L. Descripteurs-de-fourier-pour-les-images-binaires and .. , 70 2.2.1 Les descripteurs de Fourier 1D usuels, p.73

L. Descripteurs-de-fourier-mellin, .. Fourier-mellin-analytiques, and .. , 78 2.3.2.1 Les descripteurs de Fourier-Mellin classiques, p.80

L. Moments-de-fourier-mellin-quaternioniques, .. , and G. , 86 2.4, p.88

L. Descripteurs-de-fourier-mellin, .. Fourier-mellin-analytiques, and .. , 78 2.3.2.1 Les descripteurs de Fourier-Mellin classiques, p.80

L. Moments-de-fourier-mellin-quaternioniques, .. , and G. , 86 2.4, p.88

.. Les-bases-d-'images-couleur and .. Gcf-d-et-?-?1, 98 3.1.2 Extraction des descripteurs, p.102

C. Comparaison-des-corrélations-de-phase-quaternionique, 117 3.2.3.1 Expérimentations sur des images synthétiques 117 3.2.3.2 Utilisation dans le cadre de la reconnaissance d'images, p.120

. Dans-le-premier-chapitre, Suite à cette étude, la transformée de Fourier Clifford couleur est apparue comme la plus prometteuse. En effet, elle permet de traiter l'information couleur dans sa globalité, i.e. non marginalement. Ensuite, dans un deuxième chapitre, les principaux descripteurs de Fourier de la littérature sont abordés. Parmi ceux-ci, les descripteurs de Smach et al. ont permis de définir trois nouveaux ensembles de descripteurs : les GCF D. Ces descripteurs, construits à partir de la transformée de Fourier Clifford couleur, sin_parameters, vol.70, issue.4

". La-maison-de-fourier, Illustration du log-module de la transformée de Fourier à chaque étape de la construction de, p.23

.. Transformée-de-fourier75, Mellin analytique d'une image ayant subi une rotation d'angle ? 2 et une homothétie de rapport 0, p.29

.. De-lenna, Illustration de différentes transformations de l'image, p.69

G. Calcul-de, à gauche) et calcul de GF D2 (à droite), p.82

F. Color, Taux de reconnaissance pour GCF D1 avec différentes valeurs de B T , puis avec 3 bivecteurs (cas marginal et par SFFS)

K. Bibliographie, W. E. Arbter, H. Snyder, &. G. Burkhardt, and . Hirzinger, Application of affine-invariant Fourier descriptors to recognition of 3-D objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.7, pp.640-647, 1990.

T. Batard, M. Berthier, and &. C. Saint-jean, Clifford???Fourier Transform for Color Image Processing, Geometric Algebra Computing in Engineering and Computer Science, chapitre 8, pp.135-161, 2010.
DOI : 10.1007/978-1-84996-108-0_8

URL : https://hal.archives-ouvertes.fr/hal-00332912

B. E. Bayer, Color imaging array, 0108.

E. Bayro-corrochano and &. G. Scheuermann, Geometric algebra computing : In engineering and computer science, p.39, 2010.
DOI : 10.1007/978-1-84996-108-0

M. Felsberg and &. G. Sommer, Non-commutative hypercomplex fourier tranforms of multidimensional signals, pp.187-207, 2001.

G. Bornard, J. Gauthier, and &. M. Silbermann, Mouvements et traitement d'images, Traitement du Signal, vol.6, issue.34, pp.281-290, 1986.

]. R. Bracewell, The Fourier Transform and Its Applications, American Journal of Physics, vol.34, issue.8, p.89, 1986.
DOI : 10.1119/1.1973431

F. Brackx, N. De-schepper, and &. F. Sommen, The Two-Dimensional Clifford-Fourier Transform, Journal of Mathematical Imaging and Vision, vol.1, issue.2, pp.5-18, 2006.
DOI : 10.1007/s10851-006-3605-y

D. Casasent and &. D. Psaltis, Position, rotation, and scale invariant optical correlation, Applied Optics, vol.15, issue.7, pp.1795-1799, 1976.
DOI : 10.1364/AO.15.001795

]. Chang-01, &. Chang, and . Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, 2001.
DOI : 10.1145/1961189.1961199

E. K. Chen, M. R. Garcia, A. Gupta, &. L. Rahimi, and . Cazzanti, Similarity-based Classification : Concepts and Algorithms, Journal of Machine Learning Research, vol.10, issue.118, pp.747-776, 2009.

