“’z) dr + /R’y <T, z”, y) J (dydr), Z\* = z (7.1)
for t € [0,T) and z € R where, as usual, the stock price process S is defined to be

S = exp(Z). In the rest of Chapter we will always assume that Assumptions
(with, of course, oymin = Omaz = 0) hold true together with:

Assumption 7.1.

[L]-The Lévy measure. The Lévy measure v(dy) verifies

v(dy) = v(y)dy where v(y) = g(y)|y| O+

for some a € (1,2), where g is a measurable function verifying 0 < my < g(y) <
My, Vy € R, for some positive constants mg, My. We also assume that

lim g(y) =g(07) and lim g(y) = g(0%) with g(07),g(07) > 0.
y—0— y—0t

[I]-Integrability condition. The function T defined in Assumptions verifies,
for some yo € (0,1) and some m > 0

sup @gm

0<]y|<yo |yl

[ND]- No degeneracy. The function I" in (5.7) verifies

| = /R P (y)w(dy) > 0
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It is well known that there exists a unique semimartingale Z which solves the SDE
defined above. Let us comment on these Assumptions, especially in view of As-
sumptions The main difference here is that the process Z is only driven by a
Poisson random measure, whose intensity measure has a precise structure. This is
done since, as we will see, the non local linear operator arising from this process can
be approximated, in a special sense, by the integro-differential operator associated
to an a-stable Lévy process, and it is well known that this process has an infinitely
differentiable density. We will use this density, and estimations on its derivatives,
to prove that, in this case, non local linear PDEs do have a unique smooth solution.
This essentially is the equivalent of the results we took from Ladyzenskaja et al.
(1967).

The other main difference with the model in is the fact that here we do
not consider the processes U and P. Adding the process U in this model could
be possible if one assumes some more regularity on the v function, but it would
have increased the technical complexity and decreased the clarity of our discussion.
More interesting, instead, is the case of the process P: in the model , the non-
degenerate volatility matrix [o;0V; o] was the key property to deduce that linear
parabolic PIDEs have smooth solutions. In this context, this role is played by the
jump part: if we add the process P as in

AP = p¥ (r, PY"P) dr + /

o (r, Pff’,y) J (dydr), P/ =p
R

then the jump matrix becomes

( 1t z,y) 0 )

Y(t,p,y) 0

which is clearly degenerate: there will be no hope to prove regularity for the value
function v/ in this case. On the other side, one could take

dPLP = P (r, PLP) dr + / ol (Tv P:fv?J) N (dydr)

R
where N is Poisson random measure independent from J, with intensity v, (dy) =
gn(y)|y|~ 0+ in this case the jump matrix will be

< V(t’g v oal (t(,)p, y) )

which is non degenerate under appropriate assumptions on the function v*. The
independence of J and N implies that one can easily repeat the argument we will
expose in this chapter when considering the quadratic hedge problem in for
the couple (P, Z). Another choice would be to consider

dpPtP .= P (T, Pf’“’p) dr—i—/

RVP o (r, pr y) J (dydr)+ /R oaila (7’, pr y) N (dydr)

This case can also be treated under some more restrictive assumptions on the func-
tions v/ and 4", This shows why we prefer to consider only the process Z and
privilege the clarity of our exposition.
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Remark 7.2. The no degeneracy condition in this context is given on the jump
function v. Remark that Assumptions [ND] is equivalent to the following:

There exists a Borel set with 0 < v(B) < 400 such that

infB |v(t, z,y)| > € >0 for some € > 0.

t,z,ye

If this condition is true then trivially

/F(y)V(dy) > /BF(y)V(dy) > (e ~1)°v(B) >0

If this condition was not true then for any Borel set B with 0 < v(B) < 400 one has
inf; . yer |Y(t, 2,¥)| = 0 and then one can find (t,, zn, yn) such that ¥(tn, 2n, yn) — 0,
n — oo. In particular

t 2 t 2
inf I'(y) = inf <ev( 2Y) 1) < lim <67( nsZnsYn) _ 1) -0
yeB t,z,y€B n—o0

which implies [T (y)v(dy) = 0.

It is clear then why we called it "no degeneracy” condition as in Assumptions

(where, we recall, we assumed opin > 0).

The quadratic hedge problem in this context becomes

2
. SR P 0, 0,2,z,0
QH : minimize E [(f (ZTZ) - X707 ) ]
over § € X(0,z,x)

where X is given in ((5.9) and the set of admissible strategies is given in ((5.10). The
dynamic version of it is defined as:

o (tsa) = inf P {( () - X;ZW)?] (7.2)
v/ (T7 z,a;) = (f (Z) - .T)2

From (5.41]) we know that
ol (t,z,2) = alt, 2)a® + b(t, 2)z + c(t, 2) (7.3)

(1+/tTerdS$vZ)2] = z2a(t, 2) (7.4)
<1+/tT9Tde:’Z>2] (7.5)

We already know many properties of the pure investment problem above (Lemma

. Furthermore Assumptions allow us to use Lemma to obtain

201l + D711,
Tl

and when f = 0:

O (t,z,z) ;=2 inf R
0eX (t,z,1)

a(t,z):= inf E

e CT=t <q(t,2) <1 where C: (7.6)
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whereas Theorem gives us the existence of T* > 0 and K@

lip > 0 such that if
T < T* then

la(t,2") —a(t,z)| < Kjiplz — 2| (7.7)

with T* — 400 when K, — 0. Remark that these results hold true without
making any specific assumption on the form of the Lévy measure v(dy).

7.2 The pure investment problem: HJB characteriza-
tion

7.2.1 Formal derivation of the PIDE

From now on we will work with the Holder spaces of type 2: HH([0,T] x R)
for some § € [0,1] (which of course is not the one of Assumptions [6.1}I]) to be
determined. The Holder space of type 2 is defined in Appendix [C] paragraph [C.3]
Remark that in Chapter [6] we proved that a belongs to some Holder space of type
1: C*/241542((0,T) x R?) (here k = 1 — §, 6 now given in Assumptions [I])7 S0
in particular, twice continuously differentiable w.r.t. the space variable, and once
w.r.t. the time variable.

In this case, we can restrict ourselves to the Holder space of type 2 since, in the
pure jump case, [t6’s formula can be used if a € C*!(R) with Hélder condition on
0a (see Theorem Appendix@, so the natural choice is to look at solution in a
less constraining functional space, i.e. a € H*T([0,T] x R) and a(., z) € C* ([0,T])
for all z € R.

For sake of clarity, we recall the integro-differential operators associated to the
process Z in the pure jump case:

Definition 7.3. Let 6 € (0,1]. For a real valued function o € H*T([0,T] x R) we
denote

Aplt,2) = n(t,2) 2, 2)
Oy
Bo(t.2)i= [ ((ttz 4200 200) — 9(6.2) 26200 G Ly ) via)
R
QSO(t, Z) = ﬂ(ta Z)(p(ta Z) + / (e'y(t,z,y) - 1) (@(ta z+ ’Y(t, 2, y)) - Qp(ta Z)]]-{|y\§1}) V(dy)
R

Gio(t,) 1= [ (09 1) pltz 4 5(0 2l

Remark that B is well defined in the Hélder space H*T([0,7] x R). According to
Theorem [5.11], we need to prove that the PIDE

0
0=— a—j — Aa — Ba — Hlal, a(T,u,z) =1 (7.8)
has a unique solution in H*+9([0,T] x R), which also is strictly positive and con-
tinuously differentiable w.r.t. ¢, where

H[a] := inf {27Qa+ n*Ga} (7.9)
|| <IT
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and II is defined in [5.44]

7.3 Operators regularity

In order to prove that the PIDE (|7.8)) has a unique smooth solution, we need to
study the regularity of the operators introduced in Definition [7.3

Lemma 7.4. Suppose that Assumptions and Assumptions [I] hold true.
Then there exists a positive constant M > 0 such that for all € € (0,1)

i) —
A6l + 1Glloq + 120000 <M (€ 0 llrs + €7 9]0

for all € H'*9([0,T] x R), and

APl 1 + 190511 + 1905 <M (2 Nl + €10 gl )

for all o € H*9(]0,T) x R). The constant M does not depend on € or .

Proof.
Definition implies that ||Ag| . < M |¢|l; gy and ||Ge|l, < M |l¢| ., whereas
Q0| <M ]gOHLH. It follows

) —
A6l + 160 log + 1Q0lloe < Il zr < M (€ Nellyyszr + € ol
by using Proposition [C.3

Still from Deﬁnitionwe obtain HQQOH(;,H <M H(,O”(;’H, ||A<,0H5,H <M ||g0H1+5’H
and ||Q<P||5,H <M ||<,0H1+5,H. It follows

5 (146
[Aels. i + 1G5 1 +11Q0llsir < Mol 50 <M (fa [ollatsm +e€ (1+3) ”SOHOO)
]

For the operator H we have

Lemma 7.5. Suppose that Assumptions and Assumptions [I] hold true.
Then
H : HOT([0,T] x R) — H([0,T] x R)

There exists a positive constant M > 0 such that for all e € (0,1)

1l + 6] = Hlelloo < Ml < M (€ 16l g+ €7 0l )

for all g, € H'O([0,T] x R). The constant M does not depend on € or ¢, ).

Proof.
Proving that H[p] € H?([0,T] x R) is straightforward.
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As in Lemma, [6.3] we use the concavity of the function H to get

HY] < Hlp + ] — Hp] < sup (2rQyp + 7°G)

|m|<IT

for which we deduce

17l +v] = Ml < (M (1Q0 + 198 116) < M (€ [llyy0 + ¢ ]

by Lemma [7.4]
Il

Our next goal it to prove that it is possible to replace the operator B with the
integro-differential operator associated to an a-stable Lévy process, if one assumes
some more regularity of the jump function + around y = 0. We start with the
following assumption:

Assumption 7.6. There exist two positive constants m1, mo such that

H1 For any t,z the mapping y — ~(t,z,y) is twice continuously differentiable
around zero and

0<mi < inf |y (t 2,9)|and sup |yt 2, 9)| < me
t,2,ly|<yo t,2,|y|<yo

for some yo > 0. It is not restrictive to assume that yo is the same as in
Assumptions . In particular v is invertible in (—yo,yo): we call y~1(t, z,y)
1ts inverse.

H2 Forallt,z € [0,T) x R ~,(t,2,0) =1
H3 The function v, is Lipschitz continuous in the variable z:

sup |y (t, 2 + h,y) — (L, 2, y)| < malhl
t,27|y|Syo

H4 For all y,y' € (—yo,0) U (0,y0) with yy' >0

l9(y) — 9y < maly — /|
i.e. the function g is Lipschitz continuous away from zero.

Let us comment on the fact that, among the above Assumptions, [H2] may seem
to be very restrictive and many models do not verify it. However in Section we
will show how to avoid it.

Lemma 7.7. . Let Assumptions hold true together with Assumptions 7.6,
For any (t,z) € [0,T] x R let

v(v 1t 2,9))
Yty (E 2, y),y)
where 0 < |y| < yo. There exists then a positive M > 0 such that for any t,z

v(t, z,y) = (7.10)

o(t, 2+ h,y) = v(t, 2, y)| <M |A|([9(t, 2,9)] + |2(E, 2 + b, y)]) (7.11)
2t 2,y) —v(y)| <M ([v(y)| + [2(t, 2, 9)]) [y] (7.12)
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Proof.

Let us start by remarking that the density o is well defined on {|y| < yo} since the
function  is invertible. Let M be a positive constant which may change from line to
line and, in order to simplify the exposition, we omit the dependence in the variable

t. For we can write
vzt hy) - vz ) ‘ <
YOz +hy) v (zy) | T

vy (v (2,9))
y(Y 1z + h,y))

1—

g(v (z,9)) ‘71(2 + h,y)
gy z+hy) | vz )

el RACERN ]

1+o¢‘

The function 7, is bounded from below (Assumptions [7.6[H1]) and Lipschitz con-
tinuous w.r.t. z (Assumptions [7.6}[H3]). It follows then

'1_ (277 (2, ) ‘
Yy(z +h, vz + h,y))
1 - - ~ _
Sa(hy(wrhm "+ hy) =+ hy )|+ Wz +hy T (z0) — (7 (z)])
1 ~ _
<— | sup |tz )y =+ hy) = Nz y) ||+ malh| | < M|
M1\ ¢z, ly|<yo
since
oyt -1

<M (7.13)

'E)Z(t,z,y)’ = ‘E;Z(t,z,fyl(t,z,y)) (g;(t,zml(tazyyw

For the other term we first write

(G C2¥)) ’7‘1(2“ +hy) [T
gy =+ hy) | vz y)
- ‘1 9 M=) ‘ ‘ 9 (zv)) ‘ - '7‘1(2 +hy) [
- gy e+ hy)) | gtz + hy)) 7 1(z,9)

From (7.13) we have |y~ !'(z + h,y) — v '(z,y)| < K~'|h| and since g is bounded
from above and below we deduce

1+
1 —

<lg(v 'z + hyy) — g(v (=2 w))| + M|h]

9(v (z,)) ‘7‘1(2 +h,y)
gy z+hy) | vz )

Remark that |[y~!(z,y)| > 0: if this is not true then for some 3 € (0,y) (or (y,0) if
y < 0) one would have 9, '(t, z,) = 0 which contradicts the Assumption [Hl]
From the Lipschitz condition on g away from zero (Assumption [7.6}[H4]) we obtain

14+«

1—

9 '(29)) "Y‘l(”h’y) < M|h) (7.14)

gy z+hy) | vz )




Chapter 7. Smooth solutions: the pure jump case 129

so then

v(y Mz +hy) (=)
V(Y Mz +hy) (= y)

\ < M| (152, 9)] + |7z + b))

For (7.12) we write

vy (=)
() (y"

1 14+«

Yy (2,7 (2, y

L) ‘7‘1(27?4)

g(v(z,9)) y

<)l ]i - 5|+

Assumptions H2 guarantees that v,(z,0) =1 for all z: it follows then

1 1
b= <— |z, (2, 9) — Yy (2,0
‘ ’Yy(za’Y_l(Z,y))‘ m1 | y( ( )) y( )‘
1 —
S—— sup "Yyy(tvzay)”’y 1(z,y)‘
M1 ¢,z Jy|<yo

1 _ _
=— sup |yt 29| v zy) — 7 (2, 0)

M1 ¢ 2y <yo
|y 1

<= sup |yt 2, ) - < Mly|
M1 ¢2,ly|<yo v ’ mftvz,\yléyo vy (25 y Yz, y))l

since 771(2,0) = 0. For the second term we have

) R O ] )

! g('y‘l(z,y))‘ Yy = ‘1 g(v (2 y))
9(y) ey T

+‘9(71(z,y))‘ ! ‘ y

We can expand v~ !(z,y) around y = 0:

~1(, . 1 _3/72 ! 'Yyy(zaey)
T EY) = Y 2/0 (= 0 2%

ans since 7y,(2,0) = 1 we deduce |’y_1(z,y) —y| < M|y|?. The same argument in

(7.14) allows us to deduce

9(y) e

g(v 1z y)) b

—1
v Nz y
‘1— ‘(y) <Mly| + o(y)

K

from which we conclude

v(y 1 (z,9))
(12 9))

- V(y)’ < M ([v(y)l + [2(z,9)]) (Jy| + o(y))
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g

For (¢,z) € [0,T) x R we introduce the following:
_ dp
Bip(z) 1= | \wltsz+y) —elt:2) —y52(2) Lyi<ry | vidy) (7.15)

Brole) = [ (e +0) = plt.9) =50 (0 M) ) oy (710

where

] 9(0%) 9(0”7)
1% t(y) = W:ﬂ.{o<y} + W:ﬂ.{y<0} (717)

Both are integro-differential operators associated to Lévy processes, the second one,
in particular, to some a-stable Lévy process. Our goal now is to prove that B — B
has a nice behavior in the Holder space H**([0,T] x R), and this will allow us to
replace the operator B in the PIDE with Bst:

_Oa
ot

Proposition 7.8. Suppose that Assumptions hold true together with As-
sumptions and let 0 € (0,1]. There exists a positive constant M > 0 such that
for any € € (0,1) and any r € (0,yo) one has

—Ba=Aa+ (B—B*)a+Ha], a(T,z)=1

18— Bl < M (67 + M=) ol + = Il )
and
|(B = B)el|s; <M ((7‘2’“ +r0 emin(afa’é)TkOé) 1ol qps,pr + € HFOr10 H‘PHOO)

for any ¢ € H*T([0,T] x R). The constant M does not depend on ¢, € or r.

Proof.

Let r € (0,y0) and split the operator B = fly|<7“ St f|y|>T. In the first integral one
has |y| < r < yo so we can invert the function 7 since vy(2,y) # 0: the change the
variable allows us to rewrite B as follows:

0 _
Bott.2) o= [ (wltz ) - ple.2) 52002 ) ity
ly|<r 0z
Dy
=+ 90(7; Z+ ’Y(R 2, y)) - 90(t7 Z) - 7(757 2, y)i(tv Z)]l{|y|§1} V(dy)
lyl>r 0z
where 7 is given in (7.10)). We obtain then (B; — By)p := Fl¢ + F£p where

Flot) = [

ly|<r

(1022 ) = 00t 2) = ¥ 5206.2)) (01t 220) — )

0
Foi= [ (othz 4~z )~ (- 9 G20 Ny ) o)
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It follows

|Floll, < Mlelyy sup / lyl|o(t, z,y) — v(y)| dy
t<T,z€R J |y|<r

1 720|| ., < Mllell, 5 (1 +/ | |<1(T(y) + Iy\)V(dy)> <M |lplly gyt
r<|y|l<

By using ([7.12) we get

[Frell o < Mllelly 5 sup / v (19t 2,9)| + [v(y)]) dy < Mlelly g2
t<T,zeR J|y|<r

and then B
|8~ Byell . < M (~* lgllssm + I el i)

We finally use Proposition to obtain
_ B o I
168 = Byg|l, < M (2= + =) lpllygsm + €I~ lelc)
and this proves the first inequality.

For the second inequality, we can use the above estimation on the L°°—norm:

18— Byoll . <M (62 + 1) el s+ <l el

<M (274 ) ellaa + ¢ I llell)  (718)

We now need to estimate ((B— B)gp}i%T. For the finite variation part it is straight-
forward to deduce

| F20(z + h) = F2o(2)| < MIBLT = ol
Again from Proposition we obtain
1) — — _ _
(Foo) < M (7 gllagm +< T ell,)  (7.09)
For the infinite variation part, since

z

- L 70 Oy .
Flo(z) -—/yl<ry/o (az(t,erGy) ~ 3 (t,Z)) do (v(t,z,y) —v(y)) dy
we have

1
Flro(t,z +h) — Flo(t, 2)| < do v(t,z,y) — v
[Ptz + h) — Flo(t,2)| < /O /ylgwu (t, 2, 5) — v(v)

dp Oy Oy Oy
Yo Oy N -
+ |y —(t,z+h+0y)— ——(t,z+ h)|dO|D(t,z+ h,y) — U(t, z,y)| dOdy
|y‘§7“ 0 82’ 82
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Since
Iy i Dy D
‘ 3 (t,z+ h+ 0y) o (t,z + 0y) i (t,z+h) o (t, 2)
Pl s 121201
<
@l qps 10120 y|otot
we deduce
e i e i 5 la—1
s _Zr _ _Zr <
Gt ) = S22+ 09) = S04 1) = G002 < s
and then

| Fro(z + h) = Fro(2)] <M [|@]l o5 \h\‘S/ ly|* [(t, 2,y) —v(y)| dy

ly|<r

Mgl /| 5 =+ ) =5t 5 ) dy
yir

Lemma [7.7] yields
1
(Flo) oy <M @larsn
Together with (7.18)) and ([7.19)) we obtain

|(B—B)y

5.H <M ((7"2_0‘ +r0 4 emin(a_(s’&)rl_a> H‘P”aJr(S,H + e (1H0)pl-a HSoHoo)

0

Corollary 7.9. Suppose that Assumptions hold true together with Assump-
tions . There exists a positive constant M > 0 such that for any € € (0,1) and
any r € (0,y0) one has

68— Bl < A (62 + =) gl + <l Dol
and
H(B — BSt)goH(;’H <M ((7“2_0‘ +70 4 emin(a_é’d)rl_a) H%D||a+6,H + ¢ (H0)yl-a ||<P||oo>
for any ¢ € H*([0,T] x R), where B is given in . The constant M does
not depend on @, € orr.

Proof.
We can easily estimate the difference B — B*:

_ oo - *
1B - B¢, < H/O+ <<p(t, 2+y) — et 2) - y%j(t, Z)ﬂ{|y|s1}) Wdy

HOO

+

—00

0~ . —
[ (ot -t -y 1) W@H
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Remark that

l9(y) — g(0) [+ 1g(y) — g(07)] < My| if 0 <[y <o

from the definition of g(07), g(0™) given in Assumptions|7.1|and the Lipschitz con-
tinuity of g away from 0 (Assumptions [7.6}[H4]). We can use the same arguments
of the proof of Proposition [7.8] to deduce

1B = BYell o < M (27 + E1r' =) llps e+ I~ o)

Since ||(B— B*)¢|| . < ||(B—B)el|| +]|(B—B*)¢||_., the result follows from the
above estimation and Proposition In a similar way we can prove

H(B — BSt)tpH(;H <M ((7"2_0‘ +70 4+ Emin(a—ﬁ,é)rl—a> ||<P”a+5,H + ¢ (H0)pla ||90Hoo>

O

7.4 Smoothness and characterization of the function a

7.4.1 The approximating sequence and its main properties

As in Section we will build a sequence in the Holder space H*H([0, T] x R)
which converges to the unique solution of (7.8]). We first recall a basic result on
linear PIDE with constant coeflicients:

Theorem 7.10. Let ¢» € H*([0,T] x R) for some A € (0,1], f € HX(R) and
consider the following PIDE

—0pp — Bft<P =1, SO(T7 ) =f

where B is given in (7.16)). There exists a unique solution of the above PIDE in
the Hélder space H* ([0, T] x R) which also is differentiable w.r.t. t. Furthermore

1 lasnsr <M (18050 + 1 asre)

for some constant M > 0 which does not depend on ¢ and

lo(t) = o5, Mo snm < M=) (el + 1 e
forall0<s<t<T.

This result is stated in Mikulevicius and Pragarauskas (2009) (Lemma 7 and
17) or [Mikulevicius and Pragarauskas (2011) (Lemma 8) when f = 0, since the
operator B fulfills the assumptions of these Lemmas. When f # 0 the result can
be adapted by means of the Feynman-Kac formula and the density of an a-stable
process (See Appendix . This is the equivalent of Theorem 5.1 in [Ladyzenskaja,
et al. (1967)), in the case of pure jump processes. By using the estimates on this
density it is possible to relax the assumption f € H2**(R) and consider f € H)(R).
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For 1 > 0 let us consider the PIDE

_8790 _ Bst

ot o +ne=Hpl+ (B—B")p+ Ap, o(T,z) =" (7.20)

If ¢ is the unique solution of the above PIDE then a(t, z) := e " ¢(t, z) is the unique
solution of ([7.8). As in paragraph we fix pg € H*H9([0,T] x R) and consider
the sequence

©° = o

— 5" = B et = (B = B + Hlp"] + Ag” (7.21)
P, 2) = e

This sequence is well defined in the Holder space H*T([0,T] x R): by recurrence,
if " € H*+9(]0,T] x R) then by Lemmas and Corollary (7.9| we have r" :=
(B — B*)™ + H[p"] + Ap™ € H*([0,T] x R). Theorem gives then that " +!
belongs to H*+([0,T] x R) and verifies

[ Mg < M (T + (BB + 1+ A) ¢"],,)  (722)

for some M > 0 which does not depend on 7. Remark also that ¢™ are all differen-
tiable w.r.t. t. The Feynman-Kac formula also gives a probabilistic interpretation
of the above linear PIDE

T
"t z) =e™ +E [ / e (B = B + H + A) ¢"(s, Z;’Z)ds} (7.23)
t

where

zZbs ::z—i-/ /yjo‘(dydr)
t JR

is the Lévy process associated to the integro-differential operator B%, i.e. J% is a
Poisson random measure whose intensity measure is given in . Although the
functions @™ may fail to be twice differentiable, the Feynman-Kac formula holds
true: this is a direct consequence of the Itd’s formula for pure jump processes (see
Corollary Appendix @[)
At this point it is clear why we decided to replace the operator B with the Lévy
gradient B%': such Lévy processes have an infinitely differentiable density and a
priori estimations on this density are available (see Appendix .

