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Abstract

In this thesis we present novel techniques for the study of ultracold gases of lithium
atoms.

In the first part of this thesis, we present the development of a narrow-linewidth
laser source emitting 840 mW of output power in the vicinity of the lithium D-line
resonances at 671 nm. The source is based on a diode-end-pumped unidirectional
ring laser operating on the 1342-nm transition in Nd:YVO4, capable of producing
1.3 W of single-mode light delivered in a diffraction-limited beam. The output beam is
subsequently frequency-doubled using periodically-poled potassium titanyl phosphate
(ppKTP) in an external buildup cavity. We obtain doubling efficiencies of up to 86%.
Tunability of the output frequency over more than 400 GHz and frequency-locking of
the cavity ensemble with respect to the lithium D-line transitions are accomplished.
We measure the linewidth to be 200+400

−200 kHz.

In the second part of this thesis, we employ the source in an experimental setup
to produce to cool and trap lithium atoms. We realize samples of finite-temperature
unitary Bose gases around the center of a Fano-Feshbach resonance, where interactions
between the atoms are maximized. We present temperature-dependent measurements
of the unitarity-limited three-body loss rate. The measured losses attain the limiting
value imposed by quantum mechanics without adjustable parameters. This measure-
ment allows for the introduction of a criterion for quasi-equilibrium. In this regime,
by using technique based on in-situ imaging developed in our group, we provide a first
measurement of the equation of state of the unitary Bose gas at low fugacities.





Résumé

Dans cette thèse, nous présentons des nouvelles techniques et leur application dans
l’étude des gaz d’atomes de lithium ultrafroids.

Dans la première partie de cette thèse, nous présentons le développement d’une
nouvelle source laser de faible largeur spectrale, capable d’émettre 840 mW de puis-
sance dans la gamme des longeurs d’ondes des raies D du lithium atomique à 671 nm.
La source est basée sur un laser en anneau pompé par diode, fonctionnant sur la tran-
sition à 1342 nm dans le Nd:YVO4, capable de produire 1.3 W de lumière monomode
dans un faisceau limité par la diffraction. Le faisceau de sortie est ensuite doublé en
fréquence dans un cristal de phosphate de potassium titanyl (ppKTP) périodiquement
polarisé dans une cavité externe. Nous obtenons un rendement du doublage de 86%.
Une accordabilité de la fréquence de sortie sur plus de 400 GHz et le verrouillage de
l’ensemble des cavités par rapport aux raies D du lithium sont accomplis. Nous avons
mesuré la largeur de raie d’émission à 200+400

−200 kHz.

Dans la deuxième partie de cette thèse, nous employons la source sur un dis-
positif expérimental pour refroidir et piéger des atomes de lithium. Nous réalisons
des echantillons du gaz de Bose unitaire à température finie au voisinage d’une réso-
nance de Fano-Feshbach, où les interactions entre les atomes sont maximales. Nous
présentons des mesures du taux de pertes à trois corps en fonction de la température.
Les pertes mésurées atteignent la valeur limite imposée par la mécanique quantique
sans aucun paramètre ajustable. Cette mesure permet l’introduction d’un critère de
quasi-équilibre. Dans ce régime, en utilisant une technique basée sur l’imagerie in-situ
développée dans notre groupe, nous fournissons une première mesure de l’équation
d’état du gaz de Bose unitaire à basse fugacité.





Zusammenfassung

In dieser Arbeit werden neue Techniken für die Untersuchung von ultrakalten Gasen
bestehend aus Lithiumatomen vorgestellt.

Im ersten Teil dieser Arbeit präsentieren wir die Entwicklung einer schmalbandi-
gen Lichtquelle, welche 840 mW Ausgangsleistung im Bereich der Lithium-D-Linien
bei 671 nm liefert. Die Quelle beruht auf einem diodenendgepumpten unidirektionalen
Ringlaser, der unter Benutzung des 1342-nm-Überganges in Nd:YVO4 1.3 W monofre-
quentes Licht in einem beugungsbegrenzten Strahl emittiert. Die Laserstrahlung wird
anschließend unter Benutzung von periodisch gepoltem Kaliumtitanylphosphat
(ppKTP) in einem externen Resonator frequenzverdoppelt. Der maximale Wirkungs-
grad dieser Frequenzkonversion beträgt 86%. Eine Abstimmbarkeit der Ausgangsfre-
quenz über mehr als 400 GHz und eine Frequenzstabilisierung des Resonatorensembles
in Bezug auf die Lithium-D-Linien werden erreicht. Wir bestimmen die Linienbreite
des emittierten Lichts zu 200+400

−200 kHz.

Im zweiten Teil dieser Arbeit benutzen wir die Lichtquelle zum magnetooptis-
chen Fangen von Lithiumatomen. Mit diesen präparieren wir unitäre Bose-Gase bei
endlicher Temperatur in unmittelbarer Umgebung einer Fano-Feshbach-Resonanz, wo
die Wechselwirkung zwischen den Atomen ihren maximalen Wert annimmt. Wir
präsentieren temperaturabhängige Messungen der Dreikörperverlustrate. Die gemesse-
nen Verluste erreichen das durch die Quantenmechanik auferlegte unitäre Limit, wo-
durch die Einführung eines Quasi-Gleichgewichtskriteriums ermöglicht wird. Inner-
halb dieses Regimes präsentieren wir mithilfe einer in-situ-Bildgebungstechnik, welche
in unserer Gruppe entwickelt wurde, eine erste Messung der thermodynamischen Zus-
tandsgleichung des unitären Bose-Gas bei niedrigen Fugazitäten.
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Introduction

The realization of the first Bose-Einstein condensate in dilute alkali atom vapors in
1995 marks the starting point of a revolution in physics, allowing one to experimentally
create new exotic states of matter.

The indispensable requirement for obtaining these ultracold dilute gases was the
development of experimental techniques allowing to increase the phase-space densities
of atomic vapors by magneto-optical cooling and evaporative cooling in conservative
traps. Light forces on particles are known at least since Kepler’s times from the shape
of the tails of comets. In 1929, Pringsheim proposed to use light fields for acting
mechanically on atoms [2], however, sufficiently brilliant light sources were not available
at that time. The invention of the laser [3] allowed trapping of dielectric particles by
Ashkin in 1970 [4], and in 1975, Hänsch and Schawlow proposed to use light to act
dissipatively on atomic ensembles [5]. The most important experimental breakthroughs
appeared one decade after the proposals with the ground-state cooling of the motion
of a simple trapped ion [6] and the observation of optical molasses and sub-Doppler
cooling and the explanation of its mechanisms [7, 8]. This earned the field the 1997
Nobel prize in physics to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips
“for development of methods to cool and trap atoms with laser light”. This was soon
after followed in 2001 by the Nobel prize to Eric A. Cornell, Wolfgang Ketterle and
Carl E. Wieman “for the achievement of Bose-Einstein condensation in dilute gases of
alkali atoms, and for early fundamental studies of the properties of the condensates”.

The imprint of the lasers as a tool for mechanical action on atoms can thus hardly be
overestimated. Apart from changing the atomic phase-space density by more than ten
orders of magnitude [9], lasers have countless applications in cold-atom experiments,
for instance the creation of almost arbitrarily shaped potentials, phase imprinting,
coherent separation, to only name a few. These techniques allow for the realization
of model Hamiltonians from almost all domains in physics, be it condensed matter-,
statistical- or even particle physics. The possibility to realize many-body quantum
systems in an extremely clean environment at nanokelvin-scale temperatures resulted
in an explosion of works in the subject, making it one of the most active research fields
in contemporary physics.



12 Introduction

Outline of this thesis

According to the different but related subjects the thesis work was devoted to, this
thesis is separated in two parts:

• In Part I, we present an all solid-state laser source emitting 840-mW output
power of narrowband 671-nm light frequency-locked to the Lithium D-line tran-
sitions. We demonstrate the suitability of this stable, robust, spectrally narrow
and frequency-stabilized light source for laser cooling of Lithium atoms.

• In Part II, we present work on the finite-temperature unitary Bose gas. We dis-
cuss temperature-dependent measurements of the unitarity- limited, three-body
loss rate. Moreover, we measure the equation of state of the finite-temperature
unitary Bose gas.



Part I

High power 671-nm laser system





Chapter 1

Introduction to Part I

The theoretical description of stimulated emission dates back to Albert Einstein. In
1916, he introduced this process to balance the rate equations of light absorption and
emission of molecules in radiation fields [10]. Under the condition of inversion of the
excited-state molecular population, stimulated emission can lead to gain of intensity
of an incident radiation. Radar technology advanced rapidly in World War II, and it
was on the quest to develop low-noise microwave amplifiers that Nicolay Gennadiyevich
Basov and Aleksandr Mikhailovich Prokhorov theoretically proposed an amplifier using
stimulated emission in 1952. It was put in practice in 1954 by Charles Hard Townes
and the group of Basov and Prokhorov [11, 12] in the form of the MASER (microwave
amplification by stimulated emission of radiation), winning them the 1964 Nobel prize
in physics. In 1960 Maiman applied the same principle to visible wavelengths [3]. He
realized the first MASER in the visible spectrum called LASER (light amplification by
stimulated emission of radiation) using flashlamp-pumped ruby as a gain medium, and
aluminum coatings on the end faces forming a cavity.

The impact of the development of the laser on our society, and on various domains
of science is hard to be overestimated. In fact, the laser has become a part of our
every-day life. Its particular impact on science is remarkable, and many fields would
nowadays be unimaginable without the use of lasers. In high-resolution spectroscopy,
light frequencies and thus spectroscopic features can be measured on an absolute scale
with sub-Hertz precision. Laser pulse durations and thus timescales of dynamic pro-
cesses measured using this radiation can be in the attosecond regime. With the help
of lasers, one can address single atoms or ions and create exotic states of matter by
cooling dilute atomic gases to quantum degeneracy, where the de-Broglie wavelength
reaches the order of the inter-particle distance.

The electro-magnetic fields provided by laser radiation can even reach the order
of magnitude of intra-atomic fields. Thus, intense laser fields can cause nonlinear re-
sponses when interacting with matter. These effects can be exploited to create light
waves of frequencies different from the incident ones. Since laser sources are gen-
erally limited in their output frequency spectrum, the spectral coverage of laser-like
sources can largely be augmented by applying nonlinear conversion processes. Only
one year after the invention of the laser, second-harmonic generation was demonstrated
by P. A. Franken et al. in 1961 [13]. The later demonstration of the optical parametric
oscillator [14] paved the way for the creation of radiation of any frequency below that
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of a given pump source. Further nonlinear frequency conversion methods are sum- and
difference-frequency generation. An overview of these techniques is given in [15]. Using
this rich toolbox of frequency-conversion technologies, available in both the continuous-
wave and pulsed regimes, frequency limitations for laser-like light are only due to the
occurrence of absorption in the nonlinear media employed. Specific media have been
devised to cover the visible and near infrared region, and beyond.

The first laser employed a solid-state gain medium. Gaseous and liquid-gain-
medium laser sources were developed thereafter, as well as different solid-state gain
media. Crystals and glasses doped with neodymium ions (Nd3+) are a prime exam-
ple, featuring a strong transition around 1064 nm. Lasers using this material class
are among the most powerful and widespread laser sources. In the following, we will
motivate the development of a similar all-solid-state, frequency-doubled laser source
emitting at 671 nm for cooling and trapping of lithium atoms.

This chapter is organized as follows: In Section 1.1 we will present the most promi-
nent applications for laser sources emitting at 671 nm. In Section 1.2, currently avail-
able 671-nm light sources are discussed, whereas in Section 1.3 suitable alternatives
for generating frequency-doubled light at the lithium resonances are presented. We
conclude in Section 1.4 with the presentation of the overall design of the 671-nm laser
source developed at Laboratoire Kastler Brossel.

1.1 Applications of 671-nm light sources

Ultracold atom experiments

The domain of ultra-cold atoms is a mature research field in today’s physics. The
1997 and 2001 Nobel prizes in physics were given for laser cooling of atoms and the
achievement of the atomic Bose–Einstein condensate in dilute atomic gases. Laser
systems for theses experiments need to fulfill several requirements:

• To be able to produce large samples of quantum degenerate gases, one needs
large numbers of pre-laser-cooled atoms in a magneto-optical trap (MOT). This
first step is mandatory before proceeding to the evaporative cooling phase that
leads to quantum degeneracy by reducing the atom number in favor of phase-
space density. To optimize the MOT capture process, one usually fixes the laser
intensity around one atomic saturation intensity

Isat =
πhc

3λ3τ
, (1.1)

where h is Planck’s constant, c the speed of light in vacuum, λ the transition
wavelength, and τ = 1/Γ the upper-state lifetime. Isat equals 2.5 mW.cm−2 in
the case of atomic lithium. The dependence of the atom capture rate R of a
vapor-cell MOT as a function of laser power and geometry can be estimated to
be [16]

R ∝ w4

(
I/Isat

1 + I/Isat

)
, (1.2)
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where w is the laser beam power radius, and I is its intensity. It is clear from (1.2)
that rising the intensity above the saturation intensity is of minor interest. The
available output power is thus best used to maximize the beam diameter. Thus,
more laser power leads to a better capture efficiency and larger atom numbers.
In practice, several tens of milliwatts of laser power per MOT beam are necessary
for operating a large MOT.

• For stable operation, it is favorable to acoustically and electronically decouple
the laser system from the MOT region, and to spatially mode-clean the laser
light. In practice, this is realized by coupling the generated light to polarization-
maintaining, single-mode fibers. One thus requires high transversal mode quality
to establish an efficient fiber transport process. This also requires a stable polar-
ization of the output.

• The requirement on the laser linewidth for operating an ultracold atom experi-
ment is to not exceed a small fraction of the natural linewidth Γ of the atomic
transition. For stabilized single-mode lasers, this is fulfilled easily. This condition
is even more relaxed for MOT operation only. Moreover, several light beams of
different frequencies need to be generated.

• The relative intensity noise requirements are relatively modest as well, and ful-
filled by all common sources.

To fulfill all of these requirements, a certain degree of complexity arises in the practical
realization of such systems. Two typical approaches exist to create all necessary output
beams:

1. The master-oscillator-power-amplifier (MOPA) principle: Low-power frequency-
stabilized light is derived from a master laser, typically an external-cavity diode
laser. Beams of the necessary frequencies are derived from the master output
by modulators. The resulting low-power output beams need to be amplified in
power, which is typically established using either tapered amplifiers ore injection-
locked diode lasers. A typical example is the setup currently used at ENS, see
Figure 1.1.

2. The one-source principle: All the power is derived from a single frequency-
stabilized source. Beams of different frequencies are, as above, generated using
modulators.

The advantage of the second approach is obvious: The use of a single laser source sig-
nificantly reduces the maintenance necessary to keep the system operational. However,
to take into account the power requirements of the MOT, and the losses occuring when
generating the required beams, Watt-level output power is needed for the single source.

The lithium atomic species is of great interest for ultra-cold-atom experiments and
the study of quantum degenerate gases. As a member of the alkali group it offers
strong coupling to electromagnetic fields and a simple level structure including cycling
transitions, thus making it suitable for laser cooling. The significant natural abundance
of fermionic (6Li) as well as bosonic (7Li) isotopes allows exploration of both sorts of
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Figure 1.1: The current 7Li laser system at ENS. Diode lasers are symbolized by
green boxes, frequency modulators [acousto-optical modulators (AOMs), where sp(dp)
stands for single (double passage) and the indicated frequencies are the nominal values
of the respective modulator] by orange boxes and optical fibers by grey boxes. The
master laser light is frequency-locked to the 7Li D2 transition. The remaining output
is frequency-shifted and amplified by an injection-locked slave laser for each of the
Zeeman- and MOT output beams. The slave lasers carry a name according to their
function [7 is for 7Li, P(R) is for principle (repumper) beam and ZS (MOT) stands
for Zeeman slower (magneto-optical trap)]. Each MOT beam is sent through a switch
AOM (swAOM) to allow for fast switch-off, and all the beams are finally sent to the
experimental table through single-mode optical fibers. For reasons of clarity, we do
not show the mode-cleaning fiber placed before every slave laser. The lowest (non-
amplified) beam is sent to the imaging setup, where further frequency-shifters are used
to create imaging light resonant to different transitions at various magnetic fields. In
the course of this work, we replaced the Zeeman slower beams as well as the MOT
beams by the newly-developed laser source. A similar, slightly more different setup is
used for cooling, trapping and manipulating 6Li.

quantum statistics. Moreover, the interaction parameter at ultracold temperatures, the
s-wave scattering length, is easily tunable for both species by applying a DC magnetic
field in the vicinity of a Feshbach resonance [17]. The large width of these resonances,
in addition to the light mass, adds up to the favourable properties of lithium for ultra-
cold-atom experiments. However, the only Watt-level source for addressing the lithium
D-line resonances at 671 nm are dye lasers, which are notoriously difficult to operate.

Atom interferometry

Atom interferometry allows experimental tests of the foundations of modern physics. It
is direct evidence of the wave-particle duality in quantum mechanics [18–21]. The field
takes advantage of the ultra-high degree of control achieved in atomic physics. Precise
measurements of physical constants such as the gravitational constant G [22, 23] and
the fine structure constant α [24, 25] stem from atom interferometers. Atom gravime-
ters have equaled classical falling corner-cube interferometers in terms of measurement
precision of the local gravitational acceleration g [26, 27] and its gradient ∇g [28].
Refractive indices of gases for atomic wave packets were measured, as well as atomic
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polarizabilities [29–31].
Atom interferometry relies on coherent splitting of atomic wave packets in either a

Raman- or a Bragg scattering process by counter-propagating light waves. This yields
a spatial splitting ∆r due to the momentum distributed by the stimulated process of

∆r =
2~k

m
t, (1.3)

where k is the wave vector of the light used to drive the stimulated transition, m is the
atomic mass, and t the waiting time after the coherent separation. When using Bragg
scattering, transfer of the n-fold of the two photon momenta in Equation 1.3 to the
atoms increases the spatial splitting and the sensitivity of the interferometer accord-
ingly [32]. Transfer of 24 photon momenta was demonstrated in [32], requiring large
laser power∗. Since the absolute values of k and thus the D-line transition wavelengths
of the alkalis are relatively similar, it is mostly the atomic mass which determines the
spatial splitting.

Since lithium is the lightest of the alkali atoms, the large spatial splitting is partic-
ularly favorable, allowing the introduction of a septum electrode between the atomic
beam paths in [33]. The laser source presented here was developed in collaboration
with the lithium atom interferometry group of Jacques Vigué at the University of
Toulouse [33–36]. A stable, continuous-wave, Watt-class laser is needed to achieve suf-
ficient scattering amplitudes [36], thus an all-solid state laser would be a convenient
replacement for the dye lasers currently used in the experiment, see Table 1.1.

Lithium isotope separation

Enrichment of the lighter lithium isotope 6Li is of great importance for nuclear fission
processes, see [37] for a review. Gaseous 6Li in the chemical form of LiH is an efficient
thermal neutron-getter, thus used to control the explosive power of fission bombs.
Tritium, one of the constituents in the deuterium-tritium process, is bred from 6Li
under neutron bombardment. Tritium has a radioactive lifetime of 12.3 years and
decays to 3He, which can be collected from fission warheads. This is currently the
only way to produce 3He in significant amounts, a refrigerant necessary in scientific
and security applications. It is planned to use the Deuterium-Tritium process in future
fusion power plants.

The isotope separation method, initially intended for Uranium isotope separation
using dye lasers, has been developed in the 1980s at Lawrence Livermore National
Laboratory [38]. The diffusion isotope enrichment of 235U (natural abundance: 0.7%)
to plant-grade concentrations (∼ 3%) or higher (∼ 100% for nuclear fission bombs)
normally requires many iterations because of the low selectivity. This can be over-
come by applying a highly selective method, making the process less cost-extensive.
The 6-eV ionization energy required for ionization of Uranium can be transferred in a
three-step photo-ionization process using two intermediate atomic levels. The transi-
tion wavelengths are situated around 600 nm. The isotopic splitting of the transitions
(larger than the Doppler width in an atomic jet) is sufficient to individually address

∗In [32], an injection-locked Ti:Sa laser delivered 6W of total output power at 852 nm for a cesium
interferometer.
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the isotopes. The ions can than be collected on a cathode inserted in the vacuum
apparatus.

For isotope separation of lithium, a similar two-step photo-ionization method via the
2P state of atomic lithium has been presented in [39–41]. One first selectively excites
6Li to the 2P state via the D-line transitions, from where it can be ionized using a UV
laser, typically a frequency-quadrupled Nd:YAG laser [41]. The D2 transitions of 6Li
and D1 of 7Li are almost frequency degenerate, and thus fall in the same Doppler peak
at room temperature. The D1 line of 6Li is well separated from the D2 line of 7Li,
see Figure 7.1, with a fine structure splitting of ≃ 10GHz. Once ionized, the 6Li+ ions
can covinently be separated from the atoms using electric fields, forming pure metallic
6Li on the cathode. The maximum production rate ṄLi−6 is identical to the D-line
absorption rate and thus the laser photon flux ϕph incident on the atoms, yielding

ṄLi−6 = ϕph =
P

~ω
≃ 3.4 × 1018s−1 , (1.4)

or 39µg.s−1, if the laser power P = 1W. Thus, the production of 1 g of pure 6Li takes
≃ 8h of continuous operation. A further important technical limitation comes from
the need of a UV (laser) light source capable of delivering the same photon flux to
ionize the excited lithium atoms.

Pump source for Cr:LiSAF lasers

Lasers based on the chromium-doped lithium strontium aluminum fluoride (Cr:LiSAF)
gain material have raised as an inexpensive replacement of the common Ti:Sapphire
lasers in both cw and pulsed operation [42]. The material offers emission from 780–
990 nm, and 12-fs pulses have been be generated by the Kerr-lens mode-locking tech-
nique.

The main interest of this gain medium is the prominent absorption feature at
670 nm, allowing it to be pumped by inexpensive semiconductor lasers, as those pre-
sented in Section 1.2. Many of the frequency-doubled Nd:YVO4 laser sources presented
there were developed for that purpose. In contrast to these, the laser source devel-
oped in our work features the important advantages of transversal and longitudinal
single-mode emission and high output power, which will yield better mode quality and
stability of Cr:LiSAF laser emission.

1.2 Currently available 671-nm laser sources

The wavelength of the lithium D-line resonances (670.8 nm in air) currently restricts
the choice of continuous-wave light sources to three different kinds of lasers: dye lasers,
diode lasers and amplifiers and frequency-doubled solid-state lasers.

Dye lasers

Dye lasers have been a standard light source for atomic physics for several decades.
They typically deliver Watt-level output power of monochromatic light in a diffraction-
limited beam. The output power at a given wavelength depends on the combination
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of pump source, dye and solvent, see for instance [43]. The emission spectrum is gen-
erally broadband, allowing it to easily reach the lithium D-line resonance frequencies.
Although technologically well-mastered, dye lasers remain notoriously cumbersome to
operate. The dyes are aging and need to be replaced frequently. Frequency stabiliza-
tion is difficult because of the usage of the instable liquid dye solution in the form of a
jet inside the laser cavity, and the occasional occurence of bubbles in it. The need for
an expensive pump laser is a further drawback of this technology.

Table 1.1 gives an overview of current sources at 671 nm. The state-of-the-art
pumping by a frequency doubled Nd:YAG laser emitting at a wavelength of 532 nm is
not ideally suited for DCM [44], so the short-wave alternatives at 515 nm (frequency-
doubled Ytterbium fiber laser) or 488 nm (Argon-ion laser) are preferable.

Source Pump Dye (solvent)† Output
power

Johnston et al. [43] Ar-ion, 20 W @ 488 nm DCM (AMX,
BZ(5:1), COT)

3 W

Thomas group [45] Ar-ion, 6-7 W @ 514.5 nm LD688 (EPH) 900 mW
Vigué group [46] Verdi, 4 W @ 532 nm LD688 (EPH) 500 mW
Ketterle group [47] Millenia X, 10 W @ 532 nm LD688 (EPH) 500 mW
Radiant dyes [44] Verdi, 10 W @ 532 nm DCM 300 mW

Table 1.1: Comparison of dye lasers at 671 nm. Depending on the combination of
dye, solvent and pump source, Watt-class output powers were demonstrated.

Semiconductor lasers

Diode lasers are used in many ultracold atom experiments. However, a frequency-
stabilized diode laser typically delivers output powers in the ten-milliwatt range, in-
sufficient for running today’s experiments. Thus, the combination of master oscilla-
tors (MOs) with power amplifiers (PAs) have been developed, rendering the intrinsi-
cally simple systems more complicated in terms of design and maintenance effort. The
current 7Li diode-based laser setup of the experiment at ENS is presented in Fig. 1.1.
The fact that currently 12 diodes are needed to cool both 6Li and 7Li to quantum de-
generacy demonstrates the elaborateness of the scheme. We use low-cost laser diodes
manufactured for DVD players (HITACHI HL6545MG), delivering up to 180 mW of
laser power at the room temperature design wavelength of 660 nm. These diodes are
heated up to 70◦C in order to shift the laser wavelength to 671 nm. To generate all
the beams needed for the experiment, amplification is achieved by injection-locking
further diode lasers, using the same laser diode model. The typical power per beam
is 120 mW, out of which typically . 50% are coupled to single-mode fibers. However,
the heating significantly reduces the diode lifetime. In a different approach, 130 mW
of output power were generated by using a broad emitter laser diode as a single-pass

†DCM = 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran; AMX = ammonyx LO
(75%) and ethylene glycol (25%) used at 10◦C; COT = cycloocta- tetraene; BZ = benzyl alcohol,
EPH = 2-Phenoxyethanol
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amplifier [48]. The required seed power was 9.6 mW, and magneto-optical trapping of
atomic lithium was successfully demonstrated, with the drawback of lower stability
and mode quality.

An alternative way to amplify the MO light, or even several nearby frequencies
in the same spatial mode and polarization, is to use tapered amplifiers (TAs), see for
instance [49]. At present, there is only one commercial TA available to amplify 671-
nm light, the TOPTICA TA-670-0500-5. It delivers up to 500 mW of output power,
the single-mode-fiber-coupling efficiency being . 50%. Thus, for a standard ultracold
atom experiment including a Zeeman slower and a MOT, several TAs are needed,
as in the FerMix experiment at Laboratoire Kastler Brossel [50]. Its elevated price,
the questionable future availability and the limited lifetime of ≈ 1 year add up to its
disadvantages.

Frequency-doubled solid state lasers

Inherent to their design, all-solid-state lasers are amongst the most stable light sources
in terms of power fluctuations, frequency stability and degradation. They can deliver
hundreds of Watts of ultra stable single-mode output, see for instance [51, 52]. The
same holds for nonlinear frequency conversion in crystals. It is thus desirable to develop
suitable single-frequency lasers in the Watt-level output power range.

Light sources emitting at 671 nm based on intra-cavity frequency-doubling of the
1342-nm emission in Nd:YVO4 or Nd:GdVO4 have been realized previously [53–62]. Up
to 9.5 W of cw multi-mode output radiation was demonstrated to date [62]. However,
these lasers operate longitudinally multimode, and thus are not frequency-stabilized.
A solid state single-frequency laser source delivering 920 mW at around 657 nm has
been presented in [63]. Single-mode operation of frequency-doubled Nd:YVO4 lasers
yielded 671-nm output powers of 580 mW [64] and 680 mW [65]. The source of [65] was
tuned to the lithium D-line resonance, yielding only ∼200 mW of output power, the
most probable power limitation being the tilt-induced etalon loss. A development of
an intracavity-frequency-doubled LBO-Nd:YVO4 laser by CrystaLaser yielded up to
250 mW of output power, and is commercially available [66].

1.3 Alternative sources at 1342 nm

The D-line transitions of the alkali atoms, the most popular species in ultracold atoms
experiments, are situated in the visible range‡. Most laser sources are capable to emit
only in a narrow spectral range. Since many suitable laser transition wavelengths are in
the infrared, frequency doubling of such sources is a popular means of generating light
to cool and trap atoms. For example, commercial 1560-nm telecom-range fiber lasers
are convenient light sources for Rubidium experiments after being frequency doubled
to 780 nm [67]. In this section, some possible alternative laser sources at 1342 nm,
suitable for frequency doubling to 671 nm, are presented.

‡The definition of the visible range is not very well fixed. The Cesium transitions at 852 nm and
894 nm are, however, excluded.
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Nonlinear planar ring oscillators

Non-planar ring oscillators (NPROs) or monolithic isolated single-mode end-pumped
ring lasers (MISERs) were developed in the 1980s [68] and are commercially available
from InnoLight GmbH. They are used at Laboratoire Kastler Brossel for sum frequency
generation of 589 nm light necessary for the sodium experiment [69]. They feature a
monolithic ring cavity made from Nd:YAG. Unidirectionality is forced by the Faraday
effect present in YAG, and polarization re-rotation and -selection is assured by the
nonplanar design and the coating of the output face. The gain medium restricts the
possible laser wavelengths to 1064 nm (max. 2 W output power) and 1319 nm (max.
800 mW output power). Post-amplified versions up to 42 W at 1064 nm are avail-
able. Due to the compact cavity design, the mode spacing is large enough to assure
single-mode behavior without additional intra-cavity etalons. Tunability is realized by
changing the laser crystal temperature (slow timescale) and squeezing the crystal using
a piezoelectric transducer (fast). The laser linewidth and amplitude noise characteris-
tics are excellent [70].
To our knowledge, there were no developments for obtaining 1342-nm emission from
NPROs. The prominent gain media emitting at 1342 nm are Nd:YVO4 and Nd:GdVO4.
They both have a birefringent nature, questioning the possibility to realize the NPRO
concept using these crystals. An alternative solution might be the use of Nd:YAG,
employing its temperature-dependent shift of weak 1338 nm emission line.

Semiconductor lasers

Diode lasers emitting in the O-band (see section 1.3) are commercially available. Most
commercial sources emit near 1310 nm at room temperature and use InGaAsP as the ac-
tive medium. Output powers of nearly-diffraction-limited (Fabry-Perot) diodes reaches
up to 300 mW.§.

Assuming a standard wavelength dependence of ∂λ/∂T = 0.3 nm.K−1, one needs
to heat such diodes to 120◦C to push the emission wavelength to 1342 nm. However,
heating to elevated temperatures significantly decreases the lifetime of laser diodes,
see section 1.2. For test purposes, we bought the Mitsubishi ML725B8F laser diode,
specified to emit 10 mW in the 1310-nm telecom range at a driving current of Id =
25mA. Using a simple homemade spectrometer build of a 1200-lines/mm blazed grating
and a 1-arcmin resolution turntable, we determined ∂λ

∂T
to 0.38 nm.K−1. At 95◦C and

Id = 40mA, the diode was emitting 5 mW at 1342 nm. When using the diode in
an extended cavity diode laser, the output may be sufficient to seed a solid-state,
semiconductor or fiber amplifier, which remains to be developed. Unfortunately, there
are no commercial semiconductor tapered amplifiers available around 1300 nm.

Fiber lasers

Fiber lasers have become a powerful alternative to solid-state designs for many appli-
cations. Offering diffraction-limited emission at the highest output powers and power
conversion efficiencies, they keep a compact, rugged design. Efficient heat removal even

§For instance, the Thorlabs FPL1053T diode is capable to deliver 300mW at 1310 nm.
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at the highest power levels is simple due to the large surface-to-volume ratio and com-
pletely fibered setups are possible when using fiber Bragg gratings as cavity mirrors.
Kilowatt-level longitudinal-multi-mode output powers are available in a TEM00 mode
[71]. Linearly polarized and SLM sources are available. In the domain of quantum
gases, they play an important role as optical-dipole-trap lasers.

Most of the developments were made around 1064 nm (neodymium and ytterbium
doped fiber lasers) and in the 1530-nm–1565-nm C-band telecom range ("conventional
band", Erbium lasers). There are fewer sources available for the O-band ("original
band") between 1260 nm and 1360 nm, where fiber losses are higher and erbium ions
display no gain. However, dispersion is lower, which is important for telecom applica-
tions.

Glasses display a stochastic spatial structure. Thus, in contrast to laser crystals,
most laser transitions are strongly broadened, yielding large pump and oscillation band-
widths. Nd-doped fiber lasers can be conventionally pumped around 800 nm using laser
diodes. Broad gain curves including 1342 nm were reported [72–74]. Another possi-
ble dopant ion is dysprosium, which lases between 1300 nm and 1400 nm and can be
pumped at 1064 nm [75]. Praseodymium ions in fluorozirconate fibers can lase at
1342 nm and be pumped by an Yb laser at around 1000 nm [76].

Due to the large interaction length at high intensities, Raman fiber lasers can be
realized easily. A remarkable property of this kind of laser source is the spectral nar-
rowness of the sources as compared to the pumps, which can be several nanometers
wide. For the domains of cold atoms and astronomy, a sodium D-line source is com-
mercially available from TOPTICA Photonics AG. It consists of a Raman fiber laser
emitting at 1178 nm, which is subsequently frequency doubled using LBO. Up to 50 W
of output power have been generated using this technology [77]. The required pump
wavelength for a simple Raman shift of 15 THz in silica [78] from 1342 nm is around
1200 nm, a wavelength where for instance semiconductor disk lasers are available. Both
normal and Raman gain are present in Bismuth-doped fiber lasers. Absorption and
gain spectra depend on the fiber composition, and are generally wide [78–80]. 2.5 W
of output power at 1330 nm were demonstrated [81], pumped at 1230 nm by another
Raman laser [81]. Pumping at around 800 nm is possible without Raman gain [82].