]. B. Bibliographie, H. Chen, H. Shu, G. Zhang, &. L. Chen et al., Color Image Analysis by Quaternion Zernike Moments, Pattern Recognition (ICPR) 20th International Conference on, pp.625-628, 2010.

A. Choksuriwong, B. Emile, H. Laurent, and &. C. Rosenberger, Comparative study of global invariant descriptors for object recognition, Journal of Lightwave Technology Electronic Imaging, vol.17, issue.2, pp.23015-23028, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00256677

R. L. Cosgriff, Identification of shape, Res. Foundation, p.70, 1960.

S. Derrode, Représentation de formes planes à niveaux de gris par différentes approximations de Fourier-Mellin analytique en vue d'indexation de bases d'images, p.26, 1999.

S. Derrode and &. F. Ghorbel, Robust and Efficient Fourier???Mellin Transform Approximations for Gray-Level Image Reconstruction and Complete Invariant Description, Computer Vision and Image Understanding, vol.83, issue.1, pp.57-78, 2001.
DOI : 10.1006/cviu.2001.0922

]. L. Dickson, Annals of mathematics chapitre On quaternions and their generalization and the history of the eight square theorem, pp.155-171, 1919.

L. Dorst, S. Mann, and &. T. Bouma, GABLE : A Matlab Tutorial for Geometric Algebra, p.149, 2002.

L. Dorst, D. Fontijne, and &. S. Mann, Geometric algebra for computer science, ACM SIGACT News, vol.39, issue.4, p.39, 2007.
DOI : 10.1145/1466390.1466396

]. R. Duda, P. E. Hart, and &. G. Stork, Pattern Classification, 2001.

J. Ebling and &. G. Scheuermann, Clifford Fourier Transform on Vector Fields, IEEE Transactions on Visualization and Computer Graphics, vol.11, issue.4, pp.469-479, 1992.
DOI : 10.1109/TVCG.2005.54

T. A. Ell and &. S. Sangwine, Hypercomplex Fourier Transforms of Color Images, IEEE Transactions on Image Processing, vol.16, issue.1, pp.22-35, 2007.
DOI : 10.1109/TIP.2006.884955

J. Flusser, T. Suk, and &. B. Zitova, Moments and moment invariants in pattern recognition, p.13, 2009.
DOI : 10.1002/9780470684757

]. J. Fourier, Théorie analytique de la chaleur. Chez Firmin Didot, père et fils, pp.1822-1841

]. Gauthier, G. Bornard, and &. M. Silbermann, Motions and pattern analysis : harmonic analysis on motion groups and their homogeneous spaces. Systems, Man and Cybernetics, IEEE Transactions on, vol.21, issue.74, pp.159-172, 1991.

J. M. Geusebroek, G. J. Burghouts, and &. A. Smeulders, The Amsterdam Library of Object Images, International Journal of Computer Vision, vol.61, issue.1, pp.103-112, 2005.
DOI : 10.1023/B:VISI.0000042993.50813.60

]. R. Gonzalez and &. E. Woods, Digital image processing, pp.26-71, 2001.

F. Gourd, J. Gauthier, &. H. Younes, A. E. Grace, and &. M. Spann, Une méthode d'invariants de l'analyse harmonique en reconnaissance de formes A comparison between Fourier-Mellin descriptors and moment based features for invariant object recognition using neural networks Quaternion Fourier-Mellin moments for color images, Guo & M. Zhu, pp.161-178, 1989.

]. W. Hamilton, On Quaternions, or on a New System of Imaginaries in Algebra, Philosophical Magazine, vol.25, issue.3, pp.489-495, 1844.

. Bibliographie, Helgason 01] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces, 0136.