We will now give the equivalent of Proposition and Corollary in the pure
jump case.

Proposition 7.11. Let Assumptions[5.1] hold true together with Assumptions
[7.6. If 0 < 6 < a — 1 then there exists a n* > 0 such that for any n > n* the
sequence (¢™)y, defined in ((7.21) verifies

n+1

" ="y ys < A+ 0! = Ol 50 B"
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for some B € (0,1) which does not depend on n, " or '. In particular o — ¢* €
H't9([0,T) x R). Furthermore

sup [l¢" ||y 15,1 < ¢(n)
neN

where c(n) is a positive constant depending on n and ¢°. For any v € (0,1) there
exists some positive constant M, > 0 such that

sup [p*(t,2) — % (5, 2)| < Myt — 5[/

z€R
Proof.
The proof is really similar to the one we gave for Proposition [6.5] even more simple
since the definition of Holder norm of type 2 is less constraining: if A"+ .= o+l —
@™ then

B ;Anﬂ — BAM L gAML = (B = B + A) A+ H[p"] - H]e™ Y

AN T, 2) =0

Let now r(t,z) := (((B — B*) + A) A" + H[p"] — H["]) (¢, 2) so that

A"t 2) = /OT_t e_”S/Rr(s +t,&)ms(§ — z)d€ds

where my is the probability density of Z?’Z, for which estimations are given in
Lemma Using this Lemma it is straightforward to deduce HA”“HOO < Mn~tr|

and
T—t

DA™Y < Ml /0 s~Vags

and the integral in the right-hand side is finite since & > 1. We only need to estimate

n+14(9)
(D, A" >z,QT'

T—t
(DZA"+1>£‘?22T <M|r|, sup / / |D,ms(§ — 2z —h) — Dyms(€ — 2)| déds
t,2,0<[h|<1 0 R

From Lemma [E.1] we obtain

/ ID.ms(€ — 2 — h) — Dumy(€ — 2)|dé <Ms™a
R

/ Dol — = — B) — Dams(é — 2)| dé <M|h| /1 d@/ D2y (€ — = — Oh)de < |h|s—2
R 0 R

so then
146

/ IDumns(€ — 2 — h) — Damg(€ — 2)|de <M|hPs~ % s~ 5" = M|h[s~ %"
R

We can use this estimation to obtain

146

T—t
(D, A" < A || s ds
Qr 0 0

2,
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where the integral in the right hand side is finite since § < a — 1: we can conclude
HA”“HHSH < M ||7|| ., or, equivalently

o0

A7y < M (B = B +-4) &7 + 3l = g
87 < M (5 - B+ A) 57+ ] = |

o
From Lemmas and Corollary [7.9 we obtain
k) —
JAAG g <M (1871 p5 50 + €L 1",
e = #le" | <M (1A ypsm + € 1870)
18— B A, <M (272 + ) Ay g + € A7)
which implies
HAn+1H27H < M (( + 657“1 a) HAnH1+§,H + 6717,1701 HAnHoo)
| am ]|, < Ay (1270 + o) AT g + A
We can now repeat the same argument of the proof of Proposition to deduce
+1 0
HAR H1+5H (1+n)s" H‘P -9 H1+5,H

for some S € (0,1) which does not depend on 7. It follows that (¢™), is a Cauchy
sequence in H'*9([0,T] x R) and then converges to some ¢* € H'T([0,T] x R). In
particular

sup ”<Pn”1+5,H <c(n)

neN

for some constant which depends on 7. Furthermore, from (7.21) with n = 0, we
have for ¢ <t

7 05) 0] M8 A [ [ i) el

+M ||(B— B+ A+H) @"\\oo/t, ds/leT_t/@)!dé

First remark that

sup H (B B+ A+ H) @nHoo < M sup ||<Pn||1+6,H <M
It follows
T
"t 2) =" (s, 2)| <M (/ o / [mr—o(€) — my_yp (€)] € + \t_t/|>
t R

From Lemma [E.1] we have

/ o (€) — mp_y(€)] de < / (mr1(€) + mr_p(€)) dé < M
R R
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but also

1
/ imr—¢(§) — mp—p(§)|d€ < \t—t/!/ / |Ovmr o) (€)] dEdO < M(T—t) =2/
R 0o Jr

so then, by using both these estimates, we obtain, for any v € (0,1)

/ ‘mT—t(f) - mT—t/(ﬁ)‘ d¢ < My‘t _ t/|v/2(T _ t)fg
R
for some positive constant M, depending on v. Finally

sup |90n+1(t’ Z) - SOTH_I(S? Z)‘ S‘]\47J|t - t/|U/2
z

It follows then that, when we pass to the limit n — oo, ¢* inherits the same

property:
sup [*(t, 2) — ¢ (s, 2)| < M|t — s/
z€R

Remark 7.12. By using Theorem [710 one would obtain, in particular
o2t ) = (5 ) oo < M= )2 (14 ]|(B= B+ A+ H) 0", )
for A € (0,1]. But we only know how to estimate
(B =B+ A+H)¢"|

which corresponds to the case A = 0. So we cannot directly apply the above estimate
to deduce thatt — p*(t, z) is 1/2-Holder continuous, but just v/2-Hélder continuous
for any v € (0,1). Nevertheless, we will improve this estimate and show that the
map t — p*(t, z) is 1/2-Hélder continuous.

As explained in Remark we can say, with an abuse of language, that the
above Proposition holds true for all > 0. For the uniqueness we have

Corollary 7.13. Let Assumptions hold true together with Assumptions
and fix § € (0, — 1) as in Proposition m Then the PIDE ([7.8]) has at most
one solution in the Hélder space HOT([0,T] x R).

Proof.

Proving that PIDE has a unique solution is equivalent to prove that
has a unique solution. We can then follow the argument of Corollary if o,
1 = 1,2 are two solutions of PIDE and ™' is the sequence given in
where %% = ¢ for i = 1,2, then, by construction it is clear that ¢™* = ' for all
n. If A" := ™! — ™2 then, as in the proof of Proposition one can prove that

1A s = @+ mBH et =Pl m

for 1 big enough and 8 € (0,1). In particular A" — 0 in L°°(R?), and since
A" = p! — ¢?, we conclude that ¢! = 2.



138 Chapter 7. Smooth solutions: the pure jump case

g

Proposition stated that the sequence ¢™ converges in the Holder space
H'([0,T] x R) to some ¢*. Let n — oo in (7.23) for n = 0 to deduce

T ~
P (t,2)=1+E {/t (B—B")+H+ A) p*(s, Z%)ds (7.24)

since the operators B— B, A and G are continuous in H'9([0,T] x R). We denote
with 7 the optimal control related to ¢* in the right hand side of the above equality:

Qu*(t,z) =
e AREZAN b
Gortz)

The regularity of ¢* shows that 7 is well defined and bounded. Furthermore, from
the definition of G and Q, we deduce

#(t,u,2) = IV — (7.25)

7(t,2) — #(t,2")| < M|z — 2

for any ¢, z, 2/, since ¢* € H'*9([0,T] x R). In other words, # € H°([0,T] x R) and,
by using the regularity condition w.r.t. ¢ given in Proposition [7.11] we also have
that t — 7(t, z) is Holder continuous.

7.4.2 Characterization of the function a

We now are able to prove that the function a given in ([7.5)) is the unique smooth
solution of PIDE (|7.8)).

Theorem 7.14. Let Assumptions hold true together with Assumptions
7.60.  The PIDE (7.8) has a unique, smooth and strictly positive solution a €
HYH([0,T] x R), for 6 € (0,a — 1). The function t — a(t,z) is also continuously
differentiable in (0,T") and

sSup HCL(t, Z) - a(s, Z)Hoo < M(t - 8)1/2

z€R
Moreover

o™ —allj 1550 < MB", n— o0

for some M >0 and B € (0,1).

Proof.

The proof is really similar to the one of Theorem so that we will skip all similar
computations. As in Step 1 of the proof of Theorem we first prove that ¢* is
the unique viscosity solution of

op*

ot
where 7 is given in (7.25). We then prove that PIDE ((7.26)) admits a unique smooth
solution: for this, let 7 > 0 and consider the map =, defined as follows:

B 85(3;1!)) — BE, () + nEy () = (B—B%) ¢+ Ay + 27 Q¢ + 72Gy  (7.27)

Ep()(T,.) = e

— Ap* — Bo* —27Q¢* — #2Gp* =0, ©*(T,.) =1 (7.26)
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for ¢ € H*0([0,T] x R). Since # € H°([0,T] x R), we can apply Lemma and
Corollary [7.9] to deduce that

(B = B) ¢ + Ay + 27Qy + 72Gp € H([0,T] x R)

Theorem ensures that =, (1) is well defined in the Holder space H2+°([0, T]xR),
it is continuously differentiable w.r.t. ¢ and, for some M > 0 not depending on 7 or
1, one has

IE0 (@ ays <M (77 + [|(B = B + A+ 27Q +72G) | )
IZ0() (6} = Zn(0)(5: g g0 <M= ) (774

|(B=B" +A+27Q+72G) v )
In particular =,(¢) is 1/2-Holder w.r.t. t. By using the method developed in Step 2
of the proof of Theorem together with Lemma [7.4] and Corollary we prove

that =, is a contraction for 7 big enough. Denote with ¥* its unique fixed point. It
follows in particular

sup [|¢7(t, 2) = 9" (5, 2) [l o = [1Z9 (V) (L, ) = Zn(¥7) (55 )l

ZER
<M(t — s)1/2 (enT +||(B = B ¢ + Ay* + 27 Qy* + 72Gy* H(;,H)
<M(t— )" (140" arsn) (7.28)

so then ¢* is 1/2-Holder continuous w.r.t. t. But

BE ¢* —_ * —_ * * * ~ * ~ *
- 778(75) = BYE(Y7) + 12y (¥7) = (B = BY) " + A" +27Qy" + 7Gy
Ey ()T, ) ="
so that Z,(¢*) is continuously differentiable w.r.t. ¢ (Theorem [7.10), and then
= =, (¥*) also is. By the uniqueness of the viscosity solution we deduce that
©*(t, z) = e Map*(t, 2) and it belongs to H*+9([0,T] x R).
We complete the proof by following the Step 3 of the proof of Theorem let

% ~ Stzax —Z07 LZ Stz
dXLf,’Z"'” = f,_XDP%e 22 de%s X =g

which is well defined since 7 is bounded. The function
A 2
w(t,z,x) :=E [(X;’Z’x) ] (7.29)

is continuous and w(t,z,z) = z2p(t, z) for some $. The continuity of w and the
Markov property of Z allow us to write

w(t,z,a) = E [w <t +h, 25, Xff;f)}
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which, in particular, proves that ¢ is a viscosity solution of ([7.26]), and again from
the uniqueness of the viscosity solution of this PIDE, we deduce ¢ = ¢*. In partic-
ular

R 2
220t (t, 2) = 2°P(t,2) = E [(X}fpzx) ] >00(t, z,x) = 22a(t, 2)

because X is an admissible portfolio and ©v° is defined in (7.4). From the above
estimation and Lemma we deduce e~ < a(t, 2) < ¢*(t, 2) for all ¢, z.

To summarize we proved that o* € H*T([0,T] x R), it verifies the PIDE (7.8)
and it also is strictly positive: we can then apply Theorem to deduce a = p*.
Finally we use Proposition to obtain that ¢ — a in H'*9([0,T] x R) and the
estimate to conclude our proof.

0

Remark 7.15. The above result is the equivalent of Theorem i the case of
Jump-diffusion. It is important to remark that the structure of the semi linear PIDE
1s not the same as that PIDE : i PIDE the role of “regularizer”
was played by the strictly elliptic matriz of second derivatives D*a whereas in PIDE
this role is played by the non local Lévy operator B. Nevertheless this does not
change substantially the proof.

The last thing we want to point out is that we work here with Hélder space of
type 2, whereas we used Holder spaces of type 1 in Theorem [6.8: as we explained
at the beginning of paragraph [7.2.1], in the pure jump case we do not need to prove
that a is twice differentiable w.r.t. z. It means that we do not need to assume any a
priori regularity w.r.t. t for the driver (B — B¢+ Ay + 27 Qup +72G1p in the PDE
. On the other hand, it was necessary to assume some Hélder regularity w.r.t.
t for the driver By + H[y] in the PDE to deduce the regularity of Zy,(1).
This explains why here we work in the functional space H*T([0,T] x R), for which
no regularity w.r.t. t is required.

7.5 The change of variable

In Theorem we proved that the function a can be characterized as the
unique solution of a semi linear PIDE if one imposes, in particular, Assumptions
Remark that Assumption [H2] could appear very restrictive: if for example
the jump function is of the form ~(t, z,y) = (¢, z)y then the only possible choice
would be 4(t,z) =1 for all ¢, 2.

Our goal here is to prove that it is possible to find a process L; = ¢(t, Z;) for
some smooth function ¢ such that

ALY = (s, L + [ 2 (s, L ) T(dyds) (7.30)

with p% and v verifying Assumptions [7.1H7.6} with especially 9,7 (t,1,0) = 1 for
all ¢,1. If this is possible then one could rewrite problem (|7.4)) in terms of L instead
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of the state variable Z :

2
0L (41, 2) = inf EP[(X;W@) ] L (T, 2) = a2
0eXx (t,0)

where
S
X;,l,x,e ::x+/ 9T_dS,€’l
t

dst!
St,l

=i, & (u, L) )du + / (707 EDD) 1) F(dyd)

It is clear that the new value function v%" and v° in (7.4)) are related: v%(t, z,z) =

vOL(t, p(t, 2), z). Similarly the function
T 2
<1+/ eudsf;’> ] (7.31)
t

is related to the function a defined in (7.5) by a(t, z) = a’(¢, ¢(t, z)). With the same
argument of Section one can derive the PIDE verified by a” and find that it has
the same structure of PIDE (|7.8), where in particular the operator B is replaced
with

Blo(t,1) = /

R
We can then apply Theorem to a® (since by construction v verifies the As-
sumptions and the prove the regularity of the function a simply by using the
regularity of the function a”. This explains why it is not restrictive to suppose
Oyy(t,2,0) = 1.

al(t,l):= inf E
0eX(t1,1)

<90(t, L+t 1y)) — o(t, 1) — 7" (4,1, y)%f(t l)ﬂ{|y|g1}> v(dy)

Let then ¢ be a real valued function defined on [0, 7] xR and L; := ¢(t, Z;). Assume
that for all ¢ the function z — ¢(t, z) is invertible and that ¢ is smooth enough to
apply It6’s formula. We obtain

VEt L y) = ot 07 (81 + (o7 (1), y) — (7.32)
P = 0267 () g 67 (1) 92 (67 (1,1)

L 4 9, )
+/|ySl <7 (t0y) = (67 (10 ) 5 (10 (t,l))> (dy) (7.33)

In particular one has

0
10 = 5267 (4, 0) (1,67 (1,1),0)
If we select for example
z ds
= _ 7.34
#t2) /0 Yy(t, s,0) (v39

then trivially ’y;(t,l,O) = 1 for all ¢t,I. The following Lemma shows that this
choice guarantees that the coefficients u” and v verify Assumptions and
Assumptions [7.6]
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Lemma 7.16. Assume that there exist some positive constants 0 < mq,ms such
that

i). For allt,z € [0,T] x R the mapping y — ~(t,z,y) is differentiable at y = 0
and
0 <mq < |yy(t, 2,0)| <mg forallt,z € [0,T] xR

ii). The function (t,z) = vy(t, 2,0) is differentiable and

d d
‘dt’yy(t,z,O)) + ‘dzfyy(t,z,O)‘ <mg for allt,z € [0,T] xR

iti). The function z — %’yy(t, z,0) is Lipschitz continuous:

d d
‘dtvy(t,z,()) — dt’yy(t,z’,O)‘ <mglz — 2| forallt € [0,T], 2,2 € R

Then the functions p” and v* defined in (7.32)—(7.33) with the choice of ¢ given
by (7.34) verify Assumptions and Assumptions [7.6

Proof.
First we remark that we can assume m; > 1 otherwise we can normalize the process

Zy by my: Zy := Z;/my so then the new jump function will verify 1 < 7,(¢, Z,0) for
all ¢,Z. Also, under assumptions i) and i) the function

# ds
#lt,2) = /0 Vy(ta S, O)

is well defined, invertible and [|0¢/0z||,, < 1/m; < 1. From now on M denotes a
positive constant which may change from line to line. Let start by studying +*:

1
_ o6, _ )
'.)/L(tvlﬂl/) :7(t7¢ 1(t7l)7y) 0 aif’(t’(é 1(t,l) +97(t’¢ 1(t7l)7y)d0
It follows
Sup |’YL(t) la y)} S MT(y) and sup e'yL(t,l,y) — 1‘ S MT(y)
t,l tl

and by using ([7.32)) and i) we obtain

oyt ‘ St ¢~ (t,1) + y(t, 671 (t1),y))

ot Ly)| =1+ &

Bty | ! %1 6 1(1.1)
82¢

022

(1+ 5o ) ‘

+ p(y)) < Mr(y)

t]l

<M <sup\’y(t, ¢~ (t,1),y)] )

In conclusion v* verifies Assumptions[C, I1,12] with 7(y) := M7(y). Assump-
tions [L, I] have not been modified, whereas for the no degeneracy property we
can use Remark since |v*| > |y|/m2 then v also verifies Assumption[ND].
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For the drift function p”, it is straightforward to deduce

(4.0) = 206,67 (0.0) + (e, 07 (4. D) 52 (1,67 (1)

is bounded and Lipschitz continuous in the variable I, whereas

[ (e —ate o7 wn. 3070 ) iy =

1 1
[ Aot [ (Foeown oo w0 - 500700 ) dovian)

-1 z

from which we deduce that

- [ (et - 0 e @) ) vy

ly|<1

is also bounded and Lipschitz continuous in the variable I: the function p! verifies
Assumption [7.1}[C].

For the Assumptions we have that, by construction, H2 is verified, whereas
Assumptions [7.6}[H1, H3] hold true by using ), ii), i), the bounds on d¢/0z and
the properties of ~.

g

The above Lemma proves that it is possible to replace Assumption [H2] by
assuming more regularity of v at y = 0:

H2,;s The function (¢, z) = (¢, 2, 0) is differentiable and

d d
‘dt%(t’z’o)' + ‘dz%'(t’z’o)‘ <mg forallt,z€[0,T] xR

H2¢c, The function z — %'yy(t, z,0) is Lipschitz continuous:

(t,2,0) — d

d JR—
dar v

pTal (t,z/,O)‘ <mglz — 2| forall t € [0,T], 2,2 € R

7.6 Smoothness and characterization of the function v/

We conclude with the study of Problem (7.2]) when f # 0. According to Theorem
[.14] we need to prove that the following PIDEs

0= 5 —Ab—Bb—"[a] Qb, b(T,.) = —2f (7.35)
_oc 1(Qb)? _ g2

have a unique smooth solution, where 7* is the minimizer of the operator H in ([7.9)).
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Theorem 7.17. Let Assumptions hold true together with Assumptions[7.6
Fiz 6 € (0, — 1) and let f € HYT(R). The function v/ in (7.2) admits the
decomposition (5.41)):

vl (t,2,x) = a(t, 2)a® + b(t, 2)x + c(t,2), o/ (T, 2 2) = (f(z) — x)?

where a € H([0,T] x R) is the unique solution of (7.8), so it does not depend
on f, and
b,c € H*([0,T] x R)

are the unique solutions of the linear PIDEs (7.35)—(7.36)). The functions t —
a(t,.),b(t,.),c(t,.) are continuously differentiable in (0,T).

Proof.

By applying Theorem we have that the function a in is the unique
solution of the PIDE in and it belongs to the Hélder space H([0,T] x R).
Furthermore, from the regularity of the function a, it is not difficult to verify that
7w € HY([0,T] x R). We can proceed as in the proof of Theorem transform the
PIDE (|7.35]) into

b
— ?)t — B+ b = 7*Qb + (B — B*)b + Ab, bi(T,.) = —2fe"" (7.37)
where B is given in (7.16). Consider the map =, defined as follows: for any
Y € HoPO([0,T] x R), Z,(¢) verifies

— 5. E0() + BUEg(0) + nZg(e) = 7 Q4 (B — B + AV, By ($)(T,) = ~2fe""
This map is well defined by applying Theorem [7.10} By using Lemma [7.4] and
Corollary it is possible to select n big enough such that =, is a contraction in
the Holder space H19([0,T) x R): its unique fixed point ¢* is then the unique
solution of , or, equivalently, e "9)* is the unique solution of . For the
PIDE ([7.36)) we can proceed in the same way to deduce that it has a unique smooth
solution in H*+%([0,T] x R).

O

The Remark (6.11]) holds true in this case: in particular one can allow f €
Ho+(R) for some ¢ € (0,1), and then obtain

b,c € HOT™n@) ([0, 7] x R).

7.7 Finite activity processes: the model

We conclude the chapter by studying the quadratic hedge problem when the
process Z is driven by a Poisson random measure whose intensity measure v(dy)
is of finite variation, which, in particular, covers the cases v(R) < oo or v(dy) =
g(y)|y|~1+ for a € (0,1). As we will see later, the main difficulty here is to prove
that the value function v/ is smooth. In general this is not true, especially for
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a finite measure. However, if the drift satisfies ¢ = 0 then the argument given
in Sections [5.5] and can be rigorously justified even for non a smooth value
function v/. When Z is a finite variation process without drift, the It6’s formula,
which is the key tool in the proof of Theorems |5.11 applies whenever v/ is
once differentiable in ¢ and Lipschitz continuous in z' (see for example Proposition
8.12 in |Cont and Tankov| (2004)). For sake of clarity, we recall the model and the
Assumptions we will need:

dZb =y (T, Zﬁ“z) dr + /

v (r2%y) T (dydr), 207 == (138)
R

for t € [0,T) and z € R and we assume:

Assumption 7.18.

[I]- Integrability conditions. The function T defined in Assumptions verifies,
for some yo € (0,1) and some m >0

sip T <mand e LN({Jyl < o} v(dy))

0<lyl<wo 1Yl

[ND]- No degeneracy. The function T in (5.7) verifies

T = /R I (y)(dy) > 0

Remark that there is no need to truncate the jump measure J as in ([7.1)) since,
in this case, the function 7 is integrable around zero. Our first objective is to prove
that, under an appropriate change of variable, it is possible to remove the drift

function in ([7.38):
Lemma 7.19. Let Assumptions hold true and define the function

u
O(t,2) = F5F where F47 verifies F47 =2 _|_/ u(s, Fb)ds
t

Then z — ¢(t, z) is invertible for all t and there exist two positive constants m, M
such that
0¢

0<m§a—§Mforallt,zE[O,T]x]R.
2

The process Ly = ¢(t, Z;) verifies
Ly = / vE(s, LS y) I (dydt), Ly = Zr (7.39)

where v (t,1,y) = o(t, o7 (t, 1) + y(t, ¢~ (t,1),y)) — | verifies Assumptions .

