Histoire biologique d’une population du sud-est malgache: les Antemoro
Mélanie Capredon

To cite this version:

HAL Id: tel-00703684
https://tel.archives-ouvertes.fr/tel-00703684
Submitted on 4 Jun 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THÈSE de doctorat

Discipline : Anthropologie génétique

Titre : Histoire biologique d’une population du sud-est malgache : les Antemoro

Présentée par Mélanie CAPREDON

Soutenue le 25 novembre 2011, à l’Université de La Réunion

Directeur(s) de Thèse :
Bernard CHAMPION, Professeur d’Anthropologie, CRLHOI, Université de La Réunion
Jean-Michel DUGOUJON, Directeur de Recherche, AMIS, Université Paul Sabatier

Rapporteurs de Thèse :
Alain FROMENT, Directeur de Recherche, IRD
Narivelo RAJAONARIMANANA, Professeur, INALCO

Membres du jury
Bernard CHAMPION, Professeur des Universités, CRLHOI
Narivelo RAJAONARIMANANA, Professeur des Universités, INALCO
Louis-Paul RANDRIAMAROLAZA, Professeur, Université d’Antananarivo
Jean-Michel DUGOUJON, Directeur de Recherche, AMIS
François CARTAULT, Docteur Chef de service, Centre hospitalier Felix Guyon (La Réunion)
Sommaire

SOMMAIRE... 2
LISTE DES FIGURES... 4
LISTE DES TABLEAUX.. 5
REMERCIEMENTS .. 6
RESUME.. 7
ABSTRACT.. 8
MOTS CLES... 9
I- INTRODUCTION.. 11
II- CONTEXTE HISTORIQUE ET CULTUREL A MADAGASCAR... 14
A- HISTOIRE DU PEUPLEMENT DE LA GRANDE ILE.. 14
 1- Origine des peuplements .. 14
 2- Influences Arabo-islamique ... 20
 3- Impact de ces échanges à Madagascar ... 22
B- HISTOIRE DU SUD-EST DE MADAGASCAR – VOYAGE EN PAYS ANTEMORO ... 26
 1- Les groupes Islamisés et la tradition orale ... 26
 2- Entre mythes et réalité ... 29
C- LE ROYAUME ANTEMORO ... 32
 1- La société Antemoro : une ancienne société de castes .. 32
 2- Histoire du Royaume Antemoro ... 36
 3- Traces culturelles arabo-islamiques .. 37
 4- Structure des villages .. 39
III- CONTEXTE ANTHROPOBIOLOGIQUE A MADAGASCAR .. 40
A- GENETIQUE DES POPULATIONS ET MARQUEURS MOLECULAIRES ... 40
 1- Les immunoglobulines G .. 41
 2- Le chromosome Y .. 42
 3- L’ADN mitochondrial ... 43
B- ETAT DE LA RECHERCHE ANTHROPOBIOLOGIQUE A MADAGASCAR ... 45
IV- ETUDE PRELIMINAIRE.. 46
A- ANALYSE DU SYSTEME GM DE TROIS POPULATIONS DU SUD DE MADAGASCAR .. 46
 1- Matériaux et méthodes ... 47
 2- Résultats .. 50
 3- Discussion .. 55
B- OBJECTIF DE NOTRE ETUDE .. 56
V- LES ANTEMORO : ETUDE ANTHROPOBIOLOGIQUE ... 57
A- MISSION DE TERRAIN ... 57
 1- Questions d’éthiques et choix du type de prélèvement ... 57
 2- Sélection des villages .. 58
 3- Sélection des individus et problèmes rencontrés .. 59
B- METHODES .. 59
 1- Analyses en laboratoire ... 59
 2- Méthodes d’analyses des données .. 63
C- RESULTATS ET DISCUSSION .. 65
 1- Lignées paternelles .. 66
 2- Lignée maternelles .. 75
D- DISCUSSION GENERALE ... 84
 1- Confrontation des résultats sur le NRY et les données historiques et sociales .. 84
2- *Confrontation des résultats sur l’ADN mt et les données historiques et sociales* ... 86

VI- *CONCLUSIONS ET PERSPECTIVES D’ETUDES* ... 88

A- *CONCLUSIONS PRINCIPALES* ... 88

B- *PERSPECTIVES* ... 90

VII- *RÉFÉRENCES* .. 92

VIII- *ANNEXES* .. 107

ANNEXE 1. AUTORISATION DELIVRÉE PAR LE COMITÉ D’ÉTHIQUE MALGACHE ET LETTRE D’INTRODUCTION................................. 107

ANNEXE 2. DEUX PAGES EXTRAITES DU TRAVAIL D’UN INSTITUTEUR RETRAITÉ ANAKARA, MR BERNARD. TRADUCTION D’UN SORABE EN MALGACHE... 110

ANNEXE 3. LISTE DES PRIMERS POUR LE SNAPSHOT Y ... 112

ANNEXE 4. NETWORKS MEDIAN-JOINING DES HAPLOGROUPE J1 ET T1 ANTEMORO ... 113

ANNEXE 5. TABLEAU DES PROFILS STR-Y DES ANTEMORO .. 114

ANNEXE 6. TABLEAU DES HAPLOTYPES SNP-Y Y AP- DE L’ÉCHANTILLONNAGE DES TROIS GROUPES ANTEMORO 121

ANNEXE 7. TABLEAU DES HAPLOTYPES SNP-Y Y AP+ DE L’ÉCHANTILLONNAGE ANTEMORO ... 125

ANNEXE 8. TABLEAU DES HAPLOTYPES HVI ET HVII DE NOTRE POPULATION ANTEMORO ... 128

ANNEXE 9. TABLEAU DES HAPLOTYPES DE LA RÉGION CODANTE DE L’ADN Mt DANS LES TROIS GROUPES ANTEMORO 134

ANNEXE 10. TABLEAU DES FST PAR PAIRE DE POPULATIONS SUR LA BASE DES FREQUENCES DES POLYMORPHISMES GM 140

ANNEXE 11. TABLEAU DES FST PAR PAIRE DE POPULATIONS SUR LA BASE DES FREQUENCES DES HAPLOGROUPE Y. 145

ANNEXE 12. TABLEAU DES HAPLOTYPES PARTAGES A 17 STR-Y ENTRE LES AMPANABAKA ET LES AUTRES POPULATIONS MALGACHES ET DES COMORES. .. 148

ANNEXE 13. TABLEAU DES HAPLOTYPES PARTAGES A 17 STR-Y ENTRE LES ANTEONY ET LES AUTRES POPULATIONS MALGACHES ET DES COMORES. ... 149

ANNEXE 14. TABLEAU DES HAPLOTYPES PARTAGES A 17 STR-Y ENTRE LES ANTALALOTRA ET LES AUTRES POPULATIONS MALGACHES ET DES COMORES. ... 149

ANNEXE 15. TABLEAU DES HAPLOTYPES UNIQUES PARTAGES SUR 7 MARQUEURS STR-Y AVEC NOTRE ÉCHANTILLON AMPANABAKA .. 151

ANNEXE 16. TABLEAU DES HAPLOTYPES UNIQUES PARTAGES SUR 7 MARQUEURS STR-Y AVEC NOTRE ÉCHANTILLON ANTALALOTRA .. 154

ANNEXE 17. TABLEAU DES HAPLOTYPES UNIQUES PARTAGES SUR 7 MARQUEURS STR-Y AVEC NOTRE ÉCHANTILLON ANTEONY 157

ANNEXE 18. TABLEAU DES FST PAS PAIRES DE POPULATIONS POUR NOS GROUPES ANTEMORO SUR LES DONNEES HVI 160

ANNEXE 19. TABLEAU DES HAPLOTYPES PARTAGES HVI ENTRE LES AMPANABAKA ET LES AUTRES POPULATIONS MALGACHES 163

ANNEXE 20. TABLEAU DES HAPLOTYPES PARTAGES HVI ENTRE LES ANTALAOтра ET LES AUTRES POPULATIONS MALGACHES 163

ANNEXE 21. TABLEAU DES HAPLOTYPES PARTAGES HVI ENTRE LES ANTEONY ET LES AUTRES POPULATIONS MALGACHES 164

ANNEXE 22. TABLEAU DES HAPLOTYPES UNIQUES PARTAGES SUR HVI AVEC NOTRE ÉCHANTILLON AMPANABAKA 165

ANNEXE 23. TABLEAU DES HAPLOTYPES UNIQUES PARTAGES SUR HVI AVEC NOTRE ÉCHANTILLON ANTALAOtra 169

ANNEXE 24. TABLEAU DES HAPLOTYPES UNIQUES PARTAGES SUR HVI AVEC NOTRE ÉCHANTILLON ANTEONY 173

ANNEXE 25. BASE DE DONNEES POUR LES ANALYSES DES ALLOTYPES DU GM... 179

ANNEXE 26. BASE DE DONNEES POUR LES ANALYSES EN FREQUENCE D’HAPLOGROUPE Y .. 184

ANNEXE 27. BASE DE DONNEES POUR LES ANALYSES A 7 MARQUEURS STR-Y ... 187

ANNEXE 28. BASE DE DONNEES POUR LES ANALYSES SUR HVI .. 189

ANNEXE 29. REFERENCES DES HAPLOTYPES J1 UTILISES POUR LE NETWORK ... 192

ANNEXE 30. REFERENCES DES HAPLOTYPES T UTILISES POUR LE NETWORK ... 193
Liste des Figures

Figure 1. Vue des territoires du pourtour de la Mer des Indes (par P. Du Val, 1676, Galicia-BNF) 11
Figure 2. Répartition des 18 groupes ethniques malgaches selon Grandidier 1908. .. 13
Figure 3. La traite arabe dans l’océan Indien au XVIIème siècle (Dorigny & Gainot 2006) 18
Figure 4. Portrait du Gouverneur Etienne de Flacourt. ... 19
Figure 5. Vue du Fort Dauphin ... 19
Figure 6. Ruines de Kilwa Kisiwani (Site de l’UNESCO World Heritage).. 21
Figure 7. Principaux sites archéologiques anciens du XIIIème au XVème siècle et arrivées des 3 vagues d’islamisés (carte de Beaujard 2003). .. 23
Figure 8. Fleuve Matitanana dans le sud-est de Madagascar (Capredon 2009) .. 24
Figure 9. Habitants du village de Ambila-Manakara (Capredon 2009) .. 28
Figure 10. Photographie du Roi Anteony au palais d’Ivato (Capredon 2009) .. 33
Figure 11. Photographie d’un Katibo écrivant du Sorabe (Capredon 2009) .. 33
Figure 12. Photographie d’une femme Ampanabaka (Capredon 2009) ... 35
Figure 13. Structure hiérarchique des Antemoro (d’après Rolland 2007) .. 36

Figures 14a et b. Photographies de la façade du Palais d’Ivato et tableau de l’ancien roi Antemoro Ramahasitrakarivo (Capredon 2009) .. 36

Figure 15. Papier malgache, Sorabe, Madagascar, XVIIème siècle. (BNF, Manuscrits orientaux, malayo-polynésien 23) .. 38

Figure 16. Photographie des trois pierres et de deux poteaux de fondation au village d’Ambila – Manakara (Champion http://anthropologie.univ-reunion.fr) .. 40

Figure 17. Schéma de la structure d’une immunoglobuline G ... 42
Figure 18. Schéma du chromosome Y .. 42

Figure 19. Répartition des haplogroupes du chromosome Y d’après Chiaroni et al. 2009. 43
Figure 20. Schéma de l’ADN mitochondrial (d’après http://www.mitomap.org/MITOMAP/mitomapgenome.pdf) .. 44

Figure 21. Fréquences des haplogroupes mitochondriaux dans les différentes régions géographiques (Brucato non publié) .. 44

Figure 22. Fréquences haplotypiques Gm dans les trois populations Malgaches et leur localisation. 44

Figure 23. MDS (Multidimensional Scaling) calculée à partir des valeurs FST (stress de Kruskal = 0,178). Légende: Ant.: Antemoro; N.Fih.: Nord Fihereña; S.Fih.: Sud Fihereña; Com.: Comores. ... 54

Figure 24. Kits de prélèvements salivaire Oragene (d’après DNA genotek) .. 57
Figure 25. Cytobrosse ... 57

Figure 26. Localisation des villages enquêtés ... 58

Figure 27. Méduse d’ADN (Banque nationale de photos en SVT; ac.Lyon).. 60

Figure 28. Pourcentages des haplogroupes Y retrouvés dans les trois groupes Antemoro étudiés 67

Figure 29. MDS calculée à partir de la matrice des F_{ST} par paire de populations entre les populations malgaches et comoriennes sur les données sur 17 STR-Y .. 69

Figure 30. MDS calculée à partir des F_{ST} par paire de populations entre les populations malgaches et comoriennes sur les fréquences des haplogroupes du NRY (Stess de Kruskal : 0,172).. 70

Figure 31. MDS sur les valeurs de F_{ST} calculées à partir des fréquences des haplogroupes Y entre les Antemoro et les populations de diverses régions géographiques (stress de Kruskal =0,227). ... 72

Figure 32. Analyse en Composante Principale calculée à partir de la fréquence des haplogroupes du NRY 73

Figure 33. Network Median-Joining calculé à partir des haplotypes STR-Y minimum (DYS19, DYS389i, DYS389ii, DYS390, DYS391, DYS392, DYS393) chez les Antemoro et les populations de diverses régions géographiques appartenant à l'haplogroupe J1 ... 75

Figure 34. Network Median-Joining calculé à partir des haplotypes STR-Y minimum (DYS19, DYS389i, DYS389ii, DYS390, DYS391, DYS392, DYS393) pour les Antemoro et les populations de diverses régions géographiques appartenant à l'haplogroupe T. .. 75

Figure 35. Diversité génétique intrapopulationnelle HVI et II dans les trois groupes Antemoro. N : Nombre total d’individus ; k : Nombre d’haplotypes ; h : Diversité génétique ; θk : nombre moyen d’haplotypes; θS : nombre moyen de sites polymorphes. .. 78

Figure 36. MDS calculée à partir des F_{ST} du tableau par paire de populations au sein des groupes malgaches sur la base des données HVI. .. 79

Figure 37. ACP calculée à partir de la fréquence des haplogroupes sur les lignées maternelles dans les populations malgaches et des Comores.. 80

Figure 38. MDS calculées à partir des valeurs F_{ST} sur la base des haplotypes HVI des populations de diverses régions géographiques. (a) Population du continent africain, (b) Asie du Sud-Est et Océanie ; (c) Europe et Eurasie de l’Ouest. .. 83

Liste des Tableaux

Tableau 1. Distribution des phénotypes Gm dans les trois populations malgaches échantillonnées............... 51

Tableau 2. Fréquence des haplotypes Gm et indices de diversité génétique dans les trois populations Malgaches étudiées .. 52

Tableau 3. Estimation du taux de métissage dans les trois groupes Antemoro calculée à partir de huit hypothétiques populations parentales.. 74
Remerciements

Je remercie,

En premier lieu mes directeurs de thèse, le Professeur Bernard Champion et le Docteur Jean-Michel Dugoujon, pour la confiance que vous m’avez accordée, vos conseils, vos remarques, c’est vous qui m’avez permis d’entamer et de mener à terme ce travail.

Le directeur du CRLHOI, Professeur Jacques Tual et le directeur d’AMIS, Professeur Eric Crubézy, pour m’avoir accueillie dans vos laboratoires.

L’Europe et la Région Réunion, pour les soutiens financiers.

Le Docteur Alain Froment et le Professeur Narivelo Rajaonarimanana, spécialistes dans leur domaine, pour avoir accepté d’être rapporteurs de ce travail.

Tous les membres participants au comité de thèse, c’est un honneur de présenter mon travail en face de vous.

Le Professeur Louis-Paul Randriamarolaza de l’Université d’Antananarivo, pour votre patience, votre disponibilité et votre aide précieuse dans la réalisation de ce qui fut, la base de ce travail de thèse.

Laure Tonasso, Valérie Cadamuro et Lenka Tisseyre, les petites fourmis du laboratoire AMIS, pour toute votre aide, sans vous je n’y serais pas arrivée.

Professeur Georges Larrouy, Professeur Jean-François Magnaval, Docteur Morgane Gibert, Docteur Stéphane Mazières, Docteur Clotilde Coudray, André Sevin, Evelyne Guitard, Line Hillat, Carmen Iglesias et Denise Larrouy, pour votre soutien et pour avoir contribué à l’ambiance chaleureuse de ces années de thèse.

Docteur Catherine Thèves, Docteur Patricia Balaresque, pour votre bonne humeur, vos bons conseils, mais aussi Docteur François-Xavier Ricaut, Docteur Harilanto Razafindrazaka et Docteur Nicolas Brucato, pour votre aide, vos compléments de bases de données, les traductions, lectures et relectures.

Les membres de l’EDI et du BRED, pour votre disponibilité et votre patience.

Madame Bakoly Razafindandy, pour votre sourire et votre soutien lorsque j’étais dans l’embarras au départ pour mon terrain.

Haja, Adelta et Hery, pour votre gentillesse, votre aide sur le terrain. Merci de m’avoir fait découvrir cette région magnifique et ces gens. Merci à vos familles de m’avoir accueillie.

Tous les participants malgaches, directs et indirects, à ce travail. Merci pour l’intérêt que vous y avez porté et pour votre confiance.

Mes collègues doctorants de la Réunion, jeunes docteurs ou futurs, nouveaux amis, pour votre bonne humeur, les RU, les rando… dans le même bateau on se sent moins seul.

Mes amis de toujours, pour votre joie de vivre communicative, votre aide parfois même à 9000km de distance.

Ma famille, pour avoir cru en moi, c’est grâce à vos encouragements et à votre soutien que j’ai pu arriver jusque là.

Mille Mercis à tous pour votre présence indispensable au bon déroulement de ces années de thèse.
Résumé

Entre le XIème et le XVIème siècle, la Mer des Indes fut le théâtre de nombreux mouvements populationnels aux fins essentiellement commerciales ou coloniales. Madagascar se trouve à la croisée des mondes asiatiques et africains. La côte sud-est malgache a vu l’arrivée de plusieurs migrations : la dernière, probablement vers la fin du XVème siècle, serait celle des Antemoro dont une partie d’entre eux se réclame d’une origine arabe et se rattache à La Mecque. L’ethnie des Antemoro a fait l’objet de nombreuses études anthropologiques et linguistiques. Néanmoins, le débat sur l’origine des migrants fait toujours l’objet d’hypothèses contradictoires. Leurs origines génétiques pourraient ainsi être l’Arabie, l’Afrique de l’Est, l’Inde ou encore l’Asie du Sud-Est à une époque où ces régions étaient déjà islamisées.

Ce travail a consisté à étudier la diversité génétique d’une population Antemoro afin d’apporter des éléments de réponse à la question de leur origine biologique. Ce projet interdisciplinaire a pour objectif de mettre en relation l’anthropologie culturelle et sociale avec l’anthropologie biologique.

Le polymorphisme du chromosome Y a été étudié afin de rechercher les origines des lignées paternelles par l’analyse de 17 marqueurs microsatellites ainsi que des mutations ponctuelles de l’ADN de la partie non recombinante du chromosome Y. De même, la variabilité génétique des lignées maternelles a été analysée par séquençage des régions hypervariables I et II de l’ADN mitochondrial, et par la définition de polymorphismes bialléliques dans sa région codante.

Abstract

Title: Biological history of a population from southeastern Madagascar: the Antemoro

Between the 11th and 16th century, the Indian Ocean was the scene of many population movements notably for commercial and colonial purposes. Madagascar is located at the crossroads of the Asian and African continents. Several migrations have occurred in this region; the last one during the late 15th century involved the Antemoro population who claimed an Arabian origin in Mecca. Many anthropological and linguistic studies have been carried out on this ethnic group, but the origin of these migrants remains contentious. It is uncertain whether their origins were in Arabia, East Africa, India or Southeast Asia, when these regions were Islamized.

In this study we assessed the genetic diversity of an Antemoro population from villages between Manakara and Vohipeno, to determine their biological origin. The aim of our interdisciplinary study was to link cultural and social anthropology with biological anthropology.

Y-chromosome polymorphisms were studied by analyzing 17 microsatellites markers and some SNPs in the non-recombining region of the Y-chromosome to determine the biological origins of the paternal lineages. In addition, genetic variability of maternal lineages was analyzed by sequencing hypervariables regions I and II, and by defining bi-allelic polymorphisms in the coding region of mitochondrial DNA.

We found two Y-chromosome haplogroups in some Antemoro groups that differentiated them from the typical genetic variability found in other Malagasy populations. Although most of the Antemoro showed a genetic diversity similar to that observed in sub-Saharan Africa and Southeast Asia, few haplotypes associated to paternal lineages linked them to the Middle East. Maternal lineages did not differ from those found in other Malagasy populations. The genetic isolate formed by some Antemoro groups confirmed their cultural isolation. This study provides a new view of the human genetic diversity in Madagascar.
Mots clés

Antemoro
Madagascar
Chromosome Y
ADN mitochondrial
Polymorphisme Gm
Allotypes
Migrations arabo-islamiques

Key words

Malagasy
Y-chromosome
Mitochondrial DNA
Gm polymorphism
Arab migrations
Islamic migrations
Si c’est une histoire vraie, elle vient des gens d’autrefois.
Si c’est une menterie, ce n’est pas moi le menteur.
C’est une histoire qu’on a conservée,
Une histoire des gens d’autrefois.
Ils l’ont racontée à leurs enfants
Jusqu’à moi qui l’ai entendu racontée,
Et je vous la raconte à mon tour.

(Contes Antakarana, Foi et Justice, Schrive M, 1990, Antananarivo)
I- Introduction

Depuis le Moyen-Age, la Mer des Indes a été le théâtre de nombreux mouvements populationnels à des fins coloniales ou commerciales. La Grande Ile de Madagascar se trouve à la croisée des mondes africain et asiatique (Figure 1). Elle est séparée de la côte est africaine par le canal du Mozambique, large d’un peu plus de 400 kilomètres. Même si elle est beaucoup plus éloignée de l’Arabie et de l’Indonésie, Arabes et Indonésiens étaient de très bons navigateurs et pouvaient atteindre Madagascar. L’Ile Rouge présente ainsi une population métissée africaine et Sud-Est asiatique à la fois génétiquement et culturellement avec quelques influences arabes. De nos jours, la Grande Ile présente de nombreuses ethnies. On en distingue généralement dix-huit ; néanmoins, ce découpage peut être discuté et leur délimitation sur le territoire malgache est loin d’être aussi clair que celle proposée par Grandidier en 1908 (Figure 2). Chaque groupe ethnique possède ses propres spécificités culturelles, mais ils sont tous réunis sous une même langue, le malgache. De par sa grande diversité culturelle, Madagascar attire de plus en plus de chercheurs. Du point de vue des études génétiques, on peut citer celles de Regueiro (2007) sur l’expansion austronésienne, de Tofanelli (2009) sur 4 populations de la Grande Ile (Antanosy, Antandroy, Antaisaka et Merina) et de Razafindrazaka et Ricaut (2010) sur les ethnies Vezo, Mikea et Andriana. Précédemment, les travaux de Hurles (2005), basés sur les marqueurs du chromosome Y et de l’ADN mitochondrial avaient permis l’analyse de la composante génétique africaine et asiatique.

Figure 1. Vue des territoires du pourtour de la Mer des Indes (par P. Du Val, 1676, Galicia-BNF)

L’un des grands axes de l’anthropologie est l’étude des aspects sociaux-culturels d’une société. Depuis quelques années on y associe le domaine de la génétique des populations. On parle ainsi d’anthropologie génétique, domaine qui étudie la diversité génétique humaine et dont l’objectif est de répondre à diverses questions telles que sur l’origine biologique des peuplements et les taux de métissage.

La présente étude se focalise sur la région sud-est de la Grande Île, en « pays » Antemoro (Figure 2). Cette partie de l’île aurait été, d’après les traditions orales locales, le départ d’une influence arabo-islamique qui se serait diffusée sur tout le territoire malgache. Certains groupes se réclament d’une origine Arabe et revendiquent un rattachement à La Mecque (Ferrand 1891). Nous nous intéresserons au groupe des Antemoro, ethnie du sud-est dont une partie, tout au moins, se réclame de cette origine et présente une culture aux influences islamique et arabe. Les marqueurs génétiques utilisés pour cette étude sont les marqueurs uniparentaux à savoir ceux du chromosome Y et de l’ADN mitochondrial, couramment utilisés pour les études génétiques et les approches démographiques. Le but de ce travail sera donc de confronter les données biologiques avec les données historiques, archéologiques, linguistiques et ethnologiques afin d’expliquer la diversité génétique observée et de chercher à porter un éclairage biologique aux différentes hypothèses sur l’origine du peuplement Antemoro. Dans un premier temps, une synthèse des connaissances déduites de ces différents champs d’étude sera présentée, afin de situer ce travail dans son contexte. Puis une présentation du choix de l’échantillonnage et les méthodes d’analyses sera faite. Pour finir, les résultats obtenus seront présentés et discutés et des perspectives d’études futures seront dégagées.
Figure 2. Répartition des 18 groupes ethniques malgaches selon Grandier 1908.
II- Contexte historique et culturel à Madagascar

A-Histoire du peuplement de la Grande Ile

1- Origine des peuplements

a- Arrivées austronésiennes

Le courant sud-équatorial permet de relier de juin à septembre l’Indonésie (sud de Java) au nord de Madagascar, et même de rejoindre le cap Delgado au nord du Mozambique. Il existe des dérives qui permettent aux îles telles que Sumatra de gagner ce courant. Le courant nord-équatorial semble pouvoir permettre la réalisation de ce même trajet, des îles indonésiennes à la Corne de l’Afrique pendant l’été austral. Le retour peut se faire à la même saison plus au sud en utilisant le courant équatorial ou par le nord lors de la mousson d’hiver, ce qui permet d’atteindre la péninsule indienne et l’Asie (Liszkowski 2000).

malaise et est employé par les aristocrates Antemoro pour désigner l’abattage rituel des boeufs (Adelaar 1995).

b- Arrivées africaines

Le long de l’Afrique, la descente nord-sud se faisait pendant l’été austral, car les embarcations étaient poussées par l’alizé du nord et gagnaient le courant du Mozambique qui longe la côte sud. Ces courants permettront les migrations à l’origine de la civilisation swahilie. La remontée peut se faire par l’alizé du sud puis le courant de Somalie pour gagner la corne de l’Afrique. Il est ainsi possible de monter le couloir du Mozambique, mais la navigation est plus difficile du fait de la présence de deux courants contraires. Par ailleurs, à proximité des Comores, on rencontre des dérives du courant du sud équatorial, souvent opposées à la direction des courants locaux qui rendent la navigation plus laborieuse (Liszkowski 2000).

On note une influence du bantou dans la langue malgache, bien que l’on ne puisse pas certifier comment et quand cette influence a eu lieu (Adelaar 1989). Plusieurs hypothèses peuvent être dégagées. Soit il y avait des populations parlant des langues bantoues qui étaient présentes à Madagascar avant ou après l’arrivée des Indonésiens, soit cette influence est due au passage de ces indonésiens par la côte africaine avant leur arrivée à Madagascar (Adelaar 1989). De nombreux linguistes sont de plus en plus en faveur pour une installation des indonésiens sur la côte Est africaine entre le Ve et le VIIe siècle, avant de venir s’installer sur la Grande Ile par le nord-ouest. Un passage par les Comores est probable. Le malgache est une langue austronésienne qui montre l’effet de longs contacts avec des langues bantoues (Dewar & Wright 1993), certains auteurs parlent de créolisation de la langue malgache par du bantou (Verin 1992). Ces deux hypothèses sont néanmoins réfutées par Domenichini qui voit dans le malgache une seule origine austronésienne avec une arrivée possible d’Africains non bantous via les embarcations austronésiennes (Domenichini & Ramiaramanana 2002). Dahl note que les emprunts au bantou sont très présents dans les noms d’animaux et dans les termes associés aux plantes domestiques.

D’autre part, les plus anciens sites archéologiques à Madagascar révélant des traces de présence humaine, remontent bien avant les arrivées austronésiennes du VIIIe siècle. On ne connaît
pas l’origine de ces migrants. Il est peu probable qu’il s’agisse de groupes de langues bantoues, étant donné qu’ils n’avaient pas encore atteint les côtes est-africaines à cette époque. Les meilleurs candidats possibles semblent être pour Roger Blench (Blench 2007) des groupes de chasseurs-cueilleurs non bantous, dont les descendants sont retrouvés de nos jours en Tanzanie.

c- Autres influences

Les connaissances que nous avons sur Madagascar passent aussi par les écrits postérieurs à 1500. Il existe des récits des colons portugais contant leur arrivée sur les côtes malgaches. Actuellement, on sait que le premier européen à approcher les côtes de Madagascar est un navigateur Portugais : Diego Diaz, en 1500. La Grande Ile prend alors le nom d’Ile Saint Laurent. Les portugais établirent quelques comptoirs qui périclitèrent rapidement et abandonnent alors l’île (Deschamps 1972).

Figure 3. La traite arabe dans l’océan Indien au XVIIᵉ siècle (Dorigny & Gainot 2006)

Les récits des campagnes du soldat français La Case du Fort Dauphin, et de ses démêlés avec les clans Antemoro, apportent également de précieuses informations sur ces populations du sud-est. En 1656, la célébrité de La Case fait de lui un véritable héros aux yeux des malgaches. Il épousera par ailleurs une fille de chef de clan local.

Ceci attise la jalousie des autres chefs de la colonie, et il décide de quitter le fort pour se rendre dans la vallée d’Ambolo rejoindre son beau-père. Entre 1659 et 1663 La Case profite des rivalités entre les clans Antemoro pour parvenir à ses fins de conquêtes de la côte sud-est. Il finira major de l'île devenant ainsi un personnage clé de la colonie française. Le 23 juin 1671, il est emporté par la maladie, après un séjour de 15 années consécutives dans l'île. Sa mort marquera le déclin de la colonie qui se trouvait alors déjà en péril. En août 1674 le massacre de Fort Dauphin entraînera la fin de la colonie. Entre 1684 et 1724, les côtes malgaches furent abandonnées et devinrent un refuge pour les pirates qui croisaient dans la région (Deschamps 1972, Champion 2003).
2- Influences Arabo-islamique

a- Dans l'Océan Indien

b- Les citées Swahilies

Les chroniques de Kilwa (XVIème siècle), rattachent Shirazi à la Perse (sud de l’Iran). Celle-ci a eu un impact important dans les cultures de l’Océan Indien occidental.
Les Shirazi auraient diffusé leur culture islamique dans les îles de Pate, Pemba, Zanzibar, Mofia, Kilwa et des Comores (Figure 6). Philippe Beaujard (2007) note que bien que les traditions relient les Shirazi à la Perse, les réseaux d’échanges où ils étaient impliqués concernaient aussi les régions comme l’Arabie et le monde fatimide.

a- L’Islam aux Comores

3- Impact de ces échanges à Madagascar

a- Les échelles du nord

Les données archéologiques appuient la présence de comptoirs d’islamisés implantés dans le nord de Madagascar. Dans la province de Majunga, vers le XIVème siècle des comptoirs s’établissent sur la côte. L’un des principaux est le site de Kingany, grandement étudié par Pierre Vérin en 1986. Des petites mosquées, des tombes et autres maisons ont été mises au jour. Ce comptoir fut brûlé par les portugais au début du XVIème siècle (Dewar & Wright 1993). Des découvertes similaires ont été faites sur le site de Langany à Nosy Manga daté du XVème ou XVIème siècle (Figure 7).

Figure 7. Principaux sites archéologiques anciens du XIIIème au XVème siècle et arrivées des 3 vagues d’islamisés (carte de Beaujard 2003).
C’est à partir de Vohémar que de nouveaux arrivants partiront à la conquête des côtes orientales jusqu’à la Matitanana et Fort Dauphin (Liszkowski 2000). Ils émigrèrent soit en masse comme les Merina, soit par petits groupes comme les islamisés. Ils apporteront leurs traditions et leur religion en les intégrant à celles des peuples malgaches déjà présentes (Ferrand 1891).

Le site de l’Irodo dans le nord de l’île (Figure 7), présente des objets très similaires à ceux de Vohémar mais il est beaucoup plus ancien. Le peuplement de l’Irodo daterait de la fin du Ier millénaire et à dû se prolonger jusqu’aux contacts avec les européens. A Tafiantsirebika les datations au carbone 14 du chloritoschiste, le fait remonter au IXème siècle. A Tafiampatsa des poteries islamiques ont été datées du VIIIème ou IXème siècle. La localité d’Irodo devait faire du commerce avec l’extérieur et également avec Vohémar (Battistini & Verin 1967).

b- Migrations d’islamisés vers le sud-est de Madagascar

Les auteurs anciens qui se sont particulièrement intéressés à la côte est de Madagascar s’accordent, d’une façon à peu près unanime, à placer à la Matitanana les arrivées des colonies d’islamisés dans cette partie de l’île (Figure 7 et 8). D’après les informations fournies par les populations locales, les « Arabes », terme par lequel ils mentionnent les migrants islamisés, seraient arrivés sur la côte sud-est de Madagascar, se seraient mélangés avec des tribus déjà présentes à la côte pour donner naissance à la population malgache actuelle (Ferrand 1891).

Figure 8. Fleuve Matitanana dans le sud-est de Madagascar (Capredon 2009).
pour se fixer à Mananjary et à l’embouchure de la Matatanana. Dans la seconde moitié du XVᵉ siècle, les ancêtres des Antemoro quittèrent à leur tour Vohémar pour se rendre dans le sud de l’île. Ils se fixèrent à l’embouchure de la Matatanana. Les arrivants de la première migration allèrent alors plus au sud et s’installèrent à Fort Dauphin où ils étaient signalés dès le début du XVIᵉ siècle (Ralaimihota 1965).

L’origine de la taille du chloritoschiste à Madagascar est elle aussi soumise à débat. Sur la côte, cette technique serait arrivée avec les islamisés. À l’intérieur des terres, le souvenir est plus diffus, les ancêtres pratiquaient depuis longtemps cette technique. Les auteurs qui ont étudié la question ont noté une parenté entre la technique d’extraction entre le nord-est et le sud-est de Madagascar en utilisant la même matière première. La technique de taille du chloritoschiste est familière aux populations du golfe Persique depuis longtemps, mais il semblerait qu’il y ait eu malgré tout un apport indonésien (Pannetier 1974). Par ailleurs, les pièces en chloritoschiste abondent sur les sites d’Irodo depuis le Xᵉ jusqu’au XVᵉ siècle, ce qui montre qu’à Madagascar cette matière fut travaillée sans interruption par les cultures islamisées ou influencées par elles. La disparition du travail
du chloritoschiste survenue très tôt en Afrique pourrait s’expliquer par un arrêt des importations de ce matériel depuis Madagascar (Battistini & Vérin 1967).

B- Histoire du sud-est de Madagascar – Voyage en pays Antemoro
1- Les groupes Islamisés et la tradition orale
a- Les Onjatsy

Les traditions ont par ailleurs conservé le souvenir de légendes selon lesquelles on reconnaît les migrations dont sont responsables les Islamisés, tout au moins en partie. Il s’agit du mythe de Mojomby pour la côte nord-ouest et celui de Darafify pour l’est (Verin 1972). La légende raconte que Darafify et Fatrapaitanarà se rencontrèrent au niveau de la Matitanana et se défièrent. Fatrapaitanarà s’empara de la main de Darafify et la jeta dans le fleuve, mais Darafify, furieux, lui sauta à la gorge et le précipita dans la mer où il périt. Darafify correspond aux « joues claires », c'est-à-dire probablement

b- Les Zafiraminia

Ferrand a étudié divers textes contant le mythe de l’arrivée des ancêtres des Zafiraminia. Il raconte qu’un homme du nom de Ramakarabehevelomana partit d’Arabie sur un navire à la recherche d’une terre qu’il pourrait habiter. Il arriva à Madagascar et débarqua à l’embouchure de la rivière Sakalaena. Il épousa une malgache et eut des enfants. N’étant pas satisfait il retourna dans son pays. Au bout de quelques temps, Ramakarabehevelomana revint à Madagascar accompagné d’un homme appelé Raminia et de la sœur de ce dernier. Il existe des variantes dans l’histoire. Bien souvent Ramakarabehevelomana n’est pas mentionné par les auteurs et Raminia est le chef des éléments « nobles » disant provenir de La Mecque. Les Antambahoaka qui actuellement se disent les descendants de Raminia racontent que deux individus un frère et une sœur (Raminia et Ravahinia) venant de la Mecque sur un bateau arrivèrent près du fleuve Faraony. Ravahinia épousa Ramosamary un noble Antemoro qui venait de l’ouest. Ils donnèrent naissance à Iony et par conséquent aux Anteony. Leurs serfs étaient les Ampanabaka. Raminia eut de nombreux enfants, ce qui fait de lui le père des Antambahoaka, des Antanosy de Fort Dauphin et des Zafiraminia. Plus tard, le frère et la sœur repartirent pour la Mecque. Soulignons qu’il existe un autre texte qui, lui, mentionne Raminia comme une femme de la Mecque qui aurait épousé Abraham. Ils auraient donnés naissance entre autre, à une fille Ravahinia (sœur de Raminia dans le texte précédent) (Ferrand 1891).

Les textes s’accorderaient à dire que vers le XIIème ou XIIIème siècle après un passage aux Comores, Raminia accosta à Vohémar, longea la côte est et débarqua à Mananjary. Son groupe aurait occupé les vallées jusqu’à la Matitanaña. Puis une partie serait montée en Imérina et une autre aurait fondé le royaume de l’Anosy au début du XVème siècle, probablement suite à l’arrivée d’autres islamisés dans la vallée de la Matitanaña. Les Zafiraminia revendiquent à la fois une origine
méquoise et à Mangaroro assimilée par certain auteurs à Mangalore dans le sud-ouest de l’Inde
(Beaujard 1988). Les Zafiraminia pourraient être des malais indiansés culturellement influencés par
un Islam Chiite (Ottino 1983). Ferrand puis par la suite Ottino ont signalé que les Géographes arabes
du IXème aux XVIème siècles donnent le nom de Raminia à une province du nord-ouest de Sumatra près
de la moderne Acheh. Cela n’est envisageable que si l’on admet que la date d’arrivée est tardive

A Madagascar, les Zafiraminia mettront en place un nouveau système hiérarchique et instaureront
une nouvelle conception sociopolitique qui diffusera sur le reste de l’île, et en particulier dans les
aristocraties Merina (Ottino 1983, Randriamananoro 2006)

c- Les ancêtres des Antemoro : Anteony-Zafikazimambo-Antalaotra

De même que pour la migration Zafiraminia, l’histoire
des ancêtres des Antemoro, que Flacourt mentionne sous la
dénomination de Zafikazimambo connaît quelques variantes.
Vers le XVème et XVIème siècle, faisant suite aux Zafiraminia,
d’autres groupes d’islamisés sous le mode Sunnite arrivèrent à
l’embouchure de la Matatana. Ils seraient arrivés par cabotage
le long de la côte africaine et/ou seraient passés par les Comores
avant d’atteindre Vohémar et par la suite l’embouchure du
fleuve Matitanana dans le sud-est de l’île (Munthe 1982,
Une partie d’entre eux revendique une origine d’au-delà de la
mer et de la Mecque, rattachement courant pour les fondateurs
de lignées nobles à cette période.

Certains groupes Anteony racontent l’arrivée de cinq hommes venant de la Mecque. Après un
séjour de 48 ans sur l’île, quatre d’entre eux rentrèrent dans leur pays. Ils arrivèrent au nord de
Mahanoro et se dirigèrent vers le Sud de l’île où ils débarquèrent à Fanivelona puis à Mahony dont ils
changèrent le nom en Matitanana. Ils n’avaient pas amené de femmes mais deux enfants, un garçon,
Zorobabela et une fille, Fatima qu’il maria. Ils furent les ancêtres des nobles Anteony (Ferrand 1891).

Actuellement, les traditions font remonter l’installation de ces islamisés à l’arrivée : soit de
deux groupes d’immigrants apparentés sur deux vaisseaux, soit à un groupe qui se serait scindé en
deux lors de son arrivée sur les côtes malgaches (Rolland 2007). Ils seraient venus de la Mecque, d’où

Figure 9. Habitants du village de Ambila-Manakara (Capredon 2009)

2- Entre mythes et réalité

a- Origines des Antemoro

D’après Flacourt, les Antemoro ont été envoyés par le Calife de la Mecque ; mais ceci n’est pas possible car à l’époque probable de leur arrivée, le Califat n’existait plus. En revanche peut être parlaient-ils du Sharif de la Mecque (Ottino 1983). L’étude de certains Manuscrits malgaches laisserait à penser que la Mecque ne fait pas seulement référence à la ville, mais à une grande région intégrant l’Arabie et l’ancien Proche-Orient ; ceci d’après les descriptions et références géographiques, les noms de villes et les prophètes mentionnés (Rajaonarimanana 1990, Beaujard 1993). Alexandre (1981), suppose qu’il s’agit de populations Swahilies ; de même, Ferrand retrouve dans le nom de Kazimambou un nom propre swahili très commun, Kazambo (Vérin 1972). En réalité, Ferrand n’a jamais pu trancher sur l’origine des ancêtres des Antemoro et ils pourraient venir selon lui d’Afrique de l’Est ou de la péninsule Arabique. Granddidier, lui, postule qu’il s’agit de groupes provenant de la péninsule Arabique mais qui seraient passés par l’Afrique de l’Est (Kent 1969). Pour Allibert, la côte sud-est malgache a subi une acculturation islamique, ou pré-islamique Perse et Arabe mais il n’exclu pas la possibilité qu’il s’agisse de groupes indonésiens installés provisoirement au Moyen-Orient, qui auraient connu une acculturation arabo-persane avant de venir s’installer à Madagascar (Allibert 1995). Les théories plus récentes donnent pour origine des régions islamisées d’Indonésie tout comme pour la migration Zafiraminia. Il pourrait s’agir alors de malais venus directement, ou indirectement,
de la péninsule Malaise ou de Sumatra. Leur origine commune avec les arrivants de la migration précédente aurait facilité les contacts. La composante bantoue, quant à elle, serait la conséquence de l’arrivée des groupes de serviteurs qui accompagnaient les islamisés (Ottino 1983, Rolland 2007).

b- Dates des migrations et raisons des départs

En ce qui concerne les raisons des départs, plusieurs hypothèses ont été avancées. On peut supposer que ces migrants étaient des adversaires du prophète et qu’ils se rendirent à Madagascar pour
fuir les tensions politiques: « Raminia et Ravahinia furent vaincus par le roturier Mahomado »
(Ferrand 1891, Alibert 1995). Un manuscrit mentionne que Raminia aurait été un noble ayant quitté la
Mecque pour faire du commerce et qui aurait été supplanté pendant son absence par Mohamad élu de
Dieu. Il aurait alors décidé de partir vers d’autres horizons. Seul le manuscrit 661 de l’Académie
malgache semble renseigner sur la nature des troubles qui auraient poussé Ramakararo à quitter son
pays d’origine. La raison du départ est évoquée par la présence de l’expression « kotatany » signifiant
« troubles politiques » et plus tard dans le texte par « nialy teiny i Mak aizy » signifiant « ils se
battirent à la Mecque ». En ce qui concerne leur date d’arrivée dans la Matitanana elle est citée par
« une année de vendredi sous l’influence du vintana alakarabo, un lundi du mois d’asobola ». Ce qui
d’après Munthe pourrait renseigner qu’au moment du départ la situation en « Arabie » était tendue,
avec des guerres et des conflits (Ferrand 1891, Munthe 1982). Néanmoins, on peut envisager que la
situation se soit améliorée car ces mêmes manuscrits parlent d’aller et retour entre Madagascar et
« l’Arabie ». D’autres manuscrits parlent d’un point de départ qui ne serait pas la Mecque, mais à
proximité de « Kanana » et signalent que certains des migrants étaient Egyptiens (Munthe 1982). Une
dernière hypothèse serait qu’il s’agirait de la fille du prophète ou de populations envoyées pour
instruire et convertir les peuples à l’Islam. Flacourt rapporte que les Zafikazimambo seraient arrivés
sur l’île dans de grands canots envoyés par le Calife de la Mecque pour instruire ces peuples. Mais
comme déjà précisé, le califat de la Mecque n’existait plus à cette époque et ce rattachement
expliquerait la revendication de leur origine musulmane (Flacourt [1661], 2007). Pourtant aucune
mosquée ne fut retrouvée et ils ignoraient les trois piliers de l’Islam à savoir les prières rituelles salat,
l’aumône zakat, et le pèlerinage à la Mecque (Beaujard 1988, 1994). Les conflits n’avaient pas
uniquement lieu entre Islamisés et « infidèles » mais également entre groupes Islamisés afin de faire
valoir leur pouvoir commercial, leur capacité à représenter la foi, leur puissance militaire. La
connaissance de l’écriture représentait donc un privilège (Vérin 1972). Leur but premier ne serait donc
pas la conversion à l’Islam mais une lutte ayant pour enjeux la domination politique dans le sud-est
(Beaujard 1988, 1994).

c- Problème de l’interprétation des manuscrits malgaches et de la tradition orale

La Mecque n’est pas forcément une référence géographique mais un rattachement religieux et
politique. Le terme « Arabe » souvent employé dans ces traditions, devrait normalement qualifier une
origine dans le Yémen, l’Hadramaout, Oman or, la plupart des musulmans en cause viennent d’Asie
du Sud-Ouest, de la péninsule Arabique, d’Irak, d’Iran, d’Afrique du Nord. Il s’agit essentiellement de
populations sémitiques qui s’installent plus tard sur la côte est de l’Afrique (Robineau 1967).

L’on peut maintenant se demander si le nom d’Antemoro n’est pas lui aussi un nom récent. Pourquoi les Zafiraminia et les Zafikazimambo ne sont-ils pas retrouvés sur le terrain de nos jours et dans les Sorabe ? Pour Rolland, il est possible qu’ils aient changé de nom afin de masquer une extermination des Zafiraminia par les Zafikazimambo. D’une façon générale, l’histoire a toujours été écrite par les vainqueurs. Les manuscrits qui racontent des faits anciens ont une origine bien plus récente car ils ont été recopiés aux fîls des années. Ils ont été rédigés par les scribes qui étaient au service du pouvoir. L’histoire et les généalogies ont donc pu être manipulées à leur avantage. Les manuscrits malgaches doivent faire l’objet d’une analyse critique (Beaujard 1988, Rolland 1997).

C-Le Royaume Antemoro

1- La société Antemoro : une ancienne société de castes

La société Antemoro peut être divisée en groupes sociaux ou pseudo-castes de par leur caractère hiérarchique (Figure 13). On distingue ainsi les nobles Anteony parmi lesquels était choisi le roi (ou Andrianoni), les devins Antalaotra détenteurs du pouvoir magico-religieux, les Ampanabaka ou roturiers, les Andevo ou anciens esclaves et enfin les Antevolo ou parias (Deschamps & Vianes 1959, Ralaimihotra 1965, Rajaonarimanana 1990, Rolland 2007).
Les **Anteony**, dont le nom peut être traduit par « ceux qui viennent du fleuve », seraient les descendants de l’ancêtre fondateur Ramakararo, que l’on dit être venu de la Mecque. Ce groupe correspond à la caste noble (Figure 10).

Ce sont de grands devins, spécialistes du rituel, scribes et médecins. Parmi eux on distingue quatre groupes :

Griffin lors de son séjour collecta à peu près les mêmes traditions : lui et son équipe recherchèrent à Lakanoro des traces archéologiques sans succès. Dans son travail de thèse, il ajoute que des conflits avec les Tañala débutèrent mais que les Anakara les subjuguèrent. Les Tañala impressionnés par leur magie choisirent de devenir leurs alliés (Griffin 2009).

Le troisième groupe est celui des Zafimbolazy « descendants de Molazy », dont l’ancêtre est Andriaboaziribe. C’est parmi eux qu’étaient choisis les Katibo ou gardiens des manuscrits malgaches Sorabe (Figure 11). Ce sont les Antalaotra à proprement parler (Deschamps & Vianes 1959). Pour Beaujard, les Zafimbolazy, seraient un groupe qui fut déchu du pouvoir politique au XVème siècle (Beaujard 1991-1992).

Il existe aussi les descendants déchus du fils de Ramakararo considérés comme Antalaotra et regroupés dans le village de Seranambary (Deschamps & Vianes 1959).

Ces deux premières anciennes castes étaient aussi appelées Tana-manombily « mains qui égorgent », car elles étaient les seules à avoir le privilège du Sombily, c'est-à-dire l’abattage rituel des animaux.

