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-Pourquoi l’azur muet et l’espace insondable ?
Pourquoi les astres d’or fourmillant comme un sable ?

Arthur Rimbaud, Soleil et chair
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Figure 1: Cumulative number of
solar and extrasolar planets dis-
covered (solid). Exponential fit
(dashed).

Finding planets seems to be a sport we are getting good at.
While it took more than two thousand years of astronomical obser-
vations for the ancients to find the eight planets1 orbiting with the
Earth around the Sun, more than 500 exoplanets have been found
in the last fifteen years. If it is difficult to give an exact number,
it is not only because determining what is a planet is complex, but
also because this number is now growing by the day. Doubling
every three years, it grows nearly as rapidly as the complexity of
micro-processors predicted by the Moore law.

This offers a unique chance for the physicist. While the plan-
ets in our solar system offer exquisite information on the internal
and atmospheric physics, exoplanets, and especially the transiting
ones, provide the possibility to probe the physics of planetary sci-
ences in a wider diversity of extreme conditions and with a statisti-
cally significant number of objects. However, if space and ground
based detection missions are numerous, theoretical studies aimed
at the analysis and comprehension of the present and future data
are necessary.

Even with the few data that we can get for any single exoplanetary system, unexpected features
appear. More than fifteen years ago, Doppler spectroscopy alone already changed our vision of planetary
formation by finding giant planets2 nearly ten times closer from their star than is mercury from our Sun
(Mayor and Queloz 1995). But in the last decade, thanks to the additional photometric monitoring of
the transit of some of these planets, yielding their true masses and radii, an even more disturbing pattern
arose (Henry et al. 2000). For a given mass, Giant exoplanets look much bigger than expected by the
same theory which (more or less) accords with our present understanding of Solar System giant planets.

To unravel the origin of these peculiar properties, we thus have to deconstruct part of the sophis-
ticated theories that were developed to understand our Solar System, and reconstruct them with less
restrictive hypotheses. To that purpose, the large size of the exoplanet sample is a significant asset as it

1Pluto will always be a planet in my heart.
2Also called Hot Jupiters or Pegasids.
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allows us to directly test the generality of our theoretical predictions. However, one should not forget
about the planets that are closest to us. Even if it is hard to reproduce exactly all the observed features
of these well documented objects with the simple general models that we are trying to develop, the large
amount of data coming from various origins can provide much more precise constraints. Moreover Solar
System planets offer the advantage of reminding us that a planet is much more complex to understand
than a data point in a mass-radius diagram.

This is in that spirit that this thesis makes an attempt to address some unresolved problems of the
structure and evolution of giant planets, taking advantage of the information that can be found both inside
and outside our Solar System.

As the so called radius anomaly I was depicting above had clearly been identified from the very
beginning of this work as one of the main contemporary unanswered question in this particular field, it
can often be found, among others, as one of the underlying motivations for the various studies described
hereafter. However, if it has been a motivation, it has not been an end in itself, as the problem was not so
much to explain an unexpected property than to identify and understand the main physical processes at
work in exoplanetary systems.

Thus, in the following chapters, I tried not only to characterize and quantify the effect of the differ-
ent ingredients considered (stellar irradiation, double-diffusive convection, tidal heating) on the radius of
extrasolar giant planets, but also to develop the analytical and numerical tools necessary to model these
processes in a wider context. For this reason, I tried as much as possible to compare the models used
or developed here with others found in the literature to highlight their strengths and limitations. When
possible, I also tried to provide numerical estimates of the main physical parameters needed to directly
apply these models to different specific cases.

User guide

As the various subjects treated here are rather independent, I chose to dedicate the first part
of each chapter to the introduction and definition of the most necessary physical concepts. Even
if some of these concepts are well known, it will allow me to detail the context in which the work
presented hereafter, has been done.

In addition, for pedagogic purposes, and so that the interested reader may have all the equa-
tions at hand, I will also develop in length the analytical theories that I used and often extended
during this thesis. However, as much as possible, these developments have been put in the appen-
dices that can be found at the end of the present manuscript.

Thus, to ease the progression of the reader through these various sections, at the beginning of
each chapter, a framed paragraph summarizes the goals of each section of the chapter, and where
the main results of the present work can be found.
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Abstract
The detection and characterization of extrasolar planets clearly appears as one of the main goals

of observational astronomy for the coming years. Space and ground based projects are numerous, but
theoretical studies aimed at analyzing and understanding available and future data are needed.

During this thesis, I study various physical processes affecting the internal structure and evolution
of both solar, and extrasolar giant planets. Here are some of the main goals of this work which is divided
in four independent parts presented in the chapters 2 to 5.

• In a first study, I investigate the impact of the intense stellar irradiation received by a close in
planet on its subsequent internal evolution. This allows me to quantify the radius anomaly of
bloated Hot Jupiters and to constrain their internal composition. I also show that most features of
the mechanical structure of gaseous substellar objects can be well captured by a single effective
polytropic index, and that this index is linked to the behavior of the mass-radius relationship.
Finally, I propose an observational criterion based on the mean density of the object to distinguish
massive giant planets from mini brown dwarfs.

• Then, I use both analytical and numerical models to study the tidal and centrifugal distortion
of a fluid planet, and infer its shape. This allows me to provide numerical estimates of various
quantities characterizing the mechanical internal structure of giant planets and brown dwarfs (e.g.
Love number, ...). I find that because close in planets are tidally elongated toward the star, they
exhibit a smaller cross section, yielding major implications for transit measurements. In particular,
an underestimation of the radius.

• In Chapter 4, I examine how the presence of double-diffusive convection caused by a heavy ele-
ments gradient in the gaseous envelope of a planet can decrease the efficiency of its internal heat
transport, and affect its structure and evolution. To do so, I develop a completely analytical model
of layered convection and apply it to the Solar System gas giants. These models yield a metal
enrichment for our gaseous giants up to 30 to 60% larger than previously thought. As the heavy
elements tend to be redistributed within the gaseous envelope, the models predict smaller than
usual central cores inside Saturn and Jupiter, with possibly no core for this latter.

• Finally, I investigate the coupling between the orbital and the thermal evolution of a planet aris-
ing from the strong star-planet tidal interaction. Using an analytical model for the secular tidal
evolution which is fit to describe highly eccentric orbits, I first show that using tidal models based
on a quasi circular approximation can lead to quantitatively, and sometimes qualitatively different
orbital evolutions, and can overestimate the evolution timescales by orders of magnitude. Subse-
quently, I find that tidal heating alone is not a viable explanation for the observed radius anomaly
of transiting planets.

Through these different studies, I developed various analytical models and numerical codes (such
as CHESS) that are both flexible and robust, and which now allow me to study the properties of new
extrasolar planets and brown dwarfs as they are discovered.
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Résumé

La détection et la caractérisation d’exoplanètes apparaissent clairement comme des thèmes cen-
traux de l’observation astronomique pour les années à venir. Les projets spatiaux ou au sol sont nom-
breux (HARPS, CoRoT, Kepler, JWST, SPHERE...), mais les études théoriques visant à l’analyse et à la
compréhension des données recueillies et à venir sont nécessaires. Durant cette thèse j’ai étudié divers
processus physiques affectant la structure interne et l’évolution des planètes géantes, aussi bien au sein,
qu’à l’extérieur de notre système solaire. J’ai notamment modélisé en détail :

• L’impact de l’irradiation intense émise par l’étoile sur l’atmosphère d’une planète à faible distance
orbitale, et l’effet induit sur l’évolution interne de cette planète.

• Le couplage par dissipation de marée de l’évolution orbitale et thermique d’une planète interagis-
sant avec sa proche étoile parente.

• L’effet de la déformation due aux marées sur les paramètres observables d’une planète en transit
grâce au suivi photométrique de son passage devant l’étoile.

• L’incidence sur la structure et l’évolution d’une diminution de l’efficacité du transport de chaleur
par convection due à un gradient d’éléments lourd dans l’enveloppe gazeuse d’une planète géante,
conduisant au phénomène de convection double-diffusive.

A travers l’étude des ces divers processus, j’ai développé différents modèles analytiques et codes
numériques qui sont à la fois flexibles et robustes, et qui permettent maintenant d’étudier certaines pro-
priétés des nouveaux objets sub-stellaires détectés à mesure qu’ils sont découverts.
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Chapter 1

The syntax of planetary structure

The heavenly motions... are nothing but a continuous song for several voices,
perceived not by the ear but by the intellect,

a figured music which sets landmarks
in the immeasurable flow of time.

John Banville
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Before starting to introduce any new or exotic physics into the standard theory of giant plan-
ets structure, it seems mandatory to introduce its most basic concepts, and to define the notations
that will be used throughout this work.

Hence, in this introductory chapter, we will only concern ourselves with the derivation of the
basic equations and conservation laws applying to (sub)stellar objects (§ 1.1), and to the various
physical ingredients needed to compute planetary models (§ 1.4 and § 1.5). Fortunately, to some
extent, the physics of giant planets and brown dwarfs are very similar to stellar physics in their
basic principles, and the reader can take advantage of the numerous outstanding textbooks in this
area (Eddington 1926 ; Chandrasekhar 1939 ; Kippenhahn and Weigert 1990 ; Hansen and Kawaler
1994 ; to cite only a few).

In addition, in § 1.5.2, considering a toy model describing the radiative transfer in the atmo-
sphere of a strongly irradiated giant planet, I show that numerical 1D calculations of the atmo-
spheric boundary conditions of substellar objects that consider a redistribution of the stellar flux
over the day side only may overestimate the impact of the irradiation on the structure of the object.
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Even FOR THE MOST STUDIED CELESTIAL BODY IN THE UNIVERSE, namely, the
Earth, when it comes to the problem of internal structure, direct observational
data are very sparse. In order to fill the numerous gaps, and to get a global un-

derstanding of how the physics at play interact in planetary interiors, and make planets evolve the way
they do, a global theory is needed. During the past two decades, this need has been strongly revived
by the discovery of the first extrasolar planet (Mayor and Queloz 1995), of the first cool brown dwarf
(Oppenheimer et al. 1995), and of the many that followed. But these discoveries also raised new con-
straints and challenges for the theory of planetary evolution: (i) observational data available for a given
system are even more scarce, and often limited to a few global quantities (mass, radius, luminosity, etc...
depending on the observational methods available), and (ii) the number and diversity of the systems
discovered is huge, and still growing by the day.

A direct consequence of the first point is that modeling becomes mandatory to infer the values of
even the most basic physical quantities describing the observed objects - such as their surface pressure
and temperature, atmospheric composition and rotation speed, among others - from the limited set of
available data (incoming stellar flux, spectrum, orbital configuration...), when it is possible at all. This
is evidently a first call for simple but robust models with the ability to constrain the basic features of
an object from a few global observables. Another, and maybe more stimulating consequence of this
lack of data, is that it somewhat gives some license and freedom to the theorist, who can more freely
explore known mechanisms in the most extreme regimes, or completely new exotic ones. Fortunately,
the second point bears a subtle but powerful constraint. We are not looking at single objects anymore, but
at populations ! Thus, any theory must be general and robust enough to account for the similarities and
differences arising between members of what could seem, when looking at a limited set of parameters,
an homogeneous family.

In any case, before starting to introduce any new or exotic physics into our model, or simply to get a
basic picture of the problem at hand, it seems proper to review the basic concepts that underlie the theory
of the structure and evolution of gaseous bodies, the assumptions that are commonly made, and the most
robust features that can be drawn from these basic assumptions.

1.1 The basics of planetary and stellar structure

As in every problem of compressible fluid mechanics, the solution consists in finding expressions
for the density (ρ), pressure (P), temperature (T ), specific entropy (S̃), velocity (v) as a function of both
the radius vector, r, and time t. To solve the problem, we thus need seven scalar equations1 that will be
provided by the conservation of mass, momentum (3 scalar relations), energy, and by the fundamental
relation for the fluid constituting our object which encompasses two relations, one for the pressure (the
famous equation of state) and one for the internal energy, or equivalently for the entropy.

1Reducing to five equations for the spherical case.
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Deferring thermodynamical considerations for § 1.4.1, in this section, I have made an attempt to
derive rigorously the basic equations of (sub)stellar structure and evolution directly from the equations
of fluid dynamics (that can be found for example in Rieutord 1997) and not from macroscopic consider-
ations. Thus spherical symmetry will only come as a simplification when needed, and will not be one of
the fundamental assumptions. It will then be easier to break this assumption in Chapter 3.

1.1.1 Mass conservation and Lagrangian coordinate

In the general case, the continuity equation, which simply express the mass conservation reads

∂ ρ

∂ t

∣∣∣∣
r
=−∇ · (ρv), (1.1)

where the time derivative is taken at a constant location r. In classical hydrodynamics, it is often con-
venient to introduce a Lagrangian derivative which is following a given mass element of fluid. This
reads

D
Dt

=
∂

∂ t

∣∣∣∣
r
+(v ·∇), (1.2)

and yields

Dρ

Dt
=−ρ (∇ ·v). (1.3)

We see that expressing the problem in a Lagrangian form greatly reduces, at least formally, the complex-
ity of the equations. In the following, we will thus try to find a suitable set of Lagrangian coordinates.

Fortunately, for fluid objects where centrifugal, tidal and magnetic forces can be neglected2, all our
variables are constant on concentric spherical shells. Then, they depend only on two scalar variables,
r =‖ r ‖ and t. In this case, our Lagrangian coordinate is provided by the mass contained inside the
spherical shell of radius r at the time t,

m(r, t) = 4π

∫ r

0
ρ(r, t)r2dr. (1.4)

Indeed, as we will see, this variable moves with the fluid, and has the sought for properties. In order
to correctly carry out the coordinate change (r, t)→ (m, t), we must express the differential form dm.
Thanks to the continuity equation, which now writes

∂ ρ

∂ t

∣∣∣∣
r
=− 1

r2
∂ (r2ρv)

∂ r

∣∣∣∣
t
, (1.5)

with v = v · r̂, this yields

dm≡ ∂ m
∂ r

∣∣∣∣
t
dr+

∂ m
∂ t

∣∣∣∣
r
dt

= 4πr2
ρ(r, t)dr+4π

∫ r

0

∂ ρ

∂ t

∣∣∣∣
r
r2dr dt

= 4πr2
ρ(r, t)dr−4π

∫ r

0

∂ (r2ρv)
∂ r

∣∣∣∣
t
dr dt, (1.6)

2A more precise and quantitative version of this statement will be given in Chapter 3, where we will discuss in detail the
departure from sphericity of a fluid object in hydrostatic equilibrium under the action of a perturbing force.
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and finally, after integration,

dm = 4πr2
ρ(r, t)dr−4πr2

ρ(r, t)vdt. (1.7)

The first term is simply the mass enclosed between the shell of radius r and r+dr, and the second, the
mass loss rate trough a shell of constant radius r, due to the fluid motion at the speed v. One can see that
the speed of a given mass element labeled by m (meaning dm = 0), is given by Dr

Dt = v. This is why m is
a Lagrangian coordinate. The change of variable can then be carried out using

∂

∂ r

∣∣∣∣
t
= 4πr2

ρ
∂

∂ m

∣∣∣∣
t
,

∂

∂ t

∣∣∣∣
r
=

∂

∂ t

∣∣∣∣
m
+

∂ m
∂ t

∣∣∣∣
r

∂

∂ m

∣∣∣∣
t

=
∂

∂ t

∣∣∣∣
m
−4πr2

ρv
∂

∂ m

∣∣∣∣
t
. (1.8)

From the second equation above, we can see that, as expected, ∂

∂ t

∣∣∣
m

is simply the total derivative, D
Dt

expressed here for a spherical configuration.
With the Lagrangian coordinate system, we will see hereafter, that it is convenient to replace the

equation for mass conservation by

∂ r
∂ m

∣∣∣∣
t
=

1
4πr2ρ

. (1.9)

However, r then appears explicitly in this equation, and is no longer a dummy variable, as it has been
replaced by m. We must therefore find an additional relation. Fortunately, we already encountered it,
whatever simple it seems:

v =
∂ r
∂ t

∣∣∣∣
m
. (1.10)

Therefore, in the following, we will always replace v using Eq. (1.10). Our problem can now be stated
as finding five equations, two being provided by the thermodynamics, involving r, ρ , P, T and S̃ as a
function of m and t.

1.1.2 Momentum equation

It is now easy to rewrite the other equations in our new set of coordinates. Let us start with the
Navier-Stockes equation (in the inviscid limit ; Rieutord 1997)

ρ
Dv
Dt

=−∇P−ρ∇(VG +Vext), (1.11)

where −∇(VG +Vext) is the acceleration due to all the external forces acting in volume3. Considering
only gravity and in the spherical case, we get

∂ P
∂ m

∣∣∣∣
t
=− g

4πr2 −
1

4πr2
∂ 2r
∂ t2

∣∣∣∣
m
, (1.12)

where r̂ ·∇VG = g = Gm
r2 is the module of the local gravity acceleration (g). The two first term are the

usual pressure gradient and gravitational acceleration, which are equal when hydrostatic equilibrium is
reached. The last term arises when a given shell undergo an accelerated contraction or expansion.

3This equation is general, but in this section, only central forces will be discussed. For a detailed discussion of the effect of
non central forces, the reader is referred to Chapter 3.
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1.1.3 Energy conservation

Local conservation

As discussed in Rieutord (1997), if Ũ is the specific internal energy of the fluid, its Lagrangian
variation is given by

DŨ
Dt

=− 1
ρ
(∇ ·Fint +P∇ ·v)+ ε̇nuc + ε̇ext, (1.13)

where Fint is the energy flux density vector, and ε̇nuc and ε̇ext are the specific energy production rate of
nuclear reactions, and of a source that yet remains to be determined. The first two terms between brack-
ets represent respectively the thermal and mechanical energy exchanged with the other mass elements,
whereas, the last terms represents a production of energy within a given mass element itself. This en-
ergy can be produced by different processes, the first coming in mind being chemical, or in our context
nuclear, reactions (ε̇nuc) and viscous dissipation. We will see in Chapter 2 that other sources can come
into play, and in particular tidally generated friction (ε̇ tid) that is extensively discussed in Chapter 5. To
remain general, but make a difference between internal and external sources of energy, we will consider
separately ε̇nuc and an arbitrary source which produces ε̇ext Joules per second and per gram of matter.

Thanks to the second principle of thermodynamics, we can define a thermodynamical function
S̃ (the specific entropy of the fluid) whose differential form is related to the other thermodynamical
quantities by

T d S̃ = dŨ− P
ρ2 dρ. (1.14)

Because the infinitesimal variations are taken along the transformation of a given fluid element, and
thanks to the continuity equation, Eq. (1.13) directly rewrites

T
DS̃
Dt

=− 1
ρ
(∇ ·Fint +P∇ ·v)+ ε̇nuc + ε̇ext−

P
ρ2

Dρ

Dt

=− 1
ρ
(∇ ·Fint +P∇ ·v)+ ε̇nuc + ε̇ext +

P
ρ

∇ ·v

=− 1
ρ

∇ ·Fint + ε̇nuc + ε̇ext. (1.15)

This just shows that, as expected, the entropy created in a particle of fluid does not depend on the amount
of work that it receives. For a spherical configuration, defining the luminosity as l(m, t)≡ 4π r2Fint · r̂≡
4π r2Fint, and using the (m, t) coordinates we get

ε̇nuc + ε̇ext−T
∂ S̃
∂ t

∣∣∣∣
m
=

1
r2ρ

∂ r2Fint

∂ r

∣∣∣∣
t
= 4π

∂ r2Fint

∂ m

∣∣∣∣
t
=

∂ l
∂ m

∣∣∣∣
t
. (1.16)

Global conservation

The above relation express the fact that locally, the energy that exits a given shell of mass dm
( ∂ l

∂ m

∣∣∣
t
dm) comes either from a release of entropy (−T ∂ S̃

∂ t

∣∣∣
m

dm) or of a local energy production ((ε̇ext +

ε̇nuc)dm). However, the gravitational energy

Egrav ≡−
∫ Gm

r
dm, (1.17)
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never explicitly appears, nor the total macroscopic kinetic energy

Ekin ≡
∫ 1

2
∂ r
∂ t

∣∣∣∣2
m

dm, (1.18)

and one may wonder if the total energy of our object is conserved as a direct consequence of this local
energy conservation. To reassure the reader, and show that it is, we must integrate our local energy
conservation (Eq. (1.16)) over the whole mass of our body.

Let us define the total internal luminosity Lint(t)≡ l(M1, t), Eint ≡
∫

Ũdm and Enuc the total internal
and nuclear energy, and Eext, the energy contained in an external reservoir4. From these definitions,
Ėint =

∫
∂ Ũ
∂ t

∣∣∣
m

dm, and the total energy produced per unit of time in the object by nuclear reactions and

by external processes are respectively −Ėnuc =
∫

ε̇nuc dm and −Ėext =
∫

ε̇ext dm5. Then the integration
yields

Lint =−Ėint− Ėext− Ėnuc +
∫ P

ρ2
∂ ρ

∂ t

∣∣∣∣
m
. (1.19)

The last term appears as the energy produced (consumed) by the contraction (expansion) of our body
( ∂ ρ

∂ t

∣∣∣
m

being respectively positive or negative). In order to link this to the variation of the gravitational
and kinetic energy, we must derive a derivative of the well known Virial theorem as follows. Let us
multiply both sides of the momentum equation (Eq. (1.12)) by 4π r2 ∂ r

∂ t

∣∣∣
m

and integrate over the mass.
We have∫

4π r2 ∂ r
∂ t

∣∣∣∣
m

∂ P
∂ m

∣∣∣∣
t
dm =−

∫ Gm
r

1
r

∂ r
∂ t

∣∣∣∣
m

dm−
∫

∂ r
∂ t

∣∣∣∣
m

∂ 2r
∂ t2

∣∣∣∣
m

dm. (1.20)

On the left hand side, because m can move inside the time derivatives, and that ∂ r
∂ t

∣∣∣
m

∂ 2r
∂ t2

∣∣∣
m
=

1
2

∂

∂ t

(
∂ r
∂ t

∣∣∣2
m

)∣∣∣∣
m

, we immediately recognize −Ėgrav and −Ėkin. Integrating by part the right hand side,

we get∫
4π r2 ∂ r

∂ t

∣∣∣∣
m

∂ P
∂ m

∣∣∣∣
t
dm =

[
4π r2 ∂ r

∂ t

∣∣∣∣
m

P
]M1

0
−
∫

P
∂

∂ m

(
4π r2 ∂ r

∂ t

∣∣∣∣
m

)∣∣∣∣
t
. (1.21)

Because

∂

∂ m

(
r2 ∂ r

∂ t

∣∣∣∣
m

)∣∣∣∣
t
=

1
3

∂ 2r3

∂m∂ t
=

1
3

∂ 2r3

∂ t∂m
=

∂

∂ t

(
r2 ∂ r

∂ m

∣∣∣∣
t

)∣∣∣∣
m
=

∂

∂ t

(
1

4π ρ

)∣∣∣∣
m
, (1.22)

this rewrites∫
4π r2 ∂ r

∂ t

∣∣∣∣
m

∂ P
∂ m

∣∣∣∣
t
dm = Patm

d
dt

(
4
3

π R3
1

)
+
∫ P

ρ2
∂ ρ

∂ t

∣∣∣∣
m
, (1.23)

where Patm is the external pressure, and R1 is the external mean radius of the object. Recasting Eq. (1.20),
we get∫ P

ρ2
∂ ρ

∂ t

∣∣∣∣
m
+ Ėkin =−Ėgrav−Patm

d
dt

(
4
3

π R3
1

)
. (1.24)

4For tidal friction, for example, this reservoir is the macroscopic kinetic (orbital) energy of the whole system, which can be
dissipated in the interior by the tides.

5The minus signs are merely conventional, and just come from the fact we defined the various ε̇ as energy production rates
per unit mass and not as energy variation rates, so that they are positive.



14 The syntax of planetary structure

As we could have guessed, the mechanical work exerted by the gravitational force and the the pressure
of the external medium (even if small in all the cases of interest), is transferred into both macroscopic
and microscopic kinetic energy. Substituting this into Eq. (1.19) finally gives the expected global energy
conservation

Ėint + Ėkin + Ėgrav + Ėnuc + Ėext =−Lint +Patm
d
dt

(
4
3

π R3
1

)
, (1.25)

where the left hand side is the variation in volume of the total energy, and the right hand side represents
the energy exchanged through the surface, either by thermal (radiative) losses, or by mechanical work6,7.

1.1.4 Energy transport

We now have the three dynamical equations that we were looking for (Eq. (1.9), (1.12) and (1.16)).
However, we can see that the energy equation involve a new variable, namely the luminosity of any
given layer, l(m, t), and thus, a new relation must be found which describe the way energy is transported
throughout our medium as a function of its thermodynamical properties. For this, however, one cannot
rely on a fundamental physical principle, and there enters some modeling and parametrization.

Diffusive transport

Let us first consider the energy that is transported by radiation. Indeed, we expect temperature
(and thus radiative energy8, Ũrad = aT 4) of the matter to increase with depth, which should lead to a
flux of radiative energy. As the mean free path of a photon inside a medium of mean opacity κ r is
equal to (κ rρ)

−1 ≈ 10−2m which is much smaller than the size of the object we are considering, a huge
simplification occurs, and the radiative flux can be treated as a pure diffusion9.

Then, in each spectral interval [ν ,ν +dν ], the diffusing component is the radiative energy density,
Ũν , and it is transported by photons whose diffusion coefficient is c/(3κνρ). Here, κν is the radiative
opacity and is expressed in m2.kg−1. This yields for the flux

Fν =− c
3κνρ

∇Ũν . (1.26)

Deep in the interior, local thermodynamic equilibrium is achieved, so that the energy density is given by
the planck function for the intensity, B(ν ,T ), by

Ũν =
4π

c
B(ν ,T ) =

8πh
c3

ν3

ehν/kBT −1
. (1.27)

Thus in a given spectral bin, the flux depends only on the temperature and its gradient, and is given by

Fν =− c
3κνρ

4π

c
∂ B
∂ T

∣∣∣∣
ν

∇T. (1.28)

6Because the pressure of the interplanetary or interstellar medium are vanishingly small compared to the pressures reached
in the interior once the body is massive enough, excepted for the very early phases of the formation, the external mechanical
work is negligible

7Eqs. (1.20) and (1.25) extend the relation found in Kippenhahn and Weigert (1990) to objects that are not in hydrostatic
equilibrium and in contact with an external pressure reservoir.

8The constant related to the total energy radiated by a blackbody is a≡ 8π5k4
B

15c3h3 ≡ 4σSB
c , where σSB is the Stefan-Boltzmann

constant.
9This approximation is valid for optical depth larger than unity, i.e. not in the atmosphere where we will need a proper

treatment of the radiative transfer, as we will see in § 1.5.2.
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We can then integrate this over the frequencies which yields the total radiative flux

Frad =−
[

4π

3ρ

∫ 1
κν

∂ B
∂ T

∣∣∣∣
ν

dν

]
∇T. (1.29)

Then, it is rather useful to define the Rosseland mean opacity

1
κ r

=

∫ 1
κν

∂ B
∂ T

∣∣∣
ν

dν∫
∂ B
∂ T

∣∣∣
ν

dν

=
π

4σSBT 3

∫ 1
κν

∂ B
∂ T

∣∣∣∣
ν

dν , (1.30)

which as we see, is an harmonic average weighted by the derivative of the Planck function. In other
words, this mean opacity indeed measures the transparency of the gas at the frequencies were most
of the flux can be transported (where ∂ B

∂ T

∣∣∣
ν

is maximum). Sometimes, however, another equivalent

quantity describing the radiative transport is used, namely the thermal diffusivity (κT,r, in m2.s−1), which
is defined by

Frad =−ρcPκT,r∇T ⇒ κT,r ≡
16σSBT 3

3ρ2cP

1
κ r

. (1.31)

But energy is not transported only by radiation. Indeed, in the interior, because the matter is partially
ionized, the free electron can efficiently transport heat by conduction (The flux being Fcond). This is also
a diffusive process, and by analogy, a conductive thermal diffusivity (κT,c) and a conductive opacity (κc)
can also be defined following

Fcond =−ρcPκT,c∇T ⇒ κT,c ≡
16σSBT 3

3ρ2cP

1
κc

. (1.32)

Then, because diffusive fluxes are additive, the total flux transported by diffusion is simply Fd = Frad +
Fcond, and by analogy, we can define a global thermal diffusivity

κT = κT,r +κT,c, (1.33)

and mean diffusive opacity

1
κ̄
=

1
κ r

+
1

κc
. (1.34)

As for the Rosseland mean, the fact that this opacity is defined by an harmonic average simply translates
the fact that the energy preferentially goes through the most transparent window.

In the spherical case, considering the total diffusive flux10, we have

Ld = 4πr2Fd =−
64πr2σSBT 3

3ρκ̄

dT
dr

, (1.35)

and using Eqs. (1.8) and (1.12) (without the inertia term) yields

Ld =
64π σSBT 4mG

3 κ̄P
d lnT
d lnP

= 4π ρ
2cPκT σSB mG

T
P

d lnT
d lnP

, (1.36)

10To avoid confusion, we will use the generic denomination ∇d and use the index d for quantities describing diffusive pro-
cesses in general while keeping in mind that, except for the fact that κT now includes the contribution of conductive processes,
∇d plays exactly the same role than the usual ∇rad.
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were the flux transported by radiation is expressed as a function of the thermal gradient

∇T ≡
d lnT
d lnP

. (1.37)

Here, the derivative is taken along the actual profile in the planet.
It is customary to define the diffusive gradient as the temperature gradient (as a function of pressure)

needed to transport all the energy through both radiation and conduction. Thus setting Ld = l(m) ≡
4πr2σSBT 4

int(m)11 in Eq. (1.36) yields

∇d ≡
(

d lnT
d lnP

)
d
=

3 κ̄P
64π σSBT 4

l
mG

=
3
16

κ̄P
T 4

T 4
int
g

, (1.38)

or equivalently

∇d =
1

4π ρ2cPκT

P
T

l
mG

=
1

ρ2cPκT

P
T

σSBT 4
int

g
. (1.39)

With this definition, if there is no other available means to transport energy in the zone considered, which
is therefore called either a radiative zone or a conductive zone depending on the dominant process, the
local thermal gradient must adjust itself to the diffusive gradient so that our missing equation is simply

∇T = ∇d. (1.40)

Advective transport: convection

Note that the flux (Fint) present in Eq. (1.15) should in principle only include such diffusive pro-
cesses for which energy can be transferred from one mass element to the other without any mass transfer
(or advection). Indeed, in 3D, a significant inhomogeneity of temperature within the fluid can lead to
large scale fluid motion and to turbulence that will homogenize the energy distribution at the macroscopic
level, diffusion then being able to homogenize the remaining small scale inhomogeneities. However, in
1D, such processes cannot be accounted for properly, as we would have hot plumes moving upward
smashing into the descending cold plumes, without any possibility for them to simply go around. We
thus have to include advection (or convection) in a parametrized way.

As convection is extensively discussed in Chapter 4, we will not reproduce the argument here. Let
us just agree for the moment that if the medium is convectively unstable, which arises when the diffusive
gradient is larger than the adiabatic one

∇d > ∇ad ≡
∂ lnT
∂ lnP

∣∣∣∣
S̃
, (1.41)

then convection transports energy to restore the equilibrium. Because convection is very efficient in
planetary interiors, the thermal gradient is then very close to the adiabatic one, and our missing relation
in such convective zones is given by

∇T = ∇ad, (1.42)

and is nearly independent of the luminosity.

11Note that this relation is indeed a definition of Tint(m), which is the effective temperature at depth m.
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Furthermore, as will also be discussed in Chapter 2, under the physical conditions encountered in
substellar object and gaseous planets, the fluid is convectively unstable in all the interior but a thin outer
layer. Hence the interior is mostly adiabatic and the T −P profile can be integrated from the values of the
temperature and pressure just below the radiative zone using Eq. (1.42) independently of the luminosity
equation. This means that, in the fully convective case, only the total luminosity, Lint, and not the
luminosity profile, l(m), affects the structure, and only through its impact on the boundary conditions
(see § 1.5.2).

1.2 Evolution timescales

We now have our system of equations to solve. However, all the terms in this system do not have the
same importance, some even being completely negligible by orders of magnitude. In order to quantify
this statement, let us introduce some representative timescales

1.2.1 Dynamical timescale and free fall time

In Eq. (1.12), we see that the acceleration results of the possible unbalance between the gravitational
pull and the pressure support. However, excepted during the very early contraction or the red giant phase
of more massive stars, this term can be neglected, because its associated timescale is much shorter than
the evolution timescale.

Indeed, if we freeze all the microscopic degree of freedom of our gas, in a classical sense, then
pressure vanishes and nothing can counteract gravitational contraction. Then, following Kippenhahn
and Weigert (1990), we can define the hydrodynamical timescale τdyn, as the time needed for the fluid to
undergo gravitational collapse without any thermal support. Then,

R1

τ2
dyn
≈ g≈ GM1

R2
1

⇒ τdyn ≈

√
R3

1
GM1

. (1.43)

A rigorous calculation provides

τdyn =
π

2

√
R3

1
2GM1

=
1
4

√
3π

2Gρ̄1
, (1.44)

where ρ̄1 is the mean density of the body. For Jupiter or our Sun (which most surprisingly have the same
mean density !), this hydrodynamical timescale is on the order of half an hour, and for a brown dwarf
near the hydrogen burning minimum mass (MHBMM ≈ 0.075M� ≈ 75MJup, and R1 ≈ 0.7− 1RJup ; see
§ 2.2), it can be as low as 2 minutes. As we obviously see that the radius of the Sun or of Jupiter does not
increase or decrease significantly over an hour, the low value of τdyn tells us that inertia can be neglected
in Eq. (1.12) and that hydrostatic equilibrium is reached with a high degree of accuracy. In this case, the
central pressure is roughly given by

Pc ≈
GM2

1

R4
1

, (1.45)

and the dynamical timescale is also equal to the time needed for a sound wave (with the speed cs ≈√
Pc/ρ̄1 to propagate throughout our object

τdyn ≈ R1

√
ρ̄1

Pc
. (1.46)
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1.2.2 Kelvin-Helmholtz timescale

Now that we have exhibited a dynamical time, we can concern ourselves with the problem of find-
ing the characteristic time taken by an object in quasi-static equilibrium to irradiate its energy. First
neglecting nuclear reactions and any external source, this should read

τKH ≈
Eint

Lint
. (1.47)

However, this relation is of mild interest if we cannot somehow quantify the content of our energy
reservoir. Fortunately, this is possible through the so-called Virial theorem, which in our context can be
derived as follows.

Because ∂P/∂m|t has the dimension of an energy per unit of volume and mass, multiplying both
sides of Eq. (1.12) by 4π r3 and integrating over the whole mass of the body (Kippenhahn and Weigert
1990), we get∫

4π r3 ∂ P
∂ m

∣∣∣∣
t
dm =−

∫ Gm
r

dm−
∫

r
∂ 2r
∂ t2

∣∣∣∣
m

dm, (1.48)

which obviously looks like an energy. Let us treat each term in turn. Integrating the first term by part,
and using the fact that, r = 0 at the center, and ∂ r/∂m|t = 1/(4π r2ρ), we get∫

4π r3 ∂ P
∂ m

∣∣∣∣
t
dm =

[
4π r3P

]M1

0 −
∫

12π r2 ∂ r
∂ m

∣∣∣∣
t
Pdm = 4π R̄3

1Patm−3
∫ P

ρ
dm. (1.49)

To recast this expression in term of the internal energy Eint =
∫

Ũdm, we define a dimensionless constant
ζ as

Eint ≡
3
ζ

∫ P
ρ

dm. (1.50)

Thus ∫
4π r3 ∂ P

∂ m

∣∣∣∣
t
dm = 4π R̄3

1 Patm−ζ Eint. (1.51)

The second term in Eq. (1.48) is of course the total gravitational energy of our configuration. Finally,
because

r
∂ 2r
∂ t2

∣∣∣∣
m
=

1
2

∂ 2r2

∂ t2

∣∣∣∣
m
− ∂ r

∂ t

∣∣∣∣2
m
,

the third term can be rewritten∫
∂ r
∂ t

∣∣∣∣2
m
− 1

2
∂ 2r2

∂ t2

∣∣∣∣
m

dm≡ 2Ekin−
1
2

d2I
d t2 , (1.52)

where Ekin is the macroscopic kinetic energy, and I1 ≡
∫

r2dm the central moment of inertia of the body.
We are then left with the Virial theorem

1
2

d2I1

d t2 +4π R̄3
1Patm = 2Ekin +Egrav +ζ Eint. (1.53)
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As shown above, the terms on left hand side, as well as Ekin are negligible, and this reduces to

Egrav +ζ Eint = 0. (1.54)

We will come back in more detail on the fundamental consequences of this relation in Chapter 2,
where the evolution is studied more thoroughly, but for the moment, this already tells us that the internal
and gravitational energies are commensurable. As the latter scales as GM2

1/R1, we can define the Kelvin-
Helmholtz timescale

τKH ≡
GM2

1
R1Lint

, (1.55)

which is the typical rate at which an object in hydrostatic equilibrium radiates its internal energy. For
Jupiter, τKH is now on the order of 1011 years because the planet is old, but was probably no shorter
than 105−6 years during its young age. Thus, as expected, τKH� τdyn and the hydrostatic assumption is
validated.

1.2.3 Nuclear time

However, for the Sun, τKH ≈ 107 yr ! As we have observational evidences that the Sun has been
radiating for a few billion years, unfortunately for Lord Kelvin, another energy source must be present in
our star, and in others. This energy, this is the mass energy contained in atoms nuclei that can be released
by thermonuclear reactions. In the low mass star and substellar domain, the main atoms concerned are
deuterium (2H ; which ignites around T ∼ 4.5×105 K), lithium (Li ; T ∼ 2.5×106 K) and hydrogen (H ;
T ∼ 3×106 K). As the central temperature of a substellar object of a given age generally increases with
its mass, the ignition temperature of a compound X can be recast into the minimal mass (MXBMM) needed
for a body to be able to burn the given compound. We thus define (Chabrier and Baraffe 1997, 2000),

• MHBMM ≈ 75MJup

• MLiBMM ≈ 60MJup

• M2HBMM ≈ 13.5MJup.

For M1 < M2HBMM, no nuclear reactions occur, and ε̇nuc can be set to 0 in our set of equations. For
M1 > MHBMM, on the contrary, the nuclear reactions dominate the energy budget of the star during its
stay on the main sequence, meaning τKH� τnuc, and the energy equation is well approximated by

∂ l
∂ m

∣∣∣∣
t
= ε̇nuc. (1.56)

In this case, the star is both in mechanical and thermal equilibrium, and evolves only because of its
varying chemical composition. Finally, in the intermediate case, because both Lithium and Deuterium
are not very abundant, and that the reaction rates of 2H+H and Li+H reactions are very short, these species
are burnt in about 10 to 100 Myr. This entails that, at early ages, τKH ∼ τnuc and no simplification can be
made.

1.3 Canonical set of equations

In view of these simplifications, and for further reference, we can now rewrite the canonical set of
equations describing the internal structure of gaseous objects and their evolution in Lagrangian coordi-
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∂ P
∂ m

=− Gm
4πr4 , (1.57)

∂ r
∂ m

=
1

4πr2ρ
, (1.58)

∂ l
∂ m

= ε̇nuc + ε̇ext−T
∂ S̃
∂ t

, (1.59)

∂ T
∂ m

=
T
P

∂ P
∂ m

∇T , (1.60)

with

∇T = ∇d (radiative/conductive zone) or ∇T = ∇ad (convective zone). (1.61)

Note that only Eq. (1.59) explicitly involves a time derivative. This means that our object, while not in
thermal equilibrium, is always near mechanical equilibrium, and that it evolves only because it radiates
its entropy and increases its internal order. This also means that in certain cases, with a simple pre-
scription for the luminosity, the structure of the object can be computed without any knowledge about
its evolution, as has been successfully done for Solar System giant planets (Hubbard and Marley 1989 ;
Chabrier et al. 1992 ; Guillot 2005 ; to cite only a few. See also Chapter 4).

1.4 Key physical ingredients

However useful these equations are, they are not sufficient to yet solve our problem. Indeed, we
need at least three additional relations, namely ρ(P,T ), S̃(P,T ) and ∇ad(P,T ) (or ∇d(P,T, l), meaning that
κ r and κc must be provided) to complete them. In fact, the calculations of the various thermodynamic
quantities are the very core of any numerical model, and are often the main factors limiting its accuracy.
In this section, we will review some simple analytical models that can be used to grasp general properties,
as well as the various numerical models used in our numerical code.

1.4.1 Equation of state

Definitions

Before describing the macroscopic state of our fluid (P,ρ,T, S̃), we have to introduce some quanti-
ties that describe the microscopic state of our mixture. Our fluid is composed of many different particles,
e.g. molecules, atoms, ions - hereafters referred to as ions labeled by i of particle density (in m−3),
atomic mass (in units of the proton mass mH) and charge given by ni, Ai and Zi respectively, and free
electrons whose particle density is ne. The chemical composition of the mixture is usually described by
the mass fraction13 of Hydrogen (X), Helium (Y ) and heavy elements (Z), for which by definition

X +Y +Z = 1. (1.62)

12We have dropped the |x stating the variable kept constant because, unless otherwise stated, we now differentiate only with
respect to m or t.

13The mass ratio of a chemical species is the ratio of the mass of all the constituents of this species contained in a small
volume over the total mass enclosed in the same volume
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For the mechanical properties of the gas, an important quantity is the mean molecular weight (µ) defined
by

1
µ
≡ ntotmH

ρ
=

(∑i ni +ne)mH

ρ
≡∑

i

1
µi

+
1
µe

, (1.63)

which implicitly defines the mean molecular weight of each ion (µi) and of free electrons (µe). Defining
the mean atomic mass of ions 〈A〉ion ≡ ∑i niAi

∑i ni
and the mean degree of ionization 〈Z〉ion ≡ ∑i niZi

∑i ni
= ne

∑i ni
,

and thanks to electro-neutrality we get

∑
i

1
µi

=
1
〈A〉ion

and
1
µe

=
〈Z〉ion

〈A〉ion
. (1.64)

This mean molecular weight is the translation in mechanical terms of the enrichment of our mixture in
volatiles, metals, or generally, heavy elements14.

To know wether our gas must be described by classical or quantum mechanics, we must also com-
pare the mean thermal energy of a given particle to its zero energy level, i.e. the Fermi energy15

εF ≡
h̄2

2me

(
3π

2ne
)2/3

. (1.65)

This defines the electron degeneracy parameter

Ξe ≡
kBT
εF
≡ kBT

kBTF
=

2

(3π2)2/3

mem2/3
H kB

h̄2
T µ

2/3
e

ρ2/3 , (1.66)

which allows us to separate the classical domain (Ξe� 1) from the quantum one (Ξe� 1).

Classical ideal gas

For the outermost layers of planets and brown dwarfs, the density is small enough for the gas to be
in the classical domain. The pressure is thus given by the ideal gas law

P = (∑
i

ni +ne)kBT = ρ
kB

µmH
T. (1.67)

For energetic considerations, one also needs to specify the nature of the gas, which can be encompassed
in the specific heat capacity at constant volume (cV ), or constant pressure (cP = cV + kB/mi for a perfect
gas of particles of mass mi). For a monoatomic gas, cV = 3

2
kB
mi

. For a diatomic gas, for example, internal
degrees of freedom can be excited and brought into equipartition. In general we will consider tempera-
tures where rotational states are excited but not the vibrational states (Θrot < T < Θvib)16, which yields
cV = 5

2
kB
mi

. The energy is then given by

Ũ = cV T (1.68)

14For further numerical application, if we have a fully ionized mixture of Hydrogen (with the mass fraction X) and Helium
(Y ), µ = 4/(8− 5Y ), and µe = 2/(2−Y ), and are approximately equal to 0.6 and 1.16, respectively, for a cosmic mixture
(Y = 0.275).

15The Fermi energy is defined here for the free electrons. For another specie, one just has to use the mass and number density
of the chosen particle.

16For H2, Θrot ≈ 85.4K, and Θvib ≈ 6210K. H2 thus acts mostly like a diatomic gas in the atmosphere of Jupiter and Saturn,
but like a monoatomic one in Uranus and Neptune which are much colder.
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and the entropy (Reif 1985)

S̃ =
kB

mi

ln

(m5/3
i kB

2π h̄2

)3/2
T 3/2

ρ

+ 5
2

 (monoatomic), (1.69)

S̃ =
kB

mi

ln

(m5/3
i kB

2π h̄2

)3/2
T 5/2

ρ Θrot

+ 7
2

 (diatomic). (1.70)

Differentiating this at constant entropy, we can derive the adiabatic gradient

∇ad ≡
∂ lnT
∂ lnP

∣∣∣∣
S̃
=

2
5
(monoatomic),

=
2
7

(diatomic). (1.71)

Degenerate matter

On the contrary, in the deep interior, the density is much higher. If we put the mean temperature and
density of Jupiter in Eq. (1.66), we obtain a degeneracy parameter on the order of 0.05. It thus follows
that the electrons cannot be considered classical anymore. However, because ions are around a thousand
time more massive than electrons, their degeneracy parameter is on the order of 50 and they remain
classical. Thus, adding up the electrons and ions contributions17, we get

P = Pe +Pi

=
2
5

neεF +∑
i

ni kBT

=
2
5

εF (ne +Ξe
5
2 ∑

i
ni)

= KF (1+
5
2

Ξe

〈Z〉ion
)

(
ρ

µe

)5/3

, (1.72)

where KF ≡
h̄2(3π2)

2/3

5mem5/3
H

is a constant. The main interest of this ideal equation of state is that, if ionization

(and composition) can be considered constant in the interior, Eq. (1.72) takes the form of a polytrope

P = Kρ
1+1/ñ, (1.73)

with a polytropic temperature K = KF µ
−5/3
e (1 + 5Ξe /2〈Z〉ion), and index ñ = 3/2, which provides

rather useful analytic relations, as described in § 2.2.1. The mean internal energy of the electrons can
then be found by integrating the Fermi energy over the number of particles, which writes

Ũe =
∫

εF dρ =
3
5

εF ρ =
2
3

Pe. (1.74)

17This expression is correct to first order in Ξe, as we have neglected the thermal contribution of the electrons which is
proportional to Ξ2

e (Chabrier 1990).
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Fortunately, because the ions we consider have only one nuclei (H, H−, He−, He2−), their specific heat
capacity is equal to 3/2, so that the total internal energy can be written

Ũ = Ũe +Ũi =
2
3

Pe +
2
3

Pi =
3
2

P. (1.75)

Even if useful, at the level of accuracy that we are looking for, these simplified equations of state are not
completely satisfying. In our numerical model, we thus use tabulated equation of state.

Hydrogen-Helium mixture

The most widely used EOS to describe the thermodynamics properties of the gaseous H/He en-
velope of giant planets is the Saumon-Chabrier-VanHorn EOS (SCVH ; Saumon et al. 1995). This
semi-analytical equation of state recovers numerical simulations and experimental results in the high-
density and low-density regimes, respectively, while, in its simplest form, interpolating over the pressure
ionization regime.

Interestingly enough, high-pressure experiments on fluid deuterium or helium are now able to reach
pressures and temperatures typical of the giant planet interiors (P & 1 Mbar, T & 104 K), probing the
equation of state in its most uncertain pressure-range. Various experimental techniques, however, give
different results, with a∼30-50% difference in P(ρ) in the maximum compression region for deuterium,
∼ 0.5− 1.5 Mbar, although the most recent experiments seem to converge towards substantially less
compressible equation of state for hydrogen, i.e. predict a lower density for a given pressure, than SCVH
in the pressure-ionization domain, P ∼ 0.5− 4 Mbar. This seems to agree with recent first-principle
(ab-initio ; Militzer et al. 2008 ; Nettelmann et al. 2008 ; Caillabet et al. 2011) or nearly first-principle
quantum mechanical calculations, and bears significant impact on the internal structure of giant planets,
in particular the size of the central core. A less compressible planet will tolerate less heavy material
for a given radius or, conversely, will have a larger radius for the same internal composition (Saumon
and Guillot 2004). As these other equations of state are not yet publicly available in a usable form, we
decided to keep the SCVH equation.

In addition, we must keep in mind that the combined interactions of H and He in the mixture in-
crease drastically the degree of complexity in the characterization of the plasma. Not only the interactions
between the two fluids will affect the regime of pressure ionization compared with the pure components,
but partial immiscibility between the two species has been suggested to explain Saturn’s excess lumi-
nosity for the age of the Solar System, and may occur inside some exoplanets. Unfortunately, given
the aforementioned difficulty in modeling the properties of H or He alone, and the necessity to simulate
a large enough number of particles for the minor species (He in the present case) to obtain statistically
converged results, no reliable calculation of the H/He phase diagram can be claimed so far. As mentioned
above, pressure-ionization of pure hydrogen and helium must first be fully mastered before the reliability
of the calculations exploring the behavior of the mixture can be unambiguously assessed.

Resolving these important issues concerning the H and He EOS must await (i) unambiguous exper-
imental confirmation of the H and He EOS at high pressure, (ii) unambiguous confirmation of the reli-
ability of the theoretical calculations, in particular in the pressure ionization regime, (iii) guidance from
experiments to predict the behavior of the H/He mixture under planetary interior conditions. Progress
both on the experimental and theoretical side will hopefully enable us to fulfill these criteria within the
coming years.
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Figure 1.1: Left: Conductive opacities (κc in m2.kg−1) from Potekhin et al. (1999) as a function of
density (in kg.m−3) and temperature (in K). Right: Decimal logarithm of the COND Rosseland radiative
opacities (κ r in m2.kg−1) from Ferguson et al. (2005) as a function of density (in kg.m−3) and tempera-
ture (in K).

Heavy elements

According to the composition of the protosolar nebula, the next most abundant constituents after
hydrogen and helium in gaseous giant planets, but the most abundant ones in ice giants and Earth-like
planets, consist of C, N and O, often referred to as "ices", or volatiles (H2O, CH4, NH3, CO, N2 and
possibly CO2). The remaining constituents consist of silicates (Mg, Si and O-rich material) and iron (as
mixtures of more refractory elements under the form of metal, oxide, sulfide or substituting for Mg in
the silicates). The behavior of these different elements as a function of pressure, under the conditions
typical of giant planet interiors is not or poorly known. At very high pressure, the categorizations of gas,
ice and rock become meaningless and these elements should become a mixture of closed-shell ions.