Tn this case, It6’s formula is nothing but the usual Lebesgue-Stieltjes change of variables for-
mula.
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Proof.
Since the drift function p(t, z) is Lipschitz continuous and differentiable in the vari-
able z, the deterministic function f is well defined. Trivially

Dt == pt.2) + [ oo, Dur s
D.f 7 =1+ /tu O.u(s, FY*)D.F b ds

so that
DiF 5% + pu(t, 2)D,F 5% =0, for all t, z,u

Furthermore we can solve the linear ODE defining D, F % to obtain

D.F% =exp (/ 0. 1u(s, F’;’Z)ds> >0
¢

and therefore

0
0<m=-exp(—T|0:p|) < £ <M :=exp (T 0 o)

In particular for fixed ¢ the map z — F ff’z is invertible. By applying It6’s formula
to Ly := ¢(t, Z;) we obtain

ALy = (D7 D)t + [ (000, 2 +9) = 000, Zi0)) Syt
:/R’)/L(ta Ltfay)‘](dydt)

where vE(t,1,y) = ¢(t, ¢ (t,1) +y(t, ¢~ 1(t,1),)) — . The upper and lower bound
on 0¢/0z can be used to deduce that the new jump function v verifies Assumptions

(LIS

O

If we use L as the state variable instead of Z then the control problem
becomes

2
QH:  minimize E¥ [(f (ngl) - X%l’x’e) ] over € X(0,1,x)
where

S
Xl =g + / 0,—dSL!
t

dSt’l

i =il (L)) du + / (e 0B — 1) (dydu)
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and its dynamic version:

fL o P ) yptlad)?
R [(f(LT> pes )] (7.40)

o (T, 2, 2) = (f (1) — x)?

It is clear that the new value function v/** and v/ in (7.2) are related: v/ (t,z,z) =
vPL(t, é(t, 2), z), and, as we have already seen many times, v/ admits the decom-
position

vl E(t, 1 o) = 22l (8, 1) + abl (8, 1) + cE(8,1) (7.41)

7.7.1 The pure investment problem in the finite variation case

As in Section we first start with the case f = 0. In this case v0X(¢,1,z) =

z2a”(t, z), where
T 2
<1+ / eu_dsgl> ] (7.42)
t

which is related to the function a defined in by a(t, z) = a“(t, ¢(t,z)). We al-
ready know that the function a is bounded from above and below: e~ €7 < a(t, 2) <
1 and it is Lipschitz continuous w.r.t. z if T' < T™* as stated in Theorem [5.4, These
properties also hold true for a” by using the fact that d¢/9z is uniformly bounded
from above and below (Lemma [7.19). For sake of clarity we redefine the differen-
tial operators given in Definition since, in the finite variation case, they can be
simplified:

al(t,l):= inf E
0eX(t,l,1)

Definition 7.20. For a function p € H*([0,T] x R) let

Bly(t,1) = / (ot 1+ 7 (1) — o(t.1)) w(dy)
R

QL o(t,1) i=p(t, 67 (t,1))p + / (0T DY) 1yoo(t, 14+ A (1, y) )v(dy)
R

Gro(t,1) = /R(ev(t"’ﬁl(t’”’y) —1)20(t, 1+~ (2,1, )v(dy)

H () (¢, 1) = liE%L {27 QF o(t,1) + Gl p(t,1)}

where

eCT

m* ::WCG (1+mKf) (7.43)

is obtained from (5.38) and the fact that |O,a*| = |0.a|/|0¢| < mKy,.

The equivalent of Theorem [5.11} when the underlying process, is given by L is
the following:
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Proposition 7.21. Let Assumptions hold true and let T < T* as stated
in Theorem (b.4). Assume that the PIDE

0
0=—57—Blo—Hilpl @I =1 (7.44)
has a unique solution ¢ € H([0,T] x R), which also is strictly positive and for
all | € R the map t — o(t,1) is continuously differentiable. Then ¢ = a* and the

optimal strategy in problem (7.42)) is given by

t
Of = e Wl (4 (4, L)) XET, XY = a4 / 0 _dS, (7.45)
0
where
* Qfa"(t,1)
1) =— 7.46
D= Gt (740

is the minimizer in the operator H™.

Proof.

The proof follows the ideas of Theorem Remark, however that, as we already
pointed out at the beginning, we only need that a belongs to H'([0, 7] x R) and is
differentiable in t to apply It6’s formula.

O

The above Proposition gives us a way to characterize the function v®% in
when f = 0, by proving that PIDE has a unique solution which also has
to be strictly positive. It also gives us the optimal policy for the pure investment
problem. Our goal now is to prove that PIDE has a unique solution in its
appropriate Holder space.

Theorem 7.22. Let Assumptions hold true. The PIDE (7.44) has a
unique solution in the Holder space H'([0,T] x R), it is strictly positive and con-
tinuously differentiable w.r.t. t. Furthermore, the sequence ©™ defined by

"t ) :=E [/T HE[" (s, LEYYds| + 1, ° € HY([0,T] x R) (7.47)

verifies
Hcp" — aLHOO <MpB*, n— o

for some M >0 and 5 € (0,1)

Proof.
Transform the PIDE ([7.44) into
da L L T
0=—— —Bfa—H;a] +na, a(T,l)=¢e" (7.48)

ot
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for n > 0 and define the sequence
T
"t 1) = [ / e DL (s, L’;’Z)ds] + e (7.49)
t

for some ¢ € H'([0,T] x R). Remark that, by recurrence, one can prove that the
sequence is well defined in H'([0,T] x R). It is easy to prove that this sequence
converges, at least in L>°(R): from the structure of H in Definition we get

T
H(anrl . sonHoo < HHL[(pn] . HL[90n1]||oo/t o151 g

M n
<wy e = <2 () I -l

<M(n)B" (7.50)

for some M (n) > 0 depending on 1 and some € (0,1), by taking n big enough.
Remark that the estimation concerning the operator H is different from the one we
gave in Lemma since the process L is of finite variation, but it can be obtained
with the same type of computations. This proves that the sequence converges in
L>(R). Let us call ¢* this limit function. As in Corollary this also proves
that the PIDE has at most one solution in H'([0,7] x R) which also is
differentiable w.r.t. t. Furthermore, from we have

T
L R g [ A

M n+1 n M 7
<t a et << () 1+ > ()
1=0

which implies that sup,, [[¢"[|; 5 < ¢(n) for some constant c(n), provided that 7 is
big enough. As usual (see Remark we can say that this sequence is bounded in
H'Y([0,T] x R) for any > 0. In particular, for n =0 and 0 < ¢/ < ¢ < T we have

t

|(Pn+1(t,l) — (pn—i-l(t/,l)‘ <E [/
tl

M) (s, L) ds]

T
w8 | [ [l 18 = Hig (o, 18 ]
t
<M o bt = ¢+ T [l [t~ 212

<Mt =12 "y, < Mt —t'['?

i.e. the functions ¢" are all uniformly 1/2-Holder w.r.t. ¢: the limit function ¢*
inherits of this property.
By taking the limit n — oo in (7.49)) with n = 0, we have

T
O*(t,1):==1+E [/t HE[0*](s, L) ds (7.51)
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Exactly as in the proof of Theorem [7.14] we can prove that ¢* is the unique viscosity
solution of ([7.44]) and, if we define

ot a2
w(t,l,z):=E (XT” >
where dXIH" = 7L XPh7 oxp (—(;5_1(3, Lzl_)> de® (515 and

L, *
QLsp* A TIE
Ghe

then we can prove that w(t,l, z) = x%¢*(t,1, ), from which we deduce that e T <
al(t,1) < o*(t,1). Tt follows then that e=¢T < " (¢,1) for all n > @ and (t,1) €
[0,T] xR, n € N.

Our aim now is to prove that ¢* belongs to H*([0, 7] x R) and is differentiable
w.r.t. t. For this we could repeat the argument of the proof of Theorem but
in this case, due to the simple form of the operator H’, we are able to prove it
directly. For this we have the following technical result

Lemma 7.23. Let Assumptions hold true. Then
HE - HY(0,T] x R) — H([0,T] x RY)

b= —nfv -

and there exists some positive constant M > 0 such that

[ o+ = el gy < M (1l + ol Nl i)
for any ¥, o+ >m > 0. The constant M does not depend on ¢ or i but on m.
We postpone the proof to paragraph

From ([7.49)) and the previous Lemma we obtain
T
1 i (1 —n(s—
(P = i, < M (HET) = 1, [ e s
t
< M~ (Jle” = "My + e = "l min (el 6" )

by using the fact that E [|L1;’l1 - L’;’lﬂ < M|ly — l3|. From to the fact that ™ is
uniformly bounded in H*([0, 7] x R) and (7.50) we get

(" — o) <Myt (Hson B P C(n)M(n)ﬁ"_l)

Together with (7.50)) we deduce

e+t = |,y <Mn™! (ngn —¢" Y gt c(n)M(n)B"’l) + M(n)B"

< <A774>n o = &l gy + B et (M () + 1);:% <gf7>

<M(n) <<An4>n + ﬁ") < M(n)p"
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for some positive constant M (n) and Be (0,1) if n is big enough. We finally deduce
that ¢ — ¢* in H([0,T] x R), since it is a Cauchy sequence. To prove that ¢* is
differentiable w.r.t ¢ one can use the Markov property of L and (7.51]) to obtain

t+h
o (1) —E [ [ ) L+ (e Liihﬂ

Apply then Itd’s formula to obtain

) — o (t+h1) 1 t+h
P01 — "t + 1) :E{ HL[sO*](s,L?l)ds+<p*(t+haLiih—w*(Hh?l)}
t

h h

1 t+h t+h
=+ E { HE[p*)ds + / BEo*(t + h,Lgvl)ds}

¢ t
Since the process Lg has right continuous paths and ¢* is 1/2-Hélder continuous
w.r.t. t, we can take the limit A — 0 and, by dominated convergence, we deduce
that the function ¢* is continuously differentiable w.r.t. t. Furthermore, it verifies
the PIDE (|7.44).
To summarize, we have found a function ¢* € H*([0,T] x R), which also is contin-
uously differentiable w.r.t. ¢ and it is bounded from below by e~ ¢ and satisfies
PIDE ([7.48). Furthermore this ¢* is the unique solution of this PIDE, as pointed
out when we proved that ¢ — ¢ in L*°(R). We conclude by applying Proposition
(211

O

Remark 7.24. Remark that the above theorem does not tell us anything new on the
reqularity of a® w.r.t. | that we already did not know. In fact the theorem proves
that the equation has a unique solution which belongs to H([0,T] x R), i.e.
it is bounded and Lipschitz continuous w.r.t. 1, and it is also differentiable w.r.t. t.
From Proposition this unique solution has to be a”, and we already knew that it
is bounded and Lipschitz continuous. Nevertheless the theorem proves that equation
has a unique solution which also s strictly positive, which is necessary to
apply Proposition . We cannot have any further reqularity on a™ since there is
no “reqularizing” operator in . However, the reqularity that we obtain for a”
is enough to apply Ité’s formula in the finite variation pure jump case.

The above Theorem and Proposition [7.21|allow us to characterize the value func-
tion v*L and the optimal strategy. Remark that we only have Lipschitz regularity
for the function a”, and then Lipschitz regularity for the function a. If one does
not change the variable, then the presence of a drift term in the dynamic of Z will
demand at least C'! regularity for a, which is far from being always true.

7.7.2 Proof of Lemma [7.23]

Proof.
Let us define H(q,g) = inf<g{2mq + 729} so then H[p] = H(QFp,Gly). Tt
follows then

HE W] < HE [ + 9] = H o) < sup {27Q"y + wGhy)

|| <II
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so then

|7 e + 9] — HE[@l|| <M (|| Q5| + 165 ¢].) < M I[¢ll, (7.52)

form Definition [7.20l We now need to estimate (H"[p 4 1] — HL[QDDI(,IQ)T, ie.

[ Hlp + ¥t 1) = HI(E 1) = Hp + ¢t 1) + HYI(ET)]

Remark first that the function H is Lipschitz continuous, twice differentiable with
bounded second derivative when g is bounded from below by some strictly positive

g:
sup |D*H(q,9)] <M
q€R,0<g<g
for some positive M. If now ¢g,g +1,49',¢' +1n' > g then
H(q+h,g+n)—H(q,9) —H(' + 1, g +n)+H(.g) =
H(g+h,g+n)—H(qg+h,g+n)+H(g+nW,g+n) —H(g+h,g+1)
+H(q+N,g+n")—H(q,9) —H(d +1.,¢d +n)+H(,g)

In particular

|H(q+h,g+n)—H(g+n,g+n)+H(qg+h,g+n) —H(qg+h,g+7)
<M(|h=H[+In—71)

and

|H(q+h',g+7")—H(q,9) —H('+ 1, +7)+ H(d, )
<MW+ 0)(g—d'+ 19—

We now use the above estimation with ¢ = QFp(t,1), h = QL (t,1), g = GLo(t,1)
and n = GY(t,1) and the same for (¢,1'). Since both GFy and GL(p + 1)) are
bounded from below by m|I'|, as stated in Assumptions [ND], we deduce

[l + (1, 1) — HE)(1, 1) — Hlp + ), 1) + IS0, )] <
M (@)1 + (@ 0, + (1950 + 1970]..) (10%0), + @ o)y, )

<M (16l + 1l Nl ) 11— 11

By taking the supremum over ¢ we obtain

(ML + 6] = HE LD g < M (Il + Wl el i)

The above estimations and ([7.52)) allow us to conclude our proof.
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7.7.3 The quadratic hedge problem in the finite variation case

The general case f # 0 in problem ((7.40) is very easy:

Theorem 7.25. Let Assumptions hold true and T < T* as in Theorem
(5.4). Fiz then f € HI(R) The function vI'* defined in admits the represen-
tation vl (t,l,x) = 22al(t,1) +xb" (t,1) +cl(t,1) where a® is the unique solution of
PIDE in the Hélder space HY([0,T] x R) and it is continuously differentiable
w.r.t. t, whereas b,c € H'([0,T] xR) are the unique solutions of the following linear
parabolic PIDEs

b LiL % ALLL L

0=~ — Bt — 7 Qpbt, b¥(T,.) = —2f; (7.53)
dct (QLbL) L 2

= B e =S 7oy

where * is defined in (7.46|) and the functionst — b(t,.),c(t,.) also are continuously
differentiable in (0,T). The optimal strategy in the control problem ([7.40) is given

by

* L —qﬁ*l(t,l) * - EQLb(tal)
0*(t,l,x) :=e <7r (t,))x 2 Gal(t.1) (7.55)

Proof.

We know that v/2(¢,1,z) = z2a”(t,1) + 2bl(t,1) + cE(t,1). We first prove that the
PIDEs (7.53)-(7.54) have a unique solution in H'([0,7] x R) and then we conclude
with a verification argument.

We know that a® defined in is the unique solution of semi linear PIDE
(7.44)), it belongs to the Holder space H'([0,T] x R) and it is differentiable in time
(Theorem . Furthermore |7*|| , < II*. But since a® is Lipschitz continuous
in the variable [ and bounded from above and below, we also have

}QLG’L(L l) - QLGL(ta l/)‘

|7 (¢, 1) — (¢, 1)] <

|GFak(t,1)]
QLal(t,1") 1
gLaL(t,l’) |gLaL t l | ‘gL L t l) gL L(t l)‘
<M|l -]

which implies that 7* € H'([0, T]xR). For n > 0 consider the map Z, in H*([0, 7] x
R) as follows:

T
= @)t =B | [ e (20 0u) (5, Lds 27 18| (750
t
The Lipschitz condition on 7*, 4 and f prove that =, (¢)) € H'([0,7] x R) and that

M
1Z0(1) = En(W2)lly g < -1 = Yol m
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for some positive M. It follows that, for n big enough, Z, is a contraction in
HL([0,T] x R). If we call ¥* its unique fixed point then it verifies

T
Y*(t, 1) =E [ /t e (75 Qup*) (s, L) ds — 27 f(ngl)]

We can apply the Markov property of L to get

t+h
$ (L1 —E [ [ e 0w (s, ity + «p*(Liih)]

from which we deduce that ¢* is differentiable w.r.t. ¢ (as we did in Theorem [7.22]).
Then it is the unique solution of

0= _wi _ BLw* _ 7_{_*QLd}* +771;Z)*

ot
or, equivalently, b”(t,1) := e~ "*(t,1) is the unique solution of in the Holder
space H1([0,T] x R) and is also continuously differentiable w.r.t. t. The same
method can be used to prove that PIDE has a unique solution. A verification
argument (as in the proof of Theorem can be used here to conclude that the
value function in is given by v/ L (t,1, x) = x2a®(t,1) + xb"(t,1) 4+ c*(t,1), and
the optimal strategy of the problem is given by .

O



Chapter 8

Quadratic hedge in electricity
markets

In this Chapter we apply the results obtained in Chapter[7 to the electricity market,
which inspired us to consider pure jump models for the quadratic hedge problem. In
Section [8.1) we briefly describe some features of these electricity markets. We then
introduce the future contracts, which play the role of hedging instrument, and we
model them in order to satisfy Assumptions and Assumptions (Section
. We derive HJB equations as stated in Theorem and propose a numerical
scheme to solve these PIDEs (Section . We finally test these schemes for the
NIG process which is a degenerate model (o = 1).

Contents
[8.1 Electricity market: a short survey| . ... ... ...... 155
8.2 Future contractsl . ... ... ... ... 0 0000 158
[8.3 Numerical approximation of the functions a and 4. . . . 162
[8.3.1 Truncation for the functional . . . . . . . ... ... ... 163
[8.3.2  Numerical algorithm for the functional. . . . . . . . . .. 168
[8.3.3  Resolution methodology to calculate the tunction 6| . . . . 169
[8.4 A numerical example| . . . . .. ... 0 0000 171
[8.4.1 The martingale casel . . . . . ... .. ... ... ... 173

8.1 Electricity market: a short survey

In the last two decades energy markets have been liberalized by many govern-
ments, with the idea that a more open market should lead to a better distribution
of supply and demand, stabilization of prices and more competition between the
actors.!. For the electricity, the first example was given by Chile (early 1980s), fol-
lowed by Argentina and some other countries in South America. This liberalization
is rather advanced and, beyond standard operations (buy and sell electricity, secure

In France, see for example the really recent ”loi NOME” ,n.2010-1488 du 7 décembre 2010
portant nouvelle organisation du marché de 1’électricité,
http://www.legifrance.gouv.fr/affich Texte.do?cid Texte=JORFTEXT000023174854& categorieLien=id

155
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the supply), it is possible to make more sophisticated financial operations (buying
insurance, short-term trading, exchange of financial derivatives).

However, due to the nature of the electricity, this particular market presents
some problematic aspects. First of all, electricity is not exactly as any other com-
modity, since, it is not possible, at present, to store the excess production (although
many studies have been done in this direction). This means that a ”unit” of elec-
tricity has to be used when it is bought. With a macroeconomic language we can
say that, structurally, the supply follows the demand, which generally is ”instanta-
neous” whereas the supply is not. This mismatch implies the presence of spikes in
the electricity price, as showed for example in figures [8.1 upward movements
are followed by quick return to initial level. Consequently, a non-Gaussian behavior
is observed in empirical estimations of electricity price time series, as pointed out
in Geman and Roncoroni (2006) or Meyer-Brandis and Tankov| (2008). This first

Prix day-ahead Base sur les principaux marchés européens
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Figure 8.1: The spikes impact on the weekly averages of electricity prices. Compari-
son between France, Germany and the Nord Pool (Norway, Denmark, Swe-
den, Finland, and Estonia). Source: Commission de Regulation de 1'énergie
www.cre.fr

remark suggests that a reasonable model for the electricity price should present
jumps in the path, together with a mean-reverting behavior. In practice, upward
and downward movements of electricity price are essentially due to jumps. Season-
ality also should be taken into account when modeling the electricity price. Another
important feature of electricity market is the procedure of price formation: in con-
trast with liquid and deep markets (the euro-dollar exchange for example), where
the price formation essentially reflects the supply and demand, the price formation
procedure for the electricity is more complex. We do not enter into the details, but
to understand this procedure one should consider many factors: the structurally bi-
ased supply and demand in the electricity context; the role of former monopolistic
public companies (which, at the same time, are producers, retail actors and exer-
cise their natural monopolistic function of distribution); the role of governments,
which care of the prices of socially sensible goods. These consideration suggests
that, when modeling, one should consider the electricity market as an illiquid and
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Figure 8.2: The observed price of electricity in the Ontario’s market. Source: hitp :
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Figure 8.3: The realized volatility of the electricity price in different electricity markets:
Energy Exchange Austria (EXAA), Short-term Trading Deutschland (EPEX
DE), Amsterdam Power Exchange (APX), Short-term Trading France (EPEX
FR). Source EXAA Abwicklungsstelle fiir Energieprodukte AG.
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an incomplete one (which is partially due to the mismatch between the production
and the consumption) and should not consider the electricity spot price process as
a hedging instrument (since, as we said above, the electricity cannot be stored and
therefore, in some sense, is not tradeable).

8.2 Future contracts

In this section we will describe the future contract, a popular hedging instrument
which is traded in many electricity markets. For further details we refer to
land Strickland, (2000)). Buying a future contract with maturity 7" and duration d
essentially means that at the maturity T one will be delivered a certain quantity of
electricity up to time T 4+ d. We denote the price of this contract at time ¢ with
Fy 7+ To model this financial instrument we introduce L as follows
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Figure 8.4: Price of futures with maturity 1 year, comparison France and Germany.
Source EPD France/Germany.

LS:Cs—i—/OS/RyJ(dyds) (8.1)

where ¢ € R and J is a Poisson random measure, whose intensity measure is denoted
by v(dy). Fix ¢ € RT, [(s) = e~ and

t
At 2—/ eCSdLs (82)
0

If T'— (0, T) denotes the price at time 0 of a future contract with maturity 7" and
instantaneous delivery (which is supposed known), then we will model the price at
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time ¢ of the same future contract as a random perturbation of the forward curve
1: with the previous notations we have

Fors = 9(0,T)e M)A

We can imagine that the price at time ¢ of a future contract with duration d is the
average on the time period [T, T'+d] of the future contract prices with instantaneous
delivery. It is then reasonable to model the price at time ¢ of a future contract with
delivery time T and duration d > 0 by

1 [T+ 1 [T+d Hod
For: = d/ Fysds = d/ (0, s)e (5)Ae g
T T

For some particular reason that would be clear in the sequel, we prefer the following
notation:

T+d

Fyrs:=exp(®(A4y)) where @®(A):=log (1/

(0, s)el(s)Ads> (8.3)
d Jr

The quadratic hedge problem, in this context, becomes

minimize E

T 2
<f(Fd7T7t) —x —/ GudFd,TM) ] over # and z € R (8.4)
t

for a given map f. The process F4 74 corresponds to S in the formulation ([5.2]).