Les **Ampanabaka** « ceux qui se séparent » ou « ceux qui trompent » ou encore **Fanarivoana** « pourvoyeurs de richesses » sont les roturiers (Figure 12). Ils représentent un groupe hétérogène descendants des marins Cafres de la migration des islamisés, des groupes Anteony ou Antalaotra déchus de leur statut, des groupes « malgaches » vaincus, ou encore des groupes étrangers « malgaches » venus se placer sous l’autorité d’Ivato (Rolland 2007). Les Sorabes mentionnent que, lors de leur arrivée les islamisés ammenèrent avec eux des Cafres, probablement esclaves ou nouveaux convertis ramassés sur les côtes orientales d’Afrique (Deschamps & Vianes 1959, Rajaonarimanana 1990).

Les **Andevo** (ou Velombazaha) sont les descendants des anciens esclaves Cafres venus avec les Islamisés ou des prisonniers de guerre (Deschamps & Vianes 1959, Rajaonarimanana 1990, Rolland 2007).

Les **Antevolo** correspondent aux parias, exclus du système car considérés comme impurs. Tout contact avec eux est prohibé. Leur véritable origine est inconnue. Ce sont peut-être les descendants d’une vague de migration antérieure qui auraient été déchus de leurs pouvoirs par les nouveaux arrivants (Deschamps & Vianes 1959, Rajaonarimanana 1990, Rolland 2007). On les retrouverait également sous le nom d’Antemanaza. Or ce terme est présent dans la liste des valotroky c'est-à-dire les huit clans autochtones de la Matitanana qu’on rencontré les arrivants islamisés lors de leur débarquement. On peut émettre l’hypothèse que ces valotroky sont des Zafiraminia et que les Antemanaza furent un groupe qui ne voulant pas adhérer aux traditions des nouveaux venus furent condamnés à l’ostracisme (Rolland 1997). Tsaboto et Beaujard (1996) ont recueilli plusieurs versions

Figure 13. Structure hiérarchique des Antemoro (d’après Rolland 2007).

2- Histoire du Royaume Antemoro

Ce Royaume du XVIᵉ au XIXᵉ siècle comprenait trois principautés : celle des Anteony sur l’aval de la Matitanana (où se trouve la capitale du Royaume, Ivato) ;

Figures 14a et b. Photographies de la façade du Palais d’Ivato et tableau de l’ancien roi Antemoro Ramahasitrakarivo (Capredon 2009)

3- Traces culturelles arabo-islamiques

L’influence des « arabo-islamisés » semble ne s’être manifestée que dans la tribu des Antemoro (Ferrand 1891). A leur arrivée ces islamisés ont été confrontés à une religion très différente fondée sur le culte aux ancêtres. Le rituel du Sombily, à la différence de celui retrouvé dans une ethnie voisine les Tañala, est empreint de références islamiques (Beaujard 2003). Une autre différence marquante avec cette ethnie est la place de la femme qui est effacée dans la société Antemoro. Au XVIIème siècle, le voyageur Cauche observe que ces groupes du sud-est ne travaillent pas le vendredi,
ne mangent pas d’animaux qui n’ont été au préalable saignés et ne pratiquent aucune cérémonie sans avoir été lavés. Par la suite le gouverneur Flacourt rapporte dans ces populations la présence de l’enseignement du Coran, l’abstinence de porc pour l’aristocratie et le jeûne pendant la période du Ramadan (Beaujard 2003, Flacourt [1661], 2007).

![Figure 15. Papier malgache, Sorabe, Madagascar, XVIème siècle.](BNF, Manuscrits orientaux, malayo-polynésien 23)

4- Structure des villages

Le groupe socio-politique fondamental chez les Antemoro est le clan. L’organisation sociale malgache est patrilocal et a une parenté à dominante patrilinéaire. Le lignage patrilinéaire est appelé fatrange et est exogame (Deschamps & Vianes 1959, Rolland 2007). Seuls les chefs de clan religieux Anakara se seraient pendant longtemps astreints à une endogamie plus stricte ce qui leur auraient permis une meilleure conservation du « parler arabe » (Deschamps & Vianes 1959).

Chaque village possède son chef Mpanzaka. La société est subdivisée en troky eux-mêmes répartis en traño-be ("grande maison") ou clan. Chaque clan en effet possède une traño-be, qui est une habitation de plus grande dimension que celles retrouvées habituellement et qui peut être un lieu de rassemblement ou de culte (Champion 2004). En général sur la place centrale du village, sont retrouvées des pierres fixées au sol (Figure 16). Elles sont le symbole des ancêtres, et représentent les clans fondateurs. Chez le groupe Ampanabaka du village d’Ambila, de part et d’autre de trois pierres centrales sont fixés deux poteaux d'inégaute hauteur, où l'on suspend la bosse du zébu sacrifié. L’un représente le sacré l’autre le guerrier (Champion 2004).
III- Contexte anthropobiologique à Madagascar

A-Génétique des populations et marqueurs moléculaires

L’ADN pour Acide Désoxyribonucléique, est constitué d’un groupement phosphate, lié à un sucre et à une base azotée (ou nucléotide). Cette dernière peut appartenir au groupe des purines : ce sont les adénines (A) et guanines (G), ou au groupe des pyrimidines : ce sont alors les thymines (T) et cytosines (C). La succession de ces nucléotides, reliés entre eux par des liaisons phosphodiester, va constituer le message génétique héréditaire porté par les gènes. Il se répartit sur vingt-trois paires de cet assemblage, les chromosomes. Ils se présentent sous la forme d’une double hélice d’ADN mise en évidence par Watson et Crick en 1953. Cette molécule est constituée de deux brins complémentaires. Cette complémentarité vient du fait que les purines vont s’associer aux pyrimidines en formant deux liaisons hydrogènes dans le cas A-T et trois liaisons pour G-C.

On distingue le génome nucléaire c'est-à-dire contenu dans le noyau et l’ADN mitochondrial contenu dans les mitochondries. Le génome nucléaire humain est constitué de 3,2 milliard de paires de bases (pb). Une partie minimale de ce génome code pour les protéines qui permettront le développement, le fonctionnement, le maintien de l'intégrité et la reproduction des cellules et de l'organisme. Le reste du génome correspond à la partie non-codante : aux introns et régions intergéniques. Lors de la division cellulaire, la molécule d’ADN mère est répliquée à l’identique en molécule d’ADN fille. Parfois, apparaissent des modifications de certains nucléotides qui peuvent être des insertions, des délétions ou des substitutions d’un nucléotide par un autre ou encore être provoquées par des recombinaisons génétiques. Ces mutations qui ne sont pour la majorité pas pathogènes permettront de définir le polymorphisme des êtres vivants. Ces mutations peuvent être ponctuelles, ce sont les Single Nucleotide Polymorphisms (SNPs) et les Indel (insertions et délétions) et constituent un polymorphisme de type bialléique. Il peut y avoir aussi des polymorphismes.
multialléliques, tels que les microsatellites (Short Tandem Repeat, STR), séquences plus ou moins longues, de quelques bases à plusieurs centaines, dont le nombre de répétitions peut varier au sein d’une paire de chromosomes (hétérozygoties) ainsi que d’un individu à l’autre.

1- Les immunoglobulines G

C’est en 1900 qu’est découvert le premier système de groupe sanguin, le système ABO par Karl Landsteiner. Cette découverte marqua le début des études en immunologie appliquées à la recherche de la variabilité génétique des populations humaines. Les molécules impliquées dans les réponses immunologiques se révélèrent très informatives en particulier, le système des immunoglobulines G (Sanchez-Mazas et al. 2011). Les immunoglobulines G (IgG) sont des anticorps constitués de quatre chaînes polypeptidiques (deux lourdes et deux légères), sur lesquelles on définit des domaines : l’un constant, et l’autre variable situés à l’extrémité des « bras » (Figure 17). Les parties variables lourdes et légères vont former un site de reconnaissance de l’antigène pouvant fixer différents types de pathogènes (bactéries, virus). Ces IgG ont une transmission biparentale.

Oudin introduit le terme « allotype » en 1956 (Oudin 1956). Il définit les allotypes comme des déterminants antigéniques présents chez certains individus d’une même espèce. Ils sont localisés sur les chaînes lourdes des immunoglobulines. Le système Gm est défini sur trois des quatre sous-classes d’IgG : IgG1, IgG2 et IgG3. Il comprend au total dix-huit allotypes situés sur les différents domaines constants des chaînes gamma de trois sous classes : les IgG1 : G1m(1,2,3,17), les IgG2 : G2m(23) et les IgG3 : G3m(5,6,10,11,13,14,15,16,21,24,26,27,28) (Lefranc et Lefranc 1990, Dard 2001). Les gènes qui codent pour les chaînes lourdes des IgG sont localisés sur la partie télo-mérique du chromosome 14 (bande 14q32.3). Les allotypes Gm actuellement définis sur les domaines CH1 et CH3 des IgG1, CH2 des IgG2 et CH2 et CH3 des IgG3 ne sont pas hérités au hasard mais selon des combinaisons alléliques fixes que l’on appelle des haplotypes. Leurs fréquences varient entre différentes régions géographiques, ce qui permet d’étudier les relations génétiques entre les populations (Steinberg et Cook 1981, Dugoujon et al 2004). Néanmoins, l'analyse du système Gm a quelques limites. Il ne fournit qu'une description générale de la la variation moléculaire, et la proportion de la variation génétique entre les régions est probablement surestimée du fait que l'estimation est basée sur une approche parcimonieuse considérant le nombre minimum d'haplotypes déduit des distributions phénotypiques (Sanchez-Mazas et al. 2011).
2- Le chromosome Y

Le chromosome Y est composé d’environ 58 millions de paires de bases et n’est présent qu’en un seul exemplaire (haploïde) chez l’homme, ce qui le préserve des phénomènes de recombinaison. Il contient le gène sexe-spécialisé SRY. En réalité, on distingue 2 parties. L’une au niveau des télomères aux extrémités du bras et qui sont des régions pseudo-autoématiques PAR1 et PAR2, régions communes avec le chromosome X et qui par conséquent peuvent se recombiner (Figure 18). L’autre est une région dite NRY (Non-recombining Region of Y chromosome) et constitue la grande majorité du chromosome Y. Les mutations qui s’y accumulent seront transmises d’un père à ses fils.

Ces régions sont très riches en microsatellites (Y Short Tandem Repeat ou STR-Y), répétitions courtes de 2 à 6 paires de bases (pb). Les STR ont un taux d’évolution élevé ; ils sont hérités en blocs par la génération suivante et permettent de définir des haplotypes. On y associera l’étude de polymorphismes bialélique (SNPs) « diagnostiques » à évolution plus lente. Dans le cas du NRY ces événements mutationnels sont uniques et majoritairement non récurrents (UEPs ou Unique Event Polymorphisms). Cela permet d’affilier des haplotypes homologues dans un haplogroupe donné spécifique d’une région géographique (Karafet et al. 2008). Les haplogroupes sont désignés par une succession de lettres et de chiffres. La comparaison de leurs fréquences permettra de comparer différents groupes humains et de retracer les mouvements de populations (Jobling et al. 2004) (Figure 19).
L’ADN mitochondrial (ADNmt) est un petit ADN de 16569pb, circulaire et double brin (Anderson et al. 1981, Andrew et al. 1999). Il est retrouvé dans les mitochondries, organites cellulaires responsables de la respiration cellulaire. L’ADNmt est présent en de nombreuses copies dans la cellule, ce qui rend sa détection plus facile. De plus, grâce à sa « coque », il est plus résistant au temps et aux conditions du milieu que l’ADN nucléaire. 94% de cette molécule sont constitués de régions codantes pour des ARN ribosomaux et pour des protéines impliquées dans la phosphorylation oxydative. Le reste constitue la région contrôle appelée la D-Loop (de la position 16024 à 576) (Figure 20). Cette région est non codante et va jouer un rôle dans l’initiation de la régulation et la réplication de l’ADNmt. On distingue trois régions non codantes hypervariables HVI (16024-16365), HVII (73-340) et HVIII (438-576) qui vont accumuler un haut degré de polymorphisme. Pour comparaison, son

Figure 19. Répartition des haplogroupes du chromosome Y d’après Chiaroni et al. 2009.

3- L’ADN mitochondrial
taux de mutation est dix fois plus important que celui de l’ADN nucléaire. Les mutations SNPs et indel d’une même région du génome sont transmises en bloc d’une mère à ces descendants.

La combinaison de ces polymorphismes permettra de déterminer des haplotypes qui pourront être regroupés en haplogroupes sur la base de mutations spécifiques (Figure 21).

Figure 20. Schéma de l’ADN mitochondrial (d’après http://www.mitomap.org/MITOMAP/mitomapgenome.pdf)

Figure 21. Fréquences des haplogroupes mitochondriaux dans les différentes régions géographiques (Brucato non publié)
L’analyse combinée de ces deux marqueurs génétiques (NRY et ADNmt), apporte des informations complémentaires et permet de mieux appréhender l’histoire démographique globale.

B- Etat de la recherche anthropobiologique à Madagascar

Les études en génétique des populations ont notablement progressé, tant en matière de recherche fondamentale qu’en matière de recherche appliquée. Toutefois le peuplement de nombreuses régions du monde et la détermination de facteurs de risques génétiques de populations face à certaines maladies, par exemple le paludisme à Madagascar, restent inconnus. C’est pour répondre à ces questions que les anthropologues recherchent des « cas d’école », avec une délimitation fine des populations et la constitution d’une collection d’échantillons biologiques.

Concernant l’ethnie des Antemoro, des analyses hémotypologiques (groupes érythrocytaires, allotypes Gm des IgG, protéines sériques, enzymes du sang) ont été réalisées par Soloarivony (1985), lors de son travail de thèse. Elles mettent en avant une identité biologique commune avec les populations africaines et sud-est asiatiques. A cela, la présence de la forme PiS de l’alpha1-antitrypsine, ainsi que la présence de l’allèle C de la phosphatase acide (PAc) témoignent d’apports autres que ceux de l’Afrique et de l’Asie du sud-est. La forme PiS, caractéristique des populations européennes, peut matérialiser les fondateurs « arabes ». Néanmoins si influences arabe ou indienne il y a, elles sont très marginales même chez le groupe des Onjatsy qui pourtant se serait astreint pendant longtemps à une certaine endogamie. Il ne rejette pas non plus l’hypothèse que ces islamisés seraient en réalité des indonésiens musulmans.

IV-Etude préliminaire

Les échantillons récoltés par Soloarivony (1985), lors de sa thèse au laboratoire AMIS de Toulouse étant toujours disponibles, une analyse de la diversité génétique des allotypes Gm de ces populations du sud-est malgache a été réalisée. De nos jours nous avons accumulé de nombreuses données sur ces polymorphismes et leurs fréquences dans les diverses régions géographiques permettant d'affiner les recherches en anthropobiologie.

A-Analyse du système Gm de trois populations du sud de Madagascar

Les Antemoro revendiquent une origine Arabe, et se rattache à La Mecque. Aujourd'hui, leurs origines sont très controversées et n'ont pas été résolues. La référence à la Mecque pourrait ne pas être en rapport avec une localisation géographique, mais avec à une identité musulmane (annotations Allibert dans Flacourt [1661], 2007). Beaucoup d'hypothèses contradictoires existent, reliant ce groupe soit à l’Arabie Saoudite pour une minorité d’entre eux, à l’Afrique de l'Est ou l’Asie du Sud-Est (Ferrand 1891, Granddidier 1971, Rolland 2007).

Comme précédemment évoqué, les allotypes Gm sont des marqueurs permettant d’étudier la structure génétique des populations humaines pour reconstituer l'histoire de leurs migrations (Sanchez-Mazas & Pellegrini 1990, Dugoujon et al. 2004, Schanfield et al. 2008, Sanchez-Mazas et al. 2011). A partir des données sur les allotypes Gm obtenues par François-Xavier Soloarivony, une nouvelle analyse à été effectuée (estimation de la fréquence des haplotypes Gm et comparaison avec une base de données plus riche). Nous avons défini la structure génétique des Antemoro et l’avons comparée non seulement à des populations malgaches mais aussi à d’autres issues de diverses régions géographiques qui auraient pu avoir un impact sur la diversité observée.
Dans cette étude, notre objectif est de voir si les Antemoro présentent un profil génétique Gm particulier qui les différencierait des autres populations malgaches, et si ce profil génétique révèle des traces significatives de migrations arabes. Les résultats obtenus ont été comparés à de nouvelles données provenant de deux autres populations malgaches de la côte sud-ouest et à une importante base de données de fréquences d’haplotypes Gm, enrichie par les dernières publications, avec en particulier l’inclusion de données sur les populations Comoriennes issues du laboratoire AMIS.

1- Matériels et méthodes

a- Populations

La côte sud-est de Madagascar

La côte Sud-ouest de Madagascar

Les Comores

Dans le but d'élargir la base de données de la région ouest de l'océan Indien, ces dernières données ont été ajoutées aux données publiées sur les fréquences des haplotypes Gm pour les populations originaires d'Afrique, du Moyen-Orient, d'Inde, d'Océanie, d'Asie du Sud-Est et d'Europe. L'ensemble des données comprend 185 populations (Annexe 25).

b- Analyses biologiques

Tous les individus ont été typés pour les allotypes G1m (1,2,3,17), G2m (23), G3m (5,6,10,11,13,14,15,16,21,24), G1/3m (28) au laboratoire AMIS de Toulouse.

c- Analyses statistiques

Le calcul de la diversité génétique intra-populationnelle (Nei 1987) a été réalisé à l'aide du logiciel Arlequin v3.5.1.2 (Excoffier et al. 2005). Les indices F_{ST} (Wright 1950) ont été calculés par paire de populations, entre les Antemoro et les populations de la base de données, afin de déterminer le niveau de différenciation génétique.

L’indice F_{ST} est directement lié à la variance de la fréquence d’un allèle dans les populations. Si l’indice F_{ST} est petit, cela signifie que la fréquence des allèles au sein de chaque population est similaire; si elle est importante, cela signifie que la fréquence des allèles est différente (Holsinger & Weir 2009). L’indice F_{ST} varie entre 0 (absence totale de différenciation, flux génétiques maintenu entre la population mère et la population fille) et 1 (populations complètement différenciées, la population fille a connu une forte dérive génétique). D’après Wright, un niveau de différenciation est considéré comme faible lorsque l’indice F_{ST} est compris entre 0 et 0,05 ; il est modéré lorsque compris
entre 0,05 et 0,15, important entre 0,15 et 0,25 et très important lorsqu’il est supérieur à 0,25. Par exemple, un F_{ST} de 0,15 signifie que 15% de l’ensemble des fréquences alléliques est trouvée entre les populations considérées (Jobling et al. 2004).

La présence ou l'absence de l’allotype G2m (23) et G1/3m (28) n'a pas été prise en compte dans le choix des haplotypes utilisés, car cette information était généralement absente dans les populations constituant la base de données. Une analyse MDS (MultiDimensionnel Scaling) a été réalisée avec XLStats V.7 pour visualiser les résultats observés dans les différents groupes géographiques. Nous avons défini onze groupes: Afrique Australe, Afrique de l'Ouest, l'Afrique du Nord, la Corne de l'Afrique, le Moyen-Orient, l'Inde, l'Europe, les régions d'Asie du Sud-Est, les populations de langues austronésiennes en Océanie, les populations de langues non austronésiennes de Nouvelle-Guinée et les populations de langues non-austronésiennes de Micronésie et Mélanésie.

Ce regroupement géographique a été validé par une analyse AMOVA. Les analyses AMOVA (Analysis of MOlecular VAriance) sont utilisées pour décrire les sources de variations intra et intergroupes et tester une structure génétique particulière, des groupements de populations que l’on souhaite définir pour nos analyses. Trois indices de fixation sont obtenus : F_{ST}, F_{CT} et F_{SC} (Excoffier et al. 2005). L’indice F_{CT} indique la diversité génétique entre groupes. L’indice F_{ST} indique la variance des haplotypes des populations au sein des groupes, enfin l’indice F_{SC} définit la diversité génétique entre populations dans les groupes. Si le F_{CT} est significativement supérieur au F_{SC} on considère qu’il y a une structuration entre nos groupes. Ce test a été réalisé pour définir les populations parentales en vue d’estimer le métissage.

De plus, les taux de métissage ont aussi été estimés par la méthode de Bernstein (BH) par comptage direct (Cavalli-Sforza & Bodmer 1971, Schanfield et al. 2008). Les groupes parentaux ont été représentés par les haplotypes les plus fréquents généralement observés dans ces populations. La composante européenne a été représentée par les haplotypes Gm5*;3;23 et Gm5*;3;,, la composante
asiatique par Gm21,28; 1,17;.., Gm21,28; 1,2,17;.., Gm5*; 1,3; 23 et Gm5*;1,3;.. et la contribution africaine par les haplotypes Gm5,6,10,11,14; 1,17; .. (+Gm28), Gm5,6,10,11,14; 1,17; .., Gm5, 6,11,24; 1,17; ..(+ Gm28), Gm5,6,11,24;1,17;.., Gm10,11,13,15;1,17;.., Gm5*;1,17, .. et Gm5*;1,17;..(+ Gm28).

2- Résultats

Les données phénotypiques et haplotypiques sont présentées dans les tableaux 1 et 2. Les trois populations malgaches sont à l'équilibre de Hardy-Weinberg. Les populations Antemoro, du Nord de Fihereña et du Sud de Fihereña, révèlent une composition haplotypique similaire (Figure 22 et tableau 2).

Figure 22. Fréquences haplotypiques Gm dans les trois populations Malgaches et leur localisation.

H1:Gm21,28;1,17;..; H2:Gm5*;1,3;23;H3:Gm5*;1,3;..; H4:Gm5*;1,17;..;
H5:Gm5*;1,17;(+Gm28); H6:Gm10,11,13,15;1,17;..(+Gm28);
H7:Gm5,6,10,11,14;1,17;..(+Gm28); H8:Gm5,6,10,11,14;1,17;..;
H9:Gm5,6,11,24;1,17;..(+Gm28); H10:Gm5,6,11,24;1,17;..;
H11:Gm10,11,13,15;1,17;..; H12:Gm5*;6;1,17;.. and H13:Gm5*,15;1,17;..
<table>
<thead>
<tr>
<th>Phénotypes Gm G3m; G1m;G2m</th>
<th>Antemoro (N=85)</th>
<th>Northern Fihereňa (N=82)</th>
<th>Southern Fihereňa (N=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed</td>
<td>Expected</td>
<td>Observed</td>
</tr>
<tr>
<td>5* ;1,17 ;..</td>
<td>8</td>
<td>5,21</td>
<td>9</td>
</tr>
<tr>
<td>5*;1,17 ;.. (+Gm28)</td>
<td>6</td>
<td>7,00</td>
<td>4</td>
</tr>
<tr>
<td>5*;6,24 ;1,17 ;..</td>
<td>4</td>
<td>7,09</td>
<td>13</td>
</tr>
<tr>
<td>5*;6 ;1,17 ;..</td>
<td>1</td>
<td>1,34</td>
<td>5</td>
</tr>
<tr>
<td>5*;15 ;1,17 ;..</td>
<td>0</td>
<td>1,73</td>
<td>0</td>
</tr>
<tr>
<td>5*;6,24;1,17 ;.. (+Gm28)</td>
<td>3</td>
<td>4,56</td>
<td>1</td>
</tr>
<tr>
<td>5*;21;1,17 ;.. (+Gm28)</td>
<td>3</td>
<td>2,72</td>
<td>0</td>
</tr>
<tr>
<td>5* ;1,3,17 ;23</td>
<td>11</td>
<td>10,38</td>
<td>9</td>
</tr>
<tr>
<td>5* ;1,3,17 ;..</td>
<td>3</td>
<td>2,74</td>
<td>4</td>
</tr>
<tr>
<td>5*;6,1,17 ;.. (+Gm28)</td>
<td>1</td>
<td>1,37</td>
<td>3</td>
</tr>
<tr>
<td>5*;15;1,17 ;.. (+Gm28)</td>
<td>3</td>
<td>0,98</td>
<td>1</td>
</tr>
<tr>
<td>5*;1,3,17;23 (+Gm28)</td>
<td>8</td>
<td>5,90</td>
<td>2</td>
</tr>
<tr>
<td>5*;1,3,17 ;.. (+Gm28)</td>
<td>1</td>
<td>1,56</td>
<td>0</td>
</tr>
<tr>
<td>5,6;11,24;1,17 ;..</td>
<td>4</td>
<td>2,41</td>
<td>0</td>
</tr>
<tr>
<td>5,6;10,11,9,24 ;1,17 ;..</td>
<td>1</td>
<td>0,91</td>
<td>_</td>
</tr>
<tr>
<td>5,6;10,11,13,15,24;1,17 ;..</td>
<td>1</td>
<td>1,18</td>
<td>_</td>
</tr>
<tr>
<td>5,6;11,24,1,17 ;.. (+Gm28)</td>
<td>1</td>
<td>0,24</td>
<td>0</td>
</tr>
<tr>
<td>5,6;11,21,24;1,17 ;.. (+Gm28)</td>
<td>0</td>
<td>1,24</td>
<td>0</td>
</tr>
<tr>
<td>5,6;24 ;1,3,17 ;23</td>
<td>9</td>
<td>7,06</td>
<td>5</td>
</tr>
<tr>
<td>5*;6,24;1,3,17 ;..</td>
<td>2</td>
<td>1,86</td>
<td>2</td>
</tr>
<tr>
<td>5,6;10,10,14 ;1,17 ;..</td>
<td>0</td>
<td>0,09</td>
<td>_</td>
</tr>
<tr>
<td>5*;6,15 ;1,17 ;..</td>
<td>0</td>
<td>0,22</td>
<td>0</td>
</tr>
<tr>
<td>5,6;10,11,14,24;1,17 ;.. (+Gm28)</td>
<td>0</td>
<td>0,32</td>
<td>_</td>
</tr>
<tr>
<td>5,6;10,10,14,21;1,17 ;.. (+Gm28)</td>
<td>0</td>
<td>0,29</td>
<td>_</td>
</tr>
<tr>
<td>5*;6,1,3,17 ;23</td>
<td>2</td>
<td>1,34</td>
<td>4</td>
</tr>
<tr>
<td>5*;5,6,1,3,17 ;..</td>
<td>0</td>
<td>0,35</td>
<td>4</td>
</tr>
<tr>
<td>10,11,13,15,11,17 ;..</td>
<td>1</td>
<td>0,14</td>
<td>_</td>
</tr>
<tr>
<td>5,6;10,11,13,15,24;1,17 ;.. (+Gm28)</td>
<td>0</td>
<td>0,06</td>
<td>0</td>
</tr>
<tr>
<td>10,11,13,15,21,1,17 ;.. (+Gm28)</td>
<td>0</td>
<td>0,29</td>
<td>0</td>
</tr>
<tr>
<td>5*;15 ;1,3,17 ;23</td>
<td>1</td>
<td>1,73</td>
<td>0</td>
</tr>
<tr>
<td>5*;15 ;1,3,17 ;..</td>
<td>1</td>
<td>0,46</td>
<td>0</td>
</tr>
<tr>
<td>5,6;24,1,3,17;23 (+Gm28)</td>
<td>0</td>
<td>0,34</td>
<td>0</td>
</tr>
<tr>
<td>5*;6;24;1,3,17 ;.. (+Gm28)</td>
<td>0</td>
<td>0,09</td>
<td>1</td>
</tr>
<tr>
<td>21;1,17 ;.. (+Gm28)</td>
<td>1</td>
<td>0,14</td>
<td>0</td>
</tr>
<tr>
<td>5*;21;1,3,17 ;23 (+Gm28)</td>
<td>1</td>
<td>1,73</td>
<td>2</td>
</tr>
<tr>
<td>5*;21;1,3,17 ;.. (+Gm28)</td>
<td>0</td>
<td>0,46</td>
<td>0</td>
</tr>
<tr>
<td>5* ;1,3 ;23</td>
<td>6</td>
<td>7,90</td>
<td>5</td>
</tr>
<tr>
<td>5*;6;1,3,17 ;23 (+Gm28)</td>
<td>0</td>
<td>0,39</td>
<td>_</td>
</tr>
<tr>
<td>5,6;10,11,14,1,17 ;.. (+Gm28)</td>
<td>1</td>
<td>0,06</td>
<td>_</td>
</tr>
<tr>
<td>5*;6,1,17 ;.. (+Gm28)</td>
<td>0</td>
<td>0,06</td>
<td>1</td>
</tr>
<tr>
<td>5* ;1,3 ;..</td>
<td>1</td>
<td>0,36</td>
<td>3</td>
</tr>
</tbody>
</table>
Tableau 2. Fréquence des haplotypes Gm et indices de diversité génétique dans les trois populations Malgaches étudiées

<table>
<thead>
<tr>
<th>Haplotypes Gm</th>
<th>Antemoro (N=85)</th>
<th>Northern Fihereňa (N=82)</th>
<th>Southern Fihereňa (N=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3m; G1m;G2m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5*,6;1,17;..</td>
<td>0,248</td>
<td>0,295</td>
<td>0,364</td>
</tr>
<tr>
<td>5*,1,17;.. (+Gm28)</td>
<td>0,141</td>
<td>0,063</td>
<td>0,126</td>
</tr>
<tr>
<td>5*,11,24;1,17;..</td>
<td>0,168</td>
<td>0,126</td>
<td>0,1</td>
</tr>
<tr>
<td>5*,10,11,14;1,17;..</td>
<td>0,032</td>
<td>0,13</td>
<td>0,02</td>
</tr>
<tr>
<td>10,11,13,15;1,17;..</td>
<td>0,041</td>
<td>0,02</td>
<td>0,01</td>
</tr>
<tr>
<td>5*,6,11,24;1,17;.. (+Gm28)</td>
<td>0,008</td>
<td>0,008</td>
<td>0,02</td>
</tr>
<tr>
<td>10,11,13,15;1,17;.. (+Gm28)</td>
<td>0,009</td>
<td>0,024</td>
<td>0,012</td>
</tr>
<tr>
<td>5*,6;1,17;.. (+Gm28)</td>
<td>0,012</td>
<td>0,142</td>
<td>0,03</td>
</tr>
<tr>
<td>5*,15;1,17;.. (+Gm28)</td>
<td>0,007</td>
<td>0,007</td>
<td>0,007</td>
</tr>
<tr>
<td>5*,13;23</td>
<td>0,247</td>
<td>0,184</td>
<td>0,162</td>
</tr>
<tr>
<td>5*,13;..</td>
<td>0,065</td>
<td>0,128</td>
<td>0,068</td>
</tr>
<tr>
<td>21;1,17;.. (+Gm28)</td>
<td>0,041</td>
<td>0,024</td>
<td>0,03</td>
</tr>
<tr>
<td>Diversité Génétique (h)</td>
<td>0,8317</td>
<td>0,8347</td>
<td>0,8044</td>
</tr>
</tbody>
</table>

Nous avons observé des haplotypes généralement fréquents en Asie (Gm21; 28; 1,17; .., Gm5*;1,3;23 Gm5*;1,3;..) et en Afrique (Gm5 *; 1,17;.. Gm5*; 1,17;..(+ Gm28) Gm5,6,11,24; 1,17; ..). Toutefois, nous n’avons pas détecté des haplotypes présents à hautes fréquences en Europe, en Afrique du Nord ou au Moyen-Orient (Gm5*; 3; 23 et Gm5*; 3; ..), bien que nous observions la présence de l’haplotype Gm21, 28; 1,17;.., commun dans presque toutes les populations du monde. Les haplotypes Gm 5,6,10,11,14; 1,17; .. et Gm10,11,13,15; 1,17;.., qui sont observés dans les...
populations d’Afrique sub-Saharienne ont été retrouvées chez les Antemoro et la populations du sud de Fihereña. L’haplotype Gm5,6,11,24; 1,17; .. (+ Gm28), qui est fréquent en Afrique sub-saharienne, a été observé chez les Antemoro et le groupe du nord de Fihereña. De plus, dans cette dernière, il faut noter la présence d’un haplotype particulier Gm5*, 6; 1,17; .. à une fréquence relativement élevée (14,2%). Cet haplotype a également décrit dans une population d’Afrique de l’Est (Dugoujon et al. 2004). On retrouve également l’haplotype Gm10,11,13,15;1,17;...(+ Gm28). Enfin, l’haplotype Gm5,6,10,11,14;1,17;..(+Gm28) n’est présent que chez les Antemoro. Les populations malgaches présentent un taux de diversité génétique intra-populationnelle similaire estimé entre 80 et 84% (h = 0,8347 dans le nord de Fihereña; h = 0,8317 chez les Antemoro; h = 0,8044 dans le sud de Fihereña; voir tableau 2). Au regard des valeurs F ST, la population Antemoro n’est pas différenciée des populations du sud et du nord de Fihereña (F ST = 0,007 et F ST = 0,013 respectivement, et p-value non significative). Les comparaisons des groupes du sud et du nord de Fihereña font apparaître un faible niveau de différenciation (F ST = 0,018, p-value <0,05). Les trois populations Malgaches forment un groupe génétique homogène.

La population Antemoro est génétiquement peu différenciée de certaines populations de l'Océanie. Une population de langue austronésienne (Morobe Atsera F ST = 0,043; p-value ≤ 0,01) et deux populations non-austronésiennes de Nouvelle-Guinée (Province des l'île de l’est F ST = 0,043 et Province de Morobe F ST = 0,054; p-value ≤ 0,01). Les Antemoro sont modérément différenciés de six autres populations de Nouvelle Guinée (0,114 ≤ F ST ≤ 0,145; p-value ≤ 0,01). Enfin les distances génétiques sont plus élevées quand on les compare avec le reste des populations de notre base de données sur l'Océanie et l'Asie du Sud-Est (la Nouvelle-Guinée, la Micronésie, la Mélanésie, la Malaisie, l'Indonésie et les Philippines) (0,160 ≤ F ST ≤ 0,590). Les valeurs F ST trouvées entre les Antemoro et les populations d’Afrique sub-Sahariennes sont modérées (0,092 ≤ F ST ≤ 0,280), et elles sont élevées par rapport aux populations Indiennes (0,169 ≤ F ST ≤ 0,30), d'Afrique du Nord (0,184 ≤ F ST ≤ 0,404), du Moyen-Orient (Egypte exclue) (0,239 ≤ F ST ≤ 0,477) et Européennes (0,342 ≤ F ST ≤ 0,602), (Annexe 10). Une valeur modérée a également été trouvée entre les Antemoro et les populations des Comores (F ST = 0,091, p ≤ 0,01).

Figure 23. MDS (Multidimensional Scaling) calculée à partir des valeurs F_{ST} (stress de Kruskal = 0,178). Légende: Ant.: Antemoro; N.Fih.: Nord Fihereña; S.Fih.: Sud Fihereña; Com.: Comores.

La double contribution africaine et asiatique au pool génétique de la population Antemoro est attestée par les taux de métissage. Le test AMOVA effectué entre nos populations parentales sélectionnées valide la structuration géographique F_{SC}: 0,06633 et F_{CT}: 0,38264; p-value <0,0001). La contribution de l’Afrique Australe est relativement plus importante (mY: 0,596; BH: 0,646) que la contribution du Sud-Est asiatique (mY: 0,403; BH: 0,353).
3- Discussion

Une signature génétique significative des migrations arabo-islamiques à Madagascar n'a pas été observée dans cette étude. La population étudiée est très différenciée de l'Afrique du Nord (0,184 ≤ F_{ST} ≤ 0.404), du Moyen-Orient (0,239 ≤ F_{ST} ≤ 0.477) et de l’Inde (0,169 ≤ F_{ST} ≤ 0.300). Les Antemoro sont génétiquement semblables aux autres Malgaches qui ne se réclament pas d’une origine dans la péninsule Arabique. S'il y a eu une contribution génétique arabe, celle-ci s’est probablement diluée dans le temps en raison des flux de gènes intensifs entre les Antemoro et le reste de la région. Néanmoins, seule une partie de la population Antemoro aurait une origine arabo-islamique. La société Antemoro est constituée en « pseudo-castes » et seuls les détenteurs des pouvoirs magiques et religieux et/ou les descendants des nobles auraient une origine rattachée à la Mecque. Il faut noter que ce dernier sous-groupe n’est que très faiblement représenté dans cet échantillonnage.

L'origine de la culture arabo-islamique à Madagascar doit encore être clarifiée. De même il faut noter qu’une hypothèse serait qu'ils soient originaires d'Afrique de l'Est. Au XIIIème siècle, l'Islam était en expansion le long la côte d'Afrique orientale en raison de l'expansion de l'empire arabe. L’installation des populations islamisées sur les côtes africaines et leur mélange avec les Bantous a conduit à l'émergence de la civilisation swahilie (Verin 1967). Les valeurs F_{ST} entre les Antemoro et les populations de la Corne de l'Afrique sont modérées (0,11 à 0,14), mais seules trois populations (d’Ethiopie et de Djibouti) ont pu être comparées. Un meilleur échantillonnage dans cette région d’Afrique serait alors nécessaire pour conforter l’apport de la génétique.

B- Objectif de notre étude

Il résulte de cette étude préliminaire que la question de l'origine des islamisés du sud-est de Madagascar reste à préciser. Si il y avait eu une influence Arabe elle est soit inexistant aujourd’hui soit très diluée, soit propre à un sous groupe Antemoro. Un nouvel échantillonnage Antemoro, excluant les Antañala, groupe ethnique hétérogène, et les Onjasty issus d’une précédente migration serait nécessaire. A l’inverse, il faudrait inclure un plus grand nombre d’individus Anteony et Antalaotra. L’analyse des marqueurs génétiques uniparentaux (ADNmt et NRY) pourrait permettre de mieux appréhender la question de l’origine du peuplement et d’examiner la pertinence d’une parenté génétique arabe.

C’est à cette fin qu’une mission de terrain fut organisée. Elle fut financée en partie par le CNRS de Toulouse et par le laboratoire du CRLHOI. Au laboratoire, nous avons commencé par l’analyse du polymorphisme du chromosome Y (17-STRs et 57 UEPs). Celui-ci nous semblait plus informatif du fait que les migrants islamisés étaient en général décrits comme des hommes qui auraient pris femmes une fois sur la Grande Ile. Dans un deuxième temps les lignées féminines ont été étudiées par séquençage des régions hypervariables I et II de l’ADN mitochondrial et par génotypage de polymorphismes ponctuels de la région codante.

Les résultats obtenus seront discutés en relation avec les données historiques et ethnologiques. L’objectif de ce travail étant de tenter de valider l’hypothèse d’une origine biologique arabe du peuplement des Antemoro et d’une façon plus générale, d’avoir une meilleure connaissance de la diversité génétique de ces populations.
V- Les Antemoro : étude anthropobiologique

A- Mission de terrain

Le « pays Antemoro » s’étend sur près de 150km de long et s’enfonce jusqu’à 40 km dans les terres. Il est traversé par de nombreux fleuves : Namorona, Faraony, Mananano, Manakara, Matitanana. C’est le long des cours d’eau que l’on retrouve la majorité des villages.

1- Questions d’éthiques et choix du type de prélèvement

Afin de réaliser notre étude, une mission de terrain a été organisée entre novembre et décembre 2009. Celle-ci aurait dû se dérouler durant la première année de la thèse, mais les troubles politiques qui éclatèrent à cette période bloquèrent la mission. Un dossier pour le Comité d’Ethique du Ministère de la Santé à Madagascar fut constitué afin d’obtenir les autorisations nécessaires (Annexe 1). Le dossier fut défendu par le Professeur Louis-Paul Randriamarolaza de l’Université d’Antananarivo. Deux étudiantes en Anthropologie à l’Université d’Antananarivo, Mesdames Andriamihaja Rakotondrabe et Mamisoa Adelta Ratolojanahary m’accompagnèrent sur le terrain. Elles m’aidèrent dans la réalisation des enquêtes généalogiques nécessaires afin d’exclure au maximum les possibles liens de parenté qui biaiserait les analyses statistiques. La présence d’une étudiante, elle-même Antemoro – Ampanabaka, n’étant pas considérée comme étrangère (Vazaha), nous facilita le contact avec les groupes de la région.

Figure 24. Kits de prélèvements salivaires Oragene (d’après DNA genotek)

Figure 25. Cytobrosse
L’étude de l’ADN ancien aurait nécessité l’accès aux sépultures, très délicat de par le caractère sacré de ces lieux dont l’accès est généralement interdit aux étrangers.

2- Sélection des villages

Seuls les trois groupes Antemoro principaux ont fait l’objet de cette étude, à savoir les Anteony, les Antalaotra et les Ampanabaka ceci essentiellement pour une question de temps mais aussi parce que la question des descendants d’esclaves était plus délicate à aborder ainsi que celle des Antevolo, parias de la société. Bien que l’occasion nous fut donnée, nous dûmes refuser. Le problème de ce dernier groupe étant que toute personne entrant en contact avec les parias devient à son tour paria aux yeux de la société Antemoro. Il nous aurait été impossible de poursuivre le terrain au sein des autres « pseudo-castes ».

Hormis les villages d’Ivato et Voasary, il apparaîtrait que chaque village ne renferme qu’un seul groupe : Ampanabaka, Antalaotra ou Anteony. Les villages échantillonnés furent pour les Ampanabaka les villages d’Ambila à Manakara, et d’Ankarimbary vers Vohipeno (village d’origine d’une des étudiantes m’accompagnant), pour les Antalaotra les villages de Vohibolo, Ivato, Voasary, Savana, et Vatomasina, et pour les Anteony les villages d’Ivato, Voasary, Nato, deux villages de la commune d’Anoloka (Vohitsivalana, Vohimary), quatre villages de la commune de Vohitrindry (Andranovolo Est, Andranovolo Ouest, Tsarineso, Mangaika) (Figure 26).

Figure 26. Localisation des villages enquêtés (étoiles noires = Ampanabaka ; étoiles hachurées = Antalaotra ; étoiles blanches = Anteony)
3- Sélection des individus et problèmes rencontrés

Dans chaque commune, contact a été pris avec le maire ou le chef de district afin de le sensibiliser à notre étude et de lui faire viser l’autorisation du Comité d’éthique ainsi que la lettre d’introduction réalisée par le Pr. Louis-Paul Randriamarolaza (Annexe 1). Une fois dans le village, nous prenions rendez-vous avec le chef, Mpanjaka. Une fois son accord obtenu, soit nous passions de maison en maison guidés par un villageois désigné par le Mpanjaka soit ce dernier réunissait les chefs de lignées dans le trano-be.

B- Méthodes

1- Analyses en laboratoire

Les analyses ont été réalisées au laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse (AMIS) de Toulouse. L’ADN utilisé pour ce travail a été extrait des salives. Les cytobrosses ont été conservées à -80°C, et l’ADN qui fut extrait est aujourd’hui conservé à -25°C (banque biologique).
a- Extraction du matériel biologique

Tout d’abord, les kits de prélèvements salivaires ont été mélangés par retournement afin d’homogénéiser le prélèvement. 500 microlitres ont été prélevés sur les 4 millilitres totaux, et mis une à deux heures au bain marie à 50°C. Ensuite, 20µl (soit 1/25ème du volume) du réactif Oragene DNA ont été rajoutés dans le tube à microcentrifugeuse. Celui-ci est mélangé pendant quelques secondes jusqu’à l’obtention d’un échantillon trouble (signe de précipitation des impuretés et inhibiteurs). Le tube est alors mis à incuber dans de la glace pendant 10 min, puis à centrifuger à température ambiante pendant 5min à 13000 rpm (rotations par minute). Le surnageant clair est ensuite transféré à l’aide d’une pipette dans un autre tube à microcentrifugeuse. Le culot contenant les impuretés est jeté. 1 µl de glycogène a été ajouté afin de faciliter la visibilité du culot d’ADN par la suite.

On y ajoute 500 µl d’éthanol (volume/volume) à 96% pour laver le surnageant et le tout est mélangé par retournement du tube une dizaine de fois. L’échantillon est laissé à température ambiante pendant 10 min afin de laisser le temps à l’ADN de précipiter (Figure 27). Après un passage à la microcentrifugeuse pendant 2 à 3 min à 13000rpm le surnageant est retiré. Le culot d’ADN est lavé à l’éthanol à 70% par ajout de 250 µl de la solution. Au bout d’une minute, l’éthanol est éliminé par pipetage en prenant soin de ne pas toucher à l’ADN. Pour finir, l’ADN a été re-suspendu dans 50 µl de buffer TE-1X.

b- Analyse du polymorphisme du chromosome Y

Tous les protocoles débutent par une étape d’amplification en chaîne de l’ADN. C’est la méthode de la PCR (Polymerase Chain Reaction). Elle consiste en une répétition de cycles constitués par une phase de dénaturation thermique qui va séparer les deux brins d’ADN par rupture des liaisons hydrogènes. Cette étape se fait habituellement à 95°C. Puis suit la phase d’hybridation des amorces. Ces amorces vont se fixer sur l’ADN simple brin et permettre de délimiter la région d’intérêt, celle que l’on souhaite amplifier. Le milieu réactionnel est alors à une température Tm (Température d’hybridation) propre au couple d’amorces. La réaction se termine avec la phase d’élongation à partir

![Méduse d’ADN (Banque nationale de photos en SVT; ac.Lyon)](image)
des amorces grâce à l’ADN polymérase et aux nucléotides présents dans le milieu réactionnel. A la fin du premier cycle, deux amplicons sont obtenus et serviront de matrice au cycle suivant.

Dans le cas de ces PCR multiplex, les amorces doivent répondre à certains critères tels qu’avoir un Tm du même ordre de grandeur ; elles ne doivent pas être complémentaires entre elles tout particulièrement en extrémité 3’ de l’ADN ; elles doivent être spécifiques de la région recherchée ; ne pas être trop riches en base G et C ; et avoir une taille entre 19 et 25 nucléotides ; ne pas posséder de séquences répétées pour éviter la formation de repliement. Les conditions expérimentales joueront un rôle dans l’hybridation moléculaire. Des conditions très stringentes (température élevée et concentration en Na+ faible) rendent l’hybridation plus difficile mais permettent à celle-ci d’être plus spécifique. En revanche des conditions peu stringentes (température plus faible et concentration en Na+ plus élevée) facilitent l’hybridation, mais la rendent moins spécifique.
Afin de concevoir les amorces nécessaires, dans un premier temps la séquence du NRY a été récupérée sous Genebank (www.ncbi.nlm.nih.gov/genbank/). La région contenant le SNP recherché est copié dans le logiciel Oligoexplorer, qui va rechercher les amorces possibles et nous permettre de choisir le couple d’amorces qui nous paraît le plus optimal. Puis ce couple est analysé par le logiciel Blast de NCBI afin de vérifier sa spécificité à la région que l’on cherche à amplifier. Enfin, à l’aide du logiciel Oligoanalyzer, on vérifie le multiplex, à savoir que les couples d’amorces ne s’hybrident pas entre eux. Dans un second temps, l’amorce SBE (Single Base Extension) est recherchée. C’est elle qui viendra se fixer sur l’ampliçon précédemment formé et lire le SNP recherché.

Toutes les données ont été obtenues sur un séquenceur ABI PRISM 3730 à la Génopole de Toulouse Midi Pyrénées, et analysées avec GeneMapper v.4.0 (PE, Applied Biosystems). L’affectation finale des haplogroupes suit la phylogénie NRY la plus récemment mise à jour (Janvier 2011 ; http://www.isogg.org).

c- Analyse du polymorphisme de l’ADNmt

Dans un second temps, des mutations diagnostiques de l’ADNmt ont été recherchées dans la région codante afin de confirmer l’assignation de l’haplogroupe à chaque séquence. Cette étape a été effectuée par la technique des RFLP (Restriction Fragment Lenght Polymorphism). Cette technique du polymorphisme de longueur des fragments de restriction permet de mettre en évidence une mutation par le fait que sa présence crée ou non un site de restriction pour une enzyme donnée. Après une première étape d’amplification, les produits sont digérés par une enzyme de restriction et la lecture des fragments se fait par migration du produit sur gel d’agarose par électrophorèse.
Tous les individus ont été testés pour les polymorphismes SNPs marqueurs des haplogroupes L3 (-10 871 MnlI), M (+10 397 AluI) et N (-10 397AluI). Puis en fonction des estimations précédemment obtenues sur les régions hypervariables, ont été testés les SNPs marqueurs des haplogroupes M7 (+9824 Hinfl), M7c3 (+3606 Sau96I), E (-7598 HhaI), E1 (+ 10834 Mse I), F3 (+10 319 Tsp509I) et B4a1a (+6719 NlaIII). Les mutations A8360G, A8188G déterminant l’haplogroupe M23b ont été testées par séquençage de cette région. De plus, pour les individus estimés d’haplogroupe B, la confirmation s’est faite par la lecture d’une délétion de 9pb dans la région V sur gel électrophorèse. Trois individus ne possédaient pas la mutation sur la région HVI 16267 définissant l’haplogroupe B4a1a1a (motif polynésien : 16217C, 16247G et 16261T). Ils ont été testés par SNaPshot pour la mutation A14022G afin de confirmer leur appartenance à l’haplogroupe B4a1a1. Enfin ils furent testés par RFLP pour l’un des SNPs déterminant le motif malgache B4a1a1a (-1473 HhaI) (Razafindrazaka et al. 2009).