The most widely used EOS models for such elements are ANEOS (Thompson and Lauson 1972)
and SESAME (Lyon and Johnson 1992), which describe the thermodynamic properties of water, "rocks"
(olivine (fosterite Mg2SiO4) or dunite in ANEOS) and iron. These EOS consist of interpolations be-
tween existing Hugoniot data at low to moderately high (≈ 0.5 Mbar) pressure and Thomas-Fermi or
more sophisticated first-principle calculations at very high density (P> 100 Mbar), where ionized species
dominate. Interpolation, however, provides no insight about the correct structural and electronic proper-
ties of the element as a function of pressure, and thus no information about its compressibility, ionization
stage (thus conductibility), or even its phase change, solid or liquid. All these properties can have a large
impact on the internal structure and the evolution of the planets. A detailed comparison between these
EOS, and the impact of the uncertainties on the radius determination for Neptune-like and Jupiter-like
planets has been conducted by Baraffe et al. (2008), who showed that the discrepancies between these
two equations of state can lead to difference of about 10% on the radius of a Neptune like planet at
1Gyr. Without conducting either ab-initio calculations or higher pressure experiments, we decided to
use ANEOS. For practical purposes, some thermodynamic relations needed to implement the ANEOS
package are provided in Appendix B.

1.4.2 Opacities

Deep in the interior, the large radiative opacity of planetary material yields completely inefficient
heat transport by photons. Transport by conduction, resulting from collisions during random motion
of particles, may in some cases be relevant. To account for these process, the numerical model uses
the conductive opacity tables from Potekhin et al. (1999) and Cassisi et al. (2007), which are shown in
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Fig. 1.1. In the central part of H/He dominated planets, thermal conductivity is dominated by electronic
transport, and Eq. (1.32) yields a thermal diffusivity κT ∼ 10−5 m2.s−1. If no electrons are available,
as in the outer envelope, conductive transport is dominated by the less efficient molecular motions with
thermal conductivity κT ∼ 10−6 m2.s−1. Conduction by electrons (or eventually phonons) may also
dominate in central cores composed of heavy material.

In the most outer layers, close to the planet photosphere, matter in less opaque, and radiative opac-
ities must be used. There, one must take into account both continuous opacities (such as H−, He−, H−2 ,
H+

2 , bound-free and free-free absorptions), molecular bonds and atomic lines. Their relative contribu-
tion depending greatly on the range of temperatures considered. Here we use the opacity tables from
Ferguson et al. (2005) (see right panel of Fig. 1.1).

1.5 Boundary conditions

As for any set of differential equations, boundary conditions are needed to solve the system of
structure equations. At the center, these are rather trivial

r(m = 0) = 0

l(m = 0) = 0. (1.76)

However, it is not the case for the upper boundary. Indeed, one can start to see the problem in the fact
that we still have not defined properly what we meant by the mass and radius of the object studied (M1
and R1). If this seems intuitive for terrestrial planets, for which there is a clear separation between a solid
and gaseous phase that can be called surface, it is not so clear for giant planets. In this case, the mass
and radius of the planet are not uniquely defined, but depend on the isobar (of pressure Patm) taken as the
reference surface, yielding M1 = m(P = Patm). Hence, the boundary conditions we are looking for are

P(m = M1) = Patm

T (m = M1) = Tatm, (1.77)

where the first one is purely conventional. As thermodynamic quantities are constant on concentric
shells, the radius of the object is defined as

R1 = r(m = M1). (1.78)

Even if one could be tempted to use Patm = 0 to define the surface, one needs to remember that
the equations that we have derived above are based on many assumptions, in particular the diffusion
approximation, that is not valid at such low pressures where both radiative escape and incoming radia-
tion cannot be neglected. Therefore, one must choose a reference isobar which is deep enough for the
aforementioned approximations to be valid. Our problem can then be stated as finding the corresponding
atmospheric temperature (Tatm = func(Patm)). If in situ measurements are available, as, thanks to the
Cassini and Galileo missions among others, it is the case for solar system giant planets, the atmospheric
T − P profile is directly measured down to the convective region (e.g. Guillot (2005) and reference
therein). Thus any couple (Tatm,Patm) taken in this region can be readily used as boundary conditions to
infer the internal structure.

For far remote objects, modeling must be used. However, we can separate our planet in two zones

• the interior, below the P = Patm isobar, that contains the mass M1, have a radius R1, and which is
described by Eq. (1.57) through Eq. (1.60).
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Figure 1.2: Schematic representation of the energy balance of the atmosphere. The planet receives a
flux σSBT 4

irr with an incidence θ? (µ? = cosθ?). A fraction Ā is reflected directly and 1− Ā is absorbed.
Fluxes that are mostly characterized by visible wavelengths are drawn in blue. Fluxes in the infrared are
drawn in red.

• the atmosphere, above the P = Patm surface, which contains a negligible mass, and where all the
incoming external radiation is reflected or absorbed.

To find our missing relation, we will thus have to model this atmosphere. Even if our model uses complex
numerical calculations provided by Allard and Hauschildt (1995) for non-irradiated objects, and Barman
et al. (2001) for irradiated planets (see Baraffe et al. 2010 for a review), in this section, I will turn to
simple analytical model to get a sense of the various physical parameters that determine the energetic
and mechanical equilibrium state of an atmosphere.

1.5.1 Atmospheric energy budget and redistribution factor

From an energetic point of view, the atmosphere is the window by which the planet can release
internal energy and receive incoming radiation. Its state must hence depend on the value of the incoming
stellar flux, Finc, and of the intrinsic gravo-thermal outgoing flux Fint. However, to extract the important
parameters, let us consider the energy balance of this layer. As shown on Fig. 1.2, if we consider an area
of the atmosphere positioned at an angle θ? from the substellar point18 (with µ? ≡ max[cosθ?,0]), the
flux received perpendicularly to the surface19 reads

Finc =−
(

R?

r?

)2

µ? σSB T 4
eff,? ≡−µ? σSB T 4

irr, (1.79)

where R?, r? and Teff,? are respectively the stellar radius, distance, and effective temperature. Tirr is thus
the temperature which characterizes the incoming radiation. From this total impinging flux, a fraction
Fref ≡ Ā ·Finc, where Ā is the Bond Albedo, can be considered as directly reflected by the top of the at-
mosphere, while the remaining energy, (1− Ā) ·Finc penetrates deeper down. In addition, the atmosphere
is heated from below by the intrinsic internal flux of the planet Fint.

18The point at the surface for which the star is at its zenith.
19The convention taken here is that fluxes are positive if energy is actually transported upward, i.e. toward the positive ẑ

direction as shown on Fig. 1.2.



Boundary conditions 27

Because we have chosen the base of our atmosphere to be deep enough, there, the total net flux is
equal to the internal flux

Fnet = Fint. (1.80)

If thermal equilibrium is achieved, this net flux must be conserved throughout the atmosphere, and par-
ticularly at the top where, Fout being the flux escaping the atmosphere,

Fnet = Fout +Finc. (1.81)

Thus,

Fout = Fint−Finc = Fint +Fth +Fref. (1.82)

Thus we see that the outgoing flux - the one that is seen by an observer - is the sum of the reflected light,
which contributes mainly at optical wavelengths, of the internal flux, and of Fth ≡ (1− Ā) ·Finc which is
the part of the oncoming radiation that has been absorbed and thermalized in the atmosphere, and which
is re-emitted mainly at thermal wavelengths.

Figure 1.3: Equilibrium temperature map.
The substellar point is the convergence point
of the mesh lines.

It is customary to define an internal effective tem-
perature20 as the temperature of the blackbody that
would radiate like the interior

Fint ≡ σSBT 4
int, (1.83)

and an outgoing effective temperature that similarly
characterize the local escaping thermal radiation

Fint +Fth ≡ σSBT 4
eff. (1.84)

It thus follows that

T 4
eff(µ?) = T 4

int +
1− Ā
σSB

Finc(µ?)

= T 4
int +µ?(1− Ā)T 4

irr, (1.85)

which shows that this outgoing effective temperature
varies with the position on the planet. This is just due
to the fact that we are considering local equilibrium, and
thus, the re-radiated energy is proportional to the incom-
ing energy which varies from one point of the surface to

another. This can be used, for example, to calculate the temperature of a well defined surface in thermal
equilibrium with an incoming radiation at the temperature Tirr and with an incidence characterized by µ?,
which is given by

T 4
eq(µ?) = µ?(1− Ā)T 4

irr, (1.86)

and shown on Fig. 1.3.

20In the literature concerning internal structure and evolution, the energy absorbed and re-emitted by the atmosphere is often
not considered as it does not affect the interior. Thus, there is no call for creating a distinction between Tint and Teff, which are
lumped together and called effective temperature. Here, as we are also concerned with the atmospheric boundary problem, I
have decided to make the distinction between the internal effective temperature, Tint, and the outgoing effective temperature,
Teff. However, as Tint is the quantity that is most used in the following, it will be called effective temperature for brevity.
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Spatial averaging

However, in our case, the modeling is essentially one dimensional. Thus, we are looking for a
quantity that would characterize the equilibrium of the total object. In addition, the thermal gradients
created at the surface by the temperature distribution of Eq. (1.86) will cause some horizontal energy
transport, both by conduction and advection. Thus considering that energy is only globally conserved,
we can define a mean outgoing effective temperature

T̄ 4
eff ≡

1
2

∫ 1

−1
T 4

eff(µ̃)d µ̃ =
1
2

∫ 1

−1

(
T 4

int + µ̃(1− Ā)T 4
irr
)

d µ̃ = T 4
int +

1− Ā
4

T 4
irr, (1.87)

and the mean equilibrium temperature, that is the temperature that would have the planet once in com-
plete thermal equilibrium

T̄ 4
eq =

1− Ā
4

T 4
irr. (1.88)

This is also the equilibrium temperature reached by a planet that would be irradiated uniformly by an
average flux

F̄inc =− f̄
(

R?

r?

)2

σSB T 4
eff,? =− f̄ σSB T 4

irr , (1.89)

where f̄ , the redistribution factor, is here equal to 1/4th, which corresponds to a redistribution over the
whole surface of the planet. If redistribution over the dayside only is considered, f̄ = 1/2. Intermediate
values between these two are often used in complex numerical calculations (Allard et al. 1997 ; Barman
et al. 2001). However, as is discussed in § 1.5.2, thanks to a simple analytical model, it is possible to
make a more educated guess about f̄ .

If Tirr is a good parametrization of the incoming stellar irradiation21, T̄eq quantifies more specifically
the way this irradiation will affect the planet. For low albedo planets, as seems to be the case of Giant
planets (Sudarsky et al. 2003 ; Hood et al. 2008), these two temperature are however redundant. In the
following, we will thus use Tirr.

Temporal averaging

As planets are possibly on eccentric orbits, their distance to their host star, and thus the incoming
flux, is not constant in time. As this variation is periodic, and with a period which is typically shorter
than the evolutionary timescale of our planet22 (see § 1.2), we can average it on an orbit to get the mean
flux and irradiation temperature

〈F̄inc〉=− f̄ 〈R
2
?

r2
?

〉σSB T 4
eff,? =− f̄√

1− e2

(
R?

a

)2

σSB T 4
eff,? , (1.90)

where a and e are the semi-major axis and eccentricity of the orbit. Details of the calculations can
be found in § I.1.1. Interestingly enough, when a planet is on an eccentric orbit, the mean flux that it
receives and the mean star-planet distance increase at the same time. In the following, this rescaling of
the incident flux is always assumed to be done and included in Tirr when needed.

21Note that here, we have not considered the spectral dependance of the incoming stellar flux at all. Therefore, Tirr informs
us on the amount of incoming energy, but not at all on its spectral distribution.

22Rigorously, we should compare the orbital period to the radiative timescale of the atmosphere, which can be on the same
order of magnitude. However, the error introduced here should be comparable to the one already caused by our spatial averag-
ing.
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1.5.2 Atmospheric boundary conditions

We can now state our basic problem as

1. choosing a parameter xatm which defines a level in the atmosphere at which incoming stellar energy
has been absorbed, but that lies above where most of the mass of the object is enclosed,

2. solving the hydrostatic equilibrium and the radiative transfer in our atmosphere to find the two
missing relations, Patm(Tirr,Tint,xatm), and Tatm(Tirr,Tint,xatm).

In general, to solve this problem properly, one should take into account the whole spectral depen-
dance of the incident and internal radiations, and of the opacity of the mixture, and can be treated only
numerically, as done for example by Allard and Hauschildt (1995) ; Barman et al. (2001), among others.
In this section, in order to have an integrable system that allows us to grasp the main physics at work, we
will use the semi-grey approach developed by Hansen (2008) and Guillot (2010).

Using this toy model, in the end of this section, I will also show that numerical 1D calculations
of the atmospheric boundary conditions of substellar objects that consider a redistribution of the
stellar flux over the day side only (i.e. which use f̄ = 1/2) overestimate the impact of the irradiation
on the structure of the object. Indeed, I will show that, taking into account the horizontal advection
that must take place at depth is equivalent to using a redistribution factor that is bracketed between
1/4 and 1/(2

√
3).

Two-band approximation

In this approach, scattering, and thus reflection, is neglected (Ā = 0), and we consider that the
spectrum can be split in two bands

• a visible band where the radiation field is mostly set by the stellar irradiation, which is character-
ized by f̄ , Tirr, and the opacity is considered constant and equal to κvis,

• a thermal band where the internal energy, described by Tint, and the absorbed stellar flux is emitted.
The opacity in this band is called κ th.

Note that, the weight to be used in the spectral averaging leading to κvis and κ th can depend on the
physical conditions, and is in itself a complex matter which is not discussed here. It is further assumed
that there is no vertical heat flux due to convection, and that the atmosphere is in complete radiative
equilibrium. Because the complete derivation of all the formula used hereafter would lead us into a
lengthy development that is not needed here, we will just define the main variable used. For details the
reader is referred to Mihalas (1978) ; Hansen (2008) ; Guillot (2010). To define our parameter, we can
use the column mass23,

m∗ ≡
∫

∞

r
ρ dr′. (1.91)

This can be linked to the optical depth in one of the two bands, which can be integrated from the surface
to the local position r using

dτth ≡−κ th ρ dr ⇒ τth = κ thm∗, (1.92)

23With this definition, it is obvious that m∗ is the mass per unit area contained between the top of the atmosphere and a given
radius r. To convert this in actual mass, one can use the fact that the vertical size of the atmosphere is far smaller than the planet
radius R1. Then the mass of the atmosphere above the radius r is roughly matm(r)≡ 4π

∫
∞

r ρ r2dr′ ≈ 4πR2
1m∗.
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or

dτvis ≡−κvis ρ dr ⇒ τvis = κvism∗. (1.93)

where each definition can be used to characterize respectively the thermal and visible radiations. Finally,
if hydrostatic equilibrium holds, Eq. (1.11) tells us that

∂ P
∂ r

∣∣∣∣
t
=−gρ, (1.94)

where g is the gravitational acceleration that can be considered constant in the outer layers. Then the
pressure at any given level reads

P = gm∗ =
g

κ th
τth =

g
κvis

τvis. (1.95)

Guillot (2010) showed that, for an isotropic incoming radiation, the energy density of the visible
radiation decreases as e−

√
3τvis . Then our first constraint on the choice of the boundary yields κvis m∗� 1.

As typical opacities in the visible under the relevant conditions are on the order of 10−3−10−4 m2.kg−1,
this implies m∗� 103−4 kg.m−2, and pressures Patm� g/κvis ≈ 0.1−0.01 bar. Because the mass of the
atmosphere contained above the m∗ level is given by matm ≈ 4π R2

1m∗ ≈ 10−7M1 for Jupiter, the second
condition (matm�M1) is not very restrictive.

Temperature profile

We now turn to the temperature at the boundary. Guillot (2010) also showed that in the same
conditions, the temperature profile is given by (see Eq. (29) in his paper)

T 4(m∗) =
3T 4

int
4

[
2
3
+κ th m∗

]
+ f̄

3T 4
irr

4

[
2
3
+

κ th

κvis
√

3
+

(
κvis

κ th
√

3
− κ th

κvis
√

3

)
e−κvis m∗

√
3
]
. (1.96)

One can see that, in the absence of stellar radiation, the usual Eddington profile is recovered, and the
temperature at τth = κ th m∗ = 2/3 is equal to Tint. This also shows that for κvis/κ th > 1, a temperature
inversion can occur at low pressures, which is due to the direct thermal heating of the atmosphere by the
incoming radiation. Placing ourselves in a zone fulfilling the first condition (κvis m∗� 1), and choosing
a reference pressure, our boundary condition is then given by

T 4
atm =

3T 4
int

4

[
2
3
+

κ th

g
Patm

]
+ f̄

3T 4
irr

4

[
2
3
+

κ th

κvis
√

3

]
. (1.97)

We can see from this relation than therefore depends on three parameters, i.e. Tint, Tirr and the gravity
g24.

For typical values of

κvis ≈ 10−3−10−4 m2.kg−1

and

κ th ≈ 10−2 m2.kg−1,

Tint≈ 200 K, Tirr≈ 2000 K and f̄ = 1/4, Eq. (1.96) yields a nearly isothermal zone between 1 and 100 bar.
Then, this zone is nicely fitted to contain our boundary. Fig. 1.4 shows the value of Tatm for Patm =
10 bar. We can see that irradiation starts to play a significant role for Tirr & Tint, and will therefore have a
diminishing impact with the mass of the irradiated planet, as we will see in Chapter 2.

24Note that if the Tatm = func(Patm) relation does depend on g, at given mass, g itself depends on the radius of the object
which is determined by the integration, and thus by the boundary conditions. In other words, g is not a free parameter for our
structure model. In practice some iterative process is needed to ensure that the (Patm,Tatm) used are consistent with the structure
found.
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Redistribution factor and advection
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Figure 1.4: Atmospheric boundary temper-
ature (Tatm ; Eq. (1.97)) at the 10 bar level
(Patm = 10 bar) as a function of the internal
flux (parametrized by Tint) and incoming stel-
lar flux (parametrized by Tirr) for a redistribu-
tion factor f̄ = (2

√
3)−1 (see text).

With this model, we can also make an attempt to
make a more educated guess of the redistribution fac-
tor. Indeed, taking into account an horizontal, conserva-
tive and efficient enough advection of energy at depth,
Guillot (2010) also shown that, even with a non-uniform
insolation described by Eq. (1.79), the temperature be-
comes mostly longitudinally and latitudinally homoge-
neous at high pressures, and is given by

T 4 =
3T 4

int
4

[
2
3
+

κ th

g
P
]
+

3T 4
irr

16

[
2
3
+

2
3

κ th

κvis

]
.

(1.98)

Comparing Eqs. (1.97) and (1.98), I find that in this
model,

f̄ =
1
4

1+ κ th
κvis

1+
√

3
2

κ th
κvis

⇒ 1
4
6 f̄ 6

1
2
√

3
≈ 0.29 ,

(1.99)

where the lower and upper boundaries are respectively
given by for κ th/κvis � or � 1 (the typical values of
the opacity mentioned above yielding κ th/κvis ≈ 101−2),
which is, as expected, larger than 1/4th. This shows that, in this simple model, because the energy
redistribution at depth is rather efficient, averaging the incoming flux over the whole planet is
more justified than averaging over the dayside only. Indeed, taking a redistribution factor of 1/2
overestimates the irradiation term in Eq. (1.97) by a factor

√
3≈ 1.7 to 2.

While the differences yielded by such a factor are modest in comparison with other uncertainties,
especially on opacities, the accurate determination of the redistribution factor is at least of theoretical
importance as it gives us some insight on the efficiency of horizontal energy transport inside exoplanets.
Let me conclude by noting that, of course, the above estimation is very rough, and such an issue should be
addressed with numerical Global Circulation Models (GCM) taking properly into account both radiative
transfer and hydrodynamics, and maybe magneto-hydrodynamics.
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Chapter 2

Evolution & stellar irradiation: A lid on
the boiling kettle

Il faudra revoir vos estimations à l’aune de la mécanique rationnelle.

Lord Kelvin au sujet de l’estimation de l’âge de la Terre

Lord Kelvin a donné une limite supérieure de l’âge de la Terre, sous la condition qu’on ne découvre pas de source de chaleur nouvelle.
Cette possibilité prophétiquement annoncée, c’est précisément notre sujet d’aujourd’hui, le radium !

Voyez ! Le vieil homme me gratifia d’un sourire.

Sir Ernest Rutherford
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In this chapter, the first goal will be to review some standard results of the theory of planetary
evolution (see § 2.1). To that purpose, I compute new grids of numerical planetary models. I will
also discuss possible definitions to distinguish planet from brown dwarfs.

Then, in § 2.2, I analyze these grids of planetary models to show what they can tell us about
the interior mechanical structure of extrasolar planets. In particular, I show that the internal T −P
profile of a giant planet is well approximated by a polytrope throughout the deep interior, and that
this gives us some insight on the behavior of the equation of state in the various regime considered.
As a result, I show that the whole mechanical structure can be characterized by a single quantity,
namely an effective polytropic index, and that the variation of this polytropic index with the mass
of the planet can directly be seen on the slope of the mass-radius relationship. The results of this
sections were published in the article Distorted, non-spherical transiting planets: impact on the
transit depth and on the radius determination (Leconte et al. 2011c).

in § 2.3, I address the problem of the bloated giant exoplanets, and review the major proposi-
tions made to explain it. I show how taking into account the stellar irradiation allows us to decrease
the discrepancy. Doing so, I first estimate the impact of the stellar irradiation on the internal struc-
ture, for example on its effective polytropic index (see § 2.4.2), and then, in § 2.4.3, quantify more
precisely the radius anomaly as was done in The radius anomaly in the planet/brown dwarf over-
lapping mass regime (Leconte et al. 2011b). I will defer the discussion of some of the physical
mechanisms proposed to explain this radius anomaly, such as semi-convection and tidal heating,
to Chapter 4 and 5.

Finally, in § 2.5, I will show how the mass-radius diagram can be used to constrain the com-
position of extrasolar planets (§ 2.4.4), and help us distinguish giant planets from mini brown
dwarfs in the favorable cases (§ 2.5). This method is also described in Structure and evolution of
the first CoRoT exoplanets: probing the brown dwarf/planet overlapping mass regime (Leconte
et al. 2009).
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Planetary EVOLUTION IS A LONGSTANDING PROBLEM. If observational
data concerning the current internal structure of a planet are al-
ready sparse, fewer are the one on its early state and evolution.

It is therefore extremely difficult to predict accurately the properties of a celestial body at a given age, or
simply to date its formation. This problem is well illustrated by the controversy that raged during more
than 200 years about the age of the Earth. Between Aristotle theory that the Earth has been there from
the beginning of times, and the christian thesis dating the creation between 3483 and 6984 BC, physical
arguments came to heat up the debate during 18th century.

On one side, Edmond Halley in 1715, followed by Henri Gautier, and nearly one century later,
by Charles Darwin, proposed geological arguments demonstrating that the Earth should be older than a
few hundred years. Darwin will propose more than 300 million years, which seems in agreement with
his theory of a slow natural selection. This possibility was supported by Leonahrd Euler and William
Herschel who noted that because light is moving at a finite speed, as has been demonstrated by Römer in
1676, its travel from distant stars could take longer than a few million years. On the other side, Buffon
in 1778 and Lord Kelvin in 1862 claimed that the Earth could not be so old. If, as they think, the planet
was initially molten, the time that it needed to solidify and cool down to its current temperature should
not exceed 100 million years. Later on, with the german physicist Hermann Ludwig Ferdinand von
Helmholtz, Kelvin estimated the time needed by the sun to radiate its gravitational energy (defining at
the same time the Kelvin-Helmholtz timescale) and lowered down his estimate of the age of the Earth
formation to 20 million years. At this point, it seemed impossible to reconcile physicists and geologists.

We will have to wait until the end of the 19th century, and the discovery of a new energy source,
radioactivity, to relieve the tension. After Henri Becquerel’s discovery, Ernest Rutherford, Lord Rayleigh
and others reassessed the age of the Earth, which started to increase until it reached its currently accepted
value of 4.55 billion years.

Amusingly, nearly 300 years later, history seems to repeat itself ! Other worlds have been found,
and while their parent star seems old, some of them exhibit a surprisingly high radius (i.e. a large thermal
energy content), which is usually a sign of youth. However, before starting to look for an extra energy
source, it is primordial to accurately quantify this so-called radius anomaly.

2.1 Isolated planets

Let us start with isolated objects, i.e. objects for which the incident stellar flux can be neglected. As
was discussed in Fig. 1.4, this condition can be reformulated as Tirr� Tint for which the evolution of the
planet is determined only by its own properties, without any assumption on the parent star. In this section,
we will make use of this simpler case to derive some general features of the structure and evolution of
planets. This will also provide us with a reference case to compare with when we will consider close in
objects.
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2.1.1 Adiabaticity

One of the first question that arises is how energy is transported within the object, and consequently,
whether the interior is convectively stable or not. We have seen in § 1.1.4, that the stability criterion is
given by

∇d < ∇ad. (2.1)

For smaller diffusive gradients, radiative forcing is to weak and all the flux can be carried out by both
radiation and conduction. For stronger forcing, however, convection sets in and very efficiently transport
a large fraction of the flux (see Chapter 4 for more details).

In the outer layers, the adiabatic gradient can be easily estimated from the classical perfect gas
approximation. Indeed, differentiating logarithmically Eqs. (1.69) and (1.70) at constant specific entropy,
we see that

2
7
. ∇ad .

2
5
, (2.2)

where the first value is derived for a diatomic perfect gas (H2 for example), and the second for a
monoatomic one (He ; see § 1.4.1).

For the radiative gradient1, which reads

∇rad ≡
3
16

κ̄P
T 4

T 4
int
g

, (2.3)

the problem is much more complex. Even if Tint and g can be considered constant in the outer part of the
object, the problem lies in the fact that ∇rad depends on P and T , but that the T −P profile itself depends
on the integral of ∇rad in a radiative zone2. To grasp the difficulty, let us consider a very simple model
where the opacity follows a law of the type

κ̄ = κ0T bT PbP . (2.4)

Then, an integration of Eq. (2.3) yields

T 4−bT =
4−bT

1+bP

3
16

κ0T 4
int

g
(P1+bP + cst), (2.5)

and in the limit of the high pressures, the radiative gradients tends to

∇rad =
1+bP

4−bT
, (2.6)

which is completely independent of κ0 (Kippenhahn and Weigert 1990). Thus the transition from a
radiative zone to a convective one is not determined by the value of the opacity3, but by its variation with
the temperature and pressure (or density), which is difficult to model analytically. This is confirmed by
our simple atmospheric radiative transfer model discussed in § 1.5.2. Indeed, in this model, κ̄ is constant
(bT = 0, bP = 0), and we can easily see from Eq. (1.96), that ∇T → 1/4 in the high pressure limit. Note
that, according to the Schwarzschild criterion and Eq. (2.2), this radiative gradient is insufficient to trigger
convection.

1As we are considering the outer layers of the object, thermal conductivity of the electron can be neglected with respect to
the radiative diffusivity.

2Provided that the diffusion approximation holds. If not, as is the case in the upper atmosphere, the whole radiative transfer
must be calculated, still worsening the problem.

3Contrarily to the transition from a convective zone toward a radiative one, where the T − P profile is determined by
the adiabatic gradient independently of the opacity, and where the criterion for the existence of a radiative window can be
formulated under the form of a κ0 threshold (see Guillot et al. 1994 for details).
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Figure 2.1: Radiative gradient (∇rad) just below the atmosphere (τ̄atm = 100) as a function of the internal
outgoing flux Tint for different surface gravities (g ; log g increases by 0.5 dex from 0.5 (thin orange) to
4 (thick blue)). The T −P profiles are taken from Allard and Hauschildt (1995). The adiabatic gradients
of mono- (dashed) and diatomic (dotted) perfect gases are also shown for comparison.

Therefore, in order to determine the main transport mechanism at play, I have used the T −P
profiles obtained by Allard and Hauschildt (1995) by solving non grey radiative transfer for an at-
mosphere in radiative and hydrostatic equilibrium, and computed the value of ∇rad just below the
atmospheric boundary level (i.e. at an optical depth of τ̄atm = 100) with the opacities from § 1.4.2.
The results are shown in Fig. 2.1. We can see that at this optical depth, the medium is always convec-
tively unstable for Tint & 50−100K, the radiative zone being confined to smaller optical depth/pressures.
For lower effective temperatures, and thus for older objects, the radiative zone eventually extends deeper
down because of the lower radiative forcing, and the object tends toward an isothermal sphere.

Whether the medium remains convectively unstable deeper down can however depend on the physi-
cal conditions. It has indeed been proposed by Guillot et al. (1994) that an opacity gap near 1000-2000 K
could open a radiative window in solar system giant planets. If this possibility seems now improbable
as the opacity gap is filled by metal spectral lines, it is still possible in hotter and/or irradiated objects
(Burrows et al. 1997).

Because convection is very efficient in gaseous planets, giant planets like Jupiter which are far from
their star, or single brown dwarfs follow a nearly adiabatic T −P profile. Hence, S̃ is constant in the
interior, which involves a powerful simplification of the equations. Indeed, neglecting nuclear reactions,
the luminosity equation can be integrated to give

l(m) =−
∫ m

0
T

∂ S̃
∂ t

dm

=−
∫ m

0
T dm

∂ S̃
∂ t

≡−T̄ (m)
∂ S̃
∂ t

, (2.7)

where T̄ (m) is the mean internal temperature interior to m, with T̄1 ≡ T̄ (M1). In addition, because ∇ad
is independent of the actual luminosity profile, the T −P profile can be integrated from the values of
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the temperature and pressure at the atmospheric boundary. Therefore the luminosity affects the structure
only by its impact on the boundary conditions (see § 1.5.2).

2.1.2 Parametrization

Now that we have set up our model, let us review the independent parameters on which depend the
global structure of the object. The first one is obviously the value of our integration variable m at the
boundary, i.e. the mass of our object M1. As we have seen in § 1.5.2, the upper boundary consists in two
parameters, Patm and Tatm, where the first one is mostly conventional, and serves to define precisely the
radius, and the second one can be calculated by modeling the atmosphere and depends on the internal
(Tint) and incoming (Tirr) luminosities.

For an object with a given mass and in a given environment4, we are therefore left with at least one
degree of freedom, namely the effective temperature Tint. This is rather fortunate ! Indeed, we have to let
the liberty to our planets to evolve with time. To see how the structure of the planet depends on this
parameter, I have simulated isolated solar composition H/He gaseous spheres (Tirr = 0) with mass
ranging between approximately 10M⊕ and 2MJup with the numerical code CHESS (see Appendix J).
Results are shown in Fig. 2.2.

As discussed above, all these objects are mainly adiabatic, and the specific entropy (S̃) is constant
throughout the interior. As expected from Eqs. (1.70) and (1.97), once a reference isobar is chosen,
bijective relations exist between Tatm, Tint and S̃ (which all evolve in the same direction), and any of these
quantities can be used indifferently to parametrize the tracks in Fig. 2.2. Following a given track from
right to left, we can see that, thanks to the adiabatic condition, the internal temperature also decreases
when the external layers of the planet get colder (panel c). Hence, at a given pressure level, the decreasing
thermal pressure support of the ions must be counteracted by an increase of the density (panel d) and
of the degeneracy of the electrons (panel f). In turn, this local and global increase of the density causes
a shrinkage of the radius (panel b) and, because of the hydrostatic condition, an increase of the central
pressure (panel a).

The problem is thus to solve the luminosity equation to find the evolution of the effective temper-
ature with time Tint(t). Indeed, in the adiabatic case, Eq. (1.59) is decoupled from the rest of the system
and can be rewritten

∂

∂ t

[
S̃(Tint)

]
=−4π σSB

R2
1(Tint)T 4

int
T̄1(Tint)

. (2.8)

While our evolutionary code directly solve the whole set of equations, Eqs. (1.57-1.60), this relation
could in principle be directly integrated following any track in Fig. 2.2.

However, we can see on Fig. 2.2.d that these models are not totally representative of Solar System
giant planets, Jupiter and Neptune5. Indeed both planets are denser (and by a large factor for Neptune)
than the models of the same mass and effective temperature. This tells us that there is at least another
free parameter that we did not yet considered. If this free parameter is not obvious in our set of structure
equations, we already encountered it in § 1.4.1. Indeed, to model a planet, one needs to specify the
material it will be made of, and use the relevant equation of state. For the moment we only consider
gaseous spheres with a solar composition, but the discrepancy stated above is a first clue that dense
materials (called heavy elements) must be present inside Solar System giant planets, and giant planets in
general. This issue will have to wait until § 2.4.4.

4Here, the environment is simply defined by the type of the host star and by the orbital configuration which determine the
spectral and temporal characteristics of incoming energy received. To simplify the discussion, we will consider that only the
average flux, and thus Tirr, matters. In this section, however, we consider only isolated object, yielding Tirr = 0.

5While it is not shown here, the same conclusions hold for Saturn and Uranus.
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Figure 2.2: Evolutionary tracks parametrized by Tint for different masses. The dashed and dotted curves
represent respectively the 1MJup and 1M[ case. The black dots represent the actual Jupiter (Tint = 125 K,
R1=71 492 km) and Neptune (Tint=59 K, R1=24 552 km).
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2.1.3 Evolution and energy budget

Now that we have all the ingredients needed to compute evolutionary tracks, it is time to use our
numerical model to predict the behavior of the various physical quantities describing our objects, and
to extract some general features. in order to show the similarities and differences arising between the
various mass regimes in the substellar and stellar domain, I computed a grid of models of H/He gaseous
spheres covering M1 ∈

[
1MJup,100MJup

]
. Some of these evolutionary tracks are shown in Fig. 2.3. We

can clearly distinguish 3 domains

• M1 < M2HBMM, solid curves in Fig. 2.3 ; The object is not massive enough for its interior to reach
sufficiently high central pressures and temperatures, and nuclear reactions never ignite. The inter-
nal entropy is radiated away, but the energy lost does not only come from gravitational contraction
has it is often said, but also (and sometimes mainly) from the thermal component. To disentangle
both contributions, let us consider the energy budget of the object. As we have seen in § 1.2.2,
thanks to the Virial theorem,

Egrav +ζ Eint = 0, (2.9)

where ζ is a characteristic of the equation of state defined through Eint ≡ 3
ζ

∫ P
ρ

dm, and

Lint =−Ėgrav− Ėint = (ζ −1) Ėint =

(
1−ζ

ζ

)
Ėgrav. (2.10)

We have seen in § 1.4.1 that either in the classical or degenerate domain, a monoatomic gas is
described by ζ = 2. Hence,

Lint = Ėint =−
1
2

Ėgrav. (2.11)

At early ages, we can see on Fig. 2.3.d that the central degeneracy parameter of the electrons is
roughly close or bigger than unity. In this classical regime, Eq. (2.11) simply tells us that half
of the energy released by the gravitational contraction is radiated away, the remaining half going
into the internal energy of the particles. Until Ξe . 1, the particles are classical, Eint ∝ kBT , and
this causes an increase of the temperature which can be seen for M1 = 3, 5 and 10MJup curves of
Fig. 2.3.c.

Later on, degeneracy sets in and the gas consists of degenerate free electrons mixed with still
classical ions. Thus, the internal energy is also split between an electronic and a ionic part (Ee

and Ei), the latter being small because T/TF = Ξe � 1. Because Egrav ∝ 1/R1 ∝ ρ
1/3
1 , the very

dependence of the Fermi energy with respect to the density (Ee ∝ ρ
2/3
1 ) gives

Ėe

Ee
≈ 2

Ėgrav

Egrav
. (2.12)

Substituting this into the Virial relations finally yields

Ėe = 2
Eint−Ei

Egrav
Ėgrav ≈ 2

Eint

Egrav
Ėgrav =−Ėgrav

Lint =−Ėi ∝−kB Ṫ . (2.13)

The contraction is thus mainly used to increase the zero point Fermi energy of the electrons, while
most of the luminosity is provided by the slow thermal cooling of the ions, as seen on the right
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part of Fig. 2.3.c (Guillot 2005). Of course, this result which is nearly exact in the white dwarf
domain is here only approximate because of (i) the partial degeneracy, meaning that Ei is not
completely negligible, (ii) the Coulombian correlation effects which cannot be neglected in the
planetary domain.

Interestingly, during their whole lives, the effective temperature of these objects monotonously
decreases with time, and can be seen as a proxy for time. At a given mass, an object will thus
follow the corresponding track in Fig. 2.2 from right to left.

• M2HBMM < M1 < MHBMM, dotted curves in Fig. 2.3 ; During the early phase, the aforementioned
conclusions hold: the object is classical and heats up during contraction. However, at some
point, the central pressure and temperature are sufficient to ignite deuterium burning (around
Tc ∼ 4.5× 105 K6, and this energy source temporarily counteracts contraction. Unfortunately,
because the primordial 2H/H ratio is very small (∼ 2× 10−5 ; Chabrier and Baraffe 2000), and
that its reaction rate is very short, all the available fuel is consumed in ∼ 106−8 yr. After that, the
standard evolution described above resumes. Note that the beginning and the duration of this phase
is highly dependent on the mass of the object. For more massive objects, higher temperature and
pressures are reached earlier, so that the reaction starts quickly and have a shorter lifetime.

• M1 > MHBMM, dashed curves in Fig. 2.3 ; Like the deuterium burning objects, these young con-
tracting protostars heats up until they reach Tc ∼ 3× 106 K, temperature at which thermonuclear
reactions start. In low mass stars (M1 < 0.7M�), 99% of the fusion of Hydrogen into Helium is
ensured by the PPI chain

H+H→ 2H+ e++νe ; H+ 2H→ 3He+ γ ; 3He+ 3He→ 4He+2H, (2.14)

which produces enough energy to stop the contraction (Chabrier and Baraffe 1997, 2000). Hence,
the object will only evolve because of its slowly varying chemical composition. The object has
reached the so-called zero age main sequence. A star is born !

2.1.4 Giant planet or mini brown dwarf ?

Note that, while from the point of view of the evolution I distinguished two different mass regimes
in the substellar domain, I took care not call planets the least massive bodies (M1 < M2HBMM), and brown
dwarfs the most massive ones which are able to fuse deuterium (M1 >M2HBMM). This choice is motivated
by several facts. First, if we call deuterium burning objects brown dwarfs, why not give different names to
objects burning lithium or other compounds ? Second, the deuterium burning limit itself is not completely
well defined, as it depends on various parameters (e.g. Helium and initial Deuterium mass fraction,
metallicity) and on the criterion used to identify Deuterium burning (Spiegel et al. 2011). Finally, note
that most of the actual objects with M1 > M2HBMM are too old to burn deuterium anymore !

In this thesis, I thus chose to assume the following definitions

• Planet7: celestial body that formed in the disk of a star.

• Brown dwarf: celestial body that formed through gravitational collapse of a dense molecular cloud
and that cannot sustain proton fusion.

6More massive object are also able to burn Lithium when they reach Tc ∼ 2.5×106 K, around M1 ∼ 60MJup.
7From Greek planētēs, "wanderer". A complete definition should include more constraints, such as a hydrostatic equilib-

rium condition, in order to differentiate planets from planetesimals or asteroids. Here, as we only concern ourselves with the
distinction between planets and brown dwarfs, we mainly focus on the characteristics that differ between these two classes of
objects.
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Figure 2.3: Evolution of the radius (panel a), effective and central temperature (panel b and c) and central
degeneracy (panel d) with respect to time for different masses. Dashed curves are used to represent
object massive enough to sustain Hydrogen nuclear fusion (M1 > MHBMM ≈ 75MJup), and dotted curves
for objects burning deuterium (M1 > 12.5MJup).

It directly follows that planet can be massive enough to burn deuterium and also, in principle,
hydrogen. The possibility of hydrogen burning planets, though, does not seem to me a serious problem
of this more physical definition based on the formation mechanism. Brown dwarf are somehow failed
stars that formed just the same way that these latter while not accreting enough mass, and planets form
later on, in the dusty gaseous disk formed by the material falling onto the protostar.

However, this definition also implies an underlying ambiguity. Studies of low mass stars and brown
dwarfs in young clusters suggest a continuous mass function down to ∼ 6MJup (Caballero et al. 2007),
indicating that the same formation process responsible for star formation can produce objects down to
a few Jupiter masses. Analytical theories of star formation (Padoan and Nordlund 2004, Hennebelle
and Chabrier 2008) also show that gravoturbulent fragmentation of molecular clouds produces, with
the same processes, stars and brown dwarfs down to a few Jupiter-masses in numbers comparable to the
observationally determined distribution. And just like there are binary stars, these brown dwarfs can form
near, or be captured by, a more massive star. On the other side, according to current models of planet
formation which include migration (Alibert et al. 2005), giant planets can form by core accretion with
masses up to ∼ 30MJup (Mordasini et al. 2008, 2009). "Mini" brown dwarfs and "super giant" planets
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thus overlap in mass, stressing the need for identification criteria enabling the distinction between these
two types of astrophysical bodies, but we will come back on this issue in § 2.5.

2.1.5 Initial conditions

There is still a problem that is inherent to the resolution of any set of partial derivative equations, and
that we omitted until now. We did not yet specify what are our initial conditions (Tint(t0)), or even simply
what we call t0. This problem is complex and cannot be solved without considering consistently the
transition between the phase where the object is still forming, and its isolated phase. This is particularly
critical to model young bodies, for which the energy content is still determined by the initial amount
of energy deposited by the in-falling matter during formation, and should drastically change between a
planet embedded in the protoplanetary disk and a brown dwarf.

Fortunately, for younger objects, the typical evolution timescale, which is given by the Kelvin-
Helmholtz timescale derived in § 1.2, τKH = GM1/R1Lint, is shorter because of the larger luminosity
and radius. Numerical simulations give values around τKH ∼ 105−6 yr for objects up to 20-30 MJup and
τKH ∼ 106−7 yr for more massive bodies. This is shown on Fig. 2.4, where we see that τKH can be also
seen as the timescale on which the system looses the memory of its initial conditions. Indeed, all the
curves that started with a higher initial radius than a given one are nearly confounded after 2− 3τKH.
Hence, even if we start from an arbitrarily high entropy state, or hot start, we know that the predictions
given by our calculations start to be accurate after a few Kelvin-Helmholtz timescales.

The subtle point, however, is that because the object can start from a very low entropy state (Marley
et al. 2007), to be conservative, we must use the longest possible τKH, i.e. the one yielded by the coldest
possible initial state. Then, considering the lowest curves in each panel of Fig. 2.4, we see that the system
can keep the memory of its initial conditions for up to 107−9 yr, which confirms the results of Marley
et al. (2007).

To get a better accuracy at younger ages, one needs to know the specific entropy content left into
the planet through its formation process. A first attempt into that direction has been done by Marley et al.
(2007), which follows the planet trough several stages (see Pollack et al. 1996 for details).

1. Dust particles in the solar nebula form planetesimals that accrete into a solid core surrounded by
a very low mass gaseous envelope. When few planetesimals are left in the feeding zone of the
planet, the accretion luminosity drops, and gas accretion is enhanced.

2. When the mass of the core and of the envelope become equal, a runaway gas accretion starts, and
the planet quickly grows. At this stage, the planet fills its whole Hill sphere and the gas can flow
smoothly from the disk. This is called the Nebular stage.

3. At some point, the growing need of the planet for gas cannot be fulfilled by the surrounding
nebula. Because of the slow contraction of the object, the radius of the latter becomes smaller than
its Hill radius, and a gap opens between the disk and the planet. As a result, the accreting gas falls
hydrodynamically onto the object.

4. Finally, accretion stops and the planet enters the isolation stage, where its evolution is described
by our aforementioned model.

However, as stated by Marley et al. (2007), the most crucial problem is to treat correctly the hydrody-
namical accretion that occurs in stage 3. This raises two major issues, namely, (i) the morphology of the
accretion, i.e. whether gas falls homogeneously onto the surface or predominantly onto the equator, (ii)
the thermal energy left into the accreting gas. Indeed, as shown by Stahler et al. (1980), the gas should
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Figure 2.4: Evolution of the radius of a H/He gaseous sphere with respect to time for different initial
radii (in each panel), and for different masses (different panels). On each curve, the gray diamond is
located at t = 2τKH, where τKH is computed at the initial time of the simulation (t = t0). We can see that
for any given curve (with an initial radius R0), for t & 2−3τKH, R1(t,R(t0)> R0)≈ R1(t,R0).
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undergo a shock before reaching the planet surface. Because Marley et al. (2007) assume that this shock
is super-critical and that all the gravitational energy of the infalling gas is radiated away, they predict a
very cold start in which the initial luminosities and radii of the planet can be up to, respectively, 1000
and 2 times smaller than in the hot start model. As expected, after a few τKH, these differences vanish.
If it is often assumed that the accretion shock is super-critical, one should keep in mind that it is not
necessarily true and remains to be explored by numerical radiation hydrodynamics calculations.

2.2 The mass-radius relationship
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Figure 2.5: Mass-radius relationship of gaseous ob-
jects at 5 (solid), 1 (long dashed), 0.5 (dashed) and
0.1 Gyr (dotted). Observational data points are also
shown.

In our yet simple modeling, the properties
of an isolated planet (radius, surface temperature,
luminosity, spectral colors, etc...) are completely
determined by its mass and its age (or equivalently
its effective temperature). To constrain the model
and knowledge of the internal structure of these
bodies, we must measure separately at least three
of these physical quantities.

Age can often be inferred from the character-
ization of the central star. This method becomes
rather uncertain for main sequence stars older than
a few hundred million years, but at least allows
us to identify the objects that are expected to be
old and cold. Thanks to direct detection methods,
the luminosity, and even spectra of young plan-
ets and brown dwarfs can be obtained. But be-
cause neither the radius nor the mass can be di-
rectly measured8, these observations cannot con-
strain the models.

In the past decade, this is then the successful
combination of Doppler measurements and transit
light curves that bore the most constraints on our
knowledge of internal structure. The observables
are thus the masses and radii of transiting bodies.
This is why this section is devoted to the study of the ways to use the mass-radius diagram. Fig. 2.5 shows
the mass-radius relationship computed with the numerical models described above for H/He gaseous
spheres with several different ages. It is shown along with observational data from planetary transit
surveys, observation of eclipsing binaries, and interferometric observations.

2.2.1 Linking macroscopic features and microscopic properties: the polytrope

One of the striking feature of this relationship is its non-monotonicity. To easily understand why
it is so, and how this is related to the behavior of the equation of state, I will turn to a simple analytical
model, the polytropic sphere. As we have seen in § 1.4.1, at least in the ideal and fully degenerate gas,

8Because of the inherent difficulty to image companions close to their host star, directly imaged substellar companions are
generally too far from their host star to transit or to be detected with radial velocimetry methods.
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the equation of state of our medium can be written as a polytrope,

P = Kρ
1+1/ñ, (2.15)

where K and ñ are called the polytropic temperature and index respectively, and are constant throughout
the configuration. In addition, as I will show later on, even for a realistic equation of state, the P−ρ

profile in an actual object can be approximated by a relation of the form given by Eq. (2.15) with well
chosen (K, ñ). This provides us with a powerful simplification, as the whole mechanical structure can be
captured in a single parameter, ñ, and that mechanical properties such as the gyration radius - rgyr which
characterizes the moment of inertia of the body, C1, and is defined through

C1 ≡
2
5

M1(rgyr R1)
2, (2.16)

- the central over mean density ratio (ρc/ρ̄1), and even the linear response to a perturbing potential (k2,
see Chapter 3) can be tabulated as a function of ñ alone (Chandrasekhar 1939 ; Lai et al. 1993 ; Leconte
et al. 2011c). For sake of completeness, a summary of the formalism and of the variables describing
polytropic spheres (Chandrasekhar 1939), as well as the well known Lane-Emden equation is given in
Appendix C.

Thanks to this formalism, we can obtain an analytical mass-radius relationship

M
ñ−1

ñ
1 R

3−ñ
ñ

1 =
K
G

ñ+1
(4π)1/ñ ξ̃

ñ+1
ñ

ñ |θ̃ ′ñ|
ñ−1

ñ . (2.17)

Of course, as will be shown in the next section, K and ñ are also functions of the mass of the object, so
that the mass-radius relationship is not a power law in the whole mass range. But if we consider that K
and ñ are only slowly varying, we will see in the next section that the slope of the mass-radius relation is
directly related to the polytropic index that describes the equation of state in the mass regime considered.

2.2.2 Effective polytropic index

To derive realistic polytropic indices, I fitted the pressure-density profile of each model of
the previous grid of planetary models by a polytropic equation of state (Eq. (2.15)) at each time
step. An example of the result of such a fit is shown in Fig. 2.6. Note that the disagreement between
the actual P−ρ profile and the polytrope in the lower left area of Fig. 2.6 is both expected and needed:
This low-density region (the first 5% in mass below the atmospheric boundary surface) has a different
effective polytropic index than the planetary interior. In order to capture the bulk mechanical property of
the planet, we weight each shell in the internal structure profile by its mass during the fitting procedure.
This provides us with a grid tabulating the polytropic index of the planet, ñ ≡ ñ(M1, t) (plotted in
Fig. 2.7). All the other polytropic functions (rgyr, ...) can be derived by integrating the Lane-Emden
equation. These functions, along with other quantities (R1, Tint, ...), are tabulated and can be found in
Leconte et al. (2011c).

As shown in Fig. 2.7, we recover qualitatively the results of Chabrier et al. (2009): except for the
early stages of the evolution, the (dimensionless) isothermal compressibility of the hydrogen/helium
mixture is a monotonically increasing function of the polytropic index, χ̃ = ∂ lnρ

∂ lnP

∣∣∣
T
= ñ

1+ñ , and thus
of the mass of the object. In the high mass regime, n slowly increases as the relative importance of
ionic Coulomb effects compared with the degenerate electron pressure decreases, and approaches the
ñ = 3/2 limit, the expected value for a fully degenerate electron gas, when Mp approaches the hydrogen
burning minimum mass (≈ 70MJup), as can be seen in Fig. 2.7.b. Thus, in this regime, Eq. (2.17) yields
R1 ∝ M−1/3

1 . Toward lower masses, the compressibility decreases with the mass because the repulsive
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Figure 2.6: The internal pressure-density profile of a 1.8MJup planet (solid line). The dashed line
represents the best-fit polytropic equation of state. The pressure-density range covered in the inner part
of the body (95% in mass) is represented by the thicker part of the solid curve, which is well modeled
by a polytropic EOS. As the thin part of the P−ρ curve represents only 5% in mass of the body it is
disregarded by the fit. Figure from Leconte et al. (2011c).

Coulomb potential between the ions, and thus the ionic electrostatic energy becomes dominant. The tran-
sition between the two regimes occurs near 2-3 MJup, where the polytropic index is close to unity. Thus
R1 ∝ M(1−ñ)/(3−ñ)

1 ∝ cst, the mass-radius relationship reaches a maximum and is nearly flat. Ultimately,
electrostatic effects dominate, leading eventually to χ̃ ≈ ñ≈ 0 for solid, terrestrial planets. As expected
for incompressible matter, we tend toward R1 ∝ M1/3

1 .
A new feature highlighted by the present calculations is the non-monotonic behavior occur-

ring between 1 - 3 MJup at early ages. This occurs when the central regions of the planet, of pressure
Pc and temperature Tc, previously in the atomic/molecular regime, become pressure-ionized, above
1-3 Mbar and 5000 - 10 000K (Chabrier et al. 1992 ; Saumon et al. 1992, 1995), and the electrons be-
come degenerate. An effect more consequential for the lowest mass objects, whose interiors encompass
a larger molecular region. This stems from the fact that (Chandrasekhar 1939)

Pc >
GM2

1

8πR4
1
, and

GM2
Jup

8πR4
Jup
≈ 2−3Mbar≈ Pionization. (2.18)

Older (with smaller R1) and more massive (M1 & 2MJup) objects have Pc > 10Pionization and the ionization
extends all the way up to the outermost layers of the gaseous envelope, which then contains too small
a mass fraction of molecular hydrogen to significantly affect the value of the polytropic index. This
contrasts with younger objects around 1 - 3 MJup, whose external molecular hydrogen envelope contains
a significant fraction of the planet’s mass, leading to a larger value of the polytropic index, as molecular
hydrogen is more compressible than ionized hydrogen (see e.g. Fig. 21 of Saumon et al. 1995). Once
again, for these latter objects, the interior structure would be better described by using two different
polytropes, but such a significant complication of the calculations is not needed at the presently sought
level of accuracy.