Lemma 8.1. The process Z; := log(Fyr+) verifies

2= (e, Z0)dt + [ (8, Zi- ) T(dyde)
where
Yt 2,y) =7 (2) + ye) — 2

it 2) ==Cetd (@71 (2) + /| (1 0) e @7 () i)
y|<

Assume that the Lévy measure v(dy) is given by v(dy) = g(y)|y|~ ), for some
a € (1,2) and a bounded, positive and measurable g such that the following condition
hold true:

i). there exists some positive m > 0 such that for all y,y" € (—yo,0) U (0,y0) with
yy' >0, |9(y) — 9(¥)| < mly — ¥/|

i). lim g(y) =g(07) and lim g(y) =g(0") with g(07),g(07) >0

y—0~ y—0t

iii). yiu(dy) +/ e (dy) < +o0
y<-1 1<y
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then the functions p and ~y verify the Assumptions where the function T
introduced in Assumption [5.1H14] is given by

d

7(y) = ¢“ max (lyl, [ — 1)

Furthermore the function vy verifies the Assumptions @—[Hl, H3, H4|.

Proof.
Before we start, remark that the function A — F,;r(A) is strictly increasing, so
invertible, and infinitely differentiable: in particular

T+d I(s)A
&'(4) :fT TfCZlJ(O, s)l(s)e ds
Jr "“4(0, 5)el=)Ads

f$+dw(0,s)l2(s)el(s)f‘ds) (f;er@/J(O,s)el(s)Ads) — (f;er@,/J(O,s)l(s)el(s)Ads)Q

" _(
¢"(A) = ( TT+d¢(0,s)el(s)Ads>2

from which we deduce
e—c(T—i—d) < (I>/(A) < e—cT and e—2c(T+d) o e—QCT < (I)//(A) < e—2cT . e—QC(T—I—d)

From It6’s formula, we obtain

dZy = (CD’(At)eCtC + /

e (®(Ar— + ey) — P(Ar—) — ye D' (A4;-)) u(dy)) dt

+/ (P(Ae- + ely) — P(As-)) J(dydt)
R
or equivalently
dZy = p(t, Zy)dt + /v(t,Zt,y)J_(dydt)

We can now prove that p and ~ verify the Assumptions We detail the compu-
tations only for the function -, since similar computations can be done for u. First
we remark that z — (¢, z,y) is differentiable and we can compute this derivative
to obtain

0:y(t, 2,y) = — 1+ (P'(27(2))) 7 @' (27 1 (2) + ye)

1
ey (@@ @) [ @)+ retyar
0
so that

1

0.y (t, 2 )] = |y (@@ (=) / (& (2) + ret)dr
0

<yl (i [B(A)) 7 @], < eTeme T jg]|

S‘y|ecTec(T+d) <672cT o 672C(T+d)> < GCd‘y|
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From the bounds on the first and second derivative of ® we obtain sup, , |0.7(t, z,y)| <
e“ly|, which gives us the function p introduced in Assumptions From the
bounds on the first and second derivative of ® we obtain sup, , [0.v(t,2,y)| <
e~“|y|, which gives us the function p introduced in Assumptions Also by
the definition of ® in we have

ify > 0 and the inverse inequality stands in force if y < 0, which yield sup, , \eV(t’Zvy) —
1| < |e¥ —1|. According to the definition of the function 7 given in Assumptions
£l and the estimations above we deduce that

7 (o) o= e (s ([ 0200 L[5 = 1)) () ) = e (ol fer 1)

t,u,z

which verifies Assumptions [5.1}[I1,I2] and Assumptions [7.1}[I] from éii). For As-
sumption [7.1-{ND] we have, from the definition of ~

(ev(t,zm _ 1)2 > (exp(e—c(ﬂd)y) _ 1)2

so then, for some positive M > 0 we have

I'(y) :—/Rinf (eV(t’Z’y) — 1)2 v(dy) > /Rinf (exp(e_c(T+d)y) — 1)2 v(dy)

t,z t,z

>M ly|'~*g(y)dy > 0
ly|<e

since g(07) and g(0~) are strictly positive, we can select € small enough and obtain

Ply)>M [ [yl'"dy >0
ly|<e
For the Assumptions we can differentiate v w.r.t y to obtain Jyy(t,2,y) =
et®' (D71 (2) + ety) so then e T+9) < |9,~(t, 2,y)| < 1, which proves that As-
sumption [7.6L[H1] holds true. For Assumption [7.6}[H3], one can differentiate 9~

w.r.t. z and give for it an upper bound to prove that z — 0,7(t, z,y) is Lipschitz
continuous, uniformly in ¢,y. Assumption [H4] trivially holds true.

g

We can transform the problem (8.4) by using the process Z to obtain

v/ (t,z,2)= inf E
0eX (t,z,z)

(f(Z;Z) e /tT au_dexp<zgz)>2] 2,2 ER(85)

where X(t, z, x) is defined in and f(z) = f(e?).

In order to apply our results (Theorems and we need to verify all the
Assumptions[7.6] It is easy to prove that the function v does not verify Assumption
7.6-[H2]: however, as we have already seen, this can be avoided by using Lemma



162 Chapter 8. Quadratic hedge in electricity markets

whose assumptions are verified by v. We could change the state variable Z
into a new one, say Z’, study the problem in the new state variable Z’ (see the
discussion in Section page and finally obtain the characterization of the
optimal Markovian strategy as a function of the state variable Z’. And by applying
the inverse change of variable, we can express this optimal strategy in terms of Z.
From a practical and numerical point of view, one can avoid to make this change of
variable, and apply directly Theorem to obtain the optimal strategy.

To conclude this section, we want to introduce a special class of options one can
use in problem (B.5)). First define, for some G > 0 the function p(z) : (G —z)¥, the
usual put function, and

1 T+d

h(A) := / ¥(0, s)e P 4ds
d Jr

for some d’ # d. From it follows that h o ®1(Z;) = Fy 14, and then, by

defining f := poho ®~! we obtain f(Z;) = (G — Fy )", which is a put option

written on a future contract with different duration d’. Using this particular option

we can rewrite problem as follows

T 2
((G —Fyr)t —a— / 9u—dFd,T,u> ]
¢

The financial meaning of the above problem is particularly interesting: one tries
to hedge (in the quadratic sense) a put option written on a future contract with
duration d # d only by using, as hedging instrument, the future contract with
duration d. This may be useful when, for example, one sells a future contract with
a non-standardized duration in the OTC market and hedges its position only by
using the instruments available in the market.

minimize over 8 [E

8.3 Numerical approximation of the functions a and b

In this section we will briefly discuss how one can solve the PIDEs obtained
in Theorems [5.11 in the particular example presented in Section This
was done with the precious collaboration of Xavier Warin, EDF R&D (De Franco,
Tankov, and Warin} 2012]).

As we proved in Theorem the optimal Markovian strategy in problem
is given by 6f = 0(t, Z;—, X;_ ), where

0"(t, 2,7) i=e”* (W*(t,z)x = 1th(’5>2)>

2 gta(tv Z)
and
* Qta(t7 Z)
T (t,2) i=— = (1= Tt|a
( ) gta(t’ Z) t[ ])
and the optimal price is given in (5.42) z* := —b(t,2)(2a(t,z))"! To solve the

problem then we only need to compute the function a and b, which in this case,
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verify
_ Oa da . 2 _
0= -Gy iy, ~ B f {2nQu+rGa},  a(T.2) =1
ob ob
0=— a — N@ — Btb — TI't[a] th, b(T7 Z) - _2f

We will present here a numerical method to approximate the functions a and b.
For this, we prefer to rewrite the above PIDEs in a more comfortable way: with an
abuse of notation, we first invert the time direction u(t,z) — u(T —t, z), and we
redefine our operators as follows:

it 2) " e, 2) + / At 2, y)0(dy)
ly|>1

Bott.2) [ <so<t,z+v<t,z,y>>—so(t,z,y)—w(t,z,w";f(t,z)) v(dy)

redef

Qp(t.) "2 [utt. )+ [ (15— 1= (t.50) )] 2.2
(05 = 1) (ol 4 50 20) ) ()
redef

Gio(t,2) " [ (05 = 1) (e (02 ()

In particular, we will write 7[y] redel —Qp(t,2)(Gp(t, z)) !, where Q and G are the

redefined operators above. With these notations we obtain the new PIDEs verified
by a and b

Jda da

=— — 4+ pu— inf {2 2 =1 .
0 8t+u82+8a+‘;|n§ﬁ{7r§2a+7r Ga}, a(0, 2) (8.6)
0b 0b
0 5 M3, + Bb + 7[a] Qb, b(0, 2) f (8.7)

In order to solve the above PIDEs, we need to truncate the domain, i.e. we will
numerically solve the above PIDEs in [0,7] x [-Z, Z]. Due to the presence of the
integro-differential operator, the boundary conditions must be imposed not only at
the boundary 0[0,7] x {Z, Z} but also outside this parabolic boundary, let us say
on the region [0,T] x [-Z, —Z] U [Z, Z]. Moreover, we also need to truncate at
some Y the integrals appearing in the definition of the coefficients in f.
We finally assume the following condition:

for all ¢t € [0, 7]
Z+ sup  Atzy)<Z and  —Z+ inf  A(tzy) =-Z

zeR,ye[-Y,Y] z€R,ye[-Y,Y]

8.3.1 The algorithm for the function a: truncation and first ap-
proximation

The truncation procedure transforms PIDE into the following:
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e on [0,7] x [-Z, Z] we solve

0
— + sup {—ua —B"a —27Q"a — ngtra} =0, a(0,2)=1 (8.8)
O rel-Ti 9z

where II is the constant given in (5.44)) and the truncated operators are defined as
follows:

Y a
Bra(t.2) = [ (a(t, 2+t 7)) — alt2.0) (2 ) e, z)) v(dy)

-Y

pO(t,2) =t 2) + [ i (79 —1 =t 2,)) vldy)

%
Qal(t, z) :=p(t, z)alt, z) + /

(ev(t,z,y) _ 1) (a(t,z +~(t,2,y)) — a(t, 2)) v(dy)
-y

Y 2
G'"al(t, z) ::/ (ev(tz,y) _ 1) a(t, z +(t, z,y)v(dy)
_y

e on [0,7] x [-Z, —Z)U (Z, Z] we impose

a(t,z) =1

Remark 8.2. The effect of truncating the coefficients in the PIDE has been studied
in | Jakobsen and Karlsen| (2005) and we refer to it for an error estimation.

The choice of the boundary condition a(t,z) = 1 is motivated as follows: if
exp(Z) was a martingale, this is the value of the function a (see for example Remark
. When exp(Z) fails to be a martingale, we should expect that the effect of the
drift term should not be too strong. Alternatively, one can replace the process Z,
outside the boundary, by a Lévy process, for which the solution can be computed
explicitly (it will be a simple time-dependent function).

We now adapt the methodology proposed by Forsyth et al. (2007)) to solve the
truncated PIDE on a regular grid z; = jAz, for some Az > 0and j € (—N, N).
We also define two integers j_, and j, such that k; € (—Z , Z) if and only if
J_; < j < jz- To avoid interpolation of the values of a when estimating the
integral term, we use a space and time dependent grid to define the intervals of
integration: the integration points y; are chosen to verify ~(t,z,y;(t,z)) = iAz.
(Remark that this is possible since the function + is invertible in the variable y).
For an integer k > 1 we split the region [—Y, f’] in three domains:

Qot, 2) = {uly__1(t,2) <y < gy s (6,2)],
O(t,2) = {ylypsa(t2) <y <lor —1<y<y, (2}, (89
Qo(t,2) ={y1 < |y <Y},

The parameter k is used to fit the size of the domain (¢, z). Due to the very high
infinite activity of the jump process near 0, we will numerically fix k£ equal to 2 or
3 whereas [Forsyth et al. (2007) take k = 1. We can write then

B”a(t,z):—[ +/ +/
Qo(t,z) Ql(t,z) Qz(t,z)
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For the first term we define
D(t,z) ;:/ V2 (t, z,y)v(dy)
Qo (t,2)
so that

da
/Qo(t,z) <a(t’ Zt FY(t’ & y)) o a(t? Z) - ”Y(t, Z, y)@(t, z)> y(dy)

D(t, z) 0%a / 3
= — + Oy’ )v(dy
2 02 Joye (v")v(dy)

Since |y(t,z,y)| < Mly| around zero for some positive M (see Lemma [8.1)), we
deduce

Oa
/Qo(z) <a(t, z+7(t z,y) —alt, z) — (1, Z:Z/)a(t, z)) V(dy)

D(t, 2) 0%a D(t,2) 0%a a
=75 92 + /QO O(ly[*)v(dy) = 5 9.2 + O(|Yp41/2(t, 2) — y—(k+1/2)|3 )

D(t, 2) %

55t O(AZ3~%) (8.10)

since for some £ € )y we have

(2k + 1)Az =[v(t, 2, Yr+1/2(t, 2)) — v 2, Yk +1/2) (L5 2))]
=10y Y(t: 2, ) |Ykr1/2(t 2) = Y—(kt1/2)]

and 0,7 is bounded from below.

In the region o, away from zero, we can subdivide the domain in disjoint
intervals centered in y; and expand the function v around the integration points y;,
as it is done in [Forsyth et al. (2007)), to obtain

[ otz 40020 = a9 <2020 520.9) ) i)
§j otz (alt 4 400, 200) = a(t.2) = 26251 ) +0(82)

w(t, z,yi) ( (t,z+iAz) —a(t, z) — zAng> + O(AZ?)

@M

where

yi+1/2(t72) N
alt,zm) = [ v(dy), vi € ;
Yi—1/2(t,2)

For the region Q1 we need to transform the Lévy measure since it has infinite activity
close to zero. Following [Forsyth et al.| (2007), define 7(dy) := v(y)y*dy and then
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v (s 4200 200) = alt.2) = 202 502

— yi_Q (a(t, 2+t z,y:)) — a(t,z) — (¢, 2, yi)gZ(t, z)) +e(i,y)

e(i,y) = (y — yi)i (y‘2 (a(t,z +7(t,2,y) —alt,z,y) —v(t, 2 y)g (t, 2))) ly=y;

_ )2 rl
2 0

oaz o, oa
/0 TyQ Yy a(t,z—i—’y(t,z,u)) - a(t’ Z,U) _W(taz’u)%(tﬂz) ‘u:yi—i-'r(y—yi) dr

Then, as before,
A (att2-4 208 200) = o) =200 g0 2) ) )
= Z w(t, z,yi) <a(t, 2+t z,9:)) — a(t,z) — (¢, z, yi)gz(t, z)>

i:yiefll
yz+1/2 R
DOl ()
i yZGQ —1/2

where
L Yir1/2(2) o N
wltz) = [ o' g0y, i €
Yi—1/2(t,2)
We can use the bound on the function v and its derivative w.r.t. y to control the
error term (See appendix A in |Forsyth et al.| (2007))

Yit1/ .
S [T e, yntay) = O(asmne-es-a)

i yiefh Yi—1/2

for any € > 0. We finally add up all the above estimations to obtain

D(t, z) 6%a
tr L ;
B"a(t, z) :== 5 5.2
+ Z (t,z,y5) | alt, z +iAz) —a(t, z) — z'Az@(t z) | +0 (Azmin@*e’?’fa))
1 M ) az b
yzv‘ |>k
where
9 Yir1/2(t:2) o ) A
it | gy I iagalts2), i alt 2) €
yi—l/Q(tvz)
w(t, z,y;) == (8.11)

Yit1/2(t:2)
/ ) ly| " g(y)dy otherwise
Yi—1/2(t,2
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The above terms can be calculated with the trapezoidal rule with an integration over
5 points, if the function g is twice contmuously differentiable with bounded second
derivative away from zero: when y; € ; we obtain an error of order O(Az3~®)
whereas for y; € Qy we obtain an error of order O(Az?).

Similarly we will treat the operators Q" and G*". We skip the details to obtain:

Qal(t, z) :=p°(t, 2)a(t, z) + D(t, z)@

0z
+ Z t, z,yi) (alt, z + iAz) — a(t, 2)) + O(AzmnE-e3-a))
Yi, i[>k
G'a(t,z) :=D(t,2)a(t,z) + Z I9(t, z, yi)a(t, z + iAz) + O(Az27€)
Yi, |7,‘>k
where
s Yir1/2(t:2) - . .
Yi / - (e =Dyl " g)dy if Yiy1/2(t 2),yiz1/2(t, 2) €
Yi—1/2(t,2
[Q(t’ 27%) =
Yir1/2(t:2)
/ (e”=1) |?J’ (1+e) g(y)dy otherwise
Yi—1/2(,2)
and
72 Yip1/2(2) 2 a . X
Yi / - (€ =17y "gW)dy if yir12(t,2),yi-1/2(t,2) € (N
Yi—1/2(t,2
19(t, 2,y;) =
Yir1/2(t:2)
/ (e” ) |y‘ (1+e) g(y)dy otherwise
Yi—1/2(t:2)

Again a five point approximation can be used to estimate the above integrals.
The above computation allows us to rewrite PIDE (8.8) into the following:

da - da
— ult,2) 5o + e {(V(t,2) —27D(t,2)) o

da D(t, z) 6%a
a5 a2

- Z W(t, 2y, m)a(t, z + iAz) + R(t, 2, 7)a(t, z)}
li| >k

a(0,z) =1 (8.12)
where
W(t, z,yi,m) = w(t, z,y;) + 20T2(t, z, y;) + 7219 (L, 2, y;)

Vit z) = Z iAzw(t, 2, y;)

li|>k

R(t,z,m) := Z (w(t,z, ;) + QWIg(t,z,yi)) —2mp(t, z) — 2 D(t, 2)
li|>k
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Remark 8.3. The same type of computations can be used to approrimate the coef-
ficients appearing in the PIDEs 7, like, for example,

/|y>1 Tz ) and /R (ew’z’y) — 1= zvy)) v(dy)

8.3.2 The algorithm for the function a: numerical scheme and con-
vergence

Fix n € N, At = T'/n and consider ¢, = nAt. To solve PIDE (8.12)) we use an
implicit scheme for linear part, which basically corresponds to a classical diffusion,
and an explicit one is used for the integral part: if a™ stands for a(nAt,.) then this
will lead to

an+1 —a® D(tn+1 ) 82an+1
y .

At 2 022
da™t1 - Oa™
") —— 4+ sup [ V(") —2aD({", z))—+
1( )5, S V(") (t",2))
R(t", .m)a" = Y W, .,y;,m)a"(z +iAz)| =0 (8.13)

[i|>k

For the implicit term a classical central difference scheme (order two) is used for
the first order differential term coupled with forward/backward differencing when
matrix coefficients due to diffusion are negative (see for example Forsyth et al.
(2005)). The explicit first order differential term is treated to have monotony of the
scheme. This transforms equations into

a1+ Ar(ag () + B(Y) — At (e - Atg (e art]

- L V() = 2mD( )

+ sup |a?(—1+ At(R(E", z;, 7"
71-6[7]_[,1—1} ]( ( ( J ) AZ )
n (f/(tn’z) —27T_D(tn72:'))+ n (V(tn’z) —QWD(tn,Z'))_
—aj_1 At J A J —aj Al J A J

ALY W, 25, yi, 7 )al ;| =0 (8.14)
7| >k

where a?“ stands for an approximation of a"H(zj) calculated at point z; and «;
and J3; are positive weights (see for example |[Forsyth and Labahn| (2007))) given by :

D(t’ Zj) ,Lb(t,Zj)

aj7central(t7) = IA 22 - 2A
D(t,z) | p(t, )
Bj,central(t) = A2 + A%
if &) central(t) Or Bj centrai(t, ™) is negative, we use
D(tvz ) ,u(t,z-)
aj,forwa'rd/backward(t) = 2AZ2] + mam((), - AZJ )
Dlt,2,) it 2)
ﬁj,forward/backward(t) = QAZZJ + mam(oa TZ])
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Denote with M the matrix

de(tn-‘rl) — aj(tn+1)+ﬁj(tn+1),
M (") = g™,
M (™) = (™),

and with B the matrix

D ’V(tnazj) —QFD(tn,Zj)‘

Bj;(t", ) = R(t",m,z)+ A, ,
Bjja(t",m) = —(V(t",2)—2xD(t", )",
Bjjn(t",m) = —(}7(75”721) —2wD(t", zj)) ",
Bjjwi(t",m) = —W(",m z,u), if |i] >k,
Bjjyi(t",m) = 0, for 1 <|i|] <k,

The system can be written in terms of these matrices:

(I +AtM (" )a™™ 4+ sup (=1 4 AtB(t",71))a" = 0 (8.15)
we(—ILII)

Theorem 8.4. Under the CFL condition

1% t, 2
sup | VU5 L oma(lut, )] + Dt )+
t. <

Z (2HIQ(t7 Zjayi) + w(t7 Zj yz)) + HQD(t7 Zj))+ At <1
|i| >k

the scheme|8.15] is consistent, monotone, Lo stable and converges to the viscosity

solution of equation ({8.8)).

The proof of this result can be found in |De Franco, Tankov, and Warin| (2012]). We
just remark that the integer £ > 1 in is chosen to improve the convergence
of the scheme. This is needed since the jump activity of the process may be very
high, and then the error we do in our approximations (in the Taylor expansions
as, for example, in , or in the approximated integrals as ) can be very
important. Taking & > 1 means that we extend the critical region Qy(¢, z) in
and this allows us to be more precise.

8.3.3 Resolution methodology to calculate the function b

We will use the same methodology developed in paragraphs for the
PIDE (8.7): we first rescale the function b to b(t,z) := e "b(t,2) and then we
proceed by truncating the domain of definition of b to obtain the new PIDE:

e on[-Z, Z] ) )
ob ab

tr 7 tr tri

b(0,z) = —2f(z)

where 7' [a] := —Q"a (gt’”a)fl



170 Chapter 8. Quadratic hedge in electricity markets

e on[~Z, —Z)U(Z, Z] we impose
b(t,z) = —=2f(2)a(t, z)e™™

Remark 8.5. The choice of the boundary condition outside the domain is justified
as follows: the value —b(t,z)/2a(t,z) can be interpreted as the cost of hedging the
pay-off f, that is, the wealth at time t which leads to the minimal hedging error at
maturity, as stated in . In the regions far from the money (and under the
assumption of zero interest rate), the cost of hedging can be approximated by the
option’s pay-off, whence the boundary condition for b.

Using the same discretization as before we get the following equation to solve
1 [_Z) Z]

2) 2% b/ o~
28 8 (Cuo-so o)

+b (77 + R(t, z, 7" ) Z W (t, z,yi, 7" [a])b(t, 2 + iAz)
i[>k

b(O, z) = —=2f(z) (8.17)
where
W (8, 2 6, 77 a]) o= (b, ) + 77 )Tt 2, )
R(t, z, 7" a)) == Z (w(t, z,Y;) + Wtr[a}lg(t, z,yi)) — TrtT[a],uQ(t, 2)
li|>k

and V and D(t, z) are the functions introduced in paragraph We propose, as
in paragraph [8:3.2] the following time discretization scheme :

BnJrl _ Bn D(thrl, ) 825n+1

At 2 92 T
~ rn+1 R ~
(V) — wla]" P D@ 2) — p( Z))al:% 4R, ] 4 )it —
ST (W ya mla)™ ) 6 (= iAz) +
|i| >k
S W Ly wla)™ ) b (2 + iA2) =0
[i]| >k

which becomes

57?+1(1 + At(a(t"ﬂ) +ﬁj(tn+1) + R(tn+17zj’7r[a]n+1) +"7) _

Atay (b5 — A (B + ALY (W, 2, yi wla] ) 0
7| >k

AL (W™ 2z, i, wa]" ) TBY L = 0(8.18)
[i|>k
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where 6? is the approximated value of b at (tn,2j), and ay, B; positive weights given
by :

D(t, z) n ‘N/(t, ) —mD(t, z) — p(t, z5)

j.central (s =
jcentral (£, ) 2A 22 2Az

" Dit,z) V(t,.)—nD(t,2) - ult, )
/Bj,central(ta 7T) - 2A 2 B 2Az

if & centrai(t, ™) Or Bj centrai(t, ™) is negative, we use

_ D(tz) | (V(t, ) —xD(t,2) — u(t,zj)>+

aj,forward/back:ward(tv 77) - 2A 22 Az

_ Dtz) | (ff(t, ) —wD(t,2) — plt, zj)>_

6j,forward/backward(t7 7T) - 2A 22 Az

Proposition 8.6. For a space discretization accurate enough (Az small enough),
taking

n= (46l +2 [ e 1y

the scheme (8.18)) is consistent and stable so it converges to the viscosity solution

of the PIDE (B.16).