Concernant les haplogroupes africains, la confirmation de l’haplogroupe estimé à été faite par la technique du SNaPShot : L0/L0a3 (position 13276), L1 (13789), L4/L0f (13470), L2’6 (10810), L5 (12950), L3’4/L0a2c (9818), L6 (13710), L0a’k’f (9818), L2a (13803), L2a2 (15939), L2b (4158), L2d (4158), L2c (13958), L3b (10086), L3d (8618), L3e2 (14905), L3f (4218), L3e (2352), L3e3’4’5 (750) (Brucato 2010).

2- Méthodes d’analyses des données
a- Analyses des données NRY

Toutes les statistiques sur la variation des haplotypes du NRY, diversité génétique intra-populationnelle (Nei 1987), Fst (Wright 1950) , AMOVA ont été calculées en utilisant le logiciel ARLEQUIN 3.5.1.2 (Excoffier et al. 2005).

Dans un premier temps, les indices FST par paire de populations ont été calculés afin de déterminer le niveau de différenciation génétique entre les populations (Holsinger & Weir 2009), en utilisant des profils à 17 marqueurs STR-Y, pour les populations de Madagascar et des Comores. Les résultats ont été visualisés sur une MDS réalisée avec XLstat.V7.5 afin de mieux estimer le degré de différenciation entre les différentes populations. Une seconde MDS a été faite à partir des fréquences des haplogroupes dans les populations des diverses régions géographiques ainsi qu’une ACP (Analyse en Composante Principale). Cette dernière fut réalisée avec XLstat.V10.6. Certains haplogroupes ont été regroupés phylogénétiquement par rapport à leur faible contribution aux deux premiers axes de l’ACP.

Une analyse du taux de métissage a été réalisée sous AdmixV2.0 (mY; Bertorelle & Excoffier 1998, Dupanloup & Bertorelle 2001) à partir des fréquences des haplogroupes dans les huit populations parentales hypothétiques (Afrique Sud et Ouest, Afrique de l’Est, Afrique du Nord, Moyen-Orient, Asie du Sud, Asie du Sud-Est, Océanie, Europe). La validité de cette structure a au préalable été testée par AMOVA. Un second calcul a permis d’estimer ce taux de métissage par le Maximum de vraisemblance (Mw), en utilisant le logiciel Leadmix (Wang 2003). Dans ce cas les populations parentales ont été sélectionnées à partir des résultats de l’analyse précédente mais sur la base de l’haplotype minimal à sept marqueurs STR-Y. Enfin les haplotypes partagés entre les Antemoro et les populations constituant la base de données ont été recherchés.

Quatre Networks Median-Joining ont été calculés avec le logiciel Networks V4.6 pour les haplotypes J1 et T1 dans notre population Antemoro à partir de 17 marqueurs STR-Y (Annexe 4), et à partir de l’haplotype minimum (DYS19, DYS389i, DYS389ii, DYS390, DYS391, DYS392, DYS393) pour relier les haplotypes Antemoro avec ceux des autres zones géographiques. DYS389ii a été obtenu après soustraction de DYS389I à DYS389II.
b- Analyses des données de l’ADNmt

Les analyses ont été aussi réalisées en utilisant le logiciel ARLEQUIN 3.5.1.2 (Excoffier et al. 2005). Concernant les lignées maternelles, la diversité génétique intrapopulationnelle à été calculée à partir des données HVI et HVII ainsi que la diversité nucléotidique π, 0k et θS. Les indices de neutralité D de Tajima (1989) et le FS de Fu (1997) ont été calculés. Le test de Tajima se fait sur la base de la diversité nucléotidique. Il permet de visualiser si la population a connu une expansion démographique ou un goulot d’étranglement ou encore des pressions de sélection. Dans une population de taille constante, qui n’est pas soumise à de la sélection, D prendra une valeur de 0 : c’est l’hypothèse nulle. Le FS de Fu est un test de neutralité proche de celui de Tajima. Il repose néanmoins sur la structure haplotypique des populations. Il met en relation le nombre d’haplotypes observé avec le nombre de site polymorphes. L’interprétation de sa p-value est un peu particulière et non expliquée. Une statistique FS de Fu doit être considérée comme significative au seuil de 5% si sa p-value est comprise entre 0,02 et non 0,05 comme cela est habituellement le cas (Excoffier et al. 2005)

Les fréquences des haplogroupes ont été comparées à celles observées dans des populations des Comores et d’autres populations malgaches et représentées par une ACP. Les indices FST par paire de populations ont été calculés et représentés par MDS.

C- Résultats et discussion

1- Lignées paternelles

a- Diversité intrapopulationnelle

Les Ampanabaka (h = 0,98 ± 0,014 ; 36 haplotypes à 17 STR-Y) et les Antalaotra (h=0,98±0,009 ; 35 haplotypes à 17 STR-Y) ont une diversité génétique intra-populationnelle du même ordre de grandeur que celles trouvées en général dans les populations du Sud de Madagascar (0,95 ≤ h ≤ 0, 99). En revanche, les Anteony (h = 0,91 ± 0,028 ; 21 haplotypes à 17 STR-Y) sont moins diversifiés (Razafindrazaka 2010) (Figure 28).

![Diagramme](https://example.com/diagram.png)

Figure 28. Pourcentages des haplogroupes Y retrouvés dans les trois groupes Antemoro étudiés
Le calcul des F_{ST} par paires de populations à partir de 17 marqueurs STR-Y, entre les trois groupes Antemoro a révélé que les Ampanabaka étaient fortement différenciés des Antalaotra ($F_{ST} = 0,158$, p-value $<0,01$, Tableau de la Figure 29) et des Anteony ($F_{ST} = 0,205$, p-value $<0,01$, Tableau de la Figure 29). La comparaison des Antalaotra et des Anteony montre aussi une différenciation génétique significative ($F_{ST} = 0,124$, p-value $<0,01$, Tableau de la Figure 29). Par ailleurs les Ampanabaka ne partagent aucun haplotype avec les deux autres groupes. En revanche les Anteony et les Antalaotra partagent trois haplotypes correspondant à des haplogroupes J1, T1 et E1b1a1.

b- Comparaison à l’échelle locale.

En comparaison avec d'autres groupes de Madagascar et des Comores, les Ampanabaka sont le seul groupe Antemoro présentant de faibles valeurs F_{ST} ($F_{ST} <0,05$; p-value $<0,01$, Tableau de la Figure 29) avec les autres groupes malgaches non Antemoro. Ceci est observé avec les deux populations malgaches du sud (Antanosy et Vezo du Sud de la région de Tuléar). Au contraire, les Antalaotra et les Anteony ont un patrimoine génétique paternel plus divergent par rapport à tous les autres groupes analysés ($F_{ST} > 0,05$; p-value$<0,01$, Tableau de la Figure 29). Ces résultats peuvent être visualisés sur la MDS (Figure 29). Les Ampanabaka sont regroupés avec d'autres populations du sud de Madagascar, tandis les Antalaotra et les Anteony s’en éloignent.
La recherche d’haplotypes partagés à 17 marqueurs montre que les Anteony et les Antalaotra ne partagent aucun profil avec ces populations. Les Ampanabaka partagent deux profils (E1b1a et E2b) respectivement avec les Antandroy et les Antanosy de la côte sud de la Grande Ile. Quatre populations malgaches n’ont pas été considérées pour les calculs statistiques pour cause de faibles effectifs (N<15 ; chez les Merina, les Tsimahafotsy et les Antaisaka), ainsi que les Andriana car il s’agit d’une population très consanguine (Tofanelli et al. 2009, Razafindrazaka 2010). Néanmoins la recherche d’haplotypes partagés sur les 17 marqueurs STR-Y n’a révélée aucune lignée partagée avec nos trois groupes Antemoro (Annexes 12-14).

La MDS basée sur les fréquences des haplogroupes confirme ces regroupements (Figure 30). Les Antalaotra apparaissent faiblement différenciés des populations des Hautes Terres (F_{ST}=0,041, pvalue<0,05, Annexe 11). Certains groupes Antemoro semblent différer à première vue des autres populations malgaches du sud (Tofanelli et al. 2009), de la côte sud-ouest (Razafindrazaka 2010), et des Hautes Terres (Hurles et al. 2005) par la présence de ces deux derniers haplogroupes J1 et T1. Toutefois le J1(J-M267) n’a pas été testé dans les populations des Hautes Terres.

Figure 29. MDS calculée à partir de la matrice des F_{ST} par paire de populations entre les populations malgaches et comoriennes sur les données sur 17 STR-Y. F_{ST} en dessous la diagonale ; p-values au dessus de la diagonale. (+) pvalue significative à un seuil de 1% ; (-) pvalues non significatives. Stress de Kruskal = 0,136.

<table>
<thead>
<tr>
<th></th>
<th>Ampanabaka</th>
<th>Anteony</th>
<th>Antalaotra</th>
<th>Antandroy</th>
<th>Antanosy</th>
<th>Comoros</th>
<th>Mikea</th>
<th>Vezo Nord</th>
<th>Vezo Sud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampanabaka</td>
<td>0.00000</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anteony</td>
<td>0.20530</td>
<td>0.00000</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Antalaotra</td>
<td>0.15800</td>
<td>0.12494</td>
<td>0.00000</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Antandroy</td>
<td>0.07332</td>
<td>0.20911</td>
<td>0.12777</td>
<td>0.00000</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Antanosy</td>
<td>0.04980</td>
<td>0.13650</td>
<td>0.07099</td>
<td>0.02220</td>
<td>0.00000</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Comoros</td>
<td>0.08777</td>
<td>0.13985</td>
<td>0.06589</td>
<td>0.08002</td>
<td>0.03017</td>
<td>0.00000</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mikea</td>
<td>0.06677</td>
<td>0.19053</td>
<td>0.09262</td>
<td>0.06218</td>
<td>0.01633</td>
<td>0.03961</td>
<td>0.00000</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vezo Nord</td>
<td>0.05228</td>
<td>0.26205</td>
<td>0.17919</td>
<td>0.03440</td>
<td>0.03511</td>
<td>0.08297</td>
<td>0.04192</td>
<td>0.00000</td>
<td>-</td>
</tr>
<tr>
<td>Vezo Sud</td>
<td>0.02510</td>
<td>0.20609</td>
<td>0.11817</td>
<td>0.01494</td>
<td>0.01370</td>
<td>0.06190</td>
<td>0.02717</td>
<td>0.01954</td>
<td>0.00000</td>
</tr>
</tbody>
</table>
Figure 30. MDS calculée à partir des F_{ST} par paire de populations entre les populations malgaches et comoriennes sur les fréquences des haplogroupes du NRY (Stess de Kruskal : 0,172).

c- Comparaison à l’échelle continentale

L’haplotype R1a1 est retrouvé dans une population d’Afrique du Nord, une population d’Asie du Sud-Est, quatre populations du Moyen-Orient et six populations indiennes. Son origine a de grande chance d’être liée aux mouvements accompagnant le commerce entre l’Arabie et l’Insulinde (Underhill et al. 2009).

Enfin les haplotypes T1 à sept marqueurs STR-Y sont partagés avec une population d’Afrique et diverses populations du Moyen-Orient (6) et d’Asie du Sud-Est (6) et d’Europe (1). Notons qu’aucun haplogroupe T n’est décrit dans notre base de données sur les fréquences d’haplogroupes en Asie du Sud-Est. Ceci peut correspondre à des lignées d’haplogroupes proches (S1- (M254); O2b1a (47z), M1a (P34) et M(P256)). Il en est de même pour l’haplotype retrouvé en Europe et qui correspond à un haplogroupe R1b.

Il résulte que l’analyse à partir de sept marqueurs STR-Y donne une idée générale de l’origine métissée Afro-asiatique des populations Antemoro. Malgré le fait qu’il existe certains biais liés à un phénomène d’homoplasie, l’analyse des haplotypes partagés reste le meilleur moyen d’identifier les origines géographiques d’un haplotype donné. Ainsi, quatre lignées (T1, J1, J2b et E1b1b) sont retrouvées majoritairement au Moyen-Orient.

Le calcul des F_{ST} par paire de populations sur la base des fréquences des haplogroupes du chromosome Y (Annexe 11), a révélé que les Ampanabaka sont faiblement à modérément différenciés de certaines populations d’Afrique de l’Ouest, du Centre et du Sud (0,036<F_{ST}<0,152). Les Antalaostra sont très hétérogènes. Ils sont proches de nombreuses populations de zones géographiques différentes bien qu’aucune valeur ne soit inférieure à 0,05. Nous notons que les valeurs les plus faibles sont retrouvées en comparaison avec certaines populations d’Asie du Sud-Est telles que Java et Sulawesi (0,067<F_{ST}<0,072). Les Anteony quant à eux, sont fortement différenciés de toutes les populations de la base de données. Les valeurs les plus faibles sont observées avec des populations d’Oman et des Emirats Arabes Unis (0,142 <F_{ST} <0,155) bien qu’il faille noter à titre de comparaison que les populations des Hautes Terres et des Comores présentent des valeurs F_{ST} relativement similaires pour ces deux populations. Ces données F_{ST} sont représentées sur la MDS (Figure 31).
Figure 31. MDS sur les valeurs de F_{ST} calculées à partir des fréquences des haplogroupes Y entre les Antemoro et les populations de diverses régions géographiques (stress de Kruskal =0,227).

Légende: Anty = Anteony; Anta = Antalaotra; Ampa = Ampanabaka.

Une ACP a été calculée à partir de ces fréquences d’haplogroupes (Figure 32). Le premier et le deuxième axe représentent 47,91% de la variabilité. L’haplogroupe E1b1a contribue à 89% de la variabilité de l’axe 1, tandis que tous les autres ont une contribution inférieure à 1%. Les haplogroupes E1b1b et CD contribuent respectivement à 53% et 10% de la variabilité représentée par l’axe 2. L’ACP fait apparaître le regroupement des Ampanabaka avec les Africains du Sud-Centre-Ouest et leur proximité avec d’autres populations malgaches, de par la forte présence de l’haplogroupe E1b1a. Les Antalaotra ont une diversité génétique proche de celle des régions du Sud-Est asiatique et d’Océanie (plus particulièrement des populations de langues austronésiennes) marquée par les haplogroupes O1a et O2. Les Anteony apparaissent à la croisée de toutes ces diversités génétiques et sont isolés de par la forte présence des haplogroupes J1 et T1 (J* et T sur l’ACP).

Figure 32. Analyse en Composante Principale calculée à partir de la fréquence des haplogroupes du NRY

d- Analyse du métissage

La présence d’haplogroupes dont l’origine rappelle le Moyen-Orient chez les Anteony et les Antalaostra, et qui ne sont pas retrouvés dans les autres populations malgaches utilisées pour nos comparaisons, nous laisse supposer la présence d’un « fond malgache » avec une trace Arabe. Une estimation du métissage a été réalisée à partir des fréquences des haplogroupes dans les trois groupes Antemoro en utilisant huit populations parentales, groupes géographiques qui ont pu directement ou indirectement avoir une influence sur la diversité génétique des Antemoro. La structuration de ces groupes a été validées par l’AMOVA ($F_{CT}=0,238; F_{SC}=0,122; p$-value $<0,001$).

On observe ainsi que deux groupes géographiques participent au pool génétique des Ampanabaka : l’Afrique de l’Ouest et du Sud (94,8%) et les régions d’Asie du Sud-Est (5,2%). En revanche il apparaît que trois régions contribuent au pool génétique des Antalaostra et des Anteony. On retrouve des apports africains, plus particulièrement d’Afrique de l’Est (2,7%), du Sud-Est asiatiques (54,4%) et du Moyen-Orient (42,9%) chez les Antalaostra. Chez les Anteony ce sont les mêmes apports avec des proportions différentes (Afrique orientale: 10,6%, Sud-Est asiatique: 19,7% et Moyen-Orient : 69,7%) (Tableau 3).
Tableau 3. Estimation du taux de métissage dans les trois groupes Antemoro calculée à partir de huit hypothétiques populations parentales.

<table>
<thead>
<tr>
<th></th>
<th>Afrique Centre et Ouest</th>
<th>Sud</th>
<th>Afrique Est</th>
<th>Afrique Nord</th>
<th>Moyen-Orient</th>
<th>Asie Sud</th>
<th>Asie Est</th>
<th>Sud-Est</th>
<th>Europe</th>
<th>Océanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>mY(YSTR)</td>
<td>0.948±0.075</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.052±0.075</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mw(YSTR)</td>
<td>0.745</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.000</td>
<td>-</td>
<td>0.255</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+95%CI</td>
<td>0.745</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-95%CI</td>
<td>0.676</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Les données STR-Y sur 7 marqueurs des méta-populations sortantes pour la première analyse ont été utilisées pour calculer le maximum de vraisemblance (Mw) à 95% CI sous Leadmix. Les résultats obtenus permettent d’avoir une estimation pondérée de l’admixture (voir tableau 3). D’une façon générale trois composantes ressortent chez les Antemoro, une africaine et une Sud-Est asiatique tandis qu’une composante moyen-orientale n’est détectée que chez les Antalaotra et les Anteony.

e- Network Median-Joining

Deux Networks Median-Joining ont été réalisés à partir de données sur l’haplotype minimum (DYS19, DYS389i, DYS389ii, DYS390, DYS391, DYS392, DYS393) pour positionner les haplotypes Antemoro appartenant aux clades J1 et T par rapport à des haplotypes de ces mêmes clades mais de zones géographiques différentes (Figures 33 et 34).

En réduisant à l’haplotype minimum, seul un haplotype appartenant à l’haplogroupe J1 est obtenu dans notre population Antemoro. On observe que cette lignée ne se positionne pas en bout de branche (Figure 33). Cet haplotype est trouvé dans des populations du Moyen-Orient (Chypre, Turquie et Palestine). Sur le Network, les Antemoro sont reliés à des individus originaires de Turquie, de Chypre, de Palestine, des Comores, du Daghestan, d’Irak, d’Italie, du Portugal, du Qatar, du Koweït et du sud du Pakistan. Des individus de Syrie, d’Israël, du Liban, des arabophones, des Comores, d’Arabie Saoudite, d’Éthiopie, et des Portugais juifs sont également reliés aux groupes Antemoro.
Pour les haplotypes du clade T (Figure 34), il apparaît aussi que les Antemoro ne sont pas positionnés en extrémités de branches. Deux haplotypes à 7 marqueurs STR-Y Antemoro sont trouvés dans des populations du Moyen-Orient (Israël, Liban et Palestine). Un autre est similaire avec un individu d’Angola. Ces lignées sont rattachées à des individus d'Israël, d'Espagne et du Liban et sur les branches sortantes les lignées Antemoro sont reliées à des individus d'Europe, du Brésil, de la Zambie, d’Afrique du Nord et du Liban.

Figure 33. Network Median-Joining calculé à partir des haplotypes STR-Y minimum (DYS19, DYS389i, DYS389ii, DYS390, DYS391, DYS392, DYS393) chez les Antemoro et les populations de diverses régions géographiques appartenant à l'haplogroupe J1.

Figure 34. Network Median-Joining calculé à partir des haplotypes STR-Y minimum (DYS19, DYS389i, DYS389ii, DYS390, DYS391, DYS392, DYS393) pour les Antemoro et les populations de diverses régions géographiques appartenant à l'haplogroupe T.
Les trois groupes Antemoro présentent une diversité génétique sur les lignées maternelles relativement élevée, variant de 0,9379 à 0,9741 (Figure 35). Dans les trois populations, l’indice de Tajima se révèle négatif mais les p-values sont non significatives. Les FS de Fu sont également négatifs (-2 à -6) et les p-values encore une fois non significatives. On ne peut donc pas conclure à une expansion démographique (Figure 35).

La distribution des haplogroupes mitochondriaux fait apparaître la présence des haplogroupes du Sud-Est asiatique que l’on retrouve habituellement à Madagascar.

On note la présence en forte proportion de l’haplogroupe B4a1a1a qui est associé au motif malgache, recherché dans notre échantillon par la présence de la transition C1473T (Razafindrazaka et al. 2009). Il est présent à 25% chez les Ampanabaka, 23% chez les Antalaotra et 11% chez les Anteony. Ce motif malgache est pour le moment retrouvé uniquement à Madagascar. Il s’agit d’une sous-division du motif polynésien, haplogroupe majeur décrit en Polynésie (Soodyall et al. 1995). On le retrouve également dans certaines îles d’Asie du Sud-Est.

L’haplogroupe E1a1a constitue 4% de la diversité en haplogroupe chez les Ampanabaka, 3% chez les Antalaotra et est absent du troisième groupe malgache. Son origine est également attribuée aux îles d’Asie du Sud-Est (Soares et al. 2008).

Le F3b, est présent à 6% chez les Ampanabaka et 13% dans les deux autres groupes. Il est originaire d’Asie du Sud-Est. Il est décrit essentiellement aux Philippines et à Bornéo (Hill et al. 2007).

Deux haplogroupes appartenant au clade M ont été mis en évidence. L’haplogroupe M7c3c, anciennement nommé M7c1c est un haplogroupe asiatique. On le retrouve à respectivement à 10%, 5% et 2% chez les Ampanabaka, les Antalaotra et les Anteony. Il serait avec le O1a (O-M50) pour les lignées masculines, le marqueur le plus probable de l’expansion « Out of Taiwan » datée du milieu de l’Holocène vers Bornéo (Hill et al. 2007). L’haplogroupe M32c anciennement dénommé M46 (Hill et al. 2007) est présent à 2% dans le groupe Ampanabaka, 8% chez les Antalaotra et 2% chez les Anteony.

Un autre haplogroupe appartenant au clade M est déduit à partir des régions de HVI et HVII comme étant de la branche Q1 (16129, 16241, 16144, 16148, 16265C, 16311, 16343, 89, 146). Il est retrouvé chez un individu Anteony. C’est un haplogroupe très fréquent en Mélanésie et en Nouvelle Guinée (Friedlaender et al. 2005).

Enfin, appartenant à la branche M, l’haplogroupe M23b (-10871Mnl1 ; +10397Alu1 ; 152, 195, 16263, 16311, 8360G, 8188G) est retrouvé à une fréquence de 4% chez les Ampanabaka, de 13% dans le groupe Antalaotra et de 11% chez les Anteony. Cet haplogroupe a une origine encore non

A cette composante asiatique est associée une importante composante africaine. Ont été mis en évidence des lignages appartenant aux clades L0, L2 et L3(xMN).

L0 était nommé L1a dans l’ancienne nomenclature (Salas et al. 2004, Behar et al. 2008). La sous branche dont dérivent L0a1’4 est présente à 6% chez les Ampanabaka, 5% chez les Antalaoatra et 8% chez les Anteony. Il est retrouvé à des fréquences variables sur tout le continent africain. Elle est majoritairement rencontrée en Afrique de l’Est et du Sud-Est, au Moyen-Orient et en péninsule Arabique. Sa fréquence diminue du sud en remontant vers le nord. La sous-division L0a est surtout rencontrée dans la partie sud, avec de fortes fréquences en Ethiopie (Salas et al. 2004, Harich et al. 2010). Elle a été décrite dans les populations côtières du Sud-Est de Madagascar (Tofanelli et al. 2009).

L’haplogroupe L2a1, constitue respectivement 10%, 5% et 15% de la diversité dans les groupes Ampanabaka, Antalaoatra et Anteony. L2a est l’haplogroupe le plus fréquent sur le continent africain. Il est présent en Afrique Centre, Ouest et Sud-Est où il est probablement le résultat de l’expansion bantoue et en Afrique du Nord-Ouest lié à la traite trans-Saharienne (Harich et al. 2010). L2a1 est surtout rencontré en Afrique du Sud-Est (Pereira et al. 2001, Salas et al. 2002).

Enfin le clade L3 est celui qui est le plus représenté chez les malgaches : 31% chez les Ampanabaka, 28% chez les Antalaoatra et 36% dans le groupe Anteony. Sur le continent les plus fortes fréquences sont retrouvées en Afrique du Nord et de l’Est mais il reste omniprésent sur le continent. On distingue la branche L3a présente chez un individu Anteony, définie par les positions 152 et 16316 sur la D-Loop. Il est retrouvé sur tout le continent africain avec de plus fortes fréquences en Afrique de l’Est (Salas et al. 2002). Les L3b (Ampanabaka 13%, Antalaoatra 15% et Anteony 17%) et L3d (Ampanabaka 2%, Anteony 2%) sont principalement rencontrés en Afrique de l’Ouest et du Nord (Harich et al. 2010, Salas et al. 2002). L’haplogroupe L3e (Ampanabaka 16%, Antalaoatra 13% et Anteony 12%), est le plus ancien clade L3 (Salas et al. 2002). Sa origine serait Centre-Afrique et/ou Soudan (Bandelt et al. 2001). Enfin un individu Anteony est L3k. Cet haplogroupe ne se définit que par la mutation en 235 sur HVII. Il est par conséquent peu décrit et n’est pour le moment retrouvé que chez quelques individus d’Afrique du Nord (Harich et al. 2010).

Aucun des trois groupes Antemoro ne se différencie des autres (-0.00918 <FST< 0.00659; p-value non significative). Ils partagent six haplotypes mitochondriaux (D-Loop : 16024-236). Les Ampanabaka partagent six haplotypes avec les Anteony et deux avec les Antalaoatra ; ces deux derniers groupes ne partagent que deux haplotypes.
Figure 35. Diversité génétique intrapopulationnelle HVI et II dans les trois groupes Antemoro. N : Nombre total d’individus ; k : Nombre d’haplotypes ; h : Diversité génétique ; θk : nombre moyen d’haplotypes; θS : nombre moyen de sites polymorphes.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>k</th>
<th>h</th>
<th>Tajima (D)</th>
<th>FS de Fu</th>
<th>θk</th>
<th>θS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampanabaka</td>
<td>48</td>
<td>22</td>
<td>0.9379 +/- 0.0213</td>
<td>-0.636 (0.260)</td>
<td>-2.376 (0.226)</td>
<td>1.7618 (3.841)</td>
<td>1.711776 [9.461911, 29.334187]</td>
</tr>
<tr>
<td>Antalaotra</td>
<td>40</td>
<td>22</td>
<td>0.9513 +/- 0.0189</td>
<td>-0.271 (0.471)</td>
<td>-2.783 (0.190)</td>
<td>11.519 (3.659)</td>
<td>19.287056 [10.472271, 35.57953]</td>
</tr>
<tr>
<td>Anteony</td>
<td>47</td>
<td>29</td>
<td>0.9741 +/- 0.0095</td>
<td>-0.952 (0.187)</td>
<td>-6.128 (0.065)</td>
<td>16.528 (4.944)</td>
<td>31.292781 [17.695347, 55.857582]</td>
</tr>
</tbody>
</table>

Figure 35. Diversité génétique intrapopulationnelle HVI et II dans les trois groupes Antemoro. N : Nombre total d’individus ; k : Nombre d’haplotypes ; h : Diversité génétique ; θk : nombre moyen d’haplotypes; θS : nombre moyen de sites polymorphes.

c- Comparaison à l’échelle locale.
La comparaison de la diversité génétique sur HVI des Antemoro avec celle des autres groupes malgaches, pour lesquels ces données étaient disponibles, révèle que nos trois groupes sont très peu différenciés. Les p-values des F_{ST} sont non significatives à un seuil de 1% pour tous les groupes malgaches, hormis entre les Anteony et le groupe des Hautes Terres mais la différenciation reste très faible ($F_{ST}=0.003; \ p-value=0.01$). Ces valeurs ont été représentées par MDS (Figure 36). Il faut signaler que dans ce cas le groupe des Hautes Terres est un regroupement des données de Hurles (2005) (N=37), ainsi que des Merina (N=9) de l’étude de Tofanelli (2009) et des Tsimahafotsy (N=6) de Razafindrazaka (2010) afin d’obtenir un effectif suffisant.

![Figure 36. MDS calculée à partir des F_{ST} du tableau par paire de populations au sein des groupes malgaches sur la base des données HVI. Valeurs F_{ST} sous la diagonale ; p-values au dessus de la diagonale. (+) pvalue significative à un seuil de 1% ; (-) pvalues non significatives. Stress de Kruskal= 0,329.](image)

Afin de comparer la diversité génétique des Antemoro avec celle des populations de Madagascar et des Comores, une ACP à été réalisée sur la base des fréquences d’haplogroupes (Figure 37). L’axe 1 représente 53,71% de la variabilité et l’axe 2, 23,87%. Les haplogroupes ont été
Les haplogroupes L0, L3, E1a, B4a, F3b et M7c3c contribuent majoritairement à l’axe 1 ; les haplogroupes L1, L2, et M23 à l’axe 2. Les haplogroupes restant L*, L4, M*, R* et Q1 contribuent à moins de 1% de la variabilité des deux axes. Les Antemoro diffèrent des autres populations par la présence de l’haplogroupe L0 qui est uniquement retrouvé chez les Tanosy du Sud et les Comoriens et par l’absence de l’haplogroupe L1 retrouvé dans les populations du Nord de Tuléar, les Antandroy et les Comoriens. L’haplogroupe M23 est d’ailleurs un peu plus fréquent dans nos groupes Anteony et Antalaotra, fréquences plus proches de celles rencontrées dans les Hautes Terres. Les Anteony diffèrent par la fréquence de la branche F3b (13%) qui est plus importante que dans les autres groupes malgaches utilisés pour la comparaison (2-9%) et par la présence de l’individu appartenant à l’haplogroupe du Sud-Est asiatique Q1. Les Antalaotra font partie des groupes malgaches ayant les fréquences les plus élevées de l’haplogroupe M32c, et avec les Hautes Terres, ils possèdent les fréquences les plus faibles de l’haplogroupe L2. Néanmoins, ces différences sont faibles et peuvent être dues à un biais d’échantillonnage.

Figure 37. ACP calculée à partir de la fréquence des haplogroupes sur les lignées maternelles dans les populations malgaches et des Comores.

Hautes Terres et les Merina Andriana, 18 avec les groupes côtiers du sud et 18 avec les groupes côtiers du sud-ouest (Annexes 19-21).

d- Comparaison à l’échelle continentale.

La recherche d’haplotypes partagés sur HVI (Annexes 22-24), révèle que les haplotypes appartenant aux haplogroupes B4a1a1 sont partagés avec les populations d’Asie du Sud-Est et d’Océanie. A noter un haplotype également retrouvé dans notre base de données, en Afrique de l’Ouest à Cabo-Verde, où l’auteur explique sa présence par le fait que la mère de l’individu concerné aurait une probable origine hawaïenne (Brehm et al. 2002).

Les haplotypes M7c3c sont également retrouvés dans des populations d’Asie du Sud-Est et d’Océanie. L’un de nos haplotypes M32ce est retrouvé dans deux populations d’Asie du Sud-Est.

Les haplotypes correspondant à la branche E1a ne sont partagés par aucune des populations de notre base de données.

L’haplotype estimé Q1 ne partage aucun haplotype sur HVI avec les populations de notre base de données pour les régions d’Asie et d’Océanie où il est normalement retrouvé. En revanche il correspond parfaitement sur HVI/HVII à une séquence retrouvée en Arabie Saoudite elle-même estimée appartenant à l’haplogroupe Q1. En réalité la présence de cet haplogroupe en Arabie est probablement due à des arrivées récentes dans la première moitié du XXème siècle où de très nombreuses femmes indonésiennes étaient embauchées comme main d’œuvre (Abu Amero et al. 2007).

Concerant les haplotypes M23b, l’une des séquences correspond à celle d’un individu de Dubaï défini M*.

L’indice F_{ST} a été calculé par paire de populations entre les Antemoro, les groupes malgaches et des populations de diverses autres régions géographiques (Afrique Centre-Ouest-Sud, Afrique de
l’Est, Afrique du Nord, Moyen-Orient, Asie du Sud, Asie du Sud-Est, Océanie, Europe) (Annexe 18). Nous avons observé que les Antemoro sont faiblement différenciés des populations d’Asie du Sud-Est telles que des populations de Banjarmasin, des malais de Singapour et de Kuala-Lumpur, Sumatra et des Philippines (0,025<F<0,05 ; p-value<0,05). Les Ampanabaka et les Antalaotra sont également peu différenciés de populations africaines du Sénégal, du Kenya, d’Éthiopie (0,04<0,057 ; p-values<0,05). Les Anteony semblent avoir une plus grande diversité africaine. Ils sont peu différenciés (0,028<F<0,050, p-value<0,057) de populations d’Afrique de l’Est (Soudan, Éthiopie, Kenya), d’Afrique du Centre et Ouest (Sénégal, Guinée-Bissau, Bénin, Côte d’Ivoire) et d’Afrique du Nord (Maroc, Tunisie, Égypte). Enfin ces trois groupes possèdent des valeurs FST faibles lorsque comparés aux populations de Dubaï, du Yémen (0,035<F<0,055) et d’Inde du Nord-Est (Tripura) (0,056<F<0,064). Ces résultats sont visibles sur les trois MDS calculées pour chaque grande région géographique (Figure 38a : Afrique ; Figure 38b : Asie du Sud-Est et Océanie; Figure 38c : Europe et d’Eurasie occidentale). On observe dans tous les cas que les malgaches forment un sous-ensemble et qu’aucun groupe Antemoro ne s’en éloigne.
Figure 38. MDS calculées à partir des valeurs F_{ST} sur la base des haplotypes HVI des populations de diverses régions géographiques. (a) Population du continent africain, (b) Asie du Sud-Est et Océanie ; (c) Europe et Eurasie de l’Ouest.
D-Discussion générale

1- Confrontation des résultats sur le NRY et les données historiques et sociales

L’analyse des lignées paternelles montre que les trois groupes Antemoro sont fortement différenciés les uns des autres (\(F_{ST}>0,1\), p-value<0,01, Tableau de la Figure 29); et plus particulièrement les roturiers Ampanabaka sont génétiquement différents des descendants des anciennes castes nobles Anteony et des devins Antalaotra. Les Anteony ont une diversité génétique un peu plus faible (\(h = 0,91\)) que celle habituellement rencontrée dans les autres groupes malgaches (0,95<\(h<0,99\)). Une faible diversité génétique au sein d’une population en général suggère qu’elle a connu peu de migration, une importante dérive génétique ou des pressions de sélection. Dans notre cas ceci laisse présager une plus longue et importante conservation de la pratique de l’endogamie associée à une société patrilinéaire, ce qui est en accord avec le fait qu’il s’agisse des anciennes castes nobles. À l’inverse, les Antalaotra présentent la diversité génétique la plus importante, résultat possible de nombreuses migrations, d’une taille plus importante de population réduisant ainsi les phénomènes de dérive génétique et de sélection (Jobling et al. 2004). Les Antalaotra sont en réalité un groupe beaucoup plus hétérogène : Anakara, Antetsimeto et Zafimbolazy. On peut imaginer que ces trois sous-groupes ont des origines différentes. Rappelons que les Anakara se disent originaires d’Israël et d’Égypte, que les Antetsimeto sont parfois décrits comme déjà présents à l’arrivée de la migration « Antemoro » et que les Zafimbolazy pourraient, selon certains auteurs être un groupe déchu du pouvoir royal et ainsi être en réalité d’anciens Anteony. Par ailleurs ce sont ces détenteurs des sciences magico-religieuses qui ont très tôt parcouru Madagascar pour transmettre les Charmes et Connaissances (Beaujard 1991-1992). Si les Ampanabaka ne partagent aucun haplotype à 17 marqueurs STR-Y avec les deux autres groupes Antemoro, en revanche ces derniers partagent trois lignées réparties dans les haplogroupes E1b1a, J1 et T1. Ceci laisse entendre à des croisements entre ces deux pseudo-castes au cours du temps ou encore des origines identiques relativement récentes. La combinaison des haplogroupes J1, T1, E1b1b trouvée dans l’échantillon Anteony, et des haplogroupes J1, T1, J2b trouvée dans les Antalaotra, pourrait correspondre à la trace Arabe. Le calcul du métissage confirme bien que les Ampanabaka sont proches de la diversité génétique bantoue avec une contribution Sud-Est asiatique visible simplement par sa composition en haplogroupes. Les Antalaotra ont également ces deux composantes avec une plus forte proportion asiatique, une contribution d’Afrique de l’Est mais également une trace Moyen-orientale. Les Anteony enfin ont une importante part de leur diversité génétique attribuée au Moyen-Orient, et dans une moindre mesure, à l’Afrique de l’Est et au Sud-Est asiatique. L’haplogroupe O1a2 couramment retrouvé avec une fréquence élevée dans les populations malgaches est absent de notre population Anteony. Ceci peut être dû à un biais d’échantillonnage et avoir été limité par le critère d’endogamie.
Comparés aux autres populations malgaches, il résulte que les Ampanabaka se fondent dans la diversité « malgache » et sont plus faiblement différenciés des groupes Antanosy et Vezo du Sud. Il faut noter que les Antanosy d’après la tradition orale, seraient les descendants des islamisés de la migration précédente, celle des Zafiraminia. Par ailleurs, des contacts entre les groupes Sakalava du Menabe sur la côte ouest de Madagascar et les Antemoro ont été soulignés par certains auteurs tels que Lombard (1988). Les Ampanabaka partagent un haplotype (17 STR-Y) avec un individu Antanosy (E2b) et un Antandroy (E1b1a). Les Antalaoitra sont peu différenciés des groupes des Hautes Terres. Néanmoins pour ces derniers les données sur les STR-Y ne sont pas disponibles et par conséquent aucune analyse d’haplotypes partagés n’a pu être faite. Nous pouvons noter uniquement que pour les quelques profils disponibles pour les Merina de cette région, aucun haplotype à 17 marqueurs n’est partagé. Les contacts entre les Hautes Terres et plus particulièrement les Merina sont attestés, entre autre vers 1800, des scribes Antemoro Anakara furent appelés en Imérina par Andriampoinimerina. Ils y reçurent des charges de conseillers (Deschamps 1972). Les Anteony sont fortement différenciés de tous les groupes malgaches. La diversité des haplogroupes nous permet de constater le pourquoi de ces différences entre anciennes « caste » nobles Antemoro et les autres groupes malgaches. En effet, ils diffèrent par la présence des deux haplogroupes T1 et J1 (à noter encore une fois que le SNP déterminant l’haplogroupe J1 ne fut pas testé dans les Hautes Terres). Ceci est d’ailleurs visible sur l’ACP (Figure 32). Ces deux haplogroupes constituent la majorité de la diversité génétique des Anteony. Les haplotypes associés à l’haplogroupe J1 sont peu nombreux. Cette forte fréquence est à l’évidence due à l’endogamie et un effet fondateur (le patrimoine génétique de la population fille ne représente qu’une fraction de celui de la population mère : son évolution de façon isolée entraîne l’augmentation de certains polymorphismes).

L’origine du J1(M267) est associée au Moyen-Orient et sa diffusion se serait faite depuis la Péninsule arabique. L’haplogroupe T, retrouvé à très faible fréquence à l’échelle mondiale aurait également une origine dans le Moyen-Orient. Il aurait diffusé par de nombreux processus démographiques comme la propagation de l'agriculture, les exils assyrien et babylonien, et la diaspora juive (Mendez et al. 2011). Sa présence en Asie de l’Est pourrait être due à des échanges via l’ancienne route de la soie (Zhong et al. 2011). Actuellement ils sont retrouvés majoritairement au Moyen-Orient mais également en Afrique orientale, en Afrique du Nord, et probablement dans d'autres régions qui auraient été en contact avec ces régions géographiques. Toutefois, le Network Median-Joining sur l’haplotype minimal J1 montre que le J1 Antemoro correspond exactement à ceux retrouvés pour des individus de Chypre, de Turquie et de Palestine (Figure 33). Il est encadré entre autres en amont et en aval par des individus comoriens. L’étude sur les Comores de Msaidie (2010) montre la présence aux Comores des haplogroupes E-V22, E-M123, G2a, J1, J2, R1a1 et R2. L’auteur associe ce flux de gènes à l’Iran ce qui concorderait avec les données.
historiques, attestant de la présence des commerçants Arabo-Shirazi aux Comores ainsi que des traditions orales comoriennes racontant que des princes Shirazi venus à bord de navires vinrent s’établir sur les îles. On peut ainsi supposer que même s’il ne s’agit pas de la même migration, ces haplotypes pourraient vraisemblablement avoir une même origine et leur arrivée s’être faite à des périodes plus ou moins proches. Le fait que les indices F_{ST} les plus faibles lors de la comparaison des Anteony avec les diverses populations de notre base de données soient avec des populations d’Oman ($F_{ST}=0,142$) et des Emirats Arabes Unis ($F_{ST}=0,155$) serait cohérent avec une origine en provenance du golfe Persique. Le Network Median-Joining sur le T1 rapproche nos haplotypes d’individus d’Israël, du Liban et de la Palestine. L’association des ces deux lignées tend à converger vers une origine dans le Golfe Persique ou dans le Proche-Orient.

La très forte proportion de lignées asiatiques dans le groupe Antalaotra peut correspondre à des métissages avec à la diversité « malgache » déjà présente dans la région à leur arrivée. Ou encore, il est possible d’imaginer que pour certains d’entre eux, l’origine soit rattachée à l’Asie du Sud-Est islamisée. La présence des haplogroupes J2b, E2b et J1 et T1 dont certains sont partagés avec les Anteony, traduirait néanmoins une origine du côté de l’Afrique de l’Est, du Nord et du Moyen-Orient. Par ailleurs certains des haplotypes (E1b1a, J1 et T1) sont partagés entre les Anteony et les Antalaotra soulignant des origines similaires pour une partie d’entre eux ainsi que des métissages plus ou moins récents.

Les Ampanabaka s’insèrent dans la diversité habituellement rencontrée à Madagascar avec une forte proportion de E1b1a associé à du O1a2. La majorité de l’échantillonnage provient de la région de Manakara à 40 kilomètres de Vohipeno. Il peut donc s’agir de groupes « malgaches » anciennement venus se placer sous l’autorité du Royaume Antemoro. Il faut noter que parmi eux un individu s’est dit Ampanabanka-Antefasy autre ethnie de la région, mettant ainsi en évidence les métissages possibles avec les autres groupes malgaches au cours du temps. L’association des haplogroupes J2b, E1b1b et E2b est absente de cette localité. Ils sont retrouvés dans les Ampanabaka de la région de Vohipeno (N=7). Par ailleurs l’haplotype J2b pourrait correspondre à une lignée d’origine Moyen-orientale. Ceci pourrait suggérer des influences ou une histoire de leurs origines différentes pour une partie d’entre eux. Néanmoins un échantillonnage plus important parmi différents groupes Ampanabaka de diverses régions serait nécessaire, pour permettre une interprétation.

2- Confrontation des résultats sur l’ADNmt et les données historiques et sociales

Les lignées maternelles font apparaître les haplogroupes couramment retrouvés à Madagascar. La grande majorité des haplotypes HVI est partagée avec au moins une population malgache du Sud et
des Hautes Terres. Ceci traduit l’existence de nombreux mouvements populationnels intra-Madagascar et de nombreux métissages. Cette diversité génétique est très homogène et importante traduisant des arrivées récentes. Est retrouvé entre autres le « motif polynésien » (et plus particulièrement le « motif malgache » (-1473 HhaI)), reflet de la migration des malais austronésiens. Ceci est confirmé par les F_{ST} qui montrent que nos Antemoro ont de plus fortes affinités génétiques avec des populations du Sud de Bornéo, des groupes de Malais et les populations de Sumatra (0,024< F_{ST} <0,052 ; Annexe 18). Rappelons qu’il en est de même pour les haplogroupes Y Antalaotra dont le calcul des F_{ST} rapproche la diversité génétique des populations de Java et de Sulawesi (0,067< F_{ST}<0,072 ; Annexe 11).

Concernant les origines africaines des lignées maternelles à Madagascar, il apparaît que les indices F_{ST} sont faibles d’une façon générale lorsque les Antemoro sont comparés avec le Kenya et le Sénégal (0,028< F_{ST} <0,050 ; Annexe 18). Les Anteony qui ont une diversité africaine plus importante se rapprochent de diverses autres populations des quatre coins d’Afrique. On retrouve chez les Antemoro et les malgaches d’une façon plus générale, des haplogroupes rencontrés plus fréquemment dans le sud-est, le centre mais également dans l’ouest du continent africain. Notons que l’étude sur l’anémie falciforme dans les groupes malgaches menée par Hewitt et al (1996), a mis en évidence la présence de l’allèle qu’il nomma βs bantou, majoritaire à Madagascar mais également en plus faible fréquence d’autres variants de cet allèle d’origine d’Afrique du Sud, du Centre et du Sénégal.

Une hypothèse serait que la présence de ces haplogroupes soit liée à l’expansion bantoue qui s’est faite depuis l’Ouest de l’Afrique vers l’Est, et serait arrivée à Madagascar en traversant le canal du Mozambique par le biais de mouvements de populations ou en relation avec la traite effectuée par des razzias sur la côte sud-est et est de l’Afrique. La seconde hypothèse, qui n’exclut pas la première, est que le transit de ces groupes populationnels dans la partie nord du continent se soit fait depuis l’ouest de l’Afrique vers la côte orientale par la route trans-Saharienne (Harich et al. 2010).

L’analyse du pool génétique maternel révèle l’absence d’haplogroupes typiques du Moyen-Orient. Ce biais a été décrit pour les populations comoriennes (Msaidie et al. 2011). Ce résultat coïncide avec la plupart des traditions Antemoro voulant que les migrants soient des hommes qui auraient pris femme sur la Grande Ile. Par ailleurs à cette époque, les hommes dominaient les échanges commerciaux et les mouvements de conversions religieuses. Les patrimoines maternels des trois groupes Antemoro sont ainsi faiblement différenciés des autres populations malgaches (-0,013<F_{ST}<0,033, avec des p-values rarement significatives à un seuil de 5%). Les Anteony (h=0,974) montrent un indice de diversité génétique intrapopulationnelle un peu plus élevé que les deux autres groupes Antemoro (Tableau en figure 35). Ce sont eux qui possèdent la plus grande proportion de lignées africaines. Du fait qu’il s’agit de descendants d’un groupe noble, les mariages avec les femmes de groupes malgaches présentes sur la côte étaient fréquents pour la constitution des alliances. C’est
dans les groupes Antalaoïtra, Anteony et des Hautes Terres que sont retrouvées actuellement les plus fortes fréquences en M23 (respectivement 10, 12 et 15%), haplogroupe à l’origine non clairement définie mais qui serait peut-être associé à une origine ouest-européenne (Ricaut et al. 2009). Ces variations de fréquences restent faibles et peuvent être dues à un biais d’échantillonnage. Les haplogroupes de la branche L0a semblent pour le moment n’être retrouvés que dans les populations de la côte sud-est (Ampanabaka, Antalaoïtra, Anteony et Antanosy) et absents des Hautes Terres et des groupes du sud-ouest. L’haplogroupe Q1 retrouvé dans le groupe Anteony, dont les plus fortes fréquences sont décrites en Mélanésie et Nouvelle Guinée, n’est pas retrouvé dans les populations de ces régions constituant notre base de données. Cet haplotype est retrouvé en Arabie Saoudite, où il constitue probablement un arrivage récent du XXème siècle depuis l’Indonésie. Il peut s’agir d’un haplogroupe arrivé avec les vagues austronésiennes à l’origine du peuplement de l’île. Mais le fait qu’il n’ait pas encore été retrouvé dans les autres groupes malgaches pourrait signifier que cette lignée est issue de la migration Antemoro, ou tout au moins Zafiraminia/Onjatsy. Ceci impliquerait alors, soit une migration venue d’Asie du Sud-Est ou au moins une partie des Antemoro, soit que les groupes des migrations précédentes viennent de cette région d’Asie. Les Antemoro dès leur arrivée ont pris pour épouses des femmes Onjatsy permettant à ce groupe d’accéder à une place importante dans cette société. Cet haplogroupe asiatique est noyé dans la diversité asiatique propre au fond plus ancien des migrants austronésiens, M32c, M7c3c, F3b et le motif malgache du B.

VI- Conclusions et perspectives d’études

A- Conclusions principales

L’étude du polymorphisme STR-Y et SNP du NRY révèle, entre autre, que la diversité génétique des descendants des groupes nobles est constituée majoritairement de deux haplogroupes J1 et T1 et qui sont probablement rattachés à la migration des islamisés. Cette trace apparaît bien diluée dans une diversité africaine et Sud-Est asiatique chez les Antalaoïtra ce qui rend sa lecture difficile. Le fait que la filiation Anteony soit patrilinéaire et qu’ils aient probablement conservé pendant longtemps la pratique d’une certaine endogamie facilite la lecture de cette trace mais en parallèle la diversité génétique de ce groupe s’en trouve réduite. L’association de ces deux haplogroupes et leur
correspondance avec des haplotypes sur 7 marqueurs STR-Y avec des individus du Proche-Orient, ainsi que la proximités des haplotypes J1 avec ceux d’individus des Comores, va dans le sens d’un arrivage direct depuis le Moyen-Orient de petits groupes de migrants.