A similar Raman source of 1.3 W at 1320 nm was presented in [83] by using a two-
step Raman conversion in SiO2 and P2O5 when pumped at 1064 nm. To extend this
scheme to emission at 1342 nm, one would thus have to either find a different material
composition offering the required Raman shift from a 1064-nm pump laser or change
the pump wavelength. Based on the Raman shifts presented in [83], we infer a required
pump wavelength of 1075 nm. Appropriate commercial sources are readily available in
the form of ytterbium fiber lasers, as used for the dipole trap laser in the lithium
experiment at ENS, presented in Part II of this thesis.

Optical parametric oscillators

Based on the rapid development of nonlinear optical devices, optical parametric oscilla-
tors (OPOs) have been realized in a large variety, both in pulsed and cw configurations,
see for instance [84]. In a photon picture, they annihilate a pump photon and create
two photons, whose energies are determined by energy conservation. Thus, they can
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in principle generate any frequency which is below that of the pump.

Due to their enormously wide tunability, these sources feature countless applica-
tions from spectroscopy to pumping lasers and creation of all kinds of to-date-not-
delivered wavelengths to generation of squeezed light and blinding infrared sensors,
see for instance [64]. Phase-coherent linking near- and mid-infrared frequencies was
demonstrated [85]. In the domain of atomic clocks and quantum gas experiments, they
can serve to generate cooling and pumping wavelengths of exotic species, and "magic"
or "anti-magic" wavelengths in optical lattices [86].

Continuous-wave OPOs (cw-OPOs) capable of producing single-frequency radia-
tion close to 1342 nm are available commercially, as presented in Table 1.2. Typically
pumped by a solid-state or a fiber laser at 1064 nm, these designs are singly-resonant,
only resonating the signal wave. This concept leads to a very stable operation, and
the decoupling of the signal frequency fluctuations from those of the pump. The major
disadvantage of OPOs is the need for an expensive pump laser. Most often, periodically-
poled lithium niobate (ppLN) is used as a nonlinear medium, featuring a large nonlinear
coefficient (see Table 3.1) and negligible absorption in the infrared range. Only minor
modifications in the poling period and the coatings of the optical components should
be necessary to extend the multi-Watt oscillation wavelength range to 1342 nm. The
corresponding idler wavelength of 5136 nm is in the transparency range of stoichio-
metric lithium niobate, see Table 3.1. By replacing the 1064-nm pump by a 1030-nm
ytterbium fiber laser, the idler wavelength can be shifted to 4430 nm, and even further
to the blue using the ytterbium 975-nm emission line, if the idler absorption should
pose a problem.

cw-OPO source Signal emission
range in µm

Idler emission
range in µm

1.5-µm output
power

Linos OS 4500 [87] 1.38 – 2 2.28 – 4.67 20 mW
Kovalchuk thesis [88] 1.50 – 1.82 2.56 – 3.66 24 mW
Lockheed Martin 1.46 – 1.98 2.3 – 3.9 1 W – 5 W
Argos 2400-SF-15 [89]
APE/Coherent/PTB 1.43 – 1.87 2.47 – 4.16 4 W
cw-OPO project¶

Table 1.2: Comparison of cw-OPO sources near 1342 nm. The models printed in italic
are commercially available.

More recently, cw-OPOs pumped at 532 nm by frequency-doubled Nd:YAG lasers
were developed [90–93]. Nonlinear materials used are ppMgO:LN, ppSLN, ppKTP and
ppSLT, and signal emission is in the red part of the visible spectrum. While having
the advantages of OPO designs (wide tunability, spectral characteristics of the pump
source), these designs are plagued by thermal effects in the nonlinear crystals and thus
currently restricted to several-100 mW of output power. Another alternative approach
is presented in [94], where an IR OPO is intra-cavity frequency doubled by a second
nonlinear crystal. Several 100 mW were produced in the red wavelength region.
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Laser

Doubling

Pump diode

808 nm/

888 nm

1
3
4
2
 n

m

671 nm

Figure 1.2: Schematic view of the laser system. Shown are two separate cavities, the
laser and the doubling cavity. The pump diode output (blue) is focused in the Nd:YVO4

laser crystal (green) inside the laser cavity. It furthermore contains a Faraday rotator
and a λ/2-waveplate for unidirectional oscillation (both red) and two etalons (yellow)
for frequency selection. The doubling cavity contains a nonlinear crystal (white) for
second-harmonic generation.

1.4 General design of the laser source and outline of
Part I

After consulting the possible routes to produce Watt-class single-mode output power
presented before, we decided for an all-solid-state laser design using a Nd:YVO4-based
infrared laser and resonant doubling in an external buildup cavity. The overall design of
the laser source is schematically represented in Fig. 1.2. It consists of a diode-pumped
Nd:YVO4 single-mode laser emitting at 1342 nm which is subsequently frequency-
doubled in an external buildup cavity to produce light of 671-nm wavelength.

In Chapter 2, the Nd:YVO4 laser will be described in detail. For pumping the active
medium, we use a 808-nm-emitting, fiber-coupled diode stack whose output is focused
into the laser crystal. The bow-tie cavity is formed by four mirrors, out of which two
are spherically shaped to provide a stable, Gaussian cavity eigenmode. One of the
two flat mirrors is used to pass the pumping light to the laser crystal, whereas the
second flat mirror serves as the output coupler. To realize a single-longitudinal-mode
(SLM) laser it is favorable to use a traveling-wave ring resonator. Unidirectionality
is established by combining a Faraday rotator and a λ/2-wave plate, and the uniaxial
laser crystal working as a polarizer. SLM operation and coarse tuning are provided
using two intra-cavity etalons.

¶Co-developed by the author in the context of an internship at APE Applied Physics and Electronics

GmbH.
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As we will discuss in Chapter 3, the laser emission is mode-matched to the external
doubling cavity. We again employed a unidirectional bow-tie design. Two mirrors are
spherically shaped to create a focused Gaussian beam in the nonlinear crystal. One of
the flat mirrors is partially transmitting, and thus used for in-coupling of the 1342-nm
light. Periodically-poled potassium titanyl phosphate (ppKTP) is used for frequency
doubling of the resonated radiation. For the manufacturing of the periodically-poled,
nonlinear crystals, a collaboration was established with the group of Carlota Canalias
at the Department of Applied Physics at Royal Institute of Technology in Stockholm,
Sweden.

In Chapter 4, we will present the locking scheme to guarantee efficient second-
harmonic conversion and frequency stability. A small part of the 671-nm emission
from the doubling cavity is used for creating an FM-spectroscopy error signal in order
to lock the cavity’s resonance frequency to the laser emission wavelength via a feedback
circuit. Another small part of the frequency-doubled light is employed for Doppler-free
spectroscopy in a lithium vapor cell. A second feedback circuit regulates the laser
emission frequency with respect to the spectroscopic lines, with an offset frequency ad-
justable by a double-pass acousto-optical modulator. Furthermore, Chapter 4 presents
a detailed characterization of the 671-nm output light. Special emphasis is given on
measuring the long-term behavior and day-to-day operation of the laser system. Fi-
nally, the implementation in the lithium experiment is described, and the first results
using the laser for the Zeeman slower and the MOT are presented.

In Chapter 5, we will conclude on the first part of this thesis. A part of the material
presented here was published in [95].





Chapter 2

Diode-pumped all-solid-state

Nd:YVO4 laser source

In the preceding chapter, we have presented the concept of our novel all-solid-state
671-nm laser source. In this chapter, we will discuss in detail the fundamental pump
source at 1342 nm.

In this chapter, the 1342-nm laser will be presented. In Section 2.1 the Nd:YVO4

gain medium will be introduced. We will discuss the absorption and emission spectra
and detail on the thermo-optical properties whose consideration becomes necessary
when designing a high-power laser system. In Section 2.2 we will present the theoretical
concepts necessary for designing the laser resonator. We will detail on thermal effects
and present the final design following these considerations. In Section 2.3, we will
describe the method of introducing a Faraday rotator and two intra-cavity etalons to
force unidirectional single-longitudinal-mode operation of the laser. We will motivate
the use of a special high-field magnet design for the Faraday rotator and detail on
losses introduced when tilting intra-cavity etalons. In Sections 2.4 and 2.5 we will
present measurements of the output power, the output spectrum and the spatial mode.
Finally, in Section 2.6 we will summarize the chapter.

A three-dimensional view of the most important parts of the mechanical setup is
given in Figure 2.1.
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2.1 The Nd:YVO4 gain medium

Neodymium-doped yttrium (ortho-) vanadate (Nd:YVO4) is a popular gain medium for
both continuous wave (cw) and pulsed lasers. It has several desirable properties, the
most important being the strong emission line at the desired wavelength of 1342 nm.
It is being employed in many solid-state lasers and it is thus an inexpensive material
available from stock from many companies. Figure 2.2 shows a simplified level scheme
of the neodymium ion in the YVO4 host material. We make use of the 4F3/2 →4 I13/2

transition, corresponding to the 1342 nm emission. In this Section, we will present the
most important properties of the Nd:YVO4 crystal.

4
F

5/2

4
F

3/2

4
I
13/2

4
I
11/2

4
I
9/2

808 nm

888 nm

1342 nm

Figure 2.2: The simplified level scheme of the neodymium ion (Nd3+). The straight
lines represent photonic transitions, whereas the undulated lines denote vibrational
transitions. The respective wavelengths are found in Nd:YVO4. We will operate the
laser source on the 4F3/2 →4 I13/2 transition, corresponding to 1342 nm output. Two
pumping schemes to the metastable 4F3/2 level are indicated, where the 808 nm transi-
tion shows significantly more absorption but also a higher contribution to heating per
cycle.

2.1.1 Crystal strucure

The crystal structure of YVO4 is of the Zircon type, see Figure 2.3. As such, it is an
optically uniaxial material. Its axes are commonly termed a-,a- and c-axis. Synonyms
for the c-axis are p-, π-, o- and ‖-direction, whereas the a-axis is sometimes called s-,
σ-, e- or ⊥ axis. The axis vectors form an orthogonal system. The projection of the
optical surface normal vector on the crystal axes determines the notation of the way
the crystal is cut. We use a-cut crystals, meaning that we can access both the a- and
c-axis by rotating the polarization of a linearly polarized beam passing the crystal.

The value for neodymium doping is commonly given in at. %, meaning that the
corresponding percentage of Yttrium ions is replaced by neodymium ions. Typical
values are from 0.1–3 at. %. One choses the doping such that requirements for pump
absorption per unit length with respect to heating are satisfied, see Section 2.2.3.
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Figure 2.3: Crystal structure of YVO4, which is of the zircon type, from [96]. The
tetrahedra represent the VO−3

4 ions, balls are Yttrium atoms. The unit cell is marked
in bold lines.

2.1.2 Absorption

Figure 2.4: Absorption spectrum of 1 at. % Nd:YVO4 for both crystal axes, from [97].
The material presents several absorption bands at 808 nm, 880 nm and 888 nm, the
latter being almost polarization-independent.

One of the requirements for a gain medium is convenient pumping. We opted for
laser-diode end pumping. This means that the pump beam propagates collinear to the
laser beam in the active medium and provides high efficiencies. It is feasible due to the
availability of bright pump sources. The absorption spectrum is shown in Figure 2.4,
as published in [97]. It was measured for 1 at. % Nd:YVO4. In the limit of small doping
and thus negligible mutual influence of the neodymium ions, the absorption coefficient
will scale linearly with doping.
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The measurement was done for both polarizations, the values for the c-axis being
significantly higher than those for the a-axis over almost the whole range. One notices
several absorption bands around 808 nm, as well as two bands at 880 nm and 888 nm,
conveniently addressable by commercially available laser diode stacks. When pumping
at 808 nm, where the absorption coefficient has its maximum, the pump diode stacks
typically need temperature stabilization in order to stabilize the emission wavelength
to match the relatively narrow absorption feature.

Laser diode stacks for pumping applications are in general coupled to non-polariza-
tion-maintaining multi-mode optical fibers, facilitating handling and optical design and
improving stability and ruggedness of the whole setup. The 888-nm absorption line
is quasi-polarization-insensitive, which is favorable when using these pump sources,
as the radiation emitted from these fibers is typically randomly polarized. Another
important advantage of working at 888 nm, especially for high-power designs, is the
higher quantum yield, meaning that a larger relative part of the pump photon energy
is converted to laser photon energy. Thus, less pump energy is converted to heat,
leading to significantly reduced thermal problems, see Section 2.2.

2.1.3 Emission

Figure 2.5: Nd:YVO4 emission spectrum, c-axis, from [98]. One notices the two
prominent features around 1064 nm and at 1342 nm. The spectral resolution is 2.5 nm.

The emission spectrum was measured in [98] and is presented in Figure 2.5. σem

is the stimulated-emission cross section and σESA is the cross section for absorption of
light by excited ions, the so-called excited-state absorption (ESA). In a measurement
as conducted in [98], one naturally measures the difference σem − σESA, which is the
quantity presented in the figure.
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Figure 2.6: High-resolution 1342 nm emission peak data on the c-axis, measured
by the group of R. Moncorgé [99]. At 2λLi we infer an emission cross-section
of σem(2λLi) = 12 × 10−20 cm2 and an excited-state absorption cross-section of
σESA(2λLi) = 3 × 10−20 cm2

.

Property Value Ref.

Typical doping 1 at.% [100]
Atomic Density N 2.48 · 1026m−3 [101]
Absorption coefficient αabs 35 cm−1 @ 808 nm [97]
Absorption length 0.14 mm @ 808 nm [100]
Absorption cross section 60·10−24 m2 @ 808 nm [101]
Intrinsic Loss 0.16% cm−1 [102]
Peak stimulated emission cross section σem,max 18 × 10−20 cm2 [99]
Peak excited-state absorption cross section σESA,max 18 × 10−20 cm2 [99]
Stimulated emission cross section σem(2λLi) 15 × 10−20 cm2 [99]
Excited-state absorption cross section σESA(2λLi) 3 × 10−20 cm2 [99]
Upper-state radiative lifetime τrad (doping-
dependent)

50 − 110 µs [103]

Upper-state radiative lifetime τrad (for 0.2 at.%) 110 µs [103]
Upper-state fluorescence lifetime τfl 120 µs [103]
Gain bandwidth 1.7 nm =̂ 280 GHz [99]
Breakage stress 51 MPa [1]
Refractive index temperature derivative dn/dT (c-/a-
axis)

(8.5/2.9) × 10−6 K−1 [100]

Refractive index temperature derivative dn/dT (c-
and a-axis)

3 × 10−6 K−1 [1]

Thermal conductivity κ (c-/a-axis) (5.23/5.10) W.K−1.m−1 [100]

Table 2.1: Important material parameters of Nd:YVO4. All values are for typical
doping of 1 at.% and c-polarization, if not stated otherwise.
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One notices the two features at around 1µm and 1.3µm typical for the neodymium
ion. ESA causes dips in the emission spectrum in Figure 2.5 and has deleterious effects
on laser emission. The spectral resolution of the data from [98] is only 2.5 nm. Thus,
our collaboration partners from Toulouse asked the group of R. Moncorgé∗ to perform
a more precise measurement around 1342 nm. The result is shown in Figure 2.6 and has
a significantly improved spectral resolution of 0.5 nm. The value for the stimulated-
emission cross section at twice the lithium vacuum wavelength,

2λLi,vac = 2 × 670.96 nm = 1341.92 nm , (2.1)

is close to the peak value and can be estimated to σ = 15×10−20 cm2. In the important
range, the cross section is always higher for c-polarization, which is why we chose this
axis as the polarization axis of the laser.

Another important spectroscopic property for a laser medium is the metastable
state lifetime τ . Since the small-signal gain is proportional to the product σemτ , it is
favorable to have long a lifetime. It strongly depends on density-induced fluorescence
quenching and thus on doping, see [103] and references therein. For low-doped crystals
(≤ 0.4 at. %) it yields τ = 110µs, whereas the fluorescence lifetime (due to purely
radiative decay) yields τf = 120µs. In Table 2.1 we list further important material
parameters of Nd:YVO4.

2.2 Laser theory

In this section, a brief overview of the theory of laser emission is given from the view-
point of laser design optimization. We will start with the description of the propagation
properties of Hermite-Gaussian beams to describe cavity eigenmodes. We will give ana-
lytic expressions for the output power of solid-state lasers and thermal effects occurring
in the gain material. Finally, the resulting geometric design of the cavity is presented.

2.2.1 Hermite-Gaussian beams

Laser beams can be described by Hermite-Gaussian beams, see for instance [104, 105].
These form a complete basis of solutions of the paraxial Helmholtz equation for the
electric field E(r,t) along the z-axis,

(
∂2

∂x2
+

∂2

∂y2
− 2ik

∂

∂z

)
E(r, t) = 0 (2.2)

with the wave number k = 2π/λ and λ the wavelength. The general solution can be
expanded on a basis of decoupled solutions

E(r, t) = E0 nul(x, z) um(y, z) e−i(kz−ωt) , (2.3)

where E0 is the field amplitude and n the normalized polarization vector. The eigen-
functions ul(x, z) and um(y, z) for both transversal directions are identical. We will

∗CIMAP, Université de Caen, France
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thus in the following restrict ourselves to the x-coordinate. The corresponding equa-
tions for the y-coordinate are obtained by replacing the respective coordinate-index
pair. The solution reads

ul(x, z) =

(
2

π

) 1
4
(

exp (i(2l + 1)ϕx(z))

2ll!wx(z)

) 1
2

Hn

( √
2x

wx(z)

)
exp

(
−i

kx2

2Rx(z)
− x2

w2
x(z)

)
.

(2.4)

where Hl

( √
2x

wx(z)

)
is the Hermite polynomial of order l, Rx(z) is the wavefront radius

of curvature and wx(z) is the characteristic radius of the beam along direction x at z.
It reads

wx(z) = w0,x

√

1 +

(
z

zR,x

)2

, (2.5)

with the Rayleigh length zR,x. The smallest value is obtained at z = 0, the waist of

w0,x =

√
λzR,x

π
. (2.6)

ϕx(z) is the so-called Gouy phase and reads

ϕx(z) = arctan

(
z

zR,x

)
. (2.7)

To describe the evolution of a beam propagating along z, we introduce the complex
beam propagation parameter

qx = z + izR,x , (2.8)

where z is the distance from the beam focus position and zR,x the Rayleigh length,
where the radius of curvature Rx(z) becomes minimal. The evolution of a Hermite-
Gaussian beam passing through linear optical components can now be described by
applying ABCD-matrices known from ray matrix propagation, according to the fol-
lowing identity:

q′x = Mx ∗ qx ≡ Axqx + Bx

Cxqx + Dx

, (2.9)

The matrices

Mx =

(
Ax Bx

Cx Dx

)
(2.10)

for standard components are readily tabulated in literature, see for instance [104, 105].
Mx can represent complete optical systems, and is created via matrix multiplication
from the left for consecutive elements.

For finding the eigenmode of an optical resonator, one has to calculate the resonator
matrix Mx for the two axes first. The condition for an eigenmode is self-similarity after
one resonator round-trip:

q′x = Mx ∗ qx ≡ qx , (2.11)

We define the stability parameter pstab;x,y:

pstab,x =
Ax + Dx

2
. (2.12)
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Only in the range
− 1 < pstab,x < 1 , (2.13)

can a stable cavity eigenmode exist. The stability criterion not only implies existence
of eigenmodes, but also the decay of small perturbations [104].

Cavity resonance condition and Gouy Phase Shift

A laser will operate very close to the laser cavity resonance. This means that the laser
beam will reproduce itself after one cavity round-trip both in terms of the transverse
profile, as demonstrated before, and in terms of the phase. This condition yields for
the total phase ϕtot acquired after one round-trip

ϕtot ≡ 2πb , (2.14)

with b ∈ N the longitudinal mode index. Also, higher cavity eigenmodes (TEMnm),
corresponding to n,m > 0, may occur. A Hermite-Gaussian beam experiences the
so-called Gouy phase shift ϕl;x compared to a plane wave of the same wavelength, see
[104] and Equation (2.4):

ϕl,x(z) =

(
l +

1

2

)
ϕx(z)

=

(
l +

1

2

)
arctan

(
z

zR,x

)
,

(2.15)

and for m, y similarly and ϕx(z) as in Equation (2.7), yielding a total phase shift of

ϕlm(z) = ϕl,x(z) + ϕm,y(z) . (2.16)

The optical path length in a cavity is defined as

Lopt =
∑

i

niti , (2.17)

with the geometrical path lengths ti between optical elements and their respective
refractive indices ni. The resonance criterion thus becomes

klmLopt + ϕlm(Lopt) + ϕoff ≡ 2πb , (2.18)

with the residual phase term ϕoff due to mirrors, coatings etc., which is assumed con-
stant for all eigenmodes. The wavenumber klm is

klm =
2π

λlm

=
2πνlm

c
, (2.19)

where c is the speed of light. The resonance condition then becomes

klm =
1

Lopt

(2πb − ϕlm(Lopt) − ϕoff) . (2.20)
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For the eigenfrequencies, this yields

νb = bνFSR + νoff . (2.21)

The frequency spacing between neighboring longitudinal modes of identical transversal
quantum numbers l, m is

νFSR =
c

Lopt

, (2.22)

and is commonly termed the free spectral range in the literature. Let us finally consider
the frequency difference ∆ν∆l∆m between Hermite-Gaussian modes at fixed b:

∆ν∆l∆m =
c

2πLopt

ϕ∆l∆m(Lopt) , (2.23)

where ∆l = l − l′ and ∆m = m − m′ for two modes with indices l,m and l′,m′,
respectively. This result means that in the general case, Hermite-Gaussian resonator
eigenmodes of different order are not frequency degenerate. We can advantageously
make use of this result for coupling to the TEM00 mode of the doubling cavity, as will
be described in Chapter 3.

2.2.2 Laser output power

One of the most important design parameters of a laser is its output power. Since a
Watt-level output is desired for the laser presented here, this point is crucial in the
design process. For a diode-pumped solid-state laser emitting at frequency ν = ω/2π,
the output power Pout is [106–109]

Pout = max [ηsl (Pabs − Pthr) , 0] , (2.24)

where the slope efficiency is defined as

ηsl =
∂

∂Pp

Pout =
T
L ηpη0 . (2.25)

Pp is the pump power incident on the gain medium. T is the output coupler power
transmission and L is the total round-trip loss

L = Lpass + T , (2.26)

where Lpass contains all the passive round-trip losses. The overall pump efficiency
(often termed quantum yield in literature) is given as

ηp =
ω

ωpump

, (2.27)

with the pump frequency in radians ωpump = 2πνpump. The overlap integral

η0 =

(∫
dV sl(r)sp(r)

)2
∫

dV sl
2(r)sp(r)

(2.28)
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contains the power-normalized spatial distributions sl(r) and sp(r) of the laser and
pump beams, respectively. Pabs is the pump power absorbed in the gain medium and
lmed its length. We have

Pabs = (1 − e−αabslmed)Pp , (2.29)

where αabs is the linear absorption coefficient for the pump radiation. Equation 2.30
furthermore contains the pump power at lasing threshold†

Pthr =
Isat

ηplmed

LVeff , (2.30)

The saturation intensity is defined here as

Isat =
~ω

σemτrad

, (2.31)

with the emission cross section σem and excited state lifetime τrad, both to be determined
spectroscopically, as presented in Section 2.1. We further have

Veff =

(∫
dV sl(r)sp(r)

)−1

. (2.32)

Optimizing the pump mode for maximum output power in equation (2.30) results in
a narrow, ideally delta-peak-shaped distribution, which is both impossible to realize
experimentally and unfavorable in the presence of any realistic active medium, as we
will see in the next section.

2.2.3 Thermal effects in solid-state lasers

The most important effect restricting the scaling of diode-pumped solid-state laser
designs to higher output power is the presence of thermal effects in the active medium.
Absorption of pump light leads to local heating caused by phononic transitions, see
for instance Figure 2.2 for a typical example of a four-level laser medium. The first
relaxation process is from the highest excited state, where the system is pumped, to
the metastable intermediate state, where the population inversion is created. After
stimulated or spontaneous emission of a photon, the ions relax to an intermediate
state in the case of four-level lasers, and from there phononically to the ground state.

A review on thermal effects in laser crystals is given in [110]. The impact of local
pump-light-induced heating in an active medium is fourfold:

1. The refractive index is temperature-dependent and changes locally. This process
leads to a thermal lensing effect, which changes the eigenmode of the laser cav-
ity. In some high-power laser designs, this can actually render the laser cavity
unstable at a given range of pump powers, in the sense that no eigenmode of the
cavity exists [111].

†In References [106–109], the length of the gain medium is multiplied by 2, because it is passed
twice per roundtrip in the linear cavities which the theory was developed for.
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2. The local heating causes stress and strain. Since the refractive index of a material
normally is stress- and strain-dependent, this represents a second effect causing
thermal lensing.

3. The stress causes bulging of the end faces of the active medium, which results in
a further thermal lensing effect.

4. If the stress becomes to large, it might actually reach the value of the breakage
stress and thus destroy the medium.

All of these lensing effects also result in aberrations due to a nonquadratic modifica-
tion of the phasefronts, finally leading to losses for a passing laser beam. The expression
for the round-trip loss, Equation (2.26) thus becomes dependent on the absorbed laser
power Pabs.

L(Pabs) = T + Lpass + Lth(Pabs) (2.33)

Let us consider the steady-state heat equation

∇2T (r, t → ∞) = −Q(r)

κ
, (2.34)

which has the form of a Poisson equation with the temperature profile T (r, t → ∞) =
T (r), the heat source term Q(r) and the thermal conductivity κ. The longitudinal
variation on the left side of (2.34) is in general small compared to the transverse de-
pendence. Hence, we neglect the ∂2/∂z2-term, such that z is merely a parameter in
Equation (2.34). To model these effects, we simplify the geometry and discuss a cylin-
drical crystal embedded in an infinite medium. The problem becomes one-dimensional
and we have

∇2
ρT (ρ, z) = −Q(ρ, z)

κ
, (2.35)

(ρ, z) being the cylindrical coordinates. It can be solved analytically for a top-hat
pump beam with a flat intensity distribution of radius w2

p(z) and a fixed temperature
T0 at the crystal edge. This is established by having good thermal contact between
the crystal and its mount, and a high (infinite) thermal conductivity of the mount
material. We define δT (ρ, z) = T (ρ, z) − T0 and obtain

δT (ρ, z) =
ηlas/nonlasPabs

4πκ

αabse
−αabsz

1 − e−αabslmed
×





ln
(

ρ2
0

w2
p(z)

)
+ 1 − ρ2

w2
p(z)

, if ρ ≤ w2
p(z)

ln
(

ρ2
0

ρ2

)
, else.

(2.36)
ηlas/nonlas is the relative amount of the pump photon energy contributing to heating.
The total thermal phase shift imprinted on a laser beam passing the heated material
reads

ϕ(ρ) =

∫ lmed

0

(
∂nω

∂T
+ fstress(T )

)
dz . (2.37)

The second term inside the integral, fstress(T ), contains effects from stress, strain and
end-face bulging. Since the parameters describing this term are difficult to obtain
experimentally, it is normally absorbed in the ∂nω/∂T -prameter. This explains the
different values obtained in literature, see Table 2.1.
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The expression for the dioptric power Dth (inverse focal length fth) of a laser crystal
(or any material with heat deposition) is easily obtained by Taylor-expanding (2.37)
near ρ = 0 [110, 112]:

Dth =
1

fth

=
ηlas/nonlasPabs

πw2
pκ

∂nω

∂T
(2.38)

for Pabs as defined in Equation (2.29). ηlas/nonlas is the fraction of absorbed power
contributing to heating of the crystal. Due to the different branching ratios, one has
to distinguish between the non-lasing and lasing case [103]:

ηnonlas =
Pabs − Pfl

Pabs

=
λp

λfl,mean

τfl

τrad

, (2.39)

where Pfl is the amount of power converted to fluorescence radiation, λp is the pump
wavelength and λfl,mean is the mean fluorescence wavelength. τfl is the fluorescence
lifetime and τrad the purely radiative lifetime of the metastable state in the active
material. When lasing occurs instead of fluorescence, another quantity of energy per
pump photon is deposited in heat. The fractional heating power changes to

ηlas =
Pabs − Plas

Pabs

= 1 − λp

λlas

σem

σem + σESA

, (2.40)

where Plas is the amount of power converted to laser radiation, and λlas the laser
wavelength. One finds from (2.40) that excited state absorption not only lowers the
available output power, but also detrimentally influences the thermal effects, since the
excited-state decay channels are safely considered fully phonic. The ratio ηlas/ηnonlas

equals the ratio between the two resulting dioptric powers. This has to be considered
when designing a cavity, as will be shown in the next section.

2.2.4 Laser cavity design

In this section, we employ the theory presented above to design a laser cavity satisfying
the design constraints imposed. The setup needs to offer sufficient versatility to operate
the laser under a wide set of parameters due to a lack of exact knowledge of the
material parameters and the approximate nature of the theory presented above. Most
importantly, to facilitate single-mode operation, the total cavity length is to be chosen
to be as short as possible to enlarge the longitudinal mode spacing, or free spectral
range νFSR = c/Lopt.

One also needs to account for the placement of the additional intra-cavity elements
besides the active medium. As we will see in the course of this chapter, we require
a half-wave plate, a TGG crystal and two etalons to force unidirectional single-mode
operation. The most bulky element is the TGG Faraday rotator magnet ensemble with
its outer dimensions of 50 × 50 × 65 mm3. Additionally, one has to include the zero-
order waveplate and the two etalons needed for single-longitudinal-mode operation.
To diminish these constraints, the whole laser setup was designed using the Dassault
CATIA 3D–CAD software to diminish the cavity length. All the optics mounts were
minimized in size to easily fit in the resonator. An overview drawing of the mechanical
laser setup is given shown in Figure 2.1, whereas a schematic is shown in Figure 2.7.
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Figure 2.7: Schematic view of the cavity geometry chosen, including all intra-cavity
elements. The pump beam dimensions are not given, since they can be varied using
different sets of lenses f1 and f2 as a function of the desired pump spot radius wp in the
Nd:YVO4 crystal. the cavity is formed by four mirrors M1−−4, where M2 is the output
coupling mirror, and M3 and M4 are concave. Additional elements are the half-wave
plate λ/2, a TGG crystal in a magnet ensemble (large box) and two etalons E1,2.

We decided for the popular bow-tie design because of several advantages: It features
a long arm between the plane mirrors M1 and M2 where the beam is almost collimated.
This arm offers enough space to install all the additional optical elements, including
the magnet ensemble. In the shorter arm, which is situated between the two curved
mirrors M3 and M4, the beam is strongly focused. By adjusting the distance between
those two mirrors, the size of the resonator eigenmode and thus the overlap between
laser and pump spatial mode profiles can be optimized, see Section 2.2.3. The focus
between the two mirrors allows one the option off putting a nonlinear crystal here in
order to directly intra-cavity-frequency-double the laser without the use of an external
cavity. This approach was followed by our collaboration partners in Toulouse, using
both lithium triborate (LiB3O5, LBO) and bismuth triborate (BiB3O6) [95]. Another
advantage of bow-tie designs is the similar and small angle of incidence of the beams
on the four mirrors forming the cavity. This means that the coating design of these
mirrors can be identical, except for the output coupler. This facilitates interchange
of mirrors and thus constitutes an inexpensive solution for the choice of mirrors. The
pump coupling mirror M1 as well as the curved mirrors M3 and M4 consist of fused-
silica substrates which are highly-reflective coated for 1342 nm at an angle of incidence
of 10◦ for both s- and p-polarization. The same coating allows for efficient transmission
of the pump wavelengths 808 nm and 888 nm at the same angle of incidence at random
polarization, and transmission of the second harmonic output at 671 nm for using the
same (curved) mirrors in the doubling cavity. Accordingly, the rear sides were anti-
reflective coated at both the pump and second-harmonic wavelengths.

For the output couplers we chose the slightly more expensive infrared fused silica
as the substrate material, for avoidance of absorption features in normal fused silica
around 1340 nm. Available values for the power transmission were 2% and 3.5% and



2.2. Laser theory 43

the values for the doubling cavity couplers 5%, 10% and 17%. The back sides of the
couplers are anti-reflective coated at 1342 nm.
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Figure 2.8: The stability parameters (left, see Equation 2.12) and the mode sizes
(right) in the laser crystal as a function of the focal length fth. The black (red) lines
indicate the horizontal (vertical) direction. The vertical lines indicate the limits of
cavity stability. The resonator remains stable down to fth,min = 153mm.