Again, the proof of the above result is given in |De Franco, Tankov, and Warin
(2012)). Remark that this result is not the same of Theorem the function b
depends on a through the optimal control 7, for which we do not control the sign.
This has an important impact on the convergence of the Scheme for b.

8.4 A numerical example

In this last paragraph we will study the problem (8.5) when L in (8.1)) is a
Normal Inverse Gaussian process with parameter «, 3,9, u: Ly ~ NIG (e, B, dt, ut).

Remark 8.7. Remark that a should not be mistaken for the parameter in Lemma
[8.1); similarly p is not the drift function given in the same Lemma. We use this
notation because it is standard in the literature.

We can write then

_ i o
Ly = (u + 3 + /|y21 yu(dy)) t +/O /RyJ(dyds)

where J is a Poisson random measure with intensity

ad y—0 1
v(dy) =—— Ki(aly|)e™dy v(dy) '~ —5dy
7|yl ly[?
—+00 1 —(a— ——00 1 —(a

where K7 is the modified Bessel function of the second kind (paragraph 4.4.3 in
Cont and Tankov| (2004)).
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Remark 8.8. The NIG is a infinite variation Lévy process with stable-like behavior
of small jumps, and since the Blumenthal-Getoor index is equal to 1, we cannot
apply Lemma[8-1] and then Theorems[7.1JH7.17. It is nevertheless a case of interest
because the NIG model is popular among practitioners.

We want to solve problem ({8.5)) for European options with maturity 7' = 1 week
and duration d equal to 7 days of the week. We recall that the future contract in
this case is given by

14
Pranystucsis = 5 [ (0, 9)e5 s (519
and A; is given in relatively to the NIG process L given above.

In Table we give the forward curve for the week, whereas the discount factor
¢ is taken equal to 0.19. As we said in Remark [8:8 we cannot apply Lemma 8.1 and
Theorems to solve problem by the mean of the PIDEs (8.6)-(3.7).
It is nevertheless interesting to see what we get when we compute numerically these
PIDEs in the case of the NIG process. We obtain the dynamics of the process Z
by using the same computations of Lemma and in this numerical experiment
we use the following parameters of the NIG process: = 0.08, a = 6.23, 8 = 0.06,
d = 0.1027. Remark that the Lévy measure v(dy) relative to these parameters
satisfies, at least, the regularity and integrability conditions i) — 4i) — #ii) of the
above mentioned Lemma. Remark also that in this case Z is not a Lévy process:
we cannot use the method given in Hubalek et al| (2006) to obtain the optimal

strategy in problem (8.5]).

Day s Price (¢(0,s))
Monday s€7,8) 80
Tuesday s €[8,9) 90
Wednesday | s € [9,10) 70
Thursday € [10,11) 90
Friday € [11,12) 80
Saturday €[12,13) 70
Sunday € [13,14] 60

Table 8.1: The forward curve. Prices are given in Eur.

For all numerical experiments we suppose that 7= 12, Z = 8, we take a number of
meshes equal to 800 and a number of time step equal to 800. The value k, used to
define the domains ©; in , is taken equal to 3. We already discussed on the fact
that it is numerically better to take k£ > 1 when the jump activity of the process is
important, as in the NIG case.

All the MonteCarlo calculations are carried out with 2 million particles. We can now
apply the scheme to compute the function a. Figureshows what we obtain
by using a sufficiently accurate discretization procedure. Although we cannot apply
Theorem we observe that, numerically, the function a is sufficiently smooth.
How to explain this regularity? The reason must be sought in the discretization pro-
cedure proposed in Paragraph in where we replaced the non local first order
operator B"a with a second order term of the form D(t, 2)92,a + first order terms.
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Figure 8.5: The value function (¢, z) — a(t, z) for the NIG process.

Heuristically this is equivalent to replace the small jumps of the process Z with a
Brownian motion. The second order term D(t, 2)0?,a transform the PIDE (8.6]) into
a non degenerate parabolic second order PIDE with artificial boundary conditions
(the PIDE (8.12))). As we will explain in Chapter @, this PIDE has a unique smooth
solution, and this explain why we obtain a smooth numerical approximation of the
function a. This is one of the reasons that motivated us to test our PIDEs for the
NIG process, even if, as we said, the behavior of small jumps does not fulfill our
initial Assumptions [7.1]

The optimal control 7*(¢, z) is shown in Figure We now use the function a and
the optimal control 7* to solve the PIDE by means of the scheme (8.18)). In
Figure we present the result for an at-the-money call option with strike 1 on

the future contract introduced in (8.19)), whereas Figure shows the profile of an
at-the-money put option.

8.4.1 The martingale case

The quadratic hedge problem is relatively easy when the underlying stock price
is a martingale. Practitioners usually compute the hedge strategy by supposing that
the underlying stock price process is a martingale. Assuming that F' is a martingale
means that we should have

1 T+d

Fd,T,t = g T ¢(0, S) €xp (M(Sv t) + Z(S)At) ds

for some M that makes F' a martingale under the historical probability P. From
the definition of L and It6’s formula it is easy to prove that M defined as follows

op

. _—c(s—t

) dt+ / (exp(e_c(s_t)y) -1- e‘c(s‘t)y) v(dy)dt
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Figure 8.6: The optimal control (¢,z) — 7*(¢, 2) for the NIG process.
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Figure 8.7: The value function b(t, z) for an at-the-money call option.

makes F' a martingale. If we want to solve problem with the above F', then,
as usual, we have to compute the functions a and b, solutions of the PIDEs ({8.6])—
(8.7). From Remark we know that, in the martingale case, the function a is
equal to 1. The optimal strategy is then completely determined by the function b,
which is the solution of a linear PIDE. We compute numerically this strategy and
compare it with the one previously found, when we considered the model ,
i.e. when F' was not supposed to be a martingale. We propose to evaluate the
loss of efficiency when using these two hedge strategies on call and put options with
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Figure 8.8: The value function b(¢, z) for an at-the-money put option.

different moneyness. Our efficiency comparison criterion is the following: if H is the
option (call/put) and §¥74¢ §™art are, respectively, the quadratic and the martingale
hedge strategies, then the efficiency is measured in terms of the standard deviation

of the hedged portfolios:
T
/ Hff"“edder)
t

is the true optimal price given in (5.42)). Similarly

efficiency(*"“¢)? := variance <H (Fyry) — ™ —

where ztrue

T
efficiency (8™%%)? := variance <H (Fyry) — 2™t — / an_‘lrtdFd,TW)
t

where 2" is the price given in when one uses the function a and b relative
to the martingale model., i.e. 2% is the risk neutral price of H. Table resumes
our analysis when ¢ = 0. The numerical experiment proves that one loses efficiency
when using the martingale hedge strategy. This is coherent with the fact that §!7u¢
achieves the minimum un problem , so then it overperforms the strategy ™,
which is just an admissible strategy in the previous mentioned problem.

Option H | Moneyness | Option value (z'7%¢) | efficiency(87%¢) | efficiency (™)
Call 1 4.199 1.085 1.316
Put 1 4.213 1.087 1.315
Call 1.5 0.120 0.168 0.212
Put 1.5 38.80 0.175 0.34

Table 8.2: Pricing and standard deviation of hedged portfolio







Chapter 9

The PIDE truncation effect

The chapter is organized as follows: we start by explaining why it is important to
study the semi linear PIDE wverified by the value function of the pure investment
problem, when one truncates the domain of solvability (Section . For this, we
first provide an approximation of this value function by cutting the small jumps
of the Lévy measure and replace them with a term involving the second derivative,
and then we prove the convergence of this approrimation to the true value function
(Section . We then prove that the truncated PIDE relative to this approximation
has a unique smooth solution (Section , and we finally prove an estimate on the
error due to the truncation of the domain (Section .

Contents
9.1 Motivations| . . . . ... ... . o o oo 177
[9.2 A first approximation| . . . . . .. ... 0000000 179
9.3 The semi linear PIDE on a bounded domain| . . . . . . . 182
[9.3.1 Existence and Uniqueness in the viscosity sense| . . . . . . 182
[9.3.2  Existence and Uniqueness in the viscosity sense| . . . . . . 184
9.4 Estimate on the truncated PIDE| . . . ... ... ..... 191

9.1 DMotivations

In the example proposed in Chapter [§f we showed how to solve the PIDEs (8.6)—
to obtain the value function and the optimal control of problem . Our
theoretical results ensured that these PIDEs have a smooth classical solution on
the domain [0,T] x R. Nevertheless, in order to implement a numerical scheme, we
needed to truncate the solvability domain of these PIDEs: we consider f in
a bounded domain of the form [0, 7] x [-Z, Z] with artificial Dirichlet conditions at
the boundary. It is then natural to ask whenever these truncated PIDEs still have
a smooth solution and how the artificial boundary conditions affect the solution.

To simplify the presentation we consider the model of Chapter [6] and we assume
that the process Z in does not depend on U. We will also concentrate on
the PIDE verified by the function a, since a similar approach can be used for b.
Remark that, from a practical point of view, one only needs of a and b to compute

177
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the optimal strategy of problem ([5.11]), which is given in ([5.50)).
We recall that if a denotes the function in (5.13)), then (¢,2) — a(t,2)e™ is the
unique solution of

Jda

OZ—E

+na + Aia — Bra — Hlal, a(T,z) = e

and it belongs to C1=9)/2+1.2+(1=9) (|0, T x R), for any n > 0. From a numerical
point of view one is instead interested in

Oa

Oz—a—kna—kAta—Bta—Ht[a] (t,2) € [0,T) x (—Z, Z)
a(T, z) = el z€(-4,2) (9-1)
a(t, z) = eq(t, 2) (t,z) € [0,T] x (—Z, Z)°

for some artificial Dirichlet boundary condition g. Remark that it is possible to
consider a more general domain of the form (71, Z2): in general the choice of the
domain depends on the particular needs of the numerical discretization. However,
it is important for the sequel that the domain has a smooth boundary: in the
one dimensional case this is trivially true if one considers open intervals. For the
multidimensional case one should consider, for example, bounded cylinders. The
above truncated PIDE naturally arises when one wants to compute numerically
the function a. Our aim is then to prove that it has a unique solution, which
also is smooth inside the domain, and give some estimate of the error between the
function a and the solution of the above PIDE. The analysis of this PIDE may be
very difficult when the intensity measure is not finite. This is related to the behavior
of the non local operator

Oa

(t,z) = Ba(t,z) := / <a(t, 2+t z,9)) —alt, z) — (¢, z,y)%(t, z)]l{|y§1}> v(dy)

when z reaches the boundary of the truncated domain. Heuristically, we can remark
that the operator BB behaves as 92,a(t, z) + "first order operator”. Since there is no
hope to prove that the solution of PIDE is twice continuously differentiable
at the boundary [0,7] x {—Z, Z}, the operator B will be not properly defined on
the above boundary, and the map (t,z) — Bal(t,z), for |z|] < Z, may fail to be
uniformly Hoélder continuous. Much more tractable is the case when the intensity
measure v(dy) is finite. For this, before considering the truncated PIDE (9.1]), we
show how to transform the initial parameters of the model , (p, 02,7y, v(dy)) in
order to obtain a finite intensity measure. As we will see in Section [9.2] this is done
by cutting the small jumps of the process Z and "replace” them with a Brownian
motion, as we did in Paragraph This replacing transforms, at the same time,
the jump measure of the process into a finite intensity measure and the volatility
function . Our task then reduces to considering the value function of the pure
investment problem when the process Z has finite jumps. In the sequel, we will
denote this new function a”, where h > 0 is the level at which we cut the small
jumps. A first result is to prove that this new value function a” converges to the
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function @ when h — 0. In Section [9.3] we then study the truncated PIDE which
characterizes the function a”, which has the same structure as PIDE , except
for the fact that the non local operators are all of order zero.

Throughout the chapter we denote QT := [0,T] x [~Z,Z] and U := [0,7] x
(—=Z, Z)¢. Moreover, for a function ¢ defined on Q7 |||, /2,07 denotes the Holder
norm of ¢ relatively to QT for example,

t — ot 2
lolloar = sup lo(t2) and (@)=  sup (2, 2) SOI(Z L2
’ t<T,|z|<Z ’ (t,2),(t,2)eQT |z — 2|

The same convention stands in force for the Holder norm of type 2, and for the
Hélder norm on the domain U7

9.2 A first approximation

Let h > 0 and consider
h L 2
)= [ Pty
ly|<h

Assumptions [5.1 on v show that 4" is bounded, Lipschitz continuous w.r.t. ¢
and z and that v — 0 when h — 0, uniformly in ¢, z. Since

1 0 8280
B(t, z) = / a6 / a6 / 2L 8t 2, ) (dy)
0 0 i<h 0z
0
# [ (et - ol -2l 50 G e ) Vi)
ly|>h Z

then we could replace the above operator with

h , 2 H? 0
TEATEC+ [ (ot 490020 00,9 = 9020 G20 Dz ) vid

This is equivalent to consider the pure investment problem (5.13|) with the new
parameters

(M, o+ ", V(dy)ﬂ{\h\<y}> (9.2)

If a® denotes the value function of the pure investment problem corresponding to
these initial parameters, then from Theorems [5.11H6.8] we obtain that the map
(t,z) — a"(t, z)e" is the unique solution of

dal

0= "%

+ na’ + Al — Blta" — H"[a"], aM(T,z) = e (9.3)
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provided that 7' < T*", where T%" is the maximal time given in Theorem
relatively to the new parameters. The above operators are given by

dal 1 A2ah
h h._ Y% 2 2 h
Aga’ = ary 2(0 +7) 022

da
B{’ah ::/ (ah(t, z+7)— ah(t, z) — 'ya]l{|y|<1}> v(dy)
h<ly| z
N dal
hah .=phah + (02 + 'yh) 5 + / (7 —=1) (ah(t, z+7) —a(t, z)ﬂ{|y|§1}> v(dy)
z h<[y|

hot = ((72 + 'yh) a + / (&7 = 1)%a"(t, z + v)v(dy)
h<ly|

HPa") .= inf {27erah + WQQfah} (9.4)
|| <ITh

where fi* is given in with the new parameters and II* in is the a priori
bound corresponding to the new parameters. The main advantage when considering
the value function a” is due to the fact that the intensity measure is now finite and
then we could write, for example,

Bhah — h _ .k du) — da” d
ia a'(t,z +7) —a’(t,2) | v(dy) — — v(t, 2, y)v(dy)
h<|y| < h<|y|<1

It is relatively easy to check the regularity of the right hand side when z approaches
the boundary of the truncated domain. Our aim now is to prove that the function a”
converges in some functional space to a and the optimal control (7/)* also converges
to ¥, the optimal control relative to the function a. For this we will suppose that

T <T*ANT™" (9.5)

in order to guarantee that both a and a” are smooth solutions of their respective
PIDEs.

Theorem 9.1. Let Assumptions hold true together with the condition (9.5)).
Then

i) |la— “hH2—5,H < Mye(h)
@i). |7 — (”h)*H1—5,H < Myo(h)

where (7")* is the optimal control given in (5.47) relatively to a®, M (n) is a positive
constant that depends on 1 > 0 but not on h and o(h) is the function introduced in
Lemma[6.2:

o(h) := / 2 (y)v(dy) — 0, when h — 0
ly|<h

Proof.
From Propositionwe know that there exists a sequence ¢ € C1+(1=0)/2:2+(1=9) ([0 T x
R) that converges in H>~°([0,T] x R) to a:

le"™ —ally_s5,5g = 0, n — 00
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and the same holds true when considering the function a”:

where ™" is another sequence that also belongs to C'1*(1=9)/2.2+(1=9) ([0 T] x R).
Since

Jo ']

n,h_a

%) hH —0,n—o00

2-6,H

n,h

o — ahH (9.6)

‘2—5,1{ ’ 2-8,H

psi S I loesm +||¢" —
we can concentrate on the middle term Hcp" — gp”’th_ sz Let M denote a positive
constant that does not depend on 7 or h whereas M, is a positive constant that

does depend on 1 but not on h. They may change from line to line.

If A} := " — ©™" then we can write

0

ot
1 82<,0n+1 " " 8¢n
—§7h 5, T /y|<h <90 (t,z+7) —¢"(t, 2) — T, ]1{|y|<1}) v(dy)

AP T, 2) =0

AL AN A = BEAT + ") — HE ™

where we basically used the definition of these sequences stated in (6.3)).
First we can estimate the second derivative appearing in the above PDE:

1 haQ(pn—&—l " . ason
37 5%, _/y|§h Ptz + ) = ¢t 2) = v~ Lyyi<ay | v(dy)
<Msupll "l | W) < My 0.7)
n RS

by using Lemma We can proceed as in the proof of Lemma [6.2] to prove that
for any r,e > 0

=M (o) + <)) A7 s+ IBR)  (98)

where ¢(r) — oo if the function 7 is not integrable around zero. To conclude, we
readapt the proof of Lemma [6.3] and obtain

HB%;}

HHW] _ Hh[@n,h]Hoo <M <HQ¢n _ ghynh ‘gw - gh(pn,hH(X)
<M (||A;;H1MH + o(h) Hso”\lz,H)

for some 0 < A < 1 — 9, where we used the structure of the operators Q,G and
Q" G". Apply then Proposition to deduce

|+
o0

e = w1 )| < (7T N8R a—s s + €I NAR N + o) 6" )

We now use the above estimation and |D as in the proof of Proposition
to obtain, for some 71 big enough and some € (0,1)

AT sy < BUAT o551, + M(m)olh)
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where, as usual, || lo_s ;1) = | lo_s s + 1| - Tt follows then
AT sy < M) (B + o(h))

Finally, we use the above estimate in and let n — oo to prove part i). For
part ii) we have

Using the estimation given in ¢) and the structure of the above operators it is not
difficult to prove that

Remark that the optimal control depends on the first derivative of a: this explains
why we can just give an estimate on the Holder norm of order 1 — 4.

QCL Qhah

71'* _ ﬂ_h * _ || =2 _
(") 1-6,H ‘ Ga  Ghah

1-6,H

ot — (ﬂ_h)*

o < Mol

g

This result proves that we can approximate with arbitrary precision the value
function a and the optimal control #* by taking h small enough. This allows us to
study the truncated PIDE for a” instead of a.

9.3 The semi linear PIDE on a bounded domain

9.3.1 Existence and Uniqueness in the viscosity sense

From now on we assume fixed h > 0. We start by making some simplifications
in the definition of the differential operators in (9.4)): define first " (¢, 2) := u(t, z) —
fh<|h|<1 v(t, z,y)v(dy), then redefine the operators as follows:

redef Ga 1 82ah
Apa" W o _§< i h) 022
Bl [ (a4 )~ d(t.) vldy
h<|y|
rede 0 h
hah f<u a +7 )>ah+(0 +’y) a +/ (¥ —=1)al(t, z + v)v(dy)
0z h<ly|
ga" " (249t ) [ (= 1P+ uldy)
h<ly|
HMa"] redel inf {271'Qta +7 gthah} (9.9)
|7 <ITh

The function (t,2) — a”(t, z)e™ verifies
h

0= 88 — na" + Ala" — Bla" — H"[a"], a™(T,z) = e (9.10)

From the above definition we remark that the non local operators are all of order
zero, which will substantially simplify our computations. Remark however that at
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this point we cannot let anymore h — 0, since the above coefficients and operators
may not be properly defined if the Lévy measure v is infinite. According to Theorem
we assume then that h > 0 is selected and fixed in order to have a suitably
small error when replacing the function a with a”.

Remark 9.2. From now on, all the constants appearing in our estimates may
depend on h.

As we already anticipated in Section let Z > 0 and consider the problem ((9.10))
in the bounded parabolic domain [0,7] x [-Z, Z]:

( tr
0= —8gt +na'” + Aha'" — Bra'" — H o] (t,2) €[0,T) x (—Z, Z)
a"(T,2) = 7 ve(-z,z) O
a(t,z) = e"q(t, 2) (t,2) €[0,T] x (—Z, Z)°

Here the superscript tr stands for truncated. In the rest of the Chapter we will
prove that the above PIDE has a unique solution which is smooth in the domain
[0,T] x [~Z, Z] and give an estimate on the error between a/” and a”. One can
then use Theorem [9.1] to deduce an estimate on the error between a!” and a.

Note that, due to the non local component, the Dirichlet condition ¢ has to be
specified on the entire domain [0,7] x (—Z, Z)°. We assume that ¢ has the same
regularity as the function a” outside the domain': ¢ € 0(1_5)/2+1’2+(1_6)(UT) and

li t2) =1 9.12
t—>T1,\r,Izl|EZQ(7Z) (9.12)

to ensure continuity at time ¢t = T.

Lemma 9.3. Under Assumptions there exists a unique viscosity solution
of PIDE (9.11)). If (9.12)) also holds true then it is continuous and it assumes the
boundary condition in the classical sense.

Proof.

The result is a direct application? of Theorem 3 in Barles, Chasseigne, and Imbert
(2008). Remark that we would have a unique viscosity solution even under less
constraining Assumptions.

0

LThis is actually not necessary and one could consider some other Dirichlet boundary condition
that belongs to C<175/>/2+1’2+<175/)(UT) for some &’ € (0,1). We prefer to take ¢ in the same space
of a™ for sake of coherence.