Aucun haplogroupe mitochondrial typique du Moyen-Orient n’est retrouvé, ce qui permet de confirmer que les migrants n’étaient que des hommes. Les femmes auraient été choisies sur place, ou encore « transportées » depuis la côte est africaine. Les traditions relatent un passage par cabotage le long de cette côte. La présence de nombreuses lignées masculines et féminines africaines peut en partie provenir de cette expédition.

Bien qu’au vu de ces résultats il semble s’agir de l’hypothèse la plus probable, le fait que l’effectif des migrants devait être faible, le phénomène d’effet fondateur peut brouiller la lecture. De même ces conclusions reposent sur les données utilisées en comparaison. Les haplotypes J1 et T1 de nos Antemoro n’ont peut-être pour le moment pas encore été échantillonnés dans les autres régions géographiques.

Enfin l’hypothèse qui est de plus en plus admise est celle d’une arrivée depuis l’Asie du Sud-Est. Chez les Anteony, seul deux individus d’haplogroupes O2a1 sont clairement d’origine asiatique. Cet haplogroupe absent de notre échantillon Ampanabaka est en revanche très présent chez les Antalaotra. La faible composante Sud-Est asiatique pour les lignées paternelles Anteony peut venir d’un biais d’échantillonnage ainsi que du fort impact des lignées J1 et T1.

En revanche une forte proportion de ces lignées d’origine Asie du Sud-Est est retrouvée chez les Antalaotra. Soit cette diversité vient d’importants métrissages avec les autres groupes malgaches (les Zafiraminia, par exemple, ont une origine indonésienne assez bien admise (Beaujard 2007)), soit il s’agit de la diversité génétique apportée par la migration Antemoro. Notons que si l’on considère les études ethnologiques, l’endogamie était très stricte jusqu’à il y a peu chez les Antalaotra (Deschamps & Vianes 1959). Si cela est bien le cas, la diversité génétique devrait être réduite par l’effet de dérive, ce qui n’est pas le cas. Il faut également rappeler que les Anteony et les Antalaotra partagent trois lignées paternelles, reflet du non respect de cette pratique tout au moins depuis des périodes récentes et l’absence de forts effets fondateurs chez les Antalaotra.

Les mêmes questions peuvent se poser pour l’haplogroupe Q1 retrouvé chez un Anteony pour les lignées maternelles. Le fait qu’il ne soit pas encore retrouvé à Madagascar laisse envisager que cette lignée soit arrivée avec la migration Antemoro.

Toutefois, si l’on postule que cette migration a débuté depuis les régions du Sud-Est asiatique il semble pour le moment plus probable qu’il ait eu des relais par le Moyen-Orient et la côte africaine.
Par ailleurs, le fait que seuls deux haplogroupes dont l’origine génétique est typiquement le Moyen-Orient, soient retrouvés peut mener à trois hypothèses. Soit il s’agit d’un biais d’échantillonnage et de plus amples prélèvements dans nos groupes malgaches permettraient d’obtenir d’autres haplogroupes représentatifs de cette région géographique. Soit dès le départ ces haplogroupes étaient dilués dans un fond Africain voire Sud-Est asiatique. Soit il s’agit d’un effet fondateur de quelques lignées masculines moyen-orientales, dont seules quelques-unes seraient actuellement encore présentes (J1, T1 et probablement aussi J2b et E1b1b). Des lors, si la génétique ne permet pas d’infirmer ou confirmer une théorie unique de l’arrivée des peuples Antemoro, cette étude a permis pour la première fois de mettre en évidence une trace biologique moyen-orientale.

La faible diversité rencontrée peut s’expliquer par les critères socioculturels déjà cités, mais également par des critères historiques. Ajoutés à une arrivée d’un faible nombre de migrants, il y a certainement eu des disparitions et remplacements de lignées du fait des nombreux conflits qu’ont connus ces groupes, conflits décrits entre autres dans les récits des campagnes de La Case. Et également plus récemment, en raison de la révolte Ampanabaka contre l’autorité Anteony et à l’insurrection de 1947.

B- Perspectives

Ce travail a cherché à apporter sa contribution à la recherche des origines probablement diverses de l’ethnie Antemoro. Néanmoins l’influence Arabe sur le pool génétique semble moindre par rapport à l’impact culturel. Les Antemoro forment un groupe génétiquement isolé par rapport aux données actuellement disponibles sur les autres populations malgaches reflétant bien une histoire et des origines génétiques particulières.

D’un point de vue génétique, il serait intéressant de mieux définir les haplogroupes T1 afin de préciser l’origine des haplotypes correspondants. L’analyse d’autres marqueurs génétiques, sur les autosomes apporterait également des informations complémentaires.

Aucun haplogroupe typique du Moyen-Orient (entre autre le J1(M267)) n’est retrouvé dans notre base de données au Kenya et en Tanzanie. Il serait intéressant d’étudier la diversité génétique des archipels de Kilwa et Zanzibar, ce qui permettrait de donner plus de poids à l’hypothèse d’une arrivée directe ou après un passage par ces archipels, et ainsi associer cette migration à leur histoire. On sait par exemple, que le Royaume de Kilwa fut dirigé pendant une période (Xème au XIIIème siècle) par des princes Shirazi puis par la dynastie des Mahdalî, du sud-ouest du Yémen. Ce nouveau pouvoir était
alors lié aux Seldjoukides du golfe Persique et aux Indiens du delta de l'Indus et du Deccan. Ce Royaume connut des crises dynastiques et des guerres de succession vers la fin du XVᵉ siècle (Pradines et al. 2002). De même, il faut noter l’absence de données sur les groupes d’Asie du Sud-Est qui auraient été directement en contact avec les commerçants arabes et les premières populations islamisées et qui nous empêche de réfuter totalement cette origine, même peu probable.

A une échelle locale, obtenir des données génétiques sur les populations du nord de Madagascar, populations qui furent en contacts avec les comptoirs arabo-islamiques, se révèle crucial. De même, à titre de comparaison, l’étude des groupes Antambahoaka et Onjatsy issus des deux migrations d’islamisés précédentes, permettrait de mieux définir leur contribution au pool génétique Antemoro.

Il serait par ailleurs intéressant d’obtenir un échantillonnage plus important de chacun des sous-groupes constituant les pseudo-castes. Suite à ce travail, il semble à première vue que les Anakara, les Zafimbolazy et les Antetsimeto du groupe Antalaotra, n’ont pas la même diversité génétique. Ceci peut être dû à un effet fondateur et de dérives génétiques propres à chaque village, ou à des origines différentes. De même des prélèvements biologiques dans des groupes Ampanabaka de la région de Vohipeno pourraient permettre de mieux appréhender leur histoire et de rechercher une possible trace arabe dans ces groupes. L’échantillonnage d’autres villages Anteony plus éloignés d’Ivato permettrait d’avoir une approche plus exhaustive de la diversité génétique de ce groupe, et de peut-être préciser l’origine des lignées J1 et T1. Enfin, un groupe Antemoro que nous avons cité mais qui ne fit pas l’objet de ce travail est le groupe des parias Antevolo. Ce groupe semble très composite, il pourrait s’agir pour certains auteurs, d’anciens nobles destitués de leur pouvoir. Ils pourraient être aussi bien Antemoro que descendants de groupes Zafiraminia, que des « premiers » occupants de cette région de Madagascar, n’ayant pas voulu se soumettre à la nouvelle autorité (Beaujard & Tsaboto 1996, Rolland 1997, 2007). L’étude de ce groupe serait particulièrement délicate. La prise de contact et plus encore le recueil de prélèvements qu’ils soient sanguins ou salivaires, ferait de l’opérateur un paria aux yeux de la société Antemoro.

Ce travail constitue un premier pas dans la recherche de l’origine génétique des groupes islamisés du sud-est de Madagascar et de la Grande Ile d’une façon plus générale. Il met en évidence la présence évidente d’une origine biologique rattachée directement ou indirectement au Moyen-Orient pour certains groupes Antemoro. Celle-ci est probablement liée à l’histoire des migrations d’islamisés arabo-persans du XVᵉ siècle.
VII- Références

Références en biologie moléculaire :

Références en sciences humaines:

VIII- Annexes

Annexe 1. Autorisation délivrée par le Comité d’éthique malgache et lettre d’introduction
LETTRE D'INTRODUCTION

Je soussigné.

Professeur Louis-Paul LANOYIANARIVAZA

Responsable de la Filière Anthropologie

Département de Langue et Lettres Malgaches, autorisé :

Mme. Melle. Me. Nolaimé CAPRÉSON.

Etudiant (e) régulièrement inscrit (e) en année F. Année, option Anthropologie

Année Universitaire 2ème Année 2004 à 2005, à entreprendre un stage sur les tolona en
au lieu... Manatrava... Nobejano...

En conséquence, je prie les responsables de bien vouloir le (la) recevoir et de le (la) aider dans la mesure de leurs possibilités.

Le Chef du Département

Le responsable

Le MAIRE

[Signature]

16 Nov. 2009

[Signature]
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Andriamomambé</td>
</tr>
<tr>
<td>2.</td>
<td>Andriamahasambo</td>
</tr>
<tr>
<td>3.</td>
<td>Andriamantsoalamba</td>
</tr>
<tr>
<td>4.</td>
<td>Andria-mampranana</td>
</tr>
<tr>
<td>5.</td>
<td>Andriamantsoihafa</td>
</tr>
<tr>
<td>6.</td>
<td>Andriamahagamambé</td>
</tr>
<tr>
<td>7.</td>
<td>Andriamahibobofohy</td>
</tr>
<tr>
<td>8.</td>
<td>Andria-maranahana</td>
</tr>
<tr>
<td>9.</td>
<td>Andriamomba</td>
</tr>
<tr>
<td>10.</td>
<td>Andriambarizany</td>
</tr>
<tr>
<td>11.</td>
<td>Ranaravantsy</td>
</tr>
<tr>
<td>12.</td>
<td>Andriamomambato</td>
</tr>
</tbody>
</table>

Ny Anakara: Andriamomambé (Ramaharantatoo), no mazamben'ny Anakara. Mafan'ny sy io, fajavina ny no ampanompanony. Toy any dia mey ny izy, ka n'izany toa.
Annexe 3. Liste des primers pour le SNaPshot Y

<table>
<thead>
<tr>
<th>SNP</th>
<th>Sequence 5’-3’</th>
<th>Taille (pb)</th>
<th>Tm (C)</th>
<th>%GC</th>
<th>Taille amplicon (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M304F</td>
<td>TGAACATAAACCCACTTCTCTAAT</td>
<td>22</td>
<td>51.8</td>
<td>32</td>
<td>216</td>
</tr>
<tr>
<td>M304R</td>
<td>CATCAGCTTTGTATCTTTT</td>
<td>19</td>
<td>48.7</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>M267F</td>
<td>GTCCCTGTGTTCATTTTT</td>
<td>18</td>
<td>51.4</td>
<td>44</td>
<td>176</td>
</tr>
<tr>
<td>M267R</td>
<td>GGCATCGCTAGATTGTG</td>
<td>18</td>
<td>50.7</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>M365F</td>
<td>TTCATTAGGGCTGTAGCTGC</td>
<td>20</td>
<td>54.4</td>
<td>45</td>
<td>268</td>
</tr>
<tr>
<td>M365R</td>
<td>TCTTTAGGTGAGATGGGGT</td>
<td>19</td>
<td>50.5</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>M221F</td>
<td>GTACTGCTTAAGGGCAAACC</td>
<td>19</td>
<td>53.5</td>
<td>53</td>
<td>241</td>
</tr>
<tr>
<td>M221R</td>
<td>CTGACAGAAACTCAGTATT</td>
<td>21</td>
<td>50.4</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>M410F</td>
<td>TCATTTAGCTTTAGTCTGAGTCCC</td>
<td>24</td>
<td>59.5</td>
<td>46</td>
<td>390</td>
</tr>
<tr>
<td>M410R</td>
<td>TGGATACCTTTCTAGGAAGAATTG</td>
<td>24</td>
<td>56.6</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>M150F</td>
<td>GCAGTGGAAGATGAGAGAC</td>
<td>21</td>
<td>55</td>
<td>61</td>
<td>289</td>
</tr>
<tr>
<td>M150R</td>
<td>CCTACTTTCCCCCTCTTCTG</td>
<td>20</td>
<td>54.6</td>
<td>59</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNP</th>
<th>Sequence 5’-3’</th>
<th>Taille (pb)</th>
<th>base</th>
</tr>
</thead>
<tbody>
<tr>
<td>M304sbe</td>
<td>R-gactgactgactCCAAAATATCACCAGTTGT</td>
<td>31</td>
<td>T/G</td>
</tr>
<tr>
<td>M267sbe</td>
<td>F-gaCGATGGAAGCATTTTTTTGTAATA</td>
<td>25</td>
<td>T/G</td>
</tr>
<tr>
<td>M365sbe</td>
<td>F-AACCATCCTGGCTAACAC</td>
<td>17</td>
<td>A/G</td>
</tr>
</tbody>
</table>
| M221sbe | R-gact...
Annexe 4. Networks Median-Joining des haplogroupes J1 et T1 Antemoro

Median Joining calculé à partir de 17 STR-Y (DYS19, DYS385a, DYS385b, DYS389i, DYS389ii, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS458, DYS456, DYS635, GATAH4) des haplotypes J1 dans les groupes Antemro (Anteony en rouge et Antalaotra en jaune).

Median Joining calculé à partir de 17 STR-Y (DYS19, DYS385a, DYS385b, DYS389i, DYS389ii, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS458, DYS456, DYS635, GATAH4) des haplotypes T1 dans les groupes Antemro (Anteony en rouge et Antalaotra en jaune).
Annexe 5. Tableau des profils STR-Y des Antemoro

<table>
<thead>
<tr>
<th>Groupe</th>
<th>ID</th>
<th>DYS393</th>
<th>DYS390</th>
<th>DYS 19</th>
<th>DYS 391</th>
<th>DYS385ab</th>
<th>DYS 439</th>
<th>DYS 389I</th>
<th>DYS 392</th>
<th>DYS 389II</th>
<th>DYS 458</th>
<th>DYS 437</th>
<th>DYS 448</th>
<th>YGATAH4</th>
<th>DYS 456</th>
<th>DYS 438</th>
<th>DYS 635</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampanabaka</td>
<td>MA301</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA302</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>16,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA303</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>16,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA304</td>
<td>14</td>
<td>21</td>
<td>17</td>
<td>10</td>
<td>17,19</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>17</td>
<td>13</td>
<td>21</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA305</td>
<td>14</td>
<td>21</td>
<td>17</td>
<td>10</td>
<td>17,19</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>17</td>
<td>13</td>
<td>21</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA306</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>13</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA307</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,14</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>28</td>
<td>17</td>
<td>14</td>
<td>16</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>MA308</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA309</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA310</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>16,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA311</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>16,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>16</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA312</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>16,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA313</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,17</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>21</td>
<td>13</td>
<td>15</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>MA314</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA315</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA316</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>16,20</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>18</td>
<td>14</td>
<td>21</td>
<td>13</td>
<td>15</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>MA319</td>
<td>13</td>
<td>22</td>
<td>15</td>
<td>10</td>
<td>16,17</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>33</td>
<td>17</td>
<td>14</td>
<td>21</td>
<td>10</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA321</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>14,18</td>
<td>12</td>
<td>14</td>
<td>11</td>
<td>32</td>
<td>15</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA322</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>16,17</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA323</td>
<td>14</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,14</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>28</td>
<td>18</td>
<td>14</td>
<td>16</td>
<td>12</td>
<td>16</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA324</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>16,17</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA325</td>
<td>14</td>
<td>21</td>
<td>17</td>
<td>11</td>
<td>15,19</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>17</td>
<td>13</td>
<td>21</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA326</td>
<td>14</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>15,20</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>21</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>MA327</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>16,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA328</td>
<td>13</td>
<td>23</td>
<td>16</td>
<td>10</td>
<td>14,15</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>29</td>
<td>19</td>
<td>14</td>
<td>16</td>
<td>12</td>
<td>15</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>MA329</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>16,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>Code</td>
<td>13</td>
<td>23</td>
<td>16</td>
<td>10</td>
<td>13,14</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>28</td>
<td>18</td>
<td>14</td>
<td>16</td>
<td>12</td>
<td>15</td>
<td>10</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>MA330</td>
<td>13</td>
<td>23</td>
<td>16</td>
<td>10</td>
<td>13,14</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>28</td>
<td>18</td>
<td>14</td>
<td>16</td>
<td>12</td>
<td>15</td>
<td>10</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA331</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>13</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA332</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>16,17</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA333</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>22</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA334</td>
<td>14</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>16,18</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>17</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>16</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA335</td>
<td>14</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA336</td>
<td>14</td>
<td>21</td>
<td>17</td>
<td>11</td>
<td>15,19</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>17</td>
<td>13</td>
<td>21</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA337</td>
<td>13</td>
<td>23</td>
<td>16</td>
<td>10</td>
<td>14,15</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>29</td>
<td>21</td>
<td>14</td>
<td>16</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA338</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA339</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,14</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>28</td>
<td>17</td>
<td>14</td>
<td>16</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA340</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA341</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA342</td>
<td>13</td>
<td>24</td>
<td>15</td>
<td>10</td>
<td>11,11</td>
<td>11</td>
<td>14</td>
<td>11</td>
<td>33</td>
<td>17</td>
<td>14</td>
<td>22</td>
<td>12</td>
<td>13</td>
<td>10</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>MA343</td>
<td>14</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>15,20</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>MA344</td>
<td>14</td>
<td>21</td>
<td>16</td>
<td>10</td>
<td>17,19</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>16</td>
<td>13</td>
<td>19</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA345</td>
<td>13</td>
<td>22</td>
<td>15</td>
<td>10</td>
<td>13,15</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>28</td>
<td>18</td>
<td>14</td>
<td>16</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA346</td>
<td>15</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>16,16</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>17</td>
<td>14</td>
<td>21</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA347</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,17</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA348</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA349</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>16,20</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>18</td>
<td>14</td>
<td>21</td>
<td>13</td>
<td>15</td>
<td>11</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA350</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>18,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA351</td>
<td>13</td>
<td>24</td>
<td>14</td>
<td>11</td>
<td>14,18</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>28</td>
<td>17</td>
<td>14</td>
<td>19</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MA352</td>
<td>13</td>
<td>24</td>
<td>15</td>
<td>11</td>
<td>13,17</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>29</td>
<td>16</td>
<td>15</td>
<td>18</td>
<td>11</td>
<td>13</td>
<td>9</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA353</td>
<td>13</td>
<td>24</td>
<td>15</td>
<td>11</td>
<td>13,17</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>29</td>
<td>16</td>
<td>15</td>
<td>18</td>
<td>11</td>
<td>13</td>
<td>9</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA354</td>
<td>14</td>
<td>21</td>
<td>14</td>
<td>11</td>
<td>16,16</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>18</td>
<td>14</td>
<td>21</td>
<td>11</td>
<td>16</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA355</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA356</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>16,16</td>
<td>12</td>
<td>14</td>
<td>11</td>
<td>32</td>
<td>16</td>
<td>14</td>
<td>21</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Anteony</td>
<td>MA357</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>11</td>
<td>12,12</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>26</td>
<td>15</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>MA358</td>
<td>13</td>
<td>24</td>
<td>13</td>
<td>10</td>
<td>16,18</td>
<td>12</td>
<td>14</td>
<td>11</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>20</td>
<td>12</td>
<td>17</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA359</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MA360</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>MA361</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MA362</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MA363</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MA364</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MA365</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>MA366</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>MA367</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MA368</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MA369</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MA370</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MA371</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>MA372</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MA373</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>MA374</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>MA375</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>MA376</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MA377</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>MA378</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA379</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>MA380</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>15,16</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>MA381</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>14</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>MA382</td>
<td>14</td>
<td>21</td>
<td>17</td>
<td>10</td>
<td>15,16</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>21</td>
<td>11</td>
<td>17</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>MA383</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>MA384</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>MA385</td>
<td>14</td>
<td>21</td>
<td>17</td>
<td>10</td>
<td>15,17</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>21</td>
<td>11</td>
<td>16</td>
<td>11</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>MA386</td>
<td>14</td>
<td>21</td>
<td>17</td>
<td>10</td>
<td>15,17</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>21</td>
<td>11</td>
<td>16</td>
<td>11</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>MA387</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA388</td>
<td>13</td>
<td>23</td>
<td>16</td>
<td>10</td>
<td>14,15</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA389</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA390</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA391</td>
<td>13</td>
<td>24</td>
<td>13</td>
<td>10</td>
<td>15,19</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>20</td>
<td>12</td>
<td>17</td>
<td>10</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>MA392</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>29</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA393</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA394</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA395</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA396</td>
<td>13</td>
<td>22</td>
<td>15</td>
<td>10</td>
<td>16,18</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>33</td>
<td>17</td>
<td>14</td>
<td>21</td>
<td>10</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA397</td>
<td>14</td>
<td>25</td>
<td>15</td>
<td>11</td>
<td>20,21</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>29</td>
<td>16</td>
<td>14</td>
<td>18</td>
<td>11</td>
<td>16</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MA398</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA400</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA401</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA402</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA403</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA404</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA405</td>
<td>13</td>
<td>24</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA406</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA407</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>17,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA408</td>
<td>14</td>
<td>25</td>
<td>15</td>
<td>11</td>
<td>15,20</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>29</td>
<td>15</td>
<td>14</td>
<td>18</td>
<td>11</td>
<td>14</td>
<td>10</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA409</td>
<td>13</td>
<td>23</td>
<td>16</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA410</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA411</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Antalaotra</td>
<td>MA412</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>16,17</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>18</td>
<td>14</td>
<td>21</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>MA413</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>16,17</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>18</td>
<td>14</td>
<td>21</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA414</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>16,17</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>18</td>
<td>14</td>
<td>21</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA415</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA416</td>
<td>13</td>
<td>25</td>
<td>15</td>
<td>11</td>
<td>16,21</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>29</td>
<td>16</td>
<td>14</td>
<td>18</td>
<td>11</td>
<td>16</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MA417</td>
<td>13</td>
<td>23</td>
<td>16</td>
<td>10</td>
<td>13,13</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>28</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>12</td>
<td>15</td>
<td>10</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA418</td>
<td>14</td>
<td>21</td>
<td>17</td>
<td>10</td>
<td>18,18</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>30</td>
<td>17</td>
<td>14</td>
<td>21</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA419</td>
<td>13</td>
<td>25</td>
<td>14</td>
<td>12</td>
<td>16,21</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>29</td>
<td>16</td>
<td>14</td>
<td>18</td>
<td>11</td>
<td>16</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MA420</td>
<td>14</td>
<td>25</td>
<td>15</td>
<td>11</td>
<td>16,23</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>29</td>
<td>16</td>
<td>14</td>
<td>18</td>
<td>11</td>
<td>16</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MA421</td>
<td>13</td>
<td>24</td>
<td>15</td>
<td>10</td>
<td>13,17</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>29</td>
<td>16</td>
<td>15</td>
<td>18</td>
<td>11</td>
<td>13</td>
<td>9</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA422</td>
<td>13</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>13,19</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>28</td>
<td>17</td>
<td>14</td>
<td>19</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MA423</td>
<td>13</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>13,19</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>28</td>
<td>17</td>
<td>14</td>
<td>19</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MA424</td>
<td>13</td>
<td>24</td>
<td>15</td>
<td>11</td>
<td>13,18</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>29</td>
<td>16</td>
<td>15</td>
<td>18</td>
<td>11</td>
<td>13</td>
<td>9</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA425</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>16,17</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>31</td>
<td>18</td>
<td>14</td>
<td>21</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA426</td>
<td>13</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>13,19</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>28</td>
<td>17</td>
<td>14</td>
<td>19</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MA427</td>
<td>13</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>13,19</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>28</td>
<td>17</td>
<td>14</td>
<td>19</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MA428</td>
<td>13</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>13,19</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>28</td>
<td>17</td>
<td>14</td>
<td>19</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MA429</td>
<td>13</td>
<td>25</td>
<td>14</td>
<td>12</td>
<td>13,19</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>28</td>
<td>17</td>
<td>14</td>
<td>19</td>
<td>11</td>
<td>14</td>
<td>11</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>MA430</td>
<td>13</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>13,19</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>28</td>
<td>17</td>
<td>14</td>
<td>19</td>
<td>11</td>
<td>14</td>
<td>11</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>MA431</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>MA432</td>
<td>13</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>13,19</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>28</td>
<td>17</td>
<td>14</td>
<td>19</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MA433</td>
<td>13</td>
<td>24</td>
<td>15</td>
<td>11</td>
<td>13,18</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>30</td>
<td>16</td>
<td>15</td>
<td>18</td>
<td>11</td>
<td>13</td>
<td>9</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MA434</td>
<td>13</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>13,19</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>28</td>
<td>17</td>
<td>14</td>
<td>19</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MA435</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,19</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>MA436</td>
<td>14</td>
<td>24</td>
<td>15</td>
<td>11</td>
<td>16,21</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>29</td>
<td>16</td>
<td>14</td>
<td>18</td>
<td>11</td>
<td>16</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MA437</td>
<td>13</td>
<td>23</td>
<td>16</td>
<td>10</td>
<td>15,15</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>28</td>
<td>19</td>
<td>14</td>
<td>16</td>
<td>12</td>
<td>16</td>
<td>10</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MA438</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,19</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
<td>18*</td>
<td>14</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Course</td>
<td>Start</td>
<td>End</td>
<td>Days</td>
<td>Times</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>MA439</td>
<td>13</td>
<td>25</td>
<td>14</td>
<td>11,19</td>
<td>11,12</td>
<td></td>
</tr>
<tr>
<td>MA440</td>
<td>13</td>
<td>25</td>
<td>15</td>
<td>11</td>
<td>16,21</td>
<td></td>
</tr>
<tr>
<td>MA441</td>
<td>14</td>
<td>25</td>
<td>16</td>
<td>11</td>
<td>16,21</td>
<td></td>
</tr>
<tr>
<td>MA442</td>
<td>14</td>
<td>24</td>
<td>15</td>
<td>11</td>
<td>16,21</td>
<td></td>
</tr>
<tr>
<td>MA443</td>
<td>14</td>
<td>25</td>
<td>15</td>
<td>11</td>
<td>16,21</td>
<td></td>
</tr>
<tr>
<td>MA444</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,14</td>
<td></td>
</tr>
<tr>
<td>MA445</td>
<td>13</td>
<td>23</td>
<td>16</td>
<td>10</td>
<td>13,13</td>
<td></td>
</tr>
<tr>
<td>MA446</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td></td>
</tr>
<tr>
<td>MA447</td>
<td>13</td>
<td>23</td>
<td>16</td>
<td>10</td>
<td>13,13</td>
<td></td>
</tr>
<tr>
<td>MA448</td>
<td>13</td>
<td>23</td>
<td>16</td>
<td>10</td>
<td>13,13</td>
<td></td>
</tr>
<tr>
<td>MA449</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td></td>
</tr>
<tr>
<td>MA450</td>
<td>13</td>
<td>23</td>
<td>17</td>
<td>10</td>
<td>13,14</td>
<td></td>
</tr>
<tr>
<td>MA451</td>
<td>13</td>
<td>23</td>
<td>16</td>
<td>10</td>
<td>13,14</td>
<td></td>
</tr>
<tr>
<td>MA452</td>
<td>13</td>
<td>25</td>
<td>15</td>
<td>11</td>
<td>16,21</td>
<td></td>
</tr>
<tr>
<td>MA453</td>
<td>13</td>
<td>25</td>
<td>16</td>
<td>11</td>
<td>12,13</td>
<td></td>
</tr>
<tr>
<td>MA454</td>
<td>13</td>
<td>25</td>
<td>16</td>
<td>11</td>
<td>12,13</td>
<td></td>
</tr>
<tr>
<td>MA455</td>
<td>13</td>
<td>25</td>
<td>15</td>
<td>11</td>
<td>16,20</td>
<td></td>
</tr>
<tr>
<td>MA456</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,13</td>
<td></td>
</tr>
<tr>
<td>MA457</td>
<td>13</td>
<td>25</td>
<td>15</td>
<td>11</td>
<td>16,21</td>
<td></td>
</tr>
<tr>
<td>MA458</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td></td>
</tr>
<tr>
<td>MA459</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>11,19</td>
<td></td>
</tr>
<tr>
<td>MA460</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td></td>
</tr>
<tr>
<td>MA461</td>
<td>13</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>13,19</td>
<td></td>
</tr>
<tr>
<td>MA462</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td></td>
</tr>
<tr>
<td>MA463</td>
<td>14</td>
<td>25</td>
<td>15</td>
<td>11</td>
<td>16,21</td>
<td></td>
</tr>
<tr>
<td>MA464</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td></td>
</tr>
<tr>
<td>MA465</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td></td>
</tr>
</tbody>
</table>
DYS438 :18/19 variant non testé

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MA466</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,18</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
</tr>
<tr>
<td>MA467</td>
<td>12</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>13,19</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>29</td>
</tr>
<tr>
<td>MA468</td>
<td>13</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>14,16</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>31</td>
</tr>
<tr>
<td>MA469</td>
<td>14</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>15,19</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>30</td>
</tr>
<tr>
<td>Européen</td>
<td>MA398</td>
<td>13</td>
<td>25</td>
<td>15</td>
<td>10</td>
<td>13,15</td>
<td>12</td>
<td>14</td>
<td>13</td>
</tr>
</tbody>
</table>

*En grisé les individus de lignées non Antemoro, apparentés, suspectés d’être apparentés et non utilisés pour les analyses statistiques.
Annexe 6. Tableau des haplotypes SNP-Y Yap de l’échantillonnage des trois groupes Antemoro

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MA307 Ampanabaka</td>
<td>O1a2</td>
<td>- G A A T C G A C G</td>
<td>T C A T C C C C G A C</td>
<td></td>
</tr>
<tr>
<td>MA323 Ampanabaka</td>
<td>O1a2</td>
<td>- G A A T C G A C G</td>
<td>T C A T C C C C G A C</td>
<td></td>
</tr>
<tr>
<td>MA328 Ampanabaka</td>
<td>O1a2</td>
<td>- G A A T C G A C G</td>
<td>T C A T C C C C G A C</td>
<td></td>
</tr>
<tr>
<td>MA330 Ampanabaka</td>
<td>O1a2</td>
<td>- G A A T C G A C G</td>
<td>T C A T C C C C G A C</td>
<td></td>
</tr>
<tr>
<td>MA337 Ampanabaka</td>
<td>O1a2</td>
<td>- G A A T C G A C G</td>
<td>T C A T C C C C G A C</td>
<td></td>
</tr>
<tr>
<td>MA339 Ampanabaka</td>
<td>O1a2</td>
<td>- G A A T C G A C G</td>
<td>T C A T C C C C G A C</td>
<td></td>
</tr>
<tr>
<td>MA342 Ampanabaka</td>
<td>B2a</td>
<td>- G A A T C G A T C</td>
<td>A A T</td>
<td></td>
</tr>
<tr>
<td>MA345 Ampanabaka</td>
<td>O1a2</td>
<td>- G A A T C G A C G</td>
<td>T C A T C C C C G A C</td>
<td></td>
</tr>
<tr>
<td>MA352 Ampanabaka</td>
<td>J2b</td>
<td>- G A A T C G A C C + G G A G T</td>
<td>C T A A A</td>
<td></td>
</tr>
<tr>
<td>MA353 Ampanabaka</td>
<td>J2b</td>
<td>- G A A T C G A C C + G G A G T</td>
<td>C T A A A</td>
<td></td>
</tr>
<tr>
<td>MA357 Ampanabaka</td>
<td>B2x82a</td>
<td>- G A A T C G A T C</td>
<td>A A C</td>
<td></td>
</tr>
<tr>
<td>MA359 Anteony</td>
<td>J1(xJ1a, J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
<td></td>
</tr>
<tr>
<td>MA360 Anteony</td>
<td>T1</td>
<td>- G C A T C G A C G</td>
<td>T C T T T C A C G A C</td>
<td></td>
</tr>
<tr>
<td>MA361 Anteony</td>
<td>J1(xJ1a, J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
<td></td>
</tr>
<tr>
<td>MA362 Anteony</td>
<td>J1(xJ1a, J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
<td></td>
</tr>
<tr>
<td>MA363 Anteony</td>
<td>J1(xJ1a, J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
<td></td>
</tr>
<tr>
<td>MA364 Anteony</td>
<td>J1(xJ1a, J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
<td></td>
</tr>
<tr>
<td>MA365 Anteony</td>
<td>T1</td>
<td>- G C A T C G A C G</td>
<td>T C T T T C A C G A C</td>
<td></td>
</tr>
<tr>
<td>MA366 Anteony</td>
<td>T1</td>
<td>- G C A T C G A C G</td>
<td>T C T T T C A C G A C</td>
<td></td>
</tr>
<tr>
<td>MA367 Anteony</td>
<td>J1(xJ1a, J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
<td></td>
</tr>
<tr>
<td>MA368 Anteony</td>
<td>J1(xJ1a, J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
<td></td>
</tr>
<tr>
<td>MA369 Anteony</td>
<td>J1(xJ1a, J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
<td></td>
</tr>
<tr>
<td>MA370 Anteony</td>
<td>J1(xJ1a, J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
<td></td>
</tr>
<tr>
<td>MA371 Anteony</td>
<td>T1</td>
<td>- G C A T C G A C G</td>
<td>T C T T T C A C G A C</td>
<td></td>
</tr>
</tbody>
</table>

121
MA372	Anteony	J1(x1a,J1b)	-	G	A	A	T	C	G	A	C	C	+	G	G	A	T	T	C	G	A	G	A	
MA373	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA374	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA375	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA376	Anteony	J1(x1a,J1b)	-	G	A	A	T	C	G	A	C	C	+	G	G	A	T	T	C	G	A	G	A	
MA377	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA378	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA379	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA380	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA381	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA382	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA383	Anteony	J1(x1a,J1b)	-	G	A	A	T	C	G	A	C	C	+	G	G	A	T	T	C	G	A	G	A	
MA387	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA388	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA389	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA390	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA391	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA392	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA393	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA394	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA395	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA396	Anteony	O2a1	-	G	A	A	T	C	G	A	C	G	T	C	T	C	T	C	A	C	G	A	T	
MA399	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA400	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA401	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA402	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA403	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA404	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA405	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA406	Anteony	T1	-	G	C	A	T	C	G	A	C	G	T	C	T	T	T	C	A	C	G	A	C	G
MA408 Anteony O2a1 - G A A T C G A C G
MA409 Anteony T1 - G C A T C G A C G
MA410 Anteony T1 - G C A T C G A C G
MA411 Anteony J1(xJ1a,J1b) - G A A T C G A C C + G G A T T
MA415 Anteony J1(xJ1a,J1b) - G A A T C G A C C + G G A T T
MA416 Antalaotra O2a1 - G A A T C G A C G
MA417 Antalaotra O1a2 - G A A T C G A C G
MA419 Antalaotra O2a1 - G A A T C G A C G
MA420 Antalaotra O2a1 - G A A T C G A C G
MA421 Antalaotra J2b - G A A T C G A C C + G G A G T
MA424 Antalaotra J2b - G A A T C G A C C + G G A G T
MA431 Antalaotra J1(xJ1a,J1b) - G A A T C G A C C + G G A T T
MA433 Antalaotra J2b - G A A T C G A C C + G G A G T
MA435 Antalaotra J1(xJ1a,J1b) - G A A T C G A C C + G G A T T
MA436 Antalaotra O2a1 - G A A T C G A C G
MA437 Antalaotra O1a2 - G A A T C G A C G
MA438 Antalaotra J1(xJ1a,J1b) - G A A T C G A C C + G G A T T
MA440 Antalaotra O2a1 - G A A T C G A C G
MA441 Antalaotra O2a1 - G A A T C G A C G
MA442 Antalaotra O2a1 - G A A T C G A C G
MA443 Antalaotra O2a1 - G A A T C G A C G
MA444 Antalaotra O1a2 - G A A T C G A C G
MA445 Antalaotra O1a2 - G A A T C G A C G
MA446 Antalaotra T1 - G C A T C G A C G
MA447 Antalaotra O1a2 - G A A T C G A C G
MA448 Antalaotra O1a2 - G A A T C G A C G
MA449 Antalaotra T1 - G C A T C G A C G
MA450 Antalaotra J1(xJ1a,J1b) - G A A T C G A C C + G G A T T
MA451 Antalaotra O1a2 - G A A T C G A C G

T C T C T C A C G A T

C T A A A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A

C G A G A

C T A A A
<table>
<thead>
<tr>
<th>Accession</th>
<th>Population</th>
<th>Marker</th>
<th>Sequence 1</th>
<th>Sequence 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA452</td>
<td>Antalaotra</td>
<td>O2a1</td>
<td>- G A A T C G A C G</td>
<td>T C T C T C A C G A T</td>
</tr>
<tr>
<td>MA453</td>
<td>Antalaotra</td>
<td>O2a1</td>
<td>- G A A T C G A C G</td>
<td>T C T C T C A C G A T</td>
</tr>
<tr>
<td>MA454</td>
<td>Antalaotra</td>
<td>R1a</td>
<td>- A A A T C G C C G</td>
<td>C T</td>
</tr>
<tr>
<td>MA455</td>
<td>Antalaotra</td>
<td>O2a1</td>
<td>- G A A T C G A C G</td>
<td>T C T C T C A C G A T</td>
</tr>
<tr>
<td>MA456</td>
<td>Antalaotra</td>
<td>O1a2</td>
<td>- G A A T C G A C G</td>
<td>T C A T C C C C G A C</td>
</tr>
<tr>
<td>MA457</td>
<td>Antalaotra</td>
<td>O2a1</td>
<td>- G A A T C G A C G</td>
<td>T C T C T C A C G A T</td>
</tr>
<tr>
<td>MA458</td>
<td>Antalaotra</td>
<td>T1</td>
<td>- G C A T C G A C G</td>
<td></td>
</tr>
<tr>
<td>MA459</td>
<td>Antalaotra</td>
<td>J1(x1a,J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
</tr>
<tr>
<td>MA460</td>
<td>Antalaotra</td>
<td>T1</td>
<td>- G C A T C G A C G</td>
<td></td>
</tr>
<tr>
<td>MA462</td>
<td>Antalaotra</td>
<td>J1(x1a,J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
</tr>
<tr>
<td>MA463</td>
<td>Antalaotra</td>
<td>O2a1</td>
<td>- G A A T C G A C G</td>
<td>T C T C T C A C G A T</td>
</tr>
<tr>
<td>MA464</td>
<td>Antalaotra</td>
<td>J1(x1a,J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
</tr>
<tr>
<td>MA465</td>
<td>Antalaotra</td>
<td>J1(x1a,J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
</tr>
<tr>
<td>MA466</td>
<td>Antalaotra</td>
<td>J1(x1a,J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
</tr>
<tr>
<td>MA467</td>
<td>Antalaotra</td>
<td>J1(x1a,J1b)</td>
<td>- G A A T C G A C C + G G A T T</td>
<td>C G A G A</td>
</tr>
<tr>
<td>MA468</td>
<td>Antalaotra</td>
<td>T1</td>
<td>- G C A T C G A C G</td>
<td></td>
</tr>
<tr>
<td>MA398</td>
<td>Européen</td>
<td>R1b</td>
<td>- A A A T A G C C G</td>
<td></td>
</tr>
</tbody>
</table>
Annexe 7. Tableau des haplotypes SNP-Y Yap+ de l’échantillonnage Antemoro

<table>
<thead>
<tr>
<th></th>
<th>YAP</th>
<th>M96</th>
<th>M34</th>
<th>M81</th>
<th>M35</th>
<th>M123</th>
<th>M33</th>
<th>M41</th>
<th>M44</th>
<th>M54</th>
<th>P2</th>
<th>M2</th>
<th>M75</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA301</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA302</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA303</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA304</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA305</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA306</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA308</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA309</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA310</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA311</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA312</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA313</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA314</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA315</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA316</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA319</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA321</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA322</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA324</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA325</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA326</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA327</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA329</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>MA331</td>
<td>Ampanabaka</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Name</td>
<td>Sequence</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>MA332</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA333</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA334</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA335</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA336</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA338</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA340</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA341</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA343</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA344</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA346</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA347</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA348</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA349</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA350</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA351</td>
<td>Ampanabaka</td>
<td>E2b + C G C G G A G G A C A A</td>
<td></td>
</tr>
<tr>
<td>MA354</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA355</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA356</td>
<td>Ampanabaka</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA358</td>
<td>Ampanabaka</td>
<td>E1b1b1 + C G C C C G A G G G T G A</td>
<td></td>
</tr>
<tr>
<td>MA382</td>
<td>Anteony</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA385a</td>
<td>Anteony</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA386a</td>
<td>Anteony</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA391</td>
<td>Anteony</td>
<td>E1b1b1 + C G C C C G A G G G T A G</td>
<td></td>
</tr>
<tr>
<td>MA396</td>
<td>Anteony</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA407</td>
<td>Anteony</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA412</td>
<td>Anteony</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA413</td>
<td>Anteony</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA414</td>
<td>Anteony</td>
<td>E1b1a1 + C G C G G A G G G T G G</td>
<td></td>
</tr>
<tr>
<td>MA418</td>
<td>Antalaotra</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>T</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>MA422</td>
<td>Antalaotra</td>
<td>E2b</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>MA423</td>
<td>Antalaotra</td>
<td>E2b</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>MA425</td>
<td>Antalaotra</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>T</td>
</tr>
<tr>
<td>MA426</td>
<td>Antalaotra</td>
<td>E2b</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>MA427</td>
<td>Antalaotra</td>
<td>E2b</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>MA428</td>
<td>Antalaotra</td>
<td>E2b</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>MA429</td>
<td>Antalaotra</td>
<td>E2b</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>MA430</td>
<td>Antalaotra</td>
<td>E2b</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>MA432</td>
<td>Antalaotra</td>
<td>E2b</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>MA434</td>
<td>Antalaotra</td>
<td>E2b</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>MA439</td>
<td>Antalaotra</td>
<td>E2b</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>MA461</td>
<td>Antalaotra</td>
<td>E2b</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>MA469</td>
<td>Antalaotra</td>
<td>E1b1a1</td>
<td>+</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>T</td>
</tr>
</tbody>
</table>
Annexe 8. Tableau des haplotypes HVI et HVII de notre population Antemoro