&. G. Hestenes and . Sobczyk, Clifford algebra to geometric calculus. Reidel, pp.116-136, 1984.

M. Isard and &. Blake, CONDENSATION -conditional density propagation for visual tracking, International Journal of Computer Vision, vol.29, issue.1, pp.5-28, 1998.
DOI : 10.1023/A:1008078328650

]. A. Jain and &. D. Zongker, Feature selection: evaluation, application, and small sample performance, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, issue.2, pp.153-158, 1997.
DOI : 10.1109/34.574797

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.137.8118

M. Kakuta, T. Obi, M. Yamaguchi, and &. N. Ohyama, Optical implementation of color image correlation, Optics Communications, vol.142, issue.1-3, pp.19-25, 1997.
DOI : 10.1016/S0030-4018(97)00216-2

I. Kunttu, L. Lepisto, J. Rauhamaa, and &. A. Visa, Color Fourier Descriptor for Defect Image Retrieval, pp.415-422, 2005.
DOI : 10.1007/11553595_51

]. D. Lowe, Object recognition from local scale-invariant features, Proceedings of the Seventh IEEE International Conference on Computer Vision, pp.1150-1157, 1999.
DOI : 10.1109/ICCV.1999.790410

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.4065

]. Y. Lu, S. Schlosser, and &. M. Janeczko, Fourier descriptors and handwritten digit recognition, Machine Vision and Applications, pp.25-34, 1993.
DOI : 10.1007/BF01212429

URL : http://deepblue.lib.umich.edu/bitstream/2027.42/46057/1/138_2005_Article_BF01212429.pdf

&. D. Mei and . Androutsos, Affine invariant shape descriptors : The ICA- Fourier descriptor and the PCA-Fourier descriptor, pp.1-4, 2008.

T. A. Moxey, &. S. Ell, and . Sangwine, Hypercomplex operators and vector correlation, EUSIPCO 2002, Eleventh European Signal Processing Conference, pp.247-250, 2002.

C. E. Moxey, S. J. Sangwine, and &. T. , Hypercomplex correlation techniques for vector images, IEEE Transactions on Signal Processing, vol.51, issue.7, pp.1941-1953, 2003.
DOI : 10.1109/TSP.2003.812734

. Moya-sánchez-10-]-e, &. E. Moya-sánchez, and . Bayro-corrochano, Quaternion Atomic Function Wavelet for Applications in Image Processing, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp.346-353, 2010.
DOI : 10.1007/978-3-642-16687-7_47

]. S. Nene-96, S. K. Nene, &. H. Nayar, and . Murase, Columbia Object Image Library (COIL-100), 1996, pp.76-98

]. P. Phillips, H. Wechsler, J. Huang, and &. P. Rauss, The FERET database and evaluation procedure for face-recognition algorithms, Image and Vision Computing, vol.16, issue.5, pp.295-306, 1998.
DOI : 10.1016/S0262-8856(97)00070-X

B. S. Reddy and &. N. Chatterji, An FFT-based technique for translation, rotation, and scale-invariant image registration, IEEE Transactions on Image Processing, vol.5, issue.8, pp.1266-1271, 1996.
DOI : 10.1109/83.506761

E. Rosten, R. Porter, and &. T. Drummond, Faster and Better: A Machine Learning Approach to Corner Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.1, pp.105-119, 2010.
DOI : 10.1109/TPAMI.2008.275

S. J. Sangwine, Fourier transforms of colour images using quaternion or hypercomplex, numbers, Electronics Letters, vol.32, issue.21, pp.1979-1980, 1996.
DOI : 10.1049/el:19961331

S. J. Sangwine, The discrete quaternion Fourier transform. Image Processing and Its Applications, Sixth International Conference on, pp.790-793, 1997.

S. J. Sangwine and &. T. , The discrete Fourier transform of a colour image Image Processing II : Mathematical Methods, Algorithms and Applications, Proceedings of Second IMA Conference on Image Processing, pp.430-441, 1998.