The cavity eigenmode needs to be stable for two different values of the thermal lens
focal length fth induced in the Nd:YVO4 crystal, both with and without lasing [111].
If it were not, lasing either could not start from fluorescence or significant intra-cavity
power will not build up. From Equations (2.38), (2.39) and (2.40) we get

fth,nonlas

fth,las

=
Dth,las

Dth,nonlas

=
ηth,las

ηth,nonlas

. (2.41)

For the material parameters (cf. Table 2.1), we have τfl = 110µs for low doping. The
available spectroscopic data allows a conservative estimate for the emission and ESA
cross sections of σem = 15 × 10−20 cm2 and σESA = 3 × 10−20 cm2 (cf. Figure 2.6). The
stability range thus needs to extend over a focal length range of

fth,nonlas

fth,las

≈ 2 . (2.42)

For calculating the behavior of the cavity eigenmode, we now need to solve (2.11),
fulfilling condition (2.13). Figure 2.8 shows the behavior of the cavity stability and of
the mode size inside the laser crystal as a function of the thermal focal length fth.
The cavity remains stable from infinite focal lengths (or no thermal effect, not shown)
down to fth,min = 153mm. For a pump spot diameter of wp = 500µm, the cavity
thus supports a maximum absorbed pump power of Pabs,max = 17.5 W for the given
parameters. The fth-dependence of the radius of the mode in the Nd:YVO4 crystal is
also given, reaching from 500 µm to 700µm.

The optimum mode overlap for high-power lasers (Pabs > 10W) is given as [108]

wl

wp

≈ 0.8 , (2.43)

which can be easily fulfilled for a given value for fth by optimizing the distance between
the two curved mirrors M3 and M4. In practice, this is realized by mounting M4 on a
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linear translation stage and optimizing its position to optimize the output power. The
calculated radii are plotted in Figure 2.9 for a focal length of fth = 260mm, as derived
in Section 2.5. The range of waists in the crystal can thus be expanded from 430µm
to ≥ 1000µm.
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Figure 2.9: (Left) The stability diagram of the laser cavity by varying the distance dcu

between the curved mirrors M3 and M4. The thermal focal length is fixed to 260 mm.
(Right) The mode sizes in the laser crystal wh(v). The black (red) lines indicate the
horizontal (vertical) direction, whereas the vertical lines indicate the range of stability.

The values for the stability parameters and waists presented in this section de-
pend strongly on the distances realized in the setup, which can be measured and set
with a precision around 1 mm only. The analytic model for the thermal lensing effect
(2.38) does not take into account finite size effects of the system, and the material con-
stants found in literature sometimes are contradictory, see the theoretical discussion in
Section 2.2.3. We thus refer the interested reader to Section 2.5, where the measured
optimized cavity eigenmode is presented.

The pump source is a commercial fiber-coupled Coherent FAP-400 diode stack
emitting up to 42.6 W at 808 nm (90% energy width: 4 nm). Its metal housing is
temperature stabilized to optimize the spectral overlap between pump emission and the
gain medium absorption. The fiber output (core radius: 200 µm, numerical aperture
NA = 0.22) is imaged in the gain medium using two lenses (f1 = 100 mm and f2 =
250 mm) to a top-hat like spot of a radius of wpump = 500µm. The Nd:YVO4 crystal
of dimensions 3 × 3 × 10 mm3 is 0.2 at.%-doped, a-cut and anti-reflective (AR) coated
at 808 nm and 1342 nm. It is wrapped in 100-µm thick Indium foil and fixed in a
solid water-cooled copper mount to efficiently remove heat. Care needs to be taken to
avoid acoustic excitations of the mount due to turbulent water flow, thus only a small
continuous flux of tap water was applied to prevent phase-, or equivalently, frequency
fluctuations of the laser output.

The laser was mounted on a 50 − mm-thick breadboard. A combined aluminum-
acrylic-glass housing was provided to isolate from acoustic perturbations and for keep-
ing the setup continuously under a dry-air atmosphere to prevent dust and moisture
from having detrimental effects on the long-term stability of the system.
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2.3 Single-frequency operation and tunability

For our application of trapping and cooling atoms, we need single-frequency light out-
put of the fundamental light source. In this section we will present the technical
measures taken to force laser operation in a single longitudinal mode.

2.3.1 Faraday rotation and unidirectional operation

For realizing a single-longitudinal-mode laser it is favorable to avoid standing waves
in the gain medium. These cause spatial hole burning in the active medium and thus
partially suppress mode competition. From this point of view, running-wave lasers are
preferable [104].

Two solutions exist: the twisted-mode linear cavity [113] and the unidirectional ring
cavity. The first method is not feasible using a birefringent gain medium like Nd:YVO4.
For forcing unidirectional operation, several methods exist [114–116]. Because of its
simplicity and reliability, we use an intra-cavity optical diode consisting of a Faraday
medium and two elements for polarization selection and rotation.

The polarization rotation of ϕrot imposed on a light beam when traveling through
a Faraday medium is

ϕrot = VIB , (2.44)

with the magnetic field integral

IB =

∫ lF

0

B(z) dz (2.45)

in the medium of length lF. The material- and wavelength-specific constant V is called
the Verdet constant. For common Faraday materials, it decreases significantly when
leaving the visible range towards higher wavelengths, whereas the absorption rises. It
is thus favorable to use a short crystal and a strong magnetic field, while maintaining
sufficient field homogeneity to not create a transversal variation in polarization.

These requirements necessitated the development of a special magnet assembly by
Gérard Trénec and coworkers. The design consists of an ensemble of NdFeB ring
magnets and is presented in [117]. It is optimized for Faraday media with a length of
6 mm and 5-mm diameter. The outer dimensions of the housing are 50× 50× 65 mm3

are the most restricting factor for the compactness of the cavity design presented in
Section 2.2.4. The measured value for the magnetic field integral is IB = 8 T.mm .

Terbium gallium garnet (TGG), a standard crystal for visible and near-infrared
laser applications, was chosen as the Faraday medium. We performed single-pass mea-
surements of the rotation angle for TGG samples from different suppliers. The results
are presented in Table 2.2. We use the sample from FEE in our laser, since it is offering
the greatest rotatory power.

Back-rotation and stable unidirectional operation at high intra-cavity powers is
established by an anti-reflective-coated, zero-order λ/2-wave plate, which is preferred
to multi-order wave plates because of instabilities related to thermal effects [118]. The
polarizing intra-cavity element is the Nd:YVO4 crystal which provides higher gain in

‡Forschungsinstitut für mineralische und metallische Werkstoffe -Edelsteine/Edelmetalle- GmbH
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Supplier angle ϕrot Verdet constant V
CLaser Photonics Inc. sample 1 −2.7(1)◦ -5.9(2) rad.T−1.m−1

CLaser Photonics Inc. sample 2 −1.7(1)◦ -3.7(2) rad.T−1.m−1

FEE‡ −9.3(1)◦ -20.3(2) rad.T−1.m−1

Table 2.2: Measurements of the rotative power of different samples of TGG at
1342 nm.

the c-direction as well as birefringence. The oscillation direction is chosen as indicated
in Fig. 2.1 to spatially separate residual pump light from the output beam.

2.3.2 Etalons as frequency-dependent filters

To achieve single longitudinal mode (SLM) operation, several measures were taken in
the laser design presented before, such as the use of a running-wave (unidirectional ring)
resonator, and the compactness of the whole setup. This yields the largest possible
longitudinal-mode frequency spacing, or free spectral range

νFSR,laser =
c

Lopt

≈ 360 MHz (2.46)

for the laser cavity, where Lopt is the round-trip optical path length and c the speed
of light in vacuum. The width of the gain peak is ≈ 300GHz and so three orders
of magnitude larger than νFSR, showing that additional measures need to be taken
to make the laser oscillate in a single longitudinal mode. Thus, small Fabry-Pérot
resonators termed etalons are installed in the laser cavity to modify the cavity round-
trip transmission function.

The frequency-dependent transmission function of a Fabry-Pérot resonator in the
plane-wave approximation reads

TFP =

(
1 +

[
2F
π

sin

(
π

ν − νres

νFSR,etalon

)]2
)−1

, (2.47)

where ν0 is a constant offset frequency depending on the additional phase shifts acquired
due to the optical coatings. The so-called finesse is defined as

F =
π
√
R

1 −R , (2.48)

with the surface power reflectivity R. The resonance condition TFP = 1 is fulfilled
for the corresponding resonance frequencies νb = b νFSR,etalon + νres, b ∈ N, see Equa-
tion (2.21).

In the small-signal limit, the product Tcav(ν) × σem(ν) needs to be greatest for
one of the laser cavity modes to suppress all the other modes from oscillating due to
mode competition [104]. Tcav(ν) is the total transmission function of the cavity and
reasonably approximated as constant for the frequency range considered here, except
for the influence of the etalons. σem(ν) is a measure for the gain experienced by a light
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wave crossing the gain medium. If there is sufficient mode competition, provided by a
unidirectional ring cavity, only the favored mode with mode index b will be oscillating.

Equations (2.47)–(2.48) contain two degrees of freedom for choosing an appropriate
etalon. The first is the free spectral range νFSR,etalon given by its length and the refrac-
tive index of the material. The second parameter is the finesse F which is given by the
surface reflectivity of the etalon. One should note that up to this point, losses were
not considered in our analysis. These are due to residual absorption of the substrate
and coatings, scattering, surface nonparallelity and roughness and the beam walk-off.

2.3.3 Etalon walk-off loss

The loss processes mentioned before can be minimized to negligible values by care-
fully chosing the appropriate materials and methods in the etalon production process.
However, the etalon walk-off loss is fundamental and can not be avoided. We will thus
calculate its magnitude to motivate our choice of etalons presented in the next section.

The frequency-dependent etalon transmission function (2.47) is strictly valid only
in the case of plane waves. The beam nature of the wave propagating through the laser
cavity leads to additional loss due to wavefront curvature and the angle-dependent
walk-off.
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Figure 2.10: Left: Definition of the single-pass walk-off distance δ, normalized by
the gaussian beam radius w. Right: Calculation of the etalon single-pass walk-off loss,
plotted as a function of the normalized beam displacement parameter δ for different
values of the reflectivity R as indicated in the legend.

When the surface normal vector and the direction of propagation of a Gaussian
beam form an angle of incidence ϑ, a lateral walk-off of subsequent orders of the
transmitted waves occurs, see Figure 2.10 (a). The normalized beam displacement reads

δ =
2L

w
tan(ϑ′) cos(ϑ) , (2.49)

where L is the geometric length of the etalon and w the Gaussian radius of the beam.
ϑ is the angle of incidence or tilt angle of the etalon and sin(ϑ)/ sin(ϑ′) = n with
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the refractive index n of the etalon medium. δ thus gives the displacement between
succeeding modes of transmission in units of the Gaussian beam radius.

The non-unity overlap integral between the cavity mode and the transmitted beam
leads to insertion loss when installing the tilted etalon in a resonator. We recalculated
the loss Lwo according to [119]§. The results are presented in Figure 2.10(b). The loss
rises quadratically with a scaling given by the etalon surface reflectivity R. Around δ =
1, the curves level off to the maximum value Lwo,max = 2R−R2 obtained analytically
for complete separation of subsequent transmission orders. In this limit, the use of an
intracavity etalon as a frequency filter becomes meaningless.

2.3.4 Etalon choice and operation

For the Toulouse laser setup, a trial was made to achieve single-mode oscillation by us-
ing an available R = 20%-etalon of a width of 1 mm. It was not successful, even though
about 90% of the emitted power was contained in one of the two modes oscillating, and
the frequency spacing to the second oscillating mode was 2 or 3 cavity free spectral
ranges most of the time. Such a laser would be suitable to deliver single-frequency
second-harmonic light when doubling in an external cavity by coupling only one of the
laser modes to the doubling cavity. Instead, we decided to use a combination of two
etalons to realize a single-frequency laser. This scheme avoids multi-mode dynamics in
the laser output and thus to stabilizes the whole laser system. Single-mode operation is
favored when intra-cavity frequency doubling of a laser is applied. In that case, mode
competition is enhanced due to sum-frequency generation, which causes higher losses
for the low-power mode [120].

To suppress the closely-spaced mode from oscillating, we employed a more selective
R = 28%-etalon of a width of 4 mm called E2. For suppression of the modes which
are more distant, we use an uncoated etalon of R = 3.3%-etalon of a width of 0.5 mm.
The typical frequency scales are given in Table 2.3. The material of both substrates is
infrared fused silica, and the R = 28%-coating consists of a single layer to minimize
coating-related loss. With the combination of etalons presented here, reliable every-day
single-mode operation is achieved.

Figure 2.11 shows an example of a calculated transmission-gain behavior Tcav(νb)×
σem(νb) using the data presented in Figure 2.6. Note that the behavior presented here
is valid only in the non-saturated (small-signal) regime. For this plot, the reflectivity
of E2 was set to 10% to improve visibility of its effect. One should furthermore keep
in mind that the resolution of the spectroscopic data is 0.5 nm or 80 GHz, so that any
additional sub-structure is washed out. The interested reader can refer to Section 2.3.6,
where the single-frequency output spectrum of the laser was measured.

When installing an intra-cavity etalon perpendicularily to the eigenmode propaga-
tion direction, a set of coupled cavities will be formed. Due to fluctuations in the setup,
this will lead to highly unstable behavior of the setup. Thus, one needs to account for
a minimum tilt angle ϑmin for any intra-cavity etalon to avoid multi-cavity behavior.
It can be estimated by the cavity-eigenmode beam divergence, which is maximally

§The analysis given in [119] accounts only for linear resonators, so the etalon is passed twice for
each roundtrip, giving approximately two times the values obtained for the single-pass case considered
here.
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Element Length L Typ. freq. Typ. R Finesse F Q-factor
Gain profile width - 300 GHz - - -
Laser cavity 81 cm 360 MHz 96.5% 110 6 × 107

Doub. cavity 41 cm 730 MHz 93.6% 86 3 × 107

Etalon E1 0.5 mm 210 GHz 3.3% - -
Etalon E2 4 mm 26 GHz 28% 2.1 2 × 103

Etalon Toulouse 1 mm 105 GHz 20% 1.4 3 × 103

Table 2.3: Frequency scales in the setup. Typical frequencies are free spectral ranges
νFSR as described in the text and FWHM for the gain profile from [99]. Reflectivities R
are given for the output and input coupling mirrors in case of the two cavities and for
the two etalon surfaces, respectively. The finesses F and Q-factors of the laser cavity
and E1 are calculated from the R-values as stated, neglecting further losses. F and
Q were measured for the doubling cavity, see Chapter 3, and are given for comparison
only.

1.1 mrad in our case. This value is obtained for a Gaussian beam of a minimal waist
radius of 400 µm, see Section 2.5. Any angular etalon tuning will start from this point
towards higher tilt angles, accounting for a minimum tilt loss Lwo,min.

Etalon Length L R νFSR Lwo,min Lwo(3 GHz) Lwo(νFSR,etalon)

E1 0.5 mm 3.3% 210 GHz 1 × 10−7 3 × 10−6 0.02%
E2 4 mm 28% 26 GHz 1 × 10−4 0.3% 2.5%
Toulouse 1 mm 20% 105 GHz 5 × 10−6 1 × 10−4 0.4%

Table 2.4: Walk-off loss calculation for the etalons selected. For reasons of complete-
ness, we also give the calculated loss for a typical detuning of 3 GHz. The losses remain
negligible for E1 under all reasonable circumstances, but can become important for E2.

During the manufacturing process, the absolute value of the etalon thickness Letalon

can be controlled with a precision larger than the laser wavelength only. Thus, the
offset frequency νres and the free spectral range νFSR,etalon in the etalon transmission
function (2.47) are given by an arbitrary etalon thickness offset. In the worst case
one has to tune the laser system by νFSR,etalon = c/(2nLetalon) to reach the lithium
resonance. Walk-off losses can be completely neglected for E1, see Table 2.4. To avoid
the higher tilt loss of E2 (Lwo = 2.5% for angular tuning over one free spectral range
of νFSR = 26 GHz, comparable to the output coupler transmission), we chose to keep
it still at the minimum angle and to only change its temperature to tune the laser.

The mode-hop-free scan range of the laser was measured to ≈ 550MHz, slightly
higher then νFSR = 360 MHz, see (2.46). Tilt-tuning of the etalon was used to almost
double the mode-hop-free scan range of the laser to ≈ 1.1GHz at the cost of increased
losses as described above. To realize this, the etalon was mounted on a rotation mount
actuated by a piezoelectric transducer. For the highest tilt loss, at the border of the
mode-hop-free scan range, this results in a drop of the output power by 30%.
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Figure 2.11: Left: Small-signal gain–transmission behavior Tcav(νb) × σem(νb) for
two etalons as indicated in Table 2.3, except for RE2

= 10%. The black vertical line
represents half the Li resonance frequency. The blue line is the spectroscopy data for
σem(νb) from [99], the red line is σem(νb) modulated by E1 only. The red line is σem(νb)
modulated by both etalons, and the black line is the transmission of E1 in a.u. The
cavity modes spaced by νFSR = 360MHz are not resolved here. Right: Etalon mount
assembly for E2. The temperature is stabilized in a copper mount, using the heating
resistor H. The Thorlabs NanoFlex series mount provides etalon tilt around the vertical
axis via the setscrew Sv and the piezo-electric transducer PZT. The base B, made from
nickel silver, provides rotation around a horizontal axis.

2.3.5 Etalon temperature tuning

As demonstrated above, tilt-tuning of E2 should be avoided to minimize losses inherent
to this method. Another, slower way to tune the resonance frequency of an etalon is
to change its temperature, since both its length L and refractive index n display a
temperature dependence. The change in frequency reads

∂νb(T )

∂T
= b

∂νFSR(T )

∂T
≃ b

∂

∂T

(
c

2n(T )L(T )

)
= −b νFSR

(
1

n

∂n

∂T
+

1

L

∂L

∂T

)
, (2.50)

where c is the speed of light and n the refractive index and L the geometric length
of the etalon. The values for silica are 1

n
∂n
∂T

= 8.4 · 10−6K−1, n = 1.44512 and 1
L

∂L
∂T

=
5.5 · 10−7K−1 according to [121–123]. For E2 we get ∆T ≈ 26.4K to detune over a full
spectral range. It thus should also be temperature-stabilized to avoid drifts during the
warm-up process of the laser setup.

For temperature tuning, E2 is enclosed in a temperature-regulated copper mount
stabilized to ≈ 100mK, see Figure 2.11. To measure the etalon-temperature depen-
dence of the laser frequency, we single-pass frequency-doubled the output beam using
a setup similar to the one presented in Section 3.3. It yields a second harmonic power
of the order of 1 mW, sufficient to drive a High Finesse WMA-6 CCD-based high
resolution spectrum analyzer.
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Figure 2.12: Temperature-tuning curve for the emission frequency of the laser.
Since the frequency was measured using SHG light, we get twice the value for the
slope 2dνb(T )/dT = −2.89GHz.K−1. This value is practical for every-day use of the
frequency-doubled laser light.

The result is presented in Figure 2.12. As expected, the output frequency depends
linearly on etalon temperature. The theoretical value from Equation (2.50) using the
literature values as above yields dνb(T )/dT ≈ −1.42GHz.K−1. We fit a linear slope of

2
dνb(T )

dT
= −2.89(3)

GHz

K
= 2 ×−1.45(1)

GHz

K
. (2.51)

The discrepancy between these two values can be explained by differences in the glass
composition for infrared fused silica, the material actually used for all etalons to avoid
additional loss due to absorption. A further explanation is a possible manufacturer
tolerance of the etalon lenght L.

2.3.6 Output spectrum

By changing the temperature of E2 and optimizing the respective output power, the
emission spectrum of the laser was measured, as shown in Figure 2.13.

The spectrum is smooth except for three narrow dips 1341.8 nm, 1342.1 nm and
1342.7 nm, which can probably be accounted for by absorption of water molecules
in the laser cavity. At these wavelengths, the laser operation is unstable and mode-
hops towards stable regions occur. The total width of the spectrum is 1.2 nm. The
wavelength value corresponding to the lithium D-line resonance is well in between
the two first dips, and the emitted power is close to the absolute maximum. Hence,
every-day operation of the laser on the lithium resonance wavelength is accomplished
easily.
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Figure 2.13: Output power of the laser as a function of wavelength (dots), the lines are
guides for the eye only. The value corresponding to twice the lithium D-line wavelength
is indicated by a vertical line. One notices the features A, B and C, where the output
power drops sharply and the laser tends to mode-hop to frequencies in the higher-
output-power range.

2.4 Output power

The output power of a laser is certainly one of its key parameters, determining the
design as well as the possible applications of a laser. In this section, the output power
measurements are presented.

The laser output power is first optimized with an empty cavity at maximum pump
power, meaning that all elements not strictly necessary for lasing were removed. This
includes the TGG, the half-waveplate and the two etalons. Doing so, one can optimize
the spatial overlap between the pump beam and the cavity mode (see analysis in
Section 2.2.3) while avoiding additional power-modulating effects due to the frequency
selectivity of the etalons. Furthermore, due to the compact setup, only in the empty
cavity one can introduce a powermeter behind the Nd:YVO4 crystal to measure the
pump powers incident on the laser crystal and transmitted through it. This allows the
determination of the absorbed pump power Pabs.

Since the pump absorption coefficient depends sensitively on the wavelength, see
Section 2.1.2, the pump wavelength spectrum needs to be adapted to the absorption
spectrum of Nd:YVO4. Since the pump source consists of a diode bar, one can tune its
central emission wavelength by changing its temperature. This is realized using a water
chiller with a variable set temperature. Due to burn-in and aging of the pump source,
the chiller set temperature needs to be be optimized from time to time (approximately
every two months during every-day operation), and is generally set between 26◦C and
31◦C.

The current passed through the diode bar is kept constant at Ip = 51A to stabilize
the laser output power. All the laser parameters were optimized for this current, since
it represents the maximum output of the power supply used to drive the diode. All the
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Figure 2.14: Absorption of the pump light. Shown are the power incident on the
laser crystal Pinc, the transmitted power Ptrans and the absorbed pump power Pabs

as a function of the current Ip passing through the pump diode bar. Starting from
Ip = 33A, pump light absorption saturation sets in.

measurements presented in the course of this work were taken at this value for Ip, if
not otherwise stated, since no degradation of the laser parameters was observed even
for highest pump powers.

Figure 2.14 shows the pump power incident on the crystal Pinc and the pump power
transmitted through the crystal Ptrans as a function of the pump current Ip. The
difference between the two is the absorbed pump power Pabs due to negligible reflection
of the AR-coated Nd:YVO4 crystal. The absorbed power rises linearly with the incident
pump power up to Ip ≈ 33A, where either saturation in the Nd:YVO4 crystal sets in,
or the pump diode stack emission changes its spectral output characteristics. It is
visible in the plateau formed for Pabs. The maximum absorbed pump power is 14 W.

The empty cavity output characteristics are presented in Figure 2.15(a). Since there
is no TGG and waveplate present in the cavity, unidirectionality is not enforced. As
such, the output power is symmetrically distributed in two beams leaving the cavity
via the output coupler M2. The power values presented here are measured for one
beam only, so the total emitted power equals twice that value. The output coupler
transmission was chosen out of the limited set of available values to T = 3.5%, so as
to optimize the maximum output power at maximum pump current in the presence
of all the additional intra-cavity elements. The behavior can be described by (2.30)
with constant thermal loss Lth, which means that there is a linear relationship between
the absorbed pump power Pabs and the output power. Another possible explanation is
that the overlap integrals (2.28) and (2.32) change accordingly in presence of Lth(Pabs),
yielding the linear behavior observed. The lasing threshold is found at Pthr = 7.5 W
and the maximum power emitted Pω,max = 2 × 1.5 W, yielding a slope efficiency of
ηsl = 2 × 20.4(2)%.
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Figure 2.15: Upper panel: One-way output power of the laser without ad-
ditional intra-cavity elements (dots) and linear fit (line). In this configuration,
the ring laser emits its power symmetrically distributed in two separated beams.
Lower panel: Single-frequency laser output power of the Nd:YVO4 laser including
additional intra-cavity elements as a function of absorbed pump power. Two regimes
can be distinguished in the data (circles), and linear fits are performed (solid/dashed
line) for Pabs < 12.9W and Pabs > 12.9W. An unstable domain occurs, which can be
attributed to thermal depolarization in the Faraday rotator. Points in the unstable
domain near Pabs = 11.5W were left out of the fit.
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The output characteristics of the laser in the presence of all additional intra-cavity
elements are presented in Figure 2.15. The laser was optimized at maximum pump
power. The lasing threshold was found at an absorbed pump power Pabs = 9.8 W. The
power rises linearly above threshold with a slope efficiency of ηsl = 36.6(6)%. Between
Pabs = 11W and 12 W the output power departs from a linear behavior and becomes
unstable. We attribute this to intracavity-power-induced heating of etalon E2 and the
related change of its resonance frequency, thereby leaving the optimum operation range
of the two-etalon setup. Above Pabs = 12W we recover the initial slope with stable
operation¶.

As compared to the empty cavity case, the maximum output power amounts to
about half the total value. The slope efficiency is lower, whereas the lasing threshold is
significantly higher. These are clear indications of the losses caused by the additional
intra-cavity elements. Equation (2.30) yields increase of losses of 0.3% due to the
additional intra-cavity elements for passive cavity losses of 1%, as measured in [95].

At Pabs(Pout) = 12.9 W (1.17 W) the slope efficiency drops to ηsl = 12%. We first
interpreted this behavior as an indication of the presence of detrimental thermal effects.
This was qualitatively found before, see for instance [125]. The empty-cavity measure-
ment performed later does not display this behavior. Another possible explanation for
the change of slope is the inset of thermal effects in the additional intra-cavity ele-
ments. Especially TGG is prone to display absorption-induced thermal lensing effects,
see Reference [124] and references therein, causing additional loss and change in the
pump-eigenmode overlap integrals discussed before.

2.5 Spatial mode

As motivated earlier, the laser design presented before is supposed to deliver a Gaus-
sian TEM00 single-mode output beam. For verification, we performed a mode-quality
measurement. For this, the laser beam was focused by lens of f = 150-mm focal length
and images of the profile were taken using a LuCam LU055M camera which, though
equipped with a Silicon CCD sensor, has a somewhat low sensitivity at 1342 nm. We
measured the beam size as a function of the position of the camera along the direction
of beam propagation. The beam quality factor M2, M2 ≤ 1 can be extracted by fitting
Gaussian distributions to the camera images obtained and performing a fit to

w2(z) =
λzR

π

[
1 +

(
M2 z − z0

zR

)2
]

, (2.52)

which is an extension of Equation (2.5). M2 is unity for a pure Gaussian (TEM00) beam.
From the fits presented in Figure 2.16, we get M2

h = 1.02(5) and M2
v = 0.97(3), both

¶As realized recently, the dip in the power curve is due to temperature-dependent depolarization in
presence of absorption of the Faraday rotator and the λ/2waveplate, see for instance Reference [124]
and references therein. The laser emits in both directions in the unstable regime. [124] states an
absorption coefficient of αTGG = 4.8×10−3 cm−1, measured at 1053 nm. Asuming the same absorption
coefficient at 1342 nm, this corresponds to a full absorbed power of around 100mW for the full output
power. The compensation of the rotation of polarization via the half-wave plate can be optimized for
all pump power values to avoid the output power dip.
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Figure 2.16: Spatial mode measurement performed on the laser output beam. The
distances are indicated with respect to the coupling mirror M2. Left: M2 measurement,
yielding values compatible to M2 = 1, or pure Gaussian (TEM00) output. Right: mea-
surement of the output mode. The fits assume M2 ≡ 1. This measurement is used to
design the coupling optics between the laser and the resonant doubling cavity. Both
astigmatism and ellipticity, correctable by cylindrical lenses, are apparent.

values indistinguishable from one within experimental resolution. Thus, the output
beam quality is excellent, which is important for efficient frequency doubling, as will
be presented in the next chapter.

As mentioned before, due to the lack of precise knowledge of material parameters,
and the over-simplification involved in the theory of thermal focusing, the laser res-
onator design presented in Section 2.2.4 only gives approximate results for the mode
sizes wh/v. We thus measured the mode parameters of focus position z0 and Rayleigh
length zR with the assumption M2 ≡ 1, as justified before. Precise knowledge of the
shape of the output beam is crucial for the mode-matching between the laser and the
doubling cavity, as will be described in the next chapter.
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Figure 2.17: The laser cavity eigenmode in the wrapped-up resonator. Shown are
the position-dependent widths of the laser beam for the horizontal (black) and the
vertical direction (red). Horizontal lines indicate the position of optical surfaces of the
intra-cavity elements. z = 0 is the position of the pump coupler (M1), and the sense of
propagation starts via the output coupler (M2), which is found at 295 mm.
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The measurement is realized by simply measuring the radii of the output laser beam
at different positions. By comparing the fit parameters to the cavity calculations, we
gain knowledge about the thermal focal length present in the gain medium under lasing
conditions.

The results are given in Figure 2.16. The fits yield z0,h/v = 52(7) mm/ − 16(7)mm
and zR = 294(8), mm/540(20) mm in the horizontal/vertical direction. Following the
beam path upstream through the laser resonator yields a thermal focal length of
fth = 3.4 m/5.9m from knowledge of the cavity geometry. The values obtained for
the thermal lens are much greater than the theory value fth,theo = 0.26m obtained in
Section 2.2.3. We attribute this to the oversimplifications in the theoretical analysis.
We thus measure thermal effects significantly less detrimental than predicted by theory.
A second interpretation presented in Section 2.4 is the onset of thermal lensing in the
additional intra-cavity-elements (TGG, waveplate, etalons), which are not included in
the analysis.

Comparing the Nd:YVO4 mode size to the pump mode size, we get wl/wp =
0.9/1.1 in the vertical/horizontal direction, significantly greater than predicted by
Equation (2.43). Together with the diminished thermal effect discussed before, this
indicates lower aberrations even at mode-size-to-pump-size ratios close to 1.

2.6 Summary

In this chapter we have presented design and the characterization of a single-mode
diode-pumped all-solid-state laser source at 1342 nm, capable of creating powerful fre-
quency-doubled light at the lithium D-line resonances near 671 nm. We have justified
the choice of Nd:YVO4 as the active medium in our laser. We then have presented
the theoretical tools needed to design a solid-state laser, concluding in the presenta-
tion of the chosen geometry. Thereafter, we have discussed the methods employed
to force unidirectional operation, and to impose single-frequency operation. We have
characterized the laser output in great detail. Measurements of the output power as a
function of the absorbed pump power have been presented and compared to the results
of the empty-cavity case. We have measured a maximum of 1.3 W of single-frequency
output power, tunable from 1341.7 nm to 1342.8 nm. We have obtained a beam-quality
factor of M2 ≈ 1.0 and characterized the output spatial mode. This measurement is
indispensable for efficient coupling of the output to the doubling cavity, which will be
presented in the next chapter.





Chapter 3

Second harmonic generation

To produce light at 671 nm from the laser source presented in the preceding chapter,
we need to frequency-double its output radiation. Since we only have a limited amount
of fundamental power available, the frequency doubling method needs to be efficient in
order to meet our goals of Watt-level second harmonic output. We thus have to resort
to second-harmonic generation in a resonant doubling cavity.

In this chapter, we will present the frequency-doubling setup. In Section 3.1, we
will first consider briefly the theoretical aspects necessary for second-harmonic gen-
eration in a resonant doubling cavity. In Section 3.2 will then justify our selection
of periodically-poled potassium titany phosphate (ppKTP) as the nonlinear medium.
Thereafter, we will discuss in Section 3.3 the single-pass conversion measurements nec-
essary for designing the resonant enhancement cavity. The design will be presented in
Section 3.4. In Section 3.5 we will detail on measurements of the nonlinear conversion
in the doubling cavity, and we will summarize the chapter in Section 3.6.
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3.1 Theory of frequency doubling

In this section, a brief overview of the theoretical concepts needed to describe nonlinear
interactions of Gaussian beams will be given. We will describe the technology of quasi
phase matching and demonstrate its superiority over birefringent phase matching. We
will finally present an approximate result for the temporal behavior of dephasing effects
due to absorpion in optical media.

3.1.1 Nonlinear conversion

When an electro-magnetic wave is passing through a medium, the medium is polarized
by the electric field E of the incident wave. The polarization vector P =

∑3
i=1 Pi ei

reads
Pi = ε0

(
χ

(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl + . . .

)
(3.1)

where the ei are an orthonormal set, ε0 is the the vacuum permittivity and the material-
dependent tensors χ(k) of rank k + 1 account for the k-th order process. We will
concentrate here on second-harmonic generation and neglect all higher-order effects,
which is a good approximation in the general non-resonant case. χ(2) is only non-zero in
crystals without inversion symmetry. Because the coupling between fundamental waves
is not important, and because of further symmetries, χ(2) is reducible to a 3×6 matrix
containing 10 independent elements djk [126]. We introduce the nonlinear polarizations

P
nl
ω,j(r) = 2ε0djkE2ω,k(r)E

∗
ω,j(r) (3.2)

P
nl
2ω,k(r) = ε0djkE

2
ω,j(r) , (3.3)

where the indices ω(2ω) refer to the frequency and djk is the effective nonlinear coeffi-
cient of the material with j(k) the polarization of the fundamental (second harmonic)
wave. One has now to solve the coupled Helmholtz equations

(∇2 + k2)Eω,j(r) = −2ε0µ0ω
2djkE2ω,k(r)E

∗
ω,j(r) (3.4)

(∇2 + k2)E2ω,k(r) = −4ε0µ0ω
2djkE

2
ω,j(r) , (3.5)

which can be solved in the paraxial approximation. In the limit of weak conversion, or
no pump depletion, this generally yields a second harmonic (SH) output power P2ω in
the form of

P2ω = ηSHGP 2
ω , (3.6)

with Pω the fundamental or pump beam power and η the conversion efficiency. In [126,
127], Boyd and Kleinman derived the following expression for η, for second harmonic
interaction of Gaussian beams:

ηSHG =
2ω3d2

jkL

πε0c4nω,in2ω,j

h(α, β) , (3.7)

where nω(2ω),i(j) the corresponding refractive indices of the material, L the nonlinear
material length and c the speed of light in vacuum. The material parameters can be
recast as

ηmat,jk =
d2

jk

nω,jn2ω,k

≈
d2

jk

n2
ω,i

, (3.8)
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governing the doubling efficiency. The function h(α, β) is given as

h(α, β) =
1

4α

∣∣∣∣
∫ α

−α

eiβτ

1 + iτ
dτ

∣∣∣∣
2

, (3.9)

with the focusing parameter α = L/2zR, where zR is the Gaussian beam Rayleigh
length assumed here equal for both waves, yielding a waist smaller by a factor 1/

√
2

for the second harmonic light. The phase-matching parameter

β = β(T ) =
4πzR

λ
(nω,j(T ) − n2ω,k(T )) (3.10)

is temperature- and polarization-dependent in the case of birefringent media, and λ
is the fundamental vacuum wavelength. The derivation assumes no depletion of the
fundamental wave and absence of losses. The integral in Equation (3.9) needs to be
calculated numerically except for the two limiting cases α → 0 and α → ∞. It has a
global maximum of hmax(2.84, 0.573) = 1.068. The fact that the optimum β is non-zero
reflects the fact that we have Gaussian beams instead of plane waves. Putting in values
for the usual lengths and parameters of nonlinear media, this results in a doubling
efficiency ηSHG in the %/W range at best. Thus for the available cw laser power, single
pass doubling is not an option and one has to resort to resonantly enhanced intracavity
doubling.

3.1.2 Quasi-phase matching

Efficient conversion requires the phase-matching parameter β to be close to zero (and
exactly zero for the plane-wave limit α → 0). In the presence of dispersion, as present
in all optical materials,this condition is not fulfilled. Thus, one has to resort to different
kinds of phase-matching techniques using angular- and temperature tuning in birefrin-
gent crystals to fulfill β ≃ 0, see for instance [126]. The use of different polarization
axes yields small conversion, since the off-diagonal values of djk normally are small in
comparison to the diagonal elements djj.

To circumvent these complications, one can resort to quasi phase-matching. It was
proposed by Bloembergen et al. [128] in 1962 and was brought to practice one year
after [129]. The idea is to invert the sign of the optical axis whenever the interference
between the fundamental-wave-driven dipoles and the second harmonic wave becomes
destructive. The dipoles then oscillate with a phase shift of π and thus contribute
constructively to the second harmonic wave. The length of the region over which con-
structive interference occurs is then chosen to be the poling period Λ. The accessibility
of the much greater diagonal elements djj of the nonlinear tensor allows for higher
single-pass efficiencies ηSHG while keeping the phase matching condition of optimum
β. Quasi phase-matching using domain poling in bulk ferroelectric materials was first
demonstrated in lithium niobate [130] in 1993.

Quasi-phase matching is favorable in the intracavity case because of the excellent
beam quality achievable without beam walk-off [126, 131], and the avoidance of tedious
angle tuning. Compared to the bulk case, the same equations (3.6)–(3.10) hold, by
performing the following replacements:

β → β − 2πzR/Λ (3.11)
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where Λ is the poling period and

djk → deff = 2djj/π . (3.12)

From Equations (3.8) and (3.12) we thus get an efficiency improvement of

ηSHG,QPM

ηSHG,BPM

=

(
2

π

djj,max

djk,max

nj(2ω)

nk(2ω)

)2

, (3.13)

where the index extensions of ηSHG stand for quasi phase-matching (QPM) and bire-
fringent phase-matching (BPM). In the case of potassium titanyl phosphate (KTP),
using the data from [132] this yields

ηQPM

ηBPM

≈
(

2

π

d33

d32

)2

≈ 6 , (3.14)

which represents a substantial increase in single-pass doubling efficiency.

3.1.3 Thermal effects and related dynamics

We want to briefly consider here the dynamic behavior of an optical material when
absorbing a light beam. Heat is locally deposited in the medium, modeled by the heat
source term Q(r, t), as in Chapter 2. We have

Q(r, t) = αabsI(r, t) , (3.15)

with the beam intensity I(r, t) and the absorption coefficient αabs. The heat equation
reads

∂

∂t
T (r, t) =

κ

ρcp

∇2T (r, t) +
Q(r, t)

ρcp

, (3.16)

with the thermal conductivity of the medium κ, its mass density ρ and its heat capacity
cp. The quantity ξ = ρcp/κ is an important material constant governing dynamic effects
and should be considered when choosing a proper nonlinear medium. In the steady
state, t → ∞, it reduces to the Poisson equation

∇2T (r, t → ∞) = −Q(r)

κ
, (3.17)

which can be solved for top-hat [110] or Gaussian shapes [112] of Q(r) in cylindrically-
shaped media. The thermal conductivity should thus be high to diminish thermal
gradients, which can lead to local dephasing in the phase-matching conditions (3.10)
and (3.11). The solution in the cylindrically symmetric Gaussian case reads

δT (r, z) =
αabsPinc exp(−αabsz)

4πκ

[
ln

(
r2
0

r2

)
+ E1

(
2r2

0

w2(z)

)
− E2

(
2r2

w2(z)

)]
, (3.18)

where δT (r, z) is the temperature offset from the material edge, where the temperature
is kept constant in a solid copper mount as discussed in Chapter 2. Pinc is the incident
power of the Gaussian beam of width w(z). r0 is the radius of the material, considered
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cylindrical here. Ei are exponential integral functions of degree i, where the E2 term
is negligible under all practical circumstances.

If we assume a sudden switch-on of Q(r, t) = θ(t)Q(r) in a medium of initially
homogeneous temperature, θ(t) being the Heaviside function, ∇2T (r, t = 0) = 0, (3.16)
reduces to

∂

∂t
T (r, t = 0) =

Q(r)

ρcp

. (3.19)

Regarding the on-axis values for r = (0, 0, z), we introduce a typical time scale

τtyp =
δT (z, t → ∞)
∂
∂t

T (z, t = 0)
=

5.9

16π

λL

arctan
(

L
zR

) ρcp

κ
≃ 3 ms (3.20)

for this process, where L is the length of the medium and zR and w0 are the parameters
of the Gaussian beam, as presented in Section 2.2.1. Our geometrical parameters of
r0/w ≃ 10 were assumed, yielding to the numerical prefactor of 5.9. Since our crystals
have cross-sections of 6× 1mm2, and the beam is off-centered on the long axis, r0 was
set to 0.5 mm, yielding the numerical factor of 5.9 in Equation (3.20). One should note
that one would have to perform a finite element analysis to get a better estimate for
the temperature profile.

The meaning of Equation (3.20) is twofold: First, a fast switch-on process compared
to τtyp can occurs when a build-up cavity comes to resonance. τtyp does not depend
on the Q(r), so it is independent of the absolute circulating power and the absorption
coefficient. Even in presence of increased heating due to second-harmonic-induced
fundamental absorption (often termed green-induced infrared absorption in literature),
this time scale will not change. Second, under normal operation, a doubling cavity is
held in resonance by a lock circuit, the circuit bandwidth should be at least on the
order of magnitude of 1/τtyp.

3.2 Choice of the nonlinear medium

In this section, we will motivate the selection of periodically-poled potassium titanyl
phosphate (ppKTP) as the nonlinear medium in the resonant doubling cavity.

As we saw in Section 3.1.2, it is advantageous to choose periodically poled (pp)
materials for efficient nonlinear conversion. We will use a crystalline material with
high values for djk, yielding efficient conversion, see Equation (3.7). Ferroelectricity
is the property of materials to possess a spontaneous electric polarization, which can
be permanently changed by applying an external electric field. It is necessary for the
quasi phase-matching method treated theoretically in Section 3.1.2. This prerequisite
restricts the choice to non-inversion-symmetric ferroelectric crystalline materials. The
properties of three such materials (KTP = potassium triphosphate, SLT = stoichomet-
ric lithium tantalate, LN = lithium niobate) are given in Table 3.1. Standard nonlinear
crystals are transparent over the whole visible range. Depending on the material, the
transparency extends in the ultraviolet and infrared regions. Absorption coefficients
are thus small in the region of interest. A deleterious effect, as mentioned before, is
second-harmonic induced fundamental absorption (SHIFA). This effect, also termed
green-induced infra-red absorption (GRIIRA), describes the increased absorption of
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Material KTP SLT LN
d33[pm.V−1] 16.9 [132] 10.0 [133]/ 14.1 [134] 27 [134]
nz(λ = 1342 nm) 1.82 [135, 136] 2.12 [137] 2.15 [138]
ηmat,33[pm2.V−2] 86.2 22.2/44.2 157.7
αabs[%.cm−1] < 0.2 [139]
transp. window [µm] 0.365-4.3 [138] 0.270-5.5 [138] 0.305-5.5 [138]
Idam[MW.cm−2] > 37 [140] 2 [134] 0.001-2 [134]
ρ[g.cm−3] 3.03 [66] 7.465 [141] 4.628 [142]
cp[J.kg−1.K−1] 728 426 [143] 648 [143]
κ[10−2W.cm−1.K−1] (2.0,3.0,3.3) [144] 8.8 [133] / 5 [141] /

4.6 [145]
4.4 [143]/4.6 [133]

ξ = ρcp/κ[103 s.m−2] 11.0/7.4/6.7 3.6/6.4/6.9 6.8/6.5

Table 3.1: Comparison of material parameters for different ferroelectric nonlinear
media (KTP = potassium triphosphate, SLT = stoichometric lithium tantalate, LN =
lithium niobate). The definitions of the physical quantities are given in the text. The
material efficiency parameter ηmat,33 ≃ d2

33/n2
z(λ) is as given as in Equation (3.8). The

values for the thermal conductivity κ of KTP from [144] are for the three different axes
of the KTP crystal. The different values for the dynamic parameter ξ = ρcp/κ, see
Equation (3.20), were calculated with the values for (ρ, cp, κ) as given here and in the
order of the different values for κ.

the fundamental wavelength in the presence of the second-harmonic light. It is detri-
mental especially when using resonant buildup cavities, thus restricting the use of LN
([134, 146]).

Another detrimental effect in LN is photorefractivity. It consists of a rapid shift of
refractive index due to the field-induced release of charge carriers in the material. As
the cavity optical length is changed abruptly, this is a catastrophic effect when trying
to keep a build-up cavity frequency-locked to a pump laser.

When operating at high intensities, optical media might become subject to damage.
The damage threshold intensity Idam is highest for KTP, whereas it can be dangerously
low for LN, depending on the crystal composition (stoichiometric or congruent, pre-
cence of dopants such as MgO, Fe). This threshold, after SHIFA and photorefractivity,
further limits the high-power handling capability of LN.

KTP, on the other hand, displays a detrimental effect called gray-tracking. This
effect takes its name from the appearence of visible gray tracks in the crystal. This re-
versible increase of absorption limiting frequency-doubling of Nd:YAG lasers at 1064 nm.
Since the photon energies involved in our case are a lot lower, we have reason to believe
that this effect will not occur for doubling of 1342 nm light.

The material-dependent conversion-efficiency parameter ηmat,33 is highest for LN,
but the material suffers from its higher refractive index in comparison to KTP. SLT
displays the lowest conversion efficiency, but the deleterious effects mentioned above
are largely suppressed [134], and its lower absorption edge extends largely in the UV,
making it an interesting alternative for high-power and short-wavelength applications.

SLT is a relatively new material in which, to the best of our knowledge, the intensity-
limiting effects described before are strongly reduced.
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The important thermal parameter ξ is within a factor of three for the materials, and
furthermore depends on the publication or crystal axis considered. The typical time
scale τtyp calculated in Equation (3.20) scales accordingly. Thus, a standard lock scheme
using piezo-electric tuning of the doubling cavity length will allow for stabilization in all
cases with a standard lock circuit bandwidth of a few kilohertz. The heat conductivity
κ is somewhat low for KTP, but it only plays a significant role for the steady-state
temperature profile (solution of Equation (3.17)). Since the linear absorption parameter
αabs is small, κ is a less important criterion for choosing the appropriate crystal.

For the reasons mentioned above, we consider ppKTP being a good trade-off be-
tween conversion efficiency and high-power-handling capability. For the poling of the
crystals, we established a collaboration with the Institute of Laser Physics of the
Royal Institute of Technology (Kungliga Tekniska Högskolan, KTH). The group of
Carlota Canalias is specialized in electric field poling of KTP at room temperature
[147], which is the poling method chosen to produce our samples. The length of the
crystal used in this work is 19.2 mm, featuring an optical aperture of 6 × 1 mm2. The
length of the periodically-poled region is 17.25 mm. The poling period was chosen to
be Λ = 17.61 µm, resulting in expected plane-wave phase matching condition β(T ) = 0
(Equation 3.11) at T = 23.5◦C using the temperature-dependent Sellmeier equations
from [135, 136]. This period is easily manufacturable. Both surfaces are AR coated at
1342 nm and 671 nm.

3.3 Single-pass measurements

We use a single-pass method to independently characterize the ppKTP crystal em-
ployed for intra-cavity frequency doubling in the next section. The completely autom-
atized measurement setup is represented in Fig. 3.2.

The 1342-nm laser output was passed through a mode-cleaning fiber, resulting
in a beam with a clean Gaussian profile. The output power was ≃ 500 mW of single-
frequency infrared light, resulting in a maximum of P2ω ≃ 2 mW of red light output, the
two beams being separated using mirror Msep. The fundamental power was monitored
using a Ge photodiode (PD) exploiting the finite transmission through mirror Mref .
The signal was calibrated against the IR power Pω incident on the crystal. The finite
transmittance of Mref at 671 nm was taken care of, and the SH power measured using
a commercial power meter (Thorlabs S130A). The response of the power meter’s Si
photodiode at 1342 nm is negligible, and so is the corresponding transmission of Msep

Thus, no infrared power is detected by the power meter. The shutter, driven at ≃ 1 Hz
with a 50% duty cycle allowed for the determination of dark current offset drifts for both
power measurements, which is of highest importance for low conversion efficiencies. The
crystal is mounted on a transverse (xy-) translation stage and temperature controlled
with an accuracy of ≈ 10 mK using a Peltier element and a home-made temperature
controller. A set temperature ramp was applied to the controller, scanning the full
55◦C range in about 30 minutes. The slow ramp allowed for adiabatic behavior of the
temperature measurement, permitting independent determination of the temperature
of the crystal measured by a LM35 sensor attached to the crystal mount.

The experimental results are presented in Figure 3.1. A weighted numerical fit to
the Boyd-Kleinman theory (Equation (3.7)) describes the data well. The error bars
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Figure 3.1: Temperature-dependent single-pass doubling efficiency measurements.
(a) Linear and (b) logaritmic plot of the measured data (dots) and the fit (solid
line). The error bars are the standard deviation of the data measured for each point.
(c) shows the residuals with and without weighting, whereas (d) shows the refractive in-
dex difference from the temperature-dependent Sellmeier equations for KTP published
in [135, 136] and the fit. The difference between the two was artificially set to zero
at T = 25◦C, where the non-temperature-dependent Sellmeier equation for KTP was
measured in [136].
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Figure 3.2: Setup of the single pass efficiency measurements. The laser output is
sent through shutter (S) before being coupled to a PMSM mode-shaping fiber (F). The
power leaking through mirror Mref is referenced on a photodiode (PD), and the beam
is then focussed into the ppKTP crystal by a lens (L). Mirror Msep separates second
harmonic from fundamental light, which is sent in a beam dump (BD), whereas the
converted light power is measured with a power meter (PM).

u(η(T )), representing the fit weights w(η(T )) = (u(η(T )))−2, stem from the standard
deviation of the measured power data. The temperature dependence of the phase
matching parameter β is taken into account up to quadratic order. The full 99%-width
of the peak of 0.7◦C allows the use of standard temperature controllers. However, the
optimum phase-matching temperature of 33.2◦C differs slightly from the theoretical
value of 23.5◦C. This can be explained by a small difference to the Sellmeier equations
as presented in [135, 136] and a non-perfect alignment between pump beam and crystal
axis. In Figure 3.1 (d) we plot the fitted refractive index difference n2ω,3 − nω,3, which
according to (3.10) is a measure of the slope of the phase matching parameter β as
a function of temperature. It is about twice as high as the temperature-dependent
Sellmeier-equations prediction.

Since we performed a weighted fit, there are deviations visible between the fit curve
and the measured data points around the peak value (blue dots in Figure 3.1 (c)), where
the error bars u(η(T )) are largest. This can be explained by thermal effects due to
linear absorption and SHIFA, leading to local dephasing due to heating and the non-
zero pump depletion. The fit yields ηSHG(Topt) = 1.20%/W at the optimal temperature
Topt = 33.1◦C for α = 3.53.

The maximum measured single pass efficiency of 1.13%/W represents 74% of the
theoretical maximum of 1.53%/W from Equation (3.7) with the parameter α = 3.53
as fitted and d33 for KTP from [132]. This can be explained by imperfections of the
domain poling, most probably deviations from perfect periodicity, or the 50% duty
cycle. We thus derive an effective nonlinear coefficient of deff = 9.2 pm/V for our
crystal, significantly lower than the literature value of 16.9 pm.V−1 [132].
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3.4 Doubling cavity design

In Section 3.1 we saw from Equations (3.6) to (3.12) that the single-pass doubling effi-
ciency of the chosen KTP crystal is in the %/W range, which is why we need to use a
resonant doubling cavity to build up a strong fundamental wave and to thus convert
efficiently.

Figure 3.3: The doubling cavity setup consisting of the four mirrors M′
1−4 and the

ppKTP nonlinear crystal. The light is coupled to the TEM00 cavity eigenmode us-
ing lenses L′

1,2, whereas L′
3 collimates the second harmonic output. Some mechanical

components are sectioned to improve visibility of the laser (second harmonic) beam,
depicted in green (red). The distance between M′

3 and M′
4 is 93 mm. The piezoelectric

transducers underneath M′
2 and M′

3, used for changing the cavity length, are pictured
in dark red. Dimensions of the coupling light paths are not to scale.

The doubling cavity mechanical setup is similar to the one presented in [69] and
depicted in Figure 3.3. As for the laser, a four-mirror-folded-ring cavity is used. The
pump light is coupled through the plane mirror M′

1 for which several reflectivity values
Rc are available. All other mirrors are highly reflective at 1342 nm and transmitting at
671 nm. M′

3 and M′
4 are concave with a radius of curvature of 75 mm. Mode matching

between the laser output and the cavity was accomplished using a set of spherical
lenses. The crystal mount is identical to the one described in Section 3.3. The frequency
doubled light is transmitted through M′

4 and collimated using a lens of f ′
3 = 150mm

focal length, yielding a Gaussian 1/e2 beam radius of 0.9 mm.
The cavity design is presented in Figure 3.4. We chose the distance dcu = 93mm

between the two curved mirrors M′
3 and M′

4, where all requirements are fulfilled: We
work on a position well centered (but slightly shifted) in the stability range and a
large enough waist of w0 ≃ 55 µm. It avoids frequency degeneracy of higher-order
transverse cavity eigenmodes and the TEM00 mode. It also accounts for a circular
beam in the crystal and thus for a circular SH output. The weaker-than-optimal
focusing leads to a slightly reduced h(α = 1.22, 0.818) = 0.865, or a fraction h/hmax =
81% of the optimum value, yielding η = 0.92%/W. This choice represents a trade-
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off between maximum single-pass doubling efficiency and intensity-related detrimental
effects such as nonlinear and SH-induced absorption (SHIFA, [148]) and possible gray-
tracking [149].

The doubling cavity is kept under a dry-air atmosphere in an aluminum-acrylic-
glass housing to prevent dust and moisture from deteriorating the quality of the optical
surfaces, and to shield from thermal and acoustic perturbations.

3.4.1 Mode matching and intra-cavity loss

We can change the length of the doubling cavity by δL when applying a voltage to the
piezoelectric transducers mounted below the cavity mirrors M′

2 and M′
3 (cf. Figure 3.3).

In the absence of nonlinear loss the intra-cavity power P (δL) reads

P (δL) =
∑

lm

Plm

1 + F sin2 (ϕlm + ωδL/c)
, (3.21)

where F is a parameter related to the cavity Finesse and thus to the losses, see Equa-
tion (2.47). Plm are the contributions from the TEMlm modes, and c is the speed of
light in vacuum. The constant cavity round-trip phase of ϕlm depends on the cav-
ity geometry and should be chosen such as to not be degenerate (modulo 2π/Nint for
low integer numbers Nint), as mentioned before. This avoids simultaneous presence of
higher-order modes in the cavity and thus keeps the SH output of TEM00 mode quality.

We define the mode-matching efficiency as

ηmm =
P00∑
Plm

. (3.22)

A cavity scan measurement was performed for low intra-cavity powers of up to
≈ 500 mW and the crystal temperature tuned far from the optimum phase matching
value, so that nonlinear conversion can be neglected. M′

3 is glued on a slow piezo-
electric transducer (PZT), allowing to act on the cavity length in the 2 − µm range,
see Figure 3.3. While scanning the cavity length by δL, we measured a power signal
leaking through M′

2, which is proportional to P (δL) and allows for simultaneous de-
termination of both the cavity losses and mode-matching efficiency. Examples of such
measurements are given in Figure 3.5.

The mode-matching efficiency was maximized to ηmm = 92% using two telescopes
composed of spherical lenses only. One of the two telescopes is shown in Figure 3.3.
The linear cavity round-trip losses Lemp(tot) can be quantified from the fit parameter F ,
where emp(tot) means the empty cavity (cavity including ppKTP crystal). The results
are presented in Table 3.2. Inserting the crystal rises the losses by Lcr ≃ 1%. This can
be accounted for by residual absorption and scattering in the ppKTP crystal and
imperfections of its AR coatings. The empty cavity loss for the 5% coupler account to
more than 6%, which is a significant deviation from the manufacturer’s specifications.
Within the errors of our measurement, we will refer to it as the Rc = 94% coupler from
now on.
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Figure 3.4: Geometric design of the doubling cavity, the variation parameter is the
distance dcu between the two curved mirrors M′

3 and M′
4. Black (red) lines indicate

the horizontal (vertical) direction in the setup. Upper left: The stability parameters
pstab of the cavity, which remains stable between dcu = 84.3mm and dcu = 109.0mm.
Upper right: The relative mode spacing ∆ν/νFSR, defined between the TEM00 mode
and the modes TEM10 (horizontal) and TEM01 (vertical). Lower left: The waist
sizes in the doubling crystal (continuous lines). We also show the waist radii in the
coupling arm (dashed lines, blue [green] stands for the horizontal [vertical] direction)
between M′

1 and M′
2, the values being devided by a factor of ten for better visibil-

ity. Lower right: The optimized Boyd-Kleinman function hopt(α) → hopt(dcu), see
Equation (3.9). We chose the point dcu = 93mm where both waists in the crystal are
degenerate, yielding a round SH beam, and where the relative mode spacing is around
0.4.
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Figure 3.5: Examples of cavity scan measurements of the circulating power P (δL)
without (left) and with (right) the ppKTP present. Blue dots are data, while the purple
lines represent fits to Equation (3.21), with the fit parameters Plm, F , ϕlm, ω and a
variable offset to compensate the voltage offset inherent to our measurement. We fit
to six (three) modes in the left (right) panel. In presence of the crystal, the mode
matching improves, whereas the cavity loss increases, so the resonance lines get slightly
broader. From the width of the resonances we can deduce the cavity round-trip loss.

1 −Rc Lemp Ltot Lcr

5% 6.4% 7.1% 0.7%
10% 10.4% 11.2% 0.9%
17% 17.9% 19.0% 1.3%

Table 3.2: Passive losses in the doubling cavity measured from cavity transmission
spectra at low power and conversion efficiency. (1 −Rc) is the specified coupler power
transmission, Lemp are the measured empty-cavity round trip power losses, Ltot are
losses including the ppKTP crystal, and Lc are the inferred crystal insertion losses
according to Lc = 1-(1-Ltot)/(1-Lemp).

3.4.2 Impedance matching

Impedance matching is the process of optimizing the reflectivity of the output coupler
in presence of nonlinear conversion and passive round-trip loss in order to optimize the
second-harmonic output for a given fundamental input power.

If we now take into account nonlinear conversion, the fundamental-mode-intra-
cavity power P00 = Pω at TEM00 resonance (referred to as cavity resonance) is a
solution of

Pω =
(1 −Rc − L1)ηmmPin(

1 −
√
Rc(1 − Ltot)(1 − ηSHGPω)

)2 , (3.23)

where Pinc is the fundamental pump power incident on M’1, L1 is the coupling mirror
(M′

1) transmission loss and Ltot is the total cavity passive loss excluding the coupler
transmission. The single-pass doubling efficiency ηSHG is calculated according to Equa-
tion (3.7) with d33 as measured in Section 3.3 and h(α) as given by the cavity design, see
Figure 3.4. The solution can be calculated analytically using Mathematica, yielding an
expression of a length of several pages. Thus, we will not present it in this work. The
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second-harmonic output power is then simply calculated according to Equation (3.6),
and we define the cavity doubling efficiency as

ηcav =
P2ω

Pin

=
ηSHGP 2

ω

Pin

, (3.24)

The results are depicted in Figure 3.6. Setting Ltot = Lcr and L1 = 0, the solution
of Equation (3.23) yields a maximum SH power of 710 mW at the maximum available
pump power of Pin = 860 mW. It is currently limited by the quality of the AR coatings
of the optical elements in the coupling pathway between the laser and the doubling
cavity, and can thus easily be improved to reach values close to the maximum laser
output power. This conversion is accomplished for an optimized coupling mirror re-
flectivity of Rc,opt = 92%, yielding a total conversion efficiency of ηcav = 84%. For the
Rc = 94% coupler we get satisfying results up to the maximum available pump power
Pin = 860mW.

3.5 Second harmonic output power and limitations

In this section we will present a measurement which characterizes the resonant con-
version process. We will then demonstrate limiting effects and discuss measures to
circumvent them to allow scaling to higher powers.

3.5.1 Cavity characterization

After locking the cavity to the laser, as will be described in Chapter 4, the second har-
monic output power P2ω was measured versus the intra-cavity fundamental power Pω

and the 1342 nm pump power Pin, using the Rc = 94% input coupler. This measure-
ment allows for a complete characterisation of the cavity, and is presented in Figure 3.7.

As expected from Equation (3.6), the conversion shows quadratic behavior for low
power values. However, at elevated power levels, starting from the values
(Pin, Pω, P2ω)crit = (730 mW, 9.0 W, 640 mW), only a slow linear rise in SH power with
intra-cavity power is obtained, reaching its maximum at (Pin, Pω, P2ω) = (860 mW,
10.7 W, 670 mW). At the same time, we notice increased intensity noise and oscillations
of the error signal. We attribute this behavior to fast intensity-dependent detrimental
effects. These points are thus excluded from further analysis.

We perform a fit to Equation (3.24), the solution of Equation (3.23) and ηSHG and
Ltot as fit parameters. The fit yields a single-pass efficiency of ηSHG = 0.78%.W−1 at the
conversion maximum (lower left panel in Figure 3.7), slightly lower than the theoretical
prediction ηSHG ≈ 1.1%.W−1. The direct measurement, presented in the lower left
diagram of Figure 3.7, gives slightly higher values of up to ηSHG = 0.86%.W−1 for low
powers. However, it decreases with increasing power to ηSHG = 0.78%.W−1, the same
value as obtained from the fit before. We attribute this change in single-pass doubling
efficiency to absorption-induced heating of the crystal, leading to local dephasing of
fundamental and second harmonic radiation, hence to a reduced conversion.

The fits to the second harmonic power and total conversion versus pump power
in the two right panels of Figure 3.7 describe the data well. The intra-cavity losses
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Figure 3.6: Calculations for the intra-cavity conversion with the parameters ηSHG, Rc

and Ltot measured before. Upper left: The achievable SH power at maximum avail-
able pump power Pin = 860mW as a function of the coupling mirror (M′

1) reflectivity
Rc. Upper right: The optimum pump coupler reflectivity Rc,opt as a function of the
available pump light. Lower left: The SH output power as a function of available
pump power for different values of the coupler reflectivity. Shown are the curves for
Rc,opt as before, the three experimentally available couplers and, as a reference, the
power of the pump light coupled to the TEM00 mode 1−L1ηcPp. Lower right: Dou-
bling efficiencies for the same coupler reflectivity values as before. The Rc = 94%
coupler allows satisfactory conversion for all pump powers up to the maximum value
Pin = 860mW, while keeping a good conversion efficiency at lower powers. For higher
pump powers, a lower-reflectivity pump coupler should be chosen.
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Figure 3.7: Cavity doubling efficiency measurements, points are measured data and
lines are fits. The crossed orthogonal lines mark the onset of the lock instability, as
described in the text. Upper left: The second harmonic output power versus the
intra-cavity power. At (Pin, Pω, P2ω)crit = (730 mW, 9.0 W, 640 mW), the conversion
becomes less efficient (dashed line), these points are thus excluded from all fits. Up-

per right: P2ω versus pump power Pp, following the behavior predicted from theory,
see Figure 3.6. Lower left: The crystal single-pass efficiency as a function of the pump
power, yielding η = 0.78%.W−1 at maximum conversion efficiency. Lower right: The
total doubling efficiency ηcav, maximizing to 86% at high pump powers before inset of
the lock instabilities. The fits yield a total passive round-trip loss of Ltot ≃ 0.5%.

of Ltot = 0.5% fitted with this method are lower than those obtained from the low-
power characterization presented in Section 3.4.1, where we had Lcr = 0.7% for the
crystal only using the Rc = 94% coupler. We thus regard the latter values as upper
limits. Hence, the losses of the three highly-reflective cavity mirrors are smaller than
the experimental resolution.

A maximum measured doubling efficiency of ηconv = 86% is obtained just below
the threshold of instability, compatible with the theoretical prediction of ηconv = 84%.
The fact that the measured value is slightly higher than the theory value also points
to low intra-cavity loss of ≃ 0.5%.

3.5.2 Measurements of thermal effect and further optimization

The abrupt change in doubling efficiency at (Pin, Pω, P2ω)crit = (730 mW, 9.0 W,
640 mW) presented above indicates the presence of intensity-related effects in the dou-
bling crystal. The cavity lock error signal becomes very noisy above threshold. In
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Figure 3.8: Thermal behavior of the crystal while scanning back and forth over cavity
resonance, where on the left (right) side in each panel the cavity length is reduced
(enlarged). The indices ω and 2ω refer to fundamental and second-harmonic power,
respectively. Notice the different scan time scales. The direction of the scans is inverted
in the middle of the data. δL (Equation (3.21) is decreasing on the left-hand side and
increasing on the right-hand side. (a) Fast scan, the two peaks are almost symmetric.
(b) Slow scan, an asymmetry as reported in [150] becomes apparent. In both cases, the
second-harmonic peak displays an additional plateau-like structure.

contrast to [140, 150], the cavity remains locked at all power levels.
A Fourier analysis of the error signal in the high-power range, as presented in

Section 3.5.1, shows a first broad peak at 700 Hz and a second broad peak at around
1400 Hz. The corresponding time scales are within the order of magnitude of the
typical time scale of the cavity buildup thermal effects, see Section 3.1.3. However, the
oscillation frequencies of the cavity lock, using only the slow piezo-electric transducer,
is typically located at these frequencies, as will be presented in the next chapter.

Figure 3.8 shows a fast and a slow scan over the cavity resonance. In both cases,
thermal effects are clearly visible by deviations from a smooth and symmetric peak
structure. The asymmetric behavior in the slow scan was already reported for ppKTP
in [150], where also a significant asymmetry between the back- and forward scan was
discussed. Compared to this publication, the asymmetry is not very pronounced in our
case. The peak of the cavity resonance is not very sharp in the fast case, but rather
forms a plateau-like structure with ripples. Since an error signal is created from the
second-harmonic signal, the erratic structure can lead to the lock instability observed
earlier.

When changing the pump power, the second harmonic output follows without ob-
servable hysteresis. Long-term degradation is not observed, indicating the absence of
gray-tracking. However, for further characterization the setup is operated just below
threshold to avoid the related rise in intensity noise.

We saw that the lower-than-optimal focusing represents a good choice in the dou-
bling cavity design, given that the intra-cavity loss is small. By further enlarging the
radius of the Gaussian mode passing the doubling crystal, one would lose in single-pass
efficiency ηSHG. The resulting compatibility with higher intra-cavity powers should
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allow for higher output powers at higher pump power values. Further optimization,
not presented in the analysis above, yielded 840 mW of 671-nm output power without
observation of the detrimental effects. This was achieved by finding another position
in the ppKTP crystal where the beam passes. The available pump power of Pin ≈ 1W
was not sufficient for observation of the intensity-related instabilities described before.

Power-scaling of the doubling section in the 671-nm light source could also be
achieved using another nonlinear medium. Insertion of a crystal of periodically-poled
stoichiometric lithium tantalate (ppSLT, for its material properties see Table 3.1) of
the same length as the ppKTP crystal might lead to higher power tolerance. For
this material, to the best of our knowledge, second-harmonic or fundamental-power-
induced detrimental effects play a minor role. Calculations show that the current cavity
setup could be kept without even changing the mode- or impedance matching. The
eigenmode is only slightly altered, and the lower single-pass efficiency is compensated
by the higher power tolerance.