2Theorem 3 in[Barles, Chasseigne, and Imbert (2008) proves existence and uniqueness for elliptic
differential problems. However, as the authors precise in Section 4.3 of the same paper, the proof
can be easily adapted to the parabolic case.
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9.3.2 Existence and Uniqueness in the viscosity sense

In this paragraph we will first prove that the unique viscosity solution of PIDE
belongs to C279(QT). This will allow us to remove the non linearity in
the PIDE and finally prove that this unique viscosity solution belongs to
O1+(1-6)/2,2+ 176)(QT)‘

For this, we will need to assume that the function ¢ verifies a compatibility
condition at time ¢ = 7T". Condition gives the continuity of ¢, but we also have
to impose that the derivative w.r.t. t of the function a'", which can be computed
from the equation and the initial conditions, is equal to the derivative of the Dirichlet
boundary condition. In particular one must have

o tr
o (1,2) = e =W [a" (T, 2)]
from (9.11)). If we impose that
delllq Oa'"
T, z)= T -Z,Z
then we should have
2
dq (Qhatr(T» Z))
—(T,2) = ~—F———— -Z,Z
on\ T2 = Tghair(r ) P UEL

By using the terminal condition of a” and the definition of A" and G", we will
obtain

dq
a (Ta Z)

2
_ (e 30%) + o (7 = 1= i) Lgniny + 27" Lwizm) ()™ 1o

02+ [repy (€7 = 1)2Lgjn<yy + 72 Ljy<ny) v(dy)

where the coefficients are evaluated at the point (T, z) and z € {—Z,Z}. We also
need to assume some regularity on the function v and o:

There exists 6" € (0,1) such that d,0,8.v € HY ([0,T] x R), for any ,y. (9.14)

We will explain later where these assumptions are needed. Define then
k= min(l — §, &) (9.15)

As we already did many times (see Sections [6.2.2H{7.4.1]), we prove that the unique
viscosity solution of PIDE belongs to C1+(170)/2:2+(1=0)(QT by introducing
a sequence of smooth function ¢" and proving that it converges to the unique
viscosity solution in the above mentioned Holder space. Let us start with some
Po € HF/2HL24(10, T] x R) and consider (¢"),,oy defined by

"t 2) (t,2) €10,T] x [-Z, Z]
Gt 2) = (9.16)
eq(t,z) (t,z) €0,T) x [-Z, Z]°

where "1 verifies
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8 n+1 n n ~n ~n
~S g AN = B~ W[ (1,2) € [0.7) x (<Z. Z)
(T, ) = " ce(-z,z) O
¢t 2) = eM(t, 2) (t,2) € [0,T] x {~Z, Z}

Remark 9.4. From now on we will adopt the following notation: for any function
¥ QT = R, we denote with 1 the extension of this map on the domain [0,T] x R
with the Dirichlet boundary condition:

_ ¢n+1(t’ Z) (t72> € [OvT] x [_17 Z]
P, 2) =
eq(t,z) (t,2)€[0,T]x[-Z, Z]°

Our first objective is to prove that the sequence in (9.16|) is well defined. For this
we need a preliminary result on the properties on the operators B" and H":

Lemma 9.5. Let Assumptions hold true. There ewists some positive con-
stant M > 0 such that for all ¢ € C*/>F12H5(QT) we have

1B*2" || <M (16" lsor + € oo )
00,2
[ <M (19" g + € ot )
00,2
and
h ~ T
857 e < 2 (1" e + € Nalepsnior)
th =n H h ~n H h ~n <
H [QO ] k/2,k,QT + Q v K/2,k,0QT + g v K/2,5,0QT

M (HW”H(KH)/ZH&QT +e" HQHR/Q,K,UT)

where 1/; denotes the extension of ¢ according to the Remark . The constant M
does not depend on n.

Proof.
The proof can be completed with the type of computations we made for Lemmas
by using the fact that outside the domain QT the map 1 is equal to e7q.

The only difference arises when one has to estimate (BW&")S}ET (or (thé’“‘)g})ﬂ and

so on), since one has to take into account the particular form of z; We detail this

(%)

. qr: we first have

computation for (B"@")

B < [ @400 0) = 02 rvla)
<ly
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Fix z,2' € [-Z, Z]: it follows

@™ (t, 2+ 7(t, 2,9)) — §"(t,2) — " (1, 2 + (1, 2, ) + §" (¢, 2)]
S<¢”>ZQT!z T+ @t 2+ (t 2,y) — B (2 + (2 )

If 2+ 7(t,2,9),2" +7(t,2,y) € (~Z,Z) then
|G (t, 2 +7(t, 2,y) — &"(t, 2" +(t, 2, y))| < M1+ p(y)")|z — Z’!“<<P”>i?ﬂ

If instead z + (¢, 2,y) € (—=Z,Z) but 2 +~(t,2',y) ¢ (—Z,Z), then we can find
some A € [0, 1] such that z) +~(¢, 25, y) € [0,T] x {Z, Z}, where z) := 2+ A\(2' — 2).
This is due to the continuity of the map z — (¢, z,y). We deduce then
2" (t, 2 +(t 2,y) = @" (8.2 + (82, y))]
<[@"(t 2 +(t 2,y)) — &"(t 2n + (1t 20, 9))]
2" (t, 20 +(t, 20, 9) — 2" (¢, Z’+v(t Z’ )]

<M (14 p(y)")|z — 2" <<90 ar T

<M(1+p())|z = 21" (™) e + e"T< >§;°T)

+

Finally, if both are outside the interval (—Z, Z) then, we can distinguish two cases

e both z+ (¢, 2,y) and 2’ +~(¢,2',y) are on the same side w.r.t. (—Z, %), and
then

|57t 2 +Y(t 2,) — B (6,2 + (12, )| < M(L+ p(y))e' |z — 2/ ()L

e one is bigger than Z whereas the other is smaller that —Z: in this case the
triangular inequality yields

@™t 2 +(t 2,y) — @t 2+ (2, )]
<M1+ ply))lz = 217 (") e + T (@)57)

Adding up all the above estimates we obtain

(B3 0 < M (19" | oir + € 1alojz05r)

The same argument can be used to estimate <Bh¢")§fS)T/ 2),

0

The above Lemma allows us to prove that the sequence in is well defined.
Assume that the compatibility conditions (| - 9.13)) hold true By recurrence, if
" € C*2H1L2HR(QT) is well defined then Lemma [9.5] yields

Bh@’n + /Hh[@n] e OH/Q,H(QT)
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We can use Theorem 5.2, Chapter IV in |Ladyzenskaja et al. (1967) to deduce that
PIDE (9.17) has a unique solution which belongs to C*/ 24+1L24r(QT), This proves
that ¢"*! is also well defined. Furthermore

o™l

2

<M <e’7T + HB%” + H P

+1,2+4k,Q7 /20,07 + HentqH g,2+n,z5T>

Remark 9.6. The function @™ is Lipschitz continuous at the boundary [0,T] x
{—2Z,2Z}: since ™ € CF/2H1245(QT then HDZSO”HHOO,QT is finite. But HDZ(entq)HOOUT
is also finite for any t < T. This means that the function z — ¢"T1(t, 2) is contin-
uous and has bounded left and right derivatives on the boundary [0,T] x {—Z,Z},
which proves that g"! is Lipschitz continuous on [0,T] x {—Z, Z}.

The analog of Proposition [6.5] is this case it the following:

Proposition 9.7. Let Assumptions hold true together with the compatibility

conditions f. Assume also that condition stands in force. For n
big enough, the sequence ©" defined in converges to some p* € H>~0(QT).
Furthermore for any v € (0,1) there exists some positive constant M, which depends
on v such that

0% (1, 2) = * (1, 2)| < MyJt =¥, for any t,¢',2

and
‘ngo*(t, 2) — D, (t, z)| < Myt — t’|U/2, for any t,t',

Proof. 3
If Antl.= o+l — o and A" = "+ — 3" then

AN N
— g FATT A AN = BIAT + WG = MMM (12) €(0,T) x (£, Z)
" HT,2) =0 2€(-2,2)
Pt 2) =0 (t,2) € [0, 7] x{~2, 2}

The unique solution of the above linear PDE is explicitly given in |Ladyzenskaja
et al.| (1967), Section §16,

T Z
AUt 2) = / e Mt s / CG(T —t,2,T — s,&)R"(y, €)dé (9.18)
t -Z

where R" := B"A™ + H"[¢"] — H"[¢" '] and G the Green’s function given in
Theorem 16.3 of |Ladyzenskaja et al.| (1967)), Chapter IV, §16, which verifies

i). For 2r +s <2,

IDIDIG(t, 2,5,6)| <mu(t—s)" 2 exp (‘mQ’zztg')
— S



188 Chapter 9. The PIDE truncation effect

ii). For 2i 4+ j =2 and any ¢ € (0,1)

"N |2
!DiDéG(u 2,8,€) — DiDIG(t, 7, 8,5)‘ <my|z — 2t - 3)735r exp <—m2|Z£|>
_%
Here 2" is the closest point to £ which belongs to the segment zz'.

iii). For 2i+j=1,2and s <t < t.

2-2i—j+u

IDIDIG(t, z,5,€) — DiDIG(Y,2,5,6)| <mut' —s| "% |t — /| 2

< jw—¢ |2>
exp ( —mg———

s—1t
for 0 < s < t and positive constants mq, ms.

We can follow the scheme of the proof of Proposition to deduce that (¢"),
is a Cauchy sequence in H>7(QT). There exists then some ¢* € H?>~9(QT) such
that o, — ¢*.

Let us now prove the regularity of ¢* w.r.t. . From (9.18) we can write, for ' < ¢,

‘An+1(t, Z) _ An+1(t,, Z)’

T z
SHR"HOO,QT/ e—”(s—“/ |G(T —t,2,T —5,&) —G(T —t',2,T — 5,£)| déds
t

—Z
IR or /

T Z
+[|R™| oo ’e"(t/_t) — 1’/ e—”<s—t>/ |G(T —t,2,T — 5,)| déds
t -Z

t

A
e st) / |G(T —t,2,T — s5,£)| déds
—Z

By using Lemma [6.4] we have

Z
/ ‘G(T—t,z,T—s,Q—G(T—t’,z,T—s,{)‘dﬁ <M
—-Z

but also

Z
/ |G(T_t’ZaT_87€) —G(T—t/,Z,T—S,f)’df < ]\4’75_75/”5_7”_1
—Z

so that
Z
/ (G(T — t,2.T — 5,6) — G(T — ¢/, 2,T — 5,6)| dé < Mylt — #|"|s — ]~
—-Z

The first term in the right hand side is then estimated with

T Z
/ e_"(s—t)/ ‘G(T—t,z,T—s,{)—G(T—t’,z,T—s,ﬁ)‘dfdsSMu\t—t’]“
t -Z
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For the second it is straightforward
t . [z
/ e~ (st / |G(T —t',2,T — 5,§)| déds < M|t —¢/|
t -z

whereas for the third one, there is some A € [0,1] such that
’ T Z
’e”(t ) _ 1’/ e"<“>/ G(T —t',2,T — 5,¢)| déds
t -Z
T

<Mt — t' | 1) / e 5D ds < Mt —t/|
t

since t' < t. We conclude then
‘An—i-l(t’ Z) _ A"‘H(t/,z)} S MU HRnHoo,QT ‘t - t/’U

for some positive M,, which depends on v. We can finally readapt the argument of
the proof of Proposition to prove that the sequence of functions t — ¢"(¢,.) is
also a Cauchy sequence in the Holder space HV ([0,7]), and then its limit, ¢*, has
to belong to this space. In particular

’cp*(t,z) - gp*(tljz)‘ < Mylt —t'|V, for any t,t', 2

With the same type of computations we prove that the sequence of functions ¢ —
D.¢"(t, z) is a Cauchy sequence in the Holder space H"/2 ([0, T]) for any v € (0, 1).
It follows that also D,p* has to belongs to this space.

d

Corollary 9.8. Let Assumptions[5.1H6-1] hold true together with the compatibility

conditions ([9.12)~(90.13)). Let ©* be the limit in H>*~%(QT) of the sequence p,. Its
extension to [0,T] x R, @* is the unique viscosity solution of PIDE (9.11)):

¢*(t,2) = a'"(t, 2) (9.19)

Proof. We define

Bt,z R . R
b(t,2) =E [ / 0 (Bl = WP ) (5, 28%) + €7 q (8%, 257
t

where Btz is the hitting time of the boundary:

B .= T Ainf {s >t ‘Zﬁz

> g} (9.20)

and
dZb% = ph(s, Z1%)ds + (m) (5, 205V AW,, 2% = 2

Remark that from the Markov property of the process Z we have

~ ~ St,z ~
Bt% = 9% for any stopping time t < 0 < *
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In particular, according to Remark we can write

B(t,2) = E [ / " et (Bla" = HM@") (s, Z2%)ds + "3 (6, Zé’z)}
t

As in Step 3 of the proof of Theorem we deduce that 1 is the unique viscosity
solution® of (9.17). Since ¢"*! is the unique smooth solution of (9.17), we deduce
Y = "1 and then

[%
F(t,2) =E [ / e (B — HP[E") (s, ZE%)ds + e (o, Z;’Z)}
t

Since " — * in H279(QT) (Proposition [9.7) and the operators B* and H" are
bounded and continuous, we can let n — oo and obtain

0
Fita) = B[ [0 (Bt~ He)) 5,28 + 5 (0.257)|
t

For t = T we have @*(T, z) = ¢*(T, z) = €', by construction of the sequence ",
which converges to ¢*. If instead |z| > Z, i.e., we are outside the domain, then
trivially 8%* = ¢, from which we deduce §(t,z) = e"q(t,z). Again by following the
Step 3 of the proof of Theorem [6.8] we deduce that ¢* is a viscosity solution of PIDE
: form the uniqueness of this solution (Lemma we deduce

95* (t’ Z) = atT(tv Z)

We are now able to prove the main result of this chapter:

Theorem 9.9. Let Assumptions stand in force and assume also that the
functions o and v verify . If the Dirichlet boundary condition q belongs to
C(=9)/241.2+(=0)(5T) and verifies the compatibility conditions ([9-12)—~(9.13)), then
the PIDE has a unique solution a'™ which verifies

tr

a" |gr € Cﬁ/2+1,l{+2(QT)

where k is giwen in (9.15)). Trivially

tr

a' e € Cn/2+1,ﬁ+2(UT)

since q belongs to this space, and z — a'"(t, z) is Lipschitz continuous for all t < T.

Proof.
The only thing we need to prove is that a” |r € C*/2+15+2(QT) | Remark that

Hh[atr] — 2ﬂ_trQhatr + (ﬂ_tr)antr

3According to the definition of viscosity solution, one replaces the function v with a twice
continuously differentiable test function, for which we can apply It6’s formula. Then we do not
need to take care of the non smoothness of ’lZJ at the boundary (0,7) x {—Z, Z}. In other words,
the Feynman-Kac formula holds true and gives a probabilistic representation of the function @"*?.
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where

Qhatr )
G M (9.21)

from the definition of #"[a!"] in . Proposition Corollary and the regu-
larity of ¢ imply that 7t € C(1=9)/21=-9(]0, T x R) and in particular, from (9.15),
we have 7" € C*/2#([0,T] x R). This allows us to linearize the PIDE (9.11)): as
already seen many times, we define the map Z, (1) as follows

"= T v —

_8Eg)£¢) +0E () + AME, (1) = B + 20T QM) + ()26 [0,T) x (~Z, Z)
=Z()(T,2) = ™ 2€ (%, 2)
Zn(@)(t,2) = €™q(t, 2) 0,7) % {~2, Z}

for ¢» € C*/2t1245(QT). Theorem 5.2, Chapter IV in [Ladyzenskaja et al| (1967)
guarantees that this map is well defined in C*/ 2+1245(QT). We can now proceed
as in Step 2 of the proof of Theorem to deduce that, for n big enough, the map
E, is a contraction in n C*/2F12+7(QT)4 If call 1* its unique fixed then, according
to Remark it verifies

_a;/;* i 7777;* —i—Ahl;* — B?T;* + 27TtrQh1;* + (ﬂ_tr)Zghqz* (t, Z) c [O,T) % (_Z, Z)
T;*(T, Z) = enT = (_Z, Z)
| *(t2) = e"q(t, 2) (t,2) € [0,T] x {~Z, Z}

Since a'" is the unique viscosity solution of the above PIDE (Lemma we deduce
that ¢* = a'", i.e. the restriction to QT of a'" belongs to C*/2T12H5(QT). This
proves that PIDE has a unique solution, whose restriction to Q7 belongs
to Cr/2+1L245(QT) Tt is clear that this solution a is Lipschitz continuous at
the boundary: we already know that it was continuous (Lemma , and since
the derivative w.r.t. z of " and ¢ are bounded, we deduce that a'" is Lipschitz
continuous at the boundary. Clearly a!” = ¢ outside the boundary.

9.4 Estimate on the truncated PIDE

Theorem tells us that there exists a unique solution of PIDE ({9.11)), which

is smooth in QL. For the remainder of this section we will concentrate on the error

estimation between the function a” introduced in Section |&_2| and the function a®".

“This is done by writing the Feynman-Kac formula for =, (¢), and we explained in the proof of
Corollary @ how it can be done.
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For this, we will prove that the function a'” is the value function of a stochastic
optimization problem. Let us start with the definition of a”:

2
22a(t,z):= inf E [(X%Z’x’o) ]
0eX (t,z,x)

where X is the wealth process given in (5.9)) corresponding to the new parameters
in (9.2)), and X(t, z,2) is the set of admissible strategies in (5.10). The function a”
belongs to C*/2T1:2+%([0, T] x R) and the optimal control 7" of the above stochastic

problem is given in (5.47)). In particular

2
x2ah(t,z) = inf E [(X%Z’z’e) ]
0cET (t,2,x)

where

O(t,z,z) == e *n(t,z)x and
EX(tyz,x) =< 05 :=106 <3’ sz,Xzf,zﬂ)
S C(1+R)/2’1+H([O,T] < R), t<s<a

since the optimal control 7*" belongs to the above subset of admissible strategies.
Furthermore for any stopping times ¢t < a < T we have

2
2 h : t,z,x,0 h t,z
t2):= inf E <X) -zt 9.22
= a(h) b tzm) [ “ @ (0 2o )} (622)

Remark that this is the dynamic programming principle when we restrict ourselves
to the Markovian strategies in £(t, z,z). The following result proves that a'" can
also be represented as in ((9.22)).

Lemma 9.10. Let the Assumptions of Theorem[9.9 hold true. Then

2
2 tr . t,z,x,0 t.z t,z
t2)= inf IE(X’;’) <Z)

vha(t,2) Begg(lt,z,x) { pe 1\ g
where

4% .= T Ainf {s >t | Z8*

> 7} (9.23)
and Z is the process given in (5.5)) when using the parameters in(9.2)).

Proof.
Let us define the Markovian strategy

S
_ otz tr tr _ otz
Ol = 7t (s, Z07)e S x0T xbae 0T = gy / 0l de%s- (9.24)
t

where 7" is the optimal control given in ({9.21)) and

2
ﬁt,z .
w(t,z,z) :=E (a: +/ Q,ETdeZz;) q (Bt’za Zg;) =2 p(t, 2)
t
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The flow (¢,z) — Z%* is continuous in the topology of uniform convergence on
compacts (Theorem 37, Chapter V, Protter| (2004)), so then (t,z) — 8% is at least
lower semi-continuous (Theorem 38, Chapter V, Protter (2004)). It follows that
(t,z,x) = w(t, z,x) is continuous w.r.t. = and at least measurable w.r.t (¢, z). Let
now o € [t, 3% be a stopping time: it follows

B 2
Q z /B’Z 2
w(t,z,x) =F |ET= <x+ / ol de=% 4 / effdezi—> q(ﬂth,ngz)
t «@

r - 2
t,z
a,Zy
F, t,2,@,00" tr g —Z07 ZL otz
=E |E7> | | xt»=0" 4 A T N O A
a Ba,Za

t

—E |w (o, 257, X500 |

since the strategy 0! is Markovian. As in the proof of Theorem [6.8| we deduce that
@ is a viscosity solution of PIDE (9.11)) for n = 0, and then, from the uniqueness,
» = a'". Tt follows then

/Bt,z ; 2
z%a' (t,2) =E (1 +/ Qﬁide_z?> q (Bt’z, Zg’é)
t

> inf E |:<Xt,tz,zm,0>2 q (Bt,z’ thz>:|
0cEL(t,z,x) B B

If now
2
2 tr . t,z,x,0 t,z t,z
t,2)> inf E(X’;’) (Z)
var(tz) Gegklgt,z,x) [ o 2\’ o

then there would exist some 7 € C1+#)/2145([0 T] x R) such that
. 2 .
2% (t,) > E [(X;ff) a (B, ng,z)] = 2%t 2)

>t o1,2,2 A tizy —Z57 bz ot : :
where dXe*" 1= X05%7(s, Z0%)e Zs=de?s, Xp®" = x. Tt is not complicated to

prove that 1]) is the unique solution of

00 A = B+ 25 @+ #GM () € [0.7) x (—Z. 2)
P(T,2) =1 € (-2, 2)
P(t,z) = q(t, 2) (t,2) €0,T] x (-2, 2)°

and it belongs to C1+%/22+%(QT). See for example the computations we did in the
proof of T heorem Since a!" verifies the PIDE (9.11]) we deduce that ¢ := 1) —a'"
should verify
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_gf + Al — Blp —27Q"p — #?Gho = F (t,2) € [0,T) x (~Z, Z)
QO(T, Z) — 0 z € (_Za Z)
oft,5) = 0 (t.2) € [0.T) x (~2, Z)°

where F(t,2) := (28Q"a™ + #2G"a'" — H"[a'"]) (t,z) > 0 for all (¢, z), simply from
the definition of H"[a!"] in . We can also rearrange the terms in the left hand
side of the above PIDE in the following way:

tnew(t, 2) == — (,uh 4 27 <02 + ”yh>)

Onew(t, 2) :=V/ 02 +~h

1
Tnew(t, 2) == — 27 (uh + 5 (02 —i—’yh) -l—/h ¥
<ly

— 72| o2 h e’ —1)2u(d
( T +/h<|y< ) <y>>

Vnew(t; 2,dy) == (1 + 7 (7 — 1))2 V(dy)ﬂ{h<\y|}

(e7 =1) V(dy)>

where p" stands for "(t, z) and so on. With these notations we can write

8@ a(p 1 2 82¢
— = — MUnew ~ — = - ¥ _ Rrnew,. new =F , 7T _Z7Z
o~ tnen'g ~ 5Ty~ B~ tnewp = F(4,2) € [0.T) x (-Z. 2)
=0 2e(-2, 2)
| o(t,2) =0 (t,2) €[0,T] x (-2, Z)

where B"" is the non local operator when one uses the Lévy measure v,e,. The
Feynman-Kac formula® yields

/Bt,z s
o(t,z) =E / F(s, 2" exp (/ Tnew (U, dew’t’z)du> ds] (9.25)
t t

where

AZIN =1y (5, Z0UH)ds + ey (5, 20007 ) AW,
4 / (s, ZPEU 1) F(s, 2P0 dyds)

and J is a Poisson random measure such that, for all Borel set O whose closure
does not contain zero and any t, z, the process

®See the proof of Corollary to justify the Feynman-Kac formula for PIDE in truncated
domains.
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is a martingale. From (9.25) and F' > 0 we deduce ¢ := ¥ — a'™ > 0, which is a
contradiction since we assumed that a'"(¢,2) > (¢, z). It follows then that

2
2 tr . t,z,x,0 tz 7tz
t,z) < f IE(X’;’) (B’,Z’Z>
xéa(t,z) < 065}31(1@2@) [ at. q 3t

which concludes the proof.