<table>
<thead>
<tr>
<th>Groupe</th>
<th>ID</th>
<th>HVI</th>
<th>HVII</th>
<th>HG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampanabaka</td>
<td>MA301</td>
<td>16220C 16265 16298 16362</td>
<td>73 150 152 200 249d 263</td>
<td>F3b</td>
</tr>
<tr>
<td></td>
<td>MA302</td>
<td>16124 16223 16319</td>
<td>73 150 152 263</td>
<td>L3d</td>
</tr>
<tr>
<td></td>
<td>MA303</td>
<td>16182C 16183C 16189 16223 16278 16290 16294 16390</td>
<td>73 146 152 195</td>
<td>L2a1</td>
</tr>
<tr>
<td></td>
<td>MA304</td>
<td>16223 16295 16362 16519</td>
<td>73 146 199 263</td>
<td>M7c3c</td>
</tr>
<tr>
<td></td>
<td>MA305</td>
<td>16093 16223 16278 16362 16519</td>
<td>73 263</td>
<td>L3b</td>
</tr>
<tr>
<td></td>
<td>MA306</td>
<td>16223 16295 16362 16519</td>
<td>73 146 199 263</td>
<td>M7c3c</td>
</tr>
<tr>
<td></td>
<td>MA307</td>
<td>16223 16278 16311 16362 16519</td>
<td>73 263</td>
<td>L3b</td>
</tr>
<tr>
<td></td>
<td>MA308</td>
<td>16223 16265T 16519</td>
<td>73 150 195 263</td>
<td>L3e3</td>
</tr>
<tr>
<td></td>
<td>MA309</td>
<td>16202C 16265 16298 16362</td>
<td>73 150 152 200 249d 263</td>
<td>F3b</td>
</tr>
<tr>
<td></td>
<td>MA310</td>
<td>16182C 16183C 16189 16223 16278 16290 16294 16390</td>
<td>73 146 152 195</td>
<td>L2a1</td>
</tr>
<tr>
<td></td>
<td>MA311</td>
<td>16172 16183C 16189 16213 16223 16320 16519</td>
<td>73 150 152 195</td>
<td>L3e2b3</td>
</tr>
<tr>
<td></td>
<td>MA312</td>
<td>16223 16295 16362 16519</td>
<td>73 146 199 263</td>
<td>M7c3c</td>
</tr>
<tr>
<td></td>
<td>MA313</td>
<td>16086 16148 16223 16259 16278 16311 16319 16399 16526</td>
<td>73 150 200 263</td>
<td>M32c</td>
</tr>
<tr>
<td></td>
<td>MA315</td>
<td>16189 16192 16223 16256 16278 16294 16309 16344 16390 16519</td>
<td>73 146 152 195 263</td>
<td>L2a1</td>
</tr>
<tr>
<td></td>
<td>MA316</td>
<td>16148 16172 16187 16188G 16189 16223 16230 16311 16320 16519</td>
<td>64 93 152 185 189 204 207 247 263</td>
<td>L0a2</td>
</tr>
<tr>
<td></td>
<td>MA317</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146 195</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td></td>
<td>MA318</td>
<td>16223 16265T 16519</td>
<td>73 150 195 263</td>
<td>L3e3</td>
</tr>
<tr>
<td></td>
<td>MA319</td>
<td>16223 16295 16362 16519</td>
<td>73 146 199 263</td>
<td>M7c3c</td>
</tr>
<tr>
<td></td>
<td>MA320</td>
<td>16129 16182C 16183C 16189 16217 16247 16261 16290 16519</td>
<td>71 73 146</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td></td>
<td>MA321</td>
<td>16221 16223 16291 16362 16390 16519</td>
<td>73 263</td>
<td>E1a</td>
</tr>
<tr>
<td></td>
<td>MA322</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td></td>
<td>MA323</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td></td>
<td>MA324</td>
<td>16148 16172 16187 16188G 16189 16223 16230 16311 16320 16519</td>
<td>64 93 152 185 189 204 207 236 247 263</td>
<td>L0a2</td>
</tr>
<tr>
<td></td>
<td>MA325</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td></td>
<td>MA326</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td></td>
<td>MA327</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>Course</td>
<td>Elements</td>
<td>Number Range</td>
<td>Year(s)</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>MA328</td>
<td>16220C 16265 16298 16362</td>
<td>73 150 152 200 249d 263</td>
<td>F3b</td>
<td></td>
</tr>
<tr>
<td>MA329</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146 252</td>
<td>B4a1a1a</td>
<td></td>
</tr>
<tr>
<td>MA330</td>
<td>16093 16223 16278 16362 16519</td>
<td>73 263</td>
<td>L3b</td>
<td></td>
</tr>
<tr>
<td>MA331</td>
<td>16093 16223 16278 16362 16519</td>
<td>73 263</td>
<td>L3b</td>
<td></td>
</tr>
<tr>
<td>MA332</td>
<td>16223 16263 16311 16519</td>
<td>73 152 195 204</td>
<td>M23</td>
<td></td>
</tr>
<tr>
<td>MA333</td>
<td>16220C 16265 16298 16362</td>
<td>73 150 152 200 249d 263</td>
<td>F3b</td>
<td></td>
</tr>
<tr>
<td>MA334</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
<td>B4a1a1a</td>
<td></td>
</tr>
<tr>
<td>MA335</td>
<td>16223 16263 16311 16519</td>
<td>73 152 195 204 263</td>
<td>M23</td>
<td></td>
</tr>
<tr>
<td>MA336</td>
<td>16172 16183C 16189 16213 16223 16320 16519</td>
<td>73 150 152 195 263</td>
<td>L3e2b3</td>
<td></td>
</tr>
<tr>
<td>MA337</td>
<td>16182C 16183C 16189 16223 16278 16290 16294 16309 16390</td>
<td>73 146 152 195</td>
<td>L2a1</td>
<td></td>
</tr>
<tr>
<td>MA338</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
<td>B4a1a1a</td>
<td></td>
</tr>
<tr>
<td>MA339</td>
<td>16093 16124 16217 16223 16278 16362 16519</td>
<td>73 263</td>
<td>L3b</td>
<td></td>
</tr>
<tr>
<td>MA340</td>
<td>16189 16223 16278 16294 16309 16390 16519</td>
<td>73 146 152 195 198</td>
<td>L2a1</td>
<td></td>
</tr>
<tr>
<td>MA341</td>
<td>16221 16223 16291 16362 16390 16519</td>
<td>73 263</td>
<td>E1a</td>
<td></td>
</tr>
<tr>
<td>MA342</td>
<td>16223 16295 16362 16519</td>
<td>73 146 199 263</td>
<td>M7c3c</td>
<td></td>
</tr>
<tr>
<td>MA343</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
<td>B4a1a1a</td>
<td></td>
</tr>
<tr>
<td>MA344</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
<td>B4a1a1a</td>
<td></td>
</tr>
<tr>
<td>MA345</td>
<td>16223 16295 16362 16519</td>
<td>73 146 199 263</td>
<td>M7c3c</td>
<td></td>
</tr>
<tr>
<td>MA346</td>
<td>16185 16223 16327 16519</td>
<td>73 150 189 200 263</td>
<td>L3e1a</td>
<td></td>
</tr>
<tr>
<td>MA347</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
<td>B4a1a1a</td>
<td></td>
</tr>
<tr>
<td>MA348</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
<td>B4a1a1a</td>
<td></td>
</tr>
<tr>
<td>MA349</td>
<td>16182C 16183C 16189 16223 16278 16290 16294 16309 16390</td>
<td>73 146 152 195</td>
<td>L2a1</td>
<td></td>
</tr>
<tr>
<td>MA350</td>
<td>16223 16265T 16519</td>
<td>73 150 195 263</td>
<td>L3e3</td>
<td></td>
</tr>
<tr>
<td>MA351</td>
<td>16148 16172 16187 16188G 16189 16223 16230 16311 16320 16519</td>
<td>64 93 152 189 204 207 236 247 263</td>
<td>L0a2</td>
<td></td>
</tr>
<tr>
<td>MA352</td>
<td>16093 16223 16278 16362 16519</td>
<td>73 263</td>
<td>L3b</td>
<td></td>
</tr>
<tr>
<td>MA353</td>
<td>16221 16223 16291 16362 16390 16519</td>
<td>73 263</td>
<td>E1a</td>
<td></td>
</tr>
<tr>
<td>MA354</td>
<td>16220C 16265 16298 16362</td>
<td>73 150 152 249d 263</td>
<td>F3b</td>
<td></td>
</tr>
<tr>
<td>MA355</td>
<td>16223 16265T 16519</td>
<td>73 150 195 263</td>
<td>L3e3</td>
<td></td>
</tr>
<tr>
<td>MA356</td>
<td>16172 16183C 16189 16213 16223 16320 16519</td>
<td>73 150 152 195</td>
<td>L3e2b3</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>MA357</td>
<td>16093 16223 16278 16362 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA408</td>
<td>16185 16223 16327 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA452</td>
<td>16172 16223 16295 16362 16359</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA358</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA359</td>
<td>16093 16172 16223 16278 16311 16362 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA360</td>
<td>16129 16148 16168 16172 16187 16188G 16189 16223 16230 16278 16293 16311 16320</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA361</td>
<td>16223 16263 16311 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA362</td>
<td>16093 16223 16278 16362 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA363</td>
<td>16220C 16265 16298 16362</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA364</td>
<td>16169 16213 16223 16240C 16254 16316 16335</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA365</td>
<td>16182C 16183C 16189 16217 16247 16261 16291 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA366</td>
<td>16223 16278 16362 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA367</td>
<td>16223 16278 16362 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA368</td>
<td>16220C 16265 16298 16362</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA369</td>
<td>16220C 16265 16298 16362</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA370</td>
<td>16223 16263 16311 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA371</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA372</td>
<td>16220C 16265 16298 16362</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA373</td>
<td>16093 16223 16274 16278 16362 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA374</td>
<td>16265T 16292 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA375</td>
<td>16172 16183C 16189 16223 16320 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA376</td>
<td>16182C 16183C 16189 16223 16278 16290 16294 16309 16390</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA377</td>
<td>16172 16223 16263 16311 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA378</td>
<td>16124 16223 16319</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA379</td>
<td>16182C 16183C 16189 16223 16278 16290 16294 16309 16390</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA380</td>
<td>16223 16278 16362 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA381</td>
<td>16223 16295 16362 16519</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA382</td>
<td>16220C 16265 16298 16362</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA383</td>
<td>16182C 16183C 16189 16223 16278 16290 16294 16309 16390</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>MA357</th>
<th>73 263</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MA408</td>
<td>73 150 189 200 263</td>
</tr>
<tr>
<td></td>
<td>MA452</td>
<td>73 146 199 263</td>
</tr>
<tr>
<td></td>
<td>MA358</td>
<td>73 146</td>
</tr>
<tr>
<td></td>
<td>MA359</td>
<td>73 263</td>
</tr>
<tr>
<td></td>
<td>MA360</td>
<td>93 95C 185 189 236 247 263</td>
</tr>
<tr>
<td></td>
<td>MA361</td>
<td>73 152 195 204 263</td>
</tr>
<tr>
<td></td>
<td>MA362</td>
<td>73 263</td>
</tr>
<tr>
<td></td>
<td>MA363</td>
<td>73 150 152 249d 263</td>
</tr>
<tr>
<td></td>
<td>MA364</td>
<td>73 152 263</td>
</tr>
<tr>
<td></td>
<td>MA365</td>
<td>73 146</td>
</tr>
<tr>
<td></td>
<td>MA366</td>
<td>73 263</td>
</tr>
<tr>
<td></td>
<td>MA367</td>
<td>73 263</td>
</tr>
<tr>
<td></td>
<td>MA368</td>
<td>73 150 152 249d 263</td>
</tr>
<tr>
<td></td>
<td>MA369</td>
<td>73 150 152 200 249d 263</td>
</tr>
<tr>
<td></td>
<td>MA370</td>
<td>73 152 195 204 263</td>
</tr>
<tr>
<td></td>
<td>MA371</td>
<td>73 146</td>
</tr>
<tr>
<td></td>
<td>MA372</td>
<td>73 150 152 200 249d 263</td>
</tr>
<tr>
<td></td>
<td>MA373</td>
<td>73 263</td>
</tr>
<tr>
<td></td>
<td>MA374</td>
<td>73 150 195 263</td>
</tr>
<tr>
<td></td>
<td>MA375</td>
<td>73 150 195</td>
</tr>
<tr>
<td></td>
<td>MA376</td>
<td>73 146 152 195</td>
</tr>
<tr>
<td></td>
<td>MA377</td>
<td>73 152 195 204 263</td>
</tr>
<tr>
<td></td>
<td>MA378</td>
<td>73 150 152 263</td>
</tr>
<tr>
<td></td>
<td>MA379</td>
<td>73 146 152 195</td>
</tr>
<tr>
<td></td>
<td>MA380</td>
<td>73 263</td>
</tr>
<tr>
<td></td>
<td>MA381</td>
<td>73 146 199 263</td>
</tr>
<tr>
<td></td>
<td>MA382</td>
<td>73 150 152 249d 263</td>
</tr>
<tr>
<td></td>
<td>MA383</td>
<td>73 146 152 195</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>MA357</th>
<th>L3b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MA408</td>
<td>L3e1a</td>
</tr>
<tr>
<td></td>
<td>MA452</td>
<td>M7c3c</td>
</tr>
<tr>
<td></td>
<td>MA358</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td></td>
<td>MA359</td>
<td>L3b</td>
</tr>
<tr>
<td></td>
<td>MA360</td>
<td>L0a1'4</td>
</tr>
<tr>
<td></td>
<td>MA361</td>
<td>M23</td>
</tr>
<tr>
<td></td>
<td>MA362</td>
<td>F3b</td>
</tr>
<tr>
<td></td>
<td>MA363</td>
<td>L3b</td>
</tr>
<tr>
<td></td>
<td>MA364</td>
<td>L3a</td>
</tr>
<tr>
<td></td>
<td>MA365</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td></td>
<td>MA366</td>
<td>L3b</td>
</tr>
<tr>
<td></td>
<td>MA367</td>
<td>L3b</td>
</tr>
<tr>
<td></td>
<td>MA368</td>
<td>F3b</td>
</tr>
<tr>
<td></td>
<td>MA369</td>
<td>F3b</td>
</tr>
<tr>
<td></td>
<td>MA370</td>
<td>M23</td>
</tr>
<tr>
<td></td>
<td>MA371</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td></td>
<td>MA372</td>
<td>F3b</td>
</tr>
<tr>
<td></td>
<td>MA373</td>
<td>L3b</td>
</tr>
<tr>
<td></td>
<td>MA374</td>
<td>L3e3</td>
</tr>
<tr>
<td></td>
<td>MA375</td>
<td>L3e2b</td>
</tr>
<tr>
<td></td>
<td>MA376</td>
<td>L2a1</td>
</tr>
<tr>
<td></td>
<td>MA377</td>
<td>M23</td>
</tr>
<tr>
<td></td>
<td>MA378</td>
<td>L3d</td>
</tr>
<tr>
<td></td>
<td>MA379</td>
<td>L2a1</td>
</tr>
<tr>
<td></td>
<td>MA380</td>
<td>L3b</td>
</tr>
<tr>
<td></td>
<td>MA381</td>
<td>M7c3c</td>
</tr>
<tr>
<td></td>
<td>MA382</td>
<td>F3b</td>
</tr>
<tr>
<td></td>
<td>MA383</td>
<td>L2a1</td>
</tr>
<tr>
<td>MA384</td>
<td>16182C 16183C 16189 16217 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA385</td>
<td>16129 16148 16168 16172 16187 16188G 16189 16223 16230 16278 16293 16311 16320</td>
<td>93 95C 185 189 194G 236 247 263</td>
</tr>
<tr>
<td>MA386</td>
<td>16086 16148 16223 16259 16278 16319 16399 16526</td>
<td>73 150 195 200 263</td>
</tr>
<tr>
<td>MA387</td>
<td>16223 16295 16362 16519</td>
<td>73 146 199 263</td>
</tr>
<tr>
<td>MA388</td>
<td>16223 16266 16278 16294 16309 16390 16519</td>
<td>73 146 152 195 263</td>
</tr>
<tr>
<td>MA389</td>
<td>16223 16278 16362 16519</td>
<td>73 263</td>
</tr>
<tr>
<td>MA390</td>
<td>16189 16265T 16292 16519</td>
<td>73 150 195</td>
</tr>
<tr>
<td>MA391</td>
<td>16220C 16265 16298 16362</td>
<td>73 150 152 249d 263</td>
</tr>
<tr>
<td>MA392</td>
<td>16182C 16183C 16189 16223 16278 16290 16309 16390</td>
<td>73 146 152 195</td>
</tr>
<tr>
<td>MA393</td>
<td>16182C 16183C 16189 16217 16247 16261 16291 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA394</td>
<td>16172 16183C 16189 16213 16223 16245 16320 16519</td>
<td>73 150 152 195</td>
</tr>
<tr>
<td>MA395</td>
<td>16182C 16183C 16189 16223 16278 16290 16309 16390</td>
<td>73 146 195</td>
</tr>
<tr>
<td>MA396</td>
<td>16093 16223 16278 16362 16519</td>
<td>73 263</td>
</tr>
<tr>
<td>MA397</td>
<td>16129 16148 16168 16172 16187 16188G 16189 16223 16230 16278 16293 16311 16320</td>
<td>93 95C 185 189 236 247 263</td>
</tr>
<tr>
<td>MA398</td>
<td>16093 16223 16278 16362 16519</td>
<td>73 263</td>
</tr>
<tr>
<td>MA399</td>
<td>16182C 16183C 16189 16223 16278 16290 16309 16390 16519</td>
<td>73 146 152 195</td>
</tr>
<tr>
<td>MA400</td>
<td>16172 16223 16263 16311 16519</td>
<td>73 152 195 204 263</td>
</tr>
<tr>
<td>MA401</td>
<td>16172 16223 16263 16311 16519</td>
<td>73 152 195 204 263</td>
</tr>
<tr>
<td>MA402</td>
<td>16172 16223 16263 16311 16519</td>
<td>73 152 195 204 263</td>
</tr>
<tr>
<td>MA403</td>
<td>16172 16183C 16189 16213 16223 16320 16519</td>
<td>73 150 152 195</td>
</tr>
<tr>
<td>MA404</td>
<td>16172 16223 16263 16311 16519</td>
<td>73 152 195 204 263</td>
</tr>
<tr>
<td>MA405</td>
<td>16129 16144 16148 16192 16223 16241 16265C 16274 16311 16343 16362</td>
<td>73 89 146 238 263</td>
</tr>
<tr>
<td>MA406</td>
<td>16093 16223 16355</td>
<td>73 150 152 235 263</td>
</tr>
<tr>
<td>MA409</td>
<td>16148 16172 16187 16188G 16189 16223 16230 16311 16320 16519</td>
<td>64 93 152 189 204 207 236 247 263</td>
</tr>
<tr>
<td>MA410</td>
<td>16185 16223 16327 16519</td>
<td>73 150 189 200 263</td>
</tr>
<tr>
<td>MA411</td>
<td>16220C 16265 16298 16362</td>
<td>73 150 152 200 249d 263</td>
</tr>
<tr>
<td>MA412</td>
<td>16223 16263 16311 16519</td>
<td>73 152 195 204 263</td>
</tr>
<tr>
<td>MA413</td>
<td>16223 16263 16311 16519</td>
<td>73 152 195 204 263</td>
</tr>
<tr>
<td>MA414</td>
<td>16182C 16183C 16189 16217 16247 16261 16291 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA415</td>
<td>16189 16192 16223 16256 16278 16294 16309 16344 16390 16519</td>
<td>73 146 152 195</td>
</tr>
<tr>
<td>MA436</td>
<td>16220C 16265 16298 16362</td>
<td>73 150 152 249d 263</td>
</tr>
<tr>
<td>MA407</td>
<td>16223 16263 16311 16519</td>
<td>73 152 195 204 263</td>
</tr>
<tr>
<td>MA416</td>
<td>16223 16265T 16519</td>
<td>73 150 152 195 263</td>
</tr>
<tr>
<td>MA417</td>
<td>16093 16223 16278 16362 16399 16519</td>
<td>73 263</td>
</tr>
<tr>
<td>MA418</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146 263</td>
</tr>
<tr>
<td>MA419</td>
<td>16223 16295 16362 16519</td>
<td>73 146 199 263</td>
</tr>
<tr>
<td>MA420</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA421</td>
<td>16223 16265T 16519</td>
<td>73 150 195 263</td>
</tr>
<tr>
<td>MA422</td>
<td>16093 16223 16278 16362 16519</td>
<td>73 263</td>
</tr>
<tr>
<td>MA423</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA424</td>
<td>16172 16182C 16189 16217 16223 16245 16320 16519</td>
<td>73 150 152 195</td>
</tr>
<tr>
<td>MA425</td>
<td>16182C 16183C 16189 16223 16278 16290 16294 16309 16390</td>
<td>73 146 152 195</td>
</tr>
<tr>
<td>MA426</td>
<td>16093 16223 16295 16362 16519</td>
<td>73 146 199 263</td>
</tr>
<tr>
<td>MA427</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA428</td>
<td>16086 16148 16189 16223 16259 16278 16319 16399 16526</td>
<td>73 150 200</td>
</tr>
<tr>
<td>MA429</td>
<td>16182C 16183C 16189 16223 16278 16290 16294 16309 16390</td>
<td>73 146 152 195</td>
</tr>
<tr>
<td>MA430</td>
<td>16148 16172 16187 16188G 16189 16223 16230 16311 16320 16519</td>
<td>64 93 150 152 189 204 207 236 247 263</td>
</tr>
<tr>
<td>MA431</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA432</td>
<td>16093 16223 16278 16362</td>
<td>73 263</td>
</tr>
<tr>
<td>MA433</td>
<td>16093 16223 16278 16362 16519</td>
<td>73 263</td>
</tr>
<tr>
<td>MA434</td>
<td>16086 16148 16189 16223 16259 16278 16319 16399 16526</td>
<td>73 150 200</td>
</tr>
<tr>
<td>MA435</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA437</td>
<td>16182C 16183C 16189 16217 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA438</td>
<td>16172 16183C 16189 16213 16223 16245 16320 16519</td>
<td>73 150 152 195</td>
</tr>
<tr>
<td>MA439</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146 199</td>
</tr>
<tr>
<td>MA440</td>
<td>16182C 16183C 16189 16217 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA441</td>
<td>16223 16263 16311 16519</td>
<td>73 151 152 195 204 263</td>
</tr>
<tr>
<td>MA442</td>
<td>16148 16172 16187 16188G 16189 16223 16230 16311 16320 16519</td>
<td>64 93 150 152 189 204 207 236 247 263</td>
</tr>
<tr>
<td>Référence</td>
<td>Individus</td>
<td>Numéro d'individu</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>MA443</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA444</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA445</td>
<td>16213 16220C 16265 16298 16362</td>
<td>73 150 152 249d 263</td>
</tr>
<tr>
<td>MA447</td>
<td>16093 16223 16278 16362 16519</td>
<td>73 263</td>
</tr>
<tr>
<td>MA448</td>
<td>16086 16148 16223 16259 16278 16319 16399 16526</td>
<td>73 150 200 263</td>
</tr>
<tr>
<td>MA449</td>
<td>16223 16295 16362 16359</td>
<td>73 146 199 263</td>
</tr>
<tr>
<td>MA450</td>
<td>16223 16263 16311 16359</td>
<td>73 152 195 204 263</td>
</tr>
<tr>
<td>MA451</td>
<td>16221 16223 16291 16362 16390 16359</td>
<td>73 263</td>
</tr>
<tr>
<td>MA452</td>
<td>16223 16263 16311 16519</td>
<td>73 152 195 204 263</td>
</tr>
<tr>
<td>MA453</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA454</td>
<td>16220C 16265 16298 16362</td>
<td>73 150 152 249d 263</td>
</tr>
<tr>
<td>MA455</td>
<td>16086 16148 16223 16259 16278 16319 16399 16526</td>
<td>73 150 200 263</td>
</tr>
<tr>
<td>MA457</td>
<td>16213 16220C 16265 16298 16362</td>
<td>73 150 152 249d 263</td>
</tr>
<tr>
<td>MA458</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA459</td>
<td>16220C 16265 16298 16362</td>
<td>73 150 152 249d 263</td>
</tr>
<tr>
<td>MA460</td>
<td>16220C 16265 16298 16362</td>
<td>73 150 152 249d 263</td>
</tr>
<tr>
<td>MA461</td>
<td>162657 16292 16519</td>
<td>73 150 152 249d 263</td>
</tr>
<tr>
<td>MA462</td>
<td>16223 16263 16311 16519</td>
<td>73 152 195 204 263</td>
</tr>
<tr>
<td>MA463</td>
<td>16223 16263 16311 16519</td>
<td>73 152 195 204 263</td>
</tr>
<tr>
<td>MA464</td>
<td>16093 16223 16278 16291 16362 16519</td>
<td>73 263</td>
</tr>
<tr>
<td>MA465</td>
<td>16220C 16265 16298 16362</td>
<td>73 150 152 249d 263</td>
</tr>
<tr>
<td>MA466</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA467</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA468</td>
<td>16182C 16183C 16189 16217 16247 16261 16519</td>
<td>73 146</td>
</tr>
<tr>
<td>MA469</td>
<td>16093 16223 16278 16362 16519</td>
<td>73 263</td>
</tr>
<tr>
<td>Autres</td>
<td>MA314 16086 16220C 16265 16298 16362</td>
<td>73 150 152 263 249d</td>
</tr>
<tr>
<td></td>
<td>MA446 16223 16263 16311 16519</td>
<td>73 152 195 204 263</td>
</tr>
</tbody>
</table>

En grisé les individus de lignées non Antemoro, apparentés ou suspectés d'être apparentés et non utilisés pour les analyses statistiques.
Tableau des haplotypes de la région codante de l’ADNmt dans les trois groupes Antemoro

<table>
<thead>
<tr>
<th>MA</th>
<th>Ampanabaka</th>
<th>Tableau des haplotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 301</td>
<td>Ampanabaka F3b</td>
<td>C C A</td>
</tr>
<tr>
<td>MA 302</td>
<td>Ampanabaka L3d</td>
<td>C T T A T A A A T C A C G T T T</td>
</tr>
<tr>
<td>MA 303</td>
<td>Ampanabaka L2a1</td>
<td>C T C A T A A A C C G G C A G</td>
</tr>
<tr>
<td>MA 304</td>
<td>Ampanabaka M7c3c</td>
<td>T T C G</td>
</tr>
<tr>
<td>MA 305</td>
<td>Ampanabaka L3b</td>
<td>C T T A T A A A T C G T G T T T</td>
</tr>
<tr>
<td>MA 306</td>
<td>Ampanabaka M7c3c</td>
<td>T T C G</td>
</tr>
<tr>
<td>MA 307</td>
<td>Ampanabaka L3b</td>
<td>C T T A T A A A T C G T G T T T</td>
</tr>
<tr>
<td>MA 308</td>
<td>Ampanabaka L3e3</td>
<td>C T T A T A A A T C A T G T C A</td>
</tr>
<tr>
<td>MA 309</td>
<td>Ampanabaka F3b</td>
<td>C C A</td>
</tr>
<tr>
<td>MA 310</td>
<td>Ampanabaka L2a1</td>
<td>C T C A T A A A C C G G C A G</td>
</tr>
<tr>
<td>MA 311</td>
<td>Ampanabaka L3e2b3</td>
<td>C T T A T A A A T C A T A T C T</td>
</tr>
<tr>
<td>MA 312</td>
<td>Ampanabaka M7c3c</td>
<td>T T C G</td>
</tr>
<tr>
<td>MA 313</td>
<td>Ampanabaka M32c</td>
<td>T T T</td>
</tr>
<tr>
<td>MA 315</td>
<td>Ampanabaka L2a1</td>
<td>C T C A T A A A C C G G C A G</td>
</tr>
<tr>
<td>MA 316</td>
<td>Ampanabaka L0a2</td>
<td>C T T G T A A A C T + A T</td>
</tr>
<tr>
<td>MA 317</td>
<td>Ampanabaka B4a1a1a</td>
<td>C C + A T</td>
</tr>
<tr>
<td>MA 318</td>
<td>Ampanabaka L3e3</td>
<td>C T T A T A A A T C A T G T C A</td>
</tr>
<tr>
<td>MA 319</td>
<td>Ampanabaka M7c3c</td>
<td>T T C G</td>
</tr>
<tr>
<td>MA 320</td>
<td>Ampanabaka B4a1a1a</td>
<td>C C + A T</td>
</tr>
<tr>
<td>MA 321</td>
<td>Ampanabaka E1a</td>
<td>T T T A</td>
</tr>
<tr>
<td>MA 322</td>
<td>Ampanabaka B4a1a1a</td>
<td>C C + A T</td>
</tr>
<tr>
<td>MA 323</td>
<td>Ampanabaka B4a1a1a</td>
<td>C C + A T</td>
</tr>
<tr>
<td>MA 324</td>
<td>Ampanabaka L0a2</td>
<td>C T T G T A A A C T</td>
</tr>
<tr>
<td>MA 325</td>
<td>Ampanabaka B4a1a1a</td>
<td>C C + A T</td>
</tr>
<tr>
<td>MA 326</td>
<td>Ampanabaka B4a1a1a</td>
<td>C C + A T</td>
</tr>
<tr>
<td>MA327</td>
<td>Ampanabaka</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>MA328</td>
<td>Ampanabaka</td>
<td>F3b</td>
</tr>
<tr>
<td>MA329</td>
<td>Ampanabaka</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA330</td>
<td>Ampanabaka</td>
<td>L3b</td>
</tr>
<tr>
<td>MA331</td>
<td>Ampanabaka</td>
<td>L3b</td>
</tr>
<tr>
<td>MA332</td>
<td>Ampanabaka</td>
<td>M23</td>
</tr>
<tr>
<td>MA333</td>
<td>Ampanabaka</td>
<td>F3b</td>
</tr>
<tr>
<td>MA334</td>
<td>Ampanabaka</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA335</td>
<td>Ampanabaka</td>
<td>M23</td>
</tr>
<tr>
<td>MA336</td>
<td>Ampanabaka</td>
<td>L3e2b3</td>
</tr>
<tr>
<td>MA337</td>
<td>Ampanabaka</td>
<td>L2a1</td>
</tr>
<tr>
<td>MA338</td>
<td>Ampanabaka</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA339</td>
<td>Ampanabaka</td>
<td>L3b</td>
</tr>
<tr>
<td>MA340</td>
<td>Ampanabaka</td>
<td>L2a1</td>
</tr>
<tr>
<td>MA341</td>
<td>Ampanabaka</td>
<td>E1a</td>
</tr>
<tr>
<td>MA342</td>
<td>Ampanabaka</td>
<td>M7c3c</td>
</tr>
<tr>
<td>MA343</td>
<td>Ampanabaka</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA344</td>
<td>Ampanabaka</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA345</td>
<td>Ampanabaka</td>
<td>M7c3c</td>
</tr>
<tr>
<td>MA346</td>
<td>Ampanabaka</td>
<td>L3e1a</td>
</tr>
<tr>
<td>MA347</td>
<td>Ampanabaka</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA348</td>
<td>Ampanabaka</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA349</td>
<td>Ampanabaka</td>
<td>L2a1</td>
</tr>
<tr>
<td>MA350</td>
<td>Ampanabaka</td>
<td>L3e3</td>
</tr>
<tr>
<td>MA351</td>
<td>Ampanabaka</td>
<td>L0a2</td>
</tr>
<tr>
<td>MA352</td>
<td>Ampanabaka</td>
<td>L3b</td>
</tr>
<tr>
<td>MA353</td>
<td>Ampanabaka</td>
<td>E1a</td>
</tr>
<tr>
<td>MA354</td>
<td>Ampanabaka</td>
<td>F3b</td>
</tr>
<tr>
<td>MA355</td>
<td>Ampanabaka</td>
<td>L3e3</td>
</tr>
<tr>
<td>MA356</td>
<td>Ampanabaka</td>
<td>L3e2b3</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>MA357</td>
<td>Ampanabaka</td>
<td>L3b</td>
</tr>
<tr>
<td>MA358</td>
<td>Ampanabaka</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA359</td>
<td>Anteony</td>
<td>L3b</td>
</tr>
<tr>
<td>MA360</td>
<td>Anteony</td>
<td>L0a1'4</td>
</tr>
<tr>
<td>MA361</td>
<td>Anteony</td>
<td>M23</td>
</tr>
<tr>
<td>MA362</td>
<td>Anteony</td>
<td>L3b</td>
</tr>
<tr>
<td>MA363</td>
<td>Anteony</td>
<td>F3b</td>
</tr>
<tr>
<td>MA364</td>
<td>Anteony</td>
<td>L3a</td>
</tr>
<tr>
<td>MA365</td>
<td>Anteony</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA366</td>
<td>Anteony</td>
<td>L3b</td>
</tr>
<tr>
<td>MA367</td>
<td>Anteony</td>
<td>L3b</td>
</tr>
<tr>
<td>MA368</td>
<td>Anteony</td>
<td>F3b</td>
</tr>
<tr>
<td>MA369</td>
<td>Anteony</td>
<td>F3b</td>
</tr>
<tr>
<td>MA370</td>
<td>Anteony</td>
<td>M23</td>
</tr>
<tr>
<td>MA371</td>
<td>Anteony</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA372</td>
<td>Anteony</td>
<td>F3b</td>
</tr>
<tr>
<td>MA373</td>
<td>Anteony</td>
<td>L3b</td>
</tr>
<tr>
<td>MA374</td>
<td>Anteony</td>
<td>L3e3</td>
</tr>
<tr>
<td>MA375</td>
<td>Anteony</td>
<td>L3e2b3</td>
</tr>
<tr>
<td>MA376</td>
<td>Anteony</td>
<td>L2a1</td>
</tr>
<tr>
<td>MA377</td>
<td>Anteony</td>
<td>M23</td>
</tr>
<tr>
<td>MA378</td>
<td>Anteony</td>
<td>L3d</td>
</tr>
<tr>
<td>MA379</td>
<td>Anteony</td>
<td>L2a1</td>
</tr>
<tr>
<td>MA380</td>
<td>Anteony</td>
<td>L3b</td>
</tr>
<tr>
<td>MA381</td>
<td>Anteony</td>
<td>M7c3c</td>
</tr>
<tr>
<td>MA382</td>
<td>Anteony</td>
<td>F3b</td>
</tr>
<tr>
<td>Code</td>
<td>Anteony</td>
<td>Sequence 1</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>MA383</td>
<td>L2a1</td>
<td>C T C A T A A A C C G G C A G</td>
</tr>
<tr>
<td>MA384</td>
<td>B4a1a1a</td>
<td>C C</td>
</tr>
<tr>
<td>MA385</td>
<td>L0a1'4</td>
<td>C T T G T A A A C T</td>
</tr>
<tr>
<td>MA386</td>
<td>M32c</td>
<td>T T</td>
</tr>
<tr>
<td>MA387</td>
<td>M7c3c</td>
<td>T T</td>
</tr>
<tr>
<td>MA388</td>
<td>L2a1</td>
<td>C T C A T A A A C C G G C A G</td>
</tr>
<tr>
<td>MA389</td>
<td>L3b</td>
<td>C T T A T A A A T C</td>
</tr>
<tr>
<td>MA390</td>
<td>L3e3</td>
<td>C T T A T A A A T C</td>
</tr>
<tr>
<td>MA391</td>
<td>F3b</td>
<td>C C</td>
</tr>
<tr>
<td>MA392</td>
<td>L2a1</td>
<td>C T C A T A A A C C G G C A G</td>
</tr>
<tr>
<td>MA393</td>
<td>B4a1a1a</td>
<td>C C</td>
</tr>
<tr>
<td>MA394</td>
<td>L3e2b3</td>
<td>C T T A T A A A T C</td>
</tr>
<tr>
<td>MA395</td>
<td>L2a1</td>
<td>C T C A T A A A C C G G C A G</td>
</tr>
<tr>
<td>MA396</td>
<td>L3b</td>
<td>C T T A T A A A T C</td>
</tr>
<tr>
<td>MA397</td>
<td>L0a1'4</td>
<td>C T T G T A A A C T</td>
</tr>
<tr>
<td>MA398</td>
<td>L3b</td>
<td>C T T A T A A A T C</td>
</tr>
<tr>
<td>MA399</td>
<td>L2a1</td>
<td>C T C A T A A A C C G G C A G</td>
</tr>
<tr>
<td>MA400</td>
<td>M23</td>
<td>T T</td>
</tr>
<tr>
<td>MA401</td>
<td>M23</td>
<td>T T</td>
</tr>
<tr>
<td>MA402</td>
<td>M23</td>
<td>T T</td>
</tr>
<tr>
<td>MA403</td>
<td>L3e2b3</td>
<td>C T T A T A A A T C</td>
</tr>
<tr>
<td>MA404</td>
<td>M23</td>
<td>T T</td>
</tr>
<tr>
<td>MA405</td>
<td>Q1</td>
<td>T T</td>
</tr>
<tr>
<td>MA406</td>
<td>L3k</td>
<td>C T T A T A A A T C</td>
</tr>
<tr>
<td>MA409</td>
<td>L0a2</td>
<td>C T T G T A A A C T</td>
</tr>
<tr>
<td>MA410</td>
<td>L3e1a</td>
<td>C T T A T A A A T C</td>
</tr>
<tr>
<td>MA411</td>
<td>F3b</td>
<td>C C</td>
</tr>
<tr>
<td>MA412</td>
<td>M23</td>
<td>T T</td>
</tr>
<tr>
<td>MA413</td>
<td>M23</td>
<td>T T</td>
</tr>
<tr>
<td>MA414</td>
<td>Anteony</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>MA415</td>
<td>Anteony</td>
<td>L2a1</td>
</tr>
<tr>
<td>MA416</td>
<td>Anteony</td>
<td>L3e3</td>
</tr>
<tr>
<td>MA436</td>
<td>Anteony</td>
<td>F3b</td>
</tr>
<tr>
<td>MA417</td>
<td>Anteony</td>
<td>L3b</td>
</tr>
<tr>
<td>MA418</td>
<td>Anteony</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA419</td>
<td>Anteony</td>
<td>M7c3c</td>
</tr>
<tr>
<td>MA420</td>
<td>Anteony</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA421</td>
<td>Anteony</td>
<td>L3e3</td>
</tr>
<tr>
<td>MA422</td>
<td>Anteony</td>
<td>L3b</td>
</tr>
<tr>
<td>MA423</td>
<td>Anteony</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA424</td>
<td>Anteony</td>
<td>L3e2b3</td>
</tr>
<tr>
<td>MA425</td>
<td>Anteony</td>
<td>L2a1</td>
</tr>
<tr>
<td>MA426</td>
<td>Anteony</td>
<td>M7c3c</td>
</tr>
<tr>
<td>MA427</td>
<td>Anteony</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA428</td>
<td>Anteony</td>
<td>M32c</td>
</tr>
<tr>
<td>MA429</td>
<td>Anteony</td>
<td>L2a1</td>
</tr>
<tr>
<td>MA430</td>
<td>Anteony</td>
<td>L0a2</td>
</tr>
<tr>
<td>MA431</td>
<td>Anteony</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA432</td>
<td>Anteony</td>
<td>L3b</td>
</tr>
<tr>
<td>MA433</td>
<td>Anteony</td>
<td>L3b</td>
</tr>
<tr>
<td>MA434</td>
<td>Anteony</td>
<td>M32c</td>
</tr>
<tr>
<td>MA435</td>
<td>Anteony</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA437</td>
<td>Anteony</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA438</td>
<td>Anteony</td>
<td>L3e2b3</td>
</tr>
<tr>
<td>MA439</td>
<td>Anteony</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA440</td>
<td>Anteony</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA441</td>
<td>Anteony</td>
<td>M23</td>
</tr>
<tr>
<td>MA442</td>
<td>Anteony</td>
<td>L0a2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA443</td>
<td>Antalaotra</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA444</td>
<td>Antalaotra</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA445</td>
<td>Antalaotra</td>
<td>F3b</td>
</tr>
<tr>
<td>MA447</td>
<td>Antalaotra</td>
<td>L3b</td>
</tr>
<tr>
<td>MA448</td>
<td>Antalaotra</td>
<td>M32c</td>
</tr>
<tr>
<td>MA449</td>
<td>Antalaotra</td>
<td>M7c3c</td>
</tr>
<tr>
<td>MA450</td>
<td>Antalaotra</td>
<td>M23</td>
</tr>
<tr>
<td>MA451</td>
<td>Antalaotra</td>
<td>E1a</td>
</tr>
<tr>
<td>MA453</td>
<td>Antalaotra</td>
<td>M23</td>
</tr>
<tr>
<td>MA454</td>
<td>Antalaotra</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA455</td>
<td>Antalaotra</td>
<td>F3b</td>
</tr>
<tr>
<td>MA456</td>
<td>Antalaotra</td>
<td>M32c</td>
</tr>
<tr>
<td>MA457</td>
<td>Antalaotra</td>
<td>F3b</td>
</tr>
<tr>
<td>MA458</td>
<td>Antalaotra</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA459</td>
<td>Antalaotra</td>
<td>F3b</td>
</tr>
<tr>
<td>MA460</td>
<td>Antalaotra</td>
<td>F3b</td>
</tr>
<tr>
<td>MA461</td>
<td>Antalaotra</td>
<td>L3e3</td>
</tr>
<tr>
<td>MA462</td>
<td>Antalaotra</td>
<td>M23</td>
</tr>
<tr>
<td>MA463</td>
<td>Antalaotra</td>
<td>M23</td>
</tr>
<tr>
<td>MA464</td>
<td>Antalaotra</td>
<td>L3b</td>
</tr>
<tr>
<td>MA465</td>
<td>Antalaotra</td>
<td>F3b</td>
</tr>
<tr>
<td>MA466</td>
<td>Antalaotra</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA467</td>
<td>Antalaotra</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA468</td>
<td>Antalaotra</td>
<td>B4a1a1a</td>
</tr>
<tr>
<td>MA469</td>
<td>Antalaotra</td>
<td>L3b</td>
</tr>
<tr>
<td>MA470</td>
<td>Antalaotra</td>
<td>M23</td>
</tr>
<tr>
<td>MA 314</td>
<td>Autre</td>
<td>F3b</td>
</tr>
<tr>
<td>MA446</td>
<td>Autre</td>
<td>M23</td>
</tr>
</tbody>
</table>
Annexe 10. Tableau des F_{ST} par paire de populations sur la base des fréquences des polymorphismes Gm.