To evaluate the uncertainty in the determination of the polytropic index, I use an alternative method
to derive ñ. Since our numerical simulations provide both the radius, R1(M1, t), and the central density of
the object, ρc(M1, t), we can invert Eqs. (C.9) and (C.11) to compute K and ñ. This new determination of
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Figure 2.7: Left: Polytropic index for non-irradiated planets as a function of the planet’s mass Mp at
100 Myr (Dotted), 1 Gyr (Dashed) and 5 Gyr (Solid) in the low mass regime. The shaded area represents
the uncertainty on the polytropic index for the 5 Gyr case (see text). Figure from Leconte et al. (2011c).
Right: Idem but for massive substellar objects. As expected, because the Coulomb effects diminish as the
object tends toward the hydrogen burning limit, the gas becomes a perfect electron gas and its polytropic
index tends toward 3/2.

the polytropic index is compared with the previous one, obtained by fitting the P−ρ profile, in Fig. 2.7
for the 5 Gyr case: the new ñ value corresponds to the upper envelope of the shaded area. Fig. 2.7 shows
that the two approaches yield very similar results, the average uncertainty lying around 5 %.

Moreover, as shown in detail in Leconte et al. (2011c), this effective polytropic index does not
simply explain the behavior of the mass-radius relationship of substellar objects, but also encom-
passes much information about the internal mechanical structure of the object. Indeed, numerical
estimates of the moment of inertia and the tidal response function (i.e. the Love number) of the
body, among other quantities, are well approximated by the ones computed for a distorted poly-
trope, provided that an accurate polytropic index, as the one presented here, is used (Leconte et al.
2011c).

2.3 The bloating problem

If the small discrepancy between the theoretical predictions and the data points at the high mass
end of Fig. 2.5 can be explained (M1 & 20MJup ; Chabrier et al. 2007a), this is not so for lower masses.
Indeed, a large fraction of giant planets seem larger than predicted by the models. While this feature
was already identified with the first detected transiting planet, HD 209 458 b (Henry et al. 2000), the
mechanism(s) responsible for this bloating has not been completely identified yet.

In order to express the problem in mathematical terms, let us consider the luminosity equation
(Eq. (1.59)) in its integrated form

T̄1
∂ S̃
∂ t

=
∫
(ε̇nuc + ε̇ext)dm−Lint. (2.19)

This simply means that the internal entropy evolution depends on the balance between the energy sup-
plied to the interior by an external source and the radiative losses. As we have seen in previous sections,
in the general case, ε̇nuc + ε̇ext ≈ 0, and the object contracts because R1 is an increasing function of S̃.
In order to keep a larger radius, the planet thus needs to conserve its entropy, and because there are two
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terms on the right hand side of Eq. (2.19), there are two principal means to achieve this. These two types
of mechanisms can be stated as follows

• Heating sources. This class encompass all the processes that provide a source term ε̇ext to counter-
balance the radiative losses. S̃ decreases at a slower pace, or even increase, and the planet ends up
bigger than in the standard model. Proposed scenarios include, among others, tidal heating (Bo-
denheimer et al. 2001 ; see Chapter 5), downward transport of kinetic energy by stellar irradiation
driven winds(Showman and Guillot 2002), or ohmic dissipation (Batygin and Stevenson 2010).

• Inefficient cooling. The same effect can be achieved by simply impeding the transport of energy,
either in the interior or in the atmosphere. These include, extension of the radiative zone due to the
stellar irradiation (Guillot et al. 1996), enhancement of the radiative opacity decreasing radiative
losses (Burrows et al. 2007), and inefficient large-scale convection due to a composition gradient
(Chabrier and Baraffe 2007 ; which is also studied in Chapter 4).

Naturally, the first chronological idea, which was proposed a priori by Guillot et al. (1996), was
linked to the fact that transiting planets are at close orbital distance from their star, and receive a far
stronger flux than any of solar system giant planets. Even if other processes are at play to inflate Hot
Jupiters, the impact of stellar irradiation cannot be neglected, and I will thus dedicate the following
section to its study.

2.4 Effect of stellar irradiation

At first sight, the fact that I classified stellar irradiation among the "inefficient cooling" scenarios
can seem a little counter intuitive. Indeed, one might think that such an energy input (sometimes more
than a hundred times the internal luminosity of the planet) could heat the whole body. However, as we
will see, this heating does not penetrate very deeply into the interior, and incoming energy is rapidly
reradiated toward outer space. This is not the energy input which is important, but rather the way the
atmosphere is heated from above, and the consequences that it implies for the boundary conditions.

2.4.1 The radiative zone

As was discussed in § 1.5.2, the energy density linked to the incoming visible radiation decreases
into the atmosphere as e−

√
3κvis P/g, and is nearly completely absorbed at the 0.1-1 bar level, as shown

on Fig. 2.8. This level can even be displaced higher in the atmosphere if strong visible absorber are
present at low pressures, like TiO and VO, possibly leading to temperature inversions (Hubeny et al.
2003 ; Fortney et al. 2008). As a consequence, the stellar flux does not reach the inner convective zone
of the planet, is rapidly reradiated, and does not participate to the energy budget of the planet.

As can be seen on Fig. 2.8, when the atmosphere is heated from above, the nearly isothermal region
which is present above the 10 mbar level in the non irradiated case (solid curve) is pushed downward (up
to a few hundred bars). This is because the atmosphere is hotter in average, and thus needs a smaller
temperature lapse rate to transport the energy by radiation. As a result, the thermal gradient, ∇T =
d lnT
d lnP , is smaller. Even if the location of the radiative-convective boundary cannot be determined in this
simple model9, we see that the depth at which the fluid will eventually become convectively unstable
according to the Schwarzschild criterion will be pushed deeper. This simple analysis is confirmed by

9Indeed, as discussed in § 2.1.1, this is the way κ̄ varies with temperature and pressure that determines if a radiative-
convective transition occurs. At constant κ̄ , like this is assumed in Guillot (2010), ∇T → 1/4 < ∇ad.
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fully consistent non gray radiative transfer numerical calculations (see Barman et al. 2001 for a detailed
discussion).
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Figure 2.8: Atmospheric T −P profile com-
puted with Eq. (1.96) for a Jupiter analog
with Tint = 200K and Tirr varying between
0 K (black solid) and 2000 K (yellow dashed)
by steps of 200 K. For this example, κvis =
10−3m2.kg−1 and κ th = 10−2m2.kg−1 (see
§ 1.5.2).

The question is now to see how this can affect the
observed radius of a giant planet. One of the first idea
that comes to mind is just that as a planet is moved in-
ward, its external layers will extend in size as they are
heated as discussed above. In order to quantify this ef-
fect, let us consider that the height of the atmospheric
layer is roughly given by the pressure scale height

HP ≡−
dr

d lnP
, (2.20)

which is the typical length scale on which pressure is
subject to a significant change. From Eqs. (1.57) and
(1.58), and using the perfect gas law which is valid at
low pressures, we can show that

HP =
P

gρ
=

kBT
µ mH g

. (2.21)

If we further assume that the atmosphere is nearly
isothermal with the 1-10 bar temperature shown in
Fig. 2.8 (i.e. ∼ 300 K for Tirr = 0K and ∼ 2300 K for
Tirr = 2000K), we get an evolution of the atmospheric
scale height from∼ 50 km to∼ 380 km. The atmosphere
height still represents less than ∼ 0.5% of the radius of
the planet. This is thus clearly insufficient to explain the
observed bloating. In other words, if we keep the entropy in the inner convective zone constant while
moving the planet inward, the temperature of the atmosphere will increase, but the actual radius of the
planet will change only by a small amount. The mapping between R1 and S̃ discussed in § 2.1.2 is only
mildly changed by the irradiation (Burrows et al. 2000 ; Chabrier et al. 2004).

To understand how irradiation can significantly affect the radius of a close in planet, one must
account for the thermal evolution of the planet. Once again, let us take a planet at long orbital distance
from the star, and use our mind to move it quickly close to the star, quickly meaning in a time which is
negligible in front of the Kelvin-Helmholtz timescale so that the internal structure of the object does not
have the time to significantly thermally evolve10. Thus the internal isentrope is left unchanged, and so
is the T −P profile in the convective zone. This is roughly equivalent to keeping the couple (Tatm,Patm)
constant in a region where the incoming stellar irradiation cannot penetrate. Then, let us consider the
evolution of the ability of the atmosphere to transport the internal energy and cool down the planet with
the degree of irradiation. Isolating Tint in Eq. (1.97), we get

T 4
int =

[
4T 4

atm

3
− f̄ T 4

irr

(
2
3
+

κ th

κvis
√

3

)]/[2
3
+

κ th

g
Patm

]
. (2.22)

So, as Tirr increases, Tint decreases. This simply translates the fact that, as temperature lapse rates are de-
creased, the radiative transport energy is significantly hampered, and because convection is very efficient
in the interior, the overall flux is completely determined by the atmospheric energy escape rate. This
simple explanation is once again supported by the radiative transfer calculations of Barman et al. (2001).

10Thermodynamically speaking, this can be seen as a quasi static and adiabatic transformation of the planet



Effect of stellar irradiation 51

Thus, if the mapping between R1 and S̃ does not change, the relations that link these parameters to
the effective temperature depends on Tirr. The irradiation plays a role only on the evolution. When Tirr
is increased, the outgoing flux escaping the planet is decreased, and so is the variation of the internal
entropy, which is kept at a higher value for a longer period of time. To summarize, the stellar irradiation
impedes the release of the internal gravo-thermal energy of the object, slows down its cooling, and retards
the evolution (Baraffe et al. 2003).

2.4.2 Polytropic index of irradiated objects
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Figure 2.9: Polytropic index for irradiated planets as a function of the planet’s mass Mp at 100 Myr
(Dotted), 1 Gyr (Dashed) and 5 Gyr (Solid). The shaded area represents the uncertainty on the polytropic
index for the 5 Gyr case (see text). As the irradiated atmosphere impedes the radiative cooling of the
objects, it retards its contraction. Therefore, the non-monotonous behavior observed at the early ages in
the non-irradiated case (Fig. 2.7) is enhanced, even at a later epoch. The bump at the high mass end of
the 100 Myr curve is caused by deuterium burning (see text). Figure from Leconte et al. (2011c).

Analogously to § 2.2.2, I also computed a grid of evolution models of gaseous giant planets with
solar composition for Mp ∈ [0.35MJup, 20MJup] and an incoming stellar flux Finc = 4.18×106 W.m−2.
As seen on Fig. 2.9, a strong irradiation enhances the features described in § 2.2.2: the evolution
is delayed because the irradiated atmosphere impedes the release of the internal gravo-thermal
energy. This yields a slower contraction, thus a lower central pressure (and lower central temper-
ature) for a longer period so that the object enters the ionization regime at a later epoch. The bump
at the high mass end of the 100 Myr isochrone is due to deuterium burning which also occurs later for a
given mass, because of the cooler central temperature (see above). At 100 Myr, the 20 MJup has already
burned a significant amount of its deuterium content and starts contracting again, whereas lower mass
planets are still burning some deuterium supply, leading to a less compact and thus less ionized structure.
This leads to the non-monotonic behavior on the high-mass part of the ñ−M diagram at 100 Myr, which
reflects a similar behavior in the mass-radius relationship.
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2.4.3 Radius anomaly

It is now well established that a large number of transiting giant exoplanets are more inflated than
predicted by the standard cooling theory of irradiated gaseous giant planets (see Udry and Santos 2007 ;
Baraffe et al. 2010 for reviews). As we have seen above that stellar irradiation can help prevent the
cooling of such planets, it is time to estimate the remaining discrepancy. Because the radius of a gaseous
giant planet is not set only by its mass, but strongly depends also on the object’s composition, age
and irradiation history, the mass-radius diagram (see Fig. 2.5) only gives a limited view of the constraints
offered by the observation of transiting systems. In order to quantify the radius anomaly of many "Hot
Jupiters" and study the possibility of such an anomaly for the more massive objects, I computed the
radius predicted by our standard irradiated model (Rirr) for transiting planets with Mp > 0.3MJup
(about a Saturn mass). I define the radius excess as the difference between the observed radius
and that predicted by the model at the estimated age of the system, denominated Rirr. Results are
summarized in Fig. 2.10.

In the low mass range, the existence of objects above the R1 = Rirr tells us that the effect of stellar
irradiation alone is still unable to explain the mean properties of transiting planets. As seen in § 2.3,
this is evidence that some physical mechanism is yet missing in our modeling. A more thorough study
of two of these mechanisms, namely the double diffusive convection and the tidal heating, are carried
out in Chapter 4 and 5 respectively. Interestingly, Laughlin et al. (2011) showed that the radius anomaly
of planets in the 0.1-10 MJup mass range are correlated to the irradiation temperature, with a best fit
dependence, R1−Rirr ∝ T 1.4±0.6

irr . This seems to favor mechanisms involving an interaction between the
star and the planet. However, if the correlation seems robust, the constraints on the exponent are not
strong enough yet to disentangle between the various types of possible star-planet interactions, as they
all depend on the orbital distance (and thus on Tirr).
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Figure 2.10: Relative radius excess between the observationally and the theoretically determined values
for 57 transiting systems. Objects significantly above the dashed line are considered to be anomalously
bloated compared with the prediction of the regular evolution of an irradiated gaseous planet. All the
objects below this line can be explained by a heavy material enrichment in the planet’s interior (Baraffe
et al. 2008 ; Leconte et al. 2009, 2010a, 2011b). Figure from Leconte et al. (2011b).
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2.4.4 Heavy element content

On the other hand, the existence of objects below the R = Rirr shows that there is at least another
free parameter that we did not yet considered. This could already be seen in Fig. 2.2.d where our R1(Tint)
tracks where not quite representative of Solar System giant planets, Jupiter and Neptune11. Indeed both
planets are denser (and by a large factor for Neptune) than the models of the same mass and effective
temperature. If this free parameter is not obvious in our set of structure equations, we already encountered
it in § 1.4.1. To model a planet, one needs to specify the material it will be made of, and use the relevant
equation of state. For the moment, we only considered gaseous spheres with a solar composition, but
the discrepancy stated above shows us that dense materials (called heavy elements) are present in a
significant amount inside giant planets, both inside and outside our Solar System (Hubbard and Marley
1989 ; Chabrier et al. 1992 ; Baraffe et al. 2006 ; Fortney et al. 2007 ; Burrows et al. 2007 ; Baraffe et al.
2008 ; Leconte et al. 2009, 2010a).

Unfortunately, the chemical composition of a planet cannot be encompassed in a single parameter.
Even a simple parametrization in terms of mass fractions of Hydrogen (X), Helium (Y ) and heavy ele-
ments (Z) already gives us two additional free parameters12, and splitting our heavy materials in volatiles
(or "ices") and silicates (or "rocks" ; see § 1.4.1), adds another one. In addition, the precise location of
heavy materials, and whether they are mixed in the gas component or differentiated in a dense core, is
still unknown (see Chapter 4). This creates a degeneracy that cannot be removed by the knowledge of
mass and radius alone, which is one of the main limitation to the determination of the heavy element
content of exoplanets (Baraffe et al. 2008). In the following, in order to make a simple estimate of the
global enrichment inside extrasolar giant planets, I will simply assume that our planet is separated
in two well defined regions, (i) a dense core composed exclusively of heavy materials (either ices
or silicates) of mass Mc, (ii) a gaseous envelope composed of a primordial mixture of hydrogen,
helium and metals presenting solar abundances (Zenv ≈ 0.02). In this case, I also refer to the total
heavy element mass,

MZ = Mc +Zenv (Mp−Mc), (2.23)

or the total mass fraction,

Z ≡MZ/Mp. (2.24)

For this class of objects, one can infer an upper limit for the content of heavy material by
determining the maximum mass of heavy elements consistent with the lower observational error bar, as
done in Leconte et al. (2009). In the case of CoRoT-4b, I showed that models with less than 10 M⊕ of
water remain within the observational error box, as illustrated by the dash-dotted curve in Fig. 2.11.
This corresponds to a total mass fraction of heavy elements Z . 15%. For such low enrichment, adopting
rock as the main heavy element or a mixture of water and rock will barely change this value. For this
type of transit planet population, the bulk composition can thus be constrained with reasonable accuracy.
Note that the non-irradiated model represented by the solid curve is completely unable to reproduce the
measured radius of the planet at the current epoch, showing that the effect of the stellar irradiation must
be taken into account when trying to predict the internal properties of the object.

One may argue that since a physical process is missing in the modeling of some close-in planets
this upper limit for heavy material enrichment could be underestimated, if such a process occurs in all
transiting planets. An additional heat source, for instance, will yield a larger planet’s inflation at a given
age, allowing for a larger maximum amount of heavy material consistent with the observational error

11While it is not shown in Fig. 2.2, the same conclusions hold for Saturn and Uranus.
12By definition X +Y +Z = 1.
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Figure 2.11: CoRoT-4b: evolution of the radius as a function of age. Solid line: standard cooling
sequence of an isolated 0.72 MJup gaseous sphere with solar composition. Long-dashed line: irradiated
case. Dash-dotted line: Irradiated case with a 10 M⊕ water core. Red box: observational 1σ error bar.
Revised figure from Leconte et al. (2009).

box. The exact nature of such additional heating mechanisms being still a subject of debate the wisest
(and simplest) assumption is not to invoke missing physics when it is not required. One should bear
in mind, however, that, given the remaining limitations in our present understanding of planet structure
and evolution, these heavy element enrichment determinations retain some degree of uncertainty. This
maximum mass should rather be seen as the maximum enrichment consistent with the observed 1σ error
bar, according to the present theoretical models.

Using that estimation we can show that, because most of the objects significantly below the Rirr
line are in the 0.3 . M1 . 1MJup region, they can be explained with a MZ/Mp & 0.10 heavy material
enrichment (Baraffe et al. 2008 ; Leconte et al. 2009). Pushing further Guillot et al. (2006) and Guillot
(2008) also showed that in this mass range, a correlation exists between the enrichment of the planet
and the metallicity of the star. All these conclusions seems to be in good agreement with predictions
of the core-accretion scenario for planet formation (Baraffe et al. 2006 ; Mordasini et al. 2009 ; Alibert
et al. 2011). However, some extreme cases exist, such as CoRoT-13 b (Cabrera et al. 2010), a 1.3 MJup
planet with a 0.9RJup radius. Indeed, with a density of 2 340kg.m−3, this planet is one of the densest
in this range of mass, favoring the presence of around 100-300 M⊕ of heavy material in its interior (i.e.
Z ≈ 0.75), depending on the equation of state chosen. The formation mechanism of such a strongly
enriched Jupiter like planet (Z ∼ 0.25−75) yet remains an open question.

2.5 Distinguishing super giant planets from mini brown dwarfs in their
overlapping mass domain

The discovery of "super" Jupiters, with masses & 10MJup, in close orbit to a central star, raises
questions about their nature: planet or brown dwarf ? CoRoT-3 b (see Fig. 2.10) is a perfect example
of such an ambiguity. As discussed in § 2.1.4, brown dwarfs and planets overlap in mass, stressing the
need for identification criteria enabling the distinction between these two types of astrophysical bodies.
The presence of strongly non-solar atmospheric abundances, as observed in the atmosphere of the giant
planets of our Solar System, may provide signatures of a planetary formation process in a protoplanetary
disk. Such a signature, however, is difficult both to observe and to characterize at the present time
(Chabrier et al. 2007b) and may not apply to irradiated planets, with radiatively stable outer layers.
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A more robust signature of the planet formation process, as expected from the core accretion model,
is the presence of a significant amount of heavy material in the interior. Observed radii significantly
smaller than predicted for solar or nearly-solar metallicity objects reveal the presence of such a sig-
nificant average amount of heavy material ; a major argument in favor of the core-accretion planet
formation process. On the opposite, if a physical mechanism is missing in current planet cooling models,
as discussed in the previous sections, observed radii larger than predicted do not necessarily imply an
absence or a small amount of heavy material. For such cases, the nature of the object remains ambiguous,
if only based on the knowledge if its mean density.
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Figure 2.12: CoRoT-3 b. Solid line: standard cooling sequence of an isolated 21.66MJup brown dwarf
with solar composition. Long dashed line: irradiated case. Dash-dotted line: Irradiated case with a
272M⊕ core of water. Red box: observational 1σ error bar. Revised figure from Leconte et al. (2009).

I first focused on the most massive transiting object in the CoRoT sample, CoRoT-3 b. To
examined whether its radius determination enables us to identify its very nature, I computed evo-
lutionary tracks corresponding to several different scenarios and compared it to the data. As shown
in Fig. 2.12, the observed radius of CoRoT-3 b can be matched by the model of an irradiated brown dwarf
of 21.6MJup with solar composition (long-dashed line). This is by itself an encouraging confirmation of
the theoretical prediction of the age-mass-radius relationship in the brown dwarf regime (Chabrier and
Baraffe 1997 ; Baraffe et al. 1998). Note that, given the small orbital distance, the effects of irradiation
are not negligible, even for such massive objects. Accounting for irradiation on the atmospheric profile,
and thus on the object’s cooling history, is thus mandatory to provide consistent comparison between
models and observations, when the radius is determined at this level of accuracy (∼ 7%). The present
radius error bars, however, are still too large to infer or exclude the presence of a significant amount of
heavy material in the interior of this object.

As done in § 2.4.4, I determined the maximum amount of heavy material allowed by the error bar
on the radius determination. I found an upper mass limit for the core of about 800 M⊕ (i.e. Z . 12%).
However, we have to see if this maximum enrichment compatible with the actual error bars is possible
with our current understanding of planet formation. According to current models of planet formation
which include migration (Alibert et al. 2005), up to ηacc ∼ 30% of heavy elements contained in the
protoplanetary disk can be incorporated into forming giant planets (Mordasini et al. 2008, 2009). The
maximum mass of available heavy material that can be accreted to form planets is thus

MZ ≈ ηacc ·Z · ( f ·M?), (2.25)

where f · M? is the maximum mass for a stable disk (. 0.1M?) and Z is the metal mass fraction of the
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star13. For CoRoT-3 b, which is orbiting a 1.37M� F star with near solar metallicity, at most MZ ≈ 270M⊕
of heavy material can thus be accreted to form the planet. This (admittedly crude) upper limit derived
from current planet core accretion formation models yields a planet contraction consistent with today’s
observations, as seen in Fig. 2.12 14.

Therefore, given the present uncertainties in the radius determination, neither the brown
dwarf nor the planet possibility can be assessed or excluded for CoRoT-3 b, whose nature remains
ambiguous. A comparison between the predicted radius of a (irradiated) solar-metallicity brown dwarf
(dashed line) and of a planet with the aforedetermined massive core, which represents only a∼ 4% metal
enrichment (dash-dotted line) in Fig. 2.12, shows that a radius accuracy . 3% is required to resolve the
ambiguity, according to the present models. In any event, this demonstrates the promising powerful
diagnostic provided by mass-radius determinations to distinguish massive planets from low-mass brown
dwarfs, providing adequate observational accuracy.
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Figure 2.13: Hat-P-20b. Solid line: Cooling sequence of an irradiated 7.25MJup brown dwarf. Dashed
line: Irradiated case with a 340M⊕ icy core. Blue Cross: observational 1σ error bar. Figure from Leconte
et al. (2011b).

Among the few known massive planetary-mass objects, there is at least one example for which
such a radius measurement provides the identification of its nature. This is the case of Hat-P-20 b, a
7.25 MJup mass object, closely orbiting a K type star (Bakos et al. 2010)15. As illustrated in Fig. 2.13,
the evolutionary track that I computed for the irradiated brown dwarf model (long-dashed line)
overestimates the radius by ∼ 10-15%. Consistently with Eq. (2.25), models including a 340M⊕
core mass of ices16 can nearly explain the measured radius (dashed line). The discrepancy would
be even smaller if we considered the presence of rocks. Although this amount of heavy material is
about the limit of what is available for planet formation, according to current core-accretion models (as
estimated from Eq. (2.25) for the HAT-P-20 system ; see also Mordasini et al. 2009), the presence of
such a metal enrichment (Z . 15%) provides the simplest plausible explanation for the observed radius
of HAT-P-20 b, according to the present theory. As mentioned earlier, this 340M⊕ core for HAT-P-20 b
should be seen as a rough estimate of the upper limit for the available heavy material in the system, but

13For a more accurate determination, one should take care of the fact that only the condensed volatiles and silicates (the
so-called dusts) can participate to the formation of planetesimals.

14Note that, as discussed in Baraffe et al. (2008) for HAT-P-2b, this heavy material does not need to be accreted into one
single object, as very massive planets, in particular short-period ones, may result from smaller planet collisions.

15In Leconte et al. (2009), we discussed the case of Hat-P-2 b, and not Hat-P-20 b, a 8 MJup mass object, closely orbiting an
F type star (Winn et al. 2007b), but a more recent analyses of the data showed that the radius had been underestimated in the
discovery paper (Pál et al. 2010). What will Hat-P-200 b be like ? Future should tell.

16Note that this amount of heavy material does not necessarily need to be in a core but could be distributed all over the planet.
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this analysis shows that the currently observed low radius of this object cannot be explained without a
substantial enrichment.

It would certainly be interesting to see whether planet models from other groups yield or not similar
determinations. Given the fact that these various planet models share many common physics inputs (in
particular the H/He and heavy element EOS), it would be surprising that they reach severely different
conclusions. While keeping in mind the remaining uncertainties in planet cooling theory, the present
analysis provides - with the parameters observed so far - a confirmation of the validity of the
core-accretion model, and makes Hat-P-20 b the first confirmed 7-8 MJup genuine planet formed by
core-accretion in a proto-planetary disk (Leconte et al. 2009, 2011b).

2.6 Conclusion

In this chapter, I have shown that, even taking into account the impact of the stellar irradiation on
the atmosphere of extrasolar giant planets is not sufficient to explain their observed large radius. Then,
by modeling numerically all the transiting exoplanets that were known to date, I quantified the
remaining radius anomaly (Leconte et al. 2011b).

Doing so, I also showed that the mechanical structure of both isolated and irradiated giant
planets can be well characterized by an effective polytropic index, for which I gave numerical
estimates (Leconte et al. 2011c). This also confirmed that the principal effect of stellar irradiation is not
the direct bloating of the outer layers, but the slowing down of the usual gravo-thermal evolution.

Then, I showed how the mass-radius diagram can be used to constrain the enrichment of observed
transiting planets. In particular, I find that the mean density determination, while inconclusive in the
case of CoRoT-3 b, is discriminant in the case of Hat-P-20 b, which is thus the first confirmation of
the possibility to form massive planets by core accretion (possibly with subsequent collisions) up to
M1 & 8MJup (Leconte et al. 2009). This analysis shows that, according to the present models, a typical
. 5 % accuracy on the radius determination must be achieved in future space-based or ground based
transit detections to clearly distinguish planets from brown dwarfs in their overlapping mass domain.
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Because the theory of figures is the basis of the modeling of Solar System giant planets and
of the theory of equilibrium tides that will be explored in the following chapters, the first section
of this chapter is dedicated to the definition of the main variables and to the introduction of the
main concepts needed (§ 3.1). For completeness, the full development of the general linear theory
of Sterne (1939) and of the axisymmetric third order theory of Zharkov and Trubitsyn (1980) (that
will be used in Chapter 4) are carried out in Appendix D and Ea respectively.

Then, in § 3.2, I show how the response in shape and in potential of giant exoplanets and
brown dwarfs to the combined effect of rotational and tidal distortion can be computed from the
knowledge of the potential Love number (k2) alone. To make the use of these formulae possible, I
give numerical estimates for the Love number of these objects, and discuss what these values tell
us about the mechanical structure of gaseous substellar objects.

I also investigate the impact of heavy element enrichment on the tidal response of giant
planets, and demonstrate on a test case how one could take advantage of these models to infer a
core mass from k2 measurements (§ 3.3).

In § 3.4, I show one of the limitation of the numerical theory, and how it can be overcome,
at least in the linear regime, by an analytical theory when stronger assumptions are made. Finally,
in § 3.5, using this model, I discuss the implications of the tidal distortion of close in planets
on the parameters that are measured from their light curve. In particular, I demonstrate that the
equilibrium radius of strongly distorted objects can be larger than the measured radius, inferred
from the area of the (smaller) cross section presented to the observer by the planet during the
transit ; systematic bias in the radius determination which still enhances the aforementioned radius
anomaly.

The results presented in § 3.2 to 3.5 led to the publication of Distorted, non-spherical tran-
siting planets: impact on the transit depth and on the radius determination (Leconte et al. 2011c).

aSome typos found in Zharkov et al. (1973) and Zharkov and Trubitsyn (1980) are also corrected.
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While WE USUALLY IMAGINE STARS AS BIG LUMINOUS PERFECT GLOBES

moving through empty space, those are spheres only in first approxi-
mation. If the sphere is indeed the lowest energy state of an isolated,

gravitationally bound, collection of particles at rest1, there is no such thing as a completely isolated or
motionless celestial body ! Through conservation of angular momentum during the gravitational collapse
of a dense interstellar cloud and its following contraction, a very small initial velocity inhomogeneity
can be sufficient to imprint a quite rapid rotation to the newborn star. Part of this momentum, being kept
by the protoplanetary disk, can then be transferred to the young forming planets, in form of both orbital
and internal angular velocity. Thus, all planets and stars are rotating, even if sometimes slowly, and no
longer spherical. Moreover, when another massive body is cruising nearby, the effect of its gravitational
pull also changes the macroscopic equilibrium state of our assembly of particles.

This large scale perturbation of the equilibrium of a non rigid body has many dynamical conse-
quences. The most important one, which more or less encompasses all the others, being that a non
spherical distribution of matter breaks the shell theorem demonstrated by Sir Isaac Newton (1687) in
his Philosophiae naturalis principia mathematica ; i.e., the gravitational force that it exerts on external
massive particle does not follow the usual inverse square law, and can have a non axial component. As a
result, the trajectory of a particle moving under the sole attraction of such a mass distribution will depart
from the ellipse that was first anticipated by Johannes Kepler (1609) in his Astronomica nova. Speaking
in terms of osculating elements2, the shape and orientation of the orbit that best describes the motion of
the particle over time could change both periodically and secularly. If one seeks to predict the orbital
evolution of a given set of self-gravitating objects in mutual interaction, the problem of the determination
of the gravitational field created by each body, and thus of their shape, arises.

The question of the figure of a self-gravitating body, first formulated for the Earth during the Antiq-
uity, is a long standing problem. Since Parmenides3, for aesthetic and geometrical reasons, and Plato4,
who based his reasoning on the observation of the Earth shade during lunar eclipses, the Earth was
thought to be spherical. This was only, as often through new observations made during the seventeenth
century, that the sphericity of the Earth started to be questioned scientifically. On one side, by anal-
ogy with Jupiter, whose oblateness has been measured by Giovanni Domenico Cassini in 1666 and has
rapidly been thought to be related to the rapid rotation of the planet (as first acknowledged in Philosoph-

1in a macroscopic sense
2From the Latin verb osculare, to kiss, the osculating elements at an instant t are the six orbital elements - semi-major axis

(a), eccentricity (e), inclination (I), argument of pericenter (ϖ), longitude of the ascending node (Ω) and time of pericenter
passage (τ) - that completely define the shape and orientation of the orbit that our two bodies would follow if the perturbing
force were to disappear at that instant (Murray and Dermott 1999). In the unperturbed two body problem, those elements are
constant over time. In practice, the osculating elements can be computed by knowing the position and velocity of one of the
bodies in any reference frame at any given time, and their temporal evolution can calculated by integrating a set of differential
equations, commonly known as Lagrange planetary equations. An example of such equations is presented in Chapter 5.

3515-450 BC.
4428-348 BC.
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ical Transactions 1665), it was natural to think that the Earth could also have an ellipsoidal shape. On
the other side, during a travel to Cayenne in 1672, Jean Richer discovered that the length of the seconds
pendulum, that is a pendulum with a swing of one second, was 2.8 millimeters shorter in Guyana than
in Paris, showing that the gravity was smaller near the equator. This rapidly led Newton and Christian
Huyghens to formulate a first theory of the gravity of the Earth (Huyghens 1690). However, the modern
theory of the figure of celestial bodies in hydrostatic equilibrium, which is detailed hereafter, is first due
to Colin Maclaurin and Alexis Clairaut (1743), and was subsequently pursued by Pierre Simon Laplace,
Jean-Charles Rodolphe Radau, George Darwin (1899) and Aleksandr Mikhailovich Lyapunov (1903),
among others. This is only thanks to these developments that the equilibrium theory of tides could
emerge (see Chapter 5).

Conversely, it is possible to measure the gravitational field created by a celestial body and its depar-
ture from sphericity. This can be done either directly with orbiting spacecrafts, when the object is nearby,
or by monitoring its dynamical interactions with other bodies when the first option is not available. Then,
these constraints on the figures of the body considered can be used to constrain some of its internal prop-
erties, as has been successfully achieved for, e.g. giant planets in our solar system (see Zharkov and
Trubitsyn 1980 and reference therein, Hubbard and Marley 1989 ; Chabrier et al. 1992, large satellites
(de Sitter 1914), binary stars (Sterne 1939 ; Kaula 1964), etc...

3.1 Theory of figures

3.1.1 Problem statement

The basic problem of the theory of figures is as follows. We are given some amount of self-
gravitating matter under the influence of an external perturbation, and for which we have an Equation
of State (EOS), and we wish to know what is the distribution of the matter in space when hydrostatic
equilibrium is achieved. As we have seen in Chapter 1, a body is in hydrostatic equilibrium when the
pressure gradient (∇P) balances the other forces, yielding

∇P =−ρ∇(VG +Vext) , (3.1)

where VG is the gravitational self potential, and Vext a perturbing potential. The hydrostatic balance
directly implies that isobaric surfaces and equipotentials are identical. Because the equation of state
(P(ρ)) is known, isodensity surfaces also have the same shape, so the problem reduces to that of finding
the shape of the equipotentials, that will also be called level surfaces in the following.

In general, no exact analytical solution can be found to the problem stated above. Because we
are considering small perturbations, in a sense that remains to be defined, the departure of the final
equilibrium configuration from sphericity is also weak, and all expansions can be used. The order at
which the perturbative development has to be carried out then directly depends on amplitude of the
perturbation considered, and on the degree of accuracy sought on the observables. On one side, the
precision of the transit observations of exoplanets is not yet high enough to justify the use of high order
theories in this context. On the other hand, a high order scheme is necessary to fully take advantage of
the accuracy of gravitational moments measurements in our solar system to constrain the composition of
our giant planets interiors, as done in Chapter 4. However, such a theory is too cumbersome to be easily
usable in a general context.
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3.1.2 Summary

Because of the functional form of the gravitational potential of a point mass, which goes as the
inverse of the distance, expansions of the total potential naturally involve Legendre polynomials. Then
it seems natural to postulate that the final shape of the equipotentials can be expressed in terms of those
Legendre polynomials (which are generalized by spherical harmonics in the non axisymmetric case), as
first did Maclaurin and Clairaut (1743). This approach, which has been repeatedly criticized because
of a divergence of the Legendre expansion in a small region between the sphere and the level surfaces,
has however been demonstrated to be correct by Lyapunov (1903). Thus, matter organizes itself in
concentric shells, whose shape is a combination of spherical harmonics, and the values of the density,
pressure, potential and figure functions (the coefficients affecting the various spherical harmonics) on
these shells, depend on a unique level variable labeling the surface (see § 3.1.5 for examples of different
level variables).

With that in mind, in order to derive usable equations, we follow five different steps that will be
considered in that order hereafter.

• We formally compute the gravitational potential created at a point r by an arbitrary mass distribu-
tion (ρ(r′)), which is not yet necessarily in equilibrium (§ 3.1.3). The potential is then expressed in
terms of spherical harmonics (Y m

n (θ ,φ)), whose coefficients are expressed through integrals of the
density field weighted by the aforementioned spherical harmonics (hereafter, the mass integrals,
Dm

n ).

• Various possible perturbing potentials (Vext) are then considered and projected onto spherical har-
monics. We also define a dimensionless coefficient (mext), which measures the amplitude of the
perturbation compared to the restoring force, i.e. the self gravity (see § 3.1.4).

• Then, in § 3.1.5, we expand the shape of each level surface on the same spherical harmonic basis.
To do so, we have to chose the level variable (l) and consequently the set of figure functions that
we will use (lmn (l)). At that point, depending on the set of functions and the variable chosen, some
preliminary relations can be derived (see either § D.2 or E.2).

• Knowing, at least formally, the mass distribution - meaning that the density field is constrained
to verify ρ(r′) = ρ(l), where the latter function is still arbitrary for the moment - we can derive
formal expressions for the mass integrals which now involve only this one dimensional density
profile and the figure functions (§ D.3 or E.3).

• The coefficients of the expansion of the total potential on each level surface on the Y m
n (θ ,φ) can

then be expressed in terms of algebraic combinations of the mass integrals and figure functions.
Because level surfaces are equipotentials by construction, all but one of these terms must be iden-
tically equal to zero, which provides us with a sufficient number of integro-differential equations
to be solved to obtain the figure functions. Finally the radial term provides us with an expression
for the perturbed gravity field to use in solving hydrostatic equilibrium (§ D.4 or E.4).

Of course, we did not detail yet what prescription should be taken for ρ(l). Indeed, if this seems
an input in the above procedure, it directly results from the integration of the hydrostatic equilibrium
equation which is one of the output of the calculation. It is then understood that an iterative process will
be needed, where a first prescription is given for the stratification, allowing a computation of the figure
functions and an update of the density profile, this procedure being repeated until some convergence
criterion is met. However, thanks to the fact that the perturbation is often... well... only a perturbation,
the density profile that would be obtained in the unperturbed spherical case gives a good first guess, and
can even be left unchanged, depending on the accuracy sought.
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3.1.3 Self gravitational potential

As mentioned above, the main reason why celestial bodies are nearly spherical is that the sphere
is the minimum energy shape of self gravitating isolated particles, and that we are considering massive
enough objects for self gravity to dominate. Thus, self gravity is the restoring force in our problem,
and we must concern ourselves with the computation of this gravitational potential for an arbitrary mass
distribution in space ρ(r′). It can be shown that the gravitational potential created at the point r by this
mass distribution reads

VG(r) =−
G
r

∞

∑
n=0

n

∑
m=−n

(
r−nDm

n + rn+1D̄m
n
)

Y m
n (θ ,φ), (3.2)

Dm
n (r) = (2−δm,0)

(n−m)!
(n+m)!

∫
r′<r

ρ(r′)(r′)nY m
n (θ ′,φ ′)d3r′, (3.3)

D̄m
n (r) = (2−δm,0)

(n−m)!
(n+m)!

∫
r′>r

ρ(r′)(r′)−n−1Y m
n (θ ′,φ ′)d3r′, (3.4)

defining the internal (Dm
n ) and external (D̄m

n ) mass integrals5,6. For compactness, we have introduced
spherical harmonics defined by

Y m
n (θ ,φ)≡

(
cos |m|φ
sin |m|φ

)
P|m|n (cosθ), (3.5)

where the Pm
n are the usual associated Legendre polynomials. The cos (sin) corresponds to positive

(negative) values of m. As advertised, this shows that the gravitational potential can be projected onto
spherical harmonics weighted by the mass integrals.

These mass integrals are not purely mathematical entities. Indeed, considering a point exterior to
the object, D̄m

n = 0, and Dm
n is constant. Then the gravitational field reads

VG(r) =−
G
r ∑

n,m
r−nDm

n Y m
n (θ ,φ)≡−GM1

r ∑
n,m

(
Req

r

)n

Cm
n Y m

n (θ ,φ), (3.6)

where we see that the gravitational moments are the dimensionless counterparts to the mass integrals

Cm
n = Dm

n /(M1 Rn
eq). (3.7)

While these expressions are not yet usable, we will see in § D.3 and E.3, that further constraining the
density field yields major simplifications of these relations.

3.1.4 Perturbing potentials

If only the gravitational potential is considered, we know that the body takes a spherical shape in
hydrostatic equilibrium. It is now time to consider in more detail the various perturbations that can break
this symmetry, and to define the dimensionless quantities measuring the amplitude of these perturbations.

Centrifugal potential

If a mean rotation of the fluid composing the planet occurs, the centrifugal acceleration, which
is alway perpendicular to the mean rotation axis, causes a flattening of the body. However, axial and

5When no confusion can occur, δi,j is assumed to be the Kronecker symbol which is equal to 1 if i = j and 0 otherwise.
6In the following, ∑

∞
n=0 ∑

n
m=−n will be abbreviated by ∑n,m.
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North/South symmetries remain. For simplicity, we place ourselves in the frame rotating with the planet
(assumed in solid body rotation) at the angular speed ω1. In this frame, the centrifugal potential reads

Vrot(r) =−
1
2

ω
2
1 r2 sin2

θ

=−1
3

ω
2
1 r2 (1−P2(cosθ)) . (3.8)

To evaluate the deformation, we define the dimensionless parameter mrot as the ratio of the centrifugal
acceleration over the gravitational one at the surface

mrot =
ω2

1 R̄3
1

GM1
, (3.9)

where R̄1 is the mean radius of the external surface of the planet (see § 3.1.5 for details)7. This parameter
estimate the relative importance of the rotational deformation over the restoring gravitational force.

For Jupiter and saturn, the values for mrot are on the order of 0.1, justifying our use of a perturbative
theory, where equations can be expanded with regard to the (small) parameter mrot (or generally mext as
defined in Eq. (3.15)). However, because errors yielded by a theory of order i8 will be on the order of
mi+1

rot , one can see that high order developments will be needed to develop accurate enough models of
our giant planets. On the contrary, for close in giant exoplanets, as will be discussed in detail in § 3.5,
the slow rotation induced by the tidal pseudo-synchronization yields typical values of mrot ranging from
a few percent to 10−5. Coupled to the yet limited accuracy of transit observations, this justifies the use
of low order developments (see § 3.5 for details).

Tidal potential

When an external object is present (called the secondary in the following), the non uniform grav-
itational potential that it creates also disturbs the equilibrium structure of our deformable body. As we
will see, this "Tidal potential" also conserve axial symmetry, but the axis of symmetry then lies along the
vector joining the center of mass of the two objects.

To calculate the potential created by this external object, we should in principle solve the equations
for its internal structure, as detailed hereafter, and then compute its resulting external field using Eq. (3.2).
As this external object is itself disturbed by the primary body, we would then have to solve iteratively
for the structure of each of these objects until some convergence is reached. To simplify the problem,
we will assume that the secondary keeps its spherical symmetry. This is justified as long as we keep our
calculations to the quadrupole order, meaning that only linear terms are considered9.

Let the secondary lie at the location r? in the coordinate system centered on our primary, with a
mass M2. Considering a spherically symmetric body, the value of the potential at the location r writes

Vtid(r?,r) =−
GM2

|r?− r|
. (3.10)

7In the literature, one can also find a slightly different normalization and definition q =
ω2

1 R3
eq

GM1
, where Req is the equatorial

radius of the external surface of the object. Note that to high orders, this leads to differences in the figures equations.
8Meaning, in the following, a theory for which all the terms proportional to mi+1

rot and smaller are neglected.
9It might seem a little counter intuitive to speak about the quadrupolar term in the tidal potential as the linear term. In the

following, the term linear always refer to the first non vanishing order of the perturbation, and thus to all the terms that are
proportional to mext.
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Because we are interested in the value of this potential in the neighborhood of the primary, we can expand
the fraction into Legendre polynomials. We thus have

Vtid(r?,r) =−
GM2

r?

∞

∑
n=0

(
r
r?

)n

Pn(cosψ), (3.11)

where ψ is the angle between r and r?. The first term is just a constant and the second gives rise to the
usual Keplerian acceleration and need not be considered. Keeping only the quadrupolar term, we are left
with the usual tidal potential

Vtid(r?,r) =−
GM2

r3
?

r2P2(cosψ). (3.12)

A small parameter corresponding to the tidal disturbance can be defined analogously to Eq. (3.9),

mtid =−
M2R̄3

1
M1r3

?

. (3.13)

Note the negative sign, which is just a statement that, along the axis of symmetry of the perturbation, the
disturbed body is elongated and not flattened.

Considering the Roche limit, rR
10, as the smallest possible orbital distance between two self gravi-

tating bodies, for a Jupiter like planet orbiting a sun like star, |mtid|. 0.05. While solid satellites happen
to be closer to the planet than the fluid Roche limit in the solar system, this figure shows us that the linear
approximation remains satisfying when computing the tidal deformation to be used in Chapter 5.

Arbitrary perturbation

To lowest order the body response is linear and the total deformation is the sum of the response to
each term of the decomposition of the perturbing potential. Thus, in order to derive the equations in a
rather general way, we only need to consider a term a perturbing potential of the form

Vext(r,θ ,φ) = cm
n rnY m

n (θ ,φ), (3.14)

where cm
n is a constant which defines the amplitude of the perturbation (Sterne 1939). The reference axis

defining θ and φ may change from one term to the other. For example, the rotation axis is best suited to
treat rotational distortion and the line connecting the center of mass of each body is better to describe the
tidal distortion.

Analogously to Eq. (3.13), a small dimensionless parameter can be defined as

mext =
cm

n R̄n+1
1

GM1
=

3
4π

cm
n R̄n−2

1
Gρ̄1

. (3.15)

One can see that this form is not completely general. For example the first term of the centrifugal
potential in Eq. (3.8) cannot be reproduced. This is due to the fact this term produce a net, isotropic,
outward centrifugal force, and thus do not affect the shape of the body, but only its mean equilibrium
radius. However, in the linear regime, there is no coupling of these different effects, which can then
be addressed separately. Restricting the perturbing potentials that we will consider to those that can be
described by Eq. (3.14) is thus justified in this limit11.

10In the perfect fluid case, the Roche limit of a secondary of mean density ρ̄2, around a primary of mean density and radius,
ρ̄1 and R̄1, respectively, is given by rR ≈ 2.423 R̄1 (ρ̄1/ρ̄2)

1/3

11While we will keep the aforementioned definition of mrot to be consistent with Zharkov and Trubitsyn (1980), we remind
the reader that for the linear rotational perturbation, only the second term of Eq. (3.8) can be treated, and using Eq. (3.15) yields
mext = mrot/3. As expected, for the tidal perturbation mext = mtid.
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3.1.5 Level surfaces

In the spherical case, equipotential surfaces are surfaces of constant radius. For small departure
from sphericity, as was first hinted by Maclaurin and later demonstrated by Lyapunov (1903), the equa-
tion describing the equipotentials, or level surfaces, can be expanded in a series of spherical harmonics
as follows

r(l,θ ,φ) = l

[
1+ ∑

n,m
lmn (l)Y m

n (θ ,φ)

]
, (3.16)

where l is a characteristic length (radius) of the level surface, or level variable, and the lmn (l), or figure
functions, characterize the shape of each level surface. Intuitively, we see that the figure functions, which
would be equal to zero in the unperturbed case, are directly related to the amplitude of the perturbation
(quantified by the small parameter mext), and should be small corrections. More rigorously, it can be
shown that, apart from n = 0, lmn ∝ mn

ext (Lyapunov 1903).
As discussed in Zharkov and Trubitsyn (1970), many variables can be chosen as our variable l.

However, there is a possibility which somewhat simplifies the figure equations. This variable is the mean
radius r̄ which is implicitly defined by

4
3

π r̄3 =
1
3

∫
π

0
dcosθ

∫ 2π

0
dφ r3(r̄,θ ,φ), (3.17)

where r(r̄,θ ,φ) is given by Eq. (3.16). Indeed, an equipotential labeled by r̄ encloses the same volume
that the sphere of radius r̄, justifying the term of mean radius. Subsequently, the mean radius of the
object is defined to be the mean radius of the surface enclosing the mass M1 and is noted R̄1. Substituting
l by this mean radius and renaming the lmn , sm

n in Eq. (3.16) implies that for any r̄,

4π =
∫

π

0
dcosθ

∫ 2π

0
dφ

[
1+ ∑

n,m
sm

n (r̄)Y m
n (θ ,φ)

]3

. (3.18)

This provides us with the first of the needed figure equations. To convince ourselves that this variable
simplifies the equations, let us consider a first order perturbation. Then, sm

n sm′
n′ ∝ m2

ext ≈ 0, and Eq. (3.18)
rewrites s0

0 = 0. Thus, to this order, the hydrostatic equilibrium equation does not involve the sm
n , as is

shown in Appendix D. For this reason, we will use the variable r̄, and note R̄1 the mean radius of the
1 bar equipotential of the object considered. For figure equations derived using either the equatorial or
polar radius, the reader is referred to Zharkov and Trubitsyn (1970).

Which radius ?

Before going further, it is important to summarize the differences between the various radii that
can be defined. Note that, in the literature, the term "radius" is used loosely, even for non-spherical
objects. Importantly enough, this can lead to discrepant normalizations throughout different studies and
published values of transit radius measurements when, for example, radii are shown in units of Jupiter
radii (RJup) without precisely defining the latter.

For any distorted object, one can define a1, a2 and a3 as the distances between the center and any
given isobaric surface along the three principal axes of inertia12. If axial symmetry holds (e.g. for a

12For a fluid object in a binary, the three directions along which the principal axes are measured are, respectively, the line
connecting the center of mass of the two components, its normal contained in the orbital plane and the direction of the orbital
angular momentum vector.
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rotating fluid body), we have a1 = a2 ≡ req, defining the equatorial radius of the isobar, and a3 ≡ rpol its
polar radius. In this case, for the 1 bar surface, req ≡ Req and rpol ≡ Rpol by definition. One must be aware
that only the external value of a1, a2 and a3 (reducing to Req and Rpol for axisymmetric bodies) can be
measured directly and are not model dependent. This is why we define RJup as the equatorial radius of
Jupiter at the 1 bar level RJup ≡ Req,J = 7.1492×107 m, Guillot 2005 and reference therein).

Equilibrium radius

Finally, we can define R1, the radius of the spherical shape that the fluid body would assume if it
was isolated and at rest in an inertial frame (the limiting case for which all the mentioned radii would
be equal). While this definition is purely theoretical, it has some importance, as R1(t) is the radius
computed in usual 1D numerical evolution calculations, and the one that we have used throughout the
previous chapters. In general R1 6= R̄1 because the centrifugal force has a net outward component that
increases the volume of the object. Therefore, if one is not only interested by the shape, but also by the
absolute radius of the object, as it will be the case hereafter, one needs to find a relation between R1 and
R̄1. Numerically, this can be handled by integrating hydrostatic equilibrium with the centrifugal force,
but requires a numerical integration for each object and each value of the perturbation mrot. However, as
we will show in § 3.4, approximate analytical formulae can be used to correct this.