S. J. Sangwine, T. A. Ell, and &. C. Moxey, Vector phase correlation, Electronics Letters, vol.37, issue.25, pp.1513-1515, 2001.
DOI : 10.1049/el:20011035

J. Serra, The ???False Colour??? Problem, Proceedings of the 9th International Symposium on Mathematical Morphology and Its Application to Signal and Image Processing, ISMM '09, pp.13-23, 2009.
DOI : 10.1109/TPAMI.2007.70817

. Bibliographie, . Sheng-86a-]-y, &. H. Sheng, and . Arsenault, Experiments on pattern recognition using invariant Fourier-Mellin descriptors, The Journal of the Optical Society of America A, vol.3, issue.78, pp.771-776, 1926.

]. Y. Sheng-86b, &. J. Sheng, and . Duvernoy, Circular-Fourier???radial-Mellin transform descriptors for pattern recognition, Journal of the Optical Society of America A, vol.3, issue.6, pp.885-888, 1986.
DOI : 10.1364/JOSAA.3.000885

F. Smach, C. Lemaître, J. Gauthier, J. Mitéran, and &. M. Atri, Generalized Fourier Descriptors with Applications to Objects Recognition in??SVM Context, Journal of Mathematical Imaging and Vision, vol.16, issue.1, pp.43-71, 2008.
DOI : 10.1007/s10851-007-0036-3

URL : https://hal.archives-ouvertes.fr/hal-00647554

G. Sommer, Geometric computing with clifford algebra : theoretical foundations and applications in computer vision and robotics, p.39, 2001.
DOI : 10.1007/978-3-662-04621-0

M. R. Teague, Image analysis via the general theory of moments*, Journal of the Optical Society of America, vol.70, issue.8, pp.920-930, 1917.
DOI : 10.1364/JOSA.70.000920

&. A. Torralba and . Oliva, Statistics of natural image categories, Network : Computation in Neural Systems, pp.391-412, 2003.
DOI : 10.1088/0954-898X_14_3_302

]. L. Torres, J. Y. Reutter, and &. L. Lorente, The importance of the color information in face recognition, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), pp.627-631, 1999.
DOI : 10.1109/ICIP.1999.817191

V. N. Vapnik, Statistical Learning Theory, 0101.

N. J. Vilenkin, Special functions and the theory of group representations, volume 22 of Translations of Mathematical Monographs, pp.30-123, 1968.

G. Wu, E. Y. Chang, and &. Z. Zhang, An analysis of transformation on nonpositive semidefinite similarity matrix for kernel machines, Proceedings of the 22nd International Conference on Machine Learning, 2005.

]. C. Zahn-72, &. Z. Zahn, and . Roskies, Fourier Descriptors for Plane Closed Curves, IEEE Transactions on Computers, vol.21, issue.3, pp.269-281, 1972.
DOI : 10.1109/TC.1972.5008949

V. F. Zernike, Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode, Physica, vol.1, issue.7-12, pp.7-12, 1934.
DOI : 10.1016/S0031-8914(34)80259-5

]. D. Zhang and &. G. Lu, A Comparative Study on Shape Retrieval Using Fourier Descriptors with Different Shape Signatures, pp.1-9, 2001.

]. D. Zhang-02a, &. G. Zhang, and . Lu, Shape-based image retrieval using generic Fourier descriptor, Signal Processing: Image Communication, vol.17, issue.10, pp.825-848, 2002.
DOI : 10.1016/S0923-5965(02)00084-X

]. D. Zhang-02b and . Zhang, Image Retrieval Based on Shape, p.75, 2002.

&. G. Zhang and . Lu, Study and evaluation of different Fourier methods for image retrieval, Image and Vision Computing, vol.23, issue.1, pp.33-49, 2005.
DOI : 10.1016/j.imavis.2004.09.001

T. Zickler, S. P. Mallick, D. J. Kriegman, and &. P. Belhumeur, Color Subspaces as Photometric Invariants, International Journal of Computer Vision, vol.13, issue.7, pp.13-30, 2008.
DOI : 10.1007/s11263-007-0087-3