<table>
<thead>
<tr>
<th></th>
<th>Antemoro</th>
<th>Northern Fhereňa</th>
<th>Southern Fhereňa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_{ST}</td>
<td>significativité</td>
<td>F_{ST}</td>
</tr>
<tr>
<td>Antemoro</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Northern Fhereňa</td>
<td>0.00626</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>Southern Fhereňa</td>
<td>0.00644</td>
<td>0.02606</td>
<td>*</td>
</tr>
<tr>
<td>Comoros</td>
<td>0.09069</td>
<td>0.10506</td>
<td>0.05587</td>
</tr>
<tr>
<td>Bechuana</td>
<td>0.11384</td>
<td>0.13058</td>
<td>0.06667</td>
</tr>
<tr>
<td>Kgalagadi desert</td>
<td>0.09328</td>
<td>0.10307</td>
<td>0.09182</td>
</tr>
<tr>
<td>Bushmen South central</td>
<td>0.16331</td>
<td>0.16375</td>
<td>0.15457</td>
</tr>
<tr>
<td>Bushmen mainly south</td>
<td>0.18165</td>
<td>0.18232</td>
<td>0.16804</td>
</tr>
<tr>
<td>Lenje (Zambia)</td>
<td>0.11325</td>
<td>0.13870</td>
<td>0.06587</td>
</tr>
<tr>
<td>Plateau Tonga (Zambia)</td>
<td>0.13296</td>
<td>0.15630</td>
<td>0.08101</td>
</tr>
<tr>
<td>Valey Tonga (Zambezi)</td>
<td>0.11770</td>
<td>0.14274</td>
<td>0.07738</td>
</tr>
<tr>
<td>Shangaan-Tonga (Mozambique)</td>
<td>0.12820</td>
<td>0.15026</td>
<td>0.05938</td>
</tr>
<tr>
<td>Hlubi (South Africa)</td>
<td>0.10468</td>
<td>0.11859</td>
<td>0.05138</td>
</tr>
<tr>
<td>Ndebele (South Africa)</td>
<td>0.13039</td>
<td>0.15450</td>
<td>0.07558</td>
</tr>
<tr>
<td>Venda (South Africa)</td>
<td>0.10137</td>
<td>0.11859</td>
<td>0.04577</td>
</tr>
<tr>
<td>Angola mixed tribes</td>
<td>0.20200</td>
<td>0.22489</td>
<td>0.14661</td>
</tr>
<tr>
<td>Diriko (South-west Africa)</td>
<td>0.09702</td>
<td>0.11820</td>
<td>0.07735</td>
</tr>
<tr>
<td>Kuangari (South-west Africa)</td>
<td>0.10917</td>
<td>0.12903</td>
<td>0.05077</td>
</tr>
<tr>
<td>Sambio (South-west Africa)</td>
<td>0.10151</td>
<td>0.12152</td>
<td>0.04281</td>
</tr>
<tr>
<td>Kuambi (Ovamboland) (South-west Africa)</td>
<td>0.19058</td>
<td>0.21371</td>
<td>0.12604</td>
</tr>
<tr>
<td>Kuanyama (South-west Africa)</td>
<td>0.14559</td>
<td>0.16909</td>
<td>0.08166</td>
</tr>
<tr>
<td>Pygmy Aka</td>
<td>0.28023</td>
<td>0.31026</td>
<td>0.21290</td>
</tr>
<tr>
<td>Pygmy Babinga</td>
<td>0.27477</td>
<td>0.29782</td>
<td>0.22665</td>
</tr>
<tr>
<td>Bantu Mlozi</td>
<td>0.12723</td>
<td>0.15125</td>
<td>0.06672</td>
</tr>
<tr>
<td>Bantu Xhosa</td>
<td>0.10126</td>
<td>0.11292</td>
<td>0.06846</td>
</tr>
<tr>
<td>Berbers low Kabylie</td>
<td>0.26453</td>
<td>0.25528</td>
<td>0.26538</td>
</tr>
<tr>
<td>Berbers high Kabylie</td>
<td>0.27400</td>
<td>0.26391</td>
<td>0.27760</td>
</tr>
<tr>
<td>Berbers Mozabite from Ghardaïa</td>
<td>0.23427</td>
<td>0.22493</td>
<td>0.23611</td>
</tr>
<tr>
<td>Touaregs Issoumarenene</td>
<td>0.20358</td>
<td>0.19708</td>
<td>0.20624</td>
</tr>
<tr>
<td>Berbers from Djerba</td>
<td>0.26139</td>
<td>0.24839</td>
<td>0.26902</td>
</tr>
<tr>
<td>Arabs from Djerba</td>
<td>0.30662</td>
<td>0.29402</td>
<td>0.31758</td>
</tr>
<tr>
<td>Libyans from Tripoli and Benghazi</td>
<td>0.29917</td>
<td>0.28859</td>
<td>0.30704</td>
</tr>
<tr>
<td>Berbers from Bouhria</td>
<td>0.30004</td>
<td>0.28919</td>
<td>0.31016</td>
</tr>
<tr>
<td>Berbers from Khenifra</td>
<td>0.25926</td>
<td>0.25077</td>
<td>0.26259</td>
</tr>
<tr>
<td>Arabs from Doukkala</td>
<td>0.24132</td>
<td>0.23203</td>
<td>0.24497</td>
</tr>
<tr>
<td>Berbers from Asni</td>
<td>0.24374</td>
<td>0.23429</td>
<td>0.24637</td>
</tr>
<tr>
<td>Berbers from Amizmiz</td>
<td>0.23092</td>
<td>0.22268</td>
<td>0.23079</td>
</tr>
<tr>
<td>Touaregs Kel Nam</td>
<td>0.26741</td>
<td>0.25934</td>
<td>0.26638</td>
</tr>
<tr>
<td>Tunisian Berbers</td>
<td>0.29368</td>
<td>0.28287</td>
<td>0.29983</td>
</tr>
<tr>
<td>Berbers from Takrouna-Jeradou</td>
<td>0.19561</td>
<td>0.19121</td>
<td>0.19289</td>
</tr>
<tr>
<td>Berbers from Douiret-Chenini</td>
<td>0.35902</td>
<td>0.34621</td>
<td>0.37664</td>
</tr>
<tr>
<td>Berbers from Kesra</td>
<td>0.40395</td>
<td>0.38948</td>
<td>0.42839</td>
</tr>
<tr>
<td>Group</td>
<td>1st Value</td>
<td>2nd Value</td>
<td>3rd Value</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Arabs from Mahdia</td>
<td>0.32810</td>
<td>0.31774</td>
<td>0.33688</td>
</tr>
<tr>
<td>Arabs from Sfax</td>
<td>0.29751</td>
<td>0.28631</td>
<td>0.30510</td>
</tr>
<tr>
<td>Berbers from Sened</td>
<td>0.24534</td>
<td>0.23555</td>
<td>0.24986</td>
</tr>
<tr>
<td>Egyptians</td>
<td>0.23590</td>
<td>0.23150</td>
<td>0.22792</td>
</tr>
<tr>
<td>Siwa Oasis (Egypt)</td>
<td>0.18374</td>
<td>0.18357</td>
<td>0.15955</td>
</tr>
<tr>
<td>Tunisians from Monastir</td>
<td>0.30322</td>
<td>0.29437</td>
<td>0.31160</td>
</tr>
<tr>
<td>Issas (Djibouti)</td>
<td>0.13733</td>
<td>0.13015</td>
<td>0.11602</td>
</tr>
<tr>
<td>Amhara Tigrai</td>
<td>0.11491</td>
<td>0.11778</td>
<td>0.08628</td>
</tr>
<tr>
<td>Sidamo from Ethiopia</td>
<td>0.11356</td>
<td>0.11795</td>
<td>0.07768</td>
</tr>
<tr>
<td>Mandara (Cameroon)</td>
<td>0.18365</td>
<td>0.20572</td>
<td>0.13020</td>
</tr>
<tr>
<td>Fulbe (Cameroon)</td>
<td>0.20172</td>
<td>0.22271</td>
<td>0.14291</td>
</tr>
<tr>
<td>Fall (Cameroon)</td>
<td>0.13266</td>
<td>0.15481</td>
<td>0.08617</td>
</tr>
<tr>
<td>Bamileke (Cameroon)</td>
<td>0.22048</td>
<td>0.24145</td>
<td>0.15227</td>
</tr>
<tr>
<td>Bassa (Cameroon)</td>
<td>0.17847</td>
<td>0.19914</td>
<td>0.11566</td>
</tr>
<tr>
<td>Ewondo (Cameroon)</td>
<td>0.12763</td>
<td>0.15063</td>
<td>0.08965</td>
</tr>
<tr>
<td>Abron (Ivory Coast)</td>
<td>0.11921</td>
<td>0.14046</td>
<td>0.06650</td>
</tr>
<tr>
<td>Yacouba (Ivory Coast)</td>
<td>0.11645</td>
<td>0.13985</td>
<td>0.08228</td>
</tr>
<tr>
<td>Baoule (Ivory Coast)</td>
<td>0.10105</td>
<td>0.12405</td>
<td>0.07763</td>
</tr>
<tr>
<td>Ahizi (Ivory Coast)</td>
<td>0.09194</td>
<td>0.11415</td>
<td>0.06884</td>
</tr>
<tr>
<td>Dogon (Bendiagara - Mali)</td>
<td>0.20427</td>
<td>0.22861</td>
<td>0.14395</td>
</tr>
<tr>
<td>Bobo (Tara - Mali)</td>
<td>0.09528</td>
<td>0.11708</td>
<td>0.06708</td>
</tr>
<tr>
<td>Bwa (Sirao - Mali)</td>
<td>0.15156</td>
<td>0.17458</td>
<td>0.09717</td>
</tr>
<tr>
<td>Yoruba (Nigeria - Ibadan)</td>
<td>0.13922</td>
<td>0.16428</td>
<td>0.08830</td>
</tr>
<tr>
<td>Mendenka (Senegal)</td>
<td>0.17721</td>
<td>0.20502</td>
<td>0.12366</td>
</tr>
<tr>
<td>Fulani (Senegal)</td>
<td>0.16266</td>
<td>0.18700</td>
<td>0.09877</td>
</tr>
<tr>
<td>Acre (Israel)</td>
<td>0.30792</td>
<td>0.29658</td>
<td>0.31554</td>
</tr>
<tr>
<td>Afghan (Afghanistan)</td>
<td>0.25379</td>
<td>0.23838</td>
<td>0.26871</td>
</tr>
<tr>
<td>Basrah (Iraq)</td>
<td>0.30647</td>
<td>0.29847</td>
<td>0.30833</td>
</tr>
<tr>
<td>Beduin (Israel)</td>
<td>0.29388</td>
<td>0.27899</td>
<td>0.30507</td>
</tr>
<tr>
<td>Iraq (Baghdad, Arab)</td>
<td>0.41075</td>
<td>0.39616</td>
<td>0.43560</td>
</tr>
<tr>
<td>Iran (Armenians, Armenians)</td>
<td>0.41178</td>
<td>0.39828</td>
<td>0.43442</td>
</tr>
<tr>
<td>Iran (Shosaavan, Giliak)</td>
<td>0.37886</td>
<td>0.36435</td>
<td>0.39930</td>
</tr>
<tr>
<td>Iran (Tavalesh, Turkic)</td>
<td>0.33895</td>
<td>0.32357</td>
<td>0.35794</td>
</tr>
<tr>
<td>Iran (Teheran, Persian)</td>
<td>0.30785</td>
<td>0.29267</td>
<td>0.32267</td>
</tr>
<tr>
<td>Iran (Babol, Mazandarian)</td>
<td>0.36061</td>
<td>0.34548</td>
<td>0.38067</td>
</tr>
<tr>
<td>Iran (Gorgon, Mazandarian)</td>
<td>0.32180</td>
<td>0.30612</td>
<td>0.34054</td>
</tr>
<tr>
<td>Iran (Mazanderanian, Mazandarian)</td>
<td>0.45487</td>
<td>0.44269</td>
<td>0.47726</td>
</tr>
<tr>
<td>Iran (Northern Gorgon, Persian)</td>
<td>0.33210</td>
<td>0.31576</td>
<td>0.34893</td>
</tr>
<tr>
<td>Iran (Gonbad, Turkman)</td>
<td>0.29506</td>
<td>0.28278</td>
<td>0.31060</td>
</tr>
<tr>
<td>Lebanese (Druezes and Maronites)</td>
<td>0.47776</td>
<td>0.46511</td>
<td>0.50285</td>
</tr>
<tr>
<td>Lebanese (Arabs)</td>
<td>0.47234</td>
<td>0.46296</td>
<td>0.48135</td>
</tr>
<tr>
<td>Sunni (Saudi Arabia)</td>
<td>0.28939</td>
<td>0.27822</td>
<td>0.29941</td>
</tr>
<tr>
<td>Shia (Saudi Arabia)</td>
<td>0.26313</td>
<td>0.24986</td>
<td>0.26884</td>
</tr>
<tr>
<td>Turkey</td>
<td>0.42759</td>
<td>0.41395</td>
<td>0.45144</td>
</tr>
<tr>
<td>Yemenite</td>
<td>0.26881</td>
<td>0.26194</td>
<td>0.26092</td>
</tr>
<tr>
<td>Region/Population</td>
<td>Value1</td>
<td>Value2</td>
<td>Value3</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Yemen (North Yemen)</td>
<td>0.23916</td>
<td>+</td>
<td>0.23280</td>
</tr>
<tr>
<td>Iranian Guilaneans</td>
<td>0.39305</td>
<td>+</td>
<td>0.38053</td>
</tr>
<tr>
<td>Lebanese Sunni</td>
<td>0.40761</td>
<td>+</td>
<td>0.39570</td>
</tr>
<tr>
<td>Sikhs (India)</td>
<td>0.27235</td>
<td>+</td>
<td>0.25806</td>
</tr>
<tr>
<td>Deshia Khond (central India)</td>
<td>0.25150</td>
<td>+</td>
<td>0.24051</td>
</tr>
<tr>
<td>Binjal (central India)</td>
<td>0.20588</td>
<td>+</td>
<td>0.19352</td>
</tr>
<tr>
<td>Kisan (central India)</td>
<td>0.20746</td>
<td>+</td>
<td>0.19750</td>
</tr>
<tr>
<td>Dhurwa (central India)</td>
<td>0.19934</td>
<td>+</td>
<td>0.18989</td>
</tr>
<tr>
<td>Halba (central India)</td>
<td>0.23701</td>
<td>+</td>
<td>0.22320</td>
</tr>
<tr>
<td>Bhatra (central India)</td>
<td>0.20125</td>
<td>+</td>
<td>0.18955</td>
</tr>
<tr>
<td>Muria (central India)</td>
<td>0.26341</td>
<td>+</td>
<td>0.24943</td>
</tr>
<tr>
<td>Maria (central India)</td>
<td>0.23506</td>
<td>+</td>
<td>0.22143</td>
</tr>
<tr>
<td>Brahmins (Assan India)</td>
<td>0.26650</td>
<td>+</td>
<td>0.25122</td>
</tr>
<tr>
<td>Kalitas (Assan India)</td>
<td>0.19234</td>
<td>+</td>
<td>0.17940</td>
</tr>
<tr>
<td>Kaibartas (Assan India)</td>
<td>0.18693</td>
<td>+</td>
<td>0.17395</td>
</tr>
<tr>
<td>Muslims (Assan India)</td>
<td>0.17901</td>
<td>+</td>
<td>0.16561</td>
</tr>
<tr>
<td>Ahoms (Assan India)</td>
<td>0.18126</td>
<td>+</td>
<td>0.17061</td>
</tr>
<tr>
<td>Karbis (Assan India)</td>
<td>0.25218</td>
<td>+</td>
<td>0.24185</td>
</tr>
<tr>
<td>Kacharis (Assan India)</td>
<td>0.29483</td>
<td>+</td>
<td>0.28527</td>
</tr>
<tr>
<td>Sonowals (Assan India)</td>
<td>0.17075</td>
<td>+</td>
<td>0.15860</td>
</tr>
<tr>
<td>Chutiyas (Assan India)</td>
<td>0.19914</td>
<td>+</td>
<td>0.18500</td>
</tr>
<tr>
<td>Rajbanshis (Assan India)</td>
<td>0.16904</td>
<td>+</td>
<td>0.15533</td>
</tr>
<tr>
<td>Hindu (Andhra Pradesh)</td>
<td>0.26404</td>
<td>+</td>
<td>0.25039</td>
</tr>
<tr>
<td>Koya Dora (Andhra Pradesh)</td>
<td>0.21778</td>
<td>+</td>
<td>0.20687</td>
</tr>
<tr>
<td>Hindus from Delhi</td>
<td>0.27719</td>
<td>+</td>
<td>0.26655</td>
</tr>
<tr>
<td>Indians Naicker from Madras</td>
<td>0.30148</td>
<td>+</td>
<td>0.29020</td>
</tr>
<tr>
<td>Bataan</td>
<td>0.22488</td>
<td>+</td>
<td>0.21762</td>
</tr>
<tr>
<td>Zambales</td>
<td>0.19767</td>
<td>+</td>
<td>0.19032</td>
</tr>
<tr>
<td>Bali</td>
<td>0.35467</td>
<td>+</td>
<td>0.35083</td>
</tr>
<tr>
<td>Malay Senoi from Perak</td>
<td>0.57207</td>
<td>+</td>
<td>0.56385</td>
</tr>
<tr>
<td>Filipino from Samar</td>
<td>0.29491</td>
<td>+</td>
<td>0.28878</td>
</tr>
<tr>
<td>Central Motu</td>
<td>0.29197</td>
<td>+</td>
<td>0.29313</td>
</tr>
<tr>
<td>Mandang Takia</td>
<td>0.15800</td>
<td>+</td>
<td>0.15310</td>
</tr>
<tr>
<td>Milne bay (Kukuya)</td>
<td>0.22818</td>
<td>+</td>
<td>0.22482</td>
</tr>
<tr>
<td>Morobe Atsera</td>
<td>0.04261</td>
<td>+</td>
<td>0.05763</td>
</tr>
<tr>
<td>Tenis (Tench Islands)</td>
<td>0.20728</td>
<td>+</td>
<td>0.19800</td>
</tr>
<tr>
<td>New Britain Tolai</td>
<td>0.20007</td>
<td>+</td>
<td>0.19270</td>
</tr>
<tr>
<td>New Britain Kilenge</td>
<td>0.23005</td>
<td>+</td>
<td>0.22393</td>
</tr>
<tr>
<td>Bougainville Uruava</td>
<td>0.37132</td>
<td>+</td>
<td>0.36313</td>
</tr>
<tr>
<td>Bougainville Torau</td>
<td>0.48252</td>
<td>+</td>
<td>0.47583</td>
</tr>
<tr>
<td>Polynesian outliers Bellona</td>
<td>0.20115</td>
<td>+</td>
<td>0.19245</td>
</tr>
<tr>
<td>Polynesian outliers Rennell</td>
<td>0.19120</td>
<td>+</td>
<td>0.18156</td>
</tr>
<tr>
<td>Fiji Lau</td>
<td>0.21422</td>
<td>+</td>
<td>0.20503</td>
</tr>
<tr>
<td>Fiji Viti</td>
<td>0.30848</td>
<td>+</td>
<td>0.30094</td>
</tr>
<tr>
<td>Central province Fuyuge</td>
<td>0.30149</td>
<td>+</td>
<td>0.29454</td>
</tr>
<tr>
<td>Region</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Central province Towade</td>
<td>0.46708</td>
<td>+</td>
<td>0.45385</td>
</tr>
<tr>
<td>East island province North Fore</td>
<td>0.40876</td>
<td>+</td>
<td>0.40248</td>
</tr>
<tr>
<td>East island province South Fore</td>
<td>0.36499</td>
<td>+</td>
<td>0.35729</td>
</tr>
<tr>
<td>East island province Kamano</td>
<td>0.35497</td>
<td>+</td>
<td>0.34346</td>
</tr>
<tr>
<td>East island province Pawaian</td>
<td>0.04389</td>
<td>+</td>
<td>0.05143</td>
</tr>
<tr>
<td>East island province Simbari</td>
<td>0.18888</td>
<td>+</td>
<td>0.19035</td>
</tr>
<tr>
<td>East island province Usurufa</td>
<td>0.44309</td>
<td>+</td>
<td>0.43464</td>
</tr>
<tr>
<td>East sepik province Abelam</td>
<td>0.57296</td>
<td>+</td>
<td>0.56334</td>
</tr>
<tr>
<td>East sepik province Iatmul</td>
<td>0.45384</td>
<td>+</td>
<td>0.44203</td>
</tr>
<tr>
<td>East sepik province Yambes</td>
<td>0.37851</td>
<td>+</td>
<td>0.36653</td>
</tr>
<tr>
<td>Enga</td>
<td>0.45083</td>
<td>+</td>
<td>0.44422</td>
</tr>
<tr>
<td>Kapua (Gulf province)</td>
<td>0.11902</td>
<td>+</td>
<td>0.12009</td>
</tr>
<tr>
<td>Gainj-Kalam (Madang province)</td>
<td>0.14513</td>
<td>+</td>
<td>0.13990</td>
</tr>
<tr>
<td>Daga (Milne bay province)</td>
<td>0.33607</td>
<td>+</td>
<td>0.32218</td>
</tr>
<tr>
<td>Morobe province Gumu-Samane</td>
<td>0.05434</td>
<td>+</td>
<td>0.06045</td>
</tr>
<tr>
<td>Morobe province Kunimaipa</td>
<td>0.21032</td>
<td>+</td>
<td>0.20396</td>
</tr>
<tr>
<td>Morobe province Wafa</td>
<td>0.25125</td>
<td>+</td>
<td>0.24611</td>
</tr>
<tr>
<td>Morobe province Watut</td>
<td>0.32909</td>
<td>+</td>
<td>0.32622</td>
</tr>
<tr>
<td>Morobe province Weri</td>
<td>0.30441</td>
<td>+</td>
<td>0.30051</td>
</tr>
<tr>
<td>Morobe province Yupna</td>
<td>0.16698</td>
<td>+</td>
<td>0.16730</td>
</tr>
<tr>
<td>Northern province Binare</td>
<td>0.06189</td>
<td>+</td>
<td>0.06264</td>
</tr>
<tr>
<td>Northern province Doriaidi</td>
<td>0.06227</td>
<td>+</td>
<td>0.06420</td>
</tr>
<tr>
<td>Northern province Guhu-Samane</td>
<td>0.27399</td>
<td>+</td>
<td>0.26767</td>
</tr>
<tr>
<td>Northern province Hunjara</td>
<td>0.14042</td>
<td>+</td>
<td>0.13570</td>
</tr>
<tr>
<td>Kuman (Simbu)</td>
<td>0.35269</td>
<td>+</td>
<td>0.34599</td>
</tr>
<tr>
<td>Southern highland province Huli</td>
<td>0.23371</td>
<td>+</td>
<td>0.23696</td>
</tr>
<tr>
<td>Irian Jaya Mungai</td>
<td>0.42735</td>
<td>+</td>
<td>0.41938</td>
</tr>
<tr>
<td>New Britain Non Austronesian speaking Baining</td>
<td>0.26063</td>
<td>+</td>
<td>0.24581</td>
</tr>
<tr>
<td>New Britain Non Austronesian speaking Sulka</td>
<td>0.18178</td>
<td>+</td>
<td>0.17352</td>
</tr>
<tr>
<td>Bougainville Non Austronesian speaking Aita</td>
<td>0.24896</td>
<td>+</td>
<td>0.24228</td>
</tr>
<tr>
<td>Bougainville Non Austronesian speaking Rotokas</td>
<td>0.24737</td>
<td>+</td>
<td>0.23970</td>
</tr>
<tr>
<td>Bougainville Non Austronesian speaking Eivo</td>
<td>0.54145</td>
<td>+</td>
<td>0.53713</td>
</tr>
<tr>
<td>Bougainville Non Austronesian speaking Nasioi</td>
<td>0.36561</td>
<td>+</td>
<td>0.35842</td>
</tr>
<tr>
<td>Bougainville Non Austronesian speaking Nagovisi</td>
<td>0.59300</td>
<td>+</td>
<td>0.58725</td>
</tr>
<tr>
<td>Bougainville Non Austronesian speaking Simeku</td>
<td>0.41217</td>
<td>+</td>
<td>0.40738</td>
</tr>
<tr>
<td>Malaiti Baegu</td>
<td>0.31476</td>
<td>+</td>
<td>0.30800</td>
</tr>
<tr>
<td>Malaiti Kwaio</td>
<td>0.57270</td>
<td>+</td>
<td>0.56755</td>
</tr>
<tr>
<td>Negrito (Mindanao)</td>
<td>0.22544</td>
<td>+</td>
<td>0.21607</td>
</tr>
<tr>
<td>Negrito (Luzon)</td>
<td>0.19767</td>
<td>+</td>
<td>0.19032</td>
</tr>
<tr>
<td>Micronesians</td>
<td>0.43002</td>
<td>+</td>
<td>0.42395</td>
</tr>
<tr>
<td>Pag Island</td>
<td>0.58586</td>
<td>+</td>
<td>0.57601</td>
</tr>
<tr>
<td>Region</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Albanians</td>
<td>0.44392</td>
<td>+</td>
<td>0.42977</td>
</tr>
<tr>
<td>Italia (Pavia)</td>
<td>0.54018</td>
<td>+</td>
<td>0.52817</td>
</tr>
<tr>
<td>Italia (Sardinia)</td>
<td>0.60151</td>
<td>+</td>
<td>0.59244</td>
</tr>
<tr>
<td>Madonie (Sicily)</td>
<td>0.47518</td>
<td>+</td>
<td>0.46336</td>
</tr>
<tr>
<td>France (14 provinces)</td>
<td>0.44259</td>
<td>+</td>
<td>0.43245</td>
</tr>
<tr>
<td>Corsica</td>
<td>0.40957</td>
<td>+</td>
<td>0.39578</td>
</tr>
<tr>
<td>Basque</td>
<td>0.39832</td>
<td>+</td>
<td>0.38717</td>
</tr>
<tr>
<td>Central Pyrenees</td>
<td>0.39075</td>
<td>+</td>
<td>0.38111</td>
</tr>
<tr>
<td>Eastern Pyrenees</td>
<td>0.40558</td>
<td>+</td>
<td>0.39462</td>
</tr>
<tr>
<td>Cantabria (Montes de Pas)</td>
<td>0.34219</td>
<td>+</td>
<td>0.32829</td>
</tr>
<tr>
<td>Galicia</td>
<td>0.41108</td>
<td>+</td>
<td>0.39969</td>
</tr>
<tr>
<td>Val d’Aran</td>
<td>0.39214</td>
<td>+</td>
<td>0.37957</td>
</tr>
<tr>
<td>Valence</td>
<td>0.40399</td>
<td>+</td>
<td>0.39089</td>
</tr>
<tr>
<td>Canaries (Tenerife)</td>
<td>0.37581</td>
<td>+</td>
<td>0.36146</td>
</tr>
<tr>
<td>Andalousia (Huelva)</td>
<td>0.42022</td>
<td>+</td>
<td>0.40834</td>
</tr>
</tbody>
</table>
Annexe 11. Tableau des F_{ST} par paire de populations sur la base des fréquences des haplogroupes Y.

<table>
<thead>
<tr>
<th></th>
<th>Ampanabaka</th>
<th></th>
<th>Antalaoтра</th>
<th></th>
<th>Anteony</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampanabaka</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteony</td>
<td>0.31664</td>
<td>+</td>
<td>0.16051</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antandroy</td>
<td>0.00750</td>
<td>-</td>
<td>0.26312</td>
<td>+</td>
<td>0.38024</td>
<td>+</td>
</tr>
<tr>
<td>Antanosy</td>
<td>0.05669</td>
<td>+</td>
<td>0.11941</td>
<td>+</td>
<td>0.26578</td>
<td>+</td>
</tr>
<tr>
<td>Comores</td>
<td>0.08978</td>
<td>+</td>
<td>0.11477</td>
<td>+</td>
<td>0.22337</td>
<td>+</td>
</tr>
<tr>
<td>Mikea Mikea-vezo</td>
<td>0.06864</td>
<td>+</td>
<td>0.16897</td>
<td>+</td>
<td>0.31891</td>
<td>+</td>
</tr>
<tr>
<td>Vezo Nord Tuélar</td>
<td>0.01617</td>
<td>-</td>
<td>0.30595</td>
<td>+</td>
<td>0.42315</td>
<td>+</td>
</tr>
<tr>
<td>Vezo Sud Tuléar</td>
<td>-0.00810</td>
<td>-</td>
<td>0.24402</td>
<td>+</td>
<td>0.36632</td>
<td>+</td>
</tr>
<tr>
<td>Hautes Terres Madagascar</td>
<td>0.13919</td>
<td>+</td>
<td>0.04064</td>
<td>+</td>
<td>0.21931</td>
<td>+</td>
</tr>
<tr>
<td>Angola Cabinda</td>
<td>0.02905</td>
<td>-</td>
<td>0.37818</td>
<td>+</td>
<td>0.46437</td>
<td>+</td>
</tr>
<tr>
<td>Angola Nyaneka-Nkhumbi</td>
<td>0.04965</td>
<td>+</td>
<td>0.47172</td>
<td>+</td>
<td>0.55806</td>
<td>+</td>
</tr>
<tr>
<td>Angola Ovimbudu</td>
<td>0.04502</td>
<td>+</td>
<td>0.47291</td>
<td>+</td>
<td>0.54891</td>
<td>+</td>
</tr>
<tr>
<td>DRC Mbuti Pygmées</td>
<td>0.19099</td>
<td>+</td>
<td>0.19990</td>
<td>+</td>
<td>0.31638</td>
<td>+</td>
</tr>
<tr>
<td>Afrique Sud Ikung</td>
<td>0.21482</td>
<td>+</td>
<td>0.23373</td>
<td>+</td>
<td>0.32574</td>
<td>+</td>
</tr>
<tr>
<td>Afrique Sud Khwe</td>
<td>0.11796</td>
<td>+</td>
<td>0.24889</td>
<td>+</td>
<td>0.33064</td>
<td>+</td>
</tr>
<tr>
<td>Rwanda Hutu</td>
<td>0.04186</td>
<td>+</td>
<td>0.44910</td>
<td>+</td>
<td>0.53877</td>
<td>+</td>
</tr>
<tr>
<td>Rwanda Tutsi</td>
<td>0.03599</td>
<td>+</td>
<td>0.41178</td>
<td>+</td>
<td>0.49665</td>
<td>+</td>
</tr>
<tr>
<td>Mozambique divers</td>
<td>0.51330</td>
<td>+</td>
<td>0.34020</td>
<td>+</td>
<td>0.43975</td>
<td>+</td>
</tr>
<tr>
<td>Zambie Est</td>
<td>0.07148</td>
<td>+</td>
<td>0.49647</td>
<td>+</td>
<td>0.59311</td>
<td>+</td>
</tr>
<tr>
<td>Zambie Ouest Bantous Ouest</td>
<td>0.06430</td>
<td>+</td>
<td>0.54129</td>
<td>+</td>
<td>0.61501</td>
<td>+</td>
</tr>
<tr>
<td>Zambie Ouest Bantous Est</td>
<td>0.05373</td>
<td>+</td>
<td>0.54481</td>
<td>+</td>
<td>0.60938</td>
<td>+</td>
</tr>
<tr>
<td>Guinée Equatoriale divers</td>
<td>0.05077</td>
<td>+</td>
<td>0.27790</td>
<td>+</td>
<td>0.35313</td>
<td>+</td>
</tr>
<tr>
<td>Benin</td>
<td>0.08655</td>
<td>+</td>
<td>0.52084</td>
<td>+</td>
<td>0.61642</td>
<td>+</td>
</tr>
<tr>
<td>Burkina Faso Fulbe</td>
<td>0.08617</td>
<td>+</td>
<td>0.52545</td>
<td>+</td>
<td>0.61028</td>
<td>+</td>
</tr>
<tr>
<td>Burkina Faso Mossi</td>
<td>0.06706</td>
<td>+</td>
<td>0.51434</td>
<td>+</td>
<td>0.60214</td>
<td>+</td>
</tr>
<tr>
<td>Burkina Faso Rimaibe</td>
<td>0.09962</td>
<td>+</td>
<td>0.28083</td>
<td>+</td>
<td>0.39300</td>
<td>+</td>
</tr>
<tr>
<td>Cameroon Bakaka</td>
<td>0.23876</td>
<td>+</td>
<td>0.66630</td>
<td>+</td>
<td>0.75939</td>
<td>+</td>
</tr>
<tr>
<td>Cameroon Bamileke</td>
<td>0.13920</td>
<td>+</td>
<td>0.60423</td>
<td>+</td>
<td>0.69322</td>
<td>+</td>
</tr>
<tr>
<td>Cameroon Daba</td>
<td>0.28776</td>
<td>+</td>
<td>0.19870</td>
<td>+</td>
<td>0.31379</td>
<td>+</td>
</tr>
<tr>
<td>Cameroon Ewondo</td>
<td>0.05113</td>
<td>+</td>
<td>0.48739</td>
<td>+</td>
<td>0.57060</td>
<td>+</td>
</tr>
<tr>
<td>Cameroon Falli</td>
<td>0.09440</td>
<td>+</td>
<td>0.27346</td>
<td>+</td>
<td>0.35516</td>
<td>+</td>
</tr>
<tr>
<td>Cameroon Fulbe</td>
<td>0.47428</td>
<td>+</td>
<td>0.28597</td>
<td>+</td>
<td>0.38403</td>
<td>+</td>
</tr>
<tr>
<td>Cameroon divers.Adamawa</td>
<td>0.34336</td>
<td>+</td>
<td>0.27556</td>
<td>+</td>
<td>0.36619</td>
<td>+</td>
</tr>
<tr>
<td>Cameroon divers.Chadic</td>
<td>0.46034</td>
<td>+</td>
<td>0.32345</td>
<td>+</td>
<td>0.41704</td>
<td>+</td>
</tr>
<tr>
<td>Cameroon Nilo-Saharien</td>
<td>0.24091</td>
<td>+</td>
<td>0.21405</td>
<td>+</td>
<td>0.31570</td>
<td>+</td>
</tr>
<tr>
<td>Cameroon Tali</td>
<td>0.06456</td>
<td>+</td>
<td>0.36200</td>
<td>+</td>
<td>0.44236</td>
<td>+</td>
</tr>
<tr>
<td>Cameroon Uldeme</td>
<td>0.79597</td>
<td>+</td>
<td>0.62187</td>
<td>+</td>
<td>0.72117</td>
<td>+</td>
</tr>
<tr>
<td>République Centre Anfricaine Lissongo</td>
<td>0.05395</td>
<td>+</td>
<td>0.46659</td>
<td>+</td>
<td>0.54180</td>
<td>+</td>
</tr>
<tr>
<td>Cabo Verde Nord</td>
<td>0.29012</td>
<td>+</td>
<td>0.12558</td>
<td>+</td>
<td>0.20651</td>
<td>+</td>
</tr>
<tr>
<td>Cabo Verde Sud</td>
<td>0.23313</td>
<td>+</td>
<td>0.10514</td>
<td>+</td>
<td>0.17929</td>
<td>+</td>
</tr>
<tr>
<td>Benin Fon</td>
<td>0.13144</td>
<td>+</td>
<td>0.58629</td>
<td>+</td>
<td>0.67810</td>
<td>+</td>
</tr>
<tr>
<td>Groupe</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameroun Bantous</td>
<td>0.04331</td>
<td>+</td>
<td>0.40278</td>
<td>+</td>
<td>0.48384</td>
<td>+</td>
</tr>
<tr>
<td>Senegal divers.</td>
<td>0.03774</td>
<td>+</td>
<td>0.43688</td>
<td>+</td>
<td>0.51343</td>
<td>+</td>
</tr>
<tr>
<td>Tanzanie Datoga</td>
<td>0.60676</td>
<td>+</td>
<td>0.42811</td>
<td>+</td>
<td>0.51671</td>
<td>+</td>
</tr>
<tr>
<td>Tanzanie Hadzabe</td>
<td>0.45534</td>
<td>+</td>
<td>0.27686</td>
<td>+</td>
<td>0.37314</td>
<td>+</td>
</tr>
<tr>
<td>Kenya</td>
<td>0.15430</td>
<td>+</td>
<td>0.16585</td>
<td>+</td>
<td>0.27665</td>
<td>+</td>
</tr>
<tr>
<td>Tanzanie Wairak</td>
<td>0.17815</td>
<td>+</td>
<td>0.21737</td>
<td>+</td>
<td>0.28183</td>
<td>+</td>
</tr>
<tr>
<td>Kenya</td>
<td>0.19471</td>
<td>+</td>
<td>0.22983</td>
<td>+</td>
<td>0.31374</td>
<td>+</td>
</tr>
<tr>
<td>Kamoja. Ouganda</td>
<td>0.44809</td>
<td>+</td>
<td>0.30825</td>
<td>+</td>
<td>0.41177</td>
<td>+</td>
</tr>
<tr>
<td>Maasai Kenya nilotic</td>
<td>0.22230</td>
<td>+</td>
<td>0.16771</td>
<td>+</td>
<td>0.26855</td>
<td>+</td>
</tr>
<tr>
<td>Ethiopie Juifs</td>
<td>0.40942</td>
<td>+</td>
<td>0.23052</td>
<td>+</td>
<td>0.32333</td>
<td>+</td>
</tr>
<tr>
<td>Ethiopie Amhara</td>
<td>0.41147</td>
<td>+</td>
<td>0.14938</td>
<td>+</td>
<td>0.22106</td>
<td>+</td>
</tr>
<tr>
<td>Ethiopie Oromo</td>
<td>0.49116</td>
<td>+</td>
<td>0.29143</td>
<td>+</td>
<td>0.37010</td>
<td>+</td>
</tr>
<tr>
<td>Ethiopie Vallée de l'Omo</td>
<td>0.38852</td>
<td>+</td>
<td>0.19662</td>
<td>+</td>
<td>0.28973</td>
<td>+</td>
</tr>
<tr>
<td>Somalie</td>
<td>0.63607</td>
<td>+</td>
<td>0.48336</td>
<td>+</td>
<td>0.53339</td>
<td>+</td>
</tr>
<tr>
<td>Namibie</td>
<td>0.18402</td>
<td>+</td>
<td>0.23885</td>
<td>+</td>
<td>0.32237</td>
<td>+</td>
</tr>
<tr>
<td>Egyptie</td>
<td>0.34173</td>
<td>+</td>
<td>0.13121</td>
<td>+</td>
<td>0.18784</td>
<td>+</td>
</tr>
<tr>
<td>Algerie divers.</td>
<td>0.39096</td>
<td>+</td>
<td>0.20186</td>
<td>+</td>
<td>0.28183</td>
<td>+</td>
</tr>
<tr>
<td>Lybie Arabes</td>
<td>0.43031</td>
<td>+</td>
<td>0.19312</td>
<td>+</td>
<td>0.27595</td>
<td>+</td>
</tr>
<tr>
<td>Maroc Arabes</td>
<td>0.60594</td>
<td>+</td>
<td>0.42688</td>
<td>+</td>
<td>0.51556</td>
<td>+</td>
</tr>
<tr>
<td>Maroc Berbères</td>
<td>0.60035</td>
<td>+</td>
<td>0.43620</td>
<td>+</td>
<td>0.52345</td>
<td>+</td>
</tr>
<tr>
<td>Maroc</td>
<td>0.45937</td>
<td>+</td>
<td>0.32352</td>
<td>+</td>
<td>0.39495</td>
<td>+</td>
</tr>
<tr>
<td>Tunisie</td>
<td>0.43236</td>
<td>+</td>
<td>0.21776</td>
<td>+</td>
<td>0.28789</td>
<td>+</td>
</tr>
<tr>
<td>Pakistan</td>
<td>0.31252</td>
<td>+</td>
<td>0.11930</td>
<td>+</td>
<td>0.22293</td>
<td>+</td>
</tr>
<tr>
<td>Naikpod</td>
<td>0.40489</td>
<td>+</td>
<td>0.16888</td>
<td>+</td>
<td>0.29755</td>
<td>+</td>
</tr>
<tr>
<td>Andh</td>
<td>0.43974</td>
<td>+</td>
<td>0.20162</td>
<td>+</td>
<td>0.33258</td>
<td>+</td>
</tr>
<tr>
<td>Pardhan</td>
<td>0.35015</td>
<td>+</td>
<td>0.13551</td>
<td>+</td>
<td>0.25636</td>
<td>+</td>
</tr>
<tr>
<td>Est Inde</td>
<td>0.49195</td>
<td>+</td>
<td>0.15278</td>
<td>+</td>
<td>0.36686</td>
<td>+</td>
</tr>
<tr>
<td>Mahadeokoli</td>
<td>0.42581</td>
<td>+</td>
<td>0.18809</td>
<td>+</td>
<td>0.30773</td>
<td>+</td>
</tr>
<tr>
<td>Thakar</td>
<td>0.39601</td>
<td>+</td>
<td>0.15443</td>
<td>+</td>
<td>0.28487</td>
<td>+</td>
</tr>
<tr>
<td>Musulman Shia</td>
<td>0.34031</td>
<td>+</td>
<td>0.12980</td>
<td>+</td>
<td>0.23568</td>
<td>+</td>
</tr>
<tr>
<td>Musulman Sunni</td>
<td>0.38237</td>
<td>+</td>
<td>0.17733</td>
<td>+</td>
<td>0.29006</td>
<td>+</td>
</tr>
<tr>
<td>Inde Nord</td>
<td>0.39619</td>
<td>+</td>
<td>0.17920</td>
<td>+</td>
<td>0.29491</td>
<td>+</td>
</tr>
<tr>
<td>Inde Nord-Est</td>
<td>0.53624</td>
<td>+</td>
<td>0.30591</td>
<td>+</td>
<td>0.43662</td>
<td>+</td>
</tr>
<tr>
<td>Inde Est</td>
<td>0.36464</td>
<td>+</td>
<td>0.10510</td>
<td>+</td>
<td>0.26464</td>
<td>+</td>
</tr>
<tr>
<td>Inde Sud</td>
<td>0.36052</td>
<td>+</td>
<td>0.16020</td>
<td>+</td>
<td>0.27869</td>
<td>+</td>
</tr>
<tr>
<td>Inde Centre</td>
<td>0.51501</td>
<td>+</td>
<td>0.25087</td>
<td>+</td>
<td>0.40558</td>
<td>+</td>
</tr>
<tr>
<td>Inde Ouest</td>
<td>0.38965</td>
<td>+</td>
<td>0.16273</td>
<td>+</td>
<td>0.28280</td>
<td>+</td>
</tr>
<tr>
<td>Nord Portugal</td>
<td>0.47259</td>
<td>+</td>
<td>0.25603</td>
<td>+</td>
<td>0.36366</td>
<td>+</td>
</tr>
<tr>
<td>Sud Portugal</td>
<td>0.40566</td>
<td>+</td>
<td>0.19940</td>
<td>+</td>
<td>0.30601</td>
<td>+</td>
</tr>
<tr>
<td>Potuguais Juifs</td>
<td>0.37331</td>
<td>+</td>
<td>0.14482</td>
<td>+</td>
<td>0.20813</td>
<td>+</td>
</tr>
<tr>
<td>France</td>
<td>0.61501</td>
<td>+</td>
<td>0.40361</td>
<td>+</td>
<td>0.51194</td>
<td>+</td>
</tr>
<tr>
<td>Basque</td>
<td>0.70540</td>
<td>+</td>
<td>0.53092</td>
<td>+</td>
<td>0.62689</td>
<td>+</td>
</tr>
<tr>
<td>Est Andalousie</td>
<td>0.56320</td>
<td>+</td>
<td>0.36623</td>
<td>+</td>
<td>0.46870</td>
<td>+</td>
</tr>
<tr>
<td>Galice</td>
<td>0.47320</td>
<td>+</td>
<td>0.27454</td>
<td>+</td>
<td>0.37517</td>
<td>+</td>
</tr>
<tr>
<td>Nord-Ouest Castille</td>
<td>0.47906</td>
<td>+</td>
<td>0.28512</td>
<td>+</td>
<td>0.38460</td>
<td>+</td>
</tr>
<tr>
<td>Groupe</td>
<td>Valeur</td>
<td>Valeur</td>
<td>Valeur</td>
<td>Valeur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iranien Arabes</td>
<td>0.41161</td>
<td>+</td>
<td>0.17291</td>
<td>+</td>
<td>0.30011</td>
<td>+</td>
</tr>
<tr>
<td>Israël Druzes Galilée</td>
<td>0.31495</td>
<td>+</td>
<td>0.11175</td>
<td>+</td>
<td>0.20651</td>
<td>+</td>
</tr>
<tr>
<td>Palestinien</td>
<td>0.35795</td>
<td>+</td>
<td>0.13180</td>
<td>+</td>
<td>0.20609</td>
<td>+</td>
</tr>
<tr>
<td>Koweït Bédouins</td>
<td>0.62755</td>
<td>+</td>
<td>0.36344</td>
<td>+</td>
<td>0.42317</td>
<td>+</td>
</tr>
<tr>
<td>Soqotra divers</td>
<td>0.67615</td>
<td>+</td>
<td>0.37920</td>
<td>+</td>
<td>0.45852</td>
<td>+</td>
</tr>
<tr>
<td>Arabie Saoudite</td>
<td>0.32832</td>
<td>+</td>
<td>0.10334</td>
<td>+</td>
<td>0.16407</td>
<td>+</td>
</tr>
<tr>
<td>Qatar</td>
<td>0.44756</td>
<td>+</td>
<td>0.16156</td>
<td>+</td>
<td>0.24598</td>
<td>+</td>
</tr>
<tr>
<td>UAE</td>
<td>0.31207</td>
<td>+</td>
<td>0.09138</td>
<td>+</td>
<td>0.15462</td>
<td>+</td>
</tr>
<tr>
<td>Oman</td>
<td>0.32688</td>
<td>+</td>
<td>0.09330</td>
<td>+</td>
<td>0.14189</td>
<td>+</td>
</tr>
<tr>
<td>Yémen</td>
<td>0.55627</td>
<td>+</td>
<td>0.26304</td>
<td>+</td>
<td>0.34006</td>
<td>+</td>
</tr>
<tr>
<td>Liban</td>
<td>0.30399</td>
<td>+</td>
<td>0.10206</td>
<td>+</td>
<td>0.17749</td>
<td>+</td>
</tr>
<tr>
<td>Jordanie</td>
<td>0.36087</td>
<td>+</td>
<td>0.13027</td>
<td>+</td>
<td>0.21427</td>
<td>+</td>
</tr>
<tr>
<td>Iraq</td>
<td>0.34062</td>
<td>+</td>
<td>0.10419</td>
<td>+</td>
<td>0.17676</td>
<td>+</td>
</tr>
<tr>
<td>Iran</td>
<td>0.30900</td>
<td>+</td>
<td>0.09850</td>
<td>+</td>
<td>0.19561</td>
<td>+</td>
</tr>
<tr>
<td>Syriens</td>
<td>0.32949</td>
<td>+</td>
<td>0.10617</td>
<td>+</td>
<td>0.17475</td>
<td>+</td>
</tr>
<tr>
<td>Iraniens</td>
<td>0.30729</td>
<td>+</td>
<td>0.11204</td>
<td>+</td>
<td>0.20406</td>
<td>+</td>
</tr>
<tr>
<td>Chypre</td>
<td>0.35103</td>
<td>+</td>
<td>0.13438</td>
<td>+</td>
<td>0.22146</td>
<td>+</td>
</tr>
<tr>
<td>Turquie divers.</td>
<td>0.36506</td>
<td>+</td>
<td>0.13491</td>
<td>+</td>
<td>0.24827</td>
<td>+</td>
</tr>
<tr>
<td>Turquie Anatolie</td>
<td>0.29780</td>
<td>+</td>
<td>0.10435</td>
<td>+</td>
<td>0.19111</td>
<td>+</td>
</tr>
<tr>
<td>Vanuatu-Maewo</td>
<td>0.40438</td>
<td>+</td>
<td>0.17320</td>
<td>+</td>
<td>0.29166</td>
<td>+</td>
</tr>
<tr>
<td>Sud-Ouest Nouvelle Guinée Una</td>
<td>0.79807</td>
<td>+</td>
<td>0.58138</td>
<td>+</td>
<td>0.70009</td>
<td>+</td>
</tr>
<tr>
<td>PNG Trobiand</td>
<td>0.37876</td>
<td>+</td>
<td>0.14090</td>
<td>+</td>
<td>0.29352</td>
<td>+</td>
</tr>
<tr>
<td>PNG Kapuna</td>
<td>0.54444</td>
<td>+</td>
<td>0.32102</td>
<td>+</td>
<td>0.43240</td>
<td>+</td>
</tr>
<tr>
<td>Cook</td>
<td>0.62744</td>
<td>+</td>
<td>0.42289</td>
<td>+</td>
<td>0.52956</td>
<td>+</td>
</tr>
<tr>
<td>Futuna</td>
<td>0.43829</td>
<td>+</td>
<td>0.21717</td>
<td>+</td>
<td>0.32559</td>
<td>+</td>
</tr>
<tr>
<td>Fidji</td>
<td>0.39384</td>
<td>+</td>
<td>0.19448</td>
<td>+</td>
<td>0.30165</td>
<td>+</td>
</tr>
<tr>
<td>Tuvalu</td>
<td>0.43450</td>
<td>+</td>
<td>0.23512</td>
<td>+</td>
<td>0.33990</td>
<td>+</td>
</tr>
<tr>
<td>Ouest Samoa</td>
<td>0.49305</td>
<td>+</td>
<td>0.27656</td>
<td>+</td>
<td>0.38964</td>
<td>+</td>
</tr>
<tr>
<td>Nias</td>
<td>0.93541</td>
<td>+</td>
<td>0.82276</td>
<td>+</td>
<td>0.91999</td>
<td>+</td>
</tr>
<tr>
<td>Philippines</td>
<td>0.45563</td>
<td>+</td>
<td>0.21794</td>
<td>+</td>
<td>0.34959</td>
<td>+</td>
</tr>
<tr>
<td>Vietnam</td>
<td>0.41420</td>
<td>+</td>
<td>0.12518</td>
<td>+</td>
<td>0.30188</td>
<td>+</td>
</tr>
<tr>
<td>Bali</td>
<td>0.42772</td>
<td>+</td>
<td>0.10718</td>
<td>+</td>
<td>0.35497</td>
<td>+</td>
</tr>
<tr>
<td>Java</td>
<td>0.41636</td>
<td>+</td>
<td>0.06734</td>
<td>+</td>
<td>0.30572</td>
<td>+</td>
</tr>
<tr>
<td>Borneo</td>
<td>0.38009</td>
<td>+</td>
<td>0.12610</td>
<td>+</td>
<td>0.28195</td>
<td>+</td>
</tr>
<tr>
<td>Nias divers</td>
<td>0.78733</td>
<td>+</td>
<td>0.52270</td>
<td>+</td>
<td>0.73189</td>
<td>+</td>
</tr>
<tr>
<td>Mentawai</td>
<td>0.64605</td>
<td>+</td>
<td>0.39032</td>
<td>+</td>
<td>0.60254</td>
<td>+</td>
</tr>
<tr>
<td>Flores</td>
<td>0.37058</td>
<td>+</td>
<td>0.19134</td>
<td>+</td>
<td>0.30136</td>
<td>+</td>
</tr>
<tr>
<td>Sulawesi</td>
<td>0.33712</td>
<td>+</td>
<td>0.07163</td>
<td>+</td>
<td>0.24091</td>
<td>+</td>
</tr>
<tr>
<td>Sumba</td>
<td>0.44165</td>
<td>+</td>
<td>0.27408</td>
<td>+</td>
<td>0.37796</td>
<td>+</td>
</tr>
<tr>
<td>Lembata</td>
<td>0.43049</td>
<td>+</td>
<td>0.23261</td>
<td>+</td>
<td>0.33676</td>
<td>+</td>
</tr>
<tr>
<td>Adonara divers. (langue austronesienne)</td>
<td>0.73845</td>
<td>+</td>
<td>0.55727</td>
<td>+</td>
<td>0.65824</td>
<td>+</td>
</tr>
<tr>
<td>Flores divers. (langue austronesienne)</td>
<td>0.50397</td>
<td>+</td>
<td>0.29944</td>
<td>+</td>
<td>0.40306</td>
<td>+</td>
</tr>
<tr>
<td>Solor divers. (langue austronesienne)</td>
<td>0.45657</td>
<td>+</td>
<td>0.22868</td>
<td>+</td>
<td>0.33974</td>
<td>+</td>
</tr>
<tr>
<td>Sumatra</td>
<td>0.35285</td>
<td>+</td>
<td>0.09115</td>
<td>+</td>
<td>0.25245</td>
<td>+</td>
</tr>
<tr>
<td>Java divers</td>
<td>0.40449</td>
<td>+</td>
<td>0.06689</td>
<td>+</td>
<td>0.29906</td>
<td>+</td>
</tr>
</tbody>
</table>
Annexe 12. Tableau des haplotypes partagés à 17 STR-Y entre les Ampanabaka et les autres populations malgaches et des Comores.

<table>
<thead>
<tr>
<th></th>
<th>Ampanabaka</th>
<th>Antaisaka</th>
<th>Antandroy</th>
<th>Antanosy</th>
<th>Comores</th>
<th>Andriana</th>
<th>Merina</th>
<th>Tsimahafotsy</th>
<th>Mieka</th>
<th>Vezo Nord</th>
<th>Vezo Sud</th>
</tr>
</thead>
<tbody>
<tr>
<td>N ind.</td>
<td>36</td>
<td>8</td>
<td>46</td>
<td>47</td>
<td>293</td>
<td>21</td>
<td>9</td>
<td>5</td>
<td>59</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td>N hap.</td>
<td>36</td>
<td>7</td>
<td>36</td>
<td>47</td>
<td>250</td>
<td>13</td>
<td>8</td>
<td>3</td>
<td>44</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>H1</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>H2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>H3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>H6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H11</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H12</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H13</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H14</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H15</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H16</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H17</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H18</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H19</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H20</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H21</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H22</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H23</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H24</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H25</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H26</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H27</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H28</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H29</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H30</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H31</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H32</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H33</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H34</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H35</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H36</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Annexe 13. Tableau des haplotypes partagés à 17 STR-Y entre les Anteony et les autres populations malgaches et des Comores.

<table>
<thead>
<tr>
<th></th>
<th>Anteony</th>
<th>Antaisaka</th>
<th>Antandroy</th>
<th>Antanosy</th>
<th>Comores</th>
<th>Andriana</th>
<th>Merina</th>
<th>Tsimahafotsy</th>
<th>Mikea</th>
<th>Vezo Nord</th>
<th>Vezo Sud</th>
</tr>
</thead>
<tbody>
<tr>
<td>N ind.</td>
<td>40</td>
<td>8</td>
<td>46</td>
<td>47</td>
<td>293</td>
<td>21</td>
<td>9</td>
<td>5</td>
<td>59</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td>N hap.</td>
<td>21</td>
<td>7</td>
<td>36</td>
<td>47</td>
<td>250</td>
<td>13</td>
<td>8</td>
<td>3</td>
<td>44</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>H1</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>H2</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>H3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>H4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>H8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H11</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Annexe 14. Tableau des haplotypes partagés à 17 STR-Y entre les Antalalotra et les autres populations malgaches et des Comores.