3.1.6 Total potential

The goal of the theory of figures is to express the total potential on the level surfaces using only
(r̄,θ ,φ). In practice, we will replace the r’s that appear in the expression of the gravitational potential
and in the mass integrals, Eqs. (3.3) and (3.4), by their spherical harmonics decomposition, given by
Eq. (3.16). We can then decompose the total potential on spherical harmonics following

Vtot(r̄,θ ,φ) =VG +Vext

=−4
3

π Gρ̄1 r̄2
∑
n,m

V̂ m
n (r̄)Y m

n (θ ,φ). (3.19)

Because the r̄ =cst surfaces are equipotentials by construction, our set of equations on the figure functions
we be given by Eq. (3.18) and{

V̂ m
n (r̄) = 0

}
n6=0, |m|6n . (3.20)

The n = 0 term provides the equation for the hydrostatic equilibrium,

1
ρ

∂ P
∂ r̄

=−∂Vtot

∂ r̄
=

4
3

π Gρ̄1
d
dr̄

[
r̄2 V̂ 0

0 (r̄)
]
. (3.21)

Beyond this stage, the actual form of these equations directly depends on the order of the develop-
ment carried out. In order not to introduce to much technical discussions, the general first order theory
developed by Sterne (1939), and that will be used hereafter, can be found in Appendix D. To summarize,
it is found that the shape of each isodensity surface can be characterized by the quantity ηn(r̄) = r̄

sm
n (r̄)

d sm
n

d r̄ ,
which can be obtained by integration of a first order integro-differential equation, Eq. (D.21).

For those interested in a higher order, but axisymmetric theory, based on the work of Zharkov and
Trubitsyn (1980), they are referred to Appendix E.
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3.2 The figure of (extrasolar) giant planets

Using the linear theory of Sterne (1939) (see Appendix D), once the density profile has been ob-
tained by integrating the hydrostatic equilibrium equation, and the figure functions by the integration of
Eq. (D.21), we have all the information needed to completely describe the distribution of matter in our
object. But this distribution is not, in general, directly observable. We thus need to concern ourselves
with the computation of observable quantities such as the external shape, and the external gravitational
potential.

Fortunately, as we use a linear theory, the amplitude of the response of the body is directly propor-
tional to the amplitude of the perturbation. In our context, these transfer functions are called the Love
numbers, and capture all the equilibrium response of the body. In this section, I will show how these
quantities can be computed, and present numerical estimations of their values for giant planets.

3.2.1 External shape: ellipticity and level Love Numbers

1 2 3 4 5

10-4

0.001

0.01

0.1

Prot HdL

f

0.3MJup; R1=1.187RJup

0.5MJup; R1=1.187RJup

1 MJup; R1=1.161RJup

3 MJup; R1=1.171RJup

15 MJup; R1=1.115RJup

Figure 3.1: Oblateness given by Eq. (3.25) as a function of the rotation period (in days) at 1 Gyr for plan-
ets of mass: 0.3MJup (dotted), 0.5MJup (dashed), 1MJup (dash-dotted), 3MJup (long dashed), 15MJup(solid).
The oblateness decreases when the mass of the planet increases because massive objects are more com-
pressible (see § 2.2.2), have a more intense self-gravity field and are thus less subject to perturbations.
Figure from Leconte et al. (2011c).

Once, η̂n = ηn(R̄1) has been obtained by numerical integration of Eq. (D.21), we can show by
setting s̃ = r̄/R̄1 = 1 in Eq. (D.18), that the external shape of our body (i.e. the value of the figure
function at the surface) is given by

sm
n (R̄1) =−

2n+1
n+ η̂n

mext. (3.22)

As expected, the deformation is linear with respect to the amplitude of the perturbing potential (mext).
Because, the strength of the perturbation can vary with time, it is customary to refer to the proportionality
constant in Eq. (3.22), which is an intrinsic characteristic of the deformable body itself. This constant of
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the object, defined as

sm
n (R̄1)Y m

n (θ ,φ)≡−hn
Vext(R̄1,θ ,φ)

gR̄1
⇒ sm

n (R̄1) =−hn mext, (3.23)

where g is the unperturbed surface gravity acceleration, is the level Love number (hn), which is therefore
given by

hn =
2n+1
n+ η̂n

. (3.24)

For an isolated, rotating object, an observable quantity is provided by the dynamical flattening, also
called ellipticity or oblateness ( f ≡ Req−Rpol

Rpol
), which is given by

f =−3
2

s0
2 =

3
2

h2mext =
h2

2
mrot. (3.25)

Attempts have been made to constrain the oblateness and thus the rotation period of transiting
planets by using the solar system planets as test cases (Carter and Winn 2010a,b). Because of the wide
variety of exoplanets, it is important to have the ability to predict the flattening of fluid planets for a wider
range of parameters than encountered in the solar system. Fig. 3.1 shows the oblateness predicted by
my numerical code for various planet masses as a function of the rotational period Prot = 2π/ω1.
The values of the level Love number are deduced from the potential Love number (k2) as explained
in the following section.

Because the radius weakly depends on the mass of the object in the 1−30MJup mass range, at fixed
angular velocity, mrot decreases when mass increases. Massive object, which have a much stronger grav-
ity, are thus less subject to perturbations. However, the main limitation to the detection of the oblateness
of transiting objects is that close in planets are expected to quickly pseudo synchronize because of the
tidal friction. To get an idea of the timescales involved, with the dissipation rates inferred in Chapter 5, a
Jupiter like planet around a Sun like star must be on an orbit with a period longer than 20 days to maintain
a fast rotation for more than a Gyr. Below that limit, the rotation period will be mostly determined by
the orbital period and will hardly be much shorter than a day. Above, only few objects are available, and
observation will take time as an orbital revolution takes longer. In this case, the longer transit duration
may be favorable.

3.2.2 External potential: gravitational moments and potential Love numbers

Because the gravitational potential naturally expands on a basis of Legendre polynomials, as shown
in § 3.1.3, the external field is often written

VG(r > R̄1,θ ,φ) =−
GM1

r ∑
n,m

(
Req

r

)n

Cm
n Y m

n (θ ,φ), (3.26)

where θ is the colatitude and φ the longitude of the body considered13. For rotating fluid bodies, for
which the symmetry with respect to both the rotation axis and the equator plane14, only the even har-

13A more conventional notation is

VG(r > R̄1,θ ,φ) =−
GM1

r

∞

∑
n=0

n

∑
m=0

(
Req

r

)n
(Cm

n cosmφ +Sm
n sinmφ)Pm

n (cosθ),

but this would lead to possible confusion with the mass integrals Sm
n from § D.4, which have a slightly different normalization.

By construction, C0
0 = 1.

14Meaning that the other perturbation, such as tidal deformation, can be neglected.
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monics with a zero azimuthal number remain and the most common notation reads

VG(r > R̄1,θ ,φ) =−
GM1

r

[
1−∑

n
J2n

(
Req

r

)2n

P2n(cosθ)

]
. (3.27)

The gravitational moments, Cm
n or Jn, are directly related to the mass integrals defined in § D.4 by

Cm
n = D̂m

n /(M1 Rn
eq), (3.28)

or

Jn =−D̂0
n/(M1 Rn

eq), (3.29)

where D̂m
n = Dm

n (R̄1), the value of the integral at the surface. Hence, they encompass all the information
on the density profile needed to compute the external field. A major consequence of that, is that mea-
surement of the gravitational field of a planet will allow us to estimate only the mass integrals and not
directly the density field. In principle, because spherical harmonics are a complete basis, the informa-
tion contained in all the Cm

n , or equivalently the Jn in the axisymmetric case, should allow us to retrieve
exactly the density field. However, as the order of the harmonic (n) increases, the value of Cm

n usually
decreases, and only the first harmonics are measured to date15. These measurements can thus only con-
strain the internal state of giant planets, but is sufficient to rule out some compositions and equation of
states (Chabrier et al. 1992 ; Saumon and Guillot 2004 ; Guillot 2005)

In our case, we know from Eq. (D.13) that the gravitational potential at the surface of the sphere of
radius R̄1 can be expressed through the dimensionless mass integrals (Eq. (D.12)), many of them being
equal to zero, and reads

VG(R̄1,θ ,φ) =−
GM1

R̄1

[
S0

0(R̄1)+Sm
n (R̄1)Y m

n (θ ,φ)
]
. (3.30)

Because S0
0(R̄1) = 1, evaluating Eq. (D.14) at s̃ = 1 yields Sm

n (R̄1) = sm
n (R̄1)+mext = (1−hn)mext. Then,

solving the Dirichlet problem yields the potential outside the sphere

VG(r > R̄1,θ ,φ) =−
GM1

r

[
1− (hn−1)

R̄n
1

rn mextY m
n (θ ,φ)

]
, (3.31)

where the non spherical part is the potential induced by the deformation, Vind. For the same reasons that
in § 3.2.1, we can define the potential Love number, kn, as the linear response coefficient

Vind(R̄1,θ ,φ) = knVext(R̄1,θ ,φ), (3.32)

which yields16

kn = hn−1 =
n+1− η̂n

n+ η̂n
. (3.33)

Thus, for this perturbation

Cm
n =−n+1− η̂n

n+ η̂n
mext =−knmext (3.34)
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Figure 3.2: Left: Potential Love number for isolated planets as a function of the planet mass (Mp)
at 100 Myr (dotted), 1 Gyr (dashed) and 5 Gyr (solid). Right: idem for strongly irradiated objects
(Finc = 4.18× 106 W.m−2). As contraction proceeds, the density contrast between the outer layers of
the planet and the center decreases, and thus k2 increases. Note the change in the y scale between panels.
As irradiation retards the evolution, irradiated objects show the same behavior than the young isolated
object (dotted curve in the left panel).

and Cm′
n′ = 0 for n′ 6= n or m′ 6= m17.
In order to provide a numerical estimates of the response of an actual planet, I thus integrated

these equations numerically on a full set of solar metallicity planetary models. The results are
summarized in Fig. 3.2. I find that the value of the Love number tends to decrease when mass increases
mass above 1 MJup. This is due to the fact that more massive objects are (i) more compressible and thus
more centrally condensed (See § 2.2.2), (ii) denser, with a larger surface gravity. Below this mass, the
k2 of isolated objects also increases when mass decreases. This is expected as we slowly tend toward the
incompressible limit (ñ = 0 ; see § 2.2.2) for which k2 = 3/2, as shown in Appendix D.

For irradiated objects, however, the value of k2 starts to shrink at lower masses. This has two causes.
Most importantly, as already mentioned, irradiation retards the evolution. Like young isolated objects,
irradiated planets are more centrally condensed and less subject to perturbation. In addition, as discussed
in Chapter 2, the strong stellar irradiation heats up and thus slightly inflates the external layers of the
body. While there is not much mass in this zone, this is where a perturbation has the most important
effect18.

15For Uranus and Neptune, measurements made by the various flyby missions are significant up to J4, and up to J6 for Jupiter
and Saturn.

16Note, that the kn = hn−1 holds only because our body is in hydrostatic equilibrium without any elastic stress.
17 For a purely rotational distortion, c0

2 = ω2
1/3 implying mext = mrot/3, and

J2 = k2 mext =
k2

3
ω2

1 R̄3
1

GM1
=

k2

3
mrot. (3.35)

By extension, one can define J2 for a tidal perturbation by a secondary of mass which leads to

J2 = k2 mtid =−k2
M2

M1

(
R̄1

r?

)3

, (3.36)

but the reference axis is the line connecting the two center of mass and not the rotational axis. Note that, in this case, J2 is
negative, because the body is elongated along the symmetry axis, and not flattened.

18In other words, like the gravitational moments, the Love number is more sensitive to the density distribution in the outer
layers (Guillot 2005).
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Figure 3.3: Love number as a function
of the core mass for a 11 M⊕ planet, for
various effective temperature (Tint from
20 to 120 K by steps of 20 K ; more and
more spaced dashing).

As shown in Fig. 3.3, numerical simulations that I per-
formed with my numerical code CHESS also show that, at
constant mass, a small enrichment in heavy elements to-
ward the center (possibly in a core) acts to decrease the
value of k2. In general, redistributing mass from the external
to the internal layers, which are less sensitive to the disturbing
potential, decreases the response of the body to an exciting po-
tential, which translates into a lower k2. However, when the
core is large enough to reach the outer layer of the body,
k2 starts to increase again. Calculations are stopped around
Mc/M1 ≈ 0.96 for numerical stability reasons. In principle, in
the Mc = M1 limit, k2 should be larger than for the completely
gaseous object as is hinted by the large slope. This is due to the
fact that gas is much more compressible than ices or rocks. It
will however not reach 3/2 value reached for truly incompress-
ible matter19 as the ANEOS equation of state does predict a
small compressibility for high pressure "ices" (Thompson and
Lauson 1972).

While it is tempting to use these formula to compute, for
example, the response of the deformable body to all the suc-
cessive terms of the tidal disturbance and to add them linearly, one must be aware that this approach is
not fully justified due to the fact that we have neglected all the cross correlation terms throughout the
calculation. The precision that we would gain by adding the contribution of a higher harmonic would be
lost by our poor description of the response to the lower order harmonics. Such cases require a higher
order theory like the one presented in Appendix E. It is however perfectly justified to use this approach
to compute the response of a body to a sum of disturbing potential having different axes of symmetry but
being of the same importance. Such an example is presented hereafter.

3.2.3 Application to close binaries: Combined effect of tidal and rotational disturbances

Because our theory is linear, the calculation of the equilibrium shape of an object undergoing several
different perturbations at the same time reduces to the problem of finding the response to each separate
perturbing potential and adding them linearly20. However, if this seems correct to add Eqs. (3.35) and
(3.36) to obtain the total J2 of a body in a close binary, we must remember that the tidal and rotational
deformations do not have the same axis of symmetry in general.

In order to correctly add these contribution, as presented in Leconte et al. (2011c), I thus had to carry
out a change of coordinates. Taking θ as the colatitude and φ as the longitude of the body considered,
the quadrupole moment of the external gravitational potential (Eq. (3.26)) in the linear approximation, is

19Because we intuitively picture incompressible objects as being solid (like terrestrial planets), it seems a little counter
intuitive that k2 reaches its maximum in this limit. We must remember, however, that this remains true only in the hydrostatic
case, i.e. when the cohesion is ensured by gravity alone. For terrestrial planets, the elastic modulus of the bulk imposes a lower
tidal response (k2 ≈ 0.33 for the Earth). This also reminds us that our formalism does not apply to such low mass terrestrial
planets for which hydrostatic equilibrium is not fully achieved.

20This linear behavior as been verified with the analytical polytropic model of Lai et al. (1993) and Leconte et al. (2011c),
for which calculating the response to a sum of perturbations or adding the response to each perturbation yields exactly the same
result.
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given at the surface by

−GM1

R̄1

2

∑
m=0

Cm
2 Y m

2 (θ ,φ) = k2R̄2
1

(
ω2

1
3

P0
2 (cosθ)− GM2

r3
?

P0
2 (cosθ

′)

)
, (3.37)

where θ ′ is the angle between the current point and the line connecting the two center of mass (also
called the substellar point for a planet). For the coplanar case where the tides raising object orbits in the
equatorial plane of the distorted body, cosθ ′ = sinθ cosφ and thus

P0
2 (cosθ

′) =
3
4

sin2(θ)cos(2φ)+
3sin2(θ)

4
− 1

2

=
1
4

cos(2φ)P2
2 (cosθ)− 1

2
P0

2 (cosθ). (3.38)

Thus

J2 =−C0
2 = k2

[
1
3

ω2
1 R̄3

1
GM1

+
1
2

M2

M1

(
R̄1

r?

)3
]
= k2

[mrot

3
− mtid

2

]
, (3.39)

and

C2
2 =−k2

1
4

M2

M1

(
R̄1

r2

)3

= k2
mtid

4
. (3.40)

All the other moments are equal to 0. Similar decompositions can be used to infer the precise shape of
the surface from a sum of perturbing fields. This gives

r(R̄1,θ ,φ)

R̄1
= 1−h2

(
1
2

mtid +
1
3

mrot

)
Y 0

2 (θ ,φ)+
h2

4
mtidY 2

2 (θ ,φ), (3.41)

and thus, at the surface,

a1

R̄1
= 1+h2

(
mrot

6
+

7mtid

4

)
,

a2

R̄1
= 1+h2

(
mrot

6
− 5mtid

4

)
,

a3

R̄1
= 1−h2

(mrot

3
+

mtid

2

)
. (3.42)

Note that to use these relations, one must already know the mean radius of the object. In general, if
rotation is present, this requires to solve numerically the hydrostatic equilibrium of the body for each
value of the rotational perturbation (mrot), and is thus very computationally intensive. To overcome this
limitation, when a high precision is not needed, we can however rely on a completely analytical model
such as the one that I will describe in § 3.4, and use in § 3.5 (Leconte et al. 2011c).

3.3 Gravitational sounding of extrasolar planets

As already mentioned in § 2.4.4, characterizing precisely the composition of a giant planet requires
many parameters. In addition, because the large thermal expansion coefficient of the gas cannot be
neglected, the age of the object must also be known, and this degeneracy prevents a precise determination
of the composition from the position of the planet in the mass-radius diagram alone (Adams et al. 2008).
However, we can still roughly constrain the composition from the knowledge of (M1,R1, t) if
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• we reduce the parameter space describing the composition of the planet (e.g. by assuming the
object to be composed of a Solar abundance H/He gaseous mixture surrounding a homogeneous
core of a given material).

• we assume that no bloating mechanism is at work (see § 2.4.4 for details).

If one wants to go further and relax one or the other of these assumptions, new observables must be
measured. As will be detailed in Chapter 4, in the Solar System, these additional constraints are provided
by in situ measurements of the composition and atmospheric thermal profile, and the determination of
the gravitational moments (J2, J4, ...). While it was thought that such measurements would remain out
of reach for exoplanets, it has been shown that tides in the planet (whose amplitude is proportional to k2)
can lead to characteristic quasi-equilibrium orbital states in multi-planet systems (Mardling 2007), and
transit timing variations (Ragozzine and Wolf 2009), making possible the determination of k2.

In particular, as discussed by Ragozzine and Wolf (2009), values of the Love number on the order
the one found in § 3.2.2 could be measured through the precession rate of very Hot Jupiters on eccentric
orbits. Such measurements could be carried out by Kepler for WASP-12 b analogs with an eccentricity
> 3× 10−4 (most favorable case) or Tres-3 b analogs with an eccentricity > 2× 10−3 (for k2 ≈ 0.3)
and lower eccentricities for higher Love number values, and should reach a precision of a few percents.
On the other side, if the accuracy of the method proposed by Mardling (2007) is limited if the distant
companion is not transiting, With 170 multi-transiting planet system candidates announced recently by
Borucki et al. (2011), our ability to measure exoplanets tidal response should soon reach an unprece-
dented precision.
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Figure 3.4: (a) Mapping of the Love Number as a function of the effective temperature (Tint) and mass of
a water core (Mc) for a Neptune mass planet. The dashed lines are the iso-radii curves. (b) Mass fraction
of water core (Mc/M1) retrieved for a given (R1,k2). The parameter space that is not covered by the grid
is left blank.

While this is only a work in progress, in Fig. 3.4, I attempt to outline the possible yields of a
measurement of k2 on our knowledge of an exoplanet structure. In this example, I relax the assumption
on the evolution while still considering a simple 2-layer planetary model. The planet structure is then
entirely determined by three parameters, namely its mass, effective temperature and core mass fraction. I
thus used my numerical code to compute a large grid of structure models covering this parameters
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space and estimate several mechanical characteristics of the object modeled, such as the radius
and k2. Fig. 3.4.a shows an example of such maps for a Neptune mass planet.

Because iso-radii and iso-k2 contours are not parallel in most of the parameter space, the
knowledge these two quantities makes the determination of both Tint (constraining the age of the
object) and Mc/M1 possible (as shown in Fig. 3.4.b, where only the core mass is shown). For large
core masses, however, both contours follow the same direction. This is because the thermal expansion
coefficient of the core is much smaller than the one of the envelope, as can be inferred from the fact
that iso-radii curves are mostly vertical in Fig. 3.4.a. The structure only weakly depends on Tint and, as
a result, this parameter cannot be retrieved. On the other hand, in this limit, the core mass fraction can
more easily be linked to the mean density.

Then, ultimately, it will be possible to include additional constraints, such as the age of the system,
to get more information about the internal composition. Of course, let us conclude by noting that, because
of the highest number of free parameters in the final, more realistic model, and of the observational
uncertainties, such constraints on the interior composition will have to be inferred in a statistical sense.

3.4 An analytical model: ellipsoidal polytropes

As mentioned in § 3.2.3, one of the limitations of the numerical approach developed previously is
that the final mean radius cannot be computed from the spherical equilibrium radius by these relations
alone. This is particularly critical when one is interested in predicting the absolute radius that an observed
object would have if it were isolated and at rest. Indeed, this is the equilibrium radius R1 that needs to be
compared to the output of evolutionary codes when, for example, trying to quantify the radius anomaly
of observed transiting planets.

To overcome that limitation, in Leconte et al. (2011c), I modeled giant planets by self similar
ellipsoidal polytropes, as first done by Lai et al. (1994) for white dwarfs and neutron stars, and showed
that this analytical model yields rather accurate results provided that the effective polytrope index
of the object (ñ ; see § 2.2.2) be known. This theory is based on the minimization of the total energy of
the binary

Etot =U1 +U2 +W1 +W2 +T +W1�2, (3.43)

where U and W are the internal and self gravitational energy of each component, T is the total kinetic
energy (including both the orbital motion and the spin of each object), and W1�2 the gravitational inter-
action between the objects.

As this total energy can be easily expressed as a function of both the shape and the mean radius,
the minimum energy principle directly yields an approximate formula for these. In addition, because it
is easy to cut off the perturbation in these formulae, we also have access to the equilibrium radius (R1).
As shown in Lai et al. (1994), to first order in mrot and mtid

21

a1

R1
= 1+

1
4

5+ ñ
3− ñ

qñ mrot +
5
2

qñ mtid

a2

R1
= 1+

1
4

5+ ñ
3− ñ

qñ mrot−
5
4

qñ mtid

a3

R1
= 1− 1

2
5−3ñ
3− ñ

qñ mrot−
5
4

qñ mtid, (3.44)

21To first order, it is equivalent to use the mean or the equilibrium radius in defining mrot (or mtid).
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where qñ is a function of the polytropic index defined in Leconte et al. (2011c). This implies that

R̄1

R1
= 1+

2
3

ñ
3− ñ

qñ mrot (3.45)

As expected, to first order, the tides do not change the volume (and thus the mean radius R̄1 = 3
√

a1a2a3)
of our ellipsoid, and only the rotation has a net effect. As expected, the volume variation also vanishes
for an incompressible object (ñ = 0).

While these expressions necessitate a stronger level of approximation than the mere hydrostatic
equilibrium used in the complete theory of figures, I have shown in Leconte et al. (2011c) that, con-
sidering our poor knowledge of the metal enrichment of extrasolar gas giant planets (particularly
about the presence or not of a differentiated central core), such a simplified model is satisfactory
to infer the impact of the shape of close-in exoplanets on their transit light-curve, as done below.
In addition, these formulae are more accurate than the one yielded by a Roche approximation, as the
retroaction of the distortion of each body on the gravitational field is taken into account (Zahn et al.
2010).

3.5 Distorted exoplanets: Implications for observations

Because the tidal bulge raised by a star on its low mass companion is aligned with respect to the
axis joining the two objects, when planet transits across the stellar disc, we expect to see the smaller
cross section of its actual ellipsoidal shape so that the depth of the transit is decreased with respect to the
expected signal for a spherical object. This implies that the radius inferred from the light curve analysis,
derived under the assumption of spherical planet and star, should underestimate the real equilibrium
radius of the object. This bias needs to be corrected for a proper comparison with theoretical 1D numer-
ical simulations of the structure and evolution of extrasolar planets and enhances the actual discrepancy
between theory and observation for the so called "bloated" planets. This is why, in the following sec-
tion, I will quantify the impact of the non sphericity of the planet and star on the depth of the light
curve, and the resulting bias on the radius determination.

Figure 3.5: Schematic representation of the impact of the non-spherical shape of the planet on its cross
section. For the same equilibrium radius, the close in planet is seen smaller during transit.
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3.5.1 Transit depth variation

When limb darkening is ignored, the depth of a transit is given by the ratio of the planetary and
stellar projected areas. When both bodies are spherical, this simply reduces to δL?/L? ∝ (Rp/R?)

2.
For close-in planet-star systems, however, both tidal and rotational deformations yield a departure from
sphericity, so that what is measured is no longer the mean radius but an effective "transit radius" defined
such that the cross section of the planet is equal to πR2

tr,p and similarly for the star. Thus the transit depth
reads

δL?

L?
=

(
R tr,p

R tr,?

)2

. (3.46)

In general, the projected area of an ellipsoid can be computed for any orientation and then
at each point of the orbit, as demonstrated in Appendix F. Figure 3.6 shows the projected area of the
planet (πR2

tr,p) as a function of its anomaly (φ ) normalized to the spherical case (πR2
p). When the planet

is seen from its "side" (φ/π = 0.5), the observer sees a bigger planet because the rotation of the latter
on itself tends to increase its volume. The possibility to measure these effects from the light curve is
discussed in Ragozzine and Wolf (2009) and Carter and Winn (2010a).
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Figure 3.6: Normalized projected area of the planet as a function of its anomaly (φ ) for inclinations
of the orbit going from i = 90◦ to i = 0◦ by steps of 10◦ for a WASP-12 b analog on a circular orbit.
Top: For the full orbit. Bottom: zoom on the (primary or secondary) transit (i changes by steps of 5◦).
The ordinates of the dotted, solid and dashed horizontal lines are respectively a1a2/R2

p (face-on orbit),
a1a3/R2

p and a2a3/R2
p. Revised figure from Leconte et al. (2011c).

For the simple case of an edge-on orbit at mid transit (φ = 0), since the observer, the planet and
the star are aligned with the long axis of the tidally deformed ellipsoid22,23, R tr,p =

√a2,pa3,p and R tr,? =√a2,?a3,? (see § 3.1.5 for the definition of the ai). Therefore,

δL?

L?
=

a2,pa3,p

a2,?a3,?
≡
(

Rp

R?

)2

· (1+TDV), (3.47)

where Rp and R? are the respective radii the planet and the star would have in spherical equilibrium (the
R1 defined above) and TDV is by definition the transit depth variation induced by the ellipsoidal shape

22This is still verified to first order in φ and i− π

2 as only second order terms appear.
23In the following, the variables have the same meaning as earlier with p indices when referring to the planet and ? to the star
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of the components relative to the transit depth in the spherical case. This is given by

TDV =
a2,pa3,p

R2
p

R2
?

a2,?a3,?
−1, (3.48)

where the ai/R1 are given by Eq. (3.44) which depend (through m rot,p and m rot,?) on r?, ωp and ω?. How-
ever, most of the planet hosting stars have a low rotation rate compared to the orbital mean motion. This
entails that the rotational deformation is negligible compared to the tidal one and can generally be ne-
glected. As discussed in Chapter 5, hot Jupiters should be pseudo synchronized early in their evolution24.
Therefore, we will assume such an approximation in our calculations in order not to introduce any other
free parameter. Under such an approximation,

TDV =− 1
3

qp (1+ p)m rot,p

[
5
4

(
7+ p
1+ p

)
−
(

4ñp

3− ñp

)]
+

5
2

q? p
R3
?

r3
?

, (3.49)

where the parameter p now denotes the mass ratio Mp/M?, and qp and q? are equal to qn for ñ = ñp and
ñ = ñ?, respectively. The first line in the above equation represents the contribution of the planet, which
is always negative (for reasonable values of ñp). Our line of sight follows the long axis of the tidal bulge
and we see the minimal cross section of the ellipsoid.

The contribution of the star is positive and, in most cases, negligible compared the planet’s contri-
bution because

R3
?

R3
p

p2

1+ p
� 1,

for a typical system (10−3 for a Jupiter-Sun like system). As a consequence, the results presented here-
after do not depend on q? as long as realistic values of ñ? ∈ [1.5, 3] are taken.

Figure 3.7 portrays the relative transit depth variation computed with Eq. (3.49) for several
planet masses as a function of the orbital distance, for a Sun-like parent star. While I computed
all the curves for an age of 1 Gyr, they do not change much for older ages because both the radii
and the polytropic indices remain nearly unchanged after 1 Gyr (see Fig. 2.7). Given the accuracy
of the radius determination achieved by the latest observations (1 to 10%), the transit depth variation
is significant for Saturn mass objects (Mp ≈MJup/3) closer than 0.04 AU and Jupiter mass objects
closer than 0.02-0.03 AU. Because the equations are derived to first order, the value of TDV derived
from the analytical model should be taken with caution when TDV & 0.1− 0.3 (and are clearly not
meaningful for TDV& 1). In this regime, corresponding to the upper left region of Fig. 3.7, one should
use the theory of planetary figures to higher order, but then numerical calculations become necessary,
loosing the advantage of our simple analytical expressions.

Figure 3.7 also displays the transit depth variation computed for the most distorted known transiting
exoplanets, with the observationally measured parameters. The error bars reflect the uncertainties in the
model and in the measured data.

3.5.2 Radius determination bias

Unfortunately, transit measurements only give access to the projected opaque cross section of the
planet (≡ πR2

tr,p) defining a "transit radius" which depends on the shape of the planet, its orientation

24If the rotation of the object is synchronous with the orbit, then ω2
1 = G(M1 +M2)/r3

? , and mrot = (1+M1/M2)mtid.
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Figure 3.7: Relative transit depth variation TDV computed with Eq. (3.49) as a function of the semi-
major axis at 1 Gyr for planets of mass: 0.3MJup (dotted), 0.5MJup (dashed), 1MJup (dash-dotted), 3MJup
(long dashed), 15MJup(solid). The shaded area shows the zone where higher order terms become non-
negligible. The decrease of the transit depth due to tidal interactions is smaller when the mass of the
planet increases because massive objects are denser and more compressible (see §4) and thus less subject
to non-spherical deformations. Figure from Leconte et al. (2011c).

during the observation and the wavelength used. To convert this transit radius inferred from the obser-
vations (R tr,p) to the spherical radius (Rp) - that can be compared to 1D numerical models - one must
eliminate δL?/L? from Eqs. (3.46) and (3.47). As shown above, the stellar impact on TDV is negligible
compared to the planet’s contribution (R tr,? ≈ R?). Then, using the first term in Eq. (3.49) and expanding
the expression giving the definition of R tr,p, one gets

Rp ≈ R tr,p ·
(

1− TDV
2

)
. (3.50)

For the most distorted known planets, the relative variation between the transit radius and the equilibrium
radius

∆R/R≡ (Rp−R tr,p)/R tr,p ≈−TDV/2

is positive and amounts to 3.00% for WASP-12 b, 2.72% for WASP-19 b, 1.21% for WASP-4 b, 1.20%
for CoRot-1 b, 0.89% and OGLE-TR-56 b 25.

To conclude, through this analysis, I showed that the departure from sphericity of the transit-
ing planets produces a distortion of their transit light curves from which many of their parameters

25Of course, since TDV ∝ (Rp/r?)3, Eq. (3.50) is an implicit equation on Rp. To obtain Rp to the sought accuracy, a pertur-
bative development in powers of TDVtr = TDV(Rp = R tr,p) can be obtained using recursively Eq. (3.50)

Rp

R tr,p
≈ 1−

TDV(Rp)

2
≈ 1− TDVtr

2
+

3TDVtr
2

4
− 3TDVtr

3

2
+O(TDVtr

4). (3.51)

However, terms of order TDVtr
2 are of the same order than the second order corrections to the shape that we have neglected

throughout.
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are measured. In particular, the radius inferred from the light curve analysis always underes-
timates the real equilibrium radius, possibly by up to 5% for the closest planets detected so far
(. 0.05 AU), enhancing the aforementioned radius anomaly.

3.6 Conclusion

Because of the large variety of exoplanetary systems presently discovered, with many more ex-
pected in the near future, and the increasing accuracy of the observations, it is important to take into
account the changes in the dynamical and observable properties of exoplanets arising from their non-
spherical deformation, due to rotational and/or tidal forces. Indeed, such deformations not only yield a
decrease of the transit depth, but also perturbs the orbital evolution of the system, possibly leading to
a measurement of the tidal response. In order to correct for, or take advantage of these properties, it
is primordial to be able to compute either numerically (§ 3.2) or analytically (§ 3.4 ; see also Leconte
et al. 2011c) the shape and potential of planets and stars in any configuration from the knowledge of only
their mass, orbital separation and one single parameter describing their internal structure (either the Love
number k2, or the effective polytropic index, ñ, that was discussed in Chapter 2). The main problem being
to have an accurate value for one or the other of these quantities.

To that purpose, I performed numerical simulations to calculate the Love number of substellar
object for a wide range of masses (from a saturn mass to the Hydrogen burning minimum mass),
ages and irradiations. As for the determination of the effective polytropic index in Chapter 2, the
inferred values of k2 presented in § 3.2 give us insight on the way the mechanical structure of gaseous
substellar objects changes with age and mass. Using my numerical code CHESS, I also started to
investigate the impact of heavy element enrichment on the tidal response of giant planets, and
demonstrated on a test case how one could take advantage of these models to infer a core mass
from k2 measurements (§ 3.3).

In § 3.4, I showed however that, inferring the absolute mean radius of a given object from
its equilibrium radius cannot be done with the knowledge of k2 alone, but that this limitation can
be overcome with an analytical model based on homologously distorted polytropes (Leconte et al.
2011c). I find that this analytical model can easily be used to determine the impact of the absolute shape
of the planet on its phase curve and on the shape of the transit light curve itself (Carter and Winn 2010a).
It can also be used to model ellipsoidal variations of the stellar flux that are now detected in the CoRoT
and Kepler light curves (Welsh et al. 2010).

Finally, in § 3.5, using this analytical model, I also showed that departure from sphericity of
the transiting planets produces a bias in the determination of the radius. For the closest planets
detected so far (. 0.05 AU), the effect on the transit depth is of the order of 1 to 10% (see Fig. 3.7),
by no means a negligible effect. The equilibrium radius of these strongly distorted objects can thus
be larger than the measured radius, inferred from the area of the (smaller) cross section presented to
the observer by the planet during the transit. Combining the analytical formulae presented in Leconte
et al. (2011c), and the characteristic polytropic index values derived in § 2.2.2 for various gaseous planet
masses and ages, allows to easily take such a correction into account. Interestingly, since this equilibrium
radius is the one computed with the 1D structure models available in the literature, the bias reported here
still enhances the magnitude of the puzzling radius anomaly (see Fig. 2.10) exhibited by the so-called
bloated planets.
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While conventional interior models for Jupiter and Saturn are based on the simplistic as-
sumption of a solid core surrounded by a homogeneous gaseous envelope, in this chapter, I derive
new models with an inhomogeneous distribution of heavy elements, i.e. a gradient of composition,
within these planets. Such a compositional stratification hampers large scale convection which
turns into double-diffusive convection, yielding an inner thermal profile which departs from the
traditionally assumed adiabatic interior, affecting these planet heat content and cooling history.

To address this problem, after a brief review of the onset of the double diffusive instability
in § 4.1, I develop an analytical formalism of layered double-diffusive convection based on the
mixing length theory, and derive analytical asymptotic solutions for the convective efficiency and
the super-adiabaticity in the medium (§ 4.2). By simple considerations, I also derive analytical
constraints on the range of possible values for the size of the convective/diffusive cells (§ 4.3).

Then, in § 4.5, I apply this formalism to Solar System giant planet interiors. These models
satisfy all observational constraints and yield a metal enrichment for our gaseous giants up to 30
to 60% larger than previously thought. As the heavy elements tend to be redistributed within the
gaseous envelope, the models predict smaller than usual central cores inside Saturn and Jupiter,
with possibly no core for this latter.

These models open a new window and raise new challenges on our understanding of the
internal structure of giant (solar and extrasolar) planets, in particular the determination of their
heavy material content, a key diagnostic for planet formation theories.

The results of this chapter have been accepted for publication in A new vision on giant planet
interiors: The role of double diffusive convection (Leconte and Chabrier 2012).
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Traditionally, GIANT PLANET MODELS have always been
based on two major specific assumptions con-
cerning their inner profile, essentially for rea-

sons of simplicity in the planet’s modeling (see e.g. Stevenson 1985). It is conventional to assume (i)
that the inner structure of our giants consists of a few - generally 2 to 3 - superposed, well separated, ho-
mogeneous regions, namely, going from the planet’s center to the surface, a central solid rocky/icy core,
and a surrounding largely dominantly H/He gaseous envelope, often split into an inner metallic region
and an outer atomic/molecular one ; the more dense components are always supposed to have quickly
settled into the central core under the action of gravity ; (ii) that planetary interiors are adiabatic, based
on the fact that the giant planet heat flow must be transported by convection (Hubbard 1968). All the
present determinations of the internal - chemical, mechanical and thermal - structures of the Solar sys-
tem planets, including their heavy material content, are derived assuming such homogeneously stratified,
adiabatic interiors (Saumon and Guillot 2004 ; Fortney and Nettelmann 2010).

Giant planet interiors, however, might depart from this conventional, simplified description, be-
cause of complex processes for which we lack an accurate description but which may very well be at
play in real situations (Stevenson 1985). In this paper, we derive interior models for Jupiter and Sat-
urn which relax the aforementioned preconceptions. Instead of the homogeneous layer assumption, we
explore the possibility of a mixed, inhomogeneous solid-gas interior composition, leading to a heavy
material gradient throughout the planet. This in turn tends to suppress large scale convection which, due
to the double diffusive instability (see § 4.1), can turn into either turbulent enhanced diffusion or layered
convection. As both these heat transport mechanisms are fairly inefficient compared to usual convection,
this compositional gradient thus leads to significant departure from global adiabaticity in the interior. As
shown below, these models do fulfill the planet observational constraints while leading to (i) a signifi-
cantly larger metal content and (ii) significantly larger internal temperatures than the one inferred from
homogeneously stratified adiabatic models.

This opens a new vision on planet structure, evolution and formation efficiency. Such inhomoge-
neous interior profiles for Solar System giant planets had briefly been suggested several decades ago by
Stevenson (Stevenson 1985) but no attempt has ever been made to derive consistent models and to verify
whether such models would be consistent with the planet various observational constraints. This scenario
has been revived recently in the context of extrasolar planets and has been shown to provide a possible
or at least complementary explanation for the anomalously large observed radii of many of these bodies
(Chabrier and Baraffe 2007). Indeed, as mentioned above, not only an inhomogeneously stratified inte-
rior yields a different interior structure and global metal content, but it decreases heat transport efficiency
throughout the planet’s interior and thus affects its cooling, thus its mass-radius relationship at a given
age, a crucial diagnostic to understand (transiting) extrasolar planet structure and evolution. Since, as
mentioned earlier, only loose constraints on the object’s internal composition are accessible for gaseous
exoplanets, it is crucial to verify whether such unconventional internal structures are a viable possibil-
ity for our own giants. Furthermore, determining the maximum possible amount of heavy elements in
Jupiter and Saturn and their distribution within the planet are important diagnostics to understand how
our own Solar System giants formed.
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4.1 The double diffusive instability

In order to introduce the various relevant quantities in a simple way, I first derive the criterion for
the presence of overturning convection and the onset of the double diffusive instability.

4.1.1 Adiabatic criterion

It is well known that, when thermal diffusivity and viscosity can be neglected, an homogeneous
medium is stable against convective motion if the Schwarzschild stability criterion (or Schwarzschild
Härm criterion) is fulfilled, i.e. if

∇ad > ∇T , (4.1)

where ∇T ≡ d lnT
d lnP is the thermal gradient, and ∇ad ≡ ∂ lnT

∂ lnP

∣∣∣
ad

is called the adiabatic gradient. How-
ever, concerning the criterion to use in presence of a compositional gradient, there is still a debate. If
Schwarzschild and Härm (1958) proposed to keep on with the Schwarzschild stability criterion, Sakashita
and Hayashi (1959), for example, suggested a new criterion, initially proposed by Ledoux (1947), stating
that the (destabilizing) super adiabaticity in the medium must be large enough to counteract the stabiliz-
ing effect of a mean molecular weight gradient. In mathematical terms, the Ledoux criterion reads

∇ad > ∇T −
αµ

αT
∇µ or ∇ad−

χµ

χT
∇µ > ∇T , (4.2)

where αT ≡ − ∂ lnρ

∂ lnT

∣∣∣
P,µ

, αµ ≡ ∂ lnρ

∂ ln µ

∣∣∣
P,T

, χµ ≡ ∂ lnP
∂ ln µ

∣∣∣
T,ρ

and χT ≡ ∂ lnP
∂ lnT

∣∣∣
ρ,µ

1. In general, areas which

are both Ledoux stable and Schwarzschild unstable are called semi-convective zones. If no convective
mode can seem to grow in these zones in our basic picture, it is not so when finite thermal and solute
diffusivities are taken into account. Our modeling is too simple. We thus have to rely on a more complex
stability analysis.

4.1.2 General linear stability analysis of the double diffusive instability

To have a better description of the onset of the double diffusive instability, we will carry a linear
analysis similar to the one described by Stern (1960) ; Stevenson (1979a). For brevity, as we will only
consider a mono dimensional approach of convection, we will not concern ourselves with rotation or
magnetic field, even if these two ingredients have a significant influence on convection (Busse 1976). We
consider an infinite medium in a rotating frame in which the unperturbed state is at rest. The mean field is
characterized by a uniform gravity field g. The velocity, pressure, temperature and density perturbations
are denoted by δv, δ p, δT and δρ . In addition, we can have a chemical composition perturbation, δ µ .
In practice, δ µ can be the mean molecular weight change due to a chemical concentration change (and
not due to ionization which is already taken into account into the equation of state) or the mass fraction
of the constituent under consideration, but any other dimensionless parameter describing the chemical

1For a perfect gas, all these thermodynamic derivatives are equal to 1 (except χµ =−1). In the following, this is the values
that we will use in our numerical examples when needed.
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composition can be used. The linearized Boussinesq equations are then

∇ ·δv = 0, (4.3)

∂tδv =− 1
ρ

∇δ p+
δρ

ρ
g+ν∇

2
δv, (4.4)

∂tδT = κT ∇
2
δT +δv · ẑ(∇T −∇ad)

T
HP

, (4.5)

∂tδ µ = D∇
2
δ µ +δv · ẑ∇µ

µ

HP
. (4.6)

D, κT and ν are the solute, thermal and cinematic viscosities (or diffusivities, in m2s−1). ẑ is the vertical
unit vector directed upward (such as g =−g ẑ), and HP ≡− d z

d lnP is the pressure scale height. A closure
equation is provided by the equation of state which yields for the density perturbation

δρ

ρ
=

(
αµ

δ µ

µ
−αT

δT
T

)
. (4.7)

Let us search for plane waves solutions of the form δv ∝ eik·r+σt , and introduce it in the previous equa-
tions2. After some vectorial algebra, this yields

k ·δv = 0, (4.8)

(σ +νk2)δv =−i
k
ρ

δ p+
δρ

ρ
g, (4.9)

δT =
(∇T −∇ad)

σ +κT k2
T

HP
δv · ẑ, (4.10)

δ µ =
∇µ

σ +Dk2
µ

HP
δv · ẑ. (4.11)

Eliminating all the variables but the velocity perturbation and taking the cross product of Eq. (4.9) with
k we have(

σ +νk2)k×δv =
δρ

ρ
(k×g). (4.12)

Defining the following frequencies3 N2
T ≡

g
HP

αT (∇T −∇ad) and N2
µ ≡

g
HP

αµ ∇µ , we get

(
σ +νk2)k×δv =

(
N2

T

σ +κT k2 −
N2

µ

σ +Dk2

)
(δv · ẑ)(k× ẑ). (4.13)

This rewrites A ·δv = 0 with

A= (σ +νk2)


0 −kz ky

1−

(
N2

T
σ+κT k2−

N2
µ

σ+Dk2

)
σ+νk2


kz 0 −kx

1−

(
N2

T
σ+κT k2−

N2
µ

σ+Dk2

)
σ+νk2


−ky kx 0


. (4.14)

2Note that, with this definition, if σ is real and positive (negative), the perturbation grows (is damped) exponentially. If σ

is complex, the perturbation oscillates, but its amplitude can still grow if the real part, Re(σ ) is positive. In the following, the
term growth rate will refer to Re(σ ).

3But remembering that this refers to a true frequency only if N2
T < 0. In this case, NT = iNBV where NBV is the well known

Brunt-Väisälä frequency.



88 A new perspective on heat transport in the interior

Finally Det A= 0 yields the dispersion relation

σ +νk2 =
k2
⊥

k2

(
N2

T

σ +κT k2 −
N2

µ

σ +Dk2

)
, (4.15)

where k⊥ is the horizontal part of the wave vector (k⊥ = kx + ky). It can be shown that, in this case, the
most unstable mode always occurs when the vertical wavenumber is equal to zero, i.e. when k⊥ = k
(Walin 1964). This corresponds to an elevator mode, which is not surprising as all the forcing follows
the vertical direction. Then restricting ourselves to this case, we get

(σ +νk2)(σ +κT k2)(σ +Dk2)−N2
T (σ +Dk2)+N2

µ (σ +κT k2) = 0. (4.16)

There are several possibilities to non-dimensionalize this equation. Anticipating the length scale of the
fastest growing modes, we will use the thermal diffusion scale

d =
√

κT/NT
, (4.17)

and the diffusion time, d2/κT = N−1
T . Then using k = k̃/d = k̃

√
NT/κT and σ = NT σ̃ , we get

(σ̃ + k̃2)(σ̃ +Pr k̃2)(σ̃ + τd k̃2)− (σ̃ + τd k̃2)+R−1
ρ (σ̃ + k̃2) = 0, (4.18)

where

Pr ≡ ν/κT
, (4.19)

is the Prandlt number,

τd ≡ D/κT
, (4.20)

is the solute to thermal diffusivity ratio (or inverse Lewis number), and

Rρ ≡
(

NT/Nµ

)2
=

αT

αµ

∇T −∇ad

∇µ

, (4.21)

is the so-called density ratio (Rosenblum et al. 2011).
In the diffusive case4, i.e. for a fluid exhibiting a positive molecular weight gradient (∇µ > 0), and

at fixed Pr and τd, there are three different regimes that are summarized in Fig. 4.1

• R−1
ρ < 1 ; the cubic Eq. (4.18) have three real roots, two being positive for small enough values

of the wavenumber. The instability can grow and overturning convection sets in, as was already
predicted by the Ledoux criterion. Because the maximum growth rate is obtained for a vanishing
wavenumber, this analysis cannot provide us with the typical lengthscale of the fastest growing
mode.

4In the case both the mean molecular weight (due e.g. to a higher concentration of salt in salty water) and the temperature
increase with height (∇µ and (∇T −∇ad) < 0), the compositional gradient is destabilizing while the temperature gradient is
stabilizing. This case is referred to as the fingering case. In that case, convective instability develops when Rρ < 1, which is
equivalent to the Ledoux instability criterion. But even if 1 < Rρ < 1/τd, the double-diffusive instability develops and leads to
the formation of salt fingers, and sometimes of thermo-compositional staircases, as observed in some parts of the oceans and in
laboratory experiments (Turner 1967).
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Figure 4.1: Growth rate of the modes described by Eq. (4.18) with respect to the wavenumber for Pr =
τd = 0.3 in the three different regimes (see text). Solid curves stand for real roots (unstable modes if
positive) and dashed curves for their real part when the roots are complex (overstable modes).

• 1 6 R−1
ρ 6

Pr+1
Pr+τd

; the real root of Eq. (4.18) is negative and the instability cannot grow as above.
However, one of the complex roots exhibits a positive growth rate, so that an oscillating overstable
mode can grow. This corresponds to the situation where a hotter rising eddy looses its thermal
energy efficiently enough to be colder when it is brought back to its position by its increased mean
molecular weight. Thus, during its downward motion, the eddy will sink deeper, and increase the
amplitude of the oscillations.

• R−1
ρ > Pr+1

Pr+τd
; the growth rates of all the roots are negative. The system is stable against convection.
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Figure 4.2: Dimensionless wavenum-
ber (k̃ ; dashed) and growth rate
(Re(σ̃) ; solid) of the fastest growing
overstable mode with respect to the in-
verse density ratio (R−1

ρ ). The length
scale of the fastest growing mode is
about 12 d.

In the double diffusive mode, we can even go further. By
maximizing the real part of σ̃ over all wavenumbers, we can
find the most unstable mode in the system. Fig. 4.2 shows its
wavenumber and growth rate for Pr = τd = 0.3. By and large,
the most rapidly growing mode has a wavelength of the order
of 12d regardless of R−1

ρ for the parameters selected. As ad-
vertised, the length scale of the fastest growing mode is on the
same order of magnitude than the diffusive length scale.

Thus, this simple linear analysis shows that the Ledoux
criterion is not sufficient to decide of the stability of an in-
homogeneously stratified medium. However, we cannot pre-
dict the finite amplitude that the perturbation will reach when
the instability is fully developed, and the exact nature of double
diffusive convection if it occurs - homogeneous oscillatory con-
vection or layered convection (i.e. uniformly mixed convective
layers separated by thin diffusive interfaces characterized by a
steep jump in the mean molecular weight) - remains uncertain.

Analytical arguments (Radko 2003) and recent 3D hy-
drodynamical simulations (Rosenblum et al. 2011 ; Mirouh
et al. 2011), however, seem to suggest the picture presented
in Fig. 4.3. When the mean molecular weight gradient (∝ R−1

ρ )
decreases in a stable medium, homogeneous oscillatory con-
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vection, also called turbulent diffusion, first appears for

R−1
min 6 R−1

ρ 6
Pr+1
Pr+ τd

(oscillatory convection), (4.22)

while well defined thermo/compositional layers start to develop when

16 R−1
ρ 6 R−1

min (layered convection). (4.23)

R−1
min corresponds to the point where the solute to heat buoyancy flux ratio (≡ γ−1) stops decreasing when

R−1
ρ increases (see Radko 2003 for details). Its exact value, however, depends on the characteristics of

the medium in a non trivial way and is difficult to estimate (Rosenblum et al. 2011 ; Mirouh et al. 2011).
For smaller ∇µ gradients, the medium is unstable according to the Ledoux criterion, and the thermal
forcing is strong enough to force large scale overturning convection.