3.6 Summary

In this chapter, we have presented the design and characteristics of a resonant buildup
cavity, capable of efficient frequency doubling of the 1342 nm output radiation of the
Nd:YVO4 laser presented in Chapter 2. This doubling cavity is thus an essential build-
ing block to create powerful 671-nm radiation.

We first have presented the theoretical tools to design the doubling cavity including
the nonlinear medium. We then have justified our choice of periodically-poled potas-
sium titanyl phosphate as the nonlinear medium by comparing its material parameters
to those of alternative crystals. The crystal’s single-pass doubling efficiency and the
cavity’s passive losses have been measured independently. This has allowed the the-
oretical modeling of the cavity in terms of spatial mode and impedance matching,
necessary for obtaining high power-conversion efficiencies.

The final setup has been presented and characterized. We have measured a maxi-
mum conversion efficiency of 86%, and a maximum of 840 mW of 671-nm output power.
This measurement has allowed to find an upper limit of 0.5% for the doubling cavity
passive roundtrip loss. We further have discussed power scaling limitations observed
as well as prospects including the use of different nonlinear crystals.



Chapter 4

Frequency stabilization,

characterization and implementation

In the preceding chapters, we have discussed the building blocks of an all-solid-state
laser system to cool and trap Lithium atoms magneto-optically. We will present here
the opto-electronic system designed to frequency-stabilize the laser system, characterize
the frequency-locked output and present its implementation in the lithium experiment
at Laboratoire Kastler Brossel.

In Section 4.1, we will discuss pathways of frequency-stabilization of laser systems
and justify our choice for the practical realization. We will present the subsystems,
the doubling cavity lock and the spectroscopy lock on the lithium D-line transitions.
In Section 4.2, a full characterization of the laser system output in terms of relative
intensity noise, linewidth and spatial mode quality will be presented. Special attention
will be given to the presentation of the long-term stability and the every-day use of the
source. In Section 4.3, we will demonstrate the implementation of the laser system in
the existing Lithium experiment, and the additional setup needed to create different
frequencies and to redistribute the laser light. Finally, results of the operation of
the Zeeman slower and the magneto-optical of the lithium experiment at Laboratoire
Kastler Brossel trap will be discussed. We will thus prove the practical applicability
of the laser system for laser-cooling applications. We will summarize the chapter in
Section 4.4.
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4.1 Lock system

Our objective is to generate light which is frequency-stabilized with respect to the
lithium D-line transitions. In laser systems, several noise sources like temperature
drifts, acoustic noise and fluctuations inherent to the pump source are present, causing
derivations of the resonance frequencies of optical cavities. Thus, one requires feedback
loops to keep the entire laser system frequency-locked. For the combination of the
Nd:YVO4 laser and external doubling cavity presented in Chapters 2 and 3, several
requirements need to be fulfilled:

1. The doubling cavity needs to be resonant with the Nd:YVO4 laser for ensuring
a good second harmonic efficiency. Practically, this means that the doubling
cavity length needs to be stabilized such that its resonance frequency matches
the Nd:YVO4 laser frequency.

2. The Nd:YVO4 laser output frequency needs to be locked such that its doubled
frequency equals that of the desired optical transition. In practice, one changes
the length of the laser cavity to adjust and stabilize the output frequency.

3. For cooling and trapping applications, one normally wants to lock the light fre-
quency with a fixed offset with respect to the atomic transitions.

We thus first lock the doubling cavity resonance frequency with respect to the free-
running Nd:YVO4 laser frequency to perform Lithium spectroscopy. We afterwards
lock the Nd:YVO4 laser frequency with respect to one of the spectroscopy lines. The
complete locking setup is presented in Figure 4.1.

Laser Doubling

Li saturated

absorption

spectroscopy

to exp.

Lock-in

detection,

PI control 2

Lock-in

detection,

PI control 1

νoff

ν1

ν2

PD1

PD2

EOM1

AOM

EOM2

Figure 4.1: Locking scheme. Straight lines depict light paths, dashed lines electronic
signals. First the doubling cavities resonance frequency is locked with respect to the
free-running Nd:YVO4 laser using control circuit components indexed 1. A part of the
second harmonic light is used for Lithium spectroscopy. In a second step this reference
serves to lock the double Nd:YVO4 laser output frequency with respect to one of the
Lithium resonance frequencies, using control circuit 2. A frequency offset between the
atomic resonance and the output frequency is determined by twice the double pass
AOM driving frequency νoff .
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4.1.1 Cavity length actuation

Actuating on an optical cavity resonance frequency is performed by changing its optical
length Lopt. This is done by either moving cavity mirrors or changing the refractive
index of intra-cavity elements. The trade-off between actuator range and feedback
speed led us to the implementation of a two-way actuator system by putting two
mirrors per cavity on piezo-electric transducers (PZTs):

1. To slowly actuate Lopt with a large range, a standard mirror made of a 12.7-mm
diameter/6-mm thickness substrate is glued on a high-voltage PZT stack. This
arrangement is used for mirror M4 of the Nd:YVO4 laser cavity (Figure 2.7) and
M′

3 of the doubling cavity (Figure 3.3). It allows one to move the mirror by around
2µm for the full dynamic range of 0...150 V provided by a commercial high-
voltage amplifier (Falco Systems WMA-280 ). The lowest resonance frequency of
the feedback circuit is found at ≃ 400Hz, which is attributable to the slow PZT
discussed here. We thus operate it in the range from 0 Hz to ν3 dB,slow = 72 Hz,
where ν3 dB,slow is the cut-off frequency of a simple low-pass filter.

2. For actuating Lopt more quickly, a slim mirror of 12.7-mm diameter/3-mm thick-
ness is glued on a PZT stack. We use M3 for the laser and M′

2 for the dou-
bling cavity. It can be controlled using a standard operational amplifier of -
15...+15 V dynamic range, yielding a mirror displacement of ≃ 50nm. The op-
erational frequency range was chosen, using appropriate filters, between ≃ 0 Hz
and ν3 dB,fast = 34 kHz. In the low frequency range up to the slow PZT cutoff,
the gain of the fast PZT is negligible compared to the slow PZT gain.

The electronic circuitry discerning the different frequency ranges and distributing it to
the respective outputs is included in the lock circuitry boards.

4.1.2 Doubling cavity lock

To frequency-lock the doubling cavity to the laser frequency, an error signal needs to
be generated. For doubling cavities, two methods are common: the Hänsch-Couillaud
[151] method or phase/frequency modulation techniques. We use the latter, avoiding
zero-offset drifts due to the involved polarizing components.

An electro-optical modulator (EOM1 in Fig. 4.1) phase-modulates the infrared pump
light at a modulation frequency of ν1 = 1 MHz. The phase modulation is also present in
the second-harmonic light∗. Using a fast photodiode, the modulated signal is detected
from second harmonic light leaking out of the doubling cavity. It is demodulated using
a homemade synchronous detection circuit. This allows one to produce an error signal
with a 3 dB-bandwidth of 100 kHz, which is fed into the controller circuit.

The homemade controller circuit consists of a proportional-integral (PI) circuit and
a separation circuit distinguishing the frequency ranges for the two actuator PZTs.
The implementation of the re-locking scheme of Reference [152] renders the doubling
cavity lock significantly more stable to external disturbances. The cavity transmission

∗The sidebands are well within the lithium D-lines’ natural linewidth ΓLi ≃ 2π× 6MHz. They are
also very small in amplitude and do not cause any problem even for more demanding applications like
absorption imaging.
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Figure 4.2: (a) The lithium saturated absorption spectroscopy cell. It consists of a
50 cm long CF-40 tube closed by two optical quality windows (W). The third, sideways
connector of the tube is shut by a valve (V), which is used for evacuation and setting of
the correct argon buffer gas pressure to about 100 mTorr. A Thermocoax heating wire
is wound directly around the central part of tube and covered by thermally insulating
tin foil (I). For cooling the end parts of the vacuum tube, a copper tube was wrapped
around these sections and brazed to the stainless steel tube (C). (b) Photograph of
the interior of the spectroscopy cell. Migration of lithium is demonstrated by droplet
condensation on colder places of the tube wall.

signal provides a reliable reference for this method. When scanning the laser frequency
via the slow PZT (M4), the ramp signal (modified by an adjustable gain) is fed forward
to the lock signal, thus minimizing lock deviations and stabilizing output power.

4.1.3 Saturated absorption spectroscopy and laser lock

A small fraction of the frequency-doubled light is sent through a 200-MHz acousto-optic
modulator (AOM) double-pass setup to frequency-shift the light used for spectroscopy
by 2νoff . It is employed to perform saturated-absorption frequency modulation spec-
troscopy [153] in an atomic lithium vapor cell. The required vapor pressure is obtained
by heating a metallic lithium sample of natural isotope composition (8% 6Li, 92% 7Li)
up to 330◦C (up to 360◦C in the case of the 6Li D1 line) under vacuum. Our group’s
standard spectroscopy cell design consists of a 50-cm-long CF-40 tube with broadband
AR-coated windows, shown in Figure 4.2.

The final sections of the tube are water-cooled to prevent the CF-40 flanges and
windows from becoming too hot. In practice, it turned out that the water cooling is
not necessary owing to the limited heat conductivity of the stainless steel tube. Nickel
gaskets are employed because of their chemical inertness to lithium vapor. A small
amount of argon buffer gas is used to force collisions of lithium atoms with the cold side
walls and stick there before arriving at the window surfaces. The argon pressure is kept
low enough to not cause significant collisional broadening of the saturated spectroscopy
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lines†. This is established by slowly pumping out the argon of the pre-baked vacuum
tube while monitoring the spectroscopy lines. When the saturated absorption lines stop
narrowing, the valve is closed. A metallic mesh put inside the tube covers the tube
walls to recycle condensed lithium from the colder parts, exploiting the temperature-
dependent surface tension. Lithium is thus efficiently kept in the center of the tube,
preventing it from being lost and chemically attacking the windows and gaskets. The
tube was kept hot and in operation for almost two years, and we never observed any
coating of the windows or worsening of the saturated absorption spectroscopy signal.

The spectroscopy beam 1/e2-radius is ≃ 1 mm, the pump power is of the order
of 10 mW, of which typically 50% is transmitted through the lithium cell on atomic
resonance. The beam then passes through EOM2, which serves to phase-modulate the
remaining light at ν2 = 20 MHz. A quarter-wave plate and a mirror retro-reflect the
beam with a polarization rotated by 90◦, thus creating the probe beam of ∼ 200 µW
remaining power after passing back and forth through an ND filter. Around 100 µW of
probe light are detected on a fast photodiode (Newport 1801 ) After passing through
the spectroscopy cell again. Lock-in detection using a commercial amplifier (Toptica
PD110 ) allows us to generate a dispersive error signal. A typical example of a ≃
600 MHz-scan over a part of the lithium lines is shown in Figure 4.3. The hyperfine
structure of both lithium isotopes is clearly resolved and error signals of SNR ≥ 100
in a 1-MHz bandwidth are detected.

The lock saturated spectroscopy transmission signal can serve as the auto re-lock
reference, see [152]. This requires a well pronounced peak or dip structure as satisfied
for some (but not all) of the spectroscopy lines.

To lock the laser frequency with respect to one of the resonances, a two-way PI
circuit similar to the one used for locking of the doubling cavity is employed. The
AOM frequency and thus the lock offset frequency can be changed by a few tens of
megahertz while keeping the laser locked.

4.1.4 Alternative locking schemes

The lock system provides sufficient short- and long-term stability, as will be demon-
strated in the following section. To further improve stability, the Nd:YVO4 laser could
be locked to a reference cavity, as is normally the case for dye laser sources. An-
other option would be to generate a small amount of second harmonic light from the
Nd:YVO4 laser output using a single-pass method, as demonstrated in Section 3.3. It
is easy to separate the second harmonic output (for spectroscopy and lock) from the
remaining fundamental light (for efficient doubling in the external cavity), and use the
visible light for spectroscopically generating an error signal for the laser lock. Owing to
the resulting decoupling of both feedback loops, the system should behave more stably,
and if one of the two loops falls out of lock, the second one is not necessarily affected.

†The typical value for collisional line broadening is 10MHz.Torr−1. We therefore infer an argon
pressure value of about 100mTorr.



82 Chapter 4. Frequency stabilization, characterization and implementation

A

6Li 7Li228 MHz

F = 1

F = 2

F = 2

F =
1

2

F =
3

2

F =
1

2

3

2

5

2
, ,

A

B, DCAB

B DC

CD

ν

F = 1

Figure 4.3: (a) Lock-in saturated absorption spectroscopy of lithium vapor, and
corresponding transitions (b). The transitions are 2 2S1/2 → 2 2P3/2 for 6Li (D2) and
2 2S1/2 → 2 2P1/2 for 7Li (D1). Not all levels are shown, and the hyperfine structure of
the 6Li excited state remains unresolved. Double indices mark crossover lines, where
XY marks the crossover between transitions X and Y.

4.2 Characterization

We present relative intensity noise measurements falling to the shot noise limit above
300 kHz. Offset-locking of the output frequency with respect to the Li D-lines is
demonstrated, offering long-time stable operation. The laser linewidth is measured
to 0.2+0.4

−0.2 MHz by imaging a cloud of ultra-cold 7Li atoms in the Paschen-Back regime.
Furthermore, the excellent spatial mode quality is confirmed by coupling >90% of the
ouput power into a single-mode optical fiber.

4.2.1 Relative intensity noise

The relative intensity noise spectral density SRIN(ν) of the second harmonic output was
measured by shining a beam of ≃ 120 µW on a low-noise photodiode (Newport 1801,
125-MHz bandwidth) and recording the signal using a digital oscilloscope (Pico Tech-
nology PicoScope 4424, 80-MHz bandwidth) in AC mode, yielding the relative power
fluctuations ε(t) after normalization, where I(t)/〈I〉T = 1+ ε(t) with I(t) the intensity
and 〈I〉T its temporal average. The definition of SRIN(ν) is

SRIN(ν) = lim
tm→∞

1

tm

〈∣∣∣∣
∫ tm

0

ε(t)ei2πνt dt

∣∣∣∣
2
〉

(4.1)

with the measurement time tm and 〈...〉 denoting temporal averaging. It was real-
ized employing a time-discrete Fourier transformation method and averaging over 100
spectra.

The result is shown in Fig. 4.4. The broad peak at ≃ 100 kHz can be attributed to
the laser relaxation oscillations. The structure in the 10 kHz region can be attributed
to the locking system’s fast PZTs. Above 300 kHz SRIN drops to the photon shot-noise
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level, as indicated by the spectrum of a noncoherent source producing an equivalent
photocurrent (spectrum B in Figure 4.4). The narrow peaks at 1 MHz and harmonics
stem from the phase modulation of the pump light, see Section 4.1.2. The square root
of the integral of SRIN(ν) from 1 kHz to 5 MHz (1 kHz to 0.9 MHz) yields a RMS relative
intensity noise of 1.1×10−3 (0.8×10−3), where we have excluded the contribution from
the modulation in the second interval.
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Figure 4.4: The second harmonic relative intensity noise spectrum (A), noise for
an equivalent photocurrent from a non-coherent source (B) and noise of the detection
circuit with no photocurrent (C).

4.2.2 Linewidth

The laser setup was used as an absorption imaging light source for our lithium quantum
gas experiment, as will be described in Part II. A sample of around 1.2×105 7Li atoms
above Bose-Einstein condensation threshold was prepared in an elongated optical dipole
trap. In the presence of a 700-G magnetic offset field, the internal electronic states
of the atoms can be described in the Paschen-Back regime, where spin and angular
momentum degrees of freedom are decoupled. The corresponding lifting of degeneracy
of the F = 2 → F ′ = 3 transition frequencies results in a cycling transition. By
applying a laser frequency detuning δν with respect to atomic resonance using the
offset lock as described in Section 4.1.3, one detects a different atom number N(δν)
according to

N(δ)

N(0)
=

[
1 +

(
2δν

Γ

)2
]−1

, (4.2)

while assuming constant atom numbers for each realization of the experiment. Γ is the
measured linewidth of the transition and N(0) the atom number detected at resonance.

The results are presented in Figure 4.5. A least-squares fit according to Equa-
tion (4.2) results in a linewidth of Γfit = 2π × 6.1(4) MHz, a value compatible with
the natural linewidth of 2π × 5.872(2) MHz of [154]. The deviation of the fit for large
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Figure 4.5: In-situ absorption imaging of ultra-cold atoms in a weak optical dipole
trap. The laser was detuned by δν from the atomic resonance using the offset lock
described in Section 4.1.3, varying the detected atom number (circles). A Lorentzian of
width ΓFit = 2π × 6.1(4)MHz is fitted to the data (solid line).

detunings can be explained by unreliable atom counting at low optical densities. We
infer that the laser linewidth is much smaller than the natural linewidth of the atomic
transition. Assuming a Lorentzian lineshape for the laser, the linewidth can be given
as 200+400

−200 kHz.

4.2.3 Spatial mode quality

The spatial mode of the second harmonic output has, as expected, an excellent TEM00

character. This is confirmed by coupling > 90% of the red output power through a
single-mode optical fiber.

4.2.4 Long-term stability and every-day operation

For making a laser system attractive for ultra-cold atom experiments, a strict require-
ment is the long-term stability of the source in terms of output power and frequency.
Figure 4.6 shows a typical long-term stability plot of the laser system under labora-
tory conditions. The system remained locked during the entire measurement time of
≃ 8.5 hours. The second harmonic output power drops by 7% and shows small mod-
ulations of a period of ≃ 15 minutes. This is attributed to slight angular tilts when
the cavity’s slow PZTs (M4/M′

3) are driven. This effect, changing the alignment, is
confirmed by monitoring the laser output power, which drops by 5% in the same time
interval and displays the same modulations. The regulation signals of the slow cavity
piezos are also displayed in Figure 4.6 and show exactly the same ≃ 15-minute peri-
odicity as the power signals. We thus infer that these modulations stem from the air
conditioner used in our lab. Eventually, after ≃8.5 hours, the PZT used for locking the
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Nd:YVO4 laser cavity reached the end of its dynamic range and the laser system fell
out of lock. This effect can be avoided by using a PZT with a larger dynamic range.
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Figure 4.6: Long-term stability measurement of the laser system. It stays locked for
the entire measurement time of ≃8.5 hours, displaying small variations of the Nd:YVO4

laser output power Pω and the doubling cavity output power P2ω on a ≃ 15-minute
time scale. This is due to the room temperature regulation by an air conditioner, as
demonstrated by the corresponding slow PZT regulation signals Vω and V2ω for the
laser cavity and the doubling cavity, respectively.

After ≈ 1h of warm-up, the system typically remains locked during an entire day.
The laser system is currently situated in a separate room, well-shielded from perturba-
tions. In every-day use, the system does not need any power optimization, as apparent
from Figure 4.7. It was used for several months as the source for the lithium experiment
Zeeman slower. Once optimized, the setup can remain untouched for about a month,
while losing ≃10 mW of second harmonic output power on average per day. We found
that the most important effect for regaining the old laser output power is the cleaning
of the pump-sided Nd:YVO4 crystal face. We observed this effect for crystals from
Castech Inc. with the AR coatings either applied by the manufacturer or by Layertec
GmbH.

4.3 Implementation in the current lithium experiment

The light source was used for laser cooling and trapping in the lithium quantum gas
experiment at LKB, presented in Chapter 7. Here, we will motivate the use of a reso-
nant electro-optic modulator (EOM) to create sidebands for repumping light. We then
present the design of the optical system allowing for the generation of additional fre-
quencies needed for operation of a Zeeman slower and a magneto-optical trap (MOT).
Finally, experimental results on the realization of a MOT and a Zeeman slower are
given.
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Figure 4.7: Every-day operation of the laser system during more than two months.
The laser system was switched on and locked and remained untouched apart from that.
On the 12th of September, the Nd:YVO4 crystal was cleaned and the laser cavity was
realigned.

4.3.1 EOM sideband creation

The D-line transitions in alkali atoms are not perfect cycling transitions. The excited
state (P-state) energy splittings are too small to completely neglect excitation of states
of non-maximal total angular momentum by the MOT laser, termed principal laser.
Hence, in a MOT, an atom will eventually be pumped in the ground state of non-
maximal total angular momentum and be lost from the cooling process. One thus
needs an additional laser frequency in the MOT beams to pump the atoms back to the
ground state involved in the "cycling transition". This laser is called repumper laser.

In the case of lithium, the corresponding excited state splittings are of the order of
the natural linewidth ΓLi ≃ 2π×6 MHz, see Figure 7.1. The decay probabilities to each
of the two ground states are thus of the same order of magnitude, requiring significant
repumper power PR of about 30% of the principal power PP for a 7Li MOT. We define
the power ratio

αP =
PR

PP

. (4.3)

In the first common method, the generation of the repumper beam is realized by split-
ting the principal laser beam, sending a portion of it through an acousto-optic modu-
lator (AOM) setup and recombining the two beams. Since it is favorable to couple the
light to single-mode polarization-maintaining optical fibers, one looses a large amount
of laser power when recombining the two beams using the mandatory polarizer‡. The
minimum loss depends on the power ratio αP , see for instance Reference [155]. The
efficiency

ηP =
Pout(αP )

Pin

=
1 + α2

P

(1 + αP )2
(4.4)

‡When seeding a tapered amplifier, however, this disadvantage is avoided, since only ≈ 20mW of
seed power per beam are needed.
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between the sum of the powers in both frequencies Pout = PP + PR and the available
single-frequency power Pin. The second equality holds in the case of the AOM splitting
and recombination method. The efficiency is only significantly higher than 50% for
values of αP < 0.2, see Figure 4.8(b). A more efficient repumper creation scheme is
therefore desirable.

A second approach for generating additional frequencies is sinusoidal phase-modula-
tion using electro-optical modulators (EOM), symmetrically creating sidebands of the
input (carrier) frequency, split by the modulation frequency. The obvious advantage
of this method is that the polarization and spatial profile of the laser beam remain
unchanged. In other words, the beam is only split spectrally, not spatially. When
coupling to fibers, one thus avoids losses intrinsic to the AOM method. The drawback
of this method is the power delivered to the non-used sidebands, yielding an efficiency
ηP lower than unity. Here, we will compare both methods.

Phase-modulation of laser beams is a standard method in optics laboratories. We
start by the Jacobi-Anger expansion [153]

ei(ωt+M sin(Ωt)) = eiωt

∞∑

k=−∞
Jk(M)eikΩt , (4.5)

for the time dependence of a phase-modulated wave, where ω is the input laser (carrier)
frequency, M is the phase modulation amplitude and Ω its frequency, and Jk the k-th
order Bessel function. The power is symmetrically delivered from the carrier frequency
ω to the ±k-th order sideband of frequency (ω ± kΩ), since Jk(M) = (−1)kJ−k(M).
We are only interested in power distribution efficiencies, we read directly from Equa-
tion (4.5) that the normalized power in the k-th order sideband is

pk(M) =
Pk(M)

Pin

= J2
k (M) , (4.6)

with Pk the power in the k-th order sideband. In Figure 4.8(a) the corresponding
relative powers are plotted for different modulation amplitudes. As can be seen from
the green curve the power transferred to second- and higher-order sidebands remains
negligible for a modulation index up to 1, so almost all of the power lost remains in
the unused first-order sideband.

The results of our calculation are presented in Figure 4.8(b). Even by neglect-
ing additional AOM-related loss due to spatial beam profile degradation, the phase-
modulation method is superior to the AOM method over the whole range of power
aspect ratios αP necessary to consider. In the EOM method, the efficiency decreases
much more slowly than the in the AOM case, where the curve drops rapidly to the
asymptotic value of 50%. The distance between the two curves is greater than 10% for
all practical purposes. While for αP = 0.2, η yields around 85%, it drops to 60% for
αP = 1.

A practical issue is the need of a high modulation amplitude M of the order of one
(Figure 4.8(b)). It reads

M = mU , (4.7)

where U is the EOM drive voltage and m the modulation depth, a device-dependent
parameter. For the typical 50 Ω-coupling and the maximum specified radio-frequency
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Figure 4.8: Calculation of the efficiency of the EOM sideband generation method.
(a) Normalized powers pk(M) = Pk(M)/Pin = J2

k (M) in the k-th order sideband
as a function of the modulation amplitude M . (b) M (blue), the efficiencies of the
EOM method ηP (purple), and the efficiency of the AOM method [cf. Reference [155]
and Equation (4.4)] (yellow) as a function of the power ratio αP between repumper and
principal power. The EOM method offers significantly higher efficiencies over the whole
useful range.

(RF) power of around PRF = 10 W (and U =
√

50 ΩPRF) this yields Mmax = 2 µrad for
the common m = 0.1µrad/V of devices in the 0.25-2 GHz range [156]. We thus needs
to resort to resonant devices.

A third alternative approach for repumper generation are fiber-based EOM designs,
offering higher modulation amplitude for a given RF power. Unfortunately these de-
vices are limited to the 1 mW-optical power range. A further disadvantage of these
systems is the fiber insertion loss due to the mode mismatch between the optical fiber
and the lithium niobate waveguide used for phase modulation [157].

A promising technique is the sawtooth-modulation technique presented in Refer-
ences [158, 159], which offers the possibility to deliver almost all of the incident power
to only one sideband. It involves a fiber-based device and thus the associated power re-
strictions. However, this is an interesting way to generate repumper light if applicable
to standard (non-fiber-based) modulators. This would require wideband-modulation
depth and common phase shift at Ω and harmonics, otherwise the sawtooth-shape of
the RF signal and thus the modulation efficiency would suffer.

4.3.2 Additional frequencies and light delivery

After the efficiency considerations in the previous section, we decided to create the
repumper beam using a resonant electro-optic modulator (EOM, Qubig EO-Li7-3L).
This allows us to work with relatively low radio-frequency (RF) power while keeping
a reasonable modulation index M and thus high enough repumper power PR. The
setup is presented in Figure 4.9. For reasons of flexibility, we decided for a completely
fiberized setup fitting on a small (60 × 30 cm2) breadboard.

The single-frequency light power available at the output of the optical fiber Fin

is around 500 mW. At this power level we did not observe any thermal problems in
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νMOTUVCO UVA

Figure 4.9: Creation of the laser frequencies needed for driving Zeeman slower and
MOT from a single frequency laser source entering via the fiber Fin. White boxes
mark RF components, orange boxes are optical modulators and grey boxes are opti-
cal fibers. Sidebands of variable frequency are created using a resonant electro-optic
modulator (EOM). The frequency difference of the sidebands and the relative power
ratio is set using a voltage controlled oscillator (VCO) and a variable attenuator (VA)
before amplifying (Amp) the RF signal. The modulated light is then frequency shifted
using acousto-optic modulators (AOMs, sp and dp stands for single- and double-pass,
respectively) before being coupled to the respective fibers FZeeman and FMOT guiding
the light to the experimental room.

the lithium niobate (LN) crystal of the EOM, so we did not need to use a high-
power potassium titanyl phosphate (KTP) version, which has the drawback of a lower
modulation index for a given RF level.

The resonance frequency of the EOM is tunable by around ±10% of its center
frequency of 800 MHz using a setscrew. The frequency and the amplitude of the mod-
ulated sidebands can be independently set using the the voltage-controlled oscilla-
tor (VCO, Mini-Circuits ZOS-1025+) and the variable attenuator (VA, Mini-Circuits
ZX73-2500-S+), controlled by a respective voltage signal. The RF output power of the
amplifier (Amp, Mini-Circuits ZHL-2-8 ) can thus be set between 14 dBm and 29 dBm,
corresponding to a relative repumper fraction of αP = 0.5%...35%.

As presented in Section 4.1, the laser light from Fin is frequency-offset-locked with
respect to the 7Li D2 transitions using a double-pass AOM (+2×120 MHz). The mod-
ulated light is then split up and sent to the acousto-optic modulator (AOM) stages for
frequency shifting. We use a double-pass configuration for the MOT light (dpAOMMOT,
+2×80 MHz) because of its superior performance in terms of extinction when us-
ing the AOM as a switch. For the Zeeman-slower light, we use a single-pass setup
(spAOMZeeman, −1×200 MHz) because of its higher power efficiency.

The setup presented here creates all the frequencies needed for operation of our
Zeeman slower and MOT. It is remarkably simple, stable and compact and allows total
control over the necessary parameters (detunings and power balance). Both the de-
tuning of the Zeeman slower repumper beam and its realtive power with respect to the
Zeeman principle beam are fixed by the RF drive of the EOM, which is optimized for
operation of the MOT. This drawback is minor because of the high magnetic fields in-
side the Zeeman slower, except for the spin-flip region. Most of the time, the atoms are
well within the Paschen-Back regime. The photonic transitions are thus well separated
and almost perfect cycling transitions. However, in the spin-flip region the amount and
frequency of repumper light in the Zeeman beam is sufficient to not lose the atoms to
the repumper state.
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Figure 4.10: Zeeman slower loading of the 7Li MOT in our setup, using the novel
laser source for the slower. The solid line is the measured fluorescence power signal of
the MOT. The dashed line is a fit to an exponential law, resulting in a loading time of
4,16(3) s. From the loading time and the final number of atoms of ≈ 1010, we deduce
an atomic flux of 2× 109 s−1. We typically charge the MOT during 10 s before starting
the experimental sequence.

4.3.3 Operation of Zeeman slower and MOT

The Zeeman slower of the ENS lithium experiment consists of an oven containing a
sample of metallic lithium with natural abundance of the isotopes. We heat it to
400◦C to provide sufficient atomic flux. An atomic beam is formed by a collimation
tube of 6-mm diameter. The tube walls are covered by a stainless-steel mesh, which
is wrapped inside the tube. The purpose of this mesh is identical to the one used in
the spectroscopy cell (cf. Section 4.1.3): In presence of a temperature gradient, the
resulting difference in surface tension of liquid lithium droplets pushes these back to
the high-temperature region. Condensed lithium is thus recycled, and blocking of the
tube is efficiently circumvented. The Zeeman slower is of the spin-flip type. This
concept efficiently reduces size and electric power consumption of the setup, and keeps
the Zeeman-induced magnetic field and gradient close to zero at the position of the
MOT.

We found it more convenient to restrict ourselves to the use of our novel laser
source for the Zeeman slower only, since this did not require any change in the control
sequence and allowed us to gain knowledge and confidence into its usability on a day-
to-day basis. In a first approach, we use the MOT as a tool for characterization of the
flux of the Zeeman slower. The total power of the beam entering the Zeeman slower
was ≈ 150mW, consisting of different frequency contributions depending on the EOM
sideband generation method presented in the previous section. We experimentally
found the optimum power balance between repumper and principal contribution to be
αP ≈1/3 , see Equation (4.3). We optimize the Zeeman-slower flux by observing the
slope of the MOT fluorescence while periodically switching on and off the MOT. In the
limit of low densities, the MOT fluorescence is proportional to the atom number. A
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Figure 4.11: In-situ image (MOT laser on) of a 7Li magneto-optical trap. The number
of atoms is about 1010.

typical loading curve is presented in Figure 4.10. The data points shown are moving-
averaged points. We fit an exponential law to the loading curve,

N(t)

N0

= 1 − exp

(
− t

tload

)
, (4.8)

where N0 is the final atom number. The fit yields a loading time of 4,16(3) s. Our final
atom number of ≈ 1010 can be estimated from absorption imaging of the MOT. We
can therefore deduce a Zeeman slower flux of ṄZeeman = N0/tload ≈ 2 × 109 s−1.

We typically charge the MOT during 10 s to assure having a maximum number
of atoms available before starting the experimental cycle. With the amount of laser
power entering the Zeeman slower, we work in a saturated regime. We therefore cannot
observe any influence of small changes in laser power on the atomic flux.

In an earlier approach, we used the light from the repartitioning breadboard pre-
sented in the previous section to run a 7Li MOT. The light coupled out of the MOT
fiber (≈150 mW sum of all frequency contributions) was shone in the MOT section of
our experiment using a flip mirror mount. Thus, alignment was simplified and compar-
ison and exchange with the old diode-based laser system is feasible by just flipping one
mirror. The result is presented in Figure 4.11. We took an in-situ absorption image
(MOT laser on) of the trapped cloud. Since the imaging transition is saturated by the
MOT beams, atom counting from the imaged optical density is not reliable. However,
given the density limitation occuring in MOTs, and the observed size of the cloud, we
can estimate the number of trapped as being of the order of 1010 atoms.
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4.4 Summary

In this chapter, we have presented the electro-optical system built to frequency-lock
the novel all-solid-state laser system discussed in Chapters 2 and 3. At first, we have
discussed the theoretical considerations for the design of the frequency-stabilizing sys-
tem. We then have presented our choice of solutions, including a lithium spectroscopy
setup to lock the laser output frequency with respect to the D-lines.

Furthermore, we have characterized the output radiation of the frequency-locked
laser system carefully. We have demonstrated reliable high-power operation of the sys-
tem at a fixed but tunable output frequency, and we have characterized the laser system
in detail. We have measured the relative intensity noise of the source, dropping to the
shot-noise level above 300 kHz, and estimated the laser linewidth to be 200+400

−200 kHz.
Long-term measurements have demonstrated the stability of the frequency-stabilized
source for a time-span of more than eight hours. We have presented its every-day
performance and marginal maintenance for more than two months.