<table>
<thead>
<tr>
<th></th>
<th>Antalaotra</th>
<th>Antaisaka</th>
<th>Antandroy</th>
<th>Antanosy</th>
<th>Comores</th>
<th>Andriana</th>
<th>Merina</th>
<th>Tsimahafotsy</th>
<th>Mikea</th>
<th>Vezo Nord</th>
<th>Vezo Sud</th>
</tr>
</thead>
<tbody>
<tr>
<td>N ind.</td>
<td>43</td>
<td>8</td>
<td>46</td>
<td>47</td>
<td>293</td>
<td>21</td>
<td>9</td>
<td>5</td>
<td>59</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td>N hap.</td>
<td>35</td>
<td>7</td>
<td>36</td>
<td>47</td>
<td>250</td>
<td>13</td>
<td>8</td>
<td>3</td>
<td>44</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>H1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>H2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>H6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>H8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>H9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H10</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>H11</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>H12</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H13</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H14</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H15</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H16</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H17</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H18</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H19</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H20</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H21</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H22</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H23</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H24</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H25</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H26</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H27</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H28</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H29</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H30</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H31</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H33</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H34</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H35</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Annexe 15. Tableau des haplotypes uniques partagés sur 7 marqueurs STR-Y avec notre échantillon Ampanabaka

<table>
<thead>
<tr>
<th></th>
<th>Nombre d'individus</th>
<th>Nombre d'haplotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eth1a</td>
<td>Eth1a</td>
</tr>
<tr>
<td>Ethiope Vallée de l'Omo</td>
<td>67</td>
<td>36</td>
</tr>
<tr>
<td>Kenya Massai</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>Guinée Equatoriale</td>
<td>101</td>
<td>63</td>
</tr>
<tr>
<td>Gabon</td>
<td>828</td>
<td>239</td>
</tr>
<tr>
<td>Benin</td>
<td>78</td>
<td>51</td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>90</td>
<td>50</td>
</tr>
<tr>
<td>République Centre Africaine</td>
<td>165</td>
<td>74</td>
</tr>
<tr>
<td>Guinée Bissau</td>
<td>161</td>
<td>106</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>323</td>
<td>142</td>
</tr>
<tr>
<td>Mozambique</td>
<td>154</td>
<td>56</td>
</tr>
<tr>
<td>Angola Nyaneka</td>
<td>75</td>
<td>40</td>
</tr>
<tr>
<td>Angola Ovimbudu</td>
<td>96</td>
<td>43</td>
</tr>
<tr>
<td>Angola divers</td>
<td>65</td>
<td>39</td>
</tr>
<tr>
<td>Somalie Danois divers</td>
<td>201</td>
<td>59</td>
</tr>
<tr>
<td>Tanzanie Sandawa</td>
<td>66</td>
<td>33</td>
</tr>
<tr>
<td>Tanzanie divers</td>
<td>132</td>
<td>67</td>
</tr>
<tr>
<td>Ouganda</td>
<td>118</td>
<td>52</td>
</tr>
<tr>
<td>Zambie Est, Bantous Est</td>
<td>88</td>
<td>49</td>
</tr>
<tr>
<td>Zambie Ouest Bantous Est</td>
<td>263</td>
<td>109</td>
</tr>
<tr>
<td>Zambie Ouest Bantous ouest</td>
<td>192</td>
<td>82</td>
</tr>
<tr>
<td>Tunisie</td>
<td>117</td>
<td>80</td>
</tr>
</tbody>
</table>

151
Tunisie Berbères divers	66	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Egitte divers	92	64	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Algérie	100	54	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Lybie	63	52	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Maroc marocain	515	212	1	1	0	1	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
Maroc Arabes divers	104	61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Mozabites	68	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Tunisie Sfax divers	105	64	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Namibie	54	32	1	0	0	0	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	0	0	0	0	
Iranien Iran	128	93	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Druzes Israel	234	89	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
Liban	650	298	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	
Palestine	364	181	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
Koweit	148	45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
Oman	99	68	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	
Arabie Saoudite	106	60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
Yemen	104	52	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	
Dubai	217	146	1	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	
Iran	104	91	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	
Chypre	163	97	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Syrie Syriens	161	124	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Turquie divers	140	78	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Turquie Anatolie	520	330	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	
Bangladesh	284	197	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Saraswat Brahmin	122	92	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Inde Tamoul Nadu	152	108	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Jat Sikhs	80	47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Nord Inde	78	56	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Inde Est	127	77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Inde Sud	295	155	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

152
Annexe 16. Tableau des haplotypes uniques partagés sur 7 marqueurs STR-Y avec notre échantillon Antalaotra

<p>| Annexe 16. Tableau des haplotypes uniques partagés sur 7 marqueurs STR-Y avec notre échantillon Antalaotra | Nombre d'individus | Nombre d'haplotypes | E1b1a | O1a2 | J2b | E1b1a | O1a2 | O1a2 | O1a2 | T1 | J1 | T1 | O2a1 | O2a1 | O2a1 | O2a1 | J2b | E2b | J2b | O2a1 | R1a1 | E1b1a |
| Ethiopie Vallée de l'Omo | 67 | 36 | 0 | 0 | 1 | 0 |
| Kenya Massai | 55 | 40 | 1 | 0 | 1 | 0 |
| Guinée Equatoriale | 101 | 63 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Gabon | 828 | 239 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| Benin | 78 | 51 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Côte d'Ivoire | 90 | 50 | 1 | 0 |
| République Centre Africaine | 165 | 74 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Guinée Bissau | 161 | 106 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Burkina Faso | 323 | 142 | 1 | 0 |
| Mozambique | 154 | 56 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Angola Nyaneka | 75 | 40 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Angola Ovimbudu | 96 | 43 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Angola divers | 65 | 39 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Somalie Danois divers | 201 | 59 | 0 |
| Tanzanie Sandawa | 66 | 33 | 1 | 0 |</p>
<table>
<thead>
<tr>
<th>Groupe</th>
<th>Code PCG</th>
<th>Nbre Hommes</th>
<th>Nbre Femmes</th>
<th>Nbre 14-19 ans</th>
<th>Nbre 20-34 ans</th>
<th>Nbre 35-44 ans</th>
<th>Nbre 45-70 ans</th>
<th>Nbre plus de 70 ans</th>
<th>Nbre Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanzanie divers</td>
<td>132</td>
<td>67</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ouganda</td>
<td>118</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zambie Est, Bantous Est</td>
<td>88</td>
<td>49</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Zambie Ouest Bantous Est</td>
<td>263</td>
<td>109</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Zambie Ouest Bantous ouest</td>
<td>192</td>
<td>82</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Tunisie</td>
<td>117</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Tunisie Berbères divers</td>
<td>66</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Egypte divers</td>
<td>92</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Algérie</td>
<td>100</td>
<td>54</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lybie</td>
<td>63</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maroc maroccaín</td>
<td>515</td>
<td>212</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Maroc Arabes divers</td>
<td>104</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mozabites</td>
<td>68</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tunisie Sfax divers</td>
<td>105</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Namibie</td>
<td>54</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iranien Iran</td>
<td>128</td>
<td>93</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Druzes Israel</td>
<td>234</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Liban</td>
<td>650</td>
<td>298</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Palestine</td>
<td>364</td>
<td>181</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Koweit</td>
<td>148</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oman</td>
<td>99</td>
<td>68</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arabie Saoudite</td>
<td>106</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yemen</td>
<td>104</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dubai</td>
<td>217</td>
<td>146</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iran</td>
<td>104</td>
<td>91</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chypre</td>
<td>163</td>
<td>97</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Syrie Syriens</td>
<td>161</td>
<td>124</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Turquie divers</td>
<td>140</td>
<td>78</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Turquie Anatolie</td>
<td>520</td>
<td>330</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Banglades</td>
<td>284</td>
<td>197</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Saraswat Brahmin</td>
<td>122</td>
<td>92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inde Tamoul Nadu</td>
<td>152</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jat Sikhs</td>
<td>80</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nord Inde</td>
<td>78</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Region</td>
<td>Code</td>
<td>Population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inde Est</td>
<td>127</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inde Sud</td>
<td>295</td>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre Inde</td>
<td>69</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouest Inde</td>
<td>59</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mahadeokoli</td>
<td>50</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thakar</td>
<td>48</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pakistan</td>
<td>177</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>207</td>
<td>162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>57</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nord Portugal</td>
<td>60</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sud Portugal</td>
<td>78</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est Andalousie</td>
<td>95</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galice</td>
<td>89</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espagne Nord Castille</td>
<td>130</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugais Juifs</td>
<td>86</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phillipines</td>
<td>76</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malais Singapour</td>
<td>180</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malais Malaisie</td>
<td>334</td>
<td>245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iban</td>
<td>105</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bidayuh</td>
<td>113</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanau</td>
<td>104</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timor</td>
<td>113</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flores</td>
<td>385</td>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lembata</td>
<td>89</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sumba</td>
<td>349</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vietnam</td>
<td>113</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bali</td>
<td>632</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borneo</td>
<td>85</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Java</td>
<td>61</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentawai</td>
<td>73</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nias</td>
<td>60</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Océanie divers</td>
<td>66</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papouasie NG</td>
<td>47</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tahiti</td>
<td>24</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanuatu</td>
<td>44</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thailande</td>
<td>41</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annexe 17. Tableau des haplotypes uniques partagés sur 7 marqueurs STR-Y avec notre échantillon Anteony

<table>
<thead>
<tr>
<th>Année</th>
<th>Nombre individus</th>
<th>Nombre haplotypes</th>
<th>E1b1a</th>
<th>E1b1a</th>
<th>E1b1a</th>
<th>E1b1a</th>
<th>T1</th>
<th>J1</th>
<th>T1</th>
<th>T1</th>
<th>T1</th>
<th>T1</th>
<th>T1</th>
<th>E1b1b</th>
<th>O2a1</th>
<th>Hap.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethiopie Vallée de l'Omo</td>
<td>67</td>
<td>36</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Kenya Massai</td>
<td>55</td>
<td>40</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guinée Equatoriale</td>
<td>101</td>
<td>63</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabon</td>
<td>828</td>
<td>239</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benin</td>
<td>78</td>
<td>51</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>90</td>
<td>50</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>République Centre Africaine</td>
<td>165</td>
<td>74</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guinée Bissau</td>
<td>161</td>
<td>106</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>323</td>
<td>142</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mozambique</td>
<td>154</td>
<td>56</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angola Nyaneka</td>
<td>75</td>
<td>40</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angola Ovimbudu</td>
<td>96</td>
<td>43</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angola divers</td>
<td>65</td>
<td>39</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somalie Danaïs divers</td>
<td>201</td>
<td>59</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanzanie Sandawa</td>
<td>66</td>
<td>33</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanzanie divers</td>
<td>132</td>
<td>67</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouganda</td>
<td>118</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zambie Est, Bantous Est</td>
<td>88</td>
<td>49</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zambie Ouest Bantous Est</td>
<td>263</td>
<td>109</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zambie Ouest Bantous ouest</td>
<td>192</td>
<td>82</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunisie</td>
<td>117</td>
<td>80</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunisie Berbères divers</td>
<td>66</td>
<td>25</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egypte divers</td>
<td>92</td>
<td>64</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algérie</td>
<td>100</td>
<td>54</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lybie</td>
<td>63</td>
<td>52</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maroc marocain</td>
<td>515</td>
<td>212</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maroc Arabes divers</td>
<td>104</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mozambites</td>
<td>68</td>
<td>22</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunisie Sfax divers</td>
<td>105</td>
<td>64</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Namibie</td>
<td>54</td>
<td>32</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iranien Iran</td>
<td>128</td>
<td>93</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Druzes Israel</td>
<td>234</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liban</td>
<td>650</td>
<td>298</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palestine</td>
<td>364</td>
<td>181</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koweït</td>
<td>148</td>
<td>45</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone</td>
<td>Population</td>
<td>Bénéficiaires</td>
<td>Arabe</td>
<td>锻炼</td>
<td>中文</td>
<td>日本</td>
<td>韩语</td>
<td>法语</td>
<td>罗马尼亚语</td>
<td>俄语</td>
<td>西班牙语</td>
<td>葡萄牙语</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>---------------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oman</td>
<td>99</td>
<td>68</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabie Saoudite</td>
<td>106</td>
<td>60</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yemen</td>
<td>104</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dubai</td>
<td>217</td>
<td>146</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iran</td>
<td>104</td>
<td>91</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chypre</td>
<td>163</td>
<td>97</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syrie Syriens</td>
<td>161</td>
<td>124</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turquie divers</td>
<td>140</td>
<td>78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turquie Anatolie</td>
<td>520</td>
<td>330</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bangladesh</td>
<td>284</td>
<td>197</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saraswat Brahmin</td>
<td>122</td>
<td>92</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inde Tamoul Nadu</td>
<td>152</td>
<td>108</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jat Sikhs</td>
<td>80</td>
<td>47</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nord Inde</td>
<td>78</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inde Est</td>
<td>127</td>
<td>77</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inde Sud</td>
<td>295</td>
<td>155</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre Inde</td>
<td>69</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouest Inde</td>
<td>59</td>
<td>49</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mahadeeokoli</td>
<td>50</td>
<td>39</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thakar</td>
<td>48</td>
<td>28</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pakistan</td>
<td>177</td>
<td>119</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sri-Lanka</td>
<td>207</td>
<td>162</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>57</td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nord Portugal</td>
<td>60</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sud Portugal</td>
<td>78</td>
<td>66</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est Andalousie</td>
<td>95</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galice</td>
<td>89</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espagne Nord Castille</td>
<td>130</td>
<td>85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugais Juifs</td>
<td>86</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phillipines</td>
<td>76</td>
<td>64</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malais Singapour</td>
<td>180</td>
<td>134</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malais Malaisie</td>
<td>334</td>
<td>245</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iban</td>
<td>105</td>
<td>57</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bidayuh</td>
<td>113</td>
<td>45</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanau</td>
<td>104</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timor</td>
<td>113</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flores</td>
<td>385</td>
<td>126</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lembata</td>
<td>89</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sumba</td>
<td>349</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vietnam</td>
<td>113</td>
<td>84</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bali</td>
<td>632</td>
<td>171</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borneo</td>
<td>85</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Java</td>
<td>61</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentawai</td>
<td>73</td>
<td>18</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nias</td>
<td>60</td>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Océanie divers</td>
<td>66</td>
<td>40</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papouasie NG</td>
<td>47</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tahiti</td>
<td>24</td>
<td>14</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanuatu</td>
<td>44</td>
<td>32</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thailande</td>
<td>41</td>
<td>39</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annexe 18. Tableau des F_{ST} pas paires de populations pour nos groupes Antemoro sur les données HVI

<table>
<thead>
<tr>
<th></th>
<th>Ampanabaka</th>
<th>Anteony</th>
<th>Antalaotra</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{ST}</td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>Significativité seuil 5%</td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>Ampanabaka</td>
<td>Anteony</td>
<td>Antalaotra</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td></td>
<td>$*</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>0.00308</td>
<td>0.02868</td>
<td>-0.01249</td>
</tr>
<tr>
<td>Groupe</td>
<td>Score 1</td>
<td>Score 2</td>
<td>Score 3</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Sahawari</td>
<td>0.06787</td>
<td>+</td>
<td>0.04662</td>
</tr>
<tr>
<td>Samaritain</td>
<td>0.33822</td>
<td>+</td>
<td>0.32356</td>
</tr>
<tr>
<td>Ethiopie Amharic Divers</td>
<td>0.05723</td>
<td>+</td>
<td>0.03393</td>
</tr>
<tr>
<td>Soudan Nubie</td>
<td>0.06086</td>
<td>+</td>
<td>0.02963</td>
</tr>
<tr>
<td>Tunisie Divers</td>
<td>0.10721</td>
<td>+</td>
<td>0.10270</td>
</tr>
<tr>
<td>Maroc Berbères de Bourhiah</td>
<td>0.09756</td>
<td>+</td>
<td>0.08690</td>
</tr>
<tr>
<td>Maroc Berbères de Figuig</td>
<td>0.06247</td>
<td>+</td>
<td>0.04542</td>
</tr>
<tr>
<td>Egypte Berbères de Siwa</td>
<td>0.10895</td>
<td>+</td>
<td>0.09627</td>
</tr>
<tr>
<td>Libye Tuaregs</td>
<td>0.12846</td>
<td>+</td>
<td>0.11908</td>
</tr>
<tr>
<td>Ethiopie divers</td>
<td>0.09378</td>
<td>+</td>
<td>0.05562</td>
</tr>
<tr>
<td>Thaïlande</td>
<td>0.08227</td>
<td>+</td>
<td>0.07177</td>
</tr>
<tr>
<td>Vietnam</td>
<td>0.09358</td>
<td>+</td>
<td>0.08819</td>
</tr>
<tr>
<td>Adonara</td>
<td>0.13116</td>
<td>+</td>
<td>0.12653</td>
</tr>
<tr>
<td>Flores</td>
<td>0.08710</td>
<td>+</td>
<td>0.10163</td>
</tr>
<tr>
<td>Banjamarsin</td>
<td>0.02975</td>
<td>+</td>
<td>0.03884</td>
</tr>
<tr>
<td>Nouvelle Guinée Hautes Terres</td>
<td>0.25259</td>
<td>+</td>
<td>0.22107</td>
</tr>
<tr>
<td>Iles Salomon</td>
<td>0.10630</td>
<td>+</td>
<td>0.12811</td>
</tr>
<tr>
<td>Bali</td>
<td>0.06684</td>
<td>+</td>
<td>0.06423</td>
</tr>
<tr>
<td>Sumatra Medan</td>
<td>0.04542</td>
<td>+</td>
<td>0.04369</td>
</tr>
<tr>
<td>Sumatra Pekanbaru</td>
<td>0.10916</td>
<td>+</td>
<td>0.10420</td>
</tr>
<tr>
<td>Province Manus</td>
<td>0.09683</td>
<td>+</td>
<td>0.12830</td>
</tr>
<tr>
<td>Nicobar</td>
<td>0.20554</td>
<td>+</td>
<td>0.18765</td>
</tr>
<tr>
<td>Onges Nicobar</td>
<td>0.32064</td>
<td>+</td>
<td>0.28845</td>
</tr>
<tr>
<td>Phillipins</td>
<td>0.05034</td>
<td>+</td>
<td>0.06103</td>
</tr>
<tr>
<td>Iban</td>
<td>0.06033</td>
<td>+</td>
<td>0.07499</td>
</tr>
<tr>
<td>Malay Kuala Lumpur</td>
<td>0.04972</td>
<td>+</td>
<td>0.05190</td>
</tr>
<tr>
<td>Malay Singapour</td>
<td>0.04378</td>
<td>+</td>
<td>0.04690</td>
</tr>
<tr>
<td>NG Gidra</td>
<td>0.23700</td>
<td>+</td>
<td>0.19917</td>
</tr>
<tr>
<td>Bismark Archipel</td>
<td>0.09704</td>
<td>+</td>
<td>0.10592</td>
</tr>
<tr>
<td>Vanuatu</td>
<td>0.20821</td>
<td>+</td>
<td>0.18571</td>
</tr>
<tr>
<td>Soqotra</td>
<td>0.17724</td>
<td>+</td>
<td>0.15978</td>
</tr>
<tr>
<td>Iran</td>
<td>0.10943</td>
<td>+</td>
<td>0.10852</td>
</tr>
<tr>
<td>Syrie</td>
<td>0.12800</td>
<td>+</td>
<td>0.12024</td>
</tr>
<tr>
<td>Yémen</td>
<td>0.05559</td>
<td>+</td>
<td>0.03587</td>
</tr>
<tr>
<td>Israël</td>
<td>0.09226</td>
<td>+</td>
<td>0.08427</td>
</tr>
<tr>
<td>Kurdes</td>
<td>0.13986</td>
<td>+</td>
<td>0.13276</td>
</tr>
<tr>
<td>Chypre</td>
<td>0.12860</td>
<td>+</td>
<td>0.11876</td>
</tr>
<tr>
<td>Iraq</td>
<td>0.13200</td>
<td>+</td>
<td>0.12602</td>
</tr>
<tr>
<td>Iranien</td>
<td>0.14142</td>
<td>+</td>
<td>0.14845</td>
</tr>
<tr>
<td>Dubai</td>
<td>0.05482</td>
<td>+</td>
<td>0.05209</td>
</tr>
<tr>
<td>Israël Druzes</td>
<td>0.11304</td>
<td>+</td>
<td>0.11458</td>
</tr>
<tr>
<td>Turquie divers</td>
<td>0.09878</td>
<td>+</td>
<td>0.10274</td>
</tr>
<tr>
<td>Jordanie</td>
<td>0.10029</td>
<td>+</td>
<td>0.09711</td>
</tr>
<tr>
<td>Iran kurdes</td>
<td>0.11875</td>
<td>+</td>
<td>0.11773</td>
</tr>
<tr>
<td>Iran persan</td>
<td>0.09001</td>
<td>+</td>
<td>0.09220</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Arabie Saoudite</td>
<td>0.09682</td>
<td>+ 0.09747</td>
<td>+ 0.08927</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>0.07566</td>
<td>+ 0.06392</td>
<td>+ 0.06978</td>
</tr>
<tr>
<td>Gujarat</td>
<td>0.07272</td>
<td>+ 0.07014</td>
<td>+ 0.06688</td>
</tr>
<tr>
<td>Inde Kamataka</td>
<td>0.09924</td>
<td>+ 0.09787</td>
<td>+ 0.09870</td>
</tr>
<tr>
<td>Inde Kerala</td>
<td>0.09643</td>
<td>+ 0.09415</td>
<td>+ 0.08908</td>
</tr>
<tr>
<td>Madyah Pradesh</td>
<td>0.07874</td>
<td>+ 0.07195</td>
<td>+ 0.07057</td>
</tr>
<tr>
<td>Inde Maharashtra</td>
<td>0.07309</td>
<td>+ 0.06866</td>
<td>+ 0.06764</td>
</tr>
<tr>
<td>Inde Orissa</td>
<td>0.06453</td>
<td>+ 0.06705</td>
<td>+ 0.06019</td>
</tr>
<tr>
<td>Punjab</td>
<td>0.08482</td>
<td>+ 0.08768</td>
<td>+ 0.07957</td>
</tr>
<tr>
<td>Tamoul Nadu</td>
<td>0.07087</td>
<td>+ 0.07347</td>
<td>+ 0.06917</td>
</tr>
<tr>
<td>Inde Tripura</td>
<td>0.06450</td>
<td>+ 0.05639</td>
<td>+ 0.06377</td>
</tr>
<tr>
<td>Uttard Pradesh</td>
<td>0.08493</td>
<td>+ 0.08333</td>
<td>+ 0.07997</td>
</tr>
<tr>
<td>Ouest Bengal</td>
<td>0.06903</td>
<td>+ 0.06565</td>
<td>+ 0.06733</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>0.06777</td>
<td>+ 0.06561</td>
<td>+ 0.06261</td>
</tr>
<tr>
<td>Hindous Inde</td>
<td>0.07336</td>
<td>+ 0.06996</td>
<td>+ 0.06934</td>
</tr>
<tr>
<td>Sicile</td>
<td>0.13612</td>
<td>+ 0.13838</td>
<td>+ 0.12421</td>
</tr>
<tr>
<td>Galicie</td>
<td>0.18710</td>
<td>+ 0.18053</td>
<td>+ 0.17246</td>
</tr>
<tr>
<td>Catalan</td>
<td>0.13107</td>
<td>+ 0.12519</td>
<td>+ 0.12026</td>
</tr>
<tr>
<td>Andalusie</td>
<td>0.14915</td>
<td>+ 0.14781</td>
<td>+ 0.13732</td>
</tr>
<tr>
<td>Portugais</td>
<td>0.15341</td>
<td>+ 0.14304</td>
<td>+ 0.14158</td>
</tr>
<tr>
<td>Corse</td>
<td>0.13907</td>
<td>+ 0.13813</td>
<td>+ 0.12944</td>
</tr>
<tr>
<td>France</td>
<td>0.16960</td>
<td>+ 0.16472</td>
<td>+ 0.15596</td>
</tr>
<tr>
<td>Anglais</td>
<td>0.15254</td>
<td>+ 0.14757</td>
<td>+ 0.14054</td>
</tr>
<tr>
<td>Grèce</td>
<td>0.15678</td>
<td>+ 0.15814</td>
<td>+ 0.14518</td>
</tr>
</tbody>
</table>
Annexe 19. Tableau des haplotypes partagés HVI entre les Ampanabaka et les autres populations malgaches

<table>
<thead>
<tr>
<th></th>
<th>Ampanabaka</th>
<th>Andriana</th>
<th>Antaisaka</th>
<th>Hautes Terres</th>
<th>Antanosy</th>
<th>Antandroy</th>
<th>Mkeia</th>
<th>Vezo Nord</th>
<th>Vezo Sud</th>
</tr>
</thead>
<tbody>
<tr>
<td>N ind.</td>
<td>48</td>
<td>32</td>
<td>11</td>
<td>52</td>
<td>21</td>
<td>25</td>
<td>28</td>
<td>127</td>
<td>52</td>
</tr>
<tr>
<td>N hap.</td>
<td>20</td>
<td>7</td>
<td>8</td>
<td>21</td>
<td>25</td>
<td>28</td>
<td>18</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Hap.01 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
Hap.02 1 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0
Hap.03 4 0 1 2 8 4 6 2 6 0 0 0 0 0 0 0 0 0
Hap.04 4 9 0 3 3 2 18 6 0 0 0 0 0 0 0 0 0 0
Hap.05 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hap.06 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hap.07 2 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Hap.08 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hap.09 3 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
Hap.10 11 16 2 4 11 16 17 4 15 0 0 0 0 0 0 0 0 0
Hap.11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hap.12 2 0 0 8 2 4 10 2 1 0 0 0 0 0 0 0 0 0
Hap.13 2 0 0 1 1 2 14 6 7 0 0 0 0 0 0 0 0 0
Hap.14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hap.15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hap.16 2 3 1 0 3 1 12 1 4 0 0 0 0 0 0 0 0 0
Hap.17 2 0 0 2 0 0 1 4 0 0 0 0 0 0 0 0 0 0
Hap.18 3 0 0 0 2 2 5 5 1 0 0 0 0 0 0 0 0 0
Hap.19 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Hap.20 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Annexe 20. Tableau des haplotypes partagés HVI entre les Antalaotra et les autres populations malgaches

<table>
<thead>
<tr>
<th></th>
<th>Antalaotra</th>
<th>Andriana</th>
<th>Antaisaka</th>
<th>Hautes Terres</th>
<th>Antanosy</th>
<th>Antandroy</th>
<th>Mkeia</th>
<th>Vezo Nord</th>
<th>Vezo Sud</th>
</tr>
</thead>
<tbody>
<tr>
<td>N ind.</td>
<td>40</td>
<td>32</td>
<td>11</td>
<td>52</td>
<td>21</td>
<td>25</td>
<td>28</td>
<td>127</td>
<td>52</td>
</tr>
<tr>
<td>N hap.</td>
<td>27</td>
<td>7</td>
<td>8</td>
<td>21</td>
<td>25</td>
<td>23</td>
<td>28</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

Hap.01 1 0 1 2 8 4 6 2 6 0 0 0 0 0 0 0 0 0
Hap.02 5 9 0 3 3 2 18 6 0 0 0 0 0 0 0 0 0
Hap.03 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hap.04 2 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
Hap.05 8 16 2 4 11 16 17 4 15 0 0 0 0 0 0 0 0 0
Hap.06 5 0 0 8 2 4 10 2 1 0 0 0 0 0 0 0 0 0
Hap.07 2 0 0 1 1 2 14 6 7 0 0 0 0 0 0 0 0 0
Hap.08 1 3 1 0 3 1 12 1 4 0 0 0 0 0 0 0 0 0
Hap.09 3 0 0 0 2 2 5 5 1 0 0 0 0 0 0 0 0 0
Hap.10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hap.11 2 1 0 1 2 7 3 3 1 0 0 0 0 0 0 0 0 0
Hap.12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hap.13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hap.14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hap.15 1 0 0 0 4 0 0 2 1 0 0 0 0 0 0 0 0 0
Hap.16 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hap.17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Annexe 21. Tableau des haplotypes partagés HVI entre les Anteony et les autres populations malgaches

<table>
<thead>
<tr>
<th>N hap.</th>
<th>Anteony</th>
<th>Andriana</th>
<th>Antaisaka</th>
<th>Hautes Terres</th>
<th>Antanosy</th>
<th>Antandroy</th>
<th>Mikea</th>
<th>Vezo Nord</th>
<th>Vezo Sud</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>47</td>
<td>32</td>
<td>11</td>
<td>52</td>
<td>59</td>
<td>127</td>
<td>52</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>N ind.</td>
<td>17</td>
<td>7</td>
<td>8</td>
<td>21</td>
<td>25</td>
<td>23</td>
<td>28</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

<p>| Hap.01 | 1 0 0 0 0 0 1 0 0 |
| Hap.02 | 1 0 0 0 1 0 2 0 0 |
| Hap.03 | 1 0 1 2 8 4 6 2 6 |
| Hap.04 | 3 9 0 3 3 2 18 6 0 |
| Hap.05 | 1 0 1 0 1 1 1 0 0 |
| Hap.06 | 1 0 3 0 2 0 0 0 0 |
| Hap.07 | 2 16 2 4 11 16 17 4 15 |
| Hap.08 | 3 0 0 8 2 4 10 2 1 |
| Hap.09 | 4 0 0 1 1 2 14 6 7 |
| Hap.10 | 1 0 0 2 0 0 1 4 0 |
| Hap.11 | 6 0 0 2 2 2 5 5 1 |
| Hap.12 | 1 0 0 0 1 0 0 0 0 |
| Hap.13 | 1 0 0 0 0 0 0 0 0 |
| Hap.14 | 3 0 0 0 0 0 0 0 0 |
| Hap.15 | 1 0 0 0 1 0 5 0 0 |
| Hap.16 | 3 0 0 0 0 0 0 0 0 |
| Hap.17 | 3 1 0 2 2 0 0 0 1 |
| Hap.18 | 1 0 0 0 0 0 0 0 0 |
| Hap.19 | 1 0 0 0 0 0 0 0 0 |
| Hap.20 | 1 0 0 0 1 0 0 0 0 |
| Hap.21 | 2 0 0 0 0 0 0 0 0 |
| Hap.22 | 1 1 0 1 2 7 3 3 1 |
| Hap.23 | 1 0 0 0 0 0 0 0 0 |
| Hap.24 | 1 0 0 0 0 0 0 0 0 |
| Hap.25 | 1 0 0 0 0 0 0 0 0 |
| Hap.26 | 1 0 0 0 0 0 0 0 0 |
| Hap.27 | 1 0 0 0 0 0 2 0 1 |</p>
<table>
<thead>
<tr>
<th>Annexe 22. Tableau des haplotypes uniques partagés sur HVI avec notre échantillon Ampanabaka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre d’individus</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Angola Nyaneka</td>
</tr>
<tr>
<td>Angola Ovimbudu</td>
</tr>
<tr>
<td>Fon Benin</td>
</tr>
<tr>
<td>Cabinda Angola</td>
</tr>
<tr>
<td>Cabo Verde</td>
</tr>
<tr>
<td>Cameroon Ngumba</td>
</tr>
<tr>
<td>Cameroon Pygmés Baka</td>
</tr>
<tr>
<td>Cameroon Pygmés Baloka</td>
</tr>
<tr>
<td>Guanche Îles Canaries</td>
</tr>
<tr>
<td>Egypte Arabes</td>
</tr>
<tr>
<td>Egypte Copte</td>
</tr>
<tr>
<td>Gabon Fong</td>
</tr>
<tr>
<td>Gabon Mitsogo</td>
</tr>
<tr>
<td>Gabon Nzebi</td>
</tr>
<tr>
<td>Guinée Bissau</td>
</tr>
<tr>
<td>Côte d’Ivoire Ahizi</td>
</tr>
<tr>
<td>Côte d’Ivoire Yacouba</td>
</tr>
<tr>
<td>Kenya swahili</td>
</tr>
<tr>
<td>Mali Malinke</td>
</tr>
<tr>
<td>Maures mauritanie</td>
</tr>
<tr>
<td>Maroc Berbère</td>
</tr>
<tr>
<td>Mozambique</td>
</tr>
<tr>
<td>Rwanda Hutu</td>
</tr>
<tr>
<td>Sao Tome</td>
</tr>
<tr>
<td>Sénégal Mendenka</td>
</tr>
<tr>
<td>Sénégal Wolof</td>
</tr>
</tbody>
</table>

165
<table>
<thead>
<tr>
<th>Country</th>
<th>Code</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa Kung</td>
<td>59</td>
<td>14</td>
</tr>
<tr>
<td>Tanzanie Hadza</td>
<td>79</td>
<td>26</td>
</tr>
<tr>
<td>Tanzanie Sandawe</td>
<td>82</td>
<td>28</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>58</td>
<td>38</td>
</tr>
<tr>
<td>Tunisie</td>
<td>47</td>
<td>42</td>
</tr>
<tr>
<td>Algerie</td>
<td>47</td>
<td>26</td>
</tr>
<tr>
<td>Sahawari</td>
<td>56</td>
<td>41</td>
</tr>
<tr>
<td>Samar Tunisie</td>
<td>124</td>
<td>6</td>
</tr>
<tr>
<td>Ethiopie Amharic</td>
<td>270</td>
<td>139</td>
</tr>
<tr>
<td>Soudan-Nubie</td>
<td>161</td>
<td>106</td>
</tr>
<tr>
<td>Tunisie divers</td>
<td>102</td>
<td>45</td>
</tr>
<tr>
<td>Maroc Berbères Bourhiah</td>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>Maroc Berbères Figuig</td>
<td>94</td>
<td>28</td>
</tr>
<tr>
<td>Egypte Berbères Siwa</td>
<td>78</td>
<td>22</td>
</tr>
<tr>
<td>Lybie divers</td>
<td>129</td>
<td>16</td>
</tr>
<tr>
<td>Ethiopie divers</td>
<td>116</td>
<td>71</td>
</tr>
<tr>
<td>Thailande divers</td>
<td>71</td>
<td>61</td>
</tr>
<tr>
<td>Vietnam</td>
<td>65</td>
<td>50</td>
</tr>
<tr>
<td>Adonara</td>
<td>73</td>
<td>30</td>
</tr>
<tr>
<td>Flores</td>
<td>73</td>
<td>37</td>
</tr>
<tr>
<td>Banjamarsin</td>
<td>110</td>
<td>80</td>
</tr>
<tr>
<td>Nouvelle Guinée Hautes Terres</td>
<td>71</td>
<td>26</td>
</tr>
<tr>
<td>Iles Salomon</td>
<td>64</td>
<td>14</td>
</tr>
<tr>
<td>Bali</td>
<td>64</td>
<td>52</td>
</tr>
<tr>
<td>Sumatra Medan</td>
<td>42</td>
<td>29</td>
</tr>
<tr>
<td>Sumatra Pekanbaru</td>
<td>54</td>
<td>34</td>
</tr>
<tr>
<td>Province Manus</td>
<td>144</td>
<td>35</td>
</tr>
<tr>
<td>Nicobar</td>
<td>46</td>
<td>22</td>
</tr>
<tr>
<td>Onges Nicobar</td>
<td>63</td>
<td>6</td>
</tr>
<tr>
<td>Philipins</td>
<td>144</td>
<td>70</td>
</tr>
<tr>
<td>Iban</td>
<td>83</td>
<td>30</td>
</tr>
<tr>
<td>Malais Kuala-Lumpur</td>
<td>124</td>
<td>90</td>
</tr>
</tbody>
</table>

166
Pays	Population	Mortalité	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Malais Singapour	205	132	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nouvelle Guinée Gidra	59	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Archipel Bismark	47	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vanuatu	42	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Soqotra	65	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Iran	146	113	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Syrie	49	46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yemen	115	67	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
Israel	45	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Kurdes	78	57	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chypre	91	59	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Iran	52	52	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Iraniens	731	394	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dubai	249	154	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	0	0
Israel Druzes	311	79	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Turquie divers	234	184	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jordanie	99	80	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Iran kurdes	25	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Persans	82	61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Arabie Saoudite	553	260	1	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
Bangladesh	30	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gujarat	91	79	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inde Kamataka	201	60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inde Kerala	230	72	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Madyah Pradesh	82	54	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inde Maharashtra	221	146	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inde Orissa	153	106	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Punjab	362	175	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tamouls Nadu	427	207	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inde Tripura	134	134	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Uttard Pradesh	232	165	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ouest Bengal	285	133	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

167
<table>
<thead>
<tr>
<th>Pays</th>
<th>Total</th>
<th>Natives</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sri Lanka</td>
<td>131</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Hindous Inde</td>
<td>72</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Sicile</td>
<td>226</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Galice</td>
<td>92</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Catalan</td>
<td>46</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Andalousie</td>
<td>115</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Portugais</td>
<td>54</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Corse</td>
<td>53</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>110</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Anglais</td>
<td>100</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Grèce</td>
<td>114</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>
Annexe 23. Tableau des haplotypes uniques partagés sur HVI avec notre échantillon Antalaotra

<table>
<thead>
<tr>
<th>Géographie</th>
<th>Nombre d’individus</th>
<th>Nombre d’haplotypes</th>
<th>hap.01</th>
<th>hap.02</th>
<th>hap.03</th>
<th>hap.04</th>
<th>hap.05</th>
<th>hap.06</th>
<th>hap.07</th>
<th>hap.08</th>
<th>hap.09</th>
<th>hap.10</th>
<th>hap.11</th>
<th>hap.12</th>
<th>hap.13</th>
<th>hap.14</th>
<th>hap.15</th>
<th>hap.16</th>
<th>hap.17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angola Nyaneka</td>
<td>147</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Angola Ovimbudu</td>
<td>98</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Fon Benin</td>
<td>171</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Cabinda Angola</td>
<td>110</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Cabo verde</td>
<td>292</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Cameroon Ngomba</td>
<td>88</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Cameroon Pygmés Baka</td>
<td>87</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Cameroon Pygmés Baloka</td>
<td>88</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Guanche Iles Canaries</td>
<td>71</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Egypte Arabes</td>
<td>102</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Egypte Copte</td>
<td>100</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Gabon Fong</td>
<td>66</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Gabon Mitsogo</td>
<td>64</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Gabon Nzebi</td>
<td>63</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Guinée Bissau</td>
<td>372</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>Côte d’Ivoire Ahizi</td>
<td>129</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Côte d’Ivoire Yacouba</td>
<td>61</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Kenya swahili</td>
<td>200</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Mali Malinke</td>
<td>60</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Maures mauritanie</td>
<td>64</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Maroc Berbère</td>
<td>181</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Mozambique</td>
<td>416</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Rwanda Hutu</td>
<td>106</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Sao Tome</td>
<td>103</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Sénégal Mendenka</td>
<td>119</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Langue</td>
<td>Code</td>
<td>N° de lettres</td>
<td>N° de syllabes</td>
<td>N° de phonèmes</td>
<td>N° de graphèmes</td>
<td>N° de structures</td>
<td>N° de morphèmes</td>
<td>N° de lexèmes</td>
<td>N° de phrases</td>
<td>N° de textes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sénégal Wolof</td>
<td>91</td>
<td>76</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Africa Kung</td>
<td>59</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanzanie Hadza</td>
<td>79</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanzanie Sandawe</td>
<td>82</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>58</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunisie</td>
<td>47</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algerie</td>
<td>47</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sahawari</td>
<td>56</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samar Tunisie</td>
<td>124</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethiopie Amharic</td>
<td>270</td>
<td>139</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soudan-Nubie</td>
<td>161</td>
<td>106</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunisie divers</td>
<td>102</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maroc Berbères Bourhiah</td>
<td>70</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maroc Berbères Figuig</td>
<td>94</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egypte Berbères Siwa</td>
<td>78</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lybie divers</td>
<td>129</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethiopie divers</td>
<td>116</td>
<td>71</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thailande divers</td>
<td>71</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vietnam</td>
<td>65</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adonara</td>
<td>73</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flores</td>
<td>73</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banjamarsin</td>
<td>110</td>
<td>80</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nouvelle Guinée HT</td>
<td>71</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iles Salomon</td>
<td>64</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bali</td>
<td>64</td>
<td>52</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sumatra Medan</td>
<td>42</td>
<td>29</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sumatra Pekanbaru</td>
<td>54</td>
<td>34</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Province Manus</td>
<td>144</td>
<td>35</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicobar</td>
<td>46</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onges Nicobar</td>
<td>63</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pays</td>
<td>Code</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>Philippines</td>
<td>144</td>
<td>70</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iban</td>
<td>83</td>
<td>30</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Malais Kuala-Lumpur</td>
<td>124</td>
<td>90</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Malais Singapour</td>
<td>205</td>
<td>132</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nouvelle Guinée Gidra</td>
<td>59</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Archipel Bismark</td>
<td>47</td>
<td>21</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vanuatu</td>
<td>42</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Soqotra</td>
<td>65</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Iran</td>
<td>146</td>
<td>113</td>
<td>0</td>
</tr>
<tr>
<td>Syrie</td>
<td>49</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>Yemen</td>
<td>115</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Israël</td>
<td>45</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Kurdes</td>
<td>78</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>Chypre</td>
<td>91</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>Iraq</td>
<td>52</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>Iraniens</td>
<td>731</td>
<td>394</td>
<td>0</td>
</tr>
<tr>
<td>Dubai</td>
<td>249</td>
<td>154</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Israël Druzes</td>
<td>311</td>
<td>79</td>
<td>0</td>
</tr>
<tr>
<td>Turquie divers</td>
<td>234</td>
<td>184</td>
<td>0</td>
</tr>
<tr>
<td>Jordanie</td>
<td>99</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>Iran kurdes</td>
<td>25</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Persans</td>
<td>82</td>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>Arabie Saoudite</td>
<td>553</td>
<td>260</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>30</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>Gujarat</td>
<td>91</td>
<td>79</td>
<td>0</td>
</tr>
<tr>
<td>Inde Kamataka</td>
<td>201</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Inde Kerala</td>
<td>230</td>
<td>72</td>
<td>0</td>
</tr>
<tr>
<td>Madyah Pradesh</td>
<td>82</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>Inde Maharashta</td>
<td>221</td>
<td>146</td>
<td>0</td>
</tr>
<tr>
<td>Inde Orissa</td>
<td>153</td>
<td>106</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punjab</td>
<td>362</td>
<td>175</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamouls Nadu</td>
<td>427</td>
<td>207</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inde Tripura</td>
<td>134</td>
<td>134</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uttard Pradesh</td>
<td>232</td>
<td>165</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouest Bengal</td>
<td>285</td>
<td>133</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>131</td>
<td>91</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hindous Inde</td>
<td>72</td>
<td>59</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicile</td>
<td>226</td>
<td>133</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galice</td>
<td>92</td>
<td>51</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalan</td>
<td>46</td>
<td>28</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andalousie</td>
<td>115</td>
<td>70</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugais</td>
<td>54</td>
<td>37</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corse</td>
<td>53</td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>110</td>
<td>72</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglais</td>
<td>100</td>
<td>66</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grèce</td>
<td>114</td>
<td>55</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annexe 24. Tableau des haplotypes uniques partagés sur HVI avec notre échantillon Anteony

<table>
<thead>
<tr>
<th>Annexe d'individus</th>
<th>Nombre d'haplotypes</th>
<th>hap.01</th>
<th>hap.02</th>
<th>hap.03</th>
<th>hap.04</th>
<th>hap.05</th>
<th>hap.06</th>
<th>hap.07</th>
<th>hap.08</th>
<th>hap.09</th>
<th>hap.10</th>
<th>hap.11</th>
<th>hap.12</th>
<th>hap.13</th>
<th>hap.14</th>
<th>hap.15</th>
<th>hap.16</th>
<th>hap.17</th>
<th>hap.18</th>
<th>hap.19</th>
<th>hap.20</th>
<th>hap.21</th>
<th>hap.22</th>
<th>hap.23</th>
<th>hap.24</th>
<th>hap.25</th>
<th>hap.26</th>
<th>hap.27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angola Nyaneka</td>
<td>147</td>
<td>70</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Angola Ovimbudu</td>
<td>98</td>
<td>60</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fon Benin</td>
<td>171</td>
<td>104</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabinda Angola</td>
<td>110</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabo verde</td>
<td>292</td>
<td>118</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameroon Ngumba</td>
<td>88</td>
<td>43</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameroon Pygmés Baka</td>
<td>87</td>
<td>13</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameroon Pygmés Baloka</td>
<td>88</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guanche Iles Canaries</td>
<td>71</td>
<td>32</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egypte Arabes</td>
<td>102</td>
<td>44</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egypte Copte</td>
<td>100</td>
<td>30</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabon Fong</td>
<td>66</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabon Mitsogo</td>
<td>64</td>
<td>33</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabon Nzebi</td>
<td>63</td>
<td>42</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guinée Bissau</td>
<td>372</td>
<td>176</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

173
<table>
<thead>
<tr>
<th>Country</th>
<th>Language</th>
<th>Number of Speakers</th>
<th>Percentage of Country's Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Côte d'Ivoire</td>
<td>Ahizi</td>
<td>129</td>
<td>0</td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>Yacouba</td>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>Kenya</td>
<td>Swahili</td>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>Mali</td>
<td>Malinke</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Mauritania</td>
<td>Maures</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>Morrocco</td>
<td>Berbère</td>
<td>181</td>
<td>0</td>
</tr>
<tr>
<td>Mozambique</td>
<td></td>
<td>416</td>
<td>0</td>
</tr>
<tr>
<td>Rwanda</td>
<td>Hutu</td>
<td>106</td>
<td>1</td>
</tr>
<tr>
<td>Sao Tome</td>
<td></td>
<td>103</td>
<td>0</td>
</tr>
<tr>
<td>Sénégal</td>
<td>Mendenka</td>
<td>119</td>
<td>0</td>
</tr>
<tr>
<td>Sénégal</td>
<td>Wolof</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td>South Africa</td>
<td>Kung</td>
<td>59</td>
<td>1</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Hadza</td>
<td>79</td>
<td>0</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Sandawe</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td></td>
<td>58</td>
<td>1</td>
</tr>
<tr>
<td>Tunisia</td>
<td></td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>Algeria</td>
<td></td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>Sahawari</td>
<td></td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>Samara Tunisie</td>
<td></td>
<td>124</td>
<td>0</td>
</tr>
<tr>
<td>Ethiopie Amharic</td>
<td></td>
<td>270</td>
<td>1</td>
</tr>
<tr>
<td>Pays/Districts</td>
<td>Total</td>
<td>Zones</td>
<td>Au/Co</td>
</tr>
<tr>
<td>Soudan-Nubie</td>
<td>161</td>
<td>106</td>
<td>0</td>
</tr>
<tr>
<td>Tunisie divers</td>
<td>102</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>Maroc Berbères Bourhiah</td>
<td>70</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>Maroc Berbères Figuig</td>
<td>94</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Egypte Berbères Siwa</td>
<td>78</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Lybie divers</td>
<td>129</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Ethiopie divers</td>
<td>116</td>
<td>71</td>
<td>1</td>
</tr>
<tr>
<td>Thaïlande divers</td>
<td>65</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>Vietnam</td>
<td>73</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Adonara</td>
<td>73</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>Flores</td>
<td>110</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>Banjamins</td>
<td>71</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Nigére Hautes Terres</td>
<td>64</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Iles Salomon</td>
<td>64</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>Bali</td>
<td>42</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>Sumatra Medan</td>
<td>54</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>Sumatra Pekanbaru</td>
<td>144</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>Province Manus</td>
<td>46</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Nicobar</td>
<td>63</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Onges Nicobar</td>
<td>144</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>Pays</td>
<td>Noms</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
|----------------------|------|---|---|---|---|---|---|---|---|---|---
<table>
<thead>
<tr>
<th>Pays</th>
<th>Population Fictive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iran kurdes</td>
<td>25</td>
</tr>
<tr>
<td>Persans</td>
<td>82</td>
</tr>
<tr>
<td>Arabie Saoudite</td>
<td>553</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>30</td>
</tr>
<tr>
<td>Gujarat</td>
<td>91</td>
</tr>
<tr>
<td>Inde Kamataka</td>
<td>201</td>
</tr>
<tr>
<td>Inde Kerala</td>
<td>230</td>
</tr>
<tr>
<td>Madyah Pradesh</td>
<td>82</td>
</tr>
<tr>
<td>Inde Maharashtra</td>
<td>221</td>
</tr>
<tr>
<td>Inde Orissa</td>
<td>153</td>
</tr>
<tr>
<td>Punjab</td>
<td>362</td>
</tr>
<tr>
<td>Tamouls Nadu</td>
<td>427</td>
</tr>
<tr>
<td>Inde Tripura</td>
<td>134</td>
</tr>
<tr>
<td>Uttard Pradesh</td>
<td>232</td>
</tr>
<tr>
<td>Ouest Bengal</td>
<td>285</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>131</td>
</tr>
<tr>
<td>Hindous Inde</td>
<td>72</td>
</tr>
<tr>
<td>Sicile</td>
<td>226</td>
</tr>
<tr>
<td>Galice</td>
<td>92</td>
</tr>
<tr>
<td>Catalan</td>
<td>46</td>
</tr>
<tr>
<td>Langue</td>
<td>Code</td>
</tr>
<tr>
<td>Andalousie</td>
<td>115</td>
</tr>
<tr>
<td>Portugais</td>
<td>54</td>
</tr>
<tr>
<td>Corse</td>
<td>53</td>
</tr>
<tr>
<td>France</td>
<td>110</td>
</tr>
<tr>
<td>Anglais</td>
<td>100</td>
</tr>
<tr>
<td>Grèce</td>
<td>114</td>
</tr>
</tbody>
</table>
Annexe 25. Base de données pour les analyses des allotypes du Gm