Various arguments seem to support, or at least not to exclude, the existence of layered convection
under planetary conditions (Chabrier and Baraffe 2007). Conducting 3D hydrodynamics calculations
over a wide domain of parameter space (Prandlt number and atomic to thermal diffusivity ratio) in-
cluding the regime relevant for planetary interiors, Mirouh et al. (2011) always find a domain where
γ−1 decreases with R−1

ρ , a necessary and sufficient condition for the layering instability, thus layer for-
mation to occur. A central question is then the size of the layers ; this will be examined in § 4.3. In
any event, both homogeneous double-diffusive convection or layered convection - generically denomi-
nated as "semi-convection" in the following - are found to yield thermal and compositional fluxes that
are significantly smaller than that expected from standard convection. Indeed, the presence of diffusive
interfaces strongly decreases the efficiency of heat transport compared with large-scale, adiabatic con-
vection, leading in planet interiors to a significant departure from the usual adiabatic profile, as quantified
below.
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Figure 4.3: Stability diagram for a medium presenting a destabilizing temperature gradient and a sta-
bilizing solute gradient, as a function of increasing R−1

ρ (decreasing Rρ ). The usual instability Ledoux
criterion corresponds to R−1

ρ 6 1.

4.2 A mixing length theory for layered convection

In order to investigate the impact of such strongly hampered convection on giant planet inter-
nal structure, I developed a simple, but completely analytical sub-grid model of layered convection.

As illustrated on Fig. 4.4 and found in simulations (Rosenblum et al. 2011), we consider that a semi
convective zone consists of a large number, Nl, of well mixed convectively unstable layers of size l,
separated by thin diffusive interfaces of thermal thickness δT , within which the large stabilizing compo-
sitional gradient completely inhibits convective motions.
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Figure 4.4: Schematic representation of the interiors of Jupiter and Saturn, according to the present
study, and of layered convection, with the resulting compositional and thermal radial profiles. The abun-
dance of metals is constant within the well mixed convective cells of size l, and undergoes a steep
variation within the diffusive interfaces of thermal size δT (grey regions). Thanks to this steep gradient,
these interfaces are stable against convection and energy and matter are transported therein by diffusive
processes. Because the size of these diffusive layers is very small compared with the size of the planet,
the mean thermal and compositional gradients (〈∇T 〉 and 〈∇µ〉) can be used in good approximation to
infer the global planet structure.

In § 4.2.1 and § 4.2.2, I will first derive the equations describing separately the energy transport
in the diffusive and in the convective layers. Then, in § 4.2.3, I will show how these formulas can be
used to derive the mean properties of a stack of convective/diffusive cells. Finally, considering some
physical limits that must apply to semi-convection inside giant planets, I will derive analytical limits on
the possible range of sizes for the convective/diffusive cells (§ 4.3).

4.2.1 Convective layers

Within each convective layer, the fluid is expected to follow the dynamics found in turbulent
Rayleigh-Bénard convection within a cell of typical height equal to the size of the layer, l. By anal-
ogy with the mixing length formalism (see details in Appendix G), we define a dimensionless mixing
length parameter by dividing l by the pressure scale height, α ≡ l/HP.

In a laboratory or a numerical experiment, the efficiency of the convection is characterized by the
thermal Nusselt number,

NuT ≡
Fint−Fad

d

Fd−Fad
d

, (4.24)

where by definition the total intrinsic flux (Fint), the flux transported by diffusive processes (Fd), and the
diffusive flux that would be present in a completely adiabatic zone (Fad

d ) are given by (Cox and Giuli
1968 ; Hansen and Kawaler 1994) Fint

Fd
Fad

d

≡ κT
ρ cPT

HP

 ∇d
∇T

∇ad

 , (4.25)
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where cP is the heat capacity at constant pressure. It is found that, for large Rayleigh numbers, the
Nusselt number follows a law of the type

NuT =CL Raa
?, (4.26)

where Ra? is a modified Rayleigh number5, which is the ratio of the strength of the thermal forcing to
the one of the radiative losses

Ra? ≡
αT gH3

P

κ2
T

α
4 (∇T −∇ad) =

(
N2

T l4
/κ2

T

)
. (4.27)

Here, g is the local gravity acceleration, and NT the Brunt-Väisälä frequency.
As convection at very high Rayleigh numbers is difficult to study either experimentally or compu-

tationally, it is difficult to give precise values for a and CL. For the bounded Rayleigh-Bénard problem,
theoretical models suggest that the exponent of the convective flux law, a, could be equal to 1/3 (Garaud
et al. 2010)6. However, experiments done by Krishnamurti (1995) tend to show that this exponent could
be smaller, and as low as a = 0.2. On the other hand, for homogeneous Rayleigh-Bénard convection
(without boundaries), Garaud et al. (2010) showed that the regime predicted by the mixing length the-
ory, i.e. NuT = Ra1/2

? (CL = 1, a = 1/2 ; see Appendix G), is recovered. In the following, we will thus
consider 0.26 a6 0.5 and CL = 1.

Eq. (4.26) is sufficient to calculate the flux transported by convection once the super adiabaticity
is known. To compute this latter, however, we must first define a quantity which can be computed a
priori from the local thermodynamical properties of the medium and the total internal energy flux to be
transported. Following Hansen and Kawaler (1994), this convective forcing can be defined by

Φ≡ NuT ×Ra?. (4.28)

Introducing εd ≡ ∇d−∇ad, we rewrite Eq. (4.28) as Φ≡Φ0 α4 εd where

Φ0 ≡
(

αT gH3
P

κ2
T

)
. (4.29)

It is clear from Eq. (4.28) that Φ0 is a local constant of the medium, which characterizes its ability
to transport energy by convection, independently of the mixing length or of the flux to be transported
(∝ εd).

Then, from Eqs. (4.26) and (4.28), one sees that in a region where convection remains efficient
enough,

Φ = NuT ×Ra? =CL Ra1+a
? ⇒ Ra? =

(
Φ

CL

)1/(1+a)

, (4.30)

which yields the super adiabaticity,

εT ≡ ∇T −∇ad =

(
εd

NuT

)
=

(
εd

CL Φa
0 α4a

)1/(1+a)

. (4.31)

The range of super adiabaticity in the convective layers implied by this equation for the various possible
exponents a is shown in Fig. 4.5 (pale red area). As seen, the uncertainty on a leads to a large dispersion

5Indeed, in the astrophysical context, it is convenient to use Ra? = Pr×Ra, where Ra is the usual Rayleigh number.
6Although the simulations presented by Rosenblum et al. (2011) seem to support exponent values smaller than 1/3, suggest-

ing that interfaces act as impermeable boundaries, it should be noticed that the height of the layers present in their simulations
is small compared to a pressure scale height. Their conclusion may thus not be valid for larger layers.
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on this super adiabaticity. In this high convective efficiency regime, we can further compute the mean
convective flux which, by definition, is given by

Fconv = κT
ρ cPT

HP
(∇T −∇ad)×NuT . (4.32)

As mentioned above, this scaling law only applies to the vigorous convection regime, i.e Φ or
Ra? � 1. Thus, in terms of the layer height, convection remains efficient as long as α � αcrit, where
αcrit is defined such that Ra?(αcrit) = 1, and, from Eq. (4.27), the critical layer size is

lcrit =
(

κ2
T/N2

T

)1/4
= d Pr−1/4, (4.33)

where d is the lengthscale of the fastest growing mode of the linear instability, d ≡ (νκT/N2
T )

1/4 (e.g.
Baines and Gill 1969). Analytical and numerical arguments show that the size of the fastest growing
layers is equal to 10-100d & lcrit (Radko 2003 ; Rosenblum et al. 2011). The efficient convection regime
is thus appropriate in the planetary domain, where Pr ∼ 10−2−10−1 (Chabrier and Baraffe 2007).

For conditions prevailing in the interior of the actual Jupiter (Saturn), the mean thermal diffusivity
is κT ∼ 5× 10−5 m2.s−1 (Potekhin 1999), Φ0 is equal to Φ0 ≈ 3× 1033 (9×1032) and εd ≈ 10 (10 ; see
also Fig. 4.7), so that αcrit = 2×10−9 (3×10−9). In the following, all the order of magnitude estimates
done throughout the text will use these values.

4.2.2 Interfaces

In the interfaces of thermal size δT , overturning convection is inhibited by the strong jump in
molecular weight. However, these regions do not need to be in the fully diffusive regime (R−1

ρ >
(Pr + 1)/(Pr + τd)), but can also be in the oscillatory convection regime characterized by Eq. (4.22).
Indeed, as shown by Radko (2005) the condition R−1

I > R−1
min, where R−1

I is the inverse density ratio
within the interface, is a sufficient criterion not only to ensure the stability of the interface itself, but also
of the whole stack of layers which would otherwise merge into one homogeneous layer (see § 4.3.1 for
details).

Therefore, the interface is very likely either in a stable diffusion state, or in a state of weakly
turbulence enhanced diffusion. Rosenblum et al. (2011) show that in this regime NuT . 2, meaning that
most of the energy is transported by pure diffusion. We will thus assume that the thermal gradient to
be used in these regions is given by the gradient needed to transport the whole outgoing energy flux by
diffusion:

∇d ≡
1

κT

HP

ρ cPT
Fint. (4.34)

The thermal diffusivity κT encompasses the contribution of all diffusive processes. If diffusion is ensured
by photons, as generally in most astrophysical objects, the diffusive thermal gradient reduces to the so-
called radiative gradient, ∇rad (e.g. Hansen and Kawaler 1994). However, in the deep interior of giant
planets and in degenerate bodies, density can be high enough for the electrons to become degenerate
enough to efficiently conduct thermal energy (see Stevenson and Salpeter (1977a) and Chabrier and
Baraffe (2007) for the characteristic radiative and conductive opacities under jovian planet conditions).
Along this paper, we will use the generic denomination ∇d for the diffusive temperature gradient, keeping
in mind that diffusion is now due to electronic or atomic motions, with a characteristic thermal diffusivity
κT . In the present calculations, we use the conductive thermal diffusivities calculated by Potekhin (1999).



94 A new perspective on heat transport in the interior

4.2.3 Mean thermal gradient

Once we have calculated the thermal gradient in the convective zones of size l, and in the diffusive
interfaces of size δT , we need to determine the mean properties of a whole stack of convective-diffusive
cells. As discussed in Chabrier and Baraffe (2007), since the convective plumes must be fed by the
diffusive interfaces, the thermal convective (N−1

T ) and diffusive (δ 2
T/κT ) time scales should be similar in

each respective layer. Therefore(
δT/l

)
=
(

κT/l2 NT

)1/2
= Ra−1/4

? =
(

Φ/CL

)− 1
4(1+a)

. (4.35)

Not surprisingly, the size of the interface, δT , is related to the lengthscale of the most unstable mode of
the linear instability by δT = d/Pr1/4. In addition, comparing the mean kinetic energy of an upwelling
eddy with the potential energy barrier created by the negative buoyancy in the diffusive interface, we
see that the above condition also entails that convective overshooting can be neglected (see Chabrier and
Baraffe 2007 for details).

Knowing δT/l enables us to compute the mean thermal gradient to be used to compute the planet’s
structure (see § 4.4.1)

〈∇T 〉 ≡
δT

l +δT
∇d +

l
l +δT

∇T . (4.36)

Substituting ∇T and δT/l by their expressions in Eqs. (4.31) and (4.35), and developing the mean gradient
to first non vanishing order, we find that

〈∇T 〉 ≈ ∇ad +(∇d−∇ad)

(
1

Ra1/4
?

+
1

NuT

)
+O

(
1

Ra1/2
?

,
1

NuT Ra1/4
?

)
, (4.37)

or equivalently

〈∇T 〉−∇ad ≈ (∇d−∇ad)

[(
Φ/CL

)− 1
4(1+a)

+
(

ΦC1/a
L

)− a
(1+a)
]
. (4.38)

As expected, two terms appear in the mean super adiabaticity, which is shown in Fig. 4.5 (dark grey
region). The first one is due to the temperature jumps at each interface and is controlled by the convective
overturning timescale which determines the size of these interfaces. The second one is due to the super
adiabaticity in the convective layers themselves, which is enhanced by their small size. The relative
contributions of these two terms only depend on the properties of the convection, characterized by the
exponent a.

Interestingly, if the impact of a on the super adiabaticity in the convective layers (pale red area in
Fig. 4.5) is significant, the impact on the mean super adiabaticity of the whole stack of layers, 〈∇T 〉−∇ad
(dark gray region), is rather small. This can be understood as follows: for the smallest value of the expo-
nent considered here, a = 0.2, convection is very inefficient and most of the mean super adiabaticity is
contained in the convective layers (upper contour of the grey region). In that case, Eq. (4.36) is dominated
by the second term, 〈∇T 〉 ≈ ∇T .

When the exponent is increased, the super adiabaticity in the convective layers (∝ Φ−a/(1+a)) drops
dramatically, but this entails a growth of the convective timescale, and thus of the thickness of the in-
terfaces (see Eq. (4.35)). For efficient convection, a > 1/4, this effect eventually dominates, and the
mean super adiabaticity increases again with a. This yields a rather narrow region for the mean super-
adiabaticity within the considered range of exponent variation.
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Figure 4.5: Range of mean super adiabaticity (〈∇T 〉−∇ad) of a semi-convective medium as a function
of the mixing length parameter α = l/HP, for 0.2 6 a 6 0.5 (gray area between the red dashed curves ;
Φ0 = 3×1033 ; εd = 10 ; CL = 1). For comparison, the super adiabaticity in a convective (pale red area ;
same parameters) and in a diffusive cell (dotted curve) are also shown. As expected a smooth transition
between the convective and diffusive regimes occurs near αcrit (see Appendix G ; here αcrit ≈ 2×10−9).

Interestingly, to first order, the a = 1/2 and a = 0.2 cases, i.e. the two extreme values considered
here, yield the same mean superadiabaticity. Therefore, the model presented here for semi-convection
depends only weakly on the precise prescription chosen for convection. In the following, we will show
results obtained with the mixing length theory, i.e. CL = 1 and a = 1/2, while keeping in mind that for
α � αcrit these results would be the same as the one obtained in the a = 0.2 case.

4.2.4 Mean solute gradient and flux

Disregarding convective overshoot, the solute flux (FZ) is determined by the transport at each inter-
face. As for heat, the turbulent transport of solute is expected to be very inefficient, and we will assume
purely diffusive processes (see § 4.2.2). The impact of a more efficient transport will be discussed in the
next section. In this regime, the solute flux is thus given by

FZ =−ρ D∇Z I, (4.39)

where the subscript I describes quantities determined within the interface, indicating that the solute
flux FZ is determined by the element fraction variation rate at each interface. Neglecting the small
inhomogeneities in the convective layer, the interfacial and mean gradients are related by

∇µ,I =
l +δZ

δZ
〈∇µ〉 or ∇Z I =

l +δZ

δZ
〈∇Z〉, (4.40)

where 〈∇Z〉 describes the mean gradient of heavy element mass fraction, i.e. the value of dZ/dr averaged
over several convective/diffusive cells, and δZ is the length over which compositional jump occurs. To
constrain the value of δZ , two limiting arguments can be used. On one side, equating the diffusive
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timescales for heat and solute leads to

δZ

δT
≈
√

D
κT

. (4.41)

On the other hand, considering that the compositional jump must cover the whole interface to ensure its
mechanical stability, one would expect that

δZ ≈ δT . (4.42)

The present paper focuses on the impact of double-difffusive convection on the planet mechanical
and thermal structure. The impact on the evolution will be addressed in a forthcoming study (see § 4.6).
Therefore, this uncertainty on the heavy element flux, discussed in the next section, does not have a
significant impact on the results presented in the present study. Determining more precisely the solute
transport properties in the regime of layered convection, however, will be of central importance to evo-
lutionary calculations, and 3D hydrodynamical simulations in a realistic parameter range are strongly
needed (Mirouh et al. 2011).

The term ∇µ,I , which is the relevant quantity when computing the equilibrium condition of the
interface, is given by

∇µ,I =−
l +δZ

δZ
HP

∂ ln µ

∂ Z

∣∣∣∣
P,T
〈∇Z〉. (4.43)

The precise value of ∂ ln µ

∂ Z

∣∣∣
P,T

depends on the precise chemical composition of the considered heavy

element, but is typically around unity ; this is the value we will use in numerical estimates below. We
will also use D ≈ 10−7 − 10−8 m2.s−1 (i.e. τd ≈ 10−2 − 10−1), appropriate for giant planet interior
conditions Stevenson and Salpeter 1977a).

4.3 Layer size: analytical point of view

4.3.1 Existence of an equilibrium height

The determination of the size of the layers, when layered convection is occurring, is a complex task.
The problem is rendered even more difficult by the fact that the small layers that initially form tend to
merge into larger layers. The question is then to know if and when layer merging ends.

In the fingering case, i.e. when the solute is the destabilizing actor, Radko (2005) derived a criterion
for the linear stability of thermo-compositional staircases against merging. In this picture, an initially
inhomogeneous medium starts forming layers if its density ratio (Rρ ) is smaller than the density ratio,
Rmin, for which the heat to solute buoyancy flux ratio (≡ γ) stops decreasing when Rρ increases. Then,
layers are unstable and merge as long as the density ratio within the interface between them (RI) is smaller
than Rmin. Then, as RI increases with the layer height (under some conditions), it eventually reaches Rmin
and the merging process stops. At this stage, an equilibrium height is reached by the convective layers
and the staircase is fully equilibrated.

The linear stability analysis of Radko (2005) can be redone in the diffusive case, by simply account-
ing for the fact that the signs of the various density and temperature differences and of the fluxes must
be changed. Then, after some lengthy but straightforward algebra, one can show that layers are unstable
and merge when

∂ γ−1

∂ R−1
ρ

∣∣∣∣∣
R−1

ρ =R−1
I

< 0 ⇔ R−1
I < R−1

min, (4.44)
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which defines R−1
min. As for the fingering case, this linear stability analysis shows that, if layers form, their

merging will stop when their height reaches a finite equilibrium value.

4.3.2 Global constraints

Although precisely estimating this equilibrium value is difficult, some strong limits on the layer size
can be derived theoretically. Let us consider a stack of layers extending over a zone of size L, and define
a global gradient 〈∇Z〉 ≈ −∆Z/L, where ∆Z is the difference between the mass ratios of heavy element
at the bottom and at the top of the semi-convective zone.

On one hand, the mean molecular weight gradient in all the interfaces, ∇µ,I , must be high enough
to satisfy the stability criterion discussed in sections 4.1.2 and 4.2.2. This implies

αµ

αT
∇µ,I > R−1

min× (∇d−∇ad). (4.45)

Substituting ∇µ,I by its expression in Eq. (4.43) and δZ by using Eqs. (4.41) and (4.35), the criterion
(4.45) for a planetary scale (L≈ Rp) semi-convective zone reads

α
1/(1+a) > α

1/(1+a)
min ≡ αT

αµ

√
D
κT

R−1
min(∇d−∇ad)

1− 1
4(1+a)

(Φ0/CL)
1

4(1+a) ∆Z ∂ ln µ

∂ Z

∣∣∣
P,T

, (4.46)

where αmin denotes a lower limit for the layer size. Under the present conditions in the interiors of our gas
giants (see end of § 4.2.1 and Table 4.1), this yields αmin ≈ 2×10−9× (R−1

min)
1+a, with the less restrictive

constraint being obtained for R−1
min = 1, as summarized in Table 4.1. However, as the existence of layers

allows R−1
min to be as high as (1+Pr)/(τd+Pr)≈ 101−102, these constraints could be severely tightened,

as showed in Table 4.1. This simply confirms that, in order for layered convection to be stable, convective
cells must remain larger than the diffusive interfaces, and the medium is always in the convective regime,
α � αcrit.

Table 4.1: Numerical constraints on the layer height in the two limiting cases of convection (a = 0.2 and
0.5 ; CL = 1) for the following conditions (representative of Jupiter interior): Φ0 = 3× 1033, εd = 10,
κT = 5×10−5 m2.s−1, D = 5×10−7 m2.s−1.

constraint a = 0.2 a = 0.5
αmin stability R−1

min = 1 2.4×10−9 2.4×10−9

R−1
min =

1+Pr
τd+Pr 6.0×10−7 2.4×10−6

αmax homogeneization Nuµ = 1 1.0×10−4 1.4×10−3

Nuµ = 3 2.5×10−5 2.6×10−4

αmin observational Jupiter 3×10−5

constraints? Saturn 4×10−6

? See § 4.5

On the other hand, the solute gradient within the planet will be homogenized within a typical
timescale

tZ ≈
ρ ∆ZRp

|FZ|
. (4.47)
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Using Eq. (4.39), (4.40) and (4.41), and taking 〈∇Z〉 ≈ ∆Z/Rp, Eq. (4.47) becomes

tZ ≈
R2

p

D
δZ

l
≈

R2
p√

κT D

(
Φ

CL

)− 1
4(1+a)

∝ α
−1/(1+a). (4.48)

Therefore, in order to avoid a complete homogenization of giant planet interiors in less than 5 Gyr,
their present age, α must be smaller than αmax ≈ 1× 10−4 for a = 0.2 and 1.4× 10−3 for a = 0.5.
Note however that, as mentioned in Rosenblum et al. (2011), turbulent transport due to the double-
diffusive instability can yield compositional Nusselt numbers, Nuµ

7, around 2-4, yielding even stronger
constraints, as summarized in Table 4.1. These small values of α justify a posteriori the approximation
of continuous thermal and heavy element profiles when considering the planet’s entire internal structure.
Note, however, that layered inhomogeneities could be dynamically regenerated over time. In that case,
layered convection will be an ongoing process in the planet’s interior.

Considering the possibility that the ratio of the compositional to the thermal size of the interface
does not scale as the square root of the ratio of the diffusivities, and therefore using Eq. (4.42) instead of
Eq. (4.41), yields an increase of both αmin and αmax by a factor

√
κT/D

1+a ≈ 10.
This analysis shows that, for the age of the Solar System and for the conditions prevailing in gas

giant interiors, there exists a range of layer sizes for which ongoing layered convection is a viable
mechanism. According to our estimate, this range is relatively large and corresponds to :

10−9−10−6 . α . 10−4−10−2. (4.49)

The uncertainty on the lower and upper bounds are respectively due to our poor knowledge of the be-
havior of R−1

min, and of the solute flux at low Prandlt number. Even given these uncertainties, the fact that
convection is always in a regime of relatively high Rayleigh number appears to be robust prediction. To
make an attempt to overcome these limitations, we examine in § 4.5 how observational data can narrow
this possible domain of α , by further constraining the degree of super adiabaticity, and thus the size of
the layers, in our Solar System gas giants.

4.3.3 An alternative scenario

We stress that the aforementioned constraints apply only to layered convection, and does not pre-
clude the possibility that, under some conditions, double diffusive convection may manifest itself under
the form of homogeneous double diffusive convection and act like a turbulent diffusion (Rosenblum et al.
2011). However, for this to happen, the criterion (4.45) must be verified in the inefficient convection
regime, δT � l (see Appendix G). The following criterion must then hold

−HP〈∇Z〉 ≈ ∆Z
Rp

L
& R−1

min× (∇d−∇ad). (4.50)

As ∆Z6 1 and R−1
min> 1, by definition, a zone of turbulent diffusion cannot extend over the entire planet’s

scale unless ∇d . ∇ad, i.e. if the whole object is nearly diffusive in the first place.
In an object with a heat flux high enough to be convectively unstable, the semi-convective zone

must then be confined to a fraction of the planet, in particular, but not necessarily, near an immiscibility
region or a phase transition for instance. In this case, the total size of the zone must verify L/Rp 6 ε

−1
d

(∼ 1/10 in Jupiter), condition for which a large enough jump in the heavy element mass fraction can be
sufficient to stabilize the whole zone against convection and open a diffusive buffer in the interior (where
∇T ≈ ∇d). From the global point of view of the planet, this would act as a composition, temperature

7Analogously to the thermal Nusselt number, the flux of heavy elements, for a given Nuµ , is given by FZ ≡−Nuµ×ρ D∇Z.
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and entropy nearly discontinuity. This possibility for the existence of such a diffusive-like buffer in the
interior of our gas giants, as a consequence of double-diffusive instability, must be kept in mind.

In the following, however, we will not consider this scenario any further, and we will only consider
the effect of a planetary scale layered-convection zone.

4.4 Internal structure models of Jupiter and Saturn

In the analytical analysis derived in the previous section, I have shown that semi-convection is
theoretically possible in giant planet interiors for the aforementioned range of α values. To get further
constraints from the observational data measured for our Solar System gas giants, we need to
determine the area of the super adiabaticity/composition parameter space for which we can derive
internal structure models that match these measurements.

This is the goal of the following sections. I first explain the methodology used to find such structure
models (§ 4.4.1) and use it to derive reference homogeneous models of Jupiter and Saturn (§ 4.4.2).
Finally, in § 4.5, I present new semi-convective inhomogeneous models of our gas giants, and discuss the
implications of these models for their heavy element contents and temperature profiles.

4.4.1 Method

Solar System giant planets are rapidly rotating bodies (the period of rotation is about 10 hours), with
the centrifugal potential representing about 10% of the gravitational potential. As extensively discussed
in Chapter 3 and Appendix E, this modifies the hydrostatic equilibrium condition between the pressure
gradient and the gravitational force in the interior which now writes

∇P =−ρ ∇(VG +Vrot), (4.51)

where

VG(r) =−G
∫

ρ(r′)
|r− r′|

d3r′ and Vrot(r,θ) =−
∫

ξ

0
ω

2
p(ξ
′)ξ ′ dξ

′ (4.52)

denote respectively the gravitational and centrifugal potentials, with differential rotation ωp(ξ ), where
ξ is the distance from the position r to the rotation axis, and G the gravitational constant. In the present
study, ωp is assumed to be constant and given by the magnetospheric rotation rate. Because of the
symmetry of the centrifugal potential with respect to both the rotation axis and the equatorial plane,
surfaces of equal densities for these objects are supposed to be generalized ellipsoids of revolution whose
exact shape is given by

r(r̄,θ) = r̄
[

1+∑
n

s2n(r̄)P2n(cosθ)

]
, (4.53)

where r̄ is the mean radius of the equipotential, P2n are the usual Legendre polynomials, θ is the colatitude
and the s2n are a set of figure functions. These latter can be derived using the theory of figures for rotating
bodies detailed in Appendix E, and must be solved iteratively with the set of perturbed 1D hydrostatic
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equilibrium equations

∂ P
∂ m

=− 1
4π

Gm
r̄4 +

ω2
p

6π r̄
+ϕω(s), (4.54)

∂ s
∂ m

=
1

4π r̄2ρ
, (4.55)

∂ T
∂ m

=
T
P

∂ P
∂ m

∇T , (4.56)

where m is the mass enclosed in the equipotential of mean radius r̄, and ϕω(r̄) is a second order correction
due to the centrifugal potential, which depends on the figure functions (see Eq. (E.17)). As discussed in
§ 4.2, the thermal gradient is determined by the energy transport process which is relevant in the zone
considered.

The departure from sphericity of the iso-density surfaces results in a perturbation of the external
gravity field VG(r,θ) that writes

VG(r,θ) =−
GM1

r

{
1−

∞

∑
i=1

(
Req

r
)2iJ2iP2i(cosθ)

}
, (4.57)

J2i =−
1

M1R2i
eq

∫
V

ρ(r,θ)r2iP2i(cosθ)d3r, (4.58)

where r is the radial distance from the center of the planet, M1 the mass of the planet, Req the equatorial
radius, θ the colatitude, P2i are Legendre polynomials and J2i denote the gravitational moments, that
can be computed once the figure equations have been solved. The measured gravity moments provide
stringent constraints on the density profile and the possible layering within these planets.

As, in practice, Legendre polynomial expansions are truncated at a given order n, a closure equation
is provided by the equation of state (EOS) of the mixture along the planet’s interior profile. Such an EOS
is generally given by the so-called ideal volume law for the mixture:

1
ρ
=

X
ρX

+
Y
ρY

+
Z
ρZ

, (4.59)

where X , Y and Z denote the mass fractions of H, He and heavy elements, respectively. For the H/He
fluid, the most widely used EOS is the Saumon-Chabrier-vanHorn EOS (Saumon et al. 1995 ; SCvH).
For the heavy material, I have used the "Rock" EOS of (Hubbard and Marley 1989) for silicates and
the "Ice" ANEOS equation of state (Thompson and Lauson 1972) for volatiles (CH4, NH3, H2O). The
impact of the differences between various EOS’s on exoplanet structure and evolution has been explored
in (Baraffe et al. 2008).

Once such equations of states, P[ρ(Xi)], are specified, structure models with various compositions
are calculated by solving iteratively the aforementioned hydrostatic equilibrium condition for a rotating
body and the third-order level-surface theory (Zharkov and Trubitsyn 1978) to obtain a model which
reproduces the observed values of the radius, Req, and gravitational moments J2 and J4 measured by the
Pioneer and Voyager missions (see Table 4.2).

4.4.2 Homogeneous reference models

In conventional giant planet models, the abundances of heavy elements are chosen to be constant
in the gaseous H/He envelope, with a possible discontinuity at the transition between the molecular and
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Table 4.2: Observed characteristics of Solar System gaseous giants (Guillot 2005 and references therein ;
the numbers in parentheses are the uncertainty in the last digits of the value).

Jupiter Saturn
Mp [1026kg] 18.986112(15) 5.684640(30)
Req [107m] 7.1492(4) 6.0268(4)
Rpol[107m] 6.6854(10) 5.4364(10)
Prot [104s] 3.57297(41) 3.83577(47)
T1bar [K] 165.(5) 135.(5)
Fint [W.m−2] 5.44(43) 2.01(14)

J2×102 1.4697(1) 1.6332(10)
J4×104 -5.84(5) -9.19(40)
Zatm/Z� 2-4 2-8
(Y/(X +Y ))atm 0.238(50) 0.215(35)

metallic regions (Chabrier et al. 1992). In the absence of a compositional gradient and under the actual
conditions found in Jupiter and Saturn,

∇ad < ∇d, (4.60)

so that the medium is always convectively unstable with respect to the Schwarzschild criterion. As
discussed in Appendix G, convection is very efficient the structure can be solved by setting ∇T = ∇ad in
the energy transport equation given by Eq. (4.56).

In order to have a reference case, I use the formalism described in § 4.4.1 to derive homoge-
neous, adiabatic interior models representative of the usual 2-layer composition. As the interpolated
SCvH EOS is used, I do not consider the effect of a Plasma Phase Transition, and only two free parame-
ters remain, namely the core mass (Mc) and the metal mass fraction in the gaseous envelope (Zenv). The
temperature, density and pressure profiles of the best representative homogeneous models of Jupiter and
Saturn are shown in Fig. 4.6 (solid curves). These are composed of a solid core of mass Mc = 3.9 and
25.6M⊕ surrounded by a H/He gaseous envelope with a constant metal fraction Zenv = 0.11 and
Zenv = 0.05 for Jupiter and Saturn, respectively (these results are summarized in Table 4.3). These
reference models yields interior enrichment that are consistent previous determinations (Chabrier
et al. 1992 ; Saumon and Guillot 2004 ; Guillot 2005).

4.5 Inhomogeneous interiors

I now turn to inhomogeneous models. In the present calculations, in contrast to all previous models,
the mass fraction of heavy material Z(m) at a depth r(m) within the planet (i.e. at the depth of the iso-
density surface enclosing a mass m of the planet) is continuously decreasing from the core to the surface,
producing a compositional gradient within the gaseous envelope of the planet,

∇Z ≡
d lnZ
d lnP

=
dr

d lnP
dZ
dr
≡−HP∇Z. (4.61)

.
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Figure 4.6: Pressure (black), temperature
(red) and density (blue) profiles as a func-
tion of depth (expressed by the Lagrangian
coordinate, i.e. the mass m), for the ref-
erence adiabatic (solid curves) and semi-
convective (dashed curves) cases for Saturn
(a) and Jupiter (b). The increased thermal
gradient due to the inefficient heat transport
in the semi-convective case (with Nl = 104.5

for Jupiter and 105.4 for Saturn) strongly in-
creases the internal temperature. This causes
a partial redistribution of the core material
within the gaseous envelope.
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4.5.1 Compositional gradient origin

The possible origin of such a compositional gradient is an open question (Stevenson 1985 ; Chabrier
and Baraffe 2007). In the conventional scenario, all the accreted planetesimals are assumed to directly
sink to the core and not to evaporate in the envelope, for sake of simplicity. In reality, however, incom-
plete mixing of large planetesimals or dissolution of a substantial fraction of volatiles and rocks from
small solid bodies could occur in the envelope during the phase of planetesimal accretion on the nascent
planet ; a substantial amount of ice could as well remain in the envelope (Iaroslavitz and Podolak 2007 ;
Hori and Ikoma 2011).

The gradient might also stem from an only partial redistribution by small scale convective mo-
tions of stably layered (soluble) constituents released by core erosion in the gas-rich envelope during the
planet’s evolution (Stevenson 1982 ; Guillot et al. 2004), as seems to be supported for water by recent
numerical simulations ( ?). This could be enhanced by the immiscibility (phase separation) of an abun-
dant enough material (e.g. helium, water) in the dominantly metallic-hydrogen envelope (Stevenson and
Salpeter 1977b). This would change the dynamical properties of (double diffusive) convection near the
regions of immiscibility and add complexity to the problem. Therefore, to avoid extra complication, we
only consider the occurence of this process for soluble material in the present paper.

At last, rapid rotation and/or strong magnetic fields, necessarily present in Jupiter and Saturn inte-
riors8, are known to hamper large-scale convection (Chabrier et al. 2007a), possibly leading to imperfect
mixing of heavy elements in part of the envelope.

8The zonal flows observed in Jupiter’s atmosphere might indeed reveal the presence of convective rolls at deeper levels, a
consequence of the impact of rotation on convective motions, according to the Taylor-Proudman theorem (Busse 1976).
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4.5.2 Numerical results

I now derive semi-convective, inhomogeneous interior models for Jupiter and Saturn. I stress
that all these models are consistent, within the observational uncertainties, with the measured gravi-
tational moments of Jupiter and Saturn (see Table 4.2 ; Campbell and Synnott 1985 ; Campbell and
Anderson 1989).
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Figure 4.7: Conductive (top red curves) and
adiabatic (bottom black curves) thermal gra-
dient profiles for Jupiter and Saturn. The
dashed curves correspond to the mean ther-
mal gradient for models with 104.5 and 105.4

layers for Jupiter and Saturn, respectively.
The shaded area represents the allowed range
of super adiabaticity in presence of semi-
convection, consistent with the observational
constraints.

An additional constraint on the outermost value of the compositional gradient is provided by the
surface abundance of heavy elements in the planets measured by the 1995 Galileo Entry Probe mission.
Indeed, elemental abundances of the atmospheres of solar giant planets are observed to differ significantly
from each other and from the solar composition, being enriched by a factor ∼ 2− 4 and ∼ 2− 8 with
respect to the Sun’s atmosphere for Jupiter and Saturn, respectively, as shown in Table 4.2 (Guillot 2005).
Moreover, the planet’s total mean abundances of H and He (X̄ and Ȳ )) must recover the values of the
protosolar nebula, i.e. Ȳ/(X̄ + Ȳ )≈ 0.275.

In the present calculations, the adjustable parameters to fulfill all these constraints are chosen to be
the mass of the core (Mc), the mean heavy element mass fraction in the gaseous envelope (Z̄env), and the
global compositional variation in the envelope (∆Zenv, the difference between the metal mass fraction
just above the central core and the one in the atmosphere). To assess the robustness of the results with
respect to the equation of state chosen to describe the thermodynamics of the heavy material, I derived
several sets of models for which the composition of the core varies from pure ice to pure rock.

Number of layers

From a macroscopic point of view, an important quantity describing layered convection is the num-
ber of convective-diffusive layers, Nl. This number is roughly equal to the ratio of the size of the semi-
convective zone, comparable to the planet’s radius, Rp, if this zone extends over the whole planet, to
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Figure 4.8: Metal abundance profiles as a
function of depth (expressed by the La-
grangian mass m) for Saturn (a) and Jupiter
(b) for different numbers of layers. The abun-
dance increases with the number of layers,
to keep the density profile unchanged when
convection becomes inefficient. The ex-
treme cases (105.4 layers for Saturn and 104.5

layers for Jupiter) correspond to the semi-
convective profiles portrayed in Fig. 4.6.
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the height of a typical convective/diffusive cell, l + δT . As shown in § 4.3, in the regime of interest,
l + δT ≈ l, and Nl ≈ Rp/l. Because HP ≈ Rp in the deep interior, the number of layers in the planet is
thus approximately equal to Nl ∼ α−1, and in the following we will always refer indifferently to either α

or

Nl ≡ α
−1 ≡ HP/l. (4.62)

As shown in § 4.3, Nl is constrained to lie within the range 102−4 ≤ Nl ≤ 106−9. Note that, given
the small size of the diffusive-convective layers compared with the size of the planet, the discontinuous
(staircase-like) temperature and composition profiles can be well approximated by continuous mean ther-
mal and compositional gradients (〈∇T 〉 and 〈∇µ〉, respectively) to determine the planet’s global structure,
as illustrated in Fig. 4.4.

This possible range of numbers of layers is further constrained by the numerical calculations. I find
that, in order to reproduce our giant planet observational constraints, no more than ∼ 2.5× 105

layers (αmin ≈ 4×10−6) can in reality be present in Saturn and ∼ 3×104 (αmin3×10−5) in Jupiter
(see Table 4.1). Indeed, a larger number of layers leads to so high temperatures in the interior that
the induced mean density decrease can not be counterbalanced by an increase of the heavy element
mass fraction compatible with the observed surface abundances. This is due to the fact that, the
larger the number of layers, the smaller the size of each convective cell, reducing the maximum height a
convective eddy can travel to transport heat before being stopped by the negative buoyancy present in the
diffusive interface. A large number of layers thus decreases convective heat (and composition) transport
efficiency. This leads to an increase of the mean super adiabaticity, as portrayed on Fig. 4.7, which in
turn immediately implies a rise of the internal temperature, as illustrated on Fig. 4.6. It is important to
stress that super adiabaticity is the physical quantity most directly constrained by the data. Thus, whereas
the allowed range of number of layers (or equivalently of mixing length parameter values) may depend
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on the model used to parametrize semi-convection (see § 4.2.3), the allowed range of super adiabaticity
displayed in Fig. 4.7 should remain weakly affected.

Enhanced heavy material enrichment

The pressure, density and thermal profiles obtained in the most extreme semi-convective case com-
patible with the observational constraints discussed above are shown in Fig. 4.6 (dashed curves). As seen
on the figure, and as expected from the above discussion, the non-adiabatic envelope profile obtained
in the semi-convective case yields substantially higher internal temperatures than the usual adiabatic
assumption, as heat and material redistributions are partly inhibited by diffusive processes. The pres-
sure and density profiles, on the other hand, remain barely affected, being strongly constrained by the
gravitational moments.

Indeed, at basically fixed density profile, a higher temperature profile must be compensated by a
larger amount of heavy material within the envelope. This is illustrated in Fig. 4.8, where we show the
abundance profiles, as calculated in Appendix H, corresponding to semi-convective models with different
numbers of layers. The bottom curve (solid) in each panel corresponds to models with 1000 layers while
the other curves correspond to a gradually increasing number of layers.
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Figure 4.9: Mass range of heavy elements in the core (Mc) and in the envelope (MZ,env) consistent with
all observational constraints, for different numbers of layers, for Jupiter (bottom right) and Saturn (upper
left). The open dots at the upper left of each region correspond to the homogeneous interior models. As
the number of semi-convective layers increases, the efficiency of convection decreases, and the heavy
element mass fraction increases to counteract the radius increase induced by the planet’s higher internal
temperature. The metals initially present in the core are then redistributed within the envelope. For
Jupiter, solutions with no core at all (Mc = 0) can be found for the non adiabatic models (red dots).

Therefore, in order to compensate the radius increase (density decrease) due to the hotter interior,
semi-convection yields a significantly larger total metal content compared with conventional homoge-
neous models. This can be seen in Fig. 4.9, which shows the amount of heavy elements in the core and
envelope for the various cases discussed here, as summarized in Table 4.3. For Saturn, up to 50M⊕ of
heavy elements could be present in the planet while for Jupiter the heavy material content could reach



106 A new perspective on heat transport in the interior

63 M⊕. This corresponds to about 25 and 10 times the solar abundances, respectively9. Since these
values only depend on the allowed amount of super adiabaticity, they should not strongly depend on our
modeling of diffusive/convective transport, as mentioned above. In contrast, the maximum amount of
heavy elements compatible with the observational constraints for the homogeneous, adiabatic models, is
about 30M⊕ for Saturn and 40 M⊕ for Jupiter, in agreement with previous studies (Saumon and Guillot
2004).

But semi-convection does not only increase the global metal content, it also yields a completely
different distribution of heavy elements. While the global enrichment of the planet is increased in the
inhomogeneous models, the mass of the central core is decreased, as heavy elements are preferentially
redistributed in the gaseous envelope.

In the case of Saturn, the vertical spread in core mass at fixed number of layers observed in Fig. 4.9
is obtained when varying the core composition from pure ice (top) to pure rock (bottom). In Jupiter
the inferred core mass is too small for the equation of state to make a significant difference. One could
wonder why the homogeneous case is not continuously recovered when α tends toward 1. This slightly
counter intuitive effect is due to the fact that, at least when using the SCvH EOS, completely homoge-
neous models (central core plus a fully homogeneous envelope) cannot in general reproduce both the
observed J2 and J4 (Chabrier et al. 1992 ; Saumon and Guillot 2004). Thus, if we relax the constant Z
condition in the envelope, the presence of a compositional gradient and of a smaller core appears to be
the best solution to reproduce observational data, even in the absence of any additional super-adiabaticity.

For Jupiter, models can be found that match the gravitational moments without the presence of
a central, completely differentiated core (red dots on the bottom right of Fig. 4.9). Such cases yield an
atmospheric metallicity Zatm ∼ 4−5Z�. The fact that the possible erosion of the core mass would have
been more efficient in Jupiter than in Saturn might stem from the larger energy flux available in Jupiter
(Guillot et al. 2004).

Table 4.3: Heavy element content for Jupiter and Saturn inferred from the various models consistent with
these constraints within the quoted observational uncertainties.

Jupiter Saturn
Region Amount of heavy elements (M⊕)

Homogeneous model
Envelope 36 4.7
Core 3.9 25.6
Total 40 30.3

Semi-convective models
Envelope 41-63.5 10-36
Core 0-0.5 10-21
Total 41-63 26-50

4.6 Prospect for giant planet evolution

While the aim of present study is to examine and to constrain the properties of transport by semi-
convection inside Jupiter and Saturn at the present time, the impact of non-adiabatic interiors on the

9 Note that the abundances of heavy elements brought to Jupiter and Saturn, in particular water, could already be enriched
compared with the solar value (Gautier et al. 2001)
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cooling of these planets, and of giant planets in general, remains to be explored. This requires more
cumbersome evolutionary calculations, for which initial conditions will be of crucial importance, as
will be explored in a forthcoming study. Note that evolution will add an additional constraint, namely
that the planet cooling rates yield the correct properties at the age of the solar system, which will put
more stringent constaints on the range of possible layer sizes/numbers. Without going into such detailed
calculations, however, the following points can be mentioned.

4.6.1 Merging of the layers

As mentioned in § 4.3, soon after they form, layers are expected to merge, leading to larger layers,
until the layer height reaches either the planet size, yielding a standard adiabatic interior, or an equilib-
rium value, which is the semi-convective case considered here. Numerical simulations by Radko (2005)
and Rosenblum et al. (2011) tend to show that the equilibration timescale of the staircase is much shorter
than the typical timescale for the evolution of the planet.

Thus, if an equilibrium height is reached, as discussed in § 4.3.1, this rather quick equilibration
timescale suggests that the layer size should remain roughly constant during the evolution, or change
slowly with the mean properties of the medium (e.g. the mean molecular weight gradient). A precise
prescription for the height of the layers being yet lacking and demanding a more precise knowledge of
the heat transport properties of layered convection under astrophysical conditions, it seems reasonable,
as a first guess, to use a constant size, whose value has been constrained in the afore sections, throughout
the evolution.

4.6.2 Initial heavy element distribution

Conventional models based on fully adiabatic thermal profiles notably lead to cooling times about
15% longer than the age of the Solar System for Jupiter (Fortney et al. 2011). In principle, the hotter
non-adiabatic internal structures suggested in the present paper will prolong the cooling and thus worsen
the problem.

However, in the case of the erosion of an initially large core, part of the gravitational work will be
spent eroding the core and mixing the material upward and will thus not contribute to the total luminosity,
quickening the cooling. All these effects must be properly accounted for to infer the appropriate cooling
timescale.

In addition, if Jupiter and Saturn initial cores were allowed to be relatively large (& 10M⊕), the cor-
responding high surface density of solids in the protosolar nebula will quicken the formation timescale in
the conventional core accretion scenario, helping solving the related formation timescale problem (Pol-
lack et al. 1996). Finally, since, in the present scenario, some of the ablated material from the accreted
planetesimals during the planet’s early formation stages remains distributed throughout the envelope, this
will (i) reduce the heating due to gravitational energy release produced by the infalling planetesimals on
the planet embryo and (ii) increase the envelope mean molecular weight. Both effects will cause the pro-
toplanet to contract more quickly, shortening again the planet’s formation timescale in the conventional
core accretion scenario (Pollack et al. 1996). A correct exploration of the impact of inhomogeneous inte-
riors upon giant planet history thus necessitates to investigate the consequences not only on the thermal
evolution but also on the formation process.
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4.7 Conclusion and perspective

In this chapter, I have first developed an analytical approach of layered convection, based on
a standard parametrization of convection similar to the MLT formalism. This formalism allows
a quantitative determination of the expected number of diffusive layers, or equivalently of the average
characteristic mixing-length parameter, in a semi-convective planet interior characterized by a given total
flux and a given thermal (and compositional) diffusivity. Furthermore, this formalism allows an exact
determination of the characteristic thermal gradient in the presence of double-diffusive convection,
and thus of the related amount of super-adiabaticity within the planet’s interior.

Using this formalism, I have computed semi-convective interior models of Jupiter and Saturn.
I have shown that a stratified internal structure for Solar System gaseous giants, with a compo-
sitional gradient of heavy material extending over a substantial fraction of the planet, is a viable
hypothesis, as such models can fulfill all the observed gravitational and atmospheric constraints for
these planets. This new possibility differs from the conventional description of giant planet interiors,
assumed to be composed of 2 main superposed, well identified layers of homogeneously distributed ma-
terial, namely a solid core surrounded by a dominantly gaseous H/He envelope. The consequences of the
present giant planet interior description are multiple. Namely,

• (i) our jovian planets might be significantly more enriched in heavy elements than previously
thought,

• (ii) their interior temperature, thus heat content, might be much larger than usually as-
sumed,

• (iii) the inner temperature profile could significantly depart from the usually assumed adia-
batic profile.

Note that these conclusions do not depend on the precise model used to describe double diffusive con-
vection.

Besides directly affecting our conventional vision of giant planet mechanical, compositional and
thermal structures, these results have profound impacts on our understanding of planet formation and
cooling properties. Indeed, the revised possible maximum amount of heavy material bears direct conse-
quences on the determination of the efficiency of solid planetesimal accretion during planet formation in
the protoplanetary nebula, suggesting an early and efficient capture of planetesimals for our, and probably
extrasolar as well, giant planets. Moreover, the larger heat content and the departure from adiabaticity, as
well as the possibility of significant core erosion from an initially large core, directly impact the planet
cooling histories. Departure from adiabaticity, in particular, implies less efficient heat transport, a di-
rect consequence of the inhibited convective motions due to a persistent compositional gradient, and
thus a smaller heat flux output rate than assumed in the conventional approach. These results open a new
window, and raise new challenges, on our present understanding of planet structure, formation and evolu-
tion. Importantly, the viability of such stratified interior models for our Solar System gas giants directly
applies to the case of extrasolar planets, reinforcing the possibility that such a lower heat flux output
could at least partly explain the anomalously large radius of several transiting "hot Jupiters" (Chabrier
and Baraffe 2007). Indeed, it seems that invoking an extra source of (tidal, kinetic or magnetic) energy
dissipation in these object interiors can not completely solve this “radius anomaly” puzzle and that an
alternative or complementary process is necessary (Laughlin et al. 2011). Unconventional, inhomoge-
neous non-adiabatic planetary interiors, as suggested in the this chapter, might provide the missing piece
of the puzzle.
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Chapter 5

An alternative energy source: Tidal
friction

An error does not become a proof by reason of multiplied propagations,
nor does a truth become error because nobody sees it

Mahatma Gandhi

When it shall be found that much is omitted,
let it not be forgotten that much likewise is performed

Samuel Johnson, 1755
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After examining in detail in § 5.1.2 the relation between the constant time lag (∆t) in Hut
(1981) model and the usual tidal quality factor (Q) widely used in the literature, in Appendix I,
I extend the Hut model to any finite obliquity. Then, in § 5.2, I present analytical solutions of
the equations that I derived for two limiting cases. These simple models have two purposes, (i)
providing benchmarks for the numerical code that I developed to solve the full set of equations,
and (ii) allowing an analytical constraint on ∆t from the study of the Galilean satellites with the
constant timelag model. In § 5.3, I also update the results of Levrard et al. (2009) by including
newly found transiting planets, and find many new stable systems.

In § 5.4 I demonstrate with analytical arguments that truncating the tidal equations at 2nd

order in eccentricity leads to wrong tidal evolution histories, with sequences drastically differ-
ing from those obtained when solving the complete equations. In § 5.5, I compare the full
thermal/orbital evolution calculations with similar studies based on a truncated and constant Q
tidal model. These numerical comparisons confirm and quantify the conclusions reached in
§ 5.4, namely that low-order eccentricity models substantially underestimate the tidal evolution
timescales for initially eccentric systems and thus lead to incorrect tidal energy contributions to
the planet’s energy balance. I show for instance that tidal heating cannot explain the radius of
HD 209 458 b for the present values of their orbital parameters, contrarily to what has been claimed
in previous calculations based on truncated eccentricity models (Ibgui et al. 2009).

Finally I apply my model in § 5.6 to some of the discovered bloated planets. I show that
although tidal heating can explain the presently observed radius of some moderately bloated Hot
Jupiters, as indeed suggested in some previous studies, tidal heating alone cannot explain all the
anomalously large radii. Indeed, in these cases eccentricity damping occurs too early in the sys-
tem’s tidal evolution (assuming a genuine two-body planetary system) to lead to the present state
of the planet’s contraction.

The results of this chapter led to the publication of Is tidal heating sufficient to explain bloated
exoplanets ? Consistent calculations accounting for finite initial eccentricity (Leconte et al. 2010a)
and in Leconte et al. (2011a). The results of § 5.2.3 where also used in Tidal obliquity evolution of
potentially habitable planets (Heller, Leconte & Barnes 2011).
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Gravitational TIDES HAVE MARKED OUT THE HISTORY

of science and astrophysics since the first
assessment by Seleucus of Seleucia of the

relation between the height of the tides and the position of the Moon and the Sun in the second century
BC. Modern astrophysics extended the study of gravitational tides in an impressive variety of contexts
from the synchronization of the Moon and other satellites to the evolution of close binary stars and even
the disruption of galaxies.