We conclude the chapter with an estimate on the error a — a?':

Theorem 9.11. Let the Assumptions of Theoren{9.9 hold true. Then there exists
a positive constant My which only depends on the model parameters such that

ah(t7 z) — a“’(tz)‘ < M, Hah _ qH P (515,,2 < T)1/2

00,07

where B4* is the hitting time of the process Z introduced in (9.23)). Moreover, there
exrists a positive constant My which only depends on the parameters of the process
Z such that

P (8" <T) <24§(1 +2°)

Proof.
From (9.22)) and Lemma we have

N 2
22 (ah(t, Z) _ CLtT(t,Z)> <E |:(Xzf,zm,9t ) <ah _ q> (/Bt,Z,ZE::’Z):|
where 0" is the optimal strategy given in ((9.24). But also

22 (ah(t’ 2) — (4, z)) >E [(ngf;x’ehy (ah B q) <ﬁt,z7 ZZf)]
h

where 6" is the optimal strategy associated to the value function a”. Cauchy-
Schwarz inequality and standard estimate on the wealth process imply

9 1/2
‘ah(ta Z) - a’tr(tv Z)‘ < MlE |:‘ah - Q‘ (ﬁt,Z7Z;7£~7:Z>:|

for some positive My > 0 that only depends on the parameters market. Remark
that this is possible since # and 6" belong to the space £(t,z,z) and then the
related 7" and 7" are bounded. We conclude by remarking that

2 2
E Dah _ q’ (61&,372;’52)] =F Uah _ q‘ (ﬁt’z,zgf,z) ﬂ{ﬁt,z<T}:|

because on the set {3%* = T} the compatibility condition (9.12]) yields ¢(T,.) =
1 =a™(T,.). Tt follows

‘ah(t7 z) — atr(uz)‘ <M Hah B qH P (g < T)1/2

00,07
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We conclude the proof with the estimate on P (ﬂt’z < T), using Chebyshev type

inequality : from
2 2
E [(Z;’iz) :| Z E |:<thz,z> ]l{ﬂt’z<T}:|

we deduce

P (8 < T) <Z°E [(Zgjzﬂ <2 <z2 +E {(th - z) 2D
We can readapt the proof of Lemma to deduce
P (8" <T) <MaZ ?(1+ 2%
for some positive constant My which only depends on the parameters of Z.
O

We remark that the estimate in Theorem [9.11] makes only use of the L°°-norm of
a" — ¢ outside the boundary. It also makes explicit the dependence of the error with
respect to the probability that the process Z exits from the domain of truncation
[—Z, Z]. Nevertheless this estimate cannot be used to control the error between the
optimal strategies associated to a” and a!", since these optimal strategies depend
on the first derivative of their respective value functions, which are not taken into
account in the estimate of the above Theorem.
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Appendix A

Doléans-Dade exponential and
other estimations

The main objective of this appendix is to give an exhaustive description of the
processes used in Chapter

Notations.

In this Appendix, E denotes the expectation under the historical probability P,
t € [0,T] and (u,z,7) € R3. Also, 9J), denotes a positive function which only
depends on h > 0 and ¥, — 1 when h — 0%. M denotes a positive constant, which
may change from line to line of our proofs, which does not depend on h, t or (u, z, ).

We will systematically omit high order terms of the form o(h) in our estimations.
We start by giving a short list of properties for the processes U and Z given in

(6-3)-

Lemma A.1. Let Assumptions[5.1{C,I1] hold true. For allt € [0,T), h > 0 and
z,u € R?

2
E [(Z:f}’lz - Z) :| SCZ,Q}“?}“ Cz,Z = 2(07271am + HTHS,IJ)
tu 2 9 U2
(Ut+h - U) SCthﬁh’ Cu,? = 2 <Uma:t + HT HQ Vn)

and for all e > 0 one has

2
|zt 2] < 200 4 ) 0 )
2
ot - vt ] < anpo, (A2

where M > 0 does not depend on u, z,e,n,t or h

Proof.

199
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The first estimation can be obtained by the It6-Lévy isometry:

E [(Z:f,’f — z) 2]

IN

t+h
2 / E [UQ(T, UbY, ZE) + /R N2 (r, U™, Z0" y)v(dy) | dr
t

2
2 (Uznaz + HT||2,1/) h

IN

The same type of computations can be done for the process U to prove the result.

For (A.1)—(A.2) one can apply Lemma 3.1 in Pham/ (1998]).
O

The other two processes appearing in Chapter |5, exp(Z) and the derivative of
flow DZ, are two examples of stochastic exponentials: let L be a R-valued semi-
martingale on a filtered probability space (€,P,(F;)i<r) driven by a Brownian
motion W and an independent Poisson random measure J whose Lévy measure is
denoted by v(dy):

=1+ /ts b(r)dr + /ts a(r)dW, + /tS/Rs(r,y)J(dydr)

where b and a are caglad, bounded and measurable real valued processes. We set

f:= sup |b(r,w)| and a:= sup |a(r,w)]
rel0,T],we rel0,T],we

We assume that s also is a caglad adapted real valued process such that g(y) :=
sup,., |s(r,w,y)| verifies g € L? (R, v(dy)). We define

vy =/|>1g(y)1/(dy) ‘If2=/]Rg2 (y) v (dy)

The stochastic exponential or Doléans-Dade exponential (DDE) (Doléans-Dade,
1970; |Ash and Doléans-Dade, [2000) of the process L, usually denoted by £(L), is

the unique semimartingale solution of vt = Vrt’_lden’l, Vtt’l = 1. The solution of
this SDE can be explicitly given in terms of L (Protter, [2004)):
1 c ,
Vil = exp <Lf:l -5 |zt o] > [T (1+ary)ess (A.3)
2 r
t<u<r

where [L, L] stands for the continuous part of the quadratic variation of L. The
next Lemma gives some classical estimations on the moments of the process V.

Lemma A.2. Lett € [0,T),l € R and h > 0. Then

2
E[(Vtﬂr’lh)] < Db Oy = 28402 +20 + 0,

2
E[(‘/tilh_l>] < Cyahty, Cva = 2(a®+Uy)

IN

E[VE, 1] < Cvshon, Cvs = s+



Appendix A. Doléans-Dade exponential and other estimations 201

Proof.
The proof is basically based on the Itd’s formula and the Gronwall’s inequality.
First we have

E [(m’hﬂ —1+E [/fh (V,,“)Q (2br +a2+ /R (s (r,y) + 25 (r,y) Ly<1y) V(dy)) dr]

<1+ CV71 /ttJrhE |:(%t,l>2:| dr

From the Gronwall’s inequality we conclude E [(Vt’l

2 Cyih :
t+h> < e¥vi1 Convexity and

Ito-Lévy isometry yield

B|(vih-1)] <2 ( [ (br o] sty <dy>) dr)2
+2E [/:Jrh (V}“)Q <a$ + /RSQ (r,y)v (dy)) dr] < Cyp /tHhE [(V}”)Z} dr + o(h)

2
and then E [(Vt’l 1) } < Cy2hy, + o(h). For the last inequality we have

t+h
t+h
E / Vi bdr + / s(r,y)v(dy) | dr
t ly|>1
t+h 2
] dr < Cv,g/ E [(VTN) } 2 0
¢

Pl 1| =

t+h
s/ E
t

so that ’E |:V;’_lh - 1:| ‘ < CV73h19h

=

t,l
V!

by + /y|>1 s (r,y) v (dy)

The process exp(Z). By using Itd’s formula one has

dez’t"uyz = ezif’z (ﬂdr —i—oder +/

(e —1) j(dydr)) , 5 = (A4)
R

where i = [1 (r, Uk, Zﬁ“z) is defined in (5.6). We deduce that exp(Z, — z) is a
stochastic exponential.

Corollary A.3. Suppose that Assumptions[5.1H{C,11] hold true. For allt,€ [0,T),



202 Appendixz A. Doléans-Dade exponential and other estimations

h >0 and z,u € R one has

tu,z 2 ~
E[(em z)} < Gl oy o= 2l + 0% + 27l + 712,

t,u,z 2
E |:<€Zt+h - 1) :| < Ce,Qhﬁha Ceo2 = 2(0—3naa: + HTHS,V)

t,u,z_ ~
B[ 1) < Ceahth, Ces = N+l
YU, 2Z 2
B|(A5 1) 2 cah s = (@)
Moreover
U ,2+€ SULZ 2
E {(GZEJ A ] < M(e*)2(2 + £2) 0,00 (A5)

where M > 0 does not depend on u,z,h,n or . If Assumption [12] also holds
true then

E (4 2 1)'| < o uh Coy=(2|7% 2 207112 ) ho
e > UegllUp, e4d — H7—H47y+amax+ HTHZ,V h

Proof.
For the first three estimations we use Lemma with 8 = ||fi]|, @ = Omar and
g = 7. For the fourth inequality we remark that

Zt,u,z 2 t+h Zt,u,z Zt,u,z Zt,u,z
e [(e# -0y <o [ [ () ae ] e [ ]
t t+h

Since
t+h t,u,2 t,u,z 3
i) [ / (lef = _ 1) d(e?r —Z)] > _Mh?
t

for some M > 0, we can omit this high order term. By using Jensen’s inequality we
get

h
([ ) | sty [E e
— min
t+h t

2 e 2E[ZL™* —
>(0 vm)/ (EIZE =g (A.6)
t

min

and

B[zt — 4] = / E
t

p(s, U™, Z3) +/I|>1v(sjUﬁf,Zﬁf’Z,y)V(dy)] ds
ylz

From Assumptions we have u(t,u, z) > — |||l whereas

/ 7(57u7z7y)y(dy) 2 _/ |’Y(S,U7Z,y)|l/(dy) Z - ||T”1,V
ly|>1 ly|>1
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so then E[ZP"* — 2] > —M(r — t) for some positive M. From (A.6) we conclude

2 2
B | (B = 1)°] 2 (o v T
For estimation (A.5) we apply Lemma 3.1 in Pham, (1998).

For the last inequality we first apply Ito’s formula to (e?~* — 1)? to obtain de
decomposition

. t+h t+h t+h
@1y = [T aWass [ aPawer [T ] o iy
t t

t,u,z
Since we are interested to (eZt+h ~% —1)* we can forget the process a!) since it will

contribute with a high order term o(h). We are left with
ag) 9022 (ezé’uﬂzfz — 1>

t,u,z 2 t,u,z 2
a(3) — (eZs —z+y 1) _ (eZ5 -z 1)

S
=2 (o7 — 1) ((ezg,w,Z) (e7—1)+2 (ezg’w’z — 1))

The [to-Lévy isometry yields

A 4 4 t+h’ Ztuz
E (e i —1) ngT||4V ds

t+h fu 1/2 f oz 471/2
+ (40,2nax +8 ”TH;V) / E [(ezs - ) } E [(eZM . 1) ] ds
t

u,z 4
Since £ [(ezﬁ’ _Z> ] < e2M(=1) for some M > 0 and /x < x4+ 1/4 for all z > 0

we obtain
Zbwz_ 4 4
E | (457 =1) | <2|7|, Ao
t+h tuz 4
+ (4020 + 811713, / M= ”(4 +E [( 1) ])ds
t

4 2
< (2017114, + oas + 211713, ) A0

0

The derivative of flow DZ. The second example of stochastic exponential as-
sociated to Z is the so called derivative of flow , defined by

# 8“7” 0o, 877‘( ) 7
DZbw* =1 DZzLw* 1y A.
s —I—/t i < P dr + P dw;, L o J (dydr) (A.7)

where Oy, /Ou stands for du/0z (7’, U, Zﬁuz> and so on.
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Corollary A.4. Suppose that Assumptions [5.1-[C,I1] hold true. For allt € [0,T)
,h>0and u,z € R

2
E [(Dfo}f) :| < ecdz’lh, Cdz,l = Kma:c (2(1 + ”THLV) + Kmaiv(l + HT”%,V))

E {(szf,f - 1)1 < Cyzphp, Caz2 = 2K 0 (L + |73,
E Dz 1] < Caghin, Ciz3 = Kmao(1+ 7]1,)
If we define for e > 0
Dz = e (2 7o) (43)
then
E[|D;zs4"* — DZY"*|] -0  whene —0
Proof.

For the first three inequalities we apply Lemma [A.2 with 8 = a = K4, and g =
2
KinaeT. For DyZ, we remark that Lemma |A.1] gives |E [)Dﬁzs&t,u,z ] < Mgy, so

then the family ¢ — DﬁZg’t’u’Z is uniformly bounded in .?(P, F), which in particular

means that it is uniformly integrable. If we prove that DﬁZg’t’"’Z £ DZY%* then
dominated convergence applies and we obtain the result. We first remark that the
process Dy Z=""* is a Doléans-Dade exponential: dDﬂZg’t’“’Z = DﬁZLff’“’zdP;’t’“’Z

where
P&z ::/ v;’sds—i—/ vz’EdWsl—l—/ /vg”s(y)j(dyds)
t t t Jr

1
vhe ::/ o (s, Ug’“, Zﬁ’"’z +z (Zﬁ’“"zJrs - Z;f’“’z)) dx
0

1
/0 0.0 (5, UL, 205 4 g (Ziws+s — Zbuw)) dy

® W
o
—~
<
N—
I

1
/ B,y (s, Ut 74 4 g (Zﬁi“*a - Zﬁf’z) ,y) dzx
0

Let us define
Ptz ::/ az,urdr—i—/ 8ZaTdWTl+/ /8zfyr(y)j(dydr)
t ¢ t JR

where 9,1, stands for ,u(r, UP*, Z2*?) and so on. From Assumptions Lemma
and Doob’s inequalities it is not complicate to prove that

E| sup (PSP™% — P;k’t’“"z)2 —0, €¢—0
t<s<T
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and then, by using the It6’s formula and Gronwall’s inequality

E | sup (DyZo0%* — DZV*)?| 50, €0
t<s<T

We deduce then that DﬁZE’t’“’Z YU pztws when £ — 0, which concludes our proof.
O

Another inequality used in the proof of Theorem mixes the exponential e and
|DZ|

Lemma A.5. Let Assumption [5.1+[C,11,12] hold true. Then for alll € R and
(t,u,z € [0,T) x R?)

B | (1=t (#7 1)) oz

] <1+ Cdz,e(l)hﬂh

t+h
where
Cdz,e(l) = (Cdz,S + Cdz,Q) + 2’” (Ce,3 + Kmax(amaz +3 HTH;V))
U2
+ 7 (306,2 + KmazCeA)
Proof.

In order to simplify our notations, we will always omit arguments in the coefficients
u, o and v and, when there is no ambiguity, we also omit the superscript (¢,u, z) in
the processes ¢ and DZ.

From we can derive the explicit solution of the SDE . In particular it is
straightforward to prove that the process Ry := |DZ;| verifies

dR;
R

s

= 0,pds + O,0dW,} + / (=2 — 0,7)J (dyds) + /+ 0,vJ (dydu)
AS

where

Ay = A (s,u,2) :={y e R| 0,v(s,u, z,y) < —1}
As+ = A+(S’u’ Z) = {y € R’ 8Z’Y(S’uvzay) > _1}

and from Assumptions we have
A" (s,u,2) :={y e R| 9:7(s,u,2,y) < -1} C{y € R| Koo (y) > 1}
For sake of compactness let us define
a(s,u, 2,y) == 0:7(8,u, 2,Y) Lat (s,u,2) = (24 027(8, 1, 2,9)) La—(s,u,)  (A9)
which trivially verifies

sup |a(s, u, 2, Y)| < KiaoT(y) + 2L{Kpnaer(v)>1) (A.10)

S,U,2
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Remark that
v({y € R| KiaoT(y) > 1}) <Ko 175, (A.11)
If now V := le?*~* — (14-1) then our aim is to estimate E [V}ihRHh] . Let us denote
AV, =V, -V, and AR;:= Rs— Rs_
The Ito’s formula yields:
V2R, =1+ Gs+ I, + martingales

S

dGy = (VSQRs@z,u + 2V Ryle? % i + Rl?e* %= g2 42V (leZS_ZURsazJ)) ds

dls := / (2Vi- R— AV, + V2 AR,) v(dy)ds
ly|>1

+ / (AVZR,_ + AVZAR, + 2V,_AV,AR,) v(dy)ds
R

where G; = I; = 0. Elementary estimations yield

t+h
B[ 4]
t
1/2

t+h 12
+ 200 (7l + KonaaOma) / E[V2R]E [R.e@9) " ds
t

t+h t+h
< Kmam/ E [V;QRS] ds + ZQO',znax/ E {QZ(ZS*Z)RS} ds
t t

where we used the estimations given in Assumptions From Corollaries and
we also have E [62(ZS_Z)RS] < M=) for some positive M > 0: it follows

e[

t+h ) 12 )
+201] (1] + Kinasmas) / B [V2R,] V2 MG-012,
t

t+h
< Koz / E [VZR,] ds + I*0?
t

max

hiy,

For the process I we first have AV, = le%s—~%(¢7 — 1) and AR, = R,_a, where a
is defined in (A.9)). It follows

IAREIET A

t+h
+ 2|1|/ E ||V, |R,_e?* /R(\e7 — 1Ly <1y + los—|le7 — 1\)V(dy)} ds
t L

t+h r
+m2/ E eQ(ZS_Z)Rs_/(67—1)2(1+]as_\)1/(dy)} ds
t L R

Using Assumptions [5.1 and estimations (A.11)—(A.10|) we obtain

o[

t+h
+2|z\(|yTHLV+3KmHTy;V)/ B V2R VE [Re-e 9] g
t

VZ R, |las|v(dy) | ds

ly|>1

t+h
< (Kmas Il + 2020, 713,) [ B V2 R ds
t

t+h
0 (30 + Ko I715,) [ B [ E=9R, ] s
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As for the process G, after simplifications, the above reduces to

=[]

9 t+h ) 12 Mot/
+ 2|l| ||T||1,y + 3K maz ||T”2’y E [‘/; RS] e (s—t)/ ds
t

t+h
< (Ko 7l + 262 I718,) [ B V2 Re] ds
t

1 (72 + 3113, + Koma 1713, ) hn

By adding the above estimation with the one we found for the process G we prove
that

t+h
E[VZ2,Riin] <1+ (Kmax+Kmax 7M1, + 2K 0z IIT!@,V)/t E [VZR,] ds
- 2 b 2p 11/2  M(s—t)/2
+ 201 (171l + Kmarmaz + 171, + 3Kmae I713,,) [ E[V2R,]"? M0 2as
t
1 (72 + 3113, + Koma 1715, ) B

We can simplify the above estimate by using the constants introduced in Corollaries

[A3HA 4 since

Koz + Kmaa ||7—H17,/ ::Cdz,?) 2K72nax ||7—H§7,/ < Cdz,Z
3
~ 2
Al 117111, =Ces ez + 311715, < 5Ces

and

Ko 17113, < Kmas (/ 2 (y)v(dy) +/ 74(y)V(dy)> < =5 Cen
{y:r(y)<1} {y:r(y)>1}

we obtain

t+h
E [V Risn] <1+ (Cazg+ Cdz,2)/ E [VZR;] ds
t

9 t+h 1/2
+ 2’l| <C€,3 + Kmax(o_maz + 3 HTHZ,V)) / ]E [‘/;QRS] eM(s_t)/2dS
t
2
+ |2| (30672 + KmaxCeA) hl?h

Also ftHh eM(=1)/2 — b 4 o(h) and /= < pz + (4p)~" for any p > 0: it follows then

1
B (VA Ri] 14 00 (Cos + Karloman +31713,)) i

l 2
+|2| (306,2 + Kma:vce,ll) hﬁh

t+h
+/ (Cdz,S + Cdz,? + 2p|l| (Ce,?) + Kmax(amaz +3 ||7—H§7,,)19h>) E [V92Rs] ds
t
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We can finally apply Gronwall’s inequality to deduce

1
[ [Vta—th—&-h] <1+ %W (06,3 + Kmax(amax +3 ||T||§,u)) hdp,
7
2
4 (Casy + Casn) B, + 201 (06,3 + Komaz (Omaz + 3 y|T||§,,,)19h) hoy

+ (306,2 + Kma:vce,él) h7~9h

We minimize over p > 0 and find the optimal estimate for p = 1/2, which concludes
our proof.

0



Appendix B

About a cubic ordinary
differential equation

In this part we want to study the following ODE
—L'(t) = A+ UL)(LA(t) + 1), L(T) =0, t € [0,T] (B.1)

where ¥ > 0 and A > 0 are given constants. We can assume that A > 0, otherwise
the solution will be null on [0,7]. It follows that L is non increasing and then
positive. In particular
L(0) = sup L(t)
t€[0,T

We are interested in the behavior of L in the neighborhood of zero, and in finding
conditions on A and ¥ under which the function L has no explosion at ¢t = 0, i.e.
L(0) < 4o0.

Lemma B.1. Let y* < 0 be the unique real root of | — W13 + Wl + A and A =

V3(y*)? + 4. Define

(L) = 2(3@1)“) [log <%> - — <2LZ yﬂ

which depends only on the ratio A/V. The solution of the ODE in (B.1|) is implicitly
given by Q(L(t)) = (T —t) + Q(0). If we set

« 1 3y*m
16 =5 (50 5 + Q0) (B.2)

then L (0) < +oo if and only if T < T(y*). Moreover T(y*) — +oo when A — 0
and ¥ remains fized.

Proof.

Let 0 < A := A/¥ and q(I) := 1> + 1+ \. Since ¢ > 0 and ¢(0) = X\ > 0 we
deduce that there exists a unique y* < 0 such that ¢(y*) = 0 and then ¢(I) =
(I—y*) (1> +y* 1+ 1+ (y*)?). Finally remark that y* only depends on the ratio A/V.
One may use Cardano’s formulae to find y* exactly.

209



210 Appendixz B. About a cubic ordinary differential equation

The ODE (B.1)) can be integrated separately so then, at least formally, we can
write

dL
/L3—|—L+/\ = U(¢ —t), for some ¢ € R

In particular if Q(1) is a primitive of 1/q then the solution of (B.1) will be given by
Q(L(t)) = ¥(¢ —t) with ¢ such that L(7T) = 0. Elementary computations give us
this primitive Q:

Q(L) = 2(3@*1)2+1) [log <M\> B 62* arctan <2LZ y*ﬂ

According to the initial condition L(T') = 0 we have Q(L(t)) = Q(0) + V(T —t)
where

20~ e [ () - % (5)] <0

since A = —y*(1 + (y*)?). If we can invert this primitive then the solution of ODE
(B.1) is given by L(t) = Q' (¥(T —t) + Q(0)). But remark that Q'(L) > 0 if
L > 0. Furthermore

. B 3y mw
LETOO QL) = 23y )2+ 1A

It follows then that we can invert the primitive if and only if
3y*m
0)<¥YT-t)+Q0) L ———5——

for all t € [0,7T], and this is possible if and only if

1 3y*m gk
75 (00 + gariz) = TW)

Remark that since y* < 0 and Q(0) < 0 it follows that T (y*) > 0. In particular if
T < T(y*) then L(0) = sup, L(t) < +o0. To conclude remark that when A — 0 we
have y* — 0 and then Q(0) — —o0 , so T'(y*) — +oc.

0



Appendix C

Holder spaces

C.1 Introduction

We give here a complete definition of the functional spaces used in Chapters [§]
and [7] We call elliptic those spaces of functions which take values in R", whereas
parabolic are those spaces of functions defined in [0, 7] x R™. The difference between
Holder spaces of type 1 and type 2 arises in their parabolic version. This distinction
is needed since the natural space in which one has to work is not the same if one
deals with processes leaded by a Brownian motion and a Poisson random measure
(Chapter @ or only by a Poisson random measure (Chapter [7)).

For any | > 0 we define

L=l + {1}~ where {l}" €[0,1), |lJ]eN
I=[11+{1}" where {h*te(0,1], [I]eN
From now on M denotes a positive constant which may change from line to line
and ¢ : R™ — F is a measurable map, where F equipped with || || is a Banach space.