Finally, we have discussed different methods of generating beams of different fre-
quencies necessary to run a Zeeman slower and a MOT of lithium atoms in terms of
their intrinsic loss. We have realized a simple power-efficient fiberized setup used to
generate all the beams. We have given results of the operational characteristics of these
subsystems used for cooling and trapping of lithium atoms.



Chapter 5

Conclusion to Part I

Summary

In the first part of this thesis we have presented the design and the characterization
of a novel all-solid-state frequency-doubled laser source, delivering record-level output
power of light suitable for magneto-optical cooling and trapping of lithium atoms.

We have first introduced the design and operation of the fundamental laser source,
a diode-pumped Nd:YVO4 unidirectional ring laser emitting 1.3 W of radiation at
1342 nm. The laser has a transversal mode quality factor of M2 = 1 on both beam
axes. Its longitudinally-single-mode operation is imposed by forcing unidirectionality
and placing two etalons in the cavity. It can be tuned from 1341.7 nm to 1342.8 nm.

We have then demonstrated efficient frequency doubling of the infrared laser in an
external buildup cavity. We have shown the design and the operation of this second-
harmonic-generation stage, where we have employed ppKTP as the nonlinear medium.
Up to 840 mW of single-mode output power have been generated, and the maximum
measured fundamental-to-second-harmonic power efficiency was measured to be 86%.
We have also observed power limitations in the doubling process, and discussed how
to circumvent them.

Given the tuning range of the fundamental source, any of the lithium D-line tran-
sitions is conveniently adressable after frequency doubling. The laser system of the
laser cavity and the doubling cavity has been frequency-locked with respect to these
transitions. To do so, we have built a saturated-absorption spectroscopy setup and the
necessary electro-optical locking systems. The system is of a remarkable stability, and
typically stays locked for a whole working day.

We have afterwards introduced the characterization of the second-harmonic output.
By performing spectroscopy on ultracold samples of lithium atoms, the narrow-band
operation resulting from the single-mode operation of the system could be proven,
and we have measured a linewidth of 200+400

−200 kHz. We have determined the relative
intensity noise, which drops to the photon shot noise level above 300 kHz.

We have furthermore demonstrated operation of a magneto-optical trap for lithium
using the novel laser source. In its first phase of implementation in the lithium setup
at ENS, we have used the laser as a light source for the Zeeman slower. We have done
so for more then six months on a daily basis. Apart from occasional maintenance,
typically once per month, the only operations necessary are the switch-on and lock in
the morning, and the switch-off in the evening.
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We thus have demonstrated the suitability of the system as a laser source for ex-
periments involving cooling and trapping of lithium species, where it can serve as a
single high-power source delivering all the laser beams to run such an experiment. It
is a flexible source in the sense that it can be used in different applications, as we have
discussed in detail. Given that the system is entirely made of solid-state components,
it should age very slowly and stay highly powerful over many years.

Perspectives

In ultracold atom experiments, quantum degeneracy can only be reached if a suffi-
cient initial number of atoms are available. The signal-to-noise ratio is increased with
more atoms present in the degenerate sample. The initial number, on the other hand,
depends on the available output power of the sources employed for the cooling and trap-
ping beams. It is thus preferable to have the highest possible output power. Hence,
we will present ways to further improve the output power of the laser source discussed
here.

As it has been demonstrated in [1], Nd:YVO4 lasers can deliver longitudinal mul-
timode M2 ≈ 1 output with output powers in the 20-W range at 1342 nm. It is thus
possible to scale the output power by one order of magnitude. However, this would
require a re-design of the laser cavity, and single-longitudinal-mode operation cannot
be guaranteed at these power levels.

Further increase of the output power of the existing setup is feasible using a pump
source emitting at 888 nm [1, 97]. This efficiently reduces the amount of defect energy
per lasing cycle of the ions, where the non-optical transitions are phonic transitions.
Thus, the defect energy finally results in heating of the laser crystal. It has been shown
in this thesis that thermal lensing and the losses related to this effect need to be very
well mastered to achieve efficient operation of Nd:YVO4 lasers at 1342 nm. Currently,
there are efforts performed in our group to establish a similar powerful laser using 888-
nm pumping. Promising preliminary results surpassing the Nd:YVO4 laser in terms of
longitudinal output power have been obtained already.

A multi-mode high-power laser similar to the one presented in [1] could also prove
very useful when using it as an injection-locked slave laser, see for instance [51, 160].
The infrared laser presented in this thesis could be used as the injection-lock source.
This approach is followed by our coworkers from Toulouse.

To overcome the limitations arising in the frequency doubling process, one could
change the geometric design of the doubling cavity in order to enlarge the fundamental
mode size in the nonlinear crystal. The lower intensity resulting from this approach
will suppress detrimental effects, and the lower single-pass efficiency can be overcome
by the possible increase in infrared laser power, and a revised impedance matching. As
we have discussed before, the intra-cavity round-trip passive loss is well below 1%, and
thus not limiting this kind of power scaling. We have also purchased nonlinear crystals
of a different material, namely ppSLT, which should, to the best of our knowledge,
tolerate higher powers, by providing a sufficient single-pass efficiency. Calculations
show that the crystals can be inserted in the existing doubling cavity without having
to adjust the cavity geometry or the pump-beam mode matching.

Finally, the source is presently used as the Zeeman slower laser, where it served
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bravely and filled the operators with confidence. In terms of output power, it has the
potential to replace all of the laser sources presently used for manipulating 7Li in the
lithium setup at ENS. It should thus be fully implemented as soon as the experimental
situation allows for it.
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Chapter 6

Introduction to Part II

The interacting Bose gas

During the quest to reach Bose-Einstein condensation of dilute atomic gases, the im-
portance of interactions between the constituent particles quickly became apparent.
Even though condensation itself is a purely statistical process, and as such occurs in
noninteracting systems, interactions play a decisive role in the behavior of ultracold
gases. Whereas a great deal of experimental situations can be well approximated by
weakly-interacting or even ideal gases, the situation changes dramatically with the on-
set of high phase-space densities and resonant interactions. It is thus of great interest
to understand and manipulate the interplay between ultracold atoms.

In general, interatomic potentials have complicated shapes, making the ab-initio
description of an ensemble of interacting particles a challenging task. In the dilute
ultracold regime however, interactions between particles can be characterized by s-wave
scattering of two particles [161], which is characterized by a single parameter, the s-
wave scattering length a. In this limit, the scattering cross-section for indistinguishable
bosons is

σ = 8π

∣∣∣∣
1

1
a

+ ik + 1
2
k2re + O(k4)

∣∣∣∣
2

, (6.1)

where k is the reduced wave number of the two-particle relative motion and re is the
effective range of the interaction, which is typically on the order of the van-der-Waals
length. Since k tends to zero at ultracold temperatures, the cross-section becomes 8πa2.
Because the behavior of systems of any kind of indistinguishable particles is identical
whenever they share the same value of a, this regime is called the universal regime. In
systems offering magnetic Feshbach resonances [17, 162–165], a can be tuned arbitrarily,
allowing one to precisely control interactions over many decades [17, 166, 167]. From
Equation (6.1) it follows that on resonance, where a diverges, the scattering cross-
section reads

σ =
8π

k2
. (6.2)

Since this is the maximum value permitted by quantum mechanics in the s-wave chan-
nel, the limit ka → ∞ is called the unitary limit.

The interaction strength in ultracold many-body systems is typically characterized
by the dilution parameter n|a|3, where n is the particle density. In the range where
n|a3| ≪ 1, the behavior of gases can be described by a mean-field theory [168]. Using
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Fano-Feshbach resonances, properties of gases with relatively large n|a|3 were accessed
experimentally right after the observation of these resonances in atomic systems [166].
An example of the modified behavior of quantum gases in presence of interactions is
the interaction-induced change of the critical temperature for Bose-Einstein conden-
sation, predicted theoretically (see [169]and references therein) and measured in [170–
173]. In [174], corrections to the (weakly-interacting) mean-field theory for the bosonic
zero-temperature equation of state become apparent, as predicted in 1957 [175].

The unitary Bose gas

It is thus a logical step to try to pursue increasing the interactions in ultracold gases
towards the unitary limit. In fermionic systems, the unitary gas is a well-established
(meta-)stable system in both experimental and theoretical contexts. The predicted
collisional stability [176] when crossing a Feshbach resonance was found in early exper-
iments on 6Li [177–179] and 40K [180].

Intriguing properties were predicted for the Bose gas when tuning the interactions
towards the unitarity limit. In the homogeneous case at zero temperature, a and n−1/3

deliver the only length scales for the problem. However, since a diverges, it drops from
the description of the system. Dimensional considerations lead to the only remaining
energy scale: the Fermi energy EF = (~2/2m)(3π2n)2/3 [181] for a noninteracting Fermi
gas. It is quite remarkable that a maximally interacting bosonic system should behave
like a non-interacting fermionic system, the only difference being the type of quantum
statistics. The zero-temperature chemical potential is thus expressed as µ(T = 0) =
ξEF with ξ being a universal constant. Several theoretical predictions exist for the
value of ξ [181–183], and a lower experimental bound was recently proposed in our
group [174]. However, this measurement could not prove the existence of the finite-
temperature unitary Bose gas at quasi-equilibrium.

Three-body loss and quasi-stability

It became clear from early experiments on Bose-Einstein condensates on the a < 0 side,
that a mechanical instability due to the effective attraction occurs [184–187], leading
to a collapse, commonly termed the Bose-nova. Reference [183] theoretically deduced
such instabilities for both sides of a Feshbach resonance.

Even more severely, the gaseous state is not a ground state, but a metastable state
of resonantly interacting bosons. This is due to the presence of molecule formation,
occuring in collisions of N > 2 particles. Thus, we have to see on which timescales
we can study the gas under conditions of quasi-equilibrium. A criterion of quasi-
equilibrium is that the elastic two-body collision rate γ2 is much greater than the largest
contribution to the molecule formation rate, the inelastic three-body recombination
event rate γ3,

γ2

γ3

≫ 1 . (6.3)

As predicted theoretically, γ3 has an overall a4 dependence [188, 189]. Systematic
measurements were performed in [166, 190–192], quantitatively justifying the predic-
tions. However, when a diverges, a three-body recombination unitary limit exists,
posing a quantum-mechanical limitation on the three-body recombination rate. As
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Figure 6.1: Theoretical prediction of the three-body recombination rate constant
spectra K3(a) = γ3(a)/n2, figure from [201], where the temperature of the sample is
treated as a parameter. One notices the increase (decrease) of K3 whenever a new Efi-
movian state appears at threshold for a < 0 (a > 0). However, for finite temperatures,
the curves level off to a constant rate when approaching the Feshbach resonance.

will be shown in this work, this results in a 1/T 2 law for γ3, predicted theoretically
in [193–195]. We will demonstrate that the predicted coefficient agrees well with our
observations. Thus, for sufficiently high temperatures, a quasi-equilibrium state can
always be reached. The resulting phase diagram of the quasi-stable, finite-temperature
strongly-interacting Bose gas was recently addressed theoretically in [196].

The Efimov effect

As it was predicted theoretically by Vitaly Efimov in 1970, there exist infinitely many
universal three-body bound states for the resonant three-boson system [197–199]. The
subject remained under theoretical debate for decades. No experimental proof of the
existence of these states could be found, mostly due to the non-tunable interaction
parameters in nuclear systems.

The theoretical predictions for the observability of Efimovian features in the three-
body loss spectra of tunable ultracold atoms experiments showed the limitations arising
at finite temperatures [200, 201]. These, on one hand, include contributions of higher
channels of nonzero angular momenta, possibly masking the loss minima on the a > 0
side. On the other hand, a limit on the maximum value of γ3 arises,

γ3(T, n) =
72
√

3π2
~

5n2

m3k2
BT 2

, (6.4)

whose measurement is one of the major objectives of this thesis.
Apart from being detrimental, three-body loss in ultracold gases became a field of

important scientific interest. The milestone 2006 paper of the Innsbruck group [202]
clearly revealed Efimov physics for the first time in an experimental context. The
appearance of an Efimov state at threshold enhanced the three-body loss rate. Im-
proved measurements of three-body loss spectra were accomplished using 39K [203] and
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7Li [204, 205]. The full universality of Efimov’s theory was revealed in these measure-
ments. Efimov physics is also present in fermionic spin mixtures [206–208]. A review
on the subject can be found in [209, 210].

The present work

In Chapter 7, we will present the experimental apparatus used to perform experiments
on the unitary Bose gas. We will give a brief outline of how we produce and probe
ultracold gaseous samples of lithium atoms. As discussed before, the unitary Bose gas
is difficult to prepare because of the presence of strong three-body recombination. We
establish a new method of rapidly transferring atomic clouds to the strongly-interacting
state with minimized three-body loss. This is realized using RF transfer from a weakly-
interacting state. We will detail the methods used to realize the finite-temperature
unitary Bose gas. In Chapter 8 we will present the experimental results. Before ad-
dressing the actual measurement of the equation of state, we have to quantitatively
understand losses in the system. Whereas previous studies of three-body recombina-
tion were restricted to finite values of a, we present in this manuscript a measurement
of the temperature dependence of three-body loss at unitarity. We use a method de-
veloped earlier in our group to present a first measurement of the equation of state of
the unitary Bose gas. We will conclude in Chapter 9, and discuss further perspectives.



Chapter 7

Experimental setup

In this chapter, we will discuss the experimental apparatus used to create ultracold,
strongly-interacting samples of bosonic 7Li. The lithium apparatus at Laboratoire
Kastler Brossel has been extensively presented before in the theses written in our
group [211–218]. Thus, we will only give a brief outline of how we produce and probe
ultracold gaseous samples of lithium atoms. We will emphasize the changes made to
the setup in order to create samples of finite-temperature, strongly-interacting Bose
gases. Because the measurement of the three-body loss coefficients presented in the
next chapter depends sensitively on the values of the trap frequencies, we will detail
on their precise calibration.

Originally, the setup was designed to trap both the bosonic (7Li) as well as the
fermionic (6Li) isotope of lithium. In the RF evaporation stage, the bosons can be used
to sympathetically cool the fermions. Due to the absence of collisions between identical
fermions at ultracold temperatures, this is an elegant way of producing degenerate
Fermi gases. It also offers great versatility in creating Bose-Fermi mixtures or to use
one of the species as a temperature probe for the other [217]. Since the work presented
here relies only on the bosons, we will exclude the fermions from further presentation.

The final hybrid trap, in which the measurements are performed, is formed by
two independent trapping potentials. A magnetic curvature field to provide relatively
weak confinement in the axial direction, and a focused dipole trap laser yields strong
confinement in the radial direction. Both axial and radial trap frequencies can be tuned
over a large range. The magnetic offset field in the trap center can be tuned freely to
address magnetic Feshbach resonances, allowing one to change the interactions between
ultracold atoms at will.

The chapter is organized as follows: In Section 7.1 we will give the important phys-
ical properties of 7Li. In Section 7.2 we will present the experimental steps performed
to load the final trap, which will be detailed in Section 7.3. In Section 7.5.2, we will
present the radio-frequency setup used to transfer atoms between magnetic substates of
the ground-state manifold, and give the magnetic field calibrations obtained. We will
present the imaging scheme in Section 7.4 and summarize the chapter in Section 7.6.
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7.1 The 7Li atom

The lithium atom exists in the form of two stable isotopes, the bosonic isotope 7Li
and the fermionic isotope 6Li. The natural abundances are ≃ 92% for 7Li and ≃ 8%
6Li [219]. The low saturated vapor pressure [219] makes it necessary to operate the
sources at elevated temperatures, up to 500◦C in our case, in order to obtain sufficient
vapor pressure. This strongly favors the use of Zeeman-slowing schemes from thermal
beams out of an oven in order to load a MOT∗.

7Li has a mass of 7 a.u., which is about 1.162 × 10−26 kg. It is thus the lightest
bosonic isotope of the alkali group. The ground state has the electron configuration
1s22s. The D-line transitions, corresponding to the lowest excited state, 2s → 2p, have
wavelengths of around 671nm.

7.1.1 Energy level scheme
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Figure 7.1: The 7Li level scheme, figure from [215]. The scheme of 6Li is shown for
completeness. The 22S1/2 → 22P1/2 or D1 transition of 7Li is almost degenerate in
frequency with respect to the 22S1/2 → 22P3/2 or D2 transition of 6Li.

The energy level scheme of both stable isotopes of lithium is given in Figure 7.1,
where the ground (excited) hyperfine states are labeled by their total angular mo-
mentum quantum number F (F ′). We use the 22S1/2 → 22P3/2 or D2 transition for
Zeeman slowing and magneto-optical trapping of the atoms. As shown in the fig-
ure, we keep the nomenclature of cooling and repumper frequencies as introduced in

∗In contrast to this, operation of a lithium 2D-MOT was demonstrated in Reference [220].
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Chapter 4, although both beams require almost the same amount of power for effi-
cient operation of a MOT†. The principal beam frequency is red-detuned from all the
F = 2 → F ′ = 1, 2, 3 transitions, whereas the repumper frequency is red detuned
from all three F = 1 → F ′ = 0, 1, 2 transitions. The upper-state (2p) lifetime was
measured in [154] to be τ = 27.102(2)ns, corresponding to a natural linewidth of
Γ = 2π × 5.872(2) MHz.

7.1.2 Hyperfine-ground-state energies

The energies of the magnetic sublevels |F,mF 〉 of the ground states depend on the
value of the magnetic field B. F is the total angular momentum of the valence electron-
nucleus system, and mF its projection on the quantization axis. However, at high fields
the angular momenta decouple. We will therefore use the common notation |1〉, |2〉,
|. . .〉 for the states, with an energy ordering starting from the lowest energy state. The
energies can be calculated according to the Breit-Rabi formalism [221]. We show the
result in Figure 7.2.
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Figure 7.2: (a) The magnetic-field dependence of the ground-state energies of the
7Li atom. The states that are important in our experiment are labeled in the legend.
(b) The sum of the energies of two atoms in the |2〉 state (|2〉+ |2〉) and one atom in the
|1〉 and one in the |3〉 state (|1〉 + |3〉). Since E|1〉+|3〉(B) > E|2〉+|2〉(B) for all B > 0,
spin-changing collisions of atoms in the |2〉 state are energetically forbidden.

The high-field regime is called the Paschen-Back regime, where the electron spin
decouples from the nuclear spin. One asymptotically finds

E|i〉(B) −−−→
B→∞

±gJ

2
µBB ± mI

2(2I + 1)
Ehf , (7.1)

where gJ ≈ 2 is the Landé factor of the electron, µB is the Bohr magneton, I = 3/2
is the nuclear angular momentum, mI = −3/2,−1/2, 1/2, 3/2 its projection on the
quantization axis and Ehf ≈ h× 803.5MHz the ground-state hyperfine splitting with h

†In [50] it was shown experimentally that for 6Li, the optimum power ratio between repumper and
principle beam is ≈ 1/8. The situation is slightly different for 7Li due to the different level structure,
see Figure 7.1.
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being Planck’s constant, see Figure 7.1 and [222]. The plus or minus sign depends on the
spin orientation of the valence electron. Equation (7.1) describes a decoupled system
where the spin contribution to the Hamiltonian is that of the free electron and the
second term is a constant correction depending on the spin state of the nucleus. This
contribution does not depend on B, which means that in the high-field regime, magnetic
potentials are nuclear-spin insensitive, since they only depend on the derivative of the
energy with respect to B.

The states are commonly labeled |1〉, |2〉, |. . .〉, starting from the lowest energy
state. Exoenergetic collisions can occur when the spin state changes between initial
and final states of the collision partners. As shown in Figure 7.2(b), in a gas of 7Li
atoms in the |2〉 state, the sum of energies of two atoms is lower than that of a pair
where one atom is in the |1〉 state and the other one is in the |3〉 state. Since we only
work with the two lowest states |1〉 and |2〉, spin-exchange collisions are energetically
forbidden. The gas is thus stable against two-body collisions.

7.1.3 The 737.8-G magnetic Feshbach resonance

The |1〉 ground state of 7Li displays a broad Feshbach resonance near 740 G. Its pa-
rameters were determined in [204, 218, 223–225]. The first measurements [223, 224]
employed a trap-loss method, exploiting the enhanced trap loss at large values of a.
This method is relatively imprecise. In [204], the size of a BEC was determined and
compared to mean-field theory (including a beyond-mean-field Lee-Huang-Yang cor-
rection) in order to infer a(B). However, the most precise method of determining the
parameters of a Feshbach resonance is RF spectroscopy. Here, on the a > 0 side of the
resonance, shallow dimers are associated using B-field modulations. The measurements
were performed in [218, 225]. Throughout this work, we use the parameters obtained
in our experiment [218] in order to calculate the s-wave scattering length a(B) as a
function of the magnetic field B. In the vicinity of the Feshbach resonance, the value
of the scattering length as a function of B can be parametrized as‡

a(B) ≈ ΓF

B0 − B
, (7.3)

with the parameters ΓF = 3550(100) a0.G, the resonance center field B0 = 737.8(2)G
and the Bohr radius a0 ≃ 5.292 × 10−11 m. We plot Equation (7.3) in Figure 7.3. The
|2〉 state also displays Feshbach resonances, all of them located above 800 G [226] and
thus not affecting our experiments, since all of them are performed at magnetic field
values below 740 G.

‡A more general formula for the magnetic-field dependent scattering length is

a(B) ≃ abg

(
1 − ∆

B − B0

)
, (7.2)

where ∆ is a measure for the resonance width and abg is the background value, that is, the value
of a far from resonance. In the case of 7Li in the |1〉 state, abg ≈ 5 a0 [17]. We state the simplified
expression (7.3) because it is valid close to resonance, where the calibration of [218, 225] was performed.



7.2. Experimental procedure 107

730 732 734 736 738 740 742 744
-10 000

-5000

0

5000

10 000

B in G

a
in

a 0

Figure 7.3: The s-wave scattering length a(B) as a function of the magnetic field B
around the 740-G Feshbach resonance of the |1〉 state in 7Li. We use the parametrization
of [218].

7.2 Experimental procedure

In this section, we will briefly present the experimental steps from the MOT loading,
which produces samples of pre-cooled atoms, until the transfer in the final hybrid trap

7.2.1 Zeeman slower, MOT and CMOT

The Zeeman slower and magneto-optical trap (MOT) stages were presented before in
Section 4.3.3. In short, the slower consists of an oven containing a sample of metallic
lithium with natural abundance of both isotopes. It is heated to up to 500◦C to provide
sufficient atomic flux out of a collimation tube of a 6-mm internal diameter. The slower
is a spin-flip Zeeman slower, meaning that there is a zero-crossing of the magnetic field
along the length of the slower. This concept efficiently reduces size and electric power
consumption of the setup, and keeps the Zeeman-induced magnetic field and gradient
close to zero at the position of the MOT. It also involves a large detuning of the
Zeeman-slower beams compared to the MOT beams, thus the MOT is not affected
by the presence of the Zeeman-slower light. The laser setup for producing the light
beams necessary for operation of the Zeeman-slower, MOT, further manipulation and
probing of the atoms is presented in Figure 1.1. Here, the lasers necessary for driving
the Zeeman slower were replaced by the laser system presented in Part I of this thesis.

The MOT is formed by three pairs of counterpropagating laser beams. The three
pairs form an orthogonal setup. Each beam has a diameter of about 2.5 cm and an
intensity of about one saturation intensity Isat,D2

≃ 2.5mW.cm−2. The detuning of
both beams is about 6 Γ, and we trap about 1010 atoms at a few millikelvin. The full
loading phase of the MOT takes about 10 s, after which the Zeeman slower is switched
off.

Due to the excited-state level structure, there is no significant sub-Doppler cool-
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Figure 7.4: The central experimental setup, figure taken from [174]. Atoms from the
Zeeman-slowed atomic beam are captured in the MOT, at the central point between
the MOT coils. Using the MOT and the Feshbach coils, the atoms are magnetically
elevated to the Ioffe-Pritchard trap, formed of the magnetic fields produced by the Ioffe
bars for radial confinement, and the curvature (Curve) coils for axial confinement. Here,
Doppler-cooling and RF-evaporation takes place. The atoms are afterwards loaded in
the final trap, consisting of a dipole trap laser beam (ODT) for the radial confinement
and the curvature-, Feshbach- and offset coils to provide both axial confinement and a
freely tunable magnetic offset field. The right-hand side Feshbach and offset coils are
sectioned to improve visibility.

ing present in our system. To improve the phase-space density, a compressed-MOT
(CMOT) phase follows the MOT phase. During 8 ms, the beam detuning is changed
to about half of the value used for the MOT phase, and the power in the repumper
beam is ramped to zero. The atoms are thus efficiently pumped in the |F = 1〉 ground
state, cf. Figure 7.1. After the CMOT phase, we end up with about half the initial
MOT atom number at a temperature significantly below 1 mK.

7.2.2 Quadrupolar magnetic trapping and transport

To further improve the phase-space density, we use evaporative cooling in conservative
traps. For magnetic traps, Wing’s theorem forbids trapping of the lowest ground-
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state atoms, because they are high-field seeking [227]. Maxwell’s equations forbid the
existence of magnetic field minima in free space. Thus, using static magnetic fields,
one can only trap low-field seeking states. Identical atoms in stretched states cannot
experience spin-changing, exoenergetic collisions§. Therefore we optically pump the
atoms to the |8〉 state using a small offset field and a circularly-polarized light beams
of frequencies resonant to the transitions from both F = 1 and F = 2 states, cf.
Figure 7.1.

For creating the quadrupole magnetic field trapping the atoms, the current in the
MOT coils (cf. Figure 7.4) is ramped to a higher value. By then ramping down
the MOT-coil current and simultaneous ramping up of the Feshbach-coil currents in
quadrupolar configuration, the atoms are magnetically transported to the appendage
of the experimental cell. Due to the small inner dimensions of the appendage (inner
width of 5 mm), about half of the atoms are lost during the transport stage.

7.2.3 Ioffe-Pritchard trap

After magnetic transport of the atoms to the appendix, the Ioffe-Pritchard trap is
switched on. Four Ioffe bars positioned only 1 mm from the appendage walls yield a
strong radial confinement, whereas the axial confinement is provided by the curvature
(pinch) coils. The background s-wave scattering length is small and negative for the
|8〉 state. One can show that the scattering cross-section and, following therefrom,
the scattering and rethermalization rates are drastically reduced in the millikelvin
range [212]. To overcome this issue, a double Doppler-cooling stage was included in the
experimental procedure. The movement of the atoms in the radially linear trapping
potentiel is coupled. Thus, and because of the remaining collisional redistribution
of energy, one only needs a single light beam for Doppler cooling in a quadrupolar
magnetic field. For a large bias field of about 500 G, the optical transition from state
|8〉 to the excited state |F ′,mF ′〉 = |3, 3〉 is an almost perfect cycling transition. The
duration of both Doppler stages is about 1 s, and for the second stage the Ioffe-Pritchard
trap is compressed in both radial and axial directions. We ramp the cooling laser beams
to full power in ≈ 100ms to avoid the excitation of sloshing of the cloud in the trap.
We end up with about 50% of the atoms at ≈ 200 µK.

After the Doppler cooling, we perform RF evaporation in the Ioffe-Pritchard trap
to further increase phase-space density. We drive the |8〉 → |1〉 transition to the
high-field seeking, lowest-energy ground state. At the end of this stage, we end up
with ≈ 106 atoms at temperatures of a few tens of microkelvin, depending on the
evaporation trajectory and most importantly on the final RF frequency chosen.

7.3 Hybrid dipolar-magnetic trap

To control the interactions between different species of atoms via magnetic Feshbach
resonances, one needs to tune the magnetic offset field at the trap center. The limits
imposed here using magnetic traps can be overcome by using optical dipole traps. In

§However, dipolar relaxation can occur.
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our setup, we use a hybrid dipolar-magnetic trap consisting of a powerful, focused laser
beam and a magnetic curvature field, providing additional axial confinement.

The spatial profile of the trapping laser is well approximated by a cylindrically-
symmetric Gaussian laser beams, see Section 2.2.1. In a single-beam dipole trap, one
thus has three free design parameters, the waist radius w0, the power P and the de-
tuning from resonance ∆ = ω−ω0. Here, ω is the dipole trap laser frequency and ω0 is
the resonance frequency of the atoms, corresponding to the lithium D-lines in our case.
The atoms are attracted to high-intensity regions in the case of negative detunings.
The trap depth U0 is proportional to P/(∆w2

0), whereas the photon scattering rate
is proportional to P/(∆2w2

0). Thus, high-power lasers with large detunings are favor-
able, resulting in a large choice of trap depths and negligible photon-scattering-induced
heating. The trap frequencies scale with the design parameters like

ωρ = 2π νρ ∝
√

P

−∆w4
0

(7.4)

ωz = 2π νz ∝
√

P

−∆w6
0

(7.5)

We use a 120-W ytterbium fiber laser from IPG Photonics Corp., having a central
emission wavelength of 1073 nm. The detuning of ≈ 400nm is much larger than the
atomic fine structure. The power at the trap position is controlled by passing the
beam through a high-power acousto-optic modulator (AOM), and the waist at the
trap position is w0 ≈ 35 µm.

After RF evaporation in the Ioffe-Pritchard trap, the atoms are loaded in the hybrid
dipolar-magnetic trap by adiabatically switching on and off the respective traps. The
atoms are then transfered from the low-field seeking state |8〉 to the high-field seeking
state |1〉 using a Landau-Zener sweep consisting of a fixed RF knife and a magnetic
field ramp. This requires a switch of the sign of the magnetic field curvature. During
this stage, trapping is purely due to the high-power dipole trap.

Further evaporation in the dipole trap is obtained by lowering the laser power
and thus diminishing U0. Thus, the atoms are efficiently evaporated along the radial
direction. Using the wide 740-G Feshbach resonance presented in Section 7.1.3, we can
tune the scattering length a in state |1〉 at will. We typically evaporate at 200 a0 in
the hybrid dipolar-magnetic trap. Depending on the chosen parameters, we obtain
samples of ≈ 105 atoms in the microkelvin range. Evaporating further, Bose-Einstein
condensates of ≈ 2× 104 atoms at 200 a0 without distinguishable thermal background
can be produced.

7.3.1 Trap frequency calibration 1: axial direction

The dipole-trap laser beam is focused to a waist size of ≈ 35 µm in the center of the
trap, providing a reasonably large trapping volume for efficient loading from the Ioffe-
Pritchard trap. However, this results in very weak axial trapping. We thus have to
resort to additional trapping along the z-axis. We use a constant magnetic curvature
field generated by the curvature coils, providing harmonic axial magnetic trapping.
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Figure 7.5: Axial frequency measurement. The center-of-mass position zCOM is de-
termined as a function of the wait time after excitation (dots). The line represents a
fit to a sinusoidal [Equation (7.7)] for obtaining the axial frequency ωz.

This is characterized by the frequency ωz,mag. In presence of the dipole trap laser of
power P , the axial frequency reads

ωz =
√

ω2
z,mag + αP , (7.6)

where α is a constant depending on the trap geometry. For determination of the atomic
densities in our trap, we need precise knowledge of the trap frequencies in both radial
and axial directions. Both frequencies depend on the power of the dipole trap laser.
Although all the trap parameters can be obtained from first principles, we calibrate
our trap by measuring the frequencies as a function of the dipole trap laser power, as
will be presented in the next section.

The movement of the center-of-mass coordinate zCOM can be separated from the
N-body problem. Thus, by simply exciting an axial movement and measuring zCOM(t)
as a function of the wait time t after excitation, one observes harmonic oscillations of
the cloud in the trap. The oscillation frequency then equals the trap frequency ωz/2π.

We typically prepare a sample of ≈ 105 atoms in the |1〉 state at ≈ 6µK and 720 G,
or a/a0 = 200. We performed the excitation by a 20-ms switch-off of the dipole trap
laser¶. The cloud is then attracted by the center of the magnetic curvature field, whose
alignment is not perfect with respect to the laser waist. After re-switch-on, oscillations
were observed, see Figure 7.5. We fit gaussian density distributions to the absorption
images obtained from the thermal clouds. This yields the center-of-mass coordinate
zCOM as a function of wait time. The result is presented in Figure 7.5. We fit the data
to a simple harmonic-oscillator trajectory

zCOM(t) = A sin(ωzt + ϕ) + C, (7.7)

where A is the oscillation amplitude, ϕ a constant phase and C a constant offset of the
cloud position. The power P of the trapping laser is measured by shining the beam

¶A similar method used occasionally is a fast off-on-switching process of the magnetic field.
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on a bolometer after it has passed the experimental glass cell. This method is rather
slow, but precise‖. According to Equation (7.6), the axial trapping frequency depends
on P . We thus repeated the experiment for different values of P and measured the
axial frequency. In the evaporation process, P also determines the temperature and
atom number for the frequency measurement. The results are presented in Figure 7.6.
A fit to Equation (7.6) yields the parameters ωz,mag = 2π× 17.5(3)Hz and α = (2π)2 ×
84(6)Hz2.W−1.
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Figure 7.6: Axial frequency ωz as a function of the dipole trap laser power P . The
data points stem from several measurements, as presented in Figure 7.5. By fitting
the results to Equation (7.6), we obtain the parameters ωz,mag = 2π × 17.5(3)Hz and
α = (2π)2 × 84(6)Hz2.W−1 to calibrate our trap in the axial direction. The fit is
represented by the solid line.