The recent discoveries of short period extrasolar planetary systems and the determination of the
anomalously large radius of some giant close-in exoplanets revived the need for a theory of planetary
tides covering a wider variety of orbital configurations than previously encountered in our own solar
system planets. In particular, the orbital evolution of very eccentric systems like HD 80 606 (e≈ 0.9337,
Naef et al. 2001), or of planets on polar and even retrograde orbits, like HAT-P-7 b (with a stellar pro-
jected obliquity ≈ 182.5±9.4 deg ; Pál et al. 2008), cannot be properly treated with tidal models limited
to the case of zero or vanishing eccentricity and obliquity.

5.1 Theory of tidal evolution

5.1.1 Tidal potential

Since Kepler (1609), we know that when two spherical body are in gravitational interaction, they
undergo - provided that their total mechanical energy is negative - a Keplerian motion consisting in
elliptical orbits. It has been shown by Newton (1687) that this behavior stems from the scaling of the
gravitational force between the two bodies as the inverse of the square of their separation. Of course, this
simplicity of the gravitational potential relies heavily on the assumption of spherical symmetry of the
object creating the potential, and breaks when its mass distribution presents non spherical deformations.

These asymmetries can be separated in two classes that have quite a different impact on the dynam-
ical properties of the object.

The permanent or slowly varying asymmetries
Their origin can be very diverse. In rigid or elastic bodies, such as rocky planets and asteroids,

the internal stress keeps the structure from evolving toward its minimum energy state, conserving the
primordial asymmetries inherited from the formation stage. For small - generally undifferentiated - ob-
jects, where self-gravitational energy is still comparable to the internal electromagnetic cohesion forces,
this primordial asymmetry can directly come from an inhomogeneous accretion of matter. For more
massive objects, including planets, the energy released during mass accretion is sufficient to liquify the
bulk material. During this early fluid phase, differentiation takes place and the object is in a state of near
hydrostatic equilibrium. As discussed in Chapter 3, in such a phase, the presence of a disturbing potential
gives rise to a non-spherical shape that can be crystallized during the cooling and solidification of the
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Figure 5.1: External potential created by a deformable body under the influence of a distant companion.

planet. This is thought to be the cause of the flattening observed on our own earth and all other rocky
planets in the solar system. For fluid bodies, like giant gaseous planets, a fast rotation also prevents the
sphericity of the object.

Up to the quadrupole order, it can be shown that the potential of the object is given by

VG(r) =−
GM1

r
− G

r3

[
(B−A)

(
1−3(r̂ · ĵ)2)

2

)
+(C−A)

(
1−3(r̂ · k̂)2)

2

)]
, (5.1)

where A, B, and C are the principal moment of inertia of the body with respect to the axis following
î, ĵ and k̂, respectively. This perturbation to the gravitational potential causes the precession of the
periapsis, and the precession and nutation of the spin of the planet. For perfectly rigid bodies, no energy
is dissipated, and these effects are periodic. The precession period for example can be approximated by

Ppr =
2π

3
ω1

n2 cosε1

2C
2C−A−B

, (5.2)

where ω1 is the angular velocity of the body, and ε1 is its obliquity, i.e. the angle between the rotation
and the orbital axis. Because the periods of these processes range from a few days to a few million years,
when no resonances arise, the precession-nutation motion can be averaged to compute the secular tidal
evolution on a billion years timescale, as discussed later.

The periodic deformations
For an elastic or fluid body, the presence of an external perturbation, like the one created by a

secondary body, creates a distortion of both the shape and the gravitational field of the object, as discussed
above. As detailed in Chapter 3, the external gravitational field created at the location r by a deformable
body perturbed by a secondary point mass (M2) located at r? (See Fig. 5.1) is given by Eq. (3.31):

VG(r,r?) =
GM1

r

[
1−

∞

∑
n=2

kn
R̄2n+1

rnrn+1
?

M2

M1
Pn(cosψ)

]
, (5.3)

where ψ is the angle between r and r?, R̄ is the mean radius of the primary and kn is the love number
of degree n. This perturbed gravitational field also creates periodic variations of the orbital elements. In
particular the n = 2 term entails an apsidal precession that can be measured and give direct constraints
on the internal structure of the object considered (Sterne 1939).

The major difference with the permanent inhomogeneities discussed above is that the external per-
turbation varies with time, and so does the shape of the primary (Eq. (3.22)). This of course involves
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large scale motions, or "tides", of the fluid composing the latter. The direct consequence of this forced
internal motion in the fluid is that the viscosity of the material can act to damp the oscillations. It is
of course understood that, in gaseous bodies, the molecular viscosity alone has a negligible effect on
these large scales motion (Hubbard 1974) and that some dynamical mechanism are needed to transfer
the energy from the large scales to the small scales where it can be dissipated and transferred into internal
energy. The exact nature of these mechanisms - gravity waves, inertial waves, elliptical instability, etc... -
is still subject to debate (Zahn 1989 ; Zahn and Bouchet 1989 ; Rieutord and Zahn 1997 ; Rieutord 2004 ;
Ogilvie and Lin 2007 ; Goodman and Lackner 2009 ; Barker and Ogilvie 2010 ; Cébron et al. 2011).

However, this dissipation is not yet present in Eq. (5.3). Indeed, this equation describe the potential
of an object in hydrostatic equilibrium1, and applies only if the time needed for the body to relax to this
equilibrium state is infinitely short compared to the timescale of the orbital motion. In this case, it can be
shown that the forces derived from Eq. (5.3) exert no average work over an orbit, and thus do not cause
any secular energy dissipation.

5.1.2 Modeling the dissipation

Including the effect of dissipative processes arising inside the deformable body on its orbital dy-
namics is a rather complicated matter. Indeed, in addition to the various sources of friction in the non
ideal medium, the forcing tidal frequencies are not, in the cases of interest, very different from the char-
acteristic frequencies of the various oscillations or waves that can take place in the deformable body.
The large scale tidal motion can then excite these waves, and a complete modeling of these dynamical
processes coupled with the orbital motion is needed.

The earliest mathematical model for the dynamical effects of tides is due to George Darwin (son
of naturalist Charles Darwin). In his pioneering work, he assumed that tidal friction was solely due to
viscosity, and developed a linear theory of the equilibrium tides, in which the departure of the shape
of the deformable body from hydrostatic equilibrium is small and can be related to the strength of the
dissipation (Darwin 1880, 1908). In practice, this assumes that the perturbing potential created by the
tides raising object can be split in a sum of Fourier components, and that the response of the primary
to each of these terms is linear and depends only on its frequency (σ/2π). The direction of each of
these tidal bulges is then shifted with respect to the direction of the secondary by an angle δ (σ), and
the amplitude of the wave can differ from the equilibrium value. Modern astrophysics generalized and
extended Darwin’s work to an impressive variety of contexts, from the synchronization of the Moon
and other satellites to the evolution of close binary stars (Kaula 1964 ; MacDonald 1964 ; Goldreich
and Soter 1966 ; Goldreich 1966 ; Mignard 1978, 1979, 1980 ; Hut 1980, 1981 ; Zahn 1989 ; Zahn and
Bouchet 1989 ; Touma and Wisdom 1993, 1994 ; Neron de Surgy and Laskar 1997 ; Eggleton et al.
1998 ; Correia and Laskar 2001 ; Jackson et al. 2008 ; Ferraz-Mello et al. 2008 ; Efroimsky and Williams
2009 ; Levrard et al. 2009 ; Leconte et al. 2010a, 2011b). However, when considering the impact of the
dissipative processes on the orbital evolution, all these models still rely on a simple parametrization in
terms of lag angles and amplitudes.

Then, the difficulty lies in choosing the best formulation for δ (σ), or equivalently for the phase lag
ε(σ)2. A simple way to link this lag angle to the dissipation is through the specific dissipation function
(Q−1), which is defined, at each frequency, as the energy damped over a cycle of flexure divided by
the peak energy stored in the system during that time (Goldreich 1963 ; Efroimsky and Williams 2009).

1Meaning here that there is no motion in the considered frame, but elastic forces can be present and are already accounted
for in kn.

2The response to a perturbation proportional to eiσt thus being proportional to ei(σt+ε). For the usual diurnal tides, both
angles are simply related by 2δ = ε .
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Efroimsky and Williams (2009) show that

Q−1(σ)≡−
∆cycleE(σ)

2πEpeak(σ)
=

tan |ε(σ)|
1− (π

2 −|ε(σ)|) tan |ε(σ)|
. (5.4)

Thanks to this relation, specifying the spectrum of the dissipation, either by equilibrium or dynamical
tides, is sufficient to infer the impact of tides on the orbital evolution of the system.

However, to further simplify the model, one of the two following assumptions is often made.

Constant Q approximation

Based on the observation that, for the earth, the specific dissipation function varies by less than one
order of magnitude between the Chandler period3 (∼ 440 days) and the periods relative to seismic waves
(a few seconds), it is often assumed that the specific dissipation is constant with respect to the forcing
frequency (Q(σ) = Q). The overall dissipation is therefore encompassed in a single number, the tidal Q
(or equivalently Q′4), or the constant phase lag ε . However, this model has two major drawbacks, whose
consequences will be more comprehensively discussed in the following sections.

(i) Inverting Eq. (5.4) in the limit of low dissipation, we see that ε = sign(σ)/Q. This model thus
introduces a discontinuity at each time that one of the tidal frequency vanishes. This assumption is
thus particularly unjustified when considering tides on nearly synchronized objects, as it is thought
to be the case for most close in exoplanets.

(ii) Because, one must first decompose the forcing potential in terms with a well defined phase and
frequency before lagging them with the chosen lag, perturbative developments of Kepler equations
of motion, both in eccentricity and inclination must be used. The resulting equations are then
strictly valid only in the low eccentricity and obliquity regime.

Weak friction approximation

As shown by Darwin (1880) and Alexander (1973), the frequency dependence of the phase lag of a
purely viscoelastic oscillator is given by

tan(ε) =
σ

τv(ω2
0 −σ2)

, (5.5)

where τv is a viscous damping timescale and ω0/2π the natural frequency of the oscillator. In an incom-
pressible gaseous body, the restoring force acting against the tidal deformation is the self-gravity of the
body. Thus ω0 can be estimated through the free-fall time as 2π/ω0 ≈ 1

4

√
3π

2Gρ̄1
≈ 30 minutes for Jupiter

mean density (ρ̄1 ≈ 1.33×103kg/m3). For tidal periods of several days ω0� σ and for weakly viscous
fluid, the phase lag reads

ε(σ)≈ σ

τv ω2
0
. (5.6)

3Period of the free motion of the of the figure axes of a body around its rotational pole.
4Because the efficiency of tidal processes is proportional to the product of the amplitude of the tides (proportional to k2)

with the efficiency of the damping of these tides (inversely proportional to Q), it is customary to introduce the reduced quality
factor Q′ = 3

2
Q
k2

, so that Q′ = Q for an incompressible homogeneous sphere.
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In this weak friction approximation, the specific dissipation then scales linearly with the forcing fre-
quency. Each Fourier component is thus delayed by a single constant time lag

∆t ≡ 1
τv ω2

0
, with ε(σ)≈ σ∆t. (5.7)

While this approximation may overestimate the dissipation for high frequencies (σ & ω0), it entails a
significant simplification. Indeed, in the frame co-rotating with the deformable body, the tidal forces
exerted by the secondary can be calculated by stating that the effect of viscosity is simply to delay the
tidal bulge with respect to the tides raising potential by the same constant time lag ∆t. As shown in
Hut (1981), and detailed in Appendix I, thanks to this approximation, the set of equations for the tidal
evolution of the orbital elements can be calculated for any eccentricity and inclination of the orbit in
terms of closed formulae. Because many exoplanets are very eccentric, and for the reasons described in
§ 5.4, in the following, I will use this weak friction approximation.

The frequency dependent quality factor then reads,

Q(σ)≈ 1
σ∆t

. (5.8)

It is therefore difficult to express a global dissipation efficiency. A rough estimate can nonetheless be
found in cases for which the excitation spectrum reduces to a small number of frequencies. For non-
synchronized circular orbits, semi-diurnal tides, whose frequency is twice the difference between the
rotation rate of the primary (ω) and the orbital mean motion (n), dominate and setting σ = 2|ω− n| in
Eq. (5.8) yields

Q−1 ≈ 2∆t|ω−n|. (5.9)

This formula can be used to estimate the quality factor for non-synchronous bodies, such as the Sun,
the Earth or Jupiter, as long as the eccentricity of the orbit is small. As the planet tends toward syn-
chronization, the dissipative effects of the semi diurnal tides vanish with their frequency. Then, the most
dissipative tides are the eccentric annual tides (σ = n) and

Q−1 ≈ ∆t n. (5.10)

Apart from these two limit cases, no tidal frequency dominates, and the dissipation is the response of the
body to the rich spectrum of exciting tidal frequencies. Thus no simple relation exists between Q and ∆t
in the general case.

Although it is tempting to use Eq. (5.10) to rewrite the tidal equation and to keep Q′ constant instead
of ∆t as done by, for example, Mardling and Lin (2002), Dobbs-Dixon et al. (2004) and Barker and
Ogilvie (2009), one must keep in mind that this procedure is not equivalent either to the constant phase
lag (i.e. constant Q) or time lag model. Indeed the frequency dependence of the phase lag is given by
ε(σ) = σ/(nQ) and is still proportional to the tidal frequency over an orbit as in the constant time-lag
model, but with a slope that is changing during the evolution, while no physical change has necessarily
occurred inside our bodies.

5.1.3 Secular evolution equations

Having a prescription for the parameters modeling the dissipation in our bodies, in our case a
constant time lag, we can concern ourselves with the determination of the secular change of the orbital
elements of a tidally interacting binary system. We consider a system of two deformable bodies of mass
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M1 and M2. Note that no approximation will be made on the masses of the two bodies, meaning that
the following equations can be used in a large variety of contexts, covering Star-Star, Star-Planet and
Planet-Satellite interactions.

The major interest of the linear model, i.e. at constant time lag, is that, as demonstrated by Hut
(1981), equations can be derived to be valid up to any finite value of the eccentricity. However, his
model remained restricted to vanishing obliquities. In the calculations presented in Appendix I, using
a vector representation of the tidal torque, I extend the set of tidal secular evolution differential
equations to account for any finite obliquity.

In fine, the complete equations taking into account tides in both bodies are obtained by computing
separately the effects of the tides raised in both objects (as shown in Appendix I) and by adding them up.
We are then left with the following set of six coupled, non linear equations of first order

1
a

da
dt

=
4a

GM1M2
∑

i
Ki

[
N(e)xi

ωi

n
−Na(e)

]
, (5.11)

1
e

de
dt

=
11a

GM1M2
∑

i
Ki

[
Ωe(e)xi

ωi

n
− 18

11
Ne(e)

]
, (5.12)

dCiωi

dt
=−Ki

n

[(
1+ x2

i
)

Ω(e)
ωi

n
−2xi N(e)

]
, (5.13)

dεi

dt
= sinεi

Ki

Ciωi n

[
(xi−ηi)Ω(e)

ωi

n
−2N(e)

]
, (5.14)

where xi = cosεi and ηi is defined by Eq. (I.31). For details about the notations, the reader is referred to
Appendix I. The various functions of the eccentricity are

Na(e) =
1+ 31

2 e2 + 255
8 e4 + 185

16 e6 + 25
64 e8

(1− e2)15/2 ,

Ne(e) =
1+ 15

4 e2 + 15
8 e4 + 5

64 e6

(1− e2)13/2 ,

N(e) =
1+ 15

2 e2 + 45
8 e4 + 5

16 e6

(1− e2)6 , (5.15)

and

Ωe(e) =
1+ 3

2 e2 + 1
8 e4

(1− e2)5 ,

Ω(e) =
1+3e2 + 3

8 e4

(1− e2)9/2 . (5.16)

The strength of the tides in the body i are parametrized by

Ki =
3
2

k2,i∆ti

(
GM2

i
R̄i

)(
Mj

Mi

)2( R̄i

a

)6

n2, (5.17)

where the j index denotes the quantities relative to the other body. Notice here that no assumptions
have been made on the masses of the objects studied. In particular, in our notations, the secondary
can be the most massive object of the binary. In general, the tides raised in both objects have rather
different amplitudes and dissipation timescales and effects. It can thus sometimes be useful to study
them separately. In these cases, and when no confusion is possible, the index i will refer to the body on
which tides are raised (the primary), and j will stand for the tides raising object (the secondary).
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As shown in § I.2.3, for a strongly interacting low mass companion, such as a planet, pseudo syn-
chronization is often achieved. Eqs. (5.13) and (5.14) can thus be replaced by εp = 0 and ωp equal

ωeq =
N(e)
Ω(e)

2xp

1+ x2
p

n =
N(e)
Ω(e)

n . (5.18)

In this case, the rate of tidal dissipation which is given by Eq. (I.43) in the general case can be rewritten

Ėtid = 2K1

[
Na(e)−

N2(e)
Ω(e)

]
. (5.19)

5.2 Some analytical solutions

The above equations are coupled and non-linear and must then be handled numerically in most
cases. For this purpose I developed a code integrating the set of equations by means of a leap-frog
integrating scheme. In order to test both the code and the level of numerical error yielded by
the integration, I solved the equations in some simple limit cases, which are presented below. In
addition, when the system studied is in the right regime, these analytical solutions can be used directly
to have a more flexible model. As shown in Leconte et al. (2010a) and in § 5.2.2, the model presented
below can be used to constrain the dissipation inside Jupiter.

5.2.1 Small object spiraling in or outward on circular orbits

Let us consider the case of a pseudo synchronized and aligned secondary around a non synchronized
(but aligned) primary. This case is not purely ideal, as it can be used to describe the orbital evolution
of binaries with large mass ratios, such as a satellite orbiting a planet, or a close in planet orbiting its
host star. As we will see, in the first case, the often fast rotation of the planet pushes the satellites away
(as for the Earth, Jupiter, Saturn, etc...), whereas the slow stellar rotation causes most exoplanets to
spiral inward, and eventually cross the Roche lobe where they are tidally disrupted. In this case, some
simplifications occur. Let us take the following initial conditions: ω1(t = 0) = αn0

a(t = 0) = a0
e(t = 0) = 0

 .

Thanks to Eq. (5.12), we can show that if α < 18
11 , e = 0 is a stable value for the eccentricity and will

not evolve with time. With the same argument we can show that εi = 0 are also stable solutions. As
the pseudo synchronization approximation gives ω2 = ωeq = n, we are left with only two variables
and equations to solve simultaneously. Let us highlight that in this configuration, there is no more
dissipation in the secondary, and the only tidal effects are due to the tides raised on the primary. Taking
the dimensionless variables ã counted in units of a0 and t in units of

τ in =
1
6

M2
1

M2(M2 +M1)
(

a0

R̄1
)8 R̄3

1
GM1k2,1∆t1

, (5.20)

the equations read

ω̇1 =
τ in

τsync

n
ã6

[
1− ω1

n

]
,

˙̃a =− 1
ã7

[
1− ω1

n

]
. (5.21)
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The combination of these equations gives

ω̇1 =−
τ in

τsync

˙̃a√
ã

n0

and by time integration

ω1

n0
= α− β̃ (

√
ã−1), (5.22)

where the initial conditions have been used and β̃ = 2τ in/τsync. This relation is to be expected as it is
simply the expression of the conservation of the total angular momentum of the system5. Substituting
Eq. (5.22) in Eq. (5.21) yields:

˙̃a =− 1
ã7

[
1− ã3/2(α− β̃ (

√
ã−1))

]
.

Therefore, the following integration gives an implicit solution for the semi major axis

∫ ã

1

−ã7dã
1− ã3/2(α− β̃ (

√
ã−1))

= t̃. (5.23)

I computed this analytic solution and compared it with the numerical integration of the full set of equa-
tions (including the spin state of the planet). For a given object, the only parameters left are the ratio
of initial rotational over orbital angular velocities (α), and the initial semi-major axis (a0). I decided to
consider a system near the critical semi-major axis acrit, as defined in § 5.3, with a0 = 1.03 acrit. There-
fore, choosing an α < αc

6 yields an unstable system with a total angular momentum lower than Hcrit.
As shown in figure 5.2, in this case angular momentum is transferred from the orbit to the central object
until the merging of the two bodies. For α > αc the system tends to the closest stable orbital equilibrium
available for its angular momentum and the angular momentum is transferred from spin to orbit.

Figure 5.3 shows the discrepancies between the analytical solution derived here and the numerical
integration. As the numerical integration dealt with the full set of equations, these discrepancies are
due both to the numerical error and to the pseudo synchronization hypothesis for the planet. Further
calculations showed that in this case the numerical errors are predominant. This validates the pseudo
synchronization hypothesis made for most of the computations involving a star-planet system, as done
hereafter.

5.2.2 Constraining the dissipation in Jupiter

In order to use the constant time lag model, we must consider many values for ∆t. To constrain
the range of values to use in the numerical calculations performed in § 5.5, I follow the analysis of
Goldreich and Soter (1966), but with the constant time lag model, and use the Io-Jupiter system
to infer an upper limit for k2,p×∆tp in giant extrasolar planets (Leconte et al. 2010a). As I shown
above, because the massive body (hereafter Jupiter) is rapidly rotating, with ωJ > nS, where nS is the
orbital mean motion of any of the satellites of Jupiter, tidal transfer of angular momentum drives the
small bodies outwards, into expanding orbits. Therefore the presence of Io in a close orbit provides
an upper limit for the time lag in Jupiter. Indeed, if ∆tp was too large, the backward evolution of the
satellites’ orbits would imply their disappearance within less time than the age of the Solar system, i.e.
of Jupiter.

5The angular momentum of the planet can be neglected, which is, here, equivalent to the pseudo synchronization hypothesis.
6αc ≈ 0.995 in this case.
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Figure 5.2: Comparison between the exact solution given by Eq. (5.23) for the angular velocity of the
primary and the semi-major axis and the numerical integration of the full set of equations. The exact
solution has been shifted to be visible (the real relative error is . 10−6). As predicted for α < 1 angular
momentum is transferred from the orbit to the central object: the primary is spinning up while the semi-
major axis is decreasing. As this configuration is not stable (α < αc), the two objects will eventually
merge at t ≈ 9.3τ in.

I can thus use the model described above and directly integrate Eq. (5.23). Note that in this context,
this integral cannot be performed down to a = 0 because the satellite first crosses the co-rotation radius
where the integrand tends to infinity, which is an unstable equilibrium state for the system (Hut 1980).
For the Io - Jupiter system, taking t = −4.5 × 109 yr and a(t) equal to the Roche limit in Eq. (5.23)
yields kJ∆tJ . 5× 10−3s. Therefore Eq. (5.9) implies Q′J & 1× 106 for the actual Io - Jupiter system,
slightly lower than the value derived by Goldreich and Soter (1966). As discussed by these authors, our
upper limit on ∆tp must be multiplied by a factor 5 to 7.5, as Io might have been trapped in a low order
commensurability with Europa and Ganymede during part of its evolution, slowing down the expansion
of its orbit. Thus, as discussed in Leconte et al. (2010a), for Jupiter,

kJ∆tJ . 2−3×10−2 s. (5.24)

For the sake of easy comparison, I will refer to the quantity Q′0, which is the reduced quality factor
computed for a reference period of one day:

Q′0 =
3
2

Q(2π/1day)
k2

=
3
2

1day
2π k2∆t

. (5.25)

The above calculated constraint reads Q′0,p & 1× 106. In the calculations presented in the following
sections, I will examine two cases for the planet under consideration, namely Q′0,p = 106 and Q′0,p = 107

(k2,p∆tp∼ 2×10−2−2×10−3), while taking Q′0,? in the range 105−106 (k2,?∆t?∼ 2×10−1−2×10−2),
a typical value for solar-type stars (Ogilvie and Lin 2007).

It is important to stress that if ∆t, or its counterpart Q, is poorly known for both planets and stars,
its variability from one object or configuration to another is even more uncertain. For instance, the tidal
dissipation in planets probably differs significantly from that in brown dwarfs because of a dense core
able to excite inertial waves in the convective envelope (Goodman and Lackner 2009). Given the highly
non-linear behavior of tidal dissipation mechanisms, the effective tidal dissipation function varies not
only with the structure of the object or with the tidal frequency, but also with the amplitude of the tidal
potential. For example, Q′? values inferred from the circularization of close FGK binary stars (Meibom
and Mathieu 2005), may be lower than the actual Q′? encountered in star-planet systems (Ogilvie and
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Figure 5.3: Relative error between the exact solution given by Eq. (5.23) and the numerical integration
of the full set of equations (right: unstable system, left: stable system). The numerical integration yields
correct results down to 10−6. The error grows near the singularity corresponding to the fall of the planet
on to the star.

Lin 2007). Consequently, the range of values considered here for both Q′? and Q′p should be seen as
mean values and be re-evaluated when considering specific and/or atypical systems (XO-3, HAT-P-2 or
CoRoT-3 for example).

5.2.3 The spin state of the low mass companion.

In the previous section we discussed the angular momentum transfer between a massive primary and
the orbital motion. To do so, we assumed synchronism between the rotation of the smaller companion
and the orbit. For long term evolution, because the synchronization timescale for the planet is very
short compared to the one of the orbital evolution, this assumption is justified as discussed in § I.2.1
and verified in § 5.2.1. For the same reason, if we want to look at the evolution of the spin state of the
low mass companion, the other orbital parameters can be considered frozen in time because they evolve
on a much longer timescale. This is what I attempt to do in this section. This will allow us to verify
the coupling between the equations on ω and ε for any eccentricity. Let us take the following initial
conditions: ω1(t) = ω0

a(t) = a0
e(t) = e0

 .

We are left with only two equations, Eqs. (5.13) and (5.14), for the variables ω2 and ε2 to solve simulta-
neously. The non linearity of these equations with respect to ε2 and the coupling between the equations
prevents any analytical solution to be found in the general case. Therefore we will consider only the
linear case, implying ε2� 1. In addition, we place ourselves in the case where

η2 ∝
M1 +M2

M1
r2

g,2(R̄2/a)2� 1,

meaning that the internal angular momentum of the object can be neglected with respect to the orbital
one. This assumption is fully justified for a planet, as is confirmed by the numerical integration. Since
the eccentricity and the semi-major axis are fixed, it is tempting to use the following dimensionless
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Figure 5.4: Left: Comparison between the exact solution given by Eq. (5.28) for the obliquity obliquity of
the planet and the numerical integration of the full set of equations. The exact solution has been shifted to
be visible. As predicted the planet pseudo synchronizes and its obliquity is damped to 0. Right: Relative
error between the exact solution and the numerical integration. The numerical integration yields correct
results down to 10−5. The peculiar behavior of the error is due to the fact that the solution is not convex:
the sign of the error changes.

variables,
t̃ = t Ω(e)/τsync ≡ t/τ̃sync
ω̃ = ω2/ωeq
ε̃ = ε2/ε2,0

, (5.26)

where ω2 is normalized to the pseudo synchronization rotation speed and ε2,0 is the initial obliquity of
the planet. We finally just need to provide an initial condition for the angular velocity: ω̃(t = 0) = ω̃0.
The equations thus read:

˙̃ω = 1− ω̃,

˙̃ε = ε̃

[
1
2
− 1

ω̃

]
.

Fortunately, the obliquity creates only a second order perturbation of the other equations, and thus our
system is no longer coupled. We can then solve our system sequentially. The first equation being similar
to the one of a damped twisted pendulum without inertia, we can see that the rotation rate will relax
toward its quasi equilibrium value following an exponential decay of the form

ω̃(t̃) = 1+(ω̃0−1)e−t̃ . (5.27)

Thus

ln(ε̃(t̃)) =
t̃
2
−
∫ t̃

0

dt
1+(ω̃0−1)e−t

ε̃(t̃) =
ω̃0 et̃/2

et̃ +(ω̃0−1)
. (5.28)

I compared this analytical solution with the numerical integration of the full set of equations in
Fig. 5.4. As predicted the planet pseudo synchronizes and its obliquity is damped to zero on a short
timescale compared to the global orbital evolution. As can be seen from Eq. (5.14) in the general case, or
by differentiating Eq. (5.28) with respect to time, we can see that when the rotation of the object becomes
larger than twice the pseudo synchronous rotation rate, the zero obliquity state is no longer stable. This
analytical model has been used to countercheck our numerical results in Heller et al. (2011).
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5.3 Are transiting planetary systems about to merge ?
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Figure 5.5: Htot(a) for equilibrium states in
unit of (acrit,Hcrit). The solid (dashed) part
of the curve represent the (un)stable branch.
Gray arrows show the direction followed by
a(t) in each part of the diagram. The dots rep-
resent observed values for transiting systems.
In all the systems with Htot < Hcrit, the planet
will eventually merge with its star.

From the equations shown in § 5.1.3, we directly
see that a tidal equilibrium is achieved only when the
two bodies are in a state of coplanarity (εi = 0), circular-
ity (e = 0) and co-rotation (ωi = n). However, this does
not tell us whether such equilibrium states exist or can
be reached by a given system ! Thanks to Hut (1980) a
criterion for the existence of these states can be derived.
Indeed, because the total angular momentum of the sys-
tem is conserved, and tidal friction dissipates mechan-
ical energy, a system with a given angular momentum
(Htot) will be able to reach equilibrium only if there is an
equilibrium state with the same angular momentum. The
stability of the equilibrium can then be deduced from the
fact that energy is at a minimum and not a maximum.

Let us then study the angular momentum of equi-
librium states, which is given by

Htot = Horb +H1 +H2. (5.29)

Hut (1980) showed that, thanks to the synchronization
condition, this rewrites

Htot = Hequ(a)

= Hcrit

[
3
4

(
a

acrit

)1/2

+
1
4

(acrit

a

)3/2
]
,

(5.30)

where acrit =

√
3
(M1 +M2)

M1M2
(C1 +C2) and Hcrit = 4

(
G2(M1M2)

3

27(M1 +M2)
(C1 +C2)

)1/4

.

This shows that the angular momentum of a configuration in equilibrium only depends on the semi-
major axis. It is easy to see that Hequ(a) has a minimum reached for acrit

7 for which the minimum reads
Hcrit

8. Thus, only systems with Htot > Hcrit can pretend to reach an equilibrium before the merging of the
two components. Unfortunately for most transiting planets, Levrard et al. (2009) showed that because of
their short period orbit, only one of the transiting planetary systems known at the time, namely HAT-P-2,
had enough angular momentum to fulfill this criterion, all the other planets being doomed to fall onto
their parent stars !

To see wether this conclusion still holds, I have performed a similar analysis but including
newly found transiting planets. The results are summarized in Fig. 5.5. While most of the transiting
systems are found to be unstable, the number of stable systems has significantly increased. For the
systems found on the left of the a = acrit line, the stability is just due to the fast rotation of the star, as
was the case for HAT-P-2. But this analysis also reveals systems with a > acrit that were not present in
Levrard et al. (2009) (some of these with very large a are not shown in Fig. 5.5). For these, stability in

7For a Star-planet system, M?�Mp and R? > Rp, thus C?�Cp and acrit ≈
√

3r2
gyr,?

M?
Mp

R? > R?.
8 Hut (1980) also showed that from the equilibrium states described above, only the a> acrit branch of the Hequ(a) curve is

stable, as shown on Fig. 5.5.
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ensured by a long orbital period, and thus a large orbital angular momentum. The fact that such transiting
objects have been discovered only recently is due to the fact that long period planet have a smaller transit
probability and require longer observation run to be detected and confirmed. However, this reminds us
that if many short period planets are about to be engulfed by their host star, exoplanets on wider
orbits, many having already been discovered by radial velocity, are safe.

Note however, that these studies make use of two major assumptions that are not true in general.
First, the radii of the components are assumed to be constant. As it is not true, this means that Hcrit
and acrit will change over time. During the early stages of the evolution of the star-planet system where
a rapid contraction occurs, the system will move toward the upper right corner of the phase diagram
shown in Fig. 5.5. This is a rather good news from the point of view of the stability: As the star spins
up during contraction, its co-rotation radius shrinks and the planet has more chances to be outside of this
radius, where tides push it outward. On the other hand, because of the stellar magnetic winds, angular
momentum is not conserved. This causes a spin down of the star and a downward motion in the a−Htot
diagram. From a theoretical point of view, all the systems will eventually enter the Htot < Hcrit zone,
and all the planets will fall onto their parent star. The only remaining question is when ? But as tidal
interaction strongly decrease when planets are further away, most long period planets are safe for more
than the lifetime of their star.

5.4 On the effect of the quasi circular approximation: Analytical analysis

Following the initial studies of Jackson et al. (2008), all studies exploring the effect of tidal heating
on the internal evolution of "Hot Jupiters" (Miller et al. 2009, Ibgui et al. 2009) have been using a tidal
model assuming a constant Q value during the evolution. Moreover, in all these calculations the tidal
evolution equations are truncated at the 2nd order in eccentricity (hereafter referred to as the "e2 model"),
even when considering tidal evolution sequences with non-negligible values of e at earlier stages of evo-
lution. Although such a e2-truncated model is justified for planets and satellites in the solar system
(Kaula 1963 ; Goldreich and Soter 1966), it becomes invalid, and thus yields incorrect results for
a(t), e(t) and Ėtides for finite eccentricity values, as showed in Leconte et al. (2010a). The main argu-
ment claimed for using this simple tidal model is the large uncertainty on the tidal dissipation processes
in astrophysical objects. In particular, as detailed by Greenberg (2009), the linearity of the response to the
tidal forcing based on the viscoelastic model may not hold in a real object for the large spectrum of ex-
citing frequencies encountered when computing high-order terms in the eccentricity. Although the large
uncertainty in the dissipative processes certainly precludes an exact determination of the tidal evolution,
it can by no means justify calculations which are neglecting dominant terms at finite e.

Indeed, from a dimensional point of view and prior to any particular tidal model, the strong impact
of high-order terms in the eccentricity is simply caused by the tidal torque (N) being proportional to
(ω − θ̇)/r6

? (θ being the true anomaly) and that over a Keplerian orbit the average work done by the
torque is of the form

< N · θ̇ >∝<
θ̇ 2

r6
?

>=
n2

a6 ·
1+14e2 + 105

4 e4 + 35
4 e6 + 35

128 e8

(1− e2)15/2 ,

which is a rapidly increasing function of e (see § I.1.1 for the details of the calculation). This means that
although the mean distance between the planet and the star increases with e, the distance at the periapsis
strongly decreases, and most of the work due to the tidal forces occurs at this point of the orbit. One
can see that for e > 0.32 the high-order terms dominate the constant and e2 terms. This is physical
evidence that shows that for moderate to high eccentricity most of the tidal effects are contained in
the high-order terms that can therefore not be neglected independently of any tidal model.
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Figure 5.6: Pseudo-synchronization curve (solid), the ȧ = 0 curve (dashed) and the ė = 0 curve (dotted)
for the complete model (left panel) and for the truncated one (right panel) in the ω/n vs e phase space. A
pseudo-synchronized planet always follows the ω̇ = 0 curve and always lies in the ȧ < 0 and ė < 0 part
of the diagram because the curves do not intersect with the complete equations (left panel). In contrast,
in the 2nd-order truncated model the pseudo-synchronization curve intersects the ȧ = 0 (at e ∼ 0.208)
and ė = 0 lines (e∼ 0.326). Revised figure from Leconte et al. (2010a).

In this section, as already presented in Leconte et al. (2010a), I quantify this statement more
comprehensively. I will demonstrate analytically that

• in the context of the Hut model, a truncation of the tidal equations at the order e2 can lead
not only to quantitatively wrong but to qualititatively wrong tidal evolution histories, with
sequences drastically differing from those obtained with the complete solution.

• the rate of tidal dissipation can be severely underestimated by the quasi circular approxima-
tion (e� 1).

Furthermore, Q-constant models consider only low-order terms in obliquity (εi), and thus cannot
address the problem of obliquity tides and energy dissipation produced by this mechanism. For more
detailed discussion of this subject, see Levrard et al. (2007) and Barker and Ogilvie (2009).

5.4.1 Expanding vs shrinking orbits

On one hand, considering Eq. (5.11) (with εi = 0 for simplification) we can see that for ωi/n 6
Na(e)/N(e), the tides raised on the body i lead to a decrease of the semi-major axis, transferring the
angular momentum from the orbit to the body’s internal rotation. It is easy to show that for a synchronous
planet this condition is always fulfilled, because ωeq

n = N(e)
Ω(e) 6

Na(e)
N(e) for any eccentricity (respectively

solid and dashed curves of Fig. 5.6.a). As a result, the semi-major axis of most short period planets is
decreasing.
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On the other hand, truncating Eq. (5.11) for the semi-major axis evolution at the order e2 yields

1
a

da
dt

=
4a

GM?Mp

{
Kp

[
(1+

27
2

e2)
ωp

n
− (1+23e2)

]
+K?

[
(1+

27
2

e2)
ω?

n
− (1+23e2)

]}
,

(5.31)

and the previous condition becomes ωi/n 6 (1+ 23e2)/(1+ 27
2 e2). Up to 2nd order in eccentricity, the

pseudo-synchronization angular velocity is given by ωeq = (1+ 6e2)n 9. One can see that ωeq/n =
1+6e2 6 (1+23e2)/(1+ 27

2 e2) only for

e6
1
9

√
7
2
≈ 0.208.

This means that even for a moderate eccentricity, e∼ 0.2, the truncated model predicts that tides raised on
a pseudo-synchronous planet lead to a growth of the semi-major axis instead of a decrease, as obtained
by the complete model. Therefore, truncating the tidal equations at the order e2 for an eccentricity e> 0.2
not only predicts quantitatively wrong but qualitatively wrong tidal evolutions. The same arguments for
the evolution of the eccentricity show that tides raised on a pseudo-synchronous planet lead to a growth
of the eccentricity for

e>

√
7

66
≈ 0.326

and not to a decrease. This is illustrated by Fig. 5.6, which shows the pseudo-synchronization curve
(solid), the ȧ = 0 curve (dashed) and the ė = 0 curve (dotted) for the full model (left panel) and the trun-
cated one (right panel), in the ω/n vs e phase space. As demonstrated before, the pseudo-synchronization
curve crosses the ȧ = 0 and ė = 0 lines in the 2nd order model (Fig. 5.6.b), whereas it does not when
solving the complete Hut equations (Fig. 5.6.a). As a result, with the truncated model, a pseudo-
synchronized planet can erroneously enter the zone of the phase space where its tides act to increase
both the semi-major axis and the eccentricity. While this behavior is not observed with the constant
phase-lag model because it assumes that the star is slowly rotating (ω?/n� 1) and that the planet is near
synchronization (ωp/n≈ 1) - placing them in the ȧ < 0 and ė < 0 zone of the phase space - this formal
demonstration sets clear limits on the domain of validity of the quasi-circular approximation.

5.4.2 Underestimating tidal heating

The key quantity arising from the coupling between the orbital evolution and the internal cooling
history of a planet is the amount of energy dissipated by the tides in the planet’s interior, which may
compensate or even dominate its energy losses. As a result, tides raised in an eccentric planet can slow
down its contraction (Bodenheimer et al. 2001 ; Leconte et al. 2009 ; Baraffe et al. 2010) or even lead to
a transitory phase of expansion (Miller et al. 2009 ; Ibgui et al. 2009). Correctly determining the tidal
heating rate is thus a major issue in the evolution of short-period planets. The often used formula is
(Kaula 1963 ; Peale and Cassen 1978 ; Jackson et al. 2008)

Ėtid = 7Kpe2 =
21
2

k2,p

Q

(
GM2

?

Rp

)(
Rp

a

)6

ne2 (5.32)

(the 21k2,p/2Q is rewritten 63/4Q′ in Miller et al. (2009)). As already stated by Wisdom (2008), although
this formula gives a fair approximation of the tidal dissipation rate for the small eccentricity cases,

9these equations truncated at the order e2 agree with equations in §16 of Ferraz-Mello et al. (2008), even though they have
been derived with different methods
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which are typical in the solar system, it severely underestimates the tidal heating for moderate and high
eccentricities. Figure 5.7 illustrates the power dissipated in a pseudo-synchronized planet as a function
of the eccentricity. It shows that for e & 0.45, the truncated formula used in Miller et al. (2009)
and Ibgui et al. (2009) underestimates the actual tidal dissipation rate by more than one order of
magnitude and by more than a factor 103 for e& 0.7, an eccentricity value often advocated by these
authors to explain the highly inflated planets (see § 5.5.3 ; Leconte et al. 2010a, 2011b).
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Figure 5.7: Tidal energy dissipation rate in a pseudo-synchronized planet (in Watt) as a function of the
eccentricity calculated with Eq. (5.19) (solid curve) and with the truncated formula (Eq. (5.32) ; dashed).
The ratio of the two curves only depends on the eccentricity and not on the system’s parameters. For
e = 0.45, the e2 approximation (Eq. (5.32)) underestimates the tidal heating by a factor 10. The actual
values were derived using HD 209 458 b parameters: Mp = 0.657MJup, Rp = 1.32RJup, M? = 1.101M�,
a = 0.047AU (Knutson et al. 2007). Q′ = 106 (see § 5.1.2). The dotted curve gives the dissipation rate
calculated up to e10 (Eq. (5.35)). The shaded areas are obtained by varying Q′ by one (two) order of
magnitude. Revised figure from Leconte et al. (2010a).

From a mathematical point of view, the fact that a truncation to 2nd order in eccentricity yields such
discrepancies is due to the (1− e2)−n factors in the equations for the tidal dissipation, that are expanded
in low order calculations. Fortunately, such expansions can be carried out, as the convergence radius of
the series is 1. Indeed, if the power series converges

1
(1− e2)n =

∞

∑
k=0

e2k

k!

k

∏
i=1

(n− i)≡
∞

∑
k=0

ake2k. (5.33)

The convergence radius is thus given by

econv =

√
limk→∞

∣∣∣∣ak+1

ak

∣∣∣∣=
√

limk→∞

|n−k|
k+1

= 1. (5.34)

However, as already stated by Wisdom (2008), for moderate to high eccentricity this function is
poorly represented by the first terms of its polynomial representation. Indeed, the first terms of the
energy dissipation rate are given by

Ėtid

7Kpe2 = 1+
54
7

e2 +
1133

28
e4 +

31845
224

e6 +
381909

896
e8 +O

(
e10) . (5.35)
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The dissipation rate calculated up to e10 is plotted in Fig. 5.7 (dotted curve), where it can be compared
with the exact result. It is clear that for e & 0.4 the polynomial developments of the tidal evolution
equations must be done to a much higher degree than in previous studies, or complete calculations like
those done in Hut (1981) must be used. The same argument holds for the evolution of the semi-major
axis and the eccentricity. Because Eqs. (5.11) and (5.12) also contain (1−e2)−p/2 factors, the decrease of
a and e is severely underestimated at even moderately high eccentricity when using a 2nd order truncated
expansion in eccentricity.

In particular, as discussed in the next section, a high eccentricity (e & 0.6) cannot be maintained
for a few 100 Myr to a few Gyr in a system like HD 209 458 in agreement with the results of Miller
et al. (2009) (see Fig. 5.9 below). This is in contrast with Ibgui and Burrows (2009), who find that
the radius HD 209 458 b can be matched and that the system can sustain a significant eccentricity up
to the observed epoch. These discrepancies between these two studies based on the same tidal model
may reveal differences in the implementations of the tidal equations, or a difference in the calculation of
interior structures or boundary conditions.

5.5 Tidal friction as an energy source: Implications for Hot Jupiters

As mentioned earlier, tidal heating has been suggested by several authors to explain the anomalously
large radius of some giant close-in observed exoplanets. As demonstrated analytically in § 5.4, the
previous calculations, which are all based on constant-Q models truncated at the order e2 yield inaccurate
results when applied to significantly (initial or actual) eccentric orbits - a common situation among
detected exoplanetary systems. In the following section, I first review the energetic arguments on which
this "tidal heating hypothesis" is based. Doing so, in § 5.5.1, I also develop for the first time an
analytical formula bracketing the total energy available for the planet during circularization which
is valid to any eccentricity. Then, I investigate the impact of tidal heating on the thermal evolution
of the planet on numerical grounds. As expected from the analytical analysis, and shown in § 5.5.2 and
5.5.3, the numerical comparison of the two models shows that the complete tidal equations lead to a much
quicker evolution, and thus to a much higher, but also shorter, tidal heating. Finally, in § 5.6, I revisit the
viability of such a tidal heating mechanism to explain the extensive observed Hot Jupiter radii with
the present complete Hut tidal model. I show that although it indeed provides a possible explanation
for some transiting systems, the tidal heating hypothesis fails to explain the radii of extremely bloated
planets like - among others - HD 209 458 b, TrES-4 b, WASP-4 b or WASP-12 b, in contrast with some
previously published results based on truncated tidal models.

5.5.1 Energy budget

Tidal friction is, by nature a dissipative process. Over time, non ideal effects inside one or the other
of the deformable bodies transform macroscopic mechanical energy into microscopic entropy. If this
processes are energy sinks when considering the orbital evolution (d(Eorb+Erot)/dt < 0), from the point
of view of the thermal evolution of the object, they represent an energy source (ε̇ tid) which has to be
incorporated in the luminosity equation

∂ L
∂ m

= ε̇nuc + ε̇ tid−T
∂ S̃
∂ t

. (5.36)
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As a large fraction of the objects considered are convective, this equation can be integrated to yield (see
Eq. (1.59))

Lp =−Ėnuc + Ėtid− T̄
∂ S̃
∂ t

, (5.37)

where the three terms are, respectively, the contribution of the nuclear reactions10, tidal friction11 and
gravo-thermal energy release (intrinsic luminosity). If an additional source of energy is present, it in-
creases the total outgoing energy flux. Then, the bottom of the atmospheric boundary layer, and thus the
adiabat, is slightly hotter in presence of heating than without. This causes an increase of the radius com-
pared to the traditional case, and less gravo-thermal energy, or entropy, is radiated away. This mechanism
is very similar to the irradiation of the atmosphere by the star, but here, the energy is deposited at depth
(in the convective zone), participates to the energetic budget of the object, and thus, the atmosphere is
heated from below.

However, for this effect to become significant, the energy injection rate must be comparable to the
intrinsic luminosity of the body, and remain so for an extended period of time. To have a first insight
into the capacity of tidal friction to increase the radius of giant exoplanets, I will thus estimate the global
amount of mechanical energy available for the planet in the system, and the typical timescale on which
it will be released, and compare them to the binding energy of the planet and its relevant evolution time.

Synchronization energy

Like Jupiter and Saturn, giant planets are believed to form with a high specific angular momentum,
and thus a high initial rotational energy which reads

Erot =
1
2

C1ω
2
1 =

1
5

r2
gyrM1R̄2

1ω
2
1 . (5.38)

Because tidal processes tend to synchronize the rotational with the orbital motion, and that, in general,
n� ω ini, the ratio of the available rotational energy over the internal energy of the body is

Erot

Eint
=

r2
gyr

5γ

R̄3
1ω2

1
GM1

.
r2

gyr

5γ
, (5.39)

where γ = EintR1/GM2
1 and should be of order unity. Within a numerical factor, this is equal to the

dimensionless rotation parameter mrot defined in Chapter 3, which cannot be higher than unity because
then, gravity at the surface would be to weak too counteract the centrifugal force, and the body would
experience high mass losses. For roughly the same reason, the spin of the planet is small compared to
the orbital angular momentum, and (pseudo)synchronization occurs on a short timescale compared to
the age of the system (see § I.2.1). Therefore, rotational energy is not a sustainable energy source in our
context. At most, the early synchronization will provide a small initial energy pulse whose consequences
will be visible only during a few Kelvin-Helmholtz timescales.

Obliquity tides

Another way to dissipate energy into the interior is by obliquity tides. For the same reasons than
above, if there is no other torque present, the planet obliquity will be damped very quickly. However,
as proposed by Levrard et al. (2007) the presence of a secular perturbation of the orbit could trap the

10Which are important only above 12-13MJup, and at young ages.
11Note that contrarily to § 1.1.3, here, I have defined Ėtid ≡

∫
ε̇ tid dm to manipulate positive quantities.
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planet into a Cassini state, stabilizing the obliquity. Orbital energy can then be dissipated into the planet
trough this channel. If this process can be important for terrestrial planets, it seems rather inefficient in
maintaining a large obliquity for a giant planet, as demonstrated by Fabrycky et al. (2007).
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Figure 5.8: Maximum (minimum) tidal en-
ergy available in unit of Eint as a function
of initial eccentricity and observed (initial)
semi-major axis. The zone where tidal circu-
larization will not impact the thermal history
of the planet is roughly above the Etid = Eint
curve.

If synchronization happens way to fast to heat the
planet at a late epoch, we have seen in § I.2.1 that the
timescale needed to circularize a binary system seems to
be much more similar to the age of the planets that we
currently observe12. At first sight, we might be tempted
to say that the maximum energy available is simply the
total mechanical energy that need to be extracted from
the system to decrease the semi-major axis from its ini-
tial value (a ini), to the current one (afin), the latter being
necessarily larger than the Roche limit (aR) under which
the planet is disrupted by the tidal forces. Therefore, the
mechanical energy available is

∆Eorb =
GM1M2

2

(
1

afin
− 1

a ini

)
> 0. (5.40)

However, this energy can be released in both the star,
and the planet. Indeed, if the planet is pseudo synchro-
nized, and that orbit is nearly circular, tides in the planet
do not dissipate energy anymore, and all the momentum
exchange arise between the star, which is spinning up,
and the orbit, which is shrinking. This is why, for Hot
Jupiters, which are probably pseudo synchronized, only
the circularization period need to be considered to eval-
uate the energy available (Bodenheimer et al. 2001).

During this period, tides in the planet dominate13. For a pseudo synchronized object, a combination
of Eqs. (5.11) and (5.12) gives us

ȧ
a

e
ė
=

4
11

N2(e)
Ω(e) −Na(e)

Ωe(e)N(e)
Ω(e) − 18

11 Ne(e)
=− 2e2

1− e2 ! (5.41)

Neglecting the dissipation in the star, I can estimate the total energy released during the circular-
ization by

Ecirc =
∫ 0

e ini

GM1M2

2a
da
a

=
∫ e ini

0

GM1M2

a
ede

1− e2 , (5.42)

which extends the formula given by Bodenheimer et al. (2001) to higher orders. If the integration
of the full set of tidal equations is needed to compute precisely the energy released, the latter can be

12Indeed, most of them orbit around main sequence stars, and are supposed to be between a few 100 Myr and a few Gyr old.
13As long as a finite eccentricity remains in the system, the ratio of the planetary over stellar tidal dissipation rates is roughly

given by Kp/K? =
k2,p∆tp
k2,?∆t?

(
M?
Mp

)2(Rp
R?

)5
, and is ∼ 10 for a Jupiter-Sun like system.
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bracketed by integrating the above equation for both a = a ini and a = afin (with a ini > afin)

−GM1M2

2a ini
ln(1− e2

ini)< Ecirc <−
GM1M2

2afin
ln(1− e2

ini). (5.43)

Note that, contrarily to the estimate given by Bodenheimer et al. (2001), this formula is valid for
arbitrarily high eccentricities. Thus

Ecirc

Eint
<− 1

2γ

M2

M1

R̄1

afin
ln(e2

ini−1)≈−5
γ
×
(

M2

M�

)(
MJup

M1

)(
R̄1

RJup

)(
0.05AU

afin

)
ln(e2

ini−1).