Often E is some R™ or S, (R), the space of symmetric matrices. For g € (0,1] we
define

() = S w(@)__ j’(ﬁx/)‘ (C.1)

We start with elliptic Holder spaces: for a non negative I let CI'l(R”) denote the
space of differentiable functions on R™ which are continuous together with their
derivative of all order j < [I]. On this space define the norm

[
e =D |Dig| + S (DB (C.2)
J=0 (j) (e

The elliptic Holder space of order [ is defined as the subset of C[!I(R") of functions
with finite norm:

1%

HU(R") = CM®R™) 0 { gl < oo}

We make the convention that HO(R"™) = L°(R"), the space of bounded and mea-
surable functions. Equipped with the above norm they all are Banach spaces.
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C.2 Parabolic Holder spaces of type 1

In this paragraph we (shortly) describe the parabolic Holder spaces used in
Chapter 6] For a complete review see for example Chapter I in [Ladyzenskaja et al.
(1967). Let Qr := (0,T) x R™ and Q7 its closure. For ¢ : [0,T] x R® — E and
B € (0,1) we define

B ]go(t,x) — (P(tv xl)’
@0, = s a
’ t<T,x,z":|lz—z'|<1 "x - ‘
B _ p(t, ) — o(t', )]
<(‘0>t»QT T Sup ‘t o t/|’3

TER™ 1| t—1'|<1

Let [ be a positive non integer real number: [ € Rt \ N* and C/2-U(R") denote
the space of continuously differentiable functions on ()7 which are continuous up the
boundary together with their mixed derivative of the form D] D3 for all 2r+s < |I].
On this functional space we introduce the following norm

L]

r s l
lellyos = S ID;Diello + ()0 (C.3)
7=02r+s=j
l [ l
@)D =), + (@)
1 S 1} l 1S |—2r—s
W= S oozl . e = S (DD
2r+s=|1| 0<i—2r—s<2

The parabolic Holder space of type 1 is then defined as
C121(10,7] x R") i= L2 ™) 1 {5, < o0}

and it is a Banach space. There are is no ambiguity to call it CY/%!([0,T] x R™)
since [ is always non integer and we can then distinguish it from C'/2):!] (R™).

We list here the parabolic Holder spaces of type 1 which are used in Chapter [f]
with their relative norm. For 5 € (0, 1):
Parabolic Holder space of order 8: C%/28(]0, T] xR"). For ¢ € C([0,T] xR™):

2
lellsjos = lelloe + () Eh, + ()0

Parabolic Hélder space of order 1+ 8: CU+8)/2148([0, T] x R™). For ¢ €
CO1([0,T] x R™):

148)/2 2
Il asmmire = 1€l + 1 Depllos + (2)g, " + (Dae), + (Dre)iy
Parabolic Holder space of order 2 + 3: C'*8/22+8([0,T] x R™). For ¢ €
C2([0,T] x R™)

1+ 2
1ol 152245 = |€lloo + I Dallo + | D20||, + 1Dl oo + (Dap)l g

2 2
D))+ (Do) DP 1+ (D2 )+ (D2p) P

We now prove an important property involving the norms defined above. Let
us start with this useful result:
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Lemma C.1. Ifp € (0,1) and a,b > 0 then

1—
where p* = 1Lp and M (p) = (%) : + <17p>p

Proof.
The result can be obtained by minimizing the function ¢ — ﬁ (ea + d,%b) .

We can now prove the following:

Proposition C.2. Let l,v € (0,2) with | < v and l,v # 1. There exists a constant
M > 0 only depending on B,n,v and T such that

( .
M (e(v_l)/2 ||SO||(1+’U)/271+’U + 6_(1+l) ||<10Hoo) Zf I<v<l

lellagn i <y M (6(171)/2 ol 10y 2,140 + e OHY ||<P”oo) if 1<l<w

M (2 gl oy oo + €V elleg) i 1<i<v

for all p € CUHV)/214v((0,T] x R™) and all € € (0,1).

Proof.
To lighten our computations we will write || ||, := || ||z/2,z when there is no need to
highlight both the subscripts.

Take € € (0,1) and denote with M a positive constant which may change from
line to line and that only depends on [, v,n and T but not on ¢ or e.

We distinguish several cases:
Case [,v € (0,1). In this case we have

1+1)/2 l /2
1ol 14y /2151 = 12llo + 1Dolloo + (@00 + (Daip) V. + (Dat)i )

Form Lemma with p = 1/2 we obtain

lelloo < Nl el < M (el gy + € el (C.4)
Also
((1+1)/2) _ p(t, z) — ot 2)|
()0 = |:3\p§1 It — ¢[00 /2
t,x) — ot t,x) — p(t’
< sup sup |80( 71;) SD( ’$)|’t*t/|(v_l)/2 + sup sup |SD( ,1’) QO( ,33‘)|

weRn [t—p|<c [t —'[0FV)/2 weRm eclt—p|<1 |t — t/|0FD/2

<2 lglly 4, + e ol (C.5)
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Let now

Ad e l(t z) = o(t,x + eej) — 90(75735)7 Ale, ¢](t,z) = (AJ’ e, ©](t, x))jgn

€

where e; is the j—th element of the canonical base of R". It follows, for some
y €10,1]7,

Daip(t, )] < |Dasplt, 2) — Bl @l(t, )| + Ale, 9]t )
<|Dep(t, z) — Dap(t, x + ye))| + | Ale, @] (, )]
< @l + € el

By taking the supremum over (¢,x) € Qp

IDzplloe <M (€ ll@lly 4y + € llollo) (C.6)

For (Dﬁp)il’)QT and (D xw}i/Q)T we can proceed as in ((C.5))

l _
(D20) gy < el + € NDaplloc < M (€7 Nl + € 0 )
/2 - —
(Doehgyn <€ ol + €72 ||Dmso||OOSM( 2]l + 2 gl )

where we used (C.6) in the last inequalities. By adding up the above estimations
together with (C.4)—(C.5)) and (C.6) we obtain

1) 1)
el 141)/2,1+1 <M (w=1)/2 HSOHHU +e (+ H‘PH
(1+1)/

Case | < 1 < v. In this case the function ¢ is twice differentiable w.r.t. x and once
w.r.t. t: we can use the same methods by modifying the exponents of €. For (C.5))
we shall have

( >((1+l)/2) < (1-0/2 (1+1)/2

P)t.0r el + €
and ((C.6)) becomes

1]l oo

IDaplloe <M (ellelli + € 2lloo)
whereas the estimations for (Dy) are modified into
(Do), <M (il + €D o]l
(De) {2 <M (092 gl + €O+ [ Dyg])
so in conclusion
el < M (€2 ol 4+ O o]l )

Case [ € (1,2). Let r =1 —1 and u = v — 1. From the definition of the Holder
norm of order 141 > 2 we have

”90H(1+l)/2,1+l = H<PHr/2+1,r+2
l 1 2
=[l¢lloe + [ Decllog + (Pe) 02 + (D)6 +1Datll 149y 241041
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Remark first that (C.4) still holds true and also

1Dzl <M (el + e llello)
As we did for the derivative w.r.t. = in the previous cases
||Dt<P” M (e Hipllhpy + € lello)
(D))l < (ev Nl + € 1Dl )
<M (@ + ) lgllypy + ¢ llellao)
<M (D2 gy, + 1702 Dy )

<M (@072 4+ d3-072) ||, + 02 | Dy )

(D)) G5

where we used the estimation given above on || Dyl . For the last estimation we
can use the result given in the first case:

1Dl 147y 21,01 SM (€72 Dol + U Dl
(14r)/

= M (D2 gl + € Dl )

If we use the estimation on ||D,¢|, with €2 we obtain

IDGl @ syzeress < M (€702 47 gl + € ol )

We can sum up the above estimation to get

lellarp/ea0 <M (6(%[)/2 oy + € ||80Hoo>

which concludes our proof.

C.3 Parabolic Holder spaces of type 2

We now define parabolic Holder spaces of type 2 on Qp := (0,7) x R™: for
I > 0 let COM(R™) be the space of functions on Q7 which are continuous up the
boundary together with their derivative in the space variable D of all order j < [I]
and measurable w.r.t. . On this space define the norm

HsDIIlH—ZZHD ol + S (D) S (c7)
)

(e

The parabolic Holder space of order [ is then defined as

H(0,7) x R) = COM(®™) 0 { [l g < o0}
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We also define H([0,T] x R") as the space of bounded and measurable functions
on [0,7] x R™. These spaces are all Banach spaces equipped with their respective
norms. For more details see for example Triebel (1992)); |Gilbarg and Trudinger
(2001); [Adams and Fournier| (2009)). In the literature these are also called Holder-
Zygmund spaces.

Remark that H'([0,T] x R®) = L([0, T] — HL(R™)), the space of bounded and
measurable functions taking values in the elliptic Holder space H!(R"). Furthermore
in this definition we do not impose any condition on the regularity of ¢ but the
measurability with respect to the Borel sets of [0, 7], which guarantees that we can
always write [ ¢(t,z)dt.

Finally remark also that the parabolic Holder space of type 1 is only defined for
non integer positive [ whereas the one of type 2 is defined for any positive [.

We give here the analogous of Proposition [C.2}

Proposition C.3. Let f,v € [0,2), < v. There exists a constant M > 0 only
depending on 3, v, n and T such that for all o € HV([0, T]xR"™) and all0 < € < 1

M (& el + €7 19l il B<i<u

||90Hﬁ,H <
M (6%5 HSOHU,H + ¢~ max(B,1) HSOHOO) otherwise

Proof.
We can use the same ideas as in the proof of Proposition (C.2)). From Lemma
we deduce

1/2 1/2 _
1lloo < L el < M (€llll i+ €7 elo) (C3)
If 8 < 1 then
t 2+ h)— ot
sup lp(t, z + )ﬁ p(t, 2)|

t,2,0<|h|<1 Al

tz+h)— ot t,z+h)— ot
< sw lp(t, 2 + )B ot 2)l sup lp(t, 2 + )B et 2)]|
t,2,0<|h|<e ‘h| t,z,e<|h|<1 ‘h"

min(o.1)— t,z+h) — etz _
< (emmtons gy JPEEEN Z PG
t,0<|h|<1 W ’

<M (D8 g,y + € ]l )
Using the above estimation and ((C.8) we obtain

llls,ir < M (€D gl gy + € ol )

If 5 =1 we can estimate || Dyl since v > 1: we can use the same technique as in
the proof of Proposition to get

oyt —
1D¢]oe < M (0 gl g + € ol )
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and then again
Il s < M (€7 il + € o)

since {v}T = v — 1. Finally if 3 > 1 we can repeat the argument as in the case
B <1

p-1 - - — —
(D)o < M (€7 Npllysr + €7 1Dl ) <M (e gl + €7 liollos)
by using the estimation on || Dyl| so then

15, < M (€2 gl i+ ol

which concludes our proof.






Appendix D

Ito’s formula for pure jump
processes

In the proof of Theorem we used Itd’s formula for continuously differ-
entiable functions, when (U, Z, P) is a pure jump process. In Theorem 32, Chapter
IT of Protter| (2004)), the It6’s formula is stated for twice continuously differentiable
functions:

f(Xy) = f(Xo) = /0+ f(Xs-)dXs + % . (X, )d[X, X
up>

(F(Xs) = f(Xso) — AXf/(X,0))

0<s<t

where f € C?, X is a real valued semimartingale and [X, X|¢ is the continuous part of
its quadratic variation. The purpose of this appendix is to prove the above formula
under weaker assumptions when the semimartingale X is a pure jump process.

Theorem D.1. Let X be a R"-valued semimartingale for which there exists n €
(1,2) verifying
Z |IAX|" < 00, a.s.
0<s<t:| AX <1
Let also f: [0,t] x R™ — R be a continuously differentiable function whose partial
derivative O, f satisfies the Holder condition

|6:ch(t7x) B a:vf(tay)|
|z — y[r=1+0

sup sup < 00

I<T |z—y|<1

for 6 > 0. Then the following formula holds:

£t X0) — £(0, Xo) = /0 O,f (s, X.)ds + /0 0fls X i,
+ 3 (f(5,X) = f(s, Xom) — AX,p f(5, X))

0<s<t

Proof.
We follow the proof of Theorem 32, Chapter II in Protter (2004). For sake of
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simplicity, we assume that f does not depend on ¢. Define
T:={se€(0,t] |AXs #0}

the set of the jump times of X. For given 0 < € < 1 let also A(e,w) and B(e,w) be
two subsets of T verifying

1)AUB=T 2) Y |AX|T <e 3)A s finite
s€B(e)

where 0 < ¢’ < 0. Remark in particular that all the jump times corresponding to
the big jumps (JAX| > 1) belong to A. For a partition 0 = T} < --- < T} =t
verifying sup, |T)* —T" ;| — 0 a.s. when n — 0o, we can write

CORSEORDD (£(Xr,) = (X))
= Z ( fXrp,) f(XTi")> + Z (f(XT;;T) - f(XT;L)>
i,A(e) i,B(e)

where 3, 4 stands for the summation over times 7" such that A(e)N (T}, T} ,] # 0.
Since A is almost surely finite we deduce

Tim 3 (F(Xrp,) = (X)) = 30 (F(X) - f(X,0), as.
1,A(€) s€A(e)

For the summation over the jumps in B, we need a non standard Taylor expansion
of f:
fy) = f(x) + 0 f(2)(y — x) + R(z,y)

where .
Rpo) = (=) [ (@nfa+ 0ty — ) = 00 (@)
Since 0y f is locally Holder , then for |y —z| <1
|R(z, )| < Mz — g™ = Mr(y - al)|o — "

for some positive constant M, where r(u) = u®~%". It follows

Z (f(XT;gr ) — f(Xqp ) 28 f(Xqn) (XTZLT —XTin>

1,B(e)
=3 0uf(Xap) (Xp, = Xap ) + - R(Xap ., Xrp)
i, Ae) i B(e)

By letting n — oo we obtain

t
Zaxf(XT[‘) (XT[;T - XT;L) — O f(Xs—)dXs, a.s

o+

> 0uf(Xan) (XT;;T - XT;L) D 0 f(Xe)AX,, as.

1,A(e) s€A(e)
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whereas, from the estimate on the function R and the definition of the set B

lim sup Z R (XTZLT’XTf> < M'r(e)

n—oo Z,B(E)

for some positive constant M’. By adding up all the above terms we deduce that,
for any € > 0,

f(Xy) = f(Xo) = . 00 f (5, Xs-)dXs + Y (f(Xs) = f(Xsm) = AXuf(Xso)) + M'r(e)
s€A(e)

The last thing we need to control is the convergence of the right hand side when
¢ — 0. The function r goes to zero since § > §’, so the only thing we need to check
is the convergence of the above series. Since

Z (f(Xs) - f(Xs—) - AXsaa:f(Xs—)> - Z (f(Xs) - f(Xs—) - AXsarf(Xs—))

0<s<t s€A(e)

= Y (X0 = F(Xar) = AXD (X)) < M D7 |AX <

s€B(e) s€B(e)

then

Z (f(Xs) - f(Xs—> - AXsaxf(Xs—)) 62)0 Z (f(Xs) - f(Xs—) - AXsamf<XS—))

1,A(e) 0<s<t

and the proof is complete if we prove that the above series is absolutely convergent.
As pointed our in Theorem 32, Chapter II of Protter| (2004]), it suffices to prove the
convergence for the semimartingale X1y, , where

Vi i=1inf{s > 0,|X,| >k}, k>0

We can then assume that the semimartingale X takes values in a compact set of
R™. Since f’ is bounded on compact sets we deduce

Z |f(Xs) - f(Xsf) - AXsaxf(Xst

0<s<t

<M oA+ > AKX ] <
0<s<t, |AX,|<1 0<s<t,|AXs|>1

which concludes the proof.
O

As a consequence of the above theorem, we can prove the Feynman-Kac formula for
pure jump processes:
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Corollary D.2. Let ji,v and v(dy) verify the Assumptions[5.1-C,I1] and Assump-
tion @—[L,I]. Assume that p € H*([0,T] x R™) is the unique solution of

L / (p(t, 2 +7) — ot 2) — APap(t, ) v(dy) = F

p(T,.) =G() (D.1)

where F € HY([0,T] x R") and G € H**([0,T] x R"). Then

o(t,z) =E [G (x5) + /tTF (s, X17) ds] (D.2)

where

X ::z:+/ M(ﬂXﬁ@)dﬂr/ /RV(tXf«“ay)j(dydr)
t t

Remark D.3. The above corollary can be stated under mild assumptions: in par-
ticular one can allow non smooth terminal condition G, or unbounded coefficients
w of v, provided that they are Lipschitz continuous.

Proof.
Let ¢ denote the right hand side of (D.2)). The Markov property of the process X
yields

t+h
P(t,z) =E [/t F (s, X)) ds+ 1 (t +h, Xffh)]

for h > 0. As in the proof of Theorem we can prove that ¢ is the unique
viscosity solution of PIDE (D.1). From the uniqueness of the solution of PIDE

(D.1)), we deduce that ¢ = ¢, and then (D.2]) holds true.



Appendix E

Density of an a-stable Lévy
process

In this appendix we want to give some estimations on the density of the Lévy
process associated to the operator introduced in (7.16)). Let us recall its definition:

Br'ole) = [ (ltos ) - 0(t.2) ~ 5520 ey ) v )y

where

s 9(0%) g(07)
v (y) = |y[ire Ho<w) + |y’1+aﬂ{y<0}

This is the differential operator corresponding to the Lévy process dL; := [ yJ (dydt),
where J“ is a Poisson random measure whose Lévy measure is given by v*!(dy),

€ (1,2). The characteristic triplet of L is given by (0,0, ¢), ¢ := f‘y|>1 yrt(dy).
It follows that its characteristic function is ®;(w) := E [exp(iwL;)] := exp(tl(w))
and it is a well known result that

l(w) = —o%|w|® <1 — ifsign(w) tan % + icw) (E.1)
where
o= [— (9(0") +g(07)) I'(—) cos (%)} e
5._80%) —g(0°)
 g(07) +g(07)

See for example Proposition 28.3 in [Sato| (1999) or Section 3.7 in |Cont and Tankov,
(2004). It follows that the process L has a infinitely differentiable density which can
be expressed in terms of inverse Fourier transform of its characteristic functions:

me(€) : 1/e_i§w<1>t(w)dw (E.2)

:27'('

The objective of this appendix is to prove the following:

223
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Lemma E.1. Let my(€), t € (0,T], be the density of a Lévy process L with char-
acteristic triplet (0,0t c) where o € (1,2).There exists positive constant M =
M(a,T) > 0, only depending on «, T and the characteristics of the Lévy process
such that

/ DEmy(€)| d¢ < Mt~
R

and

om

/R D 1,6)| de < M

Proof.

In this proof M represents some positive constant only depending on T, o, k and the
characteristics of the Lévy process. It may change from line to line. By changing
the variable we can write

/R ‘Dlgmt(ﬁ)‘ de =t~ % /Rtkzl

Our goal is to prove that fR s ‘Dfmt(ft%)
Schwarz inequality yields

it 1 1/2 p D L 1/2
/Rt a d§ < </R ngd§> </R(1+£ )t e [Démy(Eta)| df)

2(k+1) 1 1/2
<M </<1+£2)t a |Dlgmt(ft“)‘2d‘5>
R

Dfmy(&tw)

d¢ (E.3)

d¢ is bounded uniformly in ¢. Cauchy-

ngt(fti)

Also
k 1 ()P ko—iweta e (—i)P k. —iwe 1
Démy(Et=) =5, [ we Oi(w)dw =1t o —— [ w e " P (wt” @)dw
™ R T R

where ® is the Fourier transform of L: the k—th derivative of m; is simply the
k+1 1

Fourier transform of the function w — ¢t~ o (—i)*wk®;(wt~=). Standard properties

of the Fourier transform yield

/tkl_1 ‘Démt(ﬁti)
R
<M (/(1 +E0)t
R
k41 k1 1 k41 1 1/2
e ([ (729 e P+ e D)) )

<M ( /R (|£’“<I>t<fti>|2 + rjg(f%t@ti»r?) d&) v (B.4)

If we prove that the above is bounded then we are done. From (E.1)) it follows

([1ero o) " (/ |£|2’fe—2aa'€'“)1/2 <M (.5)

dg

2(k

1/2
(k+1) 1
: Dé“mt@tan?ds)
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For the second term, we first remark that
5’“(1)25(515_%) = Fexp ( o®|&|” (1 - zﬁtan(o; )51gn(£)) + ictl_l/aﬁ)
from which we deduce

*5(5’“@(& NI M (1+6°) exp(—0¢))

so then

( / |2 (5@ ( ft))!2d§> v <M

since 1 < a < 2. We use the above estimations and in to prove the first
part of the Lemma.

For the second part, we can remark that the density function of the Lévy process
L?l, & — m(s—t & —1), verifies

8m

+ [ (m(s—t,s—z—w—m(s—t,s—n—y%?(s—t,s—nnﬂy@) v (dy) = 0,

where 0;(§) is the Dirac mass at the point [. It follows

om 1 9
\ (t¢ - >] 2/|y|<1‘y’/d9

T /|y>1 m(t, € —1—y) — m(t, € — D] v*!(dy)

82

e v (dy)

(t,& —1—0y)

We now integrate over £, and by using the previous estimate, we obtain

om

= (t g)‘ dé < Mt a






Notations

(Q, F, P)

w €N

P, Q

Q<P

EIP’

LP(E, p), p>1

2 (dy)

Wi, By

(J,v(dy)), (N, vn(dy))
L(S)

CH(R™)

Chk([0,T] x R™)

H{(R™)

CY/2H([0,T) x R"), I € R\ {N}
HY([0,T] x R™)

Dy or Op /0t

Do, 0o or 9lFlp /ol
Sn(R)
Up

Forany [ >0 [ = |l] +{l}~
Forany [ >0 [ = [l] +{I}"

Probability space

Scenario of randomness

(eventually signed) probability measures

Q is absolutely continuous with respect to P
Expectation operator under P

The Banach space of p-integrable functions on F
with respect to u

The Dirac distribution with mass at z

Standard Brownian motions

Poisson random measures and their Lévy measures
The space of integrands with respect to the semi-
martingale S

The space of R-valued continuously differentiable
functions up to the order m < k taking values in
R™,

The space of R-valued functions which are contin-
uously differentiable in the space variable up to
the order m < k and in the time variable up to
the order m < h, taking values in [0, 7] x R".
The elliptic Holder space of order [ € R

The parabolic Holder space of type 1 of order [
The parabolic Holder space of type 2 of order [
The derivative w.r.t. ¢ for ¢ : [0,7] x R — R.

For a multi index k € N, |k| = k1 +--- + kj,, and
v: [0, T] xR* =R D'f'ap = Okl /Dzkr ... ghn

The space of real valued semi-definite positive
symmetric matrices

For h > 0 it defines a positive locally bounded
function such that ¥, — 1 when h — 0

where {I}~ € [0,1) and [[] € N

where {I}T € (0,1] and [I] € N
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Acceptance set, [33] continuous from below,
o convex, [33]
BSDEs with jumps, [L15 law invariant,
Copulae, mlr]li?al penalty function,
CVaR, 55 on L? spaces, [3§]

representation, [33]
Density of a a-stable Lévy process, spectral,

Derivative of flow,
Dirichlet boundary condition,

Doléans-Dade Exponential, Utility-based hedging
Dynamic programming principle,
VaR, 35

Electricity markets, Variance-optimal signed martingale mea-

Entropy, [37] sure, [77]
Viscosity solution, [96], [140], [150], [183], [191]

Sobolev space, [116

Future contracts, (158

G-divergence,
Galtchouk-Kunita-Watanabe decomposi-

tion, [6§]
Generalized inverse distribution, [35]
Green’s function,

Holder spaces, 211
Hitting time, (189

Linear PDE fundamental solution, [106
Normal Inverse Gaussian process, 22]
Optimal quadratic hedge price,

Portfolio insurance, [40]
Pure investment problem, [74],
[47, [I79)

Quadratic hedge, [68|

Risk measures,

spectral,
coherent,
continuous from above,
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