<table>
<thead>
<tr>
<th>Populations</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bechuana (Botswana speaking)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Kgalagadi desert (Botswana speaking)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Bushmen South central (Botswana speaking)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Bushmen mainly south (Botswana speaking)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Lenje (Zambia)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Plateau Tonga (Zambia)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Valey Tonga (Zambezi)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Shangaan-Tonga (Mozambique)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Hlubi (South Africa)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Ndebele (South Africa)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Venda (South Africa)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Angola mixed tribes</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Diriko (South-west Africa)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Kuangari (South-west Africa)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Sambio (South-west Africa)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Kuamb (Ovamboland) (South-west Africa)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Kuanyama (South-west Africa)</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Pygmy Aka</td>
<td>(Dugoujon et al. 2004)</td>
</tr>
<tr>
<td>Pygmy Babinga</td>
<td>(Cavalli-Sforza et al. 1969)</td>
</tr>
<tr>
<td>Bantu Mlozi</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Bantu Xhosa</td>
<td>(Jenkins et al. 1970)</td>
</tr>
<tr>
<td>Berbers low Kabylie</td>
<td>(Dugoujon et al. 2004)</td>
</tr>
<tr>
<td>Berbers high Kabylie</td>
<td>(Dugoujon et al. 2004)</td>
</tr>
<tr>
<td>Berbers Mozabite from Ghardaïa</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Tuaregs Issequaramarene</td>
<td>(Lefèvre-Witier 1982)</td>
</tr>
<tr>
<td>Berbers from Djerba</td>
<td>(Loveslati et al. 2001)</td>
</tr>
<tr>
<td>Arabs from Djerba</td>
<td>(Loveslati et al. 2001)</td>
</tr>
<tr>
<td>Libyans from Tripoli and Benghasi</td>
<td>(Walter et al. 1975)</td>
</tr>
<tr>
<td>Berbers from Bouhria</td>
<td>(Coudray et al. 2006)</td>
</tr>
<tr>
<td>Berbers from Khenifra</td>
<td>(Coudray et al. 2006)</td>
</tr>
<tr>
<td>Arabs from Doukkala</td>
<td>(Coudray et al. 2006)</td>
</tr>
<tr>
<td>Berbers from Asni</td>
<td>(Dugoujon et al. 2005)</td>
</tr>
<tr>
<td>Berbers from Amizmiz</td>
<td>(Coudray et al. 2006)</td>
</tr>
<tr>
<td>Touaregs Kel Nam</td>
<td>(Lefèvre-Witier 1982)</td>
</tr>
<tr>
<td>Tunisian Berbers</td>
<td>(Chaabani et al. 2000)</td>
</tr>
<tr>
<td>Berbers from Takrouna-Jeradou</td>
<td>(Chaabani et al. 1984)</td>
</tr>
<tr>
<td>Berbers from Douiret-Chenini</td>
<td>(Chaabani et al. 1984)</td>
</tr>
<tr>
<td>Berbers from Kesra</td>
<td>(Chaabani et al. 1984)</td>
</tr>
<tr>
<td>Arabs from Mahdia</td>
<td>(Helal et al. 1988)</td>
</tr>
<tr>
<td>Arabs from Sfax</td>
<td>(Lefranc et al. 1979)</td>
</tr>
<tr>
<td>Berbers from Sened</td>
<td>(Fadhlouzi-Zid et al. 2004)</td>
</tr>
<tr>
<td>Egyptians (Le Caire)</td>
<td>(Steinberg & Cook 1981)</td>
</tr>
<tr>
<td>Location</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Siwa Oasis (Egypt)</td>
<td>(Coudray et al. 2008)</td>
</tr>
<tr>
<td>Tunisians from Monastir</td>
<td>(Helal et al. 1988)</td>
</tr>
<tr>
<td>Issas (Djibouti)</td>
<td>(Dugoujon et al. 2004)</td>
</tr>
<tr>
<td>Amhara Tigrai</td>
<td>(Dugoujon et al. 2004)</td>
</tr>
<tr>
<td>Sidama from Ethiopia</td>
<td>(Steinberg 1973)</td>
</tr>
<tr>
<td>Mandara (Cameroon)</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Fulbe (Cameroon)</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Fali (Cameroon)</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Bamileke (Cameroon)</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Bassa (Cameroon)</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Ewondo (Cameroon)</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Abron (Ivory Coast)</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Yacouba (Ivory Coast)</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Baoule (Ivory Coast)</td>
<td>(Dugoujon et al. 2004)</td>
</tr>
<tr>
<td>Ahizi (Ivory Coast)</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Dogon (Bendiagara - Mali)</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Bobo (Tara - Mali)</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Bwa (Sirao - Mali)</td>
<td>(Dugoujon et al. 2004)</td>
</tr>
<tr>
<td>Yoruba (Nigeria - Ibadan)</td>
<td>(van Loghem et al. 1978)</td>
</tr>
<tr>
<td>Mendenka (Senegal)</td>
<td>(Blanc et al. 1990)</td>
</tr>
<tr>
<td>Fulani (Senegal)</td>
<td>(Blanc et al. 1990)</td>
</tr>
<tr>
<td>Acre (Israel)</td>
<td>(Schanfield et al. 2008)</td>
</tr>
<tr>
<td>Afghan (Afghanistan)</td>
<td>(Shanfield et al. 2008)</td>
</tr>
<tr>
<td>Basrah (Iraq)</td>
<td>(Shanfield et al. 2008)</td>
</tr>
<tr>
<td>Beduin (Israel)</td>
<td>(Shanfield et al. 2008)</td>
</tr>
<tr>
<td>Iraq (Baghdad, Arab)</td>
<td>(Shakib & Barr 1980)</td>
</tr>
<tr>
<td>Iran (Armenians, Armenians)</td>
<td>(Steinberg 1980)</td>
</tr>
<tr>
<td>Iran (Shosaavan, Giliak)</td>
<td>(Steinberg 1980)</td>
</tr>
<tr>
<td>Iran (Tavalesh, Turkic)</td>
<td>(Steinberg 1980)</td>
</tr>
<tr>
<td>Iran (Teheran, Persian)</td>
<td>(Steinberg 1980)</td>
</tr>
<tr>
<td>Iran (Babol, Mazandarian)</td>
<td>(Steinberg 1980)</td>
</tr>
<tr>
<td>Iran (Gorgon, Mazandarian)</td>
<td>(Steinberg 1980)</td>
</tr>
<tr>
<td>Iran (Mazanderanian, Mazandarian)</td>
<td>(van Loghem et al. 1977)</td>
</tr>
<tr>
<td>Iran (Northern Gorgon, Persian)</td>
<td>(Steinberg 1980)</td>
</tr>
<tr>
<td>Iran (Gonbad, Turkman)</td>
<td>(Steinberg 1980)</td>
</tr>
<tr>
<td>Lebanese (Druzes and Maronites)</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Lebanese (Arabs)</td>
<td>(Lefranc et al. 1976)</td>
</tr>
<tr>
<td>Sunni (Saudi Arabia)</td>
<td>(Shanfield et al. 2008)</td>
</tr>
<tr>
<td>Shia (Saudi Arabia)</td>
<td>(Shanfield et al. 2008)</td>
</tr>
<tr>
<td>Turkey</td>
<td>(Shanfield et al. 2008)</td>
</tr>
<tr>
<td>Yemenite</td>
<td>(Chabaani et al. 2000)</td>
</tr>
<tr>
<td>Yemen (North Yemen)</td>
<td>(Dugoujon et al. 2004)</td>
</tr>
<tr>
<td>Iranian Guilaneans</td>
<td>(van Loghem et al. 1977)</td>
</tr>
<tr>
<td>Lebanese Sunni</td>
<td>(Lefranc et al. 1978)</td>
</tr>
<tr>
<td>Sikhs (India)</td>
<td>(Field et al. 1988)</td>
</tr>
<tr>
<td>Location</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Deshia Khond (central India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Binjhal (central India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Kisan (central India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Dhurwa (central India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Halba (central India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Bhatra (central India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Muria (central India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Maria (central India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Brahmins (Assan India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Kalitas (Assan India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Kaibartas (Assan India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Muslims (Assan India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Ahoms (Assan India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Karbis (Assan India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Kacharis (Assan India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Sonowals (Assan India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Chutiyas (Assan India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Rajbanshis (Assan India)</td>
<td>(Walter et al. 1997)</td>
</tr>
<tr>
<td>Hindu (Andhra Pradesh)</td>
<td>(van Loghem et al. 1985)</td>
</tr>
<tr>
<td>Koya Dora (Andhra Pradesh)</td>
<td>(van Loghem et al. 1985)</td>
</tr>
<tr>
<td>Hindus from Delhi</td>
<td>(Schanfield & Kirk 1981)</td>
</tr>
<tr>
<td>Indians Naicker from Madras</td>
<td>(Schanfield & Kirk 1981)</td>
</tr>
<tr>
<td>Bataan</td>
<td>(Matsumoto et al. 1979)</td>
</tr>
<tr>
<td>Zambales</td>
<td>(Matsumoto et al. 1979)</td>
</tr>
<tr>
<td>Bali</td>
<td>(Blanc & Bréguet 1985)</td>
</tr>
<tr>
<td>Malay Senoi from Perak</td>
<td>(Steinberg & Eng 1972)</td>
</tr>
<tr>
<td>Filipino from Samar</td>
<td>(Yogore & Schanfield 1981)</td>
</tr>
<tr>
<td>Central Motu</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Mandang Takia</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Milne bay (Kukuya)</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Morobe Atsera</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Tenis (Tench Islands)</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>New Britain Tolai</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>New Britain Kilenge</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Bougainville Uruava</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Bougainville Torau</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Polynesian outliers Bellona</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Polynesian outliers Rennell</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Fiji lau</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Fiji Viti</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Central province Fuyuge</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Central province Towade</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>East island province North Fore</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>East island province South Fore</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>East island province Kamano</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Region</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>East island province Pawaian</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>East island province Simbari</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>East island province Usurufa</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>East Sepik province Abelam</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>East Sepik province Iatmul</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>East Sepik province Yambes</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Enga</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Kapua (Gulf province)</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Gainj-Kalam (Madang province)</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Daga (Milne Bay province)</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Morobe province Gumu-Samane</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Morobe province Kunimaipa</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Morobe province Wafa</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Morobe province Watut</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Morobe province Weri</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Morobe province Yupna</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Northern province Binare</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Northern province Doriaidi</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Northern province Guhu-Samane</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Northern province Hunjara</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Kuman (Simbu)</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Southern Highland province Huli</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Irian Jaya Mungai</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>New Britain Non Austronesian speaking Baining</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>New Britain Non Austronesian speaking Sulka</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Bougainville Non Austronesian speaking Aita</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Bougainville Non Austronesian speaking Rotokas</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Bougainville Non Austronesian speaking Eivo</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Bougainville Non Austronesian speaking Nasioi</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Bougainville Non Austronesian speaking Nagovisi</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Bougainville Non Austronesian speaking Simeku</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Malaiti Baegu</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Malaiti Kwaio</td>
<td>(Kelly 1990)</td>
</tr>
<tr>
<td>Negrito (Mindanao)</td>
<td>(Matsumoto et al. 1979)</td>
</tr>
<tr>
<td>Negrito (Luzon)</td>
<td>(Oimoto et al. 1978)</td>
</tr>
<tr>
<td>Micronesians</td>
<td>(Steinberg & Morton 1973)</td>
</tr>
<tr>
<td>Pag Island</td>
<td>(Borot et al. 1991)</td>
</tr>
<tr>
<td>Albanians</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Italia (Pavia)</td>
<td>(Lorini et al. 1992)</td>
</tr>
<tr>
<td>Italia (Sardinia)</td>
<td>(Piazza et al. 1976)</td>
</tr>
<tr>
<td>Madonie (Sicily)</td>
<td>(Cerutti et al. 2004)</td>
</tr>
<tr>
<td>France (14 provinces)</td>
<td>(Blanc & Ducos 1986)</td>
</tr>
<tr>
<td>Corsica</td>
<td>(Dugoujon, non publié)</td>
</tr>
<tr>
<td>Basque</td>
<td>(Calderon et al. 1998)</td>
</tr>
<tr>
<td>Central Pyrenees</td>
<td>(Hazout et al. 1991)</td>
</tr>
<tr>
<td>Location</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Eastern Pyrenees</td>
<td>(Hazout et al. 1991)</td>
</tr>
<tr>
<td>Cantabria (Montes de Pas)</td>
<td>(Esteban et al. 1998)</td>
</tr>
<tr>
<td>Galicia</td>
<td>(Calderon et al. 2007)</td>
</tr>
<tr>
<td>Val d’Aran</td>
<td>(Giraldo et al. 1998)</td>
</tr>
<tr>
<td>Valencia</td>
<td>(Schanfield et al. 1981)</td>
</tr>
<tr>
<td>Canary Islands (Tenerife)</td>
<td>(Esteban et al. 1998)</td>
</tr>
<tr>
<td>Andalousia (Huelva)</td>
<td>(Calderon et al. 2006)</td>
</tr>
</tbody>
</table>
Annexe 26. Base de données pour les analyses en fréquence d’haplogroupes Y

<table>
<thead>
<tr>
<th>Regroupement géographique</th>
<th>Population</th>
<th>N</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afrique COS</td>
<td>Angola Cabinda</td>
<td>74</td>
<td>(Beleza et al. 2005)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Angola Nyaneka-Nkumbi</td>
<td>75</td>
<td>(Coelho et al. 2009)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Angola Ovimbudu</td>
<td>96</td>
<td>(Coelho et al. 2009)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>République Démocratique du Congo (Pygmées Mbuti)</td>
<td>99</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Afrique du Sud IKung</td>
<td>100</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Afrique du Sud Khwe</td>
<td>101</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Rwanda Hutu</td>
<td>98</td>
<td>(Luis et al. 2004)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Rwanda Tutsi</td>
<td>100</td>
<td>(Luis et al. 2004)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Zambie Est</td>
<td>69</td>
<td>(de Filippo et al. 2011)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Zambie Ouest Bantous Ouest</td>
<td>197</td>
<td>(Filippo et al. 2011)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Zambie Ouest Bantous Est</td>
<td>283</td>
<td>(Filippo et al. 2011)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Guinée Equatoriale (estimation)</td>
<td>101</td>
<td>(Arroyo-Pardo et al. 2005)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Benin</td>
<td>78</td>
<td>(Brucato et al. 2010)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Burkina Faso Fulbe</td>
<td>100</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Burkina Faso Mossi</td>
<td>99</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Burkina Faso Rimaibe</td>
<td>99</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun Bakola</td>
<td>100</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun Bamileke</td>
<td>100</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun Dada</td>
<td>100</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun Ewondo</td>
<td>100</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun Fali</td>
<td>100</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun Fulbe</td>
<td>101</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun divers Adamawa</td>
<td>102</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun divers Chadic</td>
<td>102</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun Nilo-Saharien</td>
<td>99</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun Tali</td>
<td>101</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun Uldeme</td>
<td>100</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>République Centre africaine Lissongo</td>
<td>140</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cabo Verde Nord</td>
<td>101</td>
<td>(Goncalves et al. 2003)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cabo Verde Sud</td>
<td>100</td>
<td>(Goncalves et al. 2003)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Benin Fon</td>
<td>100</td>
<td>(Luis et al. 2004)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun Bantous</td>
<td>99</td>
<td>(Luis et al. 2004)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Sénégal divers</td>
<td>139</td>
<td>(Semino et al. 2002)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Tanzanie Datoga</td>
<td>101</td>
<td>(Knight et al. 2003)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Tanzanie Hadzabe</td>
<td>99</td>
<td>(Knight et al. 2003)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Kenya Bantous</td>
<td>81</td>
<td>(Luis et al. 2004)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Tanzanie Wairak</td>
<td>100</td>
<td>(Luis et al. 2004)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Somalie divers Danois</td>
<td>196</td>
<td>(Hallenberg et al. 2005)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Kenya</td>
<td>79</td>
<td>(Wood et al. 2005)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Karamoja, Ouganda</td>
<td>118</td>
<td>(Gomes et al. 2009)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Kenya Maasai</td>
<td>79</td>
<td>(Filippo et al. 2011)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Afrique Est</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Ethiopia Juifs</td>
<td>101</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Ethiopia Amhara</td>
<td>48</td>
<td>(Semino et al. 2002)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Ethiopia Oromo</td>
<td>78</td>
<td>(Semino et al. 2002)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Ethiopia Vallée de l’Omo</td>
<td>98</td>
<td>(Filippo et al. 2011)</td>
</tr>
<tr>
<td>Afrique est</td>
<td>Somalie</td>
<td>201</td>
<td>(Abu-Amero et al. 2009)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Namibie</td>
<td>136</td>
<td>(Wood et al. 2005)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Egypte</td>
<td>147</td>
<td>(Abu Amero et al. 2009)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Algérie divers</td>
<td>100</td>
<td>(Robino et al. 2008)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Lybie Arabes (estimation)</td>
<td>51</td>
<td>(Immel et al. 2006)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Maroc Arabes</td>
<td>100</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Maroc Berbères</td>
<td>101</td>
<td>(Cruciani et al. 2002)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Maroc</td>
<td>312</td>
<td>(Zalloua et al. 2008b)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Tunisie</td>
<td>148</td>
<td>(Arredi et al. 2004)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Pakistan</td>
<td>176</td>
<td>(Abu Amero et al. 2009)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Naikpod</td>
<td>68</td>
<td>(Thanseen et al. 2006)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Andh</td>
<td>53</td>
<td>(Thanseen et al. 2006)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Pardhan</td>
<td>128</td>
<td>(Thanseen et al. 2006)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Mahadeokoli</td>
<td>50</td>
<td>(Thangaraj et al. 2010)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Thakar</td>
<td>48</td>
<td>(Thangaraj et al. 2010)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Musulman Shia</td>
<td>161</td>
<td>(Eaaswarkhanth et al. 2009)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Musulman Sunni</td>
<td>129</td>
<td>(Eaaswarkhanth et al. 2010)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Nord Inde</td>
<td>80</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Nord-est Inde</td>
<td>87</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Est Inde</td>
<td>128</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Sud Inde</td>
<td>303</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Centre Inde</td>
<td>71</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Ouest Inde</td>
<td>59</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Europe ouest</td>
<td>Portugal Nord</td>
<td>60</td>
<td>(Adams et al. 2008)</td>
</tr>
<tr>
<td>Europe ouest</td>
<td>Portugal Sud</td>
<td>78</td>
<td>(Adams et al. 2008)</td>
</tr>
<tr>
<td>Europe ouest</td>
<td>Portugais Juifs</td>
<td>86</td>
<td>(Nogueiro et al. 2010)</td>
</tr>
<tr>
<td>Europe ouest</td>
<td>France</td>
<td>57</td>
<td>(Balaresque, non publié)</td>
</tr>
<tr>
<td>Europe ouest</td>
<td>Basque</td>
<td>116</td>
<td>(Adams et al. 2008)</td>
</tr>
<tr>
<td>Europe ouest</td>
<td>Est Andalusia</td>
<td>95</td>
<td>(Adams et al. 2008)</td>
</tr>
<tr>
<td>Europe ouest</td>
<td>Galice</td>
<td>88</td>
<td>(Adams et al. 2008)</td>
</tr>
<tr>
<td>Europe ouest</td>
<td>Nord-ouest Castille</td>
<td>100</td>
<td>(Adams et al. 2008)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Antandroy</td>
<td>46</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Antanosy</td>
<td>47</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Comores</td>
<td>381</td>
<td>(Msaidie et al. 2011)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Mikea Mikea-vezo</td>
<td>59</td>
<td>(Razafindrazaka 2010)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Vezo Nord Tuléar</td>
<td>16</td>
<td>(Razafindrazaka 2010)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Vezo Sud Tuléar</td>
<td>32</td>
<td>(Razafindrazaka 2010)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Hautes Terres Madagascar</td>
<td>35</td>
<td>(Hurles et al. 2005)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Israël Druzes Galilée</td>
<td>173</td>
<td>(Shlush et al. 2008)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Palestinien</td>
<td>290</td>
<td>(Zalloua et al. 2008a)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Koweit Bédouins</td>
<td>148</td>
<td>(Mohammad et al. 2009)</td>
</tr>
<tr>
<td>Region</td>
<td>Population</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Moyen-Orient Soqotra divers</td>
<td>63</td>
<td>(Cerny et al. 2009)</td>
<td></td>
</tr>
<tr>
<td>Moyen-Orient Qatar</td>
<td>72</td>
<td>(Abu Amero et al. 2009)</td>
<td></td>
</tr>
<tr>
<td>Moyen-Orient UAE</td>
<td>164</td>
<td>(Cadenas et al. 2008)</td>
<td></td>
</tr>
<tr>
<td>Moyen-Orient Oman</td>
<td>121</td>
<td>(Cadenas et al. 2007)</td>
<td></td>
</tr>
<tr>
<td>Moyen-Orient Yémen</td>
<td>62</td>
<td>(Cadenas et al. 2007)</td>
<td></td>
</tr>
<tr>
<td>Moyen-Orient Liban</td>
<td>916</td>
<td>(Zalloua et al. 2008)</td>
<td></td>
</tr>
<tr>
<td>Moyen-Orient Jordanie</td>
<td>146</td>
<td>(Flores et al. 2005)</td>
<td></td>
</tr>
<tr>
<td>Moyen-Orient Iran</td>
<td>150</td>
<td>(Regueiro et al. 2006)</td>
<td></td>
</tr>
<tr>
<td>Moyen-Orient Syriens</td>
<td>518</td>
<td>(Zalloua et al. 2008 et El-Sibai et al. 2009)</td>
<td></td>
</tr>
<tr>
<td>Moyen-Orient Iraniens</td>
<td>324</td>
<td>(Haber et al. 2011)</td>
<td></td>
</tr>
<tr>
<td>Moyen-Orient Chypriotes</td>
<td>165</td>
<td>(El-Sibai et al. 2009)</td>
<td></td>
</tr>
<tr>
<td>Moyen-Orient Turques divers</td>
<td>58</td>
<td>(Sanchez et al. 2005)</td>
<td></td>
</tr>
<tr>
<td>Moyen-Orient Turques Anatolie</td>
<td>488</td>
<td>(Cinnioglu et al. 2004)</td>
<td></td>
</tr>
<tr>
<td>Oceanie Vanuatu-Maewo</td>
<td>44</td>
<td>(Karafet et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Oceanie Sud-ouest Nouvelle Guinée Una</td>
<td>46</td>
<td>(Kayser et al. 2006)</td>
<td></td>
</tr>
<tr>
<td>Oceanie Papouasie Nouvelle Guinée Trobriand</td>
<td>53</td>
<td>(Kayser et al. 2006)</td>
<td></td>
</tr>
<tr>
<td>Oceanie Papouasie Nouvelle Guinée Kapuna</td>
<td>46</td>
<td>(Kayser et al. 2006)</td>
<td></td>
</tr>
<tr>
<td>Oceanie Cook</td>
<td>66</td>
<td>(Kayser et al. 2006)</td>
<td></td>
</tr>
<tr>
<td>Oceanie Futuna</td>
<td>50</td>
<td>(Kayser et al. 2006)</td>
<td></td>
</tr>
<tr>
<td>Oceanie Fidji</td>
<td>94</td>
<td>(Kayser et al. 2006)</td>
<td></td>
</tr>
<tr>
<td>Oceanie Tuvalu</td>
<td>100</td>
<td>(Kayser et al. 2006)</td>
<td></td>
</tr>
<tr>
<td>Oceanie Samoa Ouest</td>
<td>61</td>
<td>(Kayser et al. 2006)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Nias</td>
<td>407</td>
<td>(van Oven et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Philippines</td>
<td>48</td>
<td>(Karafet et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Vietnam</td>
<td>70</td>
<td>(Karafet et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Bali</td>
<td>641</td>
<td>(Karafet et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Java</td>
<td>61</td>
<td>(Karafet et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Bornéo</td>
<td>86</td>
<td>(Karafet et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Nias</td>
<td>60</td>
<td>(Karafet et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Mentawai</td>
<td>74</td>
<td>(Karafet et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Flores</td>
<td>394</td>
<td>(Karafet et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Sulawesi</td>
<td>54</td>
<td>(Karafet et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Sumba</td>
<td>350</td>
<td>(Karafet et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Lembata</td>
<td>92</td>
<td>(Karafet et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Adonara (langue austronésienne)</td>
<td>96</td>
<td>(Mona et al. 2009)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Flores (langue austronésienne)</td>
<td>71</td>
<td>(Mona et al. 2009)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Solor (langue austronésienne)</td>
<td>43</td>
<td>(Mona et al. 2009)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Sumatra</td>
<td>56</td>
<td>(Kayser et al. 2006)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Java</td>
<td>53</td>
<td>(Kayser et al. 2006)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Negritos</td>
<td>180</td>
<td>(Delfin et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Non Negritos</td>
<td>210</td>
<td>(Delfin et al. 2010)</td>
<td></td>
</tr>
<tr>
<td>Asie du Sud-Est Malaisie</td>
<td>32</td>
<td>(Karafet et al. 2010)</td>
<td></td>
</tr>
</tbody>
</table>
Annexe 27. Base de données pour les analyses à 7 marqueurs STR-Y

<table>
<thead>
<tr>
<th>Regroupement géographique</th>
<th>Population</th>
<th>N</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iles océan Indien</td>
<td>Antandroy</td>
<td>46</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Antanosy</td>
<td>47</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Antaisaka</td>
<td>8</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Merina</td>
<td>9</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Comores</td>
<td>291</td>
<td>(Msaidie et al. 2011)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Mikea</td>
<td>59</td>
<td>(Razafindrazaka 2010)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Vezo Nord Tulear</td>
<td>16</td>
<td>(Razafindrazaka 2010)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Vezo Sud Tulear</td>
<td>32</td>
<td>(Razafindrazaka 2010)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Tsimahafotsy</td>
<td>5</td>
<td>(Razafindrazaka 2010)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Andriana</td>
<td>21</td>
<td>(Razafindrazaka 2010)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Guinée Equatoriale</td>
<td>101</td>
<td>(Arroyo-Pardo et al. 2005)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Gabon</td>
<td>828</td>
<td>(Berniell-Lee et al. 2009)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Benin</td>
<td>78</td>
<td>(Brucato et al. 2010)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Côte d’Ivoire</td>
<td>90</td>
<td>(Brucato et al. 2010)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>République Centre africaine</td>
<td>165</td>
<td>(Lecerf et al. 2007)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Guinée-Bissau</td>
<td>161</td>
<td>(Rosa et al. 2006)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Burkina Faso</td>
<td>323</td>
<td>(Filippo et al. 2011)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Mozambique</td>
<td>154</td>
<td>(Alves et al. 2003)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Angola Nyaneka</td>
<td>75</td>
<td>(Coelho et al. 2009)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Angola Ovimbudo</td>
<td>96</td>
<td>(Coelho et al. 2009)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Angola divers</td>
<td>65</td>
<td>(Coelho et al. 2009)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Zambia Est</td>
<td>88</td>
<td>(Filippo et al. 2011)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Zambia Ouest Bantous est</td>
<td>263</td>
<td>(Filippo et al. 2011)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Zambia-west Bantous ouest</td>
<td>192</td>
<td>(Filippo et al. 2011)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Namibie</td>
<td>54</td>
<td>(Fujihara et al. 2009)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Ethiopie Vallée de l’Omo</td>
<td>67</td>
<td>(Filippo et al. 2011)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Kenya Massai</td>
<td>55</td>
<td>(Filippo et al. 2011)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Tanzanie Sandawa</td>
<td>66</td>
<td>(Tishkoff et al. 2007)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Tanzania divers</td>
<td>132</td>
<td>(Tishkoff et al. 2007)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Ouganda</td>
<td>118</td>
<td>(Gomes et al. 2010)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Lybie</td>
<td>63</td>
<td>(Immel et al. 2006)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Maroc</td>
<td>515</td>
<td>(Zalloua et al. 2008b)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Maroc Arabes divers</td>
<td>104</td>
<td>(Quintana Murci et al. 2004)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Mozabites</td>
<td>68</td>
<td>(Bosch et al. 2000)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Tunisie Sfax divers</td>
<td>105</td>
<td>(Ayadi et al. 2006)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Iran Iraniens</td>
<td>128</td>
<td>(Nasidze et al. 2003)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Druze d’Israël</td>
<td>234</td>
<td>(Shlush et al. 2008)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Liban</td>
<td>650</td>
<td>(Shlush et al. 2008 et Zalloua et al. 2008)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Palestine</td>
<td>364</td>
<td>(Zalloua et al. 2008b)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Koweït</td>
<td>148</td>
<td>(Mohammad et al. 2010)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Oman</td>
<td>99</td>
<td>(Alshamali et al. 2009)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Arabie Saoudite</td>
<td>106</td>
<td>(Alshamali et al. 2009)</td>
</tr>
<tr>
<td>Région</td>
<td>Géographique</td>
<td>Population</td>
<td>Source</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Yémen</td>
<td>104</td>
<td>(Alshamali et al. 2009)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Dubaï</td>
<td>217</td>
<td>(Alshamali et al. 2009)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Iran divers</td>
<td>104</td>
<td>(Alshamali et al. 2009)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Chypre</td>
<td>163</td>
<td>(Zalloua et al. 2008b)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Syrie Syriens</td>
<td>161</td>
<td>(Zalloua et al. 2008b)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Turques divers</td>
<td>140</td>
<td>(Alakoc et al. 2010)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Turque Anatolie</td>
<td>520</td>
<td>(Cinnioglu et al. 2004)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Bangladesh</td>
<td>284</td>
<td>(Dobashi et al. 2005)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Sarwat Brahmin</td>
<td>122</td>
<td>(Yadav et al. 2010)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Indien Tamoul Nadu</td>
<td>152</td>
<td>(Balamurugan et al. 2010)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Jat Sikhs</td>
<td>80</td>
<td>(Nagy et al. 2007)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Inde Nord</td>
<td>78</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Inde Est</td>
<td>127</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Inde Sud</td>
<td>295</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Inde Centre</td>
<td>69</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Inde Ouest</td>
<td>59</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Mahadeokoli</td>
<td>50</td>
<td>(Thangaraj et al. 2010)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Thakar</td>
<td>48</td>
<td>(Thangaraj et al. 2010)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Pakistan</td>
<td>177</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Sri-Lanka</td>
<td>207</td>
<td>(Illeperuma et al. 2010)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>France</td>
<td>57</td>
<td>(Balaresque, non publié)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>Portugal Nord</td>
<td>60</td>
<td>(Adams et al. 2008)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>Portugal Sud</td>
<td>78</td>
<td>(Adams et al. 2008)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>Andalousie Est</td>
<td>95</td>
<td>(Adams et al. 2008)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>Galice</td>
<td>89</td>
<td>(Adams et al. 2008)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>Nord Castille</td>
<td>130</td>
<td>(Adams et al. 2008)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>Portugais Juif</td>
<td>86</td>
<td>(Nogueiro et al. 2010)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Philippines</td>
<td>76</td>
<td>(Kwak et al. 2005)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Malais Singapour</td>
<td>180</td>
<td>(Yong et al. 2006)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Malais Malasie</td>
<td>334</td>
<td>(Chang et al. 2006)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Iban</td>
<td>105</td>
<td>(Chang, et al. 2008)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Bidayuh</td>
<td>113</td>
<td>(Chang, et al. 2008)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Melanau</td>
<td>104</td>
<td>(Chang, et al. 2008)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Timor</td>
<td>113</td>
<td>(Soto, et al. 2006)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Flores</td>
<td>385</td>
<td>(Karafet non publié)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Lembata</td>
<td>89</td>
<td>(Karafet non publié)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Sumba</td>
<td>349</td>
<td>(Karafet non publié)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Vietnam</td>
<td>113</td>
<td>(Karafet non publié)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Baii</td>
<td>632</td>
<td>(Karafet non publié)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Bornéo</td>
<td>85</td>
<td>(Karafet non publié)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Java</td>
<td>61</td>
<td>(Karafet non publié)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Mentawai</td>
<td>73</td>
<td>(Karafet non publié)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Nias</td>
<td>60</td>
<td>(Karafet non publié)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Thaïlande</td>
<td>41</td>
<td>(Kwak et al. 2005)</td>
</tr>
<tr>
<td>Océanie</td>
<td>Océanie divers</td>
<td>66</td>
<td>(Karafet non publié)</td>
</tr>
</tbody>
</table>
Annexe 28. Base de données pour les analyses sur HVI

<table>
<thead>
<tr>
<th>Regroupement géographique</th>
<th>Populations</th>
<th>N</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iles océan Indien</td>
<td>Hautes Terres</td>
<td>52</td>
<td>(Hurles et al. 2005 ; Tofanelli et al. 2009 ; Razafindrazaka 2010)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Antanosy</td>
<td>54</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Antandroy</td>
<td>59</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Mikea</td>
<td>127</td>
<td>(Razafindrazaka 2010)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Vezo Nord Tuléar</td>
<td>52</td>
<td>(Razafindrazaka 2010)</td>
</tr>
<tr>
<td>Iles océan Indien</td>
<td>Vezo Sud Tuléar</td>
<td>49</td>
<td>(Razafindrazaka 2010)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Angola Nyaneka</td>
<td>147</td>
<td>(Coelho et al. 2009)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Angola Ovimbudu</td>
<td>98</td>
<td>(Coelho et al. 2009)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Fon Benin</td>
<td>171</td>
<td>(Brucato et al. 2010 ; Rowold et al. 2007)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cabinda Angola</td>
<td>110</td>
<td>(Beleza et al. 2005)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cabo Verde</td>
<td>292</td>
<td>(Brehm et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun Ngumba</td>
<td>88</td>
<td>(Quintana-Murci et al. 2008)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun Pygmées Baka</td>
<td>87</td>
<td>(Quintana-Murci et al. 2008)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Cameroun Pygmées Bakoka</td>
<td>88</td>
<td>(Quintana-Murci et al. 2008)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Gabon Fang</td>
<td>66</td>
<td>(Quintana-Murci et al. 2008)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Gabon Mitsogo</td>
<td>64</td>
<td>(Quintana-Murci et al. 2008)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Gabon Nzebi</td>
<td>63</td>
<td>(Quintana-Murci et al. 2008)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Guinée Bissau</td>
<td>372</td>
<td>(Rosa et al. 2004)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Côte d’Ivoire Ahizi</td>
<td>129</td>
<td>(Brucato et al.2010)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Côte d’Ivoire Yacouba</td>
<td>61</td>
<td>(Brucato et al.2010)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Mali Malinke</td>
<td>60</td>
<td>(Ely et al. 2006)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Mozambique</td>
<td>416</td>
<td>(Pereira et al. 2001 ; Salas et al. 2002)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Rwanda Hutu</td>
<td>106</td>
<td>(Castri et al. 2009 ; Rowold et al. 2007)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Sao Tome</td>
<td>103</td>
<td>(Trovoada et al. 2003)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Sénégal Mandenka</td>
<td>119</td>
<td>(Graven et al. 1995)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Sénégal Wolof</td>
<td>91</td>
<td>(Rando et al. 1998)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Afrique du Sud Kung</td>
<td>59</td>
<td>(Chen et al.2000)</td>
</tr>
<tr>
<td>Afrique COS</td>
<td>Zimbabwe</td>
<td>58</td>
<td>(Castri et al. 2009)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Guanche Iles Canaries</td>
<td>71</td>
<td>(Maca-Meyer et al. 2004)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Egypte Arabes</td>
<td>102</td>
<td>(Coudray non publié)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Egypte Coptes</td>
<td>100</td>
<td>(Coudray non publié)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Mauras Mauritanie</td>
<td>64</td>
<td>(Goncalves et al. 2006)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Maroc Berbères</td>
<td>181</td>
<td>(Rando et al. 1998 ; Brakez et al. 2001)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Tunisie</td>
<td>47</td>
<td>(Plaza et al. 2003)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Algérie</td>
<td>47</td>
<td>(Corte-Real et al. 1996)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Sahawari</td>
<td>56</td>
<td>(Plaza et al. 2003)</td>
</tr>
<tr>
<td>Région</td>
<td>Groupe Ethnique</td>
<td>Nbre</td>
<td>Références</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Samaritain</td>
<td>124</td>
<td>(Ottoni et al. 2009)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Maroc Berbères de Bourhiah</td>
<td>70</td>
<td>(Coudray et al. 2009)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Maroc Berbères de Figuig</td>
<td>94</td>
<td>(Coudray et al. 2009)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Égypte Berbères de Siwa</td>
<td>78</td>
<td>(Coudray et al. 2009)</td>
</tr>
<tr>
<td>Afrique Nord</td>
<td>Libye Tuaregs</td>
<td>129</td>
<td>(Ottoni et al. 2009)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Kenya Swahili</td>
<td>200</td>
<td>(Brandstatter et al. 2004)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Tanzanie Hadza</td>
<td>79</td>
<td>(Tishkoff et al. 2007)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Tanzanie Sandawe</td>
<td>82</td>
<td>(Tishkoff et al. 2007)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Ethiopie Amharic Divers</td>
<td>270</td>
<td>(Kivisild et al. 2004)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Soudan Nubie</td>
<td>161</td>
<td>(Kivisild et al. 2004; Krings et al. 1999)</td>
</tr>
<tr>
<td>Afrique Est</td>
<td>Ethiopie divers</td>
<td>116</td>
<td>(Poloni et al. 2009)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Iran</td>
<td>146</td>
<td>(Nasidze et al. 2004; Comas et al. 2004)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Syrie</td>
<td>49</td>
<td>(Vernesi et al. 2001)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Yémen</td>
<td>115</td>
<td>(Kivisild et al. 2004)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Israël Druzes</td>
<td>45</td>
<td>(Macaulay et al. 1999)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Kurdes</td>
<td>78</td>
<td>(Comas et al. 2000; Nasidze et al. 2005a; Nasidze et al. 2005b)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Chypre Grecques</td>
<td>91</td>
<td>(Irwin et al. 2008)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Iraq</td>
<td>52</td>
<td>(Al-Zahery et al. 2003)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Iranien</td>
<td>731</td>
<td>(Metspalu et al. 2004; Nasidze et al. 2005a; Balloux non publié)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Dubaï</td>
<td>249</td>
<td>(Alshamali et al. 2008)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Israël Druzes</td>
<td>311</td>
<td>(Shlush et al. 2008)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Jordanie</td>
<td>99</td>
<td>(González et al. 2008)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Iran Kurdes</td>
<td>25</td>
<td>(Derenko et al. 2007)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Iran Persans</td>
<td>82</td>
<td>(Derenko et al. 2007)</td>
</tr>
<tr>
<td>Moyen-Orient</td>
<td>Arabie Saoudite</td>
<td>553</td>
<td>(Abu-Amero et al. 2007)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Bangladesh</td>
<td>30</td>
<td>(Bamshad et al. 1998)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Gujarat</td>
<td>91</td>
<td>(Mountain et al. 1995)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Inde Kamataka</td>
<td>201</td>
<td>(Cordaux et al. 2003; Mountain et al. 1995; Metspalu et al. 2004)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Inde Kerala</td>
<td>230</td>
<td>(Basu et al. 2003; Roychoudhury et al. 2001; Mountain et al. 1995; Metspalu et al. 2004; Cordaux et al. 2003)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Madyah Pradesh</td>
<td>82</td>
<td>(Metspalu et al. 2004; Basu et al. 2003; Baig et al. 2004)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Inde Maharashstra</td>
<td>221</td>
<td>(Basu et al. 2003; Sahoo & Kashyap 2006; Metspalu et al. 2004; Cordaux et al. 2003; Basu et al. 2004)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Inde Orissa</td>
<td>153</td>
<td>(Kivisild et al. 1999; Metspalu et al. 2004; Basu et al. 2003)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Punjab</td>
<td>362</td>
<td>(Basu et al. 2003; Cordaux et al. 2003; Kaur et al. 2002)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Tamoul Nadu</td>
<td>427</td>
<td>(Basu et al. 2003; Cordaux et al. 2003; Roychoudhury et al. 2001)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Inde Tripura</td>
<td>134</td>
<td>(Basu et al. 2003; Cordaux et al. 2003; Kivisild et al. 1999)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Uttard Pradesh</td>
<td>232</td>
<td>(Basu et al. 2003; Kivisild et al. 1999; Metspalu et al. 2004; Roychoudhury et al. 2001; Sharma et al. 2005)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Ouest Bengale</td>
<td>285</td>
<td>(Basu et al. 2003; Metspalu et al. 2004; Roychoudhury et al. 2001)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Sri Lanka</td>
<td>131</td>
<td>(Gan et al. 2008)</td>
</tr>
<tr>
<td>Asie Sud</td>
<td>Hindous Inde</td>
<td>72</td>
<td>(Fornarina et al. 2008)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>Sicile</td>
<td>226</td>
<td>(Forster et al. 2002; Rickards et al. non publié)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>Galicie</td>
<td>92</td>
<td>(Salas et al. 1998)</td>
</tr>
<tr>
<td>Région</td>
<td>Langue</td>
<td>Nbre</td>
<td>Références</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>Catalan</td>
<td>46</td>
<td>(Plaza et al. 2003)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>Andalousie</td>
<td>115</td>
<td>(Falchi et al. 2006 ; Corte-Real., et al. 1996)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>Portugais</td>
<td>54</td>
<td>(Sampietro et al. 2005)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>Corse</td>
<td>53</td>
<td>(Varesi et al. 2000)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>France Sud</td>
<td>110</td>
<td>(Dubut et al. 2004)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>Anglais</td>
<td>100</td>
<td>(Piercy et al. 1993)</td>
</tr>
<tr>
<td>Europe Ouest</td>
<td>Grèce</td>
<td>114</td>
<td>(Vernesi et al. 2001 ; Forster et al. 2002 ; Rickards et al. non publié)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Thaïlande divers</td>
<td>71</td>
<td>(Jin et al. 2009)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Vietnam</td>
<td>65</td>
<td>(Li et al. 2007)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Adonara</td>
<td>73</td>
<td>(Mona et al. 2009)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Flores</td>
<td>73</td>
<td>(Mona et al. 2009)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Banjarmasin</td>
<td>110</td>
<td>(Hill et al.2007 ; Hurles et al. 2005)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Bali</td>
<td>64</td>
<td>(Hill et al. 2007)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Sumatra Medan</td>
<td>42</td>
<td>(Macaulay et al. 2005)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Sumatra Pekanbaru</td>
<td>54</td>
<td>(Macaulay et al. 2005)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Nicobar divers</td>
<td>46</td>
<td>(Thangaraj et al. 2003)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Onges Nicobar</td>
<td>63</td>
<td>(Thangaraj et al. 2003)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Philippines</td>
<td>144</td>
<td>(Hill et al. 2007 ; Sykes et al. 1996 ; Tajima et al. 2004)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Iban</td>
<td>83</td>
<td>(Simonson et al. 2011)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Malais Kuala Lumpur</td>
<td>124</td>
<td>(Maruyama et al. 2010)</td>
</tr>
<tr>
<td>Asie du Sud-Est</td>
<td>Malais Singapour</td>
<td>205</td>
<td>(Wong et al. 2007)</td>
</tr>
<tr>
<td>Océanie</td>
<td>Nouvelle Guinée Hautes Terres</td>
<td>71</td>
<td>(Tommaseo-Ponzetta et al. 2002)</td>
</tr>
<tr>
<td>Océanie</td>
<td>Iles Salomon</td>
<td>64</td>
<td>(Friedlaender et al. 2002)</td>
</tr>
<tr>
<td>Océanie</td>
<td>Papouasie nouvelle Guinée Province Manus</td>
<td>144</td>
<td>(Kayser et al. 2008)</td>
</tr>
<tr>
<td>Océanie</td>
<td>Nouvelle Guinée Gidra</td>
<td>59</td>
<td>(Ohashi et al. 2007)</td>
</tr>
<tr>
<td>Océanie</td>
<td>Archipel Bismark</td>
<td>47</td>
<td>(Ricaut et al. 2008)</td>
</tr>
<tr>
<td>Océanie</td>
<td>Vanuatu Nguna</td>
<td>42</td>
<td>(Hagelberg et al. 2000)</td>
</tr>
</tbody>
</table>
Annexe 29. Références des haplotypes J1 utilisés pour le Network

<table>
<thead>
<tr>
<th>Country</th>
<th>Groupe</th>
<th>Nb</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>Moyen-Orient</td>
<td>1</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Algérie</td>
<td>Afrique Nord</td>
<td>23</td>
<td>(Robino et al. 2009)</td>
</tr>
<tr>
<td>Arabie Saoudite</td>
<td>Moyen-Orient</td>
<td>48</td>
<td>(Abu Amero et al. 2009)</td>
</tr>
<tr>
<td>Assyrien</td>
<td>Moyen-Orient</td>
<td>14</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Bali</td>
<td>Asie Sud-Est</td>
<td>6</td>
<td>(Karafet non publié)</td>
</tr>
<tr>
<td>Chypre</td>
<td>Moyen-Orient</td>
<td>18</td>
<td>(Zalloua et al. 2008b)</td>
</tr>
<tr>
<td>Comores</td>
<td>Comores</td>
<td>18</td>
<td>(Msaidie et al. 2010)</td>
</tr>
<tr>
<td>Daghestan</td>
<td>Europe</td>
<td>87</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Egypte</td>
<td>Afrique Nord</td>
<td>29</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Egypte</td>
<td>Afrique Nord</td>
<td>2</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Ethiopie</td>
<td>Afrique Est</td>
<td>21</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Inde</td>
<td>Asie du Sud</td>
<td>2</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Iran</td>
<td>Moyen-Orient</td>
<td>4</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Iraq</td>
<td>Moyen-Orient</td>
<td>11</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Iraq</td>
<td>Moyen-Orient</td>
<td>15</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Israël</td>
<td>Moyen-Orient</td>
<td>32</td>
<td>(Shlush et al. 2008)</td>
</tr>
<tr>
<td>Israël</td>
<td>Moyen-Orient</td>
<td>19</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Italie</td>
<td>Europe</td>
<td>26</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Jordan</td>
<td>Moyen-Orient</td>
<td>35</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Kurde</td>
<td>Moyen-Orient</td>
<td>1</td>
<td>(Mohammad et al. 2010)</td>
</tr>
<tr>
<td>Liban</td>
<td>Moyen-Orient</td>
<td>7</td>
<td>(Shlush et al. 2008)</td>
</tr>
<tr>
<td>Lybie</td>
<td>Afrique Nord</td>
<td>1</td>
<td>(Immel et al. 2006)</td>
</tr>
<tr>
<td>Maroc</td>
<td>Afrique Nord</td>
<td>9</td>
<td>(Zalloua et al. 2008b)</td>
</tr>
<tr>
<td>Maroc</td>
<td>Afrique Nord</td>
<td>9</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Monténégro</td>
<td>Europe</td>
<td>2</td>
<td>(Mirabal et al. 2010)</td>
</tr>
<tr>
<td>Oman</td>
<td>Moyen-Orient</td>
<td>37</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Oman</td>
<td>Moyen-Orient</td>
<td>19</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Asie du Sud</td>
<td>4</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Palestine</td>
<td>Moyen-Orient</td>
<td>100</td>
<td>(Zalloua et al. 2008b)</td>
</tr>
<tr>
<td>Palestine</td>
<td>Moyen-Orient</td>
<td>16</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Parsi</td>
<td>Asie du Sud</td>
<td>3</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Perse</td>
<td>Moyen-Orient</td>
<td>5</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Portugal</td>
<td>Europe</td>
<td>22</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Qatar</td>
<td>Moyen-Orient</td>
<td>41</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Qatar</td>
<td>Moyen-Orient</td>
<td>1</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Qatar</td>
<td>Moyen-Orient</td>
<td>20</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Arabie Saoudite</td>
<td>Moyen-Orient</td>
<td>4</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Serbie</td>
<td>Europe</td>
<td>1</td>
<td>(Mirabal et al. 2010)</td>
</tr>
<tr>
<td>Soudan</td>
<td>Afrique Est</td>
<td>26</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Syrie</td>
<td>Moyen-Orient</td>
<td>62</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Syrie</td>
<td>Moyen-Orient</td>
<td>8</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Country</td>
<td>Groupe</td>
<td>Nb</td>
<td>Références</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------</td>
<td>-----</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Syrie</td>
<td>Moyen-Orient</td>
<td>38</td>
<td>(Zalloua et al. 2008b)</td>
</tr>
<tr>
<td>Syrie</td>
<td>Moyen-Orient</td>
<td>9</td>
<td>(Shlush et al. 2008)</td>
</tr>
<tr>
<td>Tunisie</td>
<td>Afrique Nord</td>
<td>17</td>
<td>(Tofanelli et al. 2009)</td>
</tr>
<tr>
<td>Turquie</td>
<td>Moyen-Orient</td>
<td>18</td>
<td>(Cinnioglu et al. 2004)</td>
</tr>
<tr>
<td>UAE</td>
<td>Moyen-Orient</td>
<td>57</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Yémen</td>
<td>Moyen-Orient</td>
<td>42</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
<tr>
<td>Yémen</td>
<td>Moyen-Orient</td>
<td>3</td>
<td>(Chiaroni et al. 2010)</td>
</tr>
</tbody>
</table>

Annexe 30. Références des haplotypes T utilisés pour le Network

<table>
<thead>
<tr>
<th>Country</th>
<th>Groupe</th>
<th>Nb</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angola</td>
<td>Afrique Centre</td>
<td>1</td>
<td>(Coelho et al. 2009)</td>
</tr>
<tr>
<td>Argentina-(Native-American)</td>
<td>Amériques</td>
<td>1</td>
<td>(Blanco Verea et al. 2010)</td>
</tr>
<tr>
<td>Belgique</td>
<td>Europe</td>
<td>1</td>
<td>(Decorte et al. 2004 YHRD)</td>
</tr>
<tr>
<td>Brésil-État – Alagoas (Admixed-Brazilian)</td>
<td>Amériques</td>
<td>10</td>
<td>(Azevedo 2009 YHRD)</td>
</tr>
<tr>
<td>British non Jefferson</td>
<td>Europe</td>
<td>2</td>
<td>(King et al. 2007)</td>
</tr>
<tr>
<td>Chine</td>
<td>Asie Est</td>
<td>1</td>
<td>(Zhong et al. 2010)</td>
</tr>
<tr>
<td>Chine</td>
<td>Asie Est</td>
<td>1</td>
<td>(Sengupta et al. 2006)</td>
</tr>
<tr>
<td>Égypte</td>
<td>Afrique Nord</td>
<td>4</td>
<td>(Arredi et al. 2004)</td>
</tr>
<tr>
<td>Guinée Equatoriale</td>
<td>Afrique Centre</td>
<td>1</td>
<td>(Arroyo-Pardo et al. 2005)</td>
</tr>
<tr>
<td>Espagne</td>
<td>Europe</td>
<td>1</td>
<td>(Adams et al. 2008)</td>
</tr>
<tr>
<td>French</td>
<td>Europe</td>
<td>3</td>
<td>(King et al. 2007)</td>
</tr>
<tr>
<td>Péninsule Ibérique</td>
<td>Europe</td>
<td>13</td>
<td>(King et al. 2007)</td>
</tr>
<tr>
<td>Israël</td>
<td>Moyen-Orient</td>
<td>11</td>
<td>(Shlush et al. 2008)</td>
</tr>
<tr>
<td>Italie-Modena</td>
<td>Europe</td>
<td>3</td>
<td>(Ferri et al. 2008 YHRD)</td>
</tr>
<tr>
<td>Koweït</td>
<td>Moyen-Orient</td>
<td>1</td>
<td>(Mohammad et al. 2010)</td>
</tr>
<tr>
<td>Liban</td>
<td>Moyen-Orient</td>
<td>23</td>
<td>(Zalloua et al. 2008)</td>
</tr>
<tr>
<td>Lybie</td>
<td>Afrique Nord</td>
<td>2</td>
<td>(Immel et al. 2006)</td>
</tr>
<tr>
<td>Macédoine</td>
<td>Europe</td>
<td>4</td>
<td>(Spiroski et al. 2005 ; Jakovski et al. 2011 YHRD)</td>
</tr>
<tr>
<td>Méditerranée</td>
<td>Europe</td>
<td>1</td>
<td>(Adams et al. 2008)</td>
</tr>
<tr>
<td>Hollande</td>
<td>Europe</td>
<td>1</td>
<td>(Decorte et al. 2004 YHRD)</td>
</tr>
<tr>
<td>Palestine</td>
<td>Moyen-Orient</td>
<td>6</td>
<td>(Zalloua et al., 2008b)</td>
</tr>
<tr>
<td>Portugal</td>
<td>Europe</td>
<td>2</td>
<td>(Adams et al. 2008)</td>
</tr>
<tr>
<td>Portugal</td>
<td>Europe</td>
<td>10</td>
<td>(Nogueiro et al. 2010)</td>
</tr>
<tr>
<td>Syrie</td>
<td>Moyen-Orient</td>
<td>3</td>
<td>(Zalloua et al. 2008b)</td>
</tr>
<tr>
<td>Tunisie</td>
<td>Afrique Nord</td>
<td>4</td>
<td>(Zalloua et al. 2008b)</td>
</tr>
<tr>
<td>Turquie</td>
<td>Moyen-Orient</td>
<td>13</td>
<td>(Cinnioglu et al. 2004)</td>
</tr>
<tr>
<td>Ouganda</td>
<td>Afrique Centre</td>
<td>1</td>
<td>(Gomes et al. 2010)</td>
</tr>
<tr>
<td>USA-Nevada-(Basque)</td>
<td>Amériques</td>
<td>1</td>
<td>(Valverde Potes YHRD)</td>
</tr>
<tr>
<td>Virginia Jefferson</td>
<td>Europe</td>
<td>6</td>
<td>(King et al. 2007)</td>
</tr>
<tr>
<td>Zambie</td>
<td>Afrique Centre</td>
<td>1</td>
<td>(Filippo et al. 2011)</td>
</tr>
</tbody>
</table>