(5.44)

Fig. 5.8 shows the maximum (minimum) circularization energy in unit of the internal energy (with γ = 1)
for a Jupiter-Sun like system as a function of the final (initial) semi-major axis and initial eccentricity. As
expected, the importance of the tidal heating will increase as the object starts on a more eccentric orbit,
and is closer to the central body. This also shows that the amount of available energy could in principle
be sufficient to significantly impact the planet.

5.5.2 Coupled tidal/thermal evolution

However, to know whether this energy is delivered at the right time and at the right pace, one
must couple consistently the internal and the orbital evolution as each one will influence the other.
I thus implemented the aforementioned module computing the orbital evolution at each time step
in the evolutionary code described in Chapter 2. For the moment, the internal evolution of the star is
supposed frozen, and its radius is kept constant at its current value during the whole evolution. Regarding
the orbital evolution of the system, this hypothesis is valid for two main reasons. First, the tidal heating
in the star is too weak compared to the nuclear burning to significantly impact the stellar evolution, and
second, the pre main sequence phase, where the star exhibits a radius and an angular velocity which are
drastically higher than today, does not last long enough compared to the tidal evolution. Of course, this
is no longer possible if one is specifically interested in the evolution of the angular velocity of the star.
Indeed, as discussed in § I.2.4, in this case, conservation of the angular momentum during the contraction
and stellar winds must be properly taken into account along tidal friction to calculate consistently the
evolution.

In our simulations, the evolution of the planet can exhibit three different general behaviors, depend-
ing on the initial conditions:

• In the low initial eccentricity regime, the eccentricity is damped to zero in a few Gyr and the
semi-major axis decreases until the planet reaches the Roche limit and merges with the star (due to
stellar tides ; Levrard et al. 2009), because the system does not have enough angular momentum
to reach a stable equilibrium (Hut 1980 ; Levrard et al. 2009). In this case, tidal heating is not
sufficient to significantly affect the radius of the planet, which keeps shrinking steadily as it cools.

• For higher initial eccentricities, the planet first undergoes a phase of contraction and rapid cooling
before the tidal heating due to the high initial eccentricity starts to dominate the energy balance
of the object, leading to a phase of radius inflation (as shown by Fig. 5.10 for a test case). This
speeds up the damping of the eccentricity and the decrease of the semi-major axis, because ȧ and
ė ∝ R5

p. When the eccentricity becomes low enough, a "standard" contraction phase begins and
lasts until the planet merges with the star or - if enough angular momentum is present in the system
- until both tidal and thermal equilibria are achieved. This behavior has already been identified by
Miller et al. (2009) and Ibgui and Burrows (2009), but because these authors used truncated tidal
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(d) Tidal energy dissipation

Figure 5.9: Consistent tidal/thermal evolution of XO-4 b (thin, black) and HD 209 458 b (thick, blue)
computed with our constant time-lag model (solid line) and with the "e2 model" (dashed line). XO-4 b
is a 1.72 MJup planet orbiting a 1.32 M� star (McCullough et al. 2008). HD 209 458 b is a 0.657 MJup
planet orbiting a 1.01 M� star (Knutson et al. 2007). The dashed curves are comparable to Fig. 8 and 10
of Miller et al. (2009) and were computed with the same parameters (Q′p = 105, Q′? = 105). In this high
eccentricity regime, using the same quality factor, the "e2 model" underestimates the tidal dissipation
rate by 2 orders of magnitude and thus overestimates the star-planet merging timescale by a factor 10 to
103. Figure from Leconte et al. (2010a).
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Figure 5.10: Internal energy balance in the evolving planet. Black solid line: luminosity of the object
with tidal heating. Purple dotted line: luminosity of the object without tidal heating. Blue dashed line:
tidal energy dissipation rate. The object contracts as it cools until the energy input balances its thermal
losses and sustains a higher entropy in the gaseous envelop, yielding a larger radius. Figure from Leconte
et al. (2010a).

equations, they found that a high eccentricity can be maintained for a few Gyr and kept inflating
the planet at a late time, as illustrated in Fig. 5.9 (dashed curves) ; while this is not the case.

• In some extreme cases like HD 209 458, for the initial conditions corresponding to those in Fig. 5.9,
the tidal heating can overwhelm the cooling rate of the planet by orders of magnitude and lead to
a spectacular inflation of the planet and thus to a rapid merging with the star. This stems from
a combination of different effects. First of all, as mentioned above, the expansion of the radius
accelerates the tidal evolution and thus the decrease of the orbital distance. Furthermore, the
Roche limit (aR = αRp

3
√

M?/Mp, where α is a constant which depends on the structure of the
body and is equal to 2.422 for fluid objects) increases with the radius of the planet, extending the
merging zone.

5.5.3 Effect of the truncation to 2nd order in e: Simulation results

In this section, I present the comparison of the results of the complete model with the "e2 model".
I calculated evolutionary tracks of the tidal evolution for various transiting systems, coupling the
internal evolution of the object either with my tidal model (Leconte et al. 2010a), or with the "e2

model" used in Miller et al. (2009) and Ibgui and Burrows (2009). In order to ensure a consistent
comparison with these authors, I directly convert their set of tidal parameters. Because our model as-
sumes a constant time lag, and not a constant Q′ value, a history track computed with the Q′ "e2 model"
with a constant couple (Q′p, Q′?) is compared with a history track computed in our model with a constant
couple (k2∆tp, k2∆t?) given by (k2∆tp = 3

2nobsQ′p
, k2∆t? = 3

2nobsQ′?
), where nobs is the currently observed

value of the mean motion of the planet considered (see § 5.1.2 and Eq. (5.10)). This ensures that - al-
though ∆t is held constant in our calculations (because nobs is by definition a constant)- the quality factor
computed with Eq. (5.10) in the object at the present time is the same as that used in the Q constant
model.
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(d) Tidal energy dissipation

Figure 5.11: Consistent tidal/thermal evolution of TrES-1 b computed with our constant time-lag model
(solid line) and with the "e2 model" (dashed line). This is a 0.76 MJup planet orbiting a 0.89 M� star (Winn
et al. 2007a). The error bars are the measured parameters with the 1σ uncertainty. The dashed curve is
comparable to Fig. 7 of Miller et al. (2009) and was computed with the same parameters (Q′p = 106.5,
Q′? = 105). As expected, in the low e limit the tidal dissipation rate is well approximated by Eq. (5.32)
and the two models yield similar evolutions, although the merging time depends on the rheology used.
Figure from Leconte et al. (2010a).
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Calculations at low eccentricity

I first compare the results of the two models on a system which has a zero measured eccentricity
and is not inflated, namely TrES-1. Such a system does not require a substantial initial eccentricity for
its observed properties to be reproduced and thus provides an opportunity to test the quasi-circular limit,
where the "e2 model" used by Miller et al. (2009) and our model should yield similar results. Figure
5.11 illustrates the results of the integration of the coupled internal/orbital evolution equations with our
constant time-lag model (solid curve) and with the "e2 model" (dashed curve) for an initial eccentricity
of 0.07. As expected, in this low eccentricity limit both models yield very similar tracks whose behavior
is discussed in § 5.5.2. Note however that although the qualitative behavior of the evolution is the same,
the hypothesis made on the rheology of the body can influence the age at which the merging occurs.

Calculations at high eccentricity

In the moderately to highly eccentric regime, the tidal dissipation rate can no longer be approxi-
mated by Eq. (5.32) (see § 5.4.2). Instead, Eq. (5.19) must be used and yields - as shown by Fig. 5.7 -
a much more important dissipation rate. As a result, tidal evolution takes place on a much shorter time
scale, and both the eccentricity damping and the merging with the star occur earlier in the evolution of
the planet. For illustration Fig. 5.9 portrays the possible thermal/tidal evolution (for given initial condi-
tions) for XO-4 b (thin black curves) and HD 209 458 b (thick blue curves) computed with the "e2 model"
(dashed) and with our model (solid). The dashed curves are similar to those displayed in Figs. 8 and 10
of Miller et al. (2009). As mentioned above and illustrated in Fig. 5.9.d, the energy dissipation is much
larger when fully accounting for the high eccentricity. As clearly illustrated by these calculations, using
tidal equations truncated at 2nd (e2) order leads to severely erroneous evolutionary tracks for initially
moderately (e & 0.2) or highly eccentric systems. Indeed, the complete tidal model shows that for the
initial conditions and Q parameter values chosen by Ibgui and Burrows (2009) and Miller et al. (2009),
HD 209 458 b would actually have disappeared ! As mentioned earlier, the use of this quasi-circular
approximation cannot be justified by the uncertainty on the quality factor, as the discrepancy in
the characteristic evolution timescales can amount to 3 orders of magnitude in some cases, depend-
ing on the initial eccentricity (Leconte et al. 2010a). Conversely, trying to infer values for the stellar or
planetary tidal quality factors Q from tidal evolution calculations performed with the truncated e2 model
will lead to severely inaccurate values.

5.6 Viability of the tidal heating hypothesis

Among the observed objects in the giant planet/mini brown dwarfs mass regime (see § 2.4.3), I will
focus on the most extremely inflated ones to investigate the validity of the tidal heating hypothesis
to explain their abnormally low density, as they provide the most stringent cases to examine the
viability of this scenario. Indeed all the planets with radii in the R1 . Rirr region of Fig. 2.10 (i.e. with
a negative radius anomaly) do not need any additional energy source. Interestingly enough, these do not
show any significant eccentricity, so that an evolution without tidal heating can be obtained with a low
initial eccentricity. For the sake of simplicity and to avoid introducing further free parameters in our tidal
model, and because our aim is to derive an upper limit for the radius that a planet can achieve under the
effect of tidal heating, I will not consider heavy element enrichment in our calculations.

My calculations proceed as follows:

1. For each of the systems a range of initial semi-major axis ([amin,amax]) is found by a backward
integration of the tidal equations from present-day observed values.
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2. Evolutionary tracks, which consistently couples the gravo-thermal evolution of the irradiated
planet and the tidal heating source (Eq. (5.19)), are then computed for a ini ∈ [amin,amax] and an
initial eccentricity e ini ∈ [0,0.8]. The plausibility of these initial conditions as a remnant of early
planet-disk and/or planet-planet interaction is discussed in Miller et al. (2009). Because total angu-
lar momentum is conserved during the tidal evolution, the initial spin rate of the star is calculated
by satisfying the equality between the initial and the presently observed value of the system’s total
angular momentum (see § I.2.4 for details). Calculations are performed with Q′0,? = 105 and 106

and Q′0,p = 106 and 107 (see § 5.2.2 for a detailed discussion).

3. For each evolutionary calculation, the departure from a given measured quantity is defined as
δx(t) =

(
x(t)−xp

σx

)
, where x refers to a, e, Rp, ε? or ω? and σx to their measured uncertainty. When

no error bar was measured for the eccentricity and e = 0 was assumed in the light curve analysis, I
took σe = 0.05. I consider that the evolution accurately reproduces the presently measured data if
there is a time interval (compatible with the age of the system) within which all the δx’s are smaller
than 1, meaning that each one of these parameters agrees with the measured one within 1 σ .
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Figure 5.12: Set of initial conditions yielding evolutions consistent with the actual orbital parameters
of HD 209 458 b. These runs assume Q′0,p = 106 and Q′0,? = 106. Because high eccentricity speeds
up the tidal evolution, the initial semi-major axis must increase when the initial eccentricity of the orbit
increases to recover the observed parameters at the age of the system. Figure from Leconte et al. (2010a).

Figure 5.12 portrays a grid of evolution history initial conditions that are found to be consistent
with the observed parameters of HD 209 458, at the age of the system. As expected, an initially more
eccentric system must have a greater initial separation to end up at the same location. This stems from
the fact that |ȧ| is a monotonically increasing function of e for a slowly rotating star (as obtained from
Eq. (5.11) for ωp = ωequ and ω?/n� 1). Although I do find evolutionary tracks that lead to the
presently observed orbital parameters for these extremely bloated planets, none of these solutions
can reproduce the presently observed radii, as illustrated in Fig. 5.13 for HD 209 458 b. Indeed, the
major phase of eccentricity damping as given by Eq. (5.12) and discussed in § 5.5.3 occurs too early
in the evolution, so that a large fraction of the tidal heating energy dissipated in the planet has been
radiated away at the age of the system (∼ a few Gyrs) and can no longer provide enough energy to slow
down the gravitational contraction. The same behavior is found for other bloated systems like WASP-
12, TrES-4 and WASP-4, whose best evolutionary tracks are shown in Fig. 5.14. For all these systems
tidal dissipation occurs too early to reproduce the present values of the planet radii, although a solution
matching the presently observed orbital parameters can be found.
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(d) Tidal energy dissipation

Figure 5.13: Consistent tidal/thermal evolution of HD 209 458 b with different initial conditions (solid
and dashed) computed with our constant time-lag model. HD 209 458 b is a 0.657 MJup planet orbiting
a 1.01 M� star (Knutson et al. 2007). These runs assume Q′0,p = 106 and Q′0,? = 106. For comparison,
the radius and luminosity of an isolated planet (no tidal heating) is shown on the lower panels (dotted
curves). Even though these evolutions recover the presently observed orbital parameters for the system,
the eccentricity damping arises too early during the evolution, leading to insufficient tidal dissipation at
present epoch to explain the inflated radius. Figure from Leconte et al. (2010a).
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Figure 5.14: Evolutionary tracks for WASP-12 b (solid, Hebb et al. 2009), TrES-4 b (dashed, Daemgen
et al. 2009) and WASP-4 b (dotted, Winn et al. 2009) that lead to the best agreement with the observed
orbital parameters for these systems. These runs assume Q′0,p = 106 and Q′0,? = 106. Tidal dissipation is
not sufficient to sustain the large radii observed for these planets.
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These results, based on complete tidal evolution calculations, show that the tidal energy dissipated
in the planet’s tidal bulges, although providing a viable explanation to the large radius of many short-
period planets (like OGLE-TR-211 b shown in Fig. 10 of Leconte et al. 2010a), is not sufficient to explain
the radii of the most bloated planets at the age inferred for these systems. In that case, an extra mecha-
nism besides tidal heating must be invoked to solve this puzzling problem. Surface winds driven by the
powerful incident stellar flux (Showman and Guillot 2002), converting kinetic energy to heat by dissi-
pation within the tidal bulge and thus reaching deep enough layers to affect the planet’s inner isentrope,
or inefficient large-scale convection due to a composition gradient (Chabrier and Baraffe 2007) could be
the other mechanisms to be considered with tidal dissipation to eventually lead to these large planet radii
(see Baraffe et al. 2010 for discussion).

5.7 Summary and prospects

Let us summarize the main results of this chapter.
First, as shown in Appendix I, I developed the secular tidal equations of Hut (1981) to arbitrarily

high obliquity. Then, considering the tidal set of equations in various asymptotic regimes, I derived two
simple analytical solutions that, to my knowledge, have not been found before. These solutions, pre-
sented in § 5.2, were then used to benchmark my numerical integrator, and check numerical calculations
from (Heller, Leconte & Barnes 2011). Thanks to these models, I also derived an upper limit on the
tidal dissipation (and thus the time lag) in Jupiter.

In § 5.3, I updated the results of Levrard et al. (2009) by including newly found transiting
planets, and showed that, while most of the transiting planetary systems yet discovered do not possess
a stable equilibrium end state, this is only due to the detection bias toward short period systems. As this
detection bias tends to diminish, the number of long period transiting planets able to reach a stable tidal
equilibrium should grow in a near future.

Then, I demonstrated that the quasi-circular approximation (e� 1, i.e. tidal equations truncated at
the order e2) usually assumed in tidal calculations of transiting planet systems and valid for our Solar
system planets, is not valid for the exoplanetary systems that have - or were born with - an even modestly
high (e & 0.2) eccentricity. As shown in sect. 5.4, although the real frequency dependence of the tidal
effect remains uncertain, there are dimensional evidences that for eccentric orbits, most of the tidal
effect is contained in the high-order terms and that truncating the tidal equations at 2nd order in
eccentricity can overestimate the characteristic timescales of the various orbital parameters by up
to three orders of magnitude. Therefore truncating the tidal equations at the 2nd order can by no means
be justified by invoking the large uncertainty in the dissipative processes and their frequency dependence.
Accordingly, high-order tidal equations should be solved to derive reliable results for most of the existing
exoplanet transiting systems. This need to solve the complete equations is met by any tidal model. In
this context, even though no tidal model can claim describing perfectly a two body evolution, I recall that
the Hut model is at least exact in the weak friction viscous approximation (see sect. 5.1.2).

In § 5.6, I tested the complete tidal model on several inflated planets to find out whether or not
tidal heating can explain the large radius of most of the observed transiting systems. Although this
mechanism is indeed found to be sufficient to explain moderately bloated planets like OGLE-TR-211 b
(see Fig. 10 of Leconte et al. 2010a), I was unable to find evolutionary paths that reproduce both the
measured radius and the orbital parameters of HD 209 458 b, WASP-12 b, TrES-4 b, and WASP-4 b (see
Figs. 5.13 and 5.14) for their inferred age range. The main reason is the early circularization of the orbit
of these systems. As demonstrated in § 5.4, this stems from the non-polynomial terms in eccentricity
in the complete tidal equations, which are missing when truncating the equations at small e-order. The
present results, based on complete tidal equations, show that tidal heating, although providing an
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important contribution to the planet’s internal heat budget during the evolution, cannot explain
alone the observed properties of all exoplanets (Leconte et al. 2010a).

This is in contrast with some of the conclusions reached in previous studies. Based on truncated tidal
models, Ibgui and Burrows (2009) and Ibgui et al. (2009) find evolutionary tracks that match observed
parameters for HD 209 458 b, WASP-12 b, and WASP-4 b and thus suggest that the tidal heating is the
principal cause of the large radii of Hot Jupiters.

These particular properties of Hot Jupiters, including the extreme cases of the most severely bloated
planets, can only be explained if the following explanations/mechanisms occur during the system’s life-
times:

• Early spin-up of the star: simulations of the rotational evolution of solar-like stars (Bouvier et al.
1997) show that after the dispersion of the accretion disk, the rotation rate of the contracting star
increases due to angular momentum conservation, until magnetic braking takes over. Considering
Eq. (5.12), we see that stellar tides act as an eccentricity source if ω?

n >
18
11

Ne(e)
Ωe(e)

. Investigating
whether the duration of this phase lasts long enough and whether the magnitude of this effect is
large enough to drive enough eccentricity requires performing consistent star/planet thermal/tidal
calculations and will be investigated in a forthcoming paper.

• Presence of a third body: as proposed by Mardling (2007), a low-mass terrestrial planet can drive
the eccentricity of a massive giant planet during up to Gyr timescales. Accurate enough observa-
tions are necessary to support or exclude such low-mass companions.

• As mentioned earlier, combining tidal heat dissipation with other mechanisms like surface winds,
due to the stellar insolation, dissipating deep enough in the tidal bulges, or layered convection
within the planet’s interior may provide the various pieces necessary to completely solve the puz-
zle.

In conclusion, the suggestion that tidal heating is the main mechanism responsible to solve the
problem of anomalously large short-period planets, as sometimes claimed in the literature, must be more
rigorously reformulated: although providing a non-negligible contribution to Hot Jupiter heat content,
tidal dissipation does not appear to provide the whole explanation. Further studies are thus necessary to
eventually nail down this puzzling issue.
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Summary & Perspectives

The ability to quote is a serviceable substitute for wit.

William Somerset Maugham

During this thesis, I studied various physical processes affecting the internal structure and evolution
of both solar, and extrasolar giant planets. Let me summarize briefly the main results that I obtained
during this work and that led to the publication of the articles listed in Appendix A.

Evolution & stellar irradiation: A lid on the boiling kettle

First, by comparing the internal structure of gaseous substellar objects predicted by my numerical
simulations, and by a simple analytical model, I showed that most features of their mechanical structure
can be well captured by a single effective polytropic index. As this index characterizes both the equation
of state, and the slope of the mass-radius relationship, this study highlights the existing link between the
microscopic and the macroscopic mechanical properties of degenerate gaseous bodies.

Then, I investigated the impact of the intense stellar irradiation received by a close in planet on
its subsequent internal evolution. As most transiting planets are very close from their host star, this
effect must be taken into account to infer accurate theoretical predictions to be compared with obser-
vations. This allowed me to quantify the radius anomaly of bloated Hot Jupiters and to constrain their
internal composition.

Based on this study, I proposed an observational criterion based on the mean density of the object
to distinguish massive giant planets from mini brown dwarfs in their overlapping mass domain. The
application of this criterion to several objects in this regime revealed that, with its unusually high density,
Hat-P-20 b is probably the first secured planet in this range of masses.

Probing the deep interior: Theory of planetary figures

In this chapter, I used both analytical and numerical models to study the tidal and centrifugal dis-
tortion of a fluid planet, and infer its shape. As these models depend on a unique response coefficient
(e.g. the Love number), I carried out numerical simulations to provide numerical estimates of this quan-
tity and discussed how these values characterize the mechanical internal structure of giant planets and
brown dwarfs.

I also discussed how k2 measurements could help us to constrain the composition of extrasolar
planets. With the more and more precise transit timing measurements, and the large number of newly
announced multi transiting planet systems, this opens new possibilities to infer direct constraints on the
internal composition of extrasolar planets ; internal composition which remains out of reach of spectro-
scopic observations.
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Finally, thanks to our analytical model, I found that because close in planets are tidally elongated
toward the star, they exhibit a smaller cross section, yielding major implications for transit measurements.
In particular, this causes a systematic underestimation of the radius which can amount to a few percents.
While slightly enhancing the so-called radius anomaly, this reminds us that, as transit measurements
get more precise, subtler effects must be taken into account into the light curve modeling to extract
accurate results.

A new perspective on heat transport in the interior

Here, I developed a completely analytical model to investigate how the presence of double-diffusive
convection caused by a heavy elements gradient in the gaseous envelope of a planet can decrease the
efficiency of its internal heat transport. This formalism allows an exact determination of the characteristic
super-adiabaticity within the planet, and can thus easily be used in planetary structure and evolution
numerical models to quantify the global impact of the presence of double-diffusive convection in the
interior.

By applying this model to the Solar System gas giants, I found that the metal enrichment for our
gaseous giants can be up to 30 to 60% larger than previously thought. As the heavy elements tend to
be redistributed within the gaseous envelope, the models predict smaller than usual central cores inside
Saturn and Jupiter, with possibly no core for this latter.

These results open a new window, and raise new challenges, on our present understanding of planet
structure, formation and evolution. The revised possible maximum amount of heavy material, for ex-
ample, suggests a greater efficiency of solid planetesimal accretion during giant planet formation than
previously thought, both inside and outside our Solar System. The slower cooling entailed by semi-
convection may also provide a part of the explanation of exoplanets large radii, and interestingly enough,
without requiring any star-planet interaction.

An alternative energy source: Tidal friction

Finally, using an analytical model for the secular tidal evolution which is fit to describe highly
eccentric and inclined orbits, I studied the coupling between the orbital and the thermal evolution of a
exoplanets arising from the strong star-planet tidal interaction. Such a model is necessary to describe
exoplanetary systems which, contrarily to the Solar System, commonly exhibit high eccentricities and
obliquities, some planets even being on polar or retrograde orbits.

In particular, I demonstrated that using tidal models based on a quasi circular approximation can
lead to quantitatively, and sometimes qualitatively different orbital evolutions, and can overestimate the
evolution timescales by orders of magnitude. Subsequently, thanks to this more complete mathematical
treatment of eccentric orbits, I found that contrarily to previously published results base on the quasi
circular approximation, the circularization (and thus heating) period is too short compared to the age of
observed transiting planets for tidal heating alone to be a viable explanation for their large radii.

As presently observed transiting planets are very close to their host stars, tidal interactions are a
significant ingredient of their lives, and properly taking these interactions into account is primordial in
understanding both the thermal and orbital evolution of exoplanets and their coupling. Coupling which
is not only ensured by tidal heating, but also by the secular and seasonal variations of the stellar flux
influenced by the orbital and the rotational evolution of the planet. In that context, a general and robust
theory, such as the linear model studied here, is strongly needed.
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In the decade to come

If the successful combination of Doppler measurements and Transit photometry already taught us a
lot about the internal structure of giant planets in a wide variety of physical contexts, things are far from
over. Not only these methods will continue to improve, and gain in precision, but new detection methods
will soon come to maturity, opening many promising paths for the coming years.

On the transiting planet side, recent observations have proved our ability to detect Earth size objects.
But these planets are still too close from a too bright star to be able to sustain liquid water at their surface.
At the same time, spectroscopic observations of the primary and secondary transits of giant planets
revealed a complex, and possibly out of equilibrium, atmospheric chemistry. But such observations are
not precise enough yet to be carried out on an Earth analog orbiting a Sun like star.

Fortunately, most stars in the universe are fainter than the Sun ! Warm planets can thus be found on
much closer orbits. And as these stars are also smaller and less massive than our Sun, they offer ideal
targets for transit detection and radial velocity follow up, and even make spectroscopic observations of
small size objects possible. With ground and space based missions already finding such objects (MEarth:
Charbonneau et al. 2009 ; Kepler: Borucki et al. 2011), the first characterizable Earth analog in the
habitable zone does not seem so far ahead of us.

However, to prepare upcoming spectrometric observations with HST, Spitzer or JWST, theoretical
models of the chemical composition and thermal structure of the atmosphere of terrestrial planets in
the relevant range of the parameter space are required. Moreover, as these planets are expected to be
(pseudo) synchronized and exhibit a strong day night contrast, the global atmospheric circulation must
be properly treated to correctly interpret the transmission spectra which probe very specific regions of
the surface. This should soon revive the need for applying 3D Global Circulation Models (GCMs) not
only to Hot Jupiters, but also to close in Super Earths for which the atmospheric dynamics and chemistry
is yet poorly understood. The potential of this research is immense as it will open the avenue to the
detection of bio-signatures.

On the non transiting side, during the last few years, a tremendous amount of work has been devoted
to direct imaging of extrasolar planets and brown dwarfs. This resulted on one hand in many successful
detections, for example by Chauvin et al. (2004) or Marois et al. (2010) (to cite only a few), and on the
other in constraining the population of substellar companions by large surveys (Lafrenière et al. 2007 ;
Chauvin et al. 2010 ; Leconte et al. 2010b).

However, while this method is a formidable tool to constrain the atmospheric physics - in particular
the presence of molecular absorbers, clouds or non-equilibrium chemistry - of young giant planets and
brown dwarfs at large orbital separation, it cannot yet constrain our structure and evolution models.
Indeed, as the mass of the object is still unmeasured, this is only through the theoretical mass-luminosity
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relationships provided by the aforementioned models that it can be determined. But, as transit and
Doppler measurements probe toward longer and longer period objects, and as extremely high angular
resolution imaging instruments are being built (SPHERE, GPI), these techniques should soon overlap.

When this arrives, the possibility to have at the same time, the mass of the body, its bolometric
luminosity and its colors in different bands will undoubtedly unravel new families of substellar objects,
maybe allowing us to distinguish between their various possible formation mechanisms and to pin down
their true nature. Not to mention the possibility to detect such objects at the very first stages of their
evolution and even maybe from their formation. Hence, to ready ourselves to these upcoming observa-
tions, in addition to a better modeling of planets and brown dwarfs atmospheres, we will have to bridge
the gap between formation and evolution models. This of course requires to treat consistently the early
solid and gas accretion, the radiative shock that occurs when a gap is opened between the planet and the
nebula, and the following evolution in the detached phase. We will thus be able to make more accurate
predictions of the observable parameters of substellar objects from their very youngest age, and follow
their life from birth to fate.

Let us wager that the next decade will bring us, as always, very challenging findings.
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Appendix B

Thermodynamic relations

As is well known, for a given material, there exists only three independent thermodynamic deriva-
tives (Callen 1960). Thus, numerical equations of state only provide a set of three such derivatives from
which one can find all the others by means of thermodynamic relations. In this appendix, we briefly give
general thermodynamic relations that can be used to derive the relations needed, as well as the relations
that are most needed when handling the numerical ANEOS and SCVH packages.

B.1 General relations

As can be shown (e.g. Callen 1960), if we have three thermodynamic variables (X ,Y,Z), there
exists the relation

dZ =
∂ Z
∂ X

∣∣∣∣
Y

dX +
∂ Z
∂Y
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X

dY, (B.1)
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Sometimes, we also need to compute the derivative of a given function F(X ,Y ′) that we know as a
function of (X ,Y ). We thus need to carry out a change of variable from (X ,Y ) to (X ,Y ′). As
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∂Y
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we have
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whence
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B.2 ANEOS

ANEOS (Thompson and Lauson 1972) was designed to work with the variables (ρ,T ), and thus
provides the specific thermal capacity at constant volume (density)

cV ≡
∂Ũ
∂ T

∣∣∣∣
ρ

, (B.6)

and two derivatives of the pressure, ∂ P
∂ T

∣∣∣
ρ

and ∂ P
∂ ρ
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T

. For convenience, as it was designed to be used in

hydrodynamics codes, it also provides directly the sound speed

c2
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as well as the radiative opacity (κ̄). As we have seen in Chapter 1, there are two other derivatives that can
be needed, the specific thermal capacity at constant pressure and the adiabatic gradient, that are given by
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where the last transformation uses the usual maxwell relation ∂ ρ
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because
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B.3 SCVH

The SCVH equation of state (Saumon et al. 1995) uses the intensive variables (P,T ), and provides
all the derivatives of the density and entropy, as well as the adiabatic gradient1. Then, the sound speed is
given by
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1Note that the SCVH package gives the decimal logarithm of the thermodynamic quantities, and their logarithmic derivatives
( ∂ logρ

∂ logT

∣∣∣
P
, ∂ logρ

∂ logP

∣∣∣
T

, etc...).
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Appendix C

Polytropic spheres

Let us assume that our equation of state is of the form

P = Kρ
1+1/ñ, (C.1)

where K and ñ are called the polytropic temperature and index, and are constant throughout the config-
uration. Because the temperature does not enter explicitly in our equation of state, we do not need any
equation for the energy conservation, nor the energy transport, which are already implicitly contained in
Eq. (C.1). We can thus derive a simple equation for the structure of the object (e.g. Chandrasekhar 1939).
For brevity, we will only discuss here undistorted polytropic spheres to introduce the classical variables
used and have the useful equations at hand.

C.1 Lane-Emden equation

Following Chandrasekhar (1939), combining hydrostatic equilibrium and mass conservation
(Eqs. (1.57) and (1.58)), we get

∂ P
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=−Gρ
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∫ r

0
4πr′2ρ(r)dr′, (C.2)

and differentiating this intro-differential equation with respect to r yields
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Substituting P by its expression given by the polytropic equation of state, and introducing the two fol-
lowing dimensionless variables

θ̃
ñ = ρ/ρc and ξ̃ = r/RLE, (C.4)

where ρc is the central density, and RLE is a yet undetermined scaling factor we finally obtain
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Then, choosing
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c , (C.6)
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yields the famous Lane Emden equation

1

ξ̃ 2

d

dξ̃
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2 dθ̃
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As it is visible from Eq. (1.57), d θ̃

d ξ̃
∝

m
ξ̃ 2 . Near the center, m ∝ ξ̃ 3, and the boundary conditions are

thus

dθ̃

dξ̃
(ξ̃ = 0) = 0 and θ̃(ξ̃ = 0) = 1. (C.8)

C.2 Global properties

Once the Lane Emden equation has been integrated numerically until θ̃ = 0, we are left with the
value of ξ̃ and of the derivative of θ̃ at this point. As these quantities depend on ñ alone, I will call them
ξ̃ñ and θ̃ ′ñ respectively1. Using the structure equations, we can derive some global characteristics of our
objects. Because of the definition of ξ̃ , the radius is obviously given by

R1 = ξ̃ñ RLE = ξ̃ñ

√
ñ+1
4πG

Kρ
1
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c . (C.9)

The mass can be obtained by integrating the density which, by means of the Lane-Emden equation,
rewrites
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Hence
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Thanks to Eqs. (C.9) and (C.10), we can also show that the mean density writes

ρ̄1

ρc
=
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ξ̃ñ
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Defining the dimensionless gyration radius is given by

r2
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∫ ξ̃ñ
0 θ̃ ñξ̃ 4 d ξ̃

ξ̃ 4
ñ |θ̃ ′ñ|
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which can also be computed for any given ñ. With this definition, rgyr is equal to 1 for an incompressible
body (ñ = 0), and to 0 for an object where all the mass in concentrated at the center.

Finally, by eliminating ρc from Eqs. (C.9) and (C.10), we get the mass radius relationship

M
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ñ
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ñ
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(4π)1/ñ ξ̃
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ñ

ñ |θ̃ ′ñ|
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1As θ̃ ′ñ is always negative, we often make use of |θ̃ ′ñ| to manipulate positive quantities.
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Appendix D

First order theory for an arbitrary
perturbing potential

In Chapter 3, we introduced the various concepts of the theory of figures. In order for the reader to
have all the needed equations at hand, here we outline the method first developed by Sterne (1939).

D.1 Arbitrary perturbation

To lowest order the body response is linear and the total deformation is the sum of the response to
each term of the decomposition of the perturbing potential. Thus, in order to derive the equations in a
rather general way, we only need to consider a term a perturbing potential of the form

Vext(r,θ ,φ) = cm
n rnY m

n (θ ,φ), (D.1)

where cm
n is a constant which defines the amplitude of the perturbation. The reference axis defining θ and

φ may change from one term to the other. Analogously to Eq. (3.13), a small dimensionless parameter
can be defined as

mext =
cm

n R̄n+1
1
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3
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n R̄n−2

1
Gρ̄1

. (D.2)

D.2 Level surfaces

To simplify the figure equations, we choose to use the mean radius r̄ defined by Eq. (3.17). Using
this mean radius implies that to first order, meaning that sm

n sm′
n′ ∝ m2

ext ≈ 0,

4
3

π r̄3 =
4
3

π r̄3(1+3s0
0) ⇒ s0

0 = 0. (D.3)

For this reason, using the variable r̄, instead of req or rpol, simplifies the first order equation for the
hydrostatic equilibrium which thus does not involve the sm

n (the dependency in r̄ of the sm
n being implicitly

assumed). Thus, in the following, we will use the variable r̄, and note R̄1 the mean radius of the 1 bar
equipotential of the object considered. To first order, the shape of our body is a general triaxial ellipsoid,
and we have R̄1 = (a1a2a3)

1/3. For figure equations derived using either the equatorial or polar radius,
the reader is referred to Zharkov and Trubitsyn (1970).

As discussed in § 3.1.1, by definition, level surfaces are also isodensity surfaces. This means that
the various integrals involving the density can be integrated by using ρ(r′) = ρ(r̄).
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D.3 Computation of the mass integrals

As we have reduced our density field to a function of r̄ alone, we can now express the gravitational
potential and the mass integrals, Eqs. (3.3) and (3.4), with algebraic functions of the figure functions.
As ρ(r′) is only a function of r̄, we must carry out the change of variable from (r,θ ,φ) to (r̄,θ ,φ)
using Eq. (3.16). The difficulty lies in the limit of the integration domain which is still spherical. It has
been shown by Zharkov and Trubitsyn (1980) and Lyapunov (1903) that replacing this domain by the
one delimitated by a level surface of the form Eq. (3.16) and enclosing the same volume (the condition
therefore reading r̄′ < r̄ instead of r′ < r) does not affect the integral, all the terms calculated between
the level surface and the sphere compensating one another. This yields
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Replacing r′ using Eq. (3.16) we get
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Developing the last term, ignoring terms of order sm
n × sm′

n′ , and using the orthogonality relation for the
tesseral harmonics, this simplifies to
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Analogously
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By coincidence, this equation also works for n = 2, even if D̄m
2 involves the derivative of lnr′. There are

two special cases:

D0
0 =

4π

3

∫ r̄

0
ρ(r̄′)dr̄′3,

D̄0
0 =

4π

2

∫ R̄1

r̄
ρ(r̄′)dr̄′2. (D.9)
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We can see that Dm
n ∝ sm

n , therefore they are all first order quantities (except D0
0 and D̄0

0 which give the
zeroth order spherical potential).

D.4 Total potential and equations of figures

Now that we have calculated the coefficients of the spherical harmonics decomposition of both
gravitational and perturbing potentials, we can express the total potential as well

Vtot(r̄,θ ,φ) =VG +Vext

=−4
3

π Gρ̄1 r̄2
∑
n,m

V̂ m
n (r̄)Y m

n (θ ,φ). (D.10)

Because the r̄ =cst surfaces are equipotentials by construction, our set of equations on the figure functions
we be given by Eq. (D.3) and{

V̂ m
n (r̄) = 0

}
n6=0, |m|6n . (D.11)

Using the dimensionless variables
s̃ = r̄/R̄1

Sm
n = 3Dm

n
4π ρ̄1 r̄n+3

S̄m
n = 3 D̄m

n
4π ρ̄1 r̄2−n

(D.12)

the potential given by Eqs. (3.2) and (D.1) can be expanded onto spherical harmonics, and rewriten
(neglecting all the sm

n × sm′
n′ and sm

n ×mext terms)

Vtot(r̄,θ ,φ) =−
4
3

π Gρ̄1 r̄2×

×

[
S0

0 + S̄0
0−mext s̃n−2Y m

n (θ ,φ)+ ∑
n′>0,m′

(
Sm′

n′ + S̄m′
n′ − sm′

n′ S
0
0

)
Y m′

n′ (θ ,φ)

]
. (D.13)

Thus, our set of equations is{
V̂ m′

n′ (s̃) = Sm′
n′ + S̄m′

n′ − sm′
n′ S

0
0−δn,n′δm,m′ s̃n−2 mext = 0

}
n′,m′

. (D.14)

Of course, the mean hydrostatic equilibrium is provided by the n = 0 term, which reads

∂ P
∂ r̄

=
4
3

π Gρ̄1
d
dr̄

(
r̄2V̂ 0

0
)
, V̂ 0

0 = S0
0 + S̄0

0. (D.15)

Substituting S0
0 and S̄0

0 by their expressions in Eq. (D.9) shows us that the mean equilibrium is left unper-
turbed

∂ P
∂ r̄

=−ρ
Gm
r̄2 , (D.16)

meaning that the mean radius of any given equipotential surface is the same in the spherical case or in the
real object1. This entails that the profiles of all the thermodynamical variables expressed as a function
of the mean radius in the distorted object are equal to the radial profile obtained in the unperturbed case
(ρ(r̄) = ρ(r)). In particular, the density profile yielded by the integration of the zeroth order hydrostatic
equilibrium (ρ(r)), can be directly used in integrating Eq. (D.19) derived hereafter.

1As can be seen in Appendix E, this is true only to first order.
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D.5 Differential equation on sm
n

From the set of equations (D.14), we immediately see that all the sm′
n′ (n′ 6= n and m′ 6= m) are equal

to 0. To derive numerically the sm
n , the integro-differential equation (D.14) can be solved iteratively with

the method described in Zharkov and Trubitsyn (1980). The numerical solution after i iterations is given
by

sm
n |i =

1
S0

0

[
Sm

n (sm
n |i−1)+ S̄m

n (sm
n |i−1)− s̃n−2 mext

]
, (D.17)

and sm
n (s̃)|0 = 0 can be used as a first guess. This procedure, which is mandatory to higher order, can

however be reduced in the linear case. Indeed, multiplying Eq. (D.14) by s̃n+3, differentiating with
respect to s̃, and dividing by s̃2n, we see that sm

n verifies2 (Sterne 1939)

−
[

nsm
n

s̃n+1 +
1
s̃n

dsm
n

ds̃

] ∫ s̃

0
ρ(s̃) s̃2ds̃+

∫ 1

s̃
ρ(s̃)d

[
s̃2−nsm

n
]
=

2n+1
3

ρ̄1mext. (D.18)

Differentiating once again with respect to s̃ yields

d2sm
n

ds̃2 −
n(n+1)

s̃2 sm
n +

6
s̃2

ρ(s̃)
ρ̄(s̃)

(
s̃
dsm

n

ds̃
+ sm

n

)
= 0, (D.19)

with

ρ̄(s̃) =
3
s̃3

∫ s̃

0
ρ(s̃′)s̃′2ds̃′, (D.20)

the mean density interior to s̃, and ρ̄(1) = ρ̄1. Using the variable ηn(s̃) = s̃
sm

n (s̃)
d sm

n
d s̃ , this rewrites

s̃
dηn

ds̃
+η

2
n −ηn−n(n+1)+6

ρ(s̃)
ρ̄(s̃)

(ηn +1) = 0. (D.21)

As always, the difficult part lies in finding the boundary condition for ηn(0). Following Jeffreys
(1970), let us assume that sm

n ∝ s̃k near s̃ = 0 and substitute this solution in Eq. (D.19). Keeping the
smallest power in s̃ we get the following equation for k

k(k−1)−n(n−1)+6k+6 = 0, (D.22)

whence

k = n−2 or k =−n−3. (D.23)

The k = −n− 3 solutions are obviously singular at the center and can be discarded. Thus sm
n (s̃) ∝ s̃n−2

near s̃ = 0, which provides us with the boundary condition for ηn

lim
s̃→0

ηn(s̃) = n−2. (D.24)

For the n = 1 case, there still seems to be a singularity at the center. But we can see that in this
case, sm

n (s̃) = As̃−1 is an exact solution of Eq. (D.19). Therefore, the radial displacement is given by
r̄ A

r̄ Y m
n = AY m

n . This is a rigid body displacement and need not be considered further.
In an idealized case, this equation can be directly solved analytically. Indeed, in the incompressible

case, ρ(s̃) = ρ̄(s̃) = ρ̄1. Then, for a quadrupolar disturbance (n = 2), ηn(0) = 0 and η ′n(0) = 0. Because
ηn(s̃) = 0 is a solution of the differential equation that verifies the boundary conditions, the Cauchy’s
theorem states that it is the unique solution we are looking for. As explained hereafter, this yields
k2 = 3/2 and h2 = 5/2, as expected (Zharkov and Trubitsyn 1980).

2To involve only the variable s̃ in the following equations, it is implicitly assumed that for any function g, g(s̃) indeed
denotes g(s̃ R̄1) = g(r̄).
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Appendix E

Third order theory of planetary figures

While the first order theory presented in Chapter 3 can be sufficient to describe system where ob-
servational constraints are still weak, it is not accurate enough to describe the major planets of the Solar
System. Indeed, the missions that landed, orbited or simply passed by our four gas giants provided high
precision measurements of their composition, atmospheric properties and gravitational and magnetic
fields (see Guillot 2005 for a review). The gravitational field, in particular, has been measured up to its
third harmonic (J6 ; Campbell and Synnott 1985 ; Campbell and Anderson 1989) providing very valuable
information on the deep interior of these planets. To extract this information, we need an accurate theory
predicting the structure of the gravitational field of a body in hydrostatic equilibrium to third or higher
order as derived in Zharkov and Trubitsyn (1980). However, during the process of re-calculating these
high order developments, I found some errors or typos that I wish here to correct.

E.1 Rotational perturbation

Because the tidal distortion is negligible for the giant planets - for Jupiter, the disturbance created
by Io gives |m tid| ≈ 2×10−7 against mrot ≈ 0.1 due to the fast rotation of the planet - we only focus on
the rotational deformation. This directly entails that the shape of planet will be symmetric with respect to
both the rotation axis and the equatorial plane (Zharkov and Trubitsyn 1980). As a result, only the m = 0
harmonics need to be considered. For simplicity, we therefore drop these in our notation and superscript
indices will only be exponents.

E.2 Level surfaces

E.2.1 Mean radius

Once again, to obtain a set of equations for the figure functions, we must decompose the total
potential on spherical harmonics and as a function of the figure functions. Because of the symmetry of
the problem, we can reduce our set of spherical harmonics to a set containing only the even Legendre
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polynomials1. In this case only the s0
2n terms remain2. Eq. (3.16) thus reduces to

r(l,θ ,φ) = r̄
[

1+∑
n

s2n(r̄)P2n(µ̃)

]
, (E.1)

where µ̃ = cosθ , the cosine of the colatitude. Hence, Eq. (3.17) yields

2 =
∫ 1

−1

[
1+

∞

∑
n=0

s2n P2n(µ̃)

]3

dµ̃. (E.2)

To 3rd order, this yields (with correction of a typo in Zharkov and Trubitsyn 1980)

s0 =−
(

1
5

s2
2 +

2
105

s3
2

)
. (E.3)

Defining req the equatorial radius of a shell of mean radius r̄, we also have

req

r̄
= 1+

∞

∑
n=0

s2n P2n(0)

= 1+ s0−
1
2

s2 +
3
8

s4−
5
16

s6 +O(m4
rot), (E.4)

r̄
req

= 1− s0 +
s2

2
+

s2
2
4
− 3s4

8
− s0s2 +

1
8

s3
2−

3
8

s2s4 +
5
16

s6 +O(m4
rot). (E.5)

E.2.2 Generalized ellipsoids: e, k and h variables

For an axisymmetric disturbance, one can also search a planetary figure equation in the form of a
distorted ellipsoid of revolution. To 3rd order, this equation writes (Zharkov and Trubitsyn 1980)

r(θ) = req

[
1− ecos2

θ −
(

3e2

8
+ k
)

sin2(2θ))

+

(
e3

2
+h
)

sin2
θ
(
5sin4

θ −6sin2
θ +1

)]
. (E.6)

Converting trigonometric functions into Legendre polynomials and the equatorial radius into the mean
radius (using Eq. (E.4)), the comparison of Eq. (E.6) with Eq. (3.16) gives a system of nonlinear equations
for e, k, h and the sn. To solve this set of equations to 3rd order, one can replace the figure functions by

s2n =
∞

∑
k=n

s(2k)
2n mk

rot, e =
∞

∑
k=1

e(k)mk
rot, k =

∞

∑
k=2

k(k)mk
rot, ... (E.7)

Because mrot is arbitrary, the coefficients of all the mk
rot (k=1...3) terms must be equal. This provides us

with a set of linear equations on the s(2k)
2n , e(k), ... . Regrouping all the terms we get

s0 =−
4
45

e2− 52
567

e3− 32
315

ek,

s2 =−
2
3

e− 23
63

e2− 8
21

k− 4
27

e3 +
2
21

h− 152
315

ek,

s4 =
12
35

e2 +
32
35

k+
4
11

e3 +
192
385

h+
32
105

ek,

s6 =−
40
231

e3− 80
231

h. (E.8)

1The rotational symmetry entails that the shape cannot depend on the longitude, and the symmetry of the planet with respect
to the equator plane implies that only even harmonics are not equal to zero.

2In this context, the s0
2n are rewritten s2n and the superscripts are only exponents.
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This formula is in agreement with Eq (30.4) of Zharkov and Trubitsyn (1980).

E.3 Mass integrals: S2n

As in § D, we must first compute the mass integrals that appear in the self gravitational potential of
the deformable body (Eq. (3.2)). The mass integrals D2n and D̄2n are given by

Dn(r̄) =
∫ 2π

0
dφ
′
∫ r̄

0
dr̄′ρ(r̄′)

∫ 1

−1
dµ̃
′ (r′)n+2 Pn(µ̃

′)

=
2π

n+3

∫ r̄

0
dr̄′ρ(r̄′)

∫ 1

−1
dµ̃
′ d
dr̄′

[(r′)n+3]Pn(µ̃
′),

D̄n(r̄) =
2π

2−n

∫ R̄

r̄
dr̄′ρ(r̄′)

∫ 1

−1
dµ̃
′ d
dr̄′

[(r′)2−n]Pn(µ̃
′),

D̄2(r̄) = 2π

∫ R̄

r̄
dr̄′ρ(r̄′)

∫ 1

−1
dµ̃
′ d
dr̄′

[lnr]Pn(µ̃
′). (E.9)

Again, we have changed the limit of the integration domain in Eqs. (3.3) and (3.4) from r′= r to r′= r(µ̃),
the additional terms arising from the integration domain contained between the sphere and the level
surfaces being equal to zero (Zharkov and Trubitsyn 1980). As usual, the powers of r are expanded in
terms of the figure functions using Eq. (3.16). Then, products of Legendre polynomials can be developed
and all the angular functions are integrated over µ̃ . Using the dimensionless variables

s̃ = r̄/R̄1

δ = ρ/ρ̄1

Sn = 3Dn
4π ρ̄1 r̄n+3

S̄n = 3 D̄n
4π ρ̄1 r̄2−n

(E.10)

this gives

Sn = s̃−n−3
∫ s̃

0
δ (z)d[zn+3

φn] and S̄n = s̃n−2
∫ 1

s̃
δ (z)d[z2−n

φ̄n], (E.11)

where

φ0 = 1,

φ2 =
3
5

(
s2 +

4
7

s2
2 +

2
35

s3
2 +

8
7

s2s4

)
,

φ4 =
1
3

(
s4 +

54
35

s2
2 +

120
77

s2s4 +
108
77

s3
2

)
,

φ6 =
3
13

(
s6 +

40
11

s2s4 +
24
11

s3
2

)
,

φ̄2 =
3
5

(
s2−

1
7

s2
2 +

12
35

s3
2−

2
7

s2s4

)
,

φ̄4 =
1
3

(
s4−

27
35

s2
2−

60
77

s2s4 +
216
385

s3
2

)
,

φ̄6 =
3
13

(
s6−

25
11

s2s4 +
90
77

s3
2

)
. (E.12)
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In terms of the e, k and h functions, this reads

φ0 = 1,

φ2 =−
2
5

(
e+

1
6

e2 +
4
7

k+
2
9

e3− 1
7

h+
4
3

ek
)
,

φ4 =
12
35

(
e2 +

8
9

k+
1
3

e3 +
16
33

h+
40
297

ek
)
,

φ6 =−
8
21

(
e3 +

30
143

h+
192
143

ek
)
,

φ̄2 =−
2
5

(
e+

9
14

e2 +
4
7

k+
8
21

e3− 1
7

h+
4
7

ek
)
,

φ̄4 =
32
105

(
k+

6
11

h+
14
33

ek
)
,

φ̄6 =−
80

1001
(h−4ek) . (E.13)

E.4 3rd order potential

As in the linear theory, once the mass integrals are known, one can express the total potential. Here
also, because of the symmetry of the problem, we can reduce our set of spherical harmonics to a set
containing only the even Legendre polynomials. The total potential thus writes

V (r̄, µ̃) =VG +Vrot

=−4
3

π Gρ̄1 r̄2
∞

∑
n=0

V̂2n(r̄)P2n(µ̃). (E.14)

Then the equations to be solved to find the figure functions will be{
V̂n(r̄) = 0

}
n=2,4,6 (E.15)

and the hydrostatic equilibrium will read

1
ρ

∂ P
∂ r̄

=−∂Vtot

∂ r̄
=

4
3

π Gρ̄1
d
dr̄

[
r̄2 V̂0(r̄)

]
=−Gm

r̄2 +
2
3

ω
2
1 r̄+4π r̄2

ϕω , (E.16)

where

ϕω(r̄)≡
Gρ̄1

3r̄2
d
dr̄

[
r̄2 (V̂0−S0− S̄0−

mrot

3
)
]
. (E.17)

E.4.1 Expression in term of the s2n

To 3rd order, the first terms of Eq. (E.14) are given by

V̂0 =

(
1+

2
5

s2
2−

4
105

s3
2

)
S0 +

(
−3

5
s2 +

12
35

s2
2

)
S2

+ S̄0 +

(
2
5

s2 +
2
35

s2
2

)
S̄2 +

mrot

3

(
1− 2

5
s2−

9
35

s2
2

)
, (E.18)
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V̂2 =

(
−s2 +

2
7

s2
2−

29
35

s3
2 +

4
7

s2s4

)
S0 +

(
1− 6

7
s2 +

111
35

s2
2−

6
7

s4

)
S2−

10
7

s2 S4

+

(
1+

4
7

s2 +
1

35
s2

2 +
4
7

s4

)
S̄2 +

8
7

s2S̄4−
mrot

3

(
1− 10

7
s2−

9
35

s2
2 +

4
7

s4

)
, (E.19)

V̂4 =

(
−s4 +

18
35

s2
2−

108
385

s3
2 +

40
77

s2s4

)
S0 +

(
−54

35
s2 +

648
385

s2
2−

60
77

s4

)
S2

+

(
1− 100

77
s2

)
S4 +

(
36
35

s2 +
108
385

s2
2 +

40
77

s4

)
S̄2 +

(
1+

80
77

s2

)
S̄4

− 12
35

mrot

(
s2−

5
22

s2
2−

95
66

s4

)
, (E.20)

V̂6 =

(
−s6−

18
77

s3
2 +

10
11

s2s4

)
S0 +

(
108
77

s2
2−

15
11

s4

)
S2−

25
11

s2 S4 +S6

+

(
18
77

s2
2 +

10
11

s4

)
S̄2 +

20
11

s2 S̄4 + S̄6−
10
33

mrot

(
s4 +

9
35

s2
2

)
. (E.21)

These formulae are in agreement with Eq (28.7-9) and (29.4) of Zharkov and Trubitsyn (1980).