7.3.2 Trap frequency calibration 2: radial direction

When applying the method of excitation of a sloshing mode described before for mea-
suring the radial frequency, we faced important practical limitations due to the limited
timing resolution of the control system. An alternative method of determining trap fre-
quencies is the parametric excitation of the trapped atoms to higher vibrational states.
This is achieved by modulating the trap frequency with a modulation frequency ωmod.
This process causes heating and results in atom loss due to evaporation. It becomes
resonant at ωmod = 2ωρ.

We prepare an initial sample of ≈ 6×104 atoms in the |1〉 state at 6µK and 720 G, or
a/a0 = 200, and P = 1.97W. We then sinusoidally modulate the laser power P during
a hold time of 1 s. The modulation depth is chosen to be less than 10%. We then take
time-of-flight images of the remaining atoms to determine the temperature T and the
number of atoms remaining. The results are presented in Figure 7.7. We fit a Lorentzian
to the data points to obtain the central frequency of the feature, which is two times

‖We used the values obtained with this method to calibrate a photodiode that measures the laser
power leaking through a mirror used to steer the beam. With the help of the photodiode signal, we
can monitor the laser power on shorter time scales.
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Figure 7.7: Radial frequency measurement. By parametric sinusoidal modulation
of the trapping laser power at the modulation frequency ωmod = 2πνmod, the atoms
gain energy and leave the trap due to evaporation. We measure the temperature T
(triangles) and the remaining number of atoms (dots) and fit a Lorentzian to the data
(dashed/solid line). The frequency determination from the temperature measurement
yields the smallest fitting error, we therefore deduce ωρ(P = 1.97 W) = 2π×2.15(5) kHz
from the temperature data.

the radial frequency ωρ. Due to the smaller amount of scattering in the temperature
data, the fit error is substantially lower than for the remaining-atom-number data. For
P = 1.97W, we find ωρ = ωc/2 = 2π×2.15(5) kHz from the temperature measurement.
The radial frequency can therefore be obtained for arbitrary power by using the simple√

P scaling law, cf. Equation (7.4). When changing the dipole trap laser power, the
simple scaling law (7.4) now provides the radial trap frequency.

7.4 Imaging

We use a standard absorption imaging technique to probe the atomic samples produced
in our setup. The coordinate system given by the hybrid dipolar-magnetic trap is
presented in Figure 7.8.

While passing the atom cloud along the y-direction, the resonant probe light is
absorbed and statistically reemitted. Thus, the probe beam intensity I(x, z) contains
a shadow which carries information about the atomic density distribution. We measure
I(x, z) by imaging the beam on a CCD camera. For intensities well below the lithium
D2 saturation intensity Isat ≃ 2.5mW.cm−2, we define the optical density

OD(x, z) = ln

(
I0(x, z)

I(x, z)

)
= σabs

∫
n(r) dx3, (7.8)
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where I0(x, z) is a reference image taken without atoms, n(r) the 3D atom density
distribution and σabs the absorption cross-section. Precise knowledge of the value of
σabs is necessary to derive the column density n(x, z) =

∫
n(r) dy. The value used

throughout this thesis, as well as the size calibration, stems from former calibrations
of using interacting Bose gases [174, 218]. The validity of the Lambert-Beer law (7.8) is
justified for in-situ imaging: Even at peak densities of 1012 cm3, the product kLdmean is
much larger than one, where kL is the light wavenumber vector and dmean is the mean
distance between atoms [228].

Figure 7.8: Schematic of the imaging apparatus and definition of the coordinate
system, where the origin is in the center of the cloud. We perform in-situ imaging
af the cloud along the y-axis. Time-of-flight imaging along the z-axis is useful to
independently measure temperatures and populations. Figure from [218].

We perform in-situ imaging of the atoms along the y-axis, whereas the z-axis time-
of-flight imaging can be used to determine temperatures and populations. The frequen-
cies of the probe beams are chosen to match the according transitions of the states to
be imaged under the given magnetic field conditions. For in-situ imaging, we obtain
a spatial resolution of about 5 µm. Thus, for Bose-condensed samples, no details of
the spatial distribution can be inferred along the x-direction. Due to the limited op-
tical access for the time-of-flight imaging, the remaining numerical aperture results in
a spatial resolution of 10 µm, sufficient to reliably determine temperatures and atom
numbers.

7.5 Creating strongly-interacting Bose gases

As discussed in Chapter 6, three-body loss restricts the lifetime of Bose gases at large
values of the scattering length. Thus, the transfer of the precooled samples to the
strongly-interacting regime needs to be fast in order to keep a significant amount of
atoms in the trap. Thus, we generally prepare pre-cooled samples at an intermediate
scattering length of 200a0 and transfer them to the strongly-interacting state. In
the following, we will present two fast methods employed by us to create ultracold,
strongly-interacting Bose gases.

7.5.1 Magnetic field sweeps

The technique of magnetic field sweeps has been presented in detail in [218]. In brief,
a pre-cooled atomic sample is produced in the |1〉 state at a = 200a0. One then ramps
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the magnetic field closer to the Feshbach resonance to increase the interactions. The
Feshbach coils display a large inductance, thus their contribution to the field is kept
constant, and the sweeps are mediated by the faster offset coils. The limitations of
this method are obvious: The magnetic field has to be swept by 20 G to change the
value of the scattering length from 200 a0 to the center of the Feshbach resonance. Due
to inductive coupling, an absolute field stability of . 100mG can be provided after
& 50ms only when using fast sweeps on the order of 100 ms. Since the atoms pass a
long time interval at large values of a, an important fraction of the atoms is lost from
the trap due to the strongly increased three-body loss.

7.5.2 RF transfers

To mitigate the limitations described before, a second method to produce strongly-
interacting Bose gases is radio-frequency (RF) transfer. As before, the samples are
initially prepared in the |1〉 state at 200a0. However, before going to the strongly-
interacting regime, we apply an RF-induced adiabatic-rapid-passage technique (also
called Landau-Zener sweep) to transfer the atoms to the |2〉 state. We use an antenna
close to the appendage to couple RF radiation to the atoms. We then ramp the offset
field to the unitarity value of the |1〉 state corresponding to 737.8 G and let the current
overshoot settle afterwards. In the |2〉 state, the atoms are weakly interacting at this
field value and no additional losses are observed during the ramp. Using a powerful
RF-pulse, the atoms are then transferred from state |2〉 to the strongly-interacting
state |1〉 by keeping the magnetic field value fixed. We match the antenna setup to
give strongest coupling at the |2〉 → |1〉 transition frequency of 174.878 MHz at the
Feshbach resonance center. The duration of the pulse is chosen such as to obtain
the largest number of atoms in the strongly-interacting state in the presence of three-
body loss. We apply a 10 ms RF pulse, transferring about 40% of the atoms in the
maximally-interacting state |1〉. Due to the maximum collision rate of the atoms at
unitarity, the transfer here is incoherent, and we could not observe Rabi oscillations.
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Figure 7.9: Transfer |2〉 → |1〉 at unitarity field. We measure the remaining fraction
in the |2〉 state and fit a Gaussian of 10(2) kHz standard deviation to the data.
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We characterize the RF transfer efficiency by measuring the residual number of
atoms in the |2〉 state. The results are presented in Figure 7.9. We fit a Gaussian with
a standard deviation of 10(2) kHz. Assuming constant experimental conditions, the
remaining number of atoms in the |2〉 state can serve as a reference for the number of
atoms transfered to the |1〉 state. Even though the transfer efficiency is not unity, the
number of strongly-interacting atoms obtained at well-defined fields is superior to the
field-sweep method described before.

Since we rapidly transfer the atoms between states of different axial trapping fre-
quencies, we need to be careful to not excite axial breathing of the cloud. The magnetic
field contribution ωz,mag to the axial trap frequency as defined in Equation (7.6) is pro-
portional to the magnetic field derivative of the internal energy E|i〉(B) of an atom in
state i with respect to B. We thus have a relative frequency difference at the Feshbach
resonance field B0:

ωz,mag,|1〉
ωz,mag,|2〉

=
∂E|1〉(B0)

∂B

/
∂E|2〉(B0)

∂B
≈ 1.0339, (7.9)

where the indices refer to the hyperfine states. This small difference is further reduced
in the presence of additional dipolar trapping along the slow axis, see (7.6). Indeed,
throughout the measurements presented in the course of this work, we never observed
axial breathing of the cloud, which would be attributable to the sudden change of the
axial trapping frequency when transferring to the strongly-interacting state.

7.5.3 Magnetic field stability

The data presented in Chapter 8 was taken over a period of seven months. During
that time, the experimental setup was sensitive to drifts of the magnetic offset field
on many timescales. We therefore performed regular magnetic field calibrations by RF
spectroscopy to be able to compensate these drifts. We drive |2〉 → |3〉 RF transitions,
cf. Figure 7.2, and measure the fractional transfer efficiency by absorption imaging
the populations in both states. We chose the RF power to give 50% transfer at reso-
nance. We fit Gaussians to the fractional transfer data, yielding a standard deviation
of ≈1.5 kHz. We therefore ensure a magnetic field standard deviation of ∆B ≈100 mG
around the unitarity value during the course of each measurement. With the Feshbach
resonance calibration presented in Chapter 7, and Equation (7.3), the absolute value of
the scattering is larger than

|a| &
Γ

2∆B
≈ 1.8 × 104a0 (7.10)

within a probability of 95%. At typical densities of 1011 cm−3, we therefore have |na3| &

0.08. At the lowest temperatures of T ≈ 1 µK, we find for the inverse of the thermal
wavenumber

1

kth

=

√
2πkBmT

~2
≈ 2000a0 ≪ |a| , (7.11)

where kB is Boltzmann’s constant and m is the particle mass. In the non-degenerate
regime, as it is the case in the studies presented here, kth is the relevant length scale.
This proves that our assumption of unitarity is fulfilled, cf. Equation (A.27).
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7.6 Summary

In summary, we have presented the experimental tools necessary to produce ultracold
samples of bosonic 7Li at unitarity, that is at the Feshbach resonance at 737.8 G.
We have introduced the properties of the 7Li atom which are of importance for our
measurement. We have then presented the experimental procedure of creating pre-
cooled atomic clouds, and the final trap where the experiments are performed. We
have performed precise calibration of the trap frequencies along the axial and radial
direction, which will be of high importance for the measurements presented in the
next chapter. We have then focused on two methods used to quickly transfer the
sample to unitarity. With the RF method, we have been capable of transferring 40%
of an atomic sample initially in state |2〉 to the unitary state |1〉. Finally, we have
discussed the imaging method for probing the gas. In the next chapter, we will present
measurements of the collisional stability of the unitary Bose gas.





Chapter 8

The unitary Bose gas: Results and

discussion

We will present here the results obtained for the finite-temperature unitary Bose gas.
In Section 8.1, we measure the three-body loss rate in the unitary Bose gas as a

function of temperature. We will compare the results to existing theory of the unitarity-
limited three-body recombination rate, and we will show good agreement without ad-
justable parameters. We will demonstrate in particular that in the high temperature
limit, three-body recombination is strongly suppressed and allows for the introduction
of a criterion of quasi-equilibrium in the unitary Bose gas. The experimental fulfill-
ment of this criterion has allowed us to measure the finite-temperature equation of
state of the unitary Bose gas, which will be presented in Section 8.2. These results will
justify the assumptions imposed for the three-body loss rate measurements. Finally,
the chapter will be summarized in Section 8.3.
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8.1 Three-body loss in the unitary Bose gas

In this section, we will present the results obtained for the three-body loss rate as a
function of temperature of the unitary Bose gas. For practical reasons, we used two
methods, magnetic field ramps and RF transfers, in order to transfer the initial sample
to unitarity, as presented in Section 7.5.

8.1.1 Experimental procedure

We first prepare non-Bose-condensed samples at different temperatures Tevap. Both
Tevap and the number of remaining atoms are given by the evaporation trajectory, which
is stopped at a given power Pevap of the dipole trap laser. To avoid atom loss due to
residual evaporation, the trap is then radially recompressed by adiabatically ramping
the power to P = 2 ·Pevap in 500 ms. As discussed in Section 7.3, this increases the trap
depth by a factor of 2, and the radial frequency by a factor of

√
2. We then use either

of two methods presented in Section 7.5, a magnetic field sweep to the unitarity field
value in the |1〉 state, or an RF transfer from the |2〉 state to the |1〉 state at constant
magnetic field, to transfer the sample to unitarity.

From imaging along the y-axis, see Figure 7.8, we obtain the atomic line density

n̄1D(z) =

∫ ∞

−∞
dxdy n(r) , (8.1)

where the integration over y is naturally established by the absorption imaging process,
cf. Figure 7.8∗. The number of atoms is calculated according to

Nat(t) =

∫ ∞

−∞
dz n̄1D(z, t) . (8.2)

We then fit Gaussians to n̄1D(z). The results are presented in Figure 8.1. The temper-
ature T of the sample is obtained from the in-situ axial halfwidth and the calibrated
axial frequency according to the relation

T (σz) =
mω2

zσ
2
z

kB

(8.3)

for the ideal classical gas, where kB is the Boltzmann constant. We will justify this
method in Section 8.2.

Due to the density-dependence of higher-order losses (see Equation (8.4) in the next
section), atoms are preferentially lost in the trap center, where low-energy atoms ac-
cumulate. This process was termed “anti-evaporation” heating in literature [192]. A
second loss-induced heating process occurs when the recombination products, a dimer
and a free atom in the three-body case, stay in the trap. By colliding elastically with

∗In the x direction, we sum over sufficient pixel lines Nlines to fulfill Nlinesdpix > 2σρ, where dpix

is the pixel size and σρ the radial width of the cloud obtained from the images. σρ has a lower limit
given by the spatial resolution of ≈ 5µm. The background signal is obtained from the mean over
the same amount of pixel lines Nlines above and below the position of the atoms (leaving a gap of σρ

between the background regions and the region containing the atomic density signal), and subtracted
from the raw data to obtain n̄1D(z).
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Figure 8.1: Typical decay measurement. (a) The number Nat(t) of remaining atoms
as a function of the wait time t after transfer to unitarity. (b) Measurement of the
half-width of the atomic density distribution by fitting Gaussians to the line density
n̄1D from the data presented before. No breathing or sloshing can be observed after the
transfer to unitarity. For the first 10 ms after the transfer, we observe anti-evaporation
heating. Therefore, we neglect these points in the further analysis. After 10 ms, we
obtain a mean temperature of 3.3(5) µK.

atoms in the cloud, energy is exchanged, resulting in heating of the cloud. This process
is called recombination heating [192]. Since the shallow-dimers state vanishes at uni-
tarity, atoms can only recombine to deeply-bound states in three-body collisions. It is
therefore safe to assume that the release energy is sufficient to expel the recombination
products from the trap without causing recombination heating.

In the first 10 ms after transfer to unitarity, we observe an expansion of the cloud un-
til mechanical stability sets in. After this wait time, we do not observe anti-evaporation
heating within our experimental resolution. The data points up to 10 ms are thus ne-
glected in the further analysis. The scattering of the width data is larger for longer wait
times. We attribute this to the lower fitting precision in the low-density regime. No
breathing or sloshing excitations of the cloud can be observed. Determination of the
temperature is therefore realized by calculating the mean value of the clouds’ halfwidths
and inserting it into Equation 8.3. For the example data presented in Figure 8.1(b), we
obtain σz,mean = 520(50)µm, corresponding to a temperature of 3.3(5)µK.

8.1.2 Decay rate equations

Many processes lead to atom loss in conservative traps. They can be classified by
N , the number of identical particles involved in a loss event. The single-particle case
N = 1 is due to collisions with molecules of the residual background gas or residual
resonant light. In the case of N > 1, a collision of N identical particles leads to loss.
These collisions can be exoenergetic due to the formation of molecules or changing the
internal state of the atoms. The released energy can be orders of magnitude larger
than the trap depth, so the atoms are expelled in absence of further collisions. In
a mesoscopic picture of the homogeneous gas, atom loss is expressed as decrease in
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the atomic density n. Since the probability of finding N particles in the infinitesimal
volume dV is proportional to nN , one generally writes

ṅ =
d

dt
n(t) = −

∞∑

N=1

LNnN(t) , (8.4)

The solution of (8.4) is a decay curve. In principle, its shape allows one to distinguish
between loss processes of different order N .

We perform measurements on trapped samples of atomic cloud, where the density
distribution is not homogeneous. We assume Gaussian density distributions in the high
temperature limit, as we will justify in Section 8.2. Thus,

n(r, t) =
Nat(t)

(2π)3/2σ̄3(t)
exp

[
−1

2

(
x2

σ2
x(t)

+
y2

σ2
y(t)

+
z2

σ2
z(t)

)]
, (8.5)

where σ̄ = (σxσyσz)
1/3 = (σ2

ρσz)
1/3 is the geometric average of the Gaussian half-width

of the cloud. The spatial average reads

〈X(t)〉 ≡
∫

trap
dV n(r, t) X(r, t)
∫

trap
dV n(r, t)

, (8.6)

for any function X(r, t). A simple calculation for three-dimensional Gaussian distribu-
tions yields

〈n(t)〉 =
Nat(t)

(4π)3/2σ̄3(t)
, (8.7)

which is a fraction 2−3/2 of the peak density npeak. From absorption imaging along
the y-axis, see Section 7.4, we obtain σz. At the same time, due to the limited optical
resolution along the x-axis, we hardly gain any knowledge about the radial width,
which is on the order of magnitude of the optical resolution. On the other hand, the
energy-equipartition theorem results in the condition

σρ

σz

=
ωz

ωρ

. (8.8)

We therefore get

σ̄3 =

(
ωz

ωρ

)2

σ3
z . (8.9)

8.1.3 Suppression of N 6= 3-order loss

In the following we will show that loss processes of order N different from three can
be neglected under our experimental conditions.

• N = 1: As in any ultracold-atom experiment, the trap lifetime is limited by loss
events caused by collisions with residual background atoms. This effect is repre-
sented by the N = 1 term in (8.4). At low scattering lengths, we measured the
lifetime due to this restriction to be & 90 s. This value is more than two orders of
magnitude above any timescale considered in our three-body loss measurements.
Thus, N = 1-body loss is neglected in further the analysis.
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• N = 2: In order to conserve energy and momentum, one needs N bodies to
form a molecule consisting of N − 1 atoms.† It is thus easy to see that molecule
creation is not possible in pure two-body collisions of ground-state atoms. An
example of a two-body loss processes are spin-changing collisions, where atoms
fall to deeper |F,mF 〉 ground states. Since we work with atoms in the lowest
energy state |1, 1〉 = |1〉, the process is energetically forbidden. In a mixture of
|1〉 and |2〉 atoms, dipolar relaxation is strongly suppressed, see Section 7.1.2. We
could not observe any signature of such a process. Finally, evaporation also is
a two-body process. Due to the experimental procedure, in which we ramp the
trap depth back to twice the final evaporation value, we suppress this loss process
efficiently.

• N ≥ 4: The theory of the unitarity limit of N -body scattering, see Equation A.23,
allows the calculation of the four-body contribution L4n

4
peak = 4k4n

4
peak in (8.6).

Assuming a unitary-limited three-body loss rate, the relative magnitude of the
four-body contribution is

4K4n
4
peak

3K3n3
peak

≤ 35 · 27/6π2

√
3

npeak

k3
th

=
35

211/6
√

3π
npeakλ

3
th, (8.10)

where λth =
√

2π~2/(mkBT ) is the thermal wavelength. The relative 4-body
contribution is lower than 2% for all experimental situations considered, and we
can thus safely neglect it and all higher orders.

We are left with the three-body term dominating the decay. We obtain the mean
density points 〈n(t)〉 from Equation (8.7) and the knowledge of atom number and the
mean Gaussian halfwidth presented in Figure 8.1(b). We assume that

〈n(r, t)〉 = Nat(t) 〈f(r)〉 ,
∂

∂t
f = 0 . (8.11)

This assumption, equivalent to T = const. in the case of an ideal classical density dis-
tribution, is justified from the width measurements, see Section 8.1.1. We furthermore
use the identity 〈

nN
〉

〈n〉N
=

23N/2

(N + 1)3/2
(8.12)

for three-dimensional Gaussian density distributions. In the exclusive presence of three-
body loss, and under the assumption (8.11) of constant temperature, the solution of
(8.6) reads

〈n(t)〉 =

(
16

33/2
L3 · (t − t0) +

1

〈n0〉2
)−1/2

, (8.13)

using the (8.12) and separation of the variables. As we have justified in Section 8.1.1,
the t < 10ms data is excluded from the analysis. The result is presented in Figure 8.2.

†When forming one molecule of N − 1 identical atoms, a fraction (N − 1)/N of the binding energy
released in the recombination process is delivered to kinetic energy of the free atom, and the rest to
kinetic energy of the molecule.
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Figure 8.2: Decay curve for the densities obtained from the data presented before
(circles). We neglected the t < 10 ms data (triangles), as described in the text. We
fit the data to (8.13) and obtain the three-body loss rate constant L3 = 1.4(7) ×
10−20 cm6.s−1 at 3.3(5)µK.

Equation (8.13) nicely fits the data and we obtain a three-body loss constant of
L3 = 1.4(7) × 10−20 cm6.s−1 at a temperature of 3.3(5) µK.

The temperature error bar is obtained from the standard deviation of the width
data. The error bar of L3(T ) contains a contribution of the fit routine used, and a
contribution from the systematic uncertainty on 〈n〉. According to Equation (8.7), the
mean density has a strong σ−3

z dependence on the cloud width. We thus take into
account the second order for the derivation of the error of L3(T ). Its relative value is
of the order of 60%‡. The fact that the mean density depends sensitively on σz and
the trap frequencies demonstrates the importance of the trap frequency calibration
presented in Section 7.3. By fitting the data to a solution of Equation (8.6) including
a four-body term, we find no significant contribution from four-body loss, as predicted
from Equation 8.10. This method, however, yields the same values for L3. Thus, we
cannot distinguish N ≥ 4-body loss.

8.1.4 Temperature-dependent results

The experiment was repeated for different temperatures T from 1.6–7.9 µK to obtain
the three-body loss rate L3(T ). We used different trapping laser powers P and the
recompression by a factor of two in power, as discussed before. The result is presented
in Figure 8.3, where the blue points are obtained using the magnetic field sweep method,
and the green triangles result from the magnetic field sweep method.

‡If u(X) is the absolute error of a physical quantity X, we get up to second order:

u(〈n〉)
〈n〉 ≃ 1

〈n〉

∣∣∣∣

(
∂

∂σz
〈n〉
)

u(σz) +

(
1

2

∂2

∂σ2
z

〈n〉
)

u2(σz)

∣∣∣∣ =

∣∣∣∣∣−3
u(σz)

σz
+ 6

(
u(σz)

σz

)2
∣∣∣∣∣ ≈ 30% . (8.14)

The relative value for the error of L3 is thus about twice this value, since according to Equation (8.13),

L3 ∝ 〈n〉−2
.
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Figure 8.3: Measurement of the three-body loss rate constant L3(T ) as a function
of temperature obtained from the magnetic field sweep method (circles) and the RF
transfer method (triangles). The error bars represent the standard deviation from the
decay curve fits to (8.13), and a systematic contribution from the uncertainty of the
density, see text. The solid line is the theoretical prediction of the unitarity-limited loss
rate from Equation (8.15), which describes the data without adjustable parameters.

We also plot in Figure 8.3 the theoretical prediction of the unitarity-limited three-
body recombination loss rate constant from Equation (A.36) and References [200, 201],

L3,lim(T ) = 3 · K3,lim(T ) =
216

√
3π2

~
5

m3k2
BT 2

, (8.15)

which represents the J = 0 contribution, where J is the total angular momentum
of the three-body system, cf. AppendixA. The limit is in good agreement with the
data points. The experimental data is therefore well described by theory without
adjustable parameters. A fit of the data points to L3(T ) = χ · L3,lim(T ) yields the fit
parameter χ = 0.7(1). However, in this fit method using an inverse-square law, the
low-temperature points get a strong weight due to the larger values of L3(T ).

To gain further insight, we calculate the ratio χ(T ) = L3(T )/L3,lim(T ) of the same
data points and the theoretical values of the unitarity-limited three-body loss rate from
Equation (8.15). The result is shown in Figure 8.4, where the solid line at χ(T ) = 1
marks the theoretical expectation, around which the data is scattered. To calculate a
weighted average, we weight each point according to its uncertainty on χ(T ). We thus
have

χrel = CN

∑

i

χ(Ti)

wi

. (8.16)

with the normalization constant

CN =

(
∑

i

χ(1)

wi

)−1

(8.17)
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Figure 8.4: Relative loss rate coefficients as a function of temperature. We obtain
these data points by normalizing the data presented in Figure 8.3 according to χ(T ) =
L3(T )/L3,lim(T ) = 1. L3,lim(T ) is the theoretical prediction (8.15) of the unitarity-
limited three-body loss rate coefficient, and is indicated by the solid line. By performing
a weighted average of the data points (see text), we get χrel = 1.1(3).

and the weights wi = u2(χi(T )), where u(χi(T )) is the error of the i-th point. Analo-
gously, we find a weighted standard deviation to obtain an error bar. From the result
of χrel = 0.9(2), we infer that the theory presented in AppendixA describes the data
well within the experimental error bars.

The derivation of the unitarity-limited three-body loss rate (8.15) assumes pure
S-wave (total angular momentum J=0) contribution. Therefore, χ(T ) is independent
of temperature. However, the data points in Figure 8.4 may show a systematic growth
with temperature. Measurements at higher temperatures should eventually show the
onset of contributions from higher orders of J . References [229, 230] predict the next-
highest order contribution to originate from the J = 2 channel. Using model potentials
for three-body recombination of helium atoms, the onset temperature is predicted to
be in the microkelvin range [201]. In [231], secondary collisions are discussed, leading to
the expulsion of more than three atoms per three-body recombination event. Since the
magnitude p of the effect is proportional to 〈n〉 · l, where l ∝ σ̄ is a typical lengthscale,
and 〈n〉 ∝ σ̄−3, we get p ∝ σ̄−2 ∝ T−1. We infer that secondary collisions can not
explain larger-than-predicted loss at high temperatures.

8.1.5 A criterion of collisional quasi-equilibrium

As discussed in Chapter 6, three-body loss can pose strict constraints on the possibility
to realize strongly-interacting gases, because the gaseous state is not a ground state of
the system. To achieve quasi-equilibrium, we will have to find a regime in which three-
body loss is sufficiently suppressed. This is established when the atoms execute more
elastic than inelastic collisions. The resulting criterion of collisional quasi-equilibrium
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can be stated as
γ2

γ3

≫ 1 , (8.18)

where the γN are the single-particle N -body collision rates. Their unitarity-limited
values are given in Equations (A.31) and (A.37). The results presented in this sec-
tion confirm the theoretical prediction of the unitarity-limited, temperature-dependent
three-body recombination rate L3(T ) [232], from which γ3 is obtained easily. We there-
fore have

γ2

γ3

=
8

9
√

3

(mkBT )3/2

π3/2~3n
=

√
29

35

1

nλ3
th

≈ 1.45
1

nλ3
th

, (8.19)

Fulfilling (8.19) allows the study of thermodynamic quantities of the unitary Bose gas.
This criterion restricts the quasi-equilibrium area of the phase diagram to the non-
degenerate regime, see for instance [196]. For all the data presented in this thesis, the
ratio γ2/γ3 of elastic to inelastic collisions is larger than 500, therefore the criterion of
collisional quasi-equilibrium (8.18) is fulfilled.

8.2 Low-fugacity unitary Bose gas equation of state

In this section, we will present the results obtained on the equation of state (EoS) of the
finite-temperature, unitary Bose gas. Apart from its own interest, this measurement
delivers information about the atomic density distribution in the trap, justifying the
assumptions made in Section 8.1.2.

Since we took in-situ images for the three-body loss measurements presented in
Section 8.1, we can use this data for determining the EoS. The equation of state is
a thermodynamic quantity defined for gases in (quasi-)equilibrium. Considering the
ratio of elastic versus inelastic collisions, condition 8.18 is fulfilled for all our data,
as demonstrated in Section 8.1.5. To attain quasi-equilibrium in a trapped sample of
atoms, another limitation arises: The atoms are oscillating in the trap, and the slowest
trap frequency, ωz in our case, defines a typical timescale for achieving global quasi-
equilibrium in the ensemble:

τz =
1

ωz

. (8.20)

Only after the sample passed at least this amount of time in the strongly-interacting
state, it can be regarded as being in quasi-equilibrium. This process is of general nature
and independent of the other timescales presented before. We thus make sure that the
gas is indeed in an equilibrium state by using data taken after of a minimum wait
time t ≥ 20ms> τz. This also ensures settling of the magnetic field after the current
overshoots occuring when ramping to the unitarity value.

Assuming validity of the local density approximation, we measure the EoS from the
1D-line density n̄1D(z), see Equation (8.1)

P (µ(z)) =
mω2

ρ

2π
n̄(z), (8.21)

represented by the pressure P (µ), where

µ(z) = µ0 − V (z), (8.22)
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is the local chemical potential in presence of the trapping potential V (z) = mω2
zz

2/2.
This elegant method was proposed in [233–235] and successfully applied for the first
time in [217].

We have obtained the integrated line density n̄1D(z), see Equation (8.1) from 85
images taken at 3 different mean temperatures. From n̄1D(z), we have measured the
total atom number Nat and the temperature T [Equations (8.2) and (8.3)]. As we will
see later, the EoS and thus the density distribution can well be described by an ideal
classical gas. Therefore, for each image we can determine the lowest value ζ0 of the
inverse fugacity from the ideal classical EoS:

ζ0 = exp

(
− µ0

kBT

)
=

(kBT )3

~3ωzω2
ρNat

. (8.23)

The spatial variation of the inverse fugacity follows from Equation (8.22) and the known
trap potential along z

ζ(z) = ζ0 exp

(
− mω2

z

2kBT
z2

)
. (8.24)

From n̄1D(z) and (8.21), (8.23) and (8.24), we obtain an EoS consisting of 17000
(ζ, P (ζ)) tuples. The result is presented in Figure 8.5. The raw data points show a
large scattering, mostly due to shot noise of the CCD camera used for absorption
imaging§. To reduce the noise, we perform a moving average over 1200 subsequent

§The CCD noise could in principle be reduced using a camera equipped with a cooled sensor.
However, an even stronger limitation arises from interference fringes occurring in our imaging scheme.
This effect is a general problem when imaging with coherent light sources. However, it was shown in
Reference [236] that these fringes can efficiently removed using image post-processing.
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Figure 8.5: Equation of state (EoS) of the finite-temperature unitary Bose gas. The
raw data consists of 17000 points. By using two averaging methods, moving average
and mean of equally-spaced segments, we are able to significantly reduce the noise. The
dash-dotted line marks the EoS of the ideal classical gas.
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data points (green solid line in Figure 8.5). Since the distribution of the data points
on the log(ζ) axis is not homogeneous, regions of high data point density are favored.
Therefore, in a second approach, we divide the dataset in segments of equal spacing
on the log(ζ) axis. We calculate the mean values of (ζ, P (ζ)) for each of these, repre-
sented by black diamonds in Figure 8.5. Both methods decrease the noise by orders of
magnitude.

ì

ì

ì
ì

ì

ì

ì

ì

ì

200 500 1000 2000 5000 1´104

0.95

1.00

1.05

1.10

Ζ

h

Fit
Virial 2
Ideal Bose
Ideal classic

ì Seg. mean
Mov. avg.
Raw data

Figure 8.6: Relative representation of the equation of state (EoS) of the finite-
temperature unitary Bose gas with respect to the ideal classical gas. We experimentally
obtained 17000 data points, which display a large scattering. Two methods of averaging
the data, as presented in the text, are shown (Moving average and mean of equally-
spaced segments). A fit of the raw data to a second-order virial EoS yields a virial
coefficient of b2 = 1.8(2.7), close to the prediction [237] of b2 ≈ 1.59, but also compati-
ble with zero within experimental error bars. The predicted second-order virial EoS is
also shown.

We gain further information by plotting the EoS normalized with respect to the
ideal classical gas,

h(ζ) =
P (ζ)

Pic(ζ)
, (8.25)

in Figure 8.6, where Pic = kBT/(λ3ζ). We get a reduced-noise EoS by averaging,
as described before. We also include theoretical predictions from the ideal Bose gas
and the virial expansion. The mean value of all data points is h = 1.0(9). We get
h = 1.00(3) and h = 1.01(4) for the moving average and average over the equally-
spaced segments, respectively. Within our error bars, we do not observe any deviation
from the ideal classical gas EoS. Comparing with the predictions for the ideal Bose
gas and the second-order virial expansion for the unitary Bose gas [237] in Figure 8.6,
related corrections to the EoS should vanish in the noise. The standard deviation of
the moving average amounts to 3%. Imposing this value, we expect a second-order
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virial correction of the same order below ζ0 = 50, which can be obtained in our setup¶.
The stability criterion (9) shows a T 3/2/n behavior, whereas the ideal classical inverse
fugacity (8.23) goes like T 3/n. Therefore, while keeping the gas in quasi-equilibrium
by lowering the density, we do not find a principal limitation on the inverse fugacity.

Furthermore, we fit the complete dataset to the normalized second-order virial EoS

h2(ζ) =
Pv2(ζ)

Pic(ζ)
= 1 +

b2

ζ
, (8.26)

with the coefficient b2 as a fit parameter. We obtain b2 = 1.8(2.7), a value which is
remarkably close to the theoretical prediction b2 = 9

√
2/8 ≈ 1.59 [237]. It is compatible

with zero within error bars. Therefore, we cannot observe any deviation from the ideal
classical gas, or any other theory for the EoS presented. This result allows one to define
an upper limit of b2 < 4.5 for the second-order virial coefficient of the unitary Bose
gas.

Apart from its own interest, the measurement of the EoS of the unitary Bose gas jus-
tifies the assumptions made in Section 8.1. The fact that our samples can be described
by the ideal classical Boltzmann gas EoS is a proof of our assumption of Gaussian
density distributions made in Section 8.1.

8.3 Summary

In summary, in the first section of this chapter we have presented our measurements
of the temperature-dependent, unitarity-limited three-body loss rate constant in the
resonantly interacting Bose gas. We have introduced the method of analyzing the data
and discussed the negligible influence of N 6= 3 loss processes. Our measurements are
well described by the theory presented in AppendixA within experimental error bars.
The theory is free of adjustable parameters and represents the fastest-possible loss rate.
We have furthermore discussed processes leading to higher losses than predicted.

The second section of this chapter is dedicated to the measurement of the equation
of state (EoS) of the finite-temperature unitary Bose gas. We have briefly discussed
the method of obtaining the EoS from the in-situ data obtained when measuring the
three-body loss coefficients. We have compared the data of the normalized pressure
to theory, and we have observed no departure from the ideal classical gas within our
experimental signal-to-noise ratio. To observe corrections to the ideal classical EoS,
one would have to decrease the inverse fugacity ζ, which can possibly be achieved
by reaching lower temperatures and higher atom numbers, while maintaining a quasi-
equilibrium situation in our trap. The EoS measurement furthermore justifies the
measurement of the three-body loss rate coefficient presented before.

¶We obtained a preliminary result of ζ0 < 40 without recompressing the sample after evaporation
to Pevap.



Chapter 9

Conclusion to Part II

Summary

In the second part of this thesis, we have presented results obtained on the Bose gas
at strongest-possible s-wave interaction, that is, at unitarity. We have first introduced
the theoretical tools of the N -body scattering problem and given applications to the
two- and three-body situation necessary to understand our measurements.

We have then briefly discussed the present experimental apparatus of the lithium
experiment at ENS, where we have detailed on the newly-established method of RF
transfers, bringing ≈ 40% of the atoms initially in the weakly-interacting state |2〉 to
the unitary state |1〉 at constant magnetic field. We are thus capable of producing and
probing finite-temperature Bose gases of macroscopic atom numbers. The frequencies
of the final trap depend on the power of the dipole trap laser, which is varied. We have
presented a careful calibration to obtain reliable values for the mean spatial densities
of atoms in the trap.

We then have presented our measurement of the three-body loss constant in the
unitary Bose gas as a function of temperature. We have detailed on the methods of
data analysis. Based on the theory presented, we can explain our experimental findings
without any adjustable parameter. These results are universal in the sense that they
are valid for any unitary Bose gas with short-range interactions. The experimental
verification of the theory of losses allows the definition of the quasi-equilibrium range
for the unitary Bose gas: The condition for quasi-equilibrium in any gas is that a
particle executes more elastic collisions than inelastic ones. This yields the ratio

1 ≪ γ2

γ3

=
8

9
√

3

(mkBT )3/2

π3/2~3n
=

√
29

35

1

nλ3
th

≈ 1.45
1

nλ3
th

,

between the elastic two-body collision rate γ2 and the inelastic three-body collision
rate γ3. The condition for quasi-equilibrium is that this rate is larger than one∗. This
condition for the existence of a quasi-equilibrium state of the homogeneous, finite-
temperature unitary Bose gas can only be stated after the experimental characteriza-
tion of the three-body loss rate, an essential ingredient for the the three-body scattering
rate per particle γ3, which was presented in this part of the present thesis. We recall

∗Note that for the right-hand side of Equation 9 to be valid, temperatures need to be in microkelvins
and densities in cm−3.
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that the theory contains no adjustable parameters. It represents the fastest-possible
formation of molecules in the S-wave channel. The fact that the reaction rate con-
stant rises when lowering the temperature is an evident contradiction of the Arrhenius
equation†.

We have then employed the data collected for the loss experiment for measuring
the equation of state (EoS) of the finite-temperature unitary Bose gas down to inverse
fugacities of ζ ≈ 200. In the low-fugacity limit, where the gas is very dilute, the
EoS is that of an ideal classical gas because of the absence of important interactions
and correlations. The EoS we have measured does not contain features allowing to
distinguish it from the classic ideal gas within the experimental signal-to-noise ratio.
We have performed a fit in order to determine a value for the second-order virial
coefficient. The result −0.9 ≤ b2 ≤ 4.5 is compatible to the theoretical prediction
b2 ≈ 1.6 [237] and allows for the definition of an upper bound of b2.

Perspectives

The subject of how the three-body losses can be described in the finite-temperature
unitary Bose gas has been elucidated by the measurements presented in this thesis.
However, open questions still remain. An obvious one is the onset of contributions
from higher angular momenta. Being frozen out at ultracold temperatures analogously
to the two-body case, these depend on the detailed shape of the three-body potential.
Theoretical predictions indicate [201, 230] their onset at what is normally considered
ultracold temperatures, that is in the 10-mK range for lithium. A further question is
the comparison of the behavior of the three-body loss rate to the theoretical calcula-
tions across the Feshbach resonance. Reference [201] predicts a step-like behavior of
the three-body loss rate when crossing the Feshbach resonance, where k3 drops to less
then one tenth of the unitarity limit on the a < 0 side. We could not observe this
phenomenon even within the finite magnetic field stability in our setup. More pro-
found examination needs to be pursued here. However, for fermionic systems it is now
well known that properties of the system change smoothly when crossing a Feshbach
resonance.

Further examination the RF transfer method introduced in this thesis should reveal
interesting physics. In the mean-field regime, the population dynamics can be described
by a Josephson-like Hamiltonian, which includes a transition from the well-known Rabi
oscillations to interaction-induced population self-trapping [238, 239]. Since in our case,
the atoms in state |1〉 have strongest-possible interactions, the mean-field description
breaks down. Thus, we expect modified behavior, possibly described by quantum-
Zeno-effect-like dynamics.

The equation of state (EoS) measurements have been limited by the finite amount
of data on hand for very low temperatures. This imposes a given signal-to-noise ratio,
ideally being lower than the corrections to the EoS of the ideal classical gas. These are
predicted to have a relative amplitude of 1% for the highest fugacities we could observe.
Another option for observing these effects is to work in a range where higher corrections
are observable. To keep the condition of quasi-equilibrium for a given fugacity and

†The Arrhenius equation for the chemical reaction rate constant is commonly stated as K =
A exp[−Ea/(kBT )], where the constants A and Ea depend on the system under consideration.
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temperature, and the resulting three-body loss rate, a promising experimental step is
the increase of the slowest frequency. Thus, the increase the magnetic curvature to
increase the axial frequency, and simultaneous decrease of the radial frequency allows
to keep a low enough density. The faster equilibration resulting from this change of
the experimental parameters would allow to keep significantly more atoms to proceed
deeper inside the interesting correlated regime of high fugacities [196, 237].

The present setup, where both fermionic and bosonic lithium atoms can simulta-
neously be present in the same trap at ultracold temperatures not only provides an
interesting testbed for mixed-quantum-statistics manybody theories. It also permits to
access boson-fermion Efimov physics [240, 241], a field completely uncovered in current
experimental literature.





General conclusion

In the first part of this thesis, a novel all-solid state laser source emitting 840 mW of
output power at 671 nm was presented. The very satisfying performance of the source is
emphasized by the fact that soon after its completion, the laser was used for driving the
Zeeman slower in the lithium experiment at ENS. Apart from occasional maintenance,
it remained operational in this role, and its remarkable stability has impressed its
operators for more than six months now.

In the second part of this thesis, we have reported on measurements of the three-
body loss rate in the finite-temperature unitary Bose gas. The loss rate constant L3

was measured as a function of temperature. We have found that it is well described
by the limiting value imposed by quantum mechanics. Using this result, we have been
capable of establishing a stability criterion for the homogeneous gas. In the regime of
quasi-stability, we measured the equation of state.

In the lithium experimental apparatus, we have the possibility of studying ultra-
cold isotopic mixtures of fermionic 6Li and bosonic 7Li. Thus, Bose-Fermi Efimov
physics [240, 241] can be explored experimentally. Since the datasets needed for these
studies require a great number of experimental points, reliable laser sources are a key
issue here. Experiments on strongly-interacting Bose-Fermi mixtures will provide fur-
ther insight in mixed-statistic many-body Hamiltonians [242–244], for example in the
study of the bosonic polaron [245–247]. The lithium isotope shift is ≈10 GHz, we are
therefore building a similar second laser source to bridge this frequency gap and drive
a dual-species MOT of 6Li and 7Li.





Appendix A

A glance on theory

The knowledge of the scattering problem of identical Bosons is of major importance
for the work presented in this thesis. We will thus detail on the N -particle scattering
problem, from which we will deduce results for the case of two and three particles. This
allows to discuss the possibility of establishing a quasi-equilibrium state of the unitary
Bose gas.

A.1 The N-body scattering problem

We will present the nonrelativistic treatment of the N -body scattering problem. Since
we consider N particles in three-dimensional space, the problem is a priori 3N -di-
mensional. Separation of the center-of-mass coordinate, however, allows to reduce the
problem to d = 3(N − 1) dimensions.

We formally introduces hyperspherical coordinates in the center-of-mass system.
We assign to any d-dimensional vector r a hyperradius r,

r2 =
1

N

∑

i<j

r2
ij , (A.1)

where rij is the distance between particles i and j. r is thus a measure of the size of
the system. We are left with d − 1 hyperangles, combined in the quantity ř:

r → {r = |r|, ř = r/|r|} (A.2)

For d-dimensional wavenumber vectors k, we have accordingly

k → {k = |k|, ǩ = k/|k|} (A.3)

A great choice of the hyperangular subset ř of hyperspherical coordinate systems ex-
ists. Since we will only consider quantities integrated or averaged over the angular
coordinates, the choice is arbitrary and of no further importance.

The results of the treatment presented here was published in [248] and [249]. It is
the straightforward generalization of the 2-body theory presented e.g. in [161]. In the
asymptotic limit r → ∞, the wave function is of the form

Ψa ∝ eikr + f(k,k′)
eikr

r
d−1
2

, (A.4)
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where the first term represents the incoming part, a plane wave. The second term
describes an outgoing hyperspherical wave, whose relative amplitude is fixed by the
scattering amplitude f(k,k′). Furthermore, we can develop d-dimensional functions in
terms of hyperspherical harmonics Yλµ(ř) [250]

Ψb =
∑

λµ

AλµYλµ(ř) [jd,λ(kr) cos δλ − nd,λ(kr) sin δλ] , (A.5)

where λ ∈ N0 and −λ ≤ µ ≤ λ, λ ∈ Z are quantization numbers of the hyper-
spherical harmonics. Aλµ are constants of the development, and δλ is the scatter-
ing phaseshift [161]. The d-dimensional hyperspherical Bessel (Neumann) functions
jd,λ(kr) (nd,λ(kr)) read [250]

jd,λ(kr) =
Γ(α)

(d − 4)!!

Jα+λ(kr)

(kr)α
−−−−→
kr→∞

√
2

π

2α−1Γ(α)

(d − 4)!!

cos
(
kr − 2α+2λ−1

2
π
)

(kr)α+1/2
, (A.6)

nd,λ(kr) =
Γ(α)

(d − 4)!!

Nα+λ(kr)

(kr)α
−−−−→
kr→∞

√
2

π

2α−1Γ(α)

(d − 4)!!

sin
(
kr − 2α+2λ−1

2
π
)

(kr)α+1/2
, (A.7)

where Γ is the Riemann zeta function, and Jα+λ (Nα+λ) are the usual one-dimensional
Bessel (Neumann) functions. We also introduced α = d/2 − 1. Yλµ are eigenfunctions
of the d-dimensional total angular momentum operator Λ2 ≡ −∑d

i>j (xi∂j − xj∂i)
2,

[Λ2 − λ(λ + d − 2)]Yλµ(ǩ) = 0 . (A.8)

Obviously, the eigenvalues are λ(λ + d − 2). We now can compare the expressions for
Ψa and Ψb to distinguish the ingoing and outcoming contributions similarily to the
case of two particles [161]. By using the hyperspherical Fourier transform [250]

eikr = (d − 2)!!
2πd/2

Γ(d/2)

∑

λ

iλjd,λ(kr)Y ∗
λµ(ǩ)Yλµ(ř) , (A.9)

and the “lucky guess” of

Aλµ = (d − 2)!!
2πd/2

Γ(d/2)
iλY ∗

λµ(ǩ) exp(iδλ) , (A.10)

we can calculate the difference

Ψb − eikr = f(k,k′)
eikr

r
d−1
2

, (A.11)

We find for the scattering amplitude

f(k,k′) =

(
2π

k

) d−1
2 ∑

λµ,λ′µ′

e−iπ(d+λ−3)/2Y ∗
λµ(ǩ)Yλ′µ′(ǩ′)(Sλ − 1) , (A.12)

where Sλ = e2iδλ is the so-called S matrix. By allowing coupling between the (λ, µ)
channels, we get

f(k,k′) =

(
2π

k

) d−1
2 ∑

λµ,λ′µ′

e−iπ(d+λ−3)/2Y ∗
λµ(ǩ)Yλ′µ′(ǩ′)(Sλµ,λ′µ′ − δλ,λ′δµ,µ′) , (A.13)
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An important physical quantity is the scattering cross-section for distinguishable par-
ticles

σdist =

〈∫
dǩ |f(k,k′)|2

〉

ǩ

. (A.14)

To calculate it from (A.13), we integrate over the final hyperangles ǩ′ using the or-
thonormality relation ∫

dǩ Y ∗
λµ(ǩ)Yλ′µ′(ǩ) = δλ,λ′δµ,µ′ (A.15)

and averaging over the initial hyperangles ǩ according to

〈X〉ǩ =

∫
dǩ X∫
dǩ

=

∫
dǩ X

I(d)
. (A.16)

I(d) is the d-dimensional solid angle [250]

I(d) =
2πd/2

Γ(d/2)
, (A.17)

and Γ is the Riemann-Zeta function. This is appropriate to our experimental situation,
where we do not measure the initial or final hyperangles, but rather deal with a uniform
distribution. The result is

σdist =
1

I(d)

(
2π

k

)d−1 ∑

λµ,λ′µ′

|Sλµ,λ′µ′ − δλ,λ′δµ,µ′ |2 . (A.18)

In the case of indistinguishable particles, one has to include permutation (anti-)symmetry
and therefore gets the modified cross-section

σindist = Npσdist . (A.19)

For instance, for N indistinguishable particles, we have Np = N !. The N -body collision
rate constant is obtained from σindist by multiplying it by the hyperradial velocity,

KN(k) =
~k

µN

σindist =
~k

µN

· Np

I(d)

(
2π

k

)d−1 ∑

λµ,λ′µ′

|Sλµ,λ′µ′ − δλ,λ′δµ,µ′ |2 , (A.20)

where we used the definition of the N -body reduced mass in d dimensions,

µN =

(∏N
i=1 mi∑N
i=1 mi

) 1
N−1

=
m

N
1

N−1

. (A.21)

Unitarity implies that the sum in (A.20) is replaced by
∑

J(2J + 1)sJ(k) [248, 249],
where we introduced the total angular momentum J and the contribution sJ ≤ 1 of
channel J . We end up with

KN,unit = NpN
1

N−1 Γ

(
3(N − 1)

2

)
~

m

(
4π

k2

) 3N−5
2 ∑

J

(2J + 1)sJ(k) . (A.22)
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In the ultracold regime, higher angular moment are “frozen out”. The only remaining
contribution originates from L = 0:

KN,max = NpN
1

N−1 Γ

(
3(N − 1)

2

)
~

m

(
4π

k2

) 3N−5
2

, (A.23)

The same result for L = 0 was found independently using a generalized N -body optical
theorem [251]. The N -body scattering event rates per particle are calculated as follows:

γN = KNnN−1 , (A.24)

where n is the number density of a gas assumed uniform here.

A.1.1 Two-body elastic scattering

To form a molecule in a collision of N ground state∗ atoms, one needs N + 1 collision
partners to conserve energy†. In the case of N = 2, it is thus easy to see that all
collisions need to be of elastic nature, except for the cases that have been discussed
in Section 8.1. We also do not need to take into account higher partial waves, l 6= 0,
which is easy to see from the fact that in alkali-atoms, the term of lowest order in r of
the interatomic potential is −C6/r

6. The large-distance potential thus reads

V (r) = −C6

r6
+

~
2l(l + 1)

2mr2
. (A.25)

This potential features a rotational barrier with a height of

Vb =
1

3
√

6C6

·
(

~
2l(l + 1)

m

)3/2

. (A.26)

As we will see later, p-wave scattering is symmetry-forbidden for bosons. For 7Li,
the next-higher contribution comes from the d-wave channel, or l = 2. With the C6 of
[154], this yields a d-wave barrier of a height of 9 mK, a value three orders of magnitude
above the typical energy scale in our experiments.

The elastic s-wave scattering amplitude reads [161]

fs(k) = − 1
1
a

+ ik + 1
2
k2re + O(k4)

, (A.27)

where re is the effective range of the potential. In the ultracold limit, k → 0, the re

term and all higher orders disappear. Thus, the scattering process is fully described
by a single parameter, the s-wave scattering length a.

a = − lim
k→0

tan δo(k)

k
, (A.28)

∗The use of the term ground-state atom is ambiguous. As it is the convention in atomic physics,
we will refer to all states in the |F,mF 〉 manifold of the 22S1/2 state of 7Li as ground states. Since we
will work with atoms in the absolute ground state |1, 1〉, inelastic two-body collisions that necessarily
change the internal state of the collision partners are energetically forbidden.

†The (N − 1)/N -fold of the binding energy released in the recombination process is delivered to
the free atom.
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fs does not have any angular dependence. Owing to the fact that the description of
the interaction does not depend on the microscopic parameters, this regime is called
the universal regime.

Unitarity of the two-body scattering matrix is achieved when

a → ∞ (A.29)

The unitarity-limited cross section than reads

σ = Np
4π

k2
, (A.30)

and we have Np = 2 for identical bosons, Np = 0 for identical fermions and Np = 1
for distinguishable particles. Thus, because of (anti)symmetrization of the 2-body
wavefunction for indistinguishable particles, identical fermions do not scatter in the
s-wave channel. For the same reason, the scattering amplitude for identical bosons
does not have a p-wave contribution. From this result and (A.23), (A.24), we get the
unitarity-limited collision rate for identical Bosons

γ2 =
~k

µ2

σn =
4π~n

mk
=

64
√

π ~
2n√

m3kBT
, (A.31)

Another intriguing feature of short-range interactions is the existence of a shallow
universal dimer for a > 0, which is the weakest bound state of the molecular potential.
Its energy reads

Ed =
~

2

ma2
. (A.32)

Because the universal dimer disappears at unitarity, it does not provide a decay path
for our measurements.

A.1.2 Unitarity-limited three-body loss

From Equation (A.23) we readily get the expression for K3(E):

K3(E) =
144

√
3π2

~
5

m3E2

∑

J

(2J + 1)sL(E) , (A.33)

where we used the identity E = ~
2k2/(2µ3). To account for our experimental situation,

where we control the temperature T of an atomic cloud instead of the collision energy,
we need to average over an energy distribution. In the non-condensed regime, we
get [230, 252]‡

K3(T ) =

∫ ∞

0

dE K3(E) E2 exp

(
− E

kBT

)

∫ ∞

0

dE E2 exp

(
− E

kBT

) . (A.34)

‡Note that the according Equation (4) given in [252] is wrong, the factor 2 needs to be in the
denominator instead of the numerator.



142 Chapter A. A glance on theory

The integration is straightforward and it follows

K3,lim(T ) =
72
√

3π2
~

5

m3k2
BT 2

, (A.35)

where we assumed exclusive unitarity-limited J = 0 contribution. We assume now that
any three-body collision described here leads to the formation of a dimer. These states
rapidly decay to (nonuniversal) two-body deeply-bound states. The binding energy
liberated in this process is converted to kinetic energy of the dimer and the free atom.
It is orders of magnitude above the typical depth of the traps used to confine the atoms,
so both the free atom and the dimer will be lost directly from the trap, if no further
collisions happen. To calculate the three-body loss rate constant from the event rate
constant, we have to multiply it by the number of lost particles per event, which is
three:

L3,lim(T ) =
216

√
3π2

~
5

m3k2
BT 2

(A.36)

This allows to define a scattering rate per particle according to (A.24):

γ3,lim(T, n) = K3,lim(T )n2 =
72
√

3π2
~

5n2

m3k2
BT 2

. (A.37)

A.2 Equation of state of the finite-temperature uni-
tary Bose gas

Three-body loss can pose strict constraints on the possibility to realize strongly-inter-
acting gases, because the gaseous state is not a ground state of the system. We will
have to find a regime in which three-body loss is sufficiently suppressed for the gas to
be in quasi-equilibrium. This is established when the atoms execute significantly more
elastic than inelastic collisions, which can be stated as

γ2

γ3

≫ 1 . (A.38)

The γi are defined in Equations (A.31) and (A.37).

γ2

γ3,lim

=
8

9
√

3

(mkBT )3/2

π3/2~3n
=

√
29

35

1

nλ3
th

≈ 1.45
1

nλ3
th

, (A.39)

which needs to be larger than one in quasi-equilibrium. For the definition of Equa-
tions (A.31) and (A.39) we used the thermal de-Broglie wavelength

λth =
2π

kth

=

√
2π~2

mkBT
. (A.40)

The pressure P can be defined as

P = f(T, z) , (A.41)
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Figure A.1: The equations of state from Equations (A.42), (A.44) and (A.47).

where z = exp[µ/(kBT )] is the fugacity and µ is chemical potential. The function
P (T, z) over its variable range is called the equation of state (EoS) of a gas. We will
give a few examples here.

In the case of no interaction-free particles and classical statistics, the EoS reads

Pic =
kBT

λ3
th

z , (A.42)

the EoS of the idel classical or Boltzmann gas. For more realistic systems in the high-
temperature limit, one can perform a development of the pressure in terms of powers
of the fugacity:

P =
kBT

λ3
th

∞∑

n=1

bnz
n . (A.43)

This development is called virial development, and the coefficients bn are accordingly
called the n-th order virial coefficients. As it is obvious, in the ideal classical case all
coefficients are zero except for b1 = 1. Since any gas of sufficiently low fugacity can
always be described by an ideal classical gas, because interactions and correlations
do not play a role anymore, b1 = 1 holds for any gas. The ideal Bose gas above
condensations threshold displays the EoS

PiB =
kBT

λ3
th

Li5/2(z) , (A.44)

where the polylogarithm is defined as

Lis(z) =
∞∑

q=1

zq

qs
(A.45)

It is immediately clear from this definition that the virial coefficients of the ideal Bose
gas read

bn = n−5/2 . (A.46)

Using the known analytic solution of the two-body problem in a trap, the second virial
coefficient for the unitary Bose gas has been determined to be [237]

b2 =
9

8

√
2 ≈ 1.59 . (A.47)
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The EoSs (A.42), (A.44) and (A.47) are shown in Figure A.1.
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Publications

We will present here work published in peer-reviewed journals in the framework of this
thesis.
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Abstract. We present the design, implementation and characterization of a dual-species magneto-optical
trap (MOT) for fermionic 6Li and 40K atoms with large atom numbers. The MOT simultaneously contains
5.2×109 6Li-atoms and 8.0×109 40K-atoms, which are continuously loaded by a Zeeman slower for 6Li and a
2D-MOT for 40K. The atom sources induce capture rates of 1.2×109 6Li-atoms/s and 1.4×109 40K-atoms/s.
Trap losses due to light-induced interspecies collisions of ∼65% were observed and could be minimized to
∼10% by using low magnetic field gradients and low light powers in the repumping light of both atomic
species. The described system represents the starting point for the production of a large-atom number
quantum degenerate Fermi-Fermi mixture.

1 Introduction

The study of ultracold atomic Fermi gases is an emerg-
ing research field aiming to understand many-body quan-
tum phenomena occurring in various fields, such as con-
densed matter systems, disordered systems, quark-gluon
plasmas or astrophysics (neutron stars) [1,2]. They provide
a unique opportunity to create strongly correlated many-
body systems with a high degree of experimental con-
trol. One intends to realize analog quantum simulators in
Feynman’s spirit [3], with which many-body Hamiltonians
could be solved.

In the field of ultracold Fermi gases the study of mix-
tures of two different fermionic species with different mass
is gaining interest. Both theoretical and experimental as-
pects motivate this study. Such mixtures are predicted to
exhibit a rich phase diagram such as phase separation [4],
crystalline phases [5], exotic pairing mechanisms [6] and
long-lived trimers [7]. They further allow the creation of
polar molecules, which have a long-range dipole-dipole in-
teraction [8,9]. Two different atomic species yield addi-
tional tunable parameters, such as the mass imbalance
and species-specific potentials. The mass-imbalance can
be varied in an optical lattice, where the effective mass of
each species depends on the optical lattice parameters.

The mixture 6Li-40K is a prime candidate for these
studies. 6Li and 40K are the only stable fermionic alkali

a e-mail: armin.ridinger@gmail.com

isotopes and thus belong to the experimentally best-
mastered class of atoms. Moreover, both species have
bosonic isotopes which can also be used to create boson-
fermion gases. Furthermore, the mass difference between
the two species is large leading to a large electric dipole
moment for heteronuclear diatomic molecules (3.6 D) [10].
Finally, many of the above-mentioned predicted quantum
phases require strong interspecies interactions and a uni-
versal behavior of the gas. It was recently reported [11]
that it is possible to reach the universal regime for the
6Li-40K-mixture due to the existence of a 1.5 gauss-wide
Feshbach resonance.

The starting point of most mixture experiments is a
dual-species magneto-optical trap. It is desirable to cap-
ture a large number of atoms at this stage for the fol-
lowing reasons. First, large atom numbers allow to an-
ticipate the losses induced by the subsequent evaporative
cooling procedure, which needs to be applied to reach the
quantum degenerate regime. Second, a large initial atom
number makes the evaporation procedure more efficient.
Third, the Fermi temperatures of the gas are larger for
larger atom numbers and thus quantum phenomena can
be observed at higher temperatures. Finally, a large atom
number leads to better signal-to-noise ratios and a greater
robustness in day-to-day operation.

A dual-species magneto-optical trap with large atom
numbers also allows an efficient creation of ultra-
cold heteronuclear molecules via photoassociation. Us-
ing this technique, we have been able to create excited



2 The European Physical Journal D

heteronuclear 6Li-40K* molecules with a formation rate of
∼5 × 107s−1. The results of this experiment will be the
subject of a separate publication [12].

In this article we describe the design, implementation
and characterization of a dual-species magneto-optical
trap for 6Li and 40K with large atom numbers. In a dual-
species MOT, the atom number is in general reduced
compared to single-species MOTs due to additional in-
terspecies collisions and to experimental constraints, such
as the imperative to use the same magnetic field for both
species or common optics. In other groups working with
the 6Li-40K mixture the following atom numbers have
been achieved: in the Munich group [13] the dual-species
MOT is loaded from a Zeeman slower for 6Li and a va-
por for 40K, resulting in atom numbers of ∼4× 107 (6Li)
and ∼2×107 (40K). In the Innsbruck group [14] the dual-
species MOT is loaded from a multi-species Zeeman slower
and atom numbers of ∼109 (6Li) and ∼107 (40K) are
achieved. In the group in Amsterdam [15] two separate
2D-MOTs allow to load ∼3 × 109 (6Li) and ∼2 × 109

(40K). In our setup, the dual-species MOT is loaded from
a Zeeman slower for 6Li and a 2D-MOT for 40K. It si-
multaneously contains 5.2 × 109 6Li-atoms and 8.0× 109

40K-atoms, which represents a substantial atom number
improvement.

For our application in particular a large atom number
in the 40K-MOT is of interest, since we intend to sympa-
thetically cool 6Li with 40K, where 40K will be prepared
and cooled in two different spin states. This approach has
been implemented by Tiecke et al. [11] and proved to be
an efficient cooling method, as it can be realized in a mag-
netic trap. In this cooling process mostly 40K-atoms will
be lost.

In future experiments, the atoms stored inside the
dual-species MOT will be polarized and magnetically
transported to an ultra-high vacuum (UHV) environment
with large optical access. There the atom cloud will be
evaporatively cooled to quantum degeneracy in an opti-
cally plugged magnetic quadrupole trap. Finally it will be
transferred into an optical trap to investigate many-body
phenomena in lower dimensions.

This article is organized as follows. In Section 2 the
experimental setup, including the vacuum assembly and
the laser systems, is described. In Section 3 we present the
design and the performance of the atom sources, which are
used to load the dual-species MOT, i.e. a Zeeman slower
for 6Li and a 2D-MOT for 40K. In Section 4, the dual-
species MOT is characterized and a study of light-induced
interspecies collisions is presented.

2 Experimental setup

2.1 Vacuum system

A three-dimensional view of the vacuum system is shown
in Figure 1. It consists of two atom trap chambers and
three flux regions. The first chamber is a central octagonal
chamber where the 6Li-40K dual-species MOT is prepared.

40K 2D!MOT
6Li Zeeman 

slowerslower

Dual species MOT

S i M tiScience

cell

Magnetic 

transport 50 cm

Fig. 1. (Color online) Schematics of the vacuum assembly.
The dual-species MOT is loaded from a 2D-MOT for 40K and a
Zeeman slower for 6Li. A magnetic transport allows to transfer
the cloud to a UHV science cell with large optical access.

The second chamber is a glass science cell, in which we will
evaporatively cool the mixture to quantum degeneracy.

The three flux regions are all connected to the octago-
nal chamber and are divided in two parts. First, the atom
sources, namely a 2D-MOT for 40K and a Zeeman slower
for 6Li. Second, a magnetic transport connecting the oc-
tagonal chamber to the final science cell. This magnetic
transport consists of a spatially fixed assembly of mag-
netic coils which creates a moving trapping potential of
constant shape by applying time-varying currents [16]. It
has already been implemented in our system and will be
described in a separate publication.

The octagonal chamber can be isolated from the source
regions and the science cell by all-metal UHV valves,
which allow for separate baking and trouble-shooting. The
2D-MOT and the Zeeman slower region are pumped by
one and three 20 L/s ion pumps, respectively. The oc-
tagonal chamber is pumped by a 40 L/s ion pump and
the science chamber by a 40 L/s ion pump and a titanium
sublimation pump. Differential pumping tubes connect the
source regions to the octagonal chamber in order to cre-
ate a high vacuum environment in the octagonal cell. In
a similar way, the science chamber is connected to the
octagonal chamber via a combination of standard CF16-
and homemade vacuum tubes of 1 cm diameter to fur-
ther increase the vacuum quality. The glass science cell
has a large optical access and permits the installation of
an objective for high-resolution imaging.

2.2 Laser systems

The dual-species MOT requires separate laser systems and
optics for the two different atomic transition wavelengths
671 nm (Li) and 767 nm (K). The laser systems provide
several beams with different frequencies and intensities
for slowing, trapping and probing each atomic species. A
sketch of the energy levels of the atomic species and the
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Fig. 2. (Color online) Level diagrams for the 6Li and 40K D2-
lines with their respective hyperfine structures, showing the
frequencies required for the dual-species MOT operation. The
diode lasers are locked to the indicated saturated absorption
crossover signals 2S1/2(F = 1/2, F = 3/2) → 2P3/2 of 6Li and
4S1/2(F =1, F =2)→ 4P3/2 of 39K.

frequencies of interest are shown in Figure 2. The laser
systems are set up on separate optical tables and the gen-
erated laser beams are transferred to the main experi-
mental table using optical fibers. A simplified scheme of
the laser systems is shown in Figure 3. Each one consists
of a single low output-power frequency-stabilized diode
laser (DL) and three tapered amplifiers (TAs) used for
light amplification. Due to the small hyperfine splittings of
both 6Li and 40K, the required frequencies of the various
laser beams are conveniently shifted and independently
controlled by acousto-optical modulators (AOMs).

The diode lasers are homemade tunable external cav-
ity diode lasers in Littrow configuration. The laser diode
for Li (Mitsubishi, ref. ML101J27) is of low-cost due to
its mass production for the DVD industry. Its central
free running output wavelength at room temperature is
660 nm which can be shifted into the range of 671 nm by
heating the diode to 80 ◦C. In external cavity configura-
tion its output power is 40 mW at a driving current of
150 mA. Under these conditions the laser diode reaches
a typical lifetime of 6 months. It can be mode hop-free
tuned over a range of 5 GHz. The laser diode for K is an
anti-reflection coated Ridge-Waveguide Laser (Eagleyard,
ref. EYP-RWE-0790-0400-0750-SOT03-0000), whose cen-
tral free running output wavelength at room temperature
corresponds to the desired wavelength. In external cavity
configuration its output power is 35 mW at 90 mA and it
has a typical lifetime of one year. It can be mode hop-free
tuned over a range