E.4.2 3rd order potential with e, k and h

In term of the e, k and h functions, this writes

V̂0 =

(
1+

8
45

e2 +
64
315

ek+
584
2835

e3
)

S0 +
2
5

(
e+

13
14

e2 +
4
7

k
)

S2

+ S̄0−
4
15

(
e+

19
42

e2 +
4
7

k
)

S̄2 +
1
3

mrot

(
1+

4
15

e+
2

63
e2 +

16
105

k
)

(E.22)

V̂2 =

(
2
3

e+
31
63

e2 +
76
189

e3 +
88
315

ek− 2
21

h+
8

21
k
)

S0 +

(
1+

4
7

e+
10
7

e2− 16
35

k
)

S2

+
20
21

eS4 +

(
1− 8

21
e+

32
105

k
)

S̄2−
16
21

eS̄4−
1
3

mrot

(
1+

20
21

e+
38
63

e2 +
16
15

k
)

(E.23)

V̂4 =

(
4
35

e2− 172
1155

e3− 32
35

k− 192
385

h− 416
1155

ek
)

S0 +

(
36
35

e+
402
385

e2− 48
385

k
)

S2

+

(
1+

200
231

e
)

S4 +

(
−24

35
e− 4

55
e2 +

32
385

)
S̄2 +

(
1− 160

231
e
)

S̄4

+mrot

(
8
35

e+
76
231

e2 +
32
55

k
)

(E.24)

V̂6 =

(
8

231
e3− 128

231
ek+

80
231

h
)

S0 +

(
12
77

e2− 96
77

k
)

S2 +
50
33

eS4 +S6

+

(
32
77

e2 +
64
77

k
)

S̄2−
40
33

eS̄4 + S̄6 +mrot

(
− 32

231
e2− 64

231
k
)

(E.25)
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E.5 Gravitational moments

As shown in § 3.2.2, the gravitational moments are directly given by the mass integrals, which
rewrites here

J2n =−S2n. (E.26)

Like in § E.2.2, we can find an algebraic relation between the J and the figure functions. To do so, one
can replace the figure functions and the gravitational moments by

e =
∞

∑
k=1

e(k)mk
rot, ..., J2 =

∞

∑
k=1

J(k)2 mk
rot, ... (E.27)

in Eqs. (E.23), (E.24) and (E.25). Then, because V̂n = 0 for n = 2,4,6, ..., and equating all the terms of
the same order to zero, we get

J2 =
2
3

e− mrot

3
− e2

3
+

2
21

emrot +
8
21

k− 11
147

e2 mrot−
16
105

k mrot +
40
147

ek− 2
21

h, (E.28)

J4 =−
4
5

e2− 32
35

k+
4
7

emrot +
4
5

e3− 3616
2695

ek− 22
49

e2 mrot +
208
385

k mrot−
192
385

h, (E.29)

J6 =
8
7

e3 +
128
77

ek− 20
21

e2 mrot−
160
231

k mrot +
80

231
h. (E.30)

These expressions correct minor typos in Zharkov et al. (1973).
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Appendix F

Projected area of a triaxial ellipsoid

F.1 General case

Let us define two coordinate systems. The first one (x̂′, ŷ′, ẑ′) is defined by the three main axes of
the ellipsoid. In this frame, the equation of the surface of the ellipsoid is

x′2

a2
1
+

y′2

a2
2
+

z′2

a2
3
= 1. (F.1)

To compute the projected area of this ellipsoid as it will be seen by the observer, it is easier to put
ourselves in another coordinate system defined by the line connecting the center of mass of the system
and the observer (toward the observer ; x̂), the projection of the orbital angular momentum on the sky
plane (ẑ) and a third axis in the sky plane chosen so that (x̂, ŷ, ẑ) follows the right-hand vector sense.
The current position vector (r = (x, y, z)) expressed in this frame is thus related to the one expressed in
the first coordinate system by a rotation matrix R such as r′ = R · r, with RtrR= 1. The equation of the
ellipsoid in the new system thus writes

g(r)≡ rtrRtr


1
a2

1
0 0

0 1
a2

2
0

0 0 1
a2

3

 Rr≡ rtrSr = 1. (F.2)

The exact value of the matrix S will depend on the rotation needed and on the angles chosen to represent
it. This can be worked out in each specific case. To keep some generality, we will take S of the form

S=

 a d f
d b e
f e c

 . (F.3)

The symmetry is ensured by the fact that both of our coordinate systems are orthonormal. The equation
of the contour of the projected shadow is given by the fact that the normal to the ellipsoid is normal to
the line of sight (x̂) there. This assumes a completely opaque body below the isobar chosen to be the
surface. This reads

0 = grad[g(r)]tr · x̂ = 2rtrS x̂. (F.4)

This shows that these points are located on a plane whose equation is (since a 6= 0)

x =−1
a
(d y+ f z). (F.5)
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Substituting x in Eq. (F.2) by Eq. (F.5) we see that the cross section is an ellipse following the equation

(y,z)

(
b− d2

a e− d f
a

e− d f
a c− f 2

a

)(
y
z

)
≡ (y,z)P

(
y
z

)
= 1. (F.6)

It is thus possible to find the rotation in the sky plane needed to reduce the ellipse and find its principal
axes (p1, p2). If only the cross section (π p1 p2) is needed, we can use the fact that the determinant of a
matrix is independent of the coordinate system so that

π p1 p2 =
π√

Det(P)
, (F.7)

with

Det(P) = bc− e2− b f 2

a
− cd2

a
+

2de f
a

. (F.8)

In the case of an edge-on orbit at mid transit, no rotation is needed, R is the identity and thus a = 1/a2
1,

b = 1/a2
2, c = 1/a2

3 and d = e = f = 0. We retrieve

π p1 p2 =
π√
bc

= πa2a3. (F.9)

F.2 Coplanar case

If the planet equator and the orbital plane are coplanar, the unit vectors of first coordinate system
defined above coincides with the unit vectors defined by the line connecting the two center of mass (from
the secondary to the object under consideration ; x̂′), its normal in the orbital plane (in the direction of
motion ; ŷ′) and the rotation axis of the body (ẑ′). If i is the inclination of the orbit with respect to the
sky plane and φ the true anomaly defined to be 0 at mid transit, the rotation matrix reads

R=

 sin icosφ sinφ cos icosφ

−sin isinφ cosφ −cos isinφ

−cos i 0 sin i

 . (F.10)

The S matrix can be computed thanks to Eq. (F.2) giving the a, b, ..., f coefficients and thus the
projected area reads

A = π

√
a2

3 sin2 i
(
a2

1 sin2
φ +a2

2 cos2 φ
)
+a2

1a2
2 cos2 i. (F.11)

This gives the projected area of the planet or the star at any given point of the orbit as shown on Fig. 3.6.
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Appendix G

The Mixing Length Theory

In order to investigate the impact of strongly hampered convection on giant planet internal structure,
I developed a simple sub-grid model based on convection power laws in the efficient convection regime
(Ra? � 1). However, this model can easily extended, in some cases, to the low efficiency regime. In
order to demonstrate this, and to exhibit some physical evidence in favor of the power laws discussed
above, I present here the particular case of the Mixing Length Theory (MLT ; Cox and Giuli 1968 ;
Hansen and Kawaler 1994).

G.1 Growth rate

In a homogeneous medium without rotation and magnetic field, the dispersion relation for horizon-
tal waves (corresponding to vertical velocity ; see § 4.1.2) is

(σ̃ + k̃2)(σ̃ +Pr k̃2)−1 = 0, (G.1)

or

σ̃
2 + σ̃ k̃2(1+Pr)+Pr k̃4−1 = 0. (G.2)

A closer look at the determinant of this equation,

∆ = (1+Pr)2k̃4−4(Pr k̃4−1) = 4+(1−Pr)2 k̃4,

shows us that is is always positive, so that the roots are real. Then, because the sum of these roots,
−(1+Pr) k̃2, is negative, their product must also be negative so that at least one of them be positive.
This entails Pr k̃4 6 1. Recasting this in term of the well known Rayleigh number

Ra≡ N2
T/(νκT k4) = (Pr k̃4)−1, (G.3)

this criterion then reads Ra > 1. Hence, not only the super adiabaticity needs to be positive for the
medium to be convectively unstable, but it must be large enough to counteract the radiative losses and
maintain an overturning convection. The problem that arises, however, is that in an infinite medium,
this criterion can always be met by taking a small enough k̃, i.e. a large enough length scale for the
perturbation. This problem is at the heart of the MLT formalism. As the fastest growing mode is reached
for vanishing wave numbers, the theory cannot predict the typical size of the perturbation. In practice,
this implies that the so-called mixing length, l ≡ 1/k, is a free parameter.
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Let us agree for the moment that this mixing length is determined by some exterior constraint.
Moreover, one of the fundamental assumptions of the MLT is that our growing wave can be seen as a
rising eddy of size l which is described by a velocity vconv and temperature difference ∆T , those being
the finite versions of δv and δT defined in § 4.1.2 reached for t = tconv ≡ 1/σ . Solving Eq. (G.1), we get
the growth rate of the convective wave

σ̃ =
1
2

(√
4+(1−Pr)2 k̃4− (1+Pr) k̃2

)
. (G.4)

Following Hansen and Kawaler (1994), we define

Ra? ≡ Ra×Pr = N2
T/(κ

2
T k4) = k̃−4, (G.5)

which measures the efficiency of the convection. The growth rate of the perturbation then rewrites

σ = NT σ̃(Ra?) with σ̃(Ra?)≡
1

2
√

Ra?

(√
4Ra?+(1−Pr)2− (1+Pr)

)
, (G.6)

and the convective velocity is then

vconv = σ l = NT l σ̃(Ra?). (G.7)

To find the convective flux, we will need to know what is the temperature difference between a moving
eddy and the exterior (∆T ). Using Eqs. (4.10) and (G.1), we have

∆T =
(∇T −∇ad)

σ +κT k2
T

HP
vconv

= (σ̃ +Pr k̃2)
(∇T −∇ad)

NT

T
HP

vconv

=
1

2
√

Ra?

(√
4Ra?+(1−Pr)2− (1−Pr)

)
(∇T −∇ad)

NT

T
HP

vconv, (G.8)

and the convective flux can be written

Fconv = ρ cP ∆T vconv. (G.9)

G.2 Convective efficiency

While we seem to have solved the problem and found the convective velocity, we are still far from
a usable solution. Indeed, all along, we have used the Brunt-Väisälä frequency, NT , as if it were known.
However, this depends on the super adiabaticity in the medium which will obviously depend on the
efficiency of the convection. As discussed in Chapter 4, in order to find a fixed point to this system, I
consider the Nusselt number (NuT ), which is given in general by the ratio of the total flux (diffusive +
turbulent) to the diffusive flux in a convective layer. In our context, we use the slightly different definition
of Hansen and Kawaler (1994)

NuT ≡
Fint−Fad

d

Fd−Fad
d

=
∇d−∇ad

∇T −∇ad
. (G.10)
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Hence, with this definition, if convection is efficient, the super adiabaticity will be small and the Nusselt
number high. On the other hand, if convection is not present or inefficient, NuT → 1. The interesting
property of NuT is that, by multiplying it by Ra?, we can define our convective forcing

Φ≡ Ra? NuT =
αT g
κ2

T

l4

HP
(∇d−∇ad), (G.11)

which can be directly computed once the total flux to be transported (hidden in ∇d) is known. Hence to
get our equation on the convective efficiency, we need to manipulate the definition of the Nusselt. Since
Fint = Fconv +Fd,

NuT =
Fint−Fd +Fd−Fad

d

Fd−Fad
d

= 1+
Fconv

Fd−Fad
d

. (G.12)

Then, using the definition of the convective flux, we can obtain the sought for equation and solve it
numerically. By chance, in the context of gaseous bodies, the Prandlt number is often small. In order
to derive an analytical theory, we will thus use the Pr� 1 limit of the equations (Hansen and Kawaler
1994), and will come back later on the implications of this approximation. Then using Eqs. (G.8) and
(G.9), the convective flux also takes a more manageable form

Fconv =
ρcPT NT

HP
(∇T −∇ad)σ̃

3l2. (G.13)

Hence,

Fconv

Fd−Fad
d

=
NT l2

κT
σ̃

3 = Ra1/2
? σ̃

3, (G.14)

and

Φ≡ Ra?×NuT = Ra?+Ra3/2
? σ̃

3, (G.15)

where σ̃ now reads

σ̃(Ra?)≡
1

2
√

Ra?

(√
1+4Ra?−1

)
. (G.16)

The general behavior of the solutions to this equation are shown in Fig. G.1.

In the efficient convection regime (Ra?� 1), one can easily show that σ̃→ 1 and NuT ∝ Ra1/2
? . This

case can be recovered, in this regime, by the more general model presented in § 4.2, by setting CL = 1
and a = 1/2, but we show below that the MLT formalism can be extended to the inefficient convection
regime.

Indeed, in the 1� Ra?� Pr regime, developing Eq. (G.16) yields σ ≈ Ra1/2
? . Then, because the

convective time is dramatically increased, Eq. (4.35) rewrites in that case(
δT/l

)
≈
(

κT/l2 σ NT

)−1/2
≈ Ra−1/2

? � 1. (G.17)

The size of the diffusive interfaces thus grows until the convective layers eventually turn into a completely
diffusive medium for which 〈∇T 〉= ∇d.

Let us now derive some orders of magnitude for large scale convection. Of course we need a
prescription for the mixing length. An implicit assumption that was made during our linear analysis was
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Figure G.1: Left: Modified Rayleigh Number (Ra?) as a function of the forcing Φ = Ra?NuT (Solid
curve). The dashed (dotted) line represents the 2/3 (1) power law characteristic of the high (low) ef-
ficiency regime. Right: Size of the diffusive layer as a function of the mixing length under Jovian
conditions. The dashed and dotted lines are the l1/3 and l curves respectively. At the bottom of the curve,
we shift from the efficient convection regime (on the right) to the fully diffusive regime (on the left). As
expected, this transition occurs when the size of the diffusive and convective regions are equal.

that all the quantities involved should be constant in our medium. In a star or a gaseous body, this is
strictly verified only if l � HP. It has been shown, however, that in order to reproduce some observed
properties of solar like stars, the mixing length should be chosen to be on the order of the pressure scale
height. Then, as HP ≈ R1 in most of a gaseous object interior, we find that for condition prevailing in the
interior of the actual Solar System giant planets, the super adiabaticity needed to transport the outgoing
energy is on the order of 10−8−10−9, so that the structure can be solved by setting ∇T = ∇ad

1.

1Note that rapid rotation and/or strong magnetic fields, necessarily present in Jupiter and Saturn interiors, are known to
hamper large-scale convection. Indeed, the zonal flows observed in Jupiter’s atmosphere might reveal the presence of convective
rolls at deeper levels, a consequence of the impact of rotation on convective motions, according to the Taylor-Proudmann
theorem (Busse 1976). However the super adiabaticity needed is still negligible in front of ∇ad (Stevenson 1979b)
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Appendix H

Computation of the heavy element content

The mean molecular weight gradient needed to stabilize the fluid against large scale convection can
be caused by an inhomogeneous distribution of both helium (Y (m)) and metals (Z(m)) in the hydrogen
(X(m))-rich medium. In practice, both gradients can be present at the same time and either compete or
contribute constructively.

In the model, I consider an ideal mixture of heavy elements within a H/He envelope whose H/He
mass ratio is kept constant and equal to its value in the protosolar nebula, (H/He)proto. This implies

X +Y +Z = 1, and
Y

X +Y
=

(
Ȳ

X̄ + Ȳ

)
proto
≈ 0.275, (H.1)

everywhere in the planet’s gaseous envelope. Only one degree of freedom thus remains. Following previ-
ous calculations (Chabrier et al. 1992), for sake of simplicity and in order to have a flexible determination
of the metal enrichment and a thermodynamically consistent EOS in the gaseous phase, the metal mass
fraction is approximated by an effective helium mass fraction (Y ′) in the H/He EOS. As for the core, this
latter is correctly described by the appropriate water and silicate EOS mentioned in the text.

The various element mass fractions, then the corresponding metal enrichment, are thus inferred
from the relation

1
ρ(P,T,Y ′)

=
1−Z

ρ(H/He)proto(P,T )
+

Z
ρZ(P,T )

, (H.2)

which gives Z at each depth along a given model P-T profile (Chabrier et al. 1992). The hydrogen and
helium mass fractions are then derived using

Y = (1−Z)
(

Ȳ
X̄ + Ȳ

)
proto

(H.3)

and

X = 1−Y −Z. (H.4)

In this simple model, a Z gradient thus necessarily yields a competing inhomogeneous helium distribution
within the planet. Because the mean molecular weight of a H/He mixture at fixed temperature and
pressure only depends on Y/(X +Y ), only the Z variations need to be considered to compute ∇µ in our
simplified model. The Z(m) profile is then integrated to obtain the total amount of heavy elements mixed
in the gaseous layers for each planetary model, as portrayed in Fig. 4.9. In the most general case, with
an intrinsic inhomogeneity of the helium distribution, caused for instance by its immiscibility in metallic
hydrogen, both the Y and Z gradients would have to be properly calculated.
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Appendix I

Secular tidal evolution for finite
eccentricity and obliquity

Having a prescription for the parameters modeling the dissipation in our bodies, in our case a
constant viscosity, we can concern ourselves with the determination of the secular change of the orbital
elements of a tidally interacting binary system. We consider a system of two deformable bodies of mass
M1 and M2. Note that no approximation will be made on the masses of the two bodies, meaning that the
following equations can be used in a large variety of contexts, covering Star-Star, Star-Planet and Planet-
Satellite interactions. Up to the quadrupolar terms in the tidal deformation, approximation that remains
to be explained and justified, the mutual interaction of the tidal bulges is negligible and we can separately
consider the effects of the tides raised in each body and sum them up at the end of the calculation. Let
us consider the effect of the tides raised in a deformable body (say M1, hereafter the primary, of mean
radius R̄1) in interaction with a point mass (say M2 the secondary). In these notations, the primary is
not necessarily the most massive object of the pair, but always refers to the object whose tides are being
considered, and the secondary always refers to the tides raising object. In fine, the complete equations are
obtained by simply adding the contributions of the tides in both objects, each body playing consecutively
the role of primary.

In general, because tidal processes are small perturbations to the mean orbital motion, the standard
perturbation method first developed by Lagrange can be used (see e.g. Brouwer and Clemence 1961).
However, I will present hereafter a simple and physically more transparent derivation of the equations,
based on the formulation of Hut (1981). Note that I have extended the calculations to be valid for
any obliquity.

I.1 Secular equation to arbitrary obliquity

The demonstration follows three main steps.

1. The orientation of the tidal bulge with time is computed. This yields vector expressions for the
tidal force and torque.

2. The variations of the rotation rate, obliquity and orbital angular momentum are obtained thanks to
this expression of the torque and using the total angular momentum conservation.

3. The evolution of the semi-major axis and eccentricity are obtained from the expression of the work
exerted by tidal forces. The total amount of energy dissipated by tides in one of the bodies is a
direct product of the calculation.
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I.1.1 Trivia

One of the major assumption made here, that remains to be justified, is that the tidal perturbation
entails only a small departure of the orbital motion from the unperturbed Keplerian solution. We will
thus consider that, over an orbit, our two bodies follow the usual motion, solution of the unperturbed two
body problem. This will allow us to average the effect of the tidal forces over the orbital timescale, and
to keep only the secular effect of the tidal interaction on the orbital elements, a, e, ω i and εi, respectively,
the semi major axis (or the mean motion n), the eccentricity, and the rotation rate and obliquity of the
component i.

In order to simplify the following derivation, I briefly recall here some properties of the two body
problem solution. The radial distance r? between the center of mass of the two objects writes

r? = a
1− e2

1+ ecosθ
, (I.1)

where θ is the true anomaly, defined as the angle between the line connecting the center of mass of the
two components and the one connecting the center of mass of the whole system and the perihelion (point
of closest encounter).

Over such an orbit, the total orbital energy of the binary is given by

Eorb =−G
M1M2

2a
, (I.2)

and the orbital angular momentum by

Horb =
M1M2

M1 +M2
r2
?θ̇ =

√
G

M2
1 M2

2
M1 +M2

a(1− e2). (I.3)

Because the orbital angular momentum is constant over an orbit, we can compute the variation of the
true anomaly and radial distance with respect to the position on the orbit

θ̇ = n
√

1− e2

(
a
r?

)2

= n
(1+ ecosθ)2

(1− e2)3/2 , (I.4)

and differentiating Eq. (I.1) with respect to θ we get

dr?
dθ

=
ṙ?
θ̇

= ae(1− e2)
sinθ

(1+ ecosθ)2 , (I.5)

and thus

ṙ? = an
esinθ√
1− e2

. (I.6)

Thanks to these expressions, it is now easy to compute the average value of any function f , involving
a combination of θ̇ , ṙ? or r?, over an orbit. Indeed, one can first express f as a function g of θ alone
(with g(θ(t)) = f (t)). Then the average is given by

〈 f 〉 ≡ 1
Torb

∮
orbit

f (t)dt =
1

Torb

∮
orbit

g(θ)
dθ

θ̇(θ)
. (I.7)

In the cases of interest, the function g(θ)/θ̇ can be expanded in a finite series of sines cosines functions,
and the integral in Eq. (I.7) reduces to a sum of terms of the form

In =
∫ 2π

0
sin2

θ cosn
θdθ . (I.8)
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If n is odd, In = 0 due to the symmetry. For even values of n,

I2k = 4
∫

π/2

0
sin2

θ cos2k
θdθ = 4

(∫
π/2

0
cos2k

θdθ −
∫

π/2

0
cos2k+2

θdθ

)
. (I.9)

A recursive process shows that the integrals on the right hand side (also known as Wallis integrals) give1∫ π/2
0 cos2k θdθ = (2k−1)!!

2k!! π/2 and thus

I2k = 2π
(2k−1)!!
(2k+2)!!

. (I.10)

I.1.2 Tidal torque

Up to quadrupolar order, the potential created at a location r, by a body being distorted by a sec-
ondary located at r?, is obtained by truncating Eq. (5.3) up to terms with n = 2 which gives

VG(r,r?) =
GM1

r

[
1− k2

R̄5
1

r2r3
?

M2

M1
P2(cosψ)

]
, (I.11)

where ψ is the angle between r and r?, and k2 is the Love number of degree 2 of the primary.
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Figure I.1: Point mass approximation of the tidal bulge (in the coplanar case). In this example, ω1 > θ̇

so that the tidal bulge is leading in front of the secondary.

To this order, the mass distribution of the primary can be mimicked by a central mass M1− 2δm
and two point masses at the location of the tidal bulges (r+, r− =−r+ ; see Fig. I.1) of mass δm with
‖r+‖= ‖r−‖= R̄1 the radius of the primary and

δm =
1
2

k2M2

(
R̄1

r?

)3

. (I.12)

Because we consider a constant time lag ∆t1 between the deforming potential and the tidal deformation
in the frame rotating with the primary, r̂+ = r̂?(t−∆t1) ( r̂? refers to the unit vector associated to r?) in
this frame. Let θ̇ be the orbital rotation vector colinear to the orbital angular momentum whose value is

1By definition, i!! = i(i−2)(i−4) ...1.
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the instantaneous variation rate of the true anomaly θ of the bodies in their Keplerian motion and ω1 the
rotation vector of the primary. Thus, to first order in ∆t1,

r̂+ = r̂?(t−∆t1)≈ r̂?−∆t1 r̂?× (ω1− θ̇). (I.13)

The amplitude of the tidal bulges also lags behind the deforming potential and is given by

δm(t) =
1
2

k2M2

(
R̄1

r?(t−∆t1)

)3

≈ 1
2

k2M2

(
R̄1

r?

)3

(1+3
ṙ?
r?

∆t1). (I.14)

Then, adding the forces exerted by each point mass of the primary on the secondary, the total tidal force
exerted on the secondary reads

F1→2 =−
G(M1−2δm)M2

‖r?‖3 · r? −
GM2δm
‖r?− r+‖3 · (r?− r+)−

GM2δm
‖r?− r−‖3 · (r?− r−). (I.15)

Substituting r+, r− = −r+ and δm by their expressions in Eqs. (I.13) and (I.14), and neglecting terms
smaller than (R̄1/r?)5 gives

F1→2 =−
GM1M2

r2
?

· r̂? − 3
Gk2M2

2 R̄5
1

r7
?

{1+3
ṙ?
r?

∆t1} · r̂?+ 3
Gk2M2

2 R̄5
1

r7
?

∆t1(ω1− θ̇)× r̂?. (I.16)

Thus the tidal torque exerted by the tidal bulge on the secondary is given by

N1→2 = 3
Gk2M2

2 R̄5
1

r6
?

r̂?×
(
∆t1(ω1− θ̇)× r̂?

)
. (I.17)

I.1.3 Angular momentum transfer

Because the total angular momentum is conserved, we can write

N1→2 = Ḣorb =−Ḣ1, (I.18)

where Horb is the orbital angular momentum vector, whose direction follows θ̇ , and H1 = C1ω1 the
rotational angular momentum of the primary, whose moment of inertia along the rotation axis is C1.
Remember that the secondary is here treated as a point mass, meaning that its angular momentum is an
internal degree of freedom, and cannot be transferred to another component for the moment. We can
then simply derive the rate of variation of the modulus of the internal angular momentum:

d
dt
(C1ω1) = Ḣ1 = Ḣ1 · Ĥ1 =−N1→2 · Ĥ1. (I.19)

This product can be carried out by projecting in any base. We choose the base defined by Horb = (0, 0, h)
and ω1 = (ω1 sinε1, 0, ω1 cosε1) where ε1 is the obliquity. In this base,

N1→2 = 3
Gk2M2

2 R̄5
1

r6
?

∆t1

 ω1 sinε1 sin2(θ +ϖ)
−ω1 sinε1 cos(θ +ϖ)sin(θ +ϖ)

ω1 cosε1− θ̇

 , (I.20)
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where ϖ is the longitude of the periapsis. The precession of the periapsis occurring on a much shorter
timescale than the tidal migration, we can average the tidal torque over ϖ . This yields

N1→2 = 3
Gk2M2

2 R̄5
1

r6
?

∆t1

 1
2 ω1 sinε1

0
ω1 cosε1− θ̇

 . (I.21)

We can compute the dot product in Eq. (I.19) giving (with x1 = cosε1)

dC1ω1

dt
= 3

Gk2∆t1M2
2 R̄5

1
r6
?

(
x1θ̇ −

(
1+ x2

1
2

)
ω1

)
. (I.22)

The mean rotation-rate variation is obtained by averaging over a Keplerian orbit using

Ω(e)≡ 1
Torb

∮
orbit

(
a
r?

)6

dt =
1+3e2 + 3

8 e4

(1− e2)9/2 (I.23)

and

N(e)≡ 1
Torb

∮
orbit

θ̇

n

(
a
r?

)6

dt =
1+ 15

2 e2 + 45
8 e4 + 5

16 e6

(1− e2)6 . (I.24)

This reads

dC1ω1

dt
=−K1

n

[(
1+ x2

1
)

Ω(e)
ω1

n
−2x1 N(e)

]
, (I.25)

where we have introduced a scaling factor which has the dimension of an energy dissipation rate,

K1 =
3
2

k2∆t1

(
GM2

1
R̄1

)(
M2

M1

)2( R̄1

a

)6

n2. (I.26)

As detailed later, this parameter can be used to compare the strength of the tidal dissipation inside each
body. As can be seen from Eq. (I.25), for any value of the obliquity and orbital elements, one can find a
value of the rotation rate which cancels the mean tidal torque.

The variation of the obliquity can be obtained with

ẋ1 =
d
dt
(Ĥ1 · Ĥorb) =

˙̂H1 · Ĥorb + Ĥ1 · ˙̂Horb. (I.27)

Carrying out the differentiation and using Eq. (I.18) yields

ẋ1 =
(Ĥ1 · Ĥorb)(N1→2 ·H1)

H2
1

− (N1→2 · Ĥorb)

H1
− (Ĥorb · Ĥ1)(N1→2 ·Horb)

H2
orb

+
(N1→2 · Ĥ1)

Horb
. (I.28)

Subsituting Eq. (I.21) for N1→2 we get after simplification

dε1

dt
=

3
2

Gk2∆t1M2
2 R̄5

1
r6
?

sinε1

(
x1

C1
−2

θ̇

C1ω1
− ω1

Horb

)
. (I.29)

Averaging over an orbit using Eqs. (I.23)-(I.24) gives

dε1

dt
= sinε1

K1

C1ω1 n

[
(x1−η1)Ω(e)

ω1

n
−2N(e)

]
, (I.30)

where ηi is the ratio of rotational over orbital angular momentum

ηi =
M1 +M2

M1M2

Ciωi

a2n
√

1− e2
. (I.31)



174 Secular tidal evolution for finite eccentricity and obliquity

I.1.4 Energy dissipation

To obtain the variation of the semi-major axis and eccentricity, we must compute the work done by
the tidal force on the secondary

〈Ėorb〉1 =
1

Torb

∮
orbit

F1→2 ·dr

=
1

Torb

∮
orbit

( ṙ? F1→2 · r̂ +N1→2 · θ̇)dt, (I.32)

where ṙ? F1→2 · r̂ is the radial component and N1→2 · θ̇ the normal one. The radial forces in r−2
? and r−7

?

in Eq. (I.16) are conservative and do not dissipate energy. The radial part of the work is computed using

Ne(e)≡ 2
1− e2

e2
1

Torb

∮
orbit

(
a
r?

)8( ṙ?
na

)2

·dt =
1+ 15

4 e2 + 15
8 e4 + 5

64 e6

(1− e2)13/2 . (I.33)

The normal component can be written

N1→2 · θ̇ dt = 3Gk2∆t1M2
2 R̄5

1

(
x1ω1− θ̇

r6
?

)
dθ . (I.34)

Again, averaging is carried out using Eqs. (I.24)-(I.23). After integration we get

〈Ėorb〉1 = 2K1

[
N(e)x1

ω1

n
−Na(e)

]
, (I.35)

where

Na(e) =
1+ 31

2 e2 + 255
8 e4 + 185

16 e6 + 25
64 e8

(1− e2)15/2 . (I.36)

The variation of semi-major axis due to the tides raised in the primary can be obtained through the
fact that

〈Ėorb〉1 =−
d
dt

GM1M2

2a
=

GM1M2

2a2 ȧ, (I.37)

which gives

1
a

da
dt

∣∣∣∣
1
=

4a
GM1M2

K1

[
N(e)x1

ω1

n
−Na(e)

]
. (I.38)

Because the orbital angular momentum is given by

Horb =

√
G

M2
1 M2

2
M1 +M2

a(1− e2), (I.39)

the variation of the eccentricity can be obtained by differentiating Horb with respect to t:

2 Ḣorb

Horb
=

ȧ
a
− 2eė

1− e2 . (I.40)

Only total angular momentum is conserved, then Ḣorb =−d(C1ω1)/dt and substituting Eq. (I.25), (I.38)
and (I.39) in (I.40) gives

1
e

de
dt

∣∣∣∣
1
= 11

a
GM1M2

K1

[
Ωe(e)x1

ω1

n
− 18

11
Ne(e)

]
. (I.41)
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Finally, the rate of mechanical energy (Emec ≡ Eorb +Erot) dissipated by the primary is

〈Ėmec〉1 = 〈Ėorb〉1 + 〈Ėrot〉1

=− d
dt

GM1M2

2a
+ω1

d
dt
(C1ω1). (I.42)

Thus, substituting Eqs. (I.22) and (I.35) in Eq. (I.42) gives

〈Ėmec〉1 =−2K1

[
Na(e)−2N(e)x1

ω1

n
+

(
1+ x2

1
2

)
Ω(e)

(
ω1

n

)2
]
. (I.43)

One can see that the energy dissipated in the body (Ėtid ≡−〈Ėmec〉1) is positive for any value of e and x1
as expected (Hut 1981) and that it is minimum when the body is pseudo-synchronized. Substituting ω1
by the pseudo-synchronization rate (Eq. (I.51)), Eq. (I.43) simplifies to Eq. (I.53), which can be used
for a close-in gas-giant exoplanet. For rocky planets locked in synchronous rotation by their permanent
quadrupolar mass distribution, the heating rate can be estimated setting ω1 = n in Eq. (I.43).

I.2 Assumptions, order of magnitudes and timescales

I.2.1 Timescales

Let us summarize the different timescales involved with tidal evolution. We remind here that most
of the timescales defined here can change when considering one or the other object of a pair, but we will
omit the subscript i for simplicity. The shortest period, is of course the dynamical timescale which we
take here to be the period of the orbital motion of a test particle which would be grazing the surface of
the primary

Pdyn ≡ 2π

√
R̄3

i
GMi

. (I.44)

Another short timescale is the orbital period, on which all our equations have been averaged

Porb ≡
2π

n
=

√
4π2a3

G(M1 +M2)
. (I.45)

However, viscous processes produce only a weak secular perturbation of the orbital motion, and
their effect occur on much longer timescales. To scale these effects, we can define a viscous time as
follows

τv ≡
1

4π2 (
Tdyn

k2,i∆ti
)Tdyn =

R̄3
i

GMik2,i∆ti
. (I.46)

From Eqs. (5.12) and (5.11), we see that two comparable timescales arise for the evolution of the
orbital elements. The first one, also called the circularization timescale (due to the body i), is proportional
to the ratio of the orbital energy over the typical dissipation rate in the body under consideration

τcirc ≡ −
e
ė

∣∣∣
ω=ωeq,e→0

=
1
7

GM1M2

aKi
. (I.47)

It measures the time needed to damp the eccentricity of a nearly circular orbit. For exoplanets, this
timescale will be of particular interest, as it will set the rate at which gravitational energy is released into
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the primary during the circularization of the orbit (see § 5.5.1). Noting p = Mi/Mj the ratio of the mass
of the body under consideration over the mass of the secondary, this rewrites

τcirc =
2
21

p2

1+ p
(

a
R̄i
)8

τv. (I.48)

It is comparable to the typical timescale for the evolution of the semi-major axis, or infall timescale, that
can be derived from Eq. (5.11) using

τ in ≡ −
a
ȧ

∣∣∣
ω=0,e=0

=
1
6

p2

1+ p
(

a
R̄i
)8

τv. (I.49)

From Eqs. (I.25) and (I.30), we see that the evolution of timescales for the (pseudo) synchronization
and the coplanarization are also equal and can defined as

τsync ≡
ω−n

ω̇

∣∣∣∣
e=0

=
1
3

r2
gyr p2

(
a
R̄i

)6

τv. (I.50)

I.2.2 Validity of the weak friction approximation

We are now able to quantify more precisely the weak friction approximation and to define what is a
small time lag (∆t). In our calculations, this approximation appeared under two different forms. First, in
computing the positions and masses of the tidal bulges (see Eqs. (I.13) and (I.14)), where we truncated
our development to linear order in ∆t, and second in averaging the effects of the tidal forces over an
unperturbed Keplerian orbit. Thus the linear approximation is justified if both, the principal tidal driving
period is large compared to the time lag, and the orbital period is small with respect to the timescales
linked to the tidal evolution (both τcirc and τsync).

In reasonable cases, the first constraint is the most stringent and can be rewritten either
2|ω − n|∆t � 1 for non-synchronous objects, or n∆t � 1 in the pseudo-synchronous case. Even for
rigid objects like the Earth (∆t ≈ 630s2 ; Mignard 1979 ; Neron de Surgy and Laskar 1997), this assump-
tion is well justified.

However, another subtle averaging has been made to obtain a torque which is independent of the
relative orientation of the spin with respect to the perihelion of the orbit in Eq. (I.21). While the tidal
processes still occur on a much longer timescale than the precession period, possible resonances of this
precession with other secular perturbation of the system, by a distant third companion for example, can
occur. Therefore, the object can be trapped in a spin-orbit resonance, also called Cassini state (see
Levrard et al. 2007 ; while this seems improbable for giant close in planets as shown by Fabrycky et al.
2007), or a Kozai-Lidov resonance (Fabrycky and Tremaine 2007), which cannot be described by the
above equations as they are.

I.2.3 Pseudo-Synchronization

While the evolution of a and e arise on quite comparable timescales, synchronization, however, can
proceed much faster. Indeed, considering a planet, p = Mp/M?� 1, yielding

τsync

τcirc
∝

(
Rp

a

)2

� 1.

2This value is of the time lag is the one needed to recover the increase of the Earth-Moon semi-major axis measured with
Lunar Laser Ranging, and which is currently ≈4 cm per year.
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Therefore one can make the assumption than tidally evolve exoplanets must be in a state of pseudo
synchronization with their orbit. The value of the pseudo synchronized angular velocity can be found by
either setting Eq. (I.25) equal to zero or by minimizing the rate of tidal dissipation at fixed semi-major
axis, eccentricity and obliquity. This reads

ωeq =
N(e)
Ω(e)

2xi

1+ x2
i

n =
N(e)
Ω(e)

n , (I.51)

for a zero inclination. When the orbit is circularized, this reduces to the simple synchronization ωeq = n.
As the obliquity equation involves the same typical timescale as the evolution of the angular velocity, the
planet obliquity must rapidly be damped by tides and we can make the assumption of alignment between
orbital and planetary angular momentum (εi ≈ 0).

I.2.4 Stellar spin
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Figure I.2: Absolute value of ω̇?/ω? due to the winds (dashed), radius variation (solid) and tides (dotted)
for a Jupiter-Sun like system on a circular orbit with a = 0.1 AU (left) and 0.02 AU (right). Here, k2 ∆t? =
2× 10−2. The contraction always dominates on the pre main sequence, spinning up the star, but is
counteracted by magnetic winds later on. The tides raised by the planet only play a significant role for
very short period orbits, when the planet and star are nearly merging.

On the contrary, for stars, p = M?/Mp � 1, τsync/τcirc ∝ p
(R?

a

)2
and a pseudo synchronization

and coplanarity hypothesis is no longer justified in most cases. The spin state of the star must then be
taken into account. However, this is not as simple as integrating Eq. (I.25) at constant C1. First, the star
contracts during the pre main sequence, or expand on the main sequence, and the angular momentum
conservation entails an additional term in the spin rate variation3. In addition, as is well known, stars
loose angular momentum through the ejection of magnetized winds. Following the parametrization of
Bouvier et al. (1997) for the stellar winds, we get

ω̇?

ω?
=− Ki

C? ω? n

[(
1+ x2

?

)
Ω(e)

ω?

n
−2xi N(e)

]
− Ċ?

C?
− Kwind

C?
min[ω2

? ,ω
2
sat]

√
R?

M?
, (I.52)

where Kwind and ωsat are constant for a given star. The strength of the various terms is compared in
Fig. I.2 for a Jupiter-Sun like system. This shows that angular momentum losses are far from being
negligible, but including these effects in our model adds many additional free parameters (e.g. Kwind and
ωsat which are only weakly constrained, but also the lifetime of the circumstellar disk which determines

3As I kept C1 in the time derivative of Eq. (I.25), this term is already implicitly included.
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the initial spin rate of the star ; Bouvier et al. 1997). Thus, in order to keep the number of unknown as low
as possible, I decided to do not take into account these additional terms in the general study described
in the following sections. The initial angular momentum of the star used in our simulations can then
directly be deduced from the observed one.

I.2.5 Tidal heating

One can see from Eq. (I.43) in § I that in the special case of a body in pseudo-synchronous rotation,
as expected for fluid objects (ε1 = 0, ω1 = ωeq), the tidal energy dissipation rate is given by

Ėtid = 2K1

[
Na(e)−

N2(e)
Ω(e)

]
; (ω1 = ωeq). (I.53)

The dissipated heat is deposited over the whole planet’s interior.
For a rocky planet, however, the external gravitational potential created by its permanent quadrupole

moment can cause its locking into synchronous rotation (ωp = n), and the dissipation rate reads in that
case

Ėtid = 2K1

[
Na(e)−2N(e)xp +

(
1+ x2

p

2

)
Ω(e)

]
; (ω = n). (I.54)

This equation fully agrees with Eq. (30) of Wisdom (2008) who calculated it for a homogeneous, in-
compressible with a radial displacement Love number h2 = 5k2/3. Note that our derivation does not
require such an hypothesis and all the uncertainties in the radial distribution of material and its physical
properties (e.g., density, compressibility, elasticity) are lumped into the k2 parameter (Levrard 2008).
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Appendix J

CHESS user guide

J.1 Goal

CHESS is a Code computing Hydrostatic Equilibrium Structure by Shooting method. It can basically
run in two different modes:

• Find and compute a structure in hydrostatic equilibrium (HSE) for a given set of planetary pa-
rameters such as Tatm, Patm (or Teff, logg if a numerical grid is used for the atmospheric boundary
condition), Y , Mc, ω1, etc... In this mode, several quantities characterizing the structure are com-
puted as outputs (Pc, Tc, Rp, R̄p, k2, C1, etc...).

• Can find the values of a specified set of parameters (Mc, ice to rock mass ratio, Y , dY/dm, ...)
that fit best the observable parameters of the planet (Req, ωp, J2, J4, J6, Zatm) by an optimized
Newton-Raphson procedure.

J.2 Code Structure

J.2.1 Equations

To find the HSE, CHESS integrates the standard set of stellar structure equations in the Lagrangian
form

∂ P
∂ m

=− g
4π r̄2 +

ω2
p

6π r̄
+ϕω , (J.1)

∂ r̄
∂ m

=
1

4π r̄2ρ
, (J.2)

∂ L
∂ m

= ε̇−T
∂ S̃
∂ t

, (J.3)

∂ T
∂ m

=
T
P

∂ P
∂ m

∇T , (J.4)

where ϕω is given by Eq. (E.17). In the code, the set of variables is {yi}i=1,4 =

{logP,(r̄/R̄p)
β̄ ,(l/Lint)

γ̄ , logT}, and the parameter is the reduced Lagrangian mass µ = (m/Mp)
ᾱ . Note

that the term due to the centrifugal force in the pressure equation is valid to 3rd order (see Appendix E).
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The equations solved thus read

∂ y1

∂ µ
=

[
−

GM2
p

4π ᾱ R̄4
p

µ2/ᾱ−1

y4/β̄

2

+
ω2

p Mp

6π ᾱ R̄p

µ1/ᾱ−1

y1/β̄

2

+
Mpµ1/ᾱ−1

ᾱ
ϕω

]
10−y1

ln10
, (J.5)

∂ y2

∂ µ
=

β̄ Mp

4π ᾱ R̄3
p

y1−3/β̄

2

ρ µ1−1/ᾱ
, (J.6)

∂ y3

∂ µ
=

γ̄ Mp

ᾱ Lp

y1−1/γ̄

3

µ1−1/ᾱ

(
ε̇−T

∂ S
∂ t

)
, (J.7)

∂ y4

∂ µ
=

∂ y1

∂ µ
∇T , (J.8)

The power law indices ᾱ , β̄ and γ̄ can be chosen so that the equations do not show any singularity at the
boundaries. This is achieved using ᾱ = 2/3, β̄ = 2 and γ̄ = 2/3.

Because the luminosity cannot be calculated self-consistently without any knowledge on the evo-
lution, some assumptions must be made. Here we will assume that the interior is strictly adiabatic. For
planets below the deuterium burning limit, the luminosity can therefore be integrated as follows

l(m) =
∫ m

m=0

(
ε̇−T

∂ S̃
∂ t

)
dm≈−∂ S̃

∂ t

∫ m

m=0
T dm =−T̄ (m)

∂ S̃
∂ t

Mp, (J.9)

defining a mean temperature T̄ (m) (with T̄ = T̄ (Mp)). In our models with semi-convection, we will use
this equation even if it is not strictly valid. To avoid adding a free parameter to be adjusted in our shooting
method, we will go beyond this hypothesis and assume that "for the luminosity", the temperature profile
follows a square law

T = Tc− x2 (Tc−Tatm), (J.10)

T̄ =
2
3

Tc +
1
3

Tatm. (J.11)

This means that, although the temperature profile is computed using Eq. (J.4), the luminosity is computed
using

l(x) =−∂ S̃
∂ t

(
xTc−

x3

3
(Tc−Tatm)

)
,

∂ S̃
∂ t

=− Lint

T̄ Mp
. (J.12)

J.2.2 Boundary conditions

With the set of equations described above, one needs only 3 initial conditions at each edge to
compute a structure (not necessarily in HSE). In CHESS, these initial conditions are r = 0, P = Pc and
T = Tc at the center and r̄ = R̄p, P = Patm and T = Tatm at the outer edge. The Boundary conditions on
the luminosity are already enforced by Eq. (J.12).

J.2.3 Parameter adjustment

When CHESS is searching for a structure in HSE, Pc, Tc and R̄p are varied until the discrepancy at
the mid point in the structure reaches zero to numerical precision.
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The code can find the values fitting the observable constraints (Req, J2, J4) for any specified set of
variables including up to 3 variables from : Tatm (or Tint), Ȳ , dY

dm , Mc, Mrock/Mc. At each step, new values
of Pc, Tc and R̄p are computed to satisfy the HSE.

J.3 Principal variables list

The main variables describing the planet physical structure are:

• Mass_p: Planet mass (Mp)

• R_mean_g: Mean radius of the P = Patm isobar (R̄p). If the rotation is set to zero, R̄p = Req = Rp.

• R_equatorial: Equatorial radius (Req).

• lPc_g: Log of central pressure (logPc).

• lTc_g: Log of central temperature (logTc).

• lT_atm: Log of temperature at the atmospheric boundary condition (logTatm).

• lP_atm: Log of pressure at the atmospheric boundary condition (logPatm).

• Teff_p: Planet effective temperature (Tint)

• Ltot_p: Total luminosity (Lint). This is recomputed each time that either R_mean_g or Teff_p
changes.

• w_rot: Angular velocity (ωp)

• m_rot_g: dimensionless rotation parameter (
ω2

p R̄3
p

GMp
)

• M_core_g: Core mass (Mc).

• x_core_g: Ratio of core to total mass (Mc/Mp).

• alpha_core_g: Ratio of rocky core to total core mass (Mrock/Mc).

• YHe_g: Mean Helium and heavy elements mass ratio (Ȳ ′, where Y ′ = Y +Z).

• DYHe_g: Mean Helium and heavy elements mass ratio gradient ( dY ′
dm ).

• f_YHe_mod: Function to use to compute the Helium and heavy elements mass ratio at each point
knowing YHe_g and DYHe_g (integer).

• core_EOS: EOS to use for the core (integer).

Unless stated otherwise, these variables are double precision real given in SI units (MKS system) and log
is the decimal logarithm. These variables are contained in the module Param_Global. They are global
variables used by all the subroutines to compute the structure without having to specify them as input
variables. They are initialized by the loading subroutines in load.f90.

To run CHESS in different modes, the main program can access the module Options and switch the
following parameters to the required value. They are listed here with their default value.
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• Param_io_channel=0: =1 if the physical parameters are provided by the main program, =0 if
CHESS must read them in the specified files.

• EOS_init=0: If = 1, the EOS for Hydrogen and Helium (SCvH) has already been loaded. = 0 for
normal initialization.

• ANEOS_init=0: If = 1, ANEOS has already been loaded. =0 for normal initialization.

• OpaCOND_init=0: If = 1, COND opacities have already been loaded. =0 for normal initialization.

• CONDALL_init=0: If = 1, Conductive opacities have already been loaded. =0 for normal initial-
ization.

• atm_init=0: If = 1, atmospheric boundary conditions have already been loaded. =0 for normal
initialization.

• what_should_I_do=-1: If < 0 CHESS only carries out initialization (test mode), =0 compute HSE
for the given parameters, =i>1 fit i parameters, with the i constraints.

• FitParameter=[’YHe’,’x_core’,’DYHe’]: parameters to constrain.

• Constraint=[’R_equa’,’J2’,’J4’]: Constraints to use.

• use_atm_BC=1: If =0 the program uses lP_atm and lT_atm given in the init file as external
boundary conditions. If =1, CHESS will use the atm_files along with the specified Teff_p and
logg_p (computed from Mass_p and R_mean_g) to infer the atmospheric Boundary Conditions.

• write_res=1: If = 0 does nothing, =1 writes the fitted parameters in the file specified in
chess.f90.

• write_struc=0: If = 0 does nothing, =1 writes the structure in the file specified in chess.f90
with the number of point given by NbrPointOutput, =2 writes the structure in an unformatted file
compatible with the evolution code (thus PrintOutFormat must be 17)

• write_mode=0: If = 0 normal mode: The code writes only most useful quantities. =1, writes
additional physical quantities (opacities, temperature gradients...)

• write_figures=0: If = 0 does nothing, =1 writes the figure functions in the file spec-
ified in chess.f90 with the number of point given by NbrPointOutput (works only if
write_struc>=1)

• NbrPointOutput=300: Number of grid points for the structure output.

• PrintOutFormat=9: Number of digits (after the coma) to print out in the ResultStructure.dat
file. 17 is the max in double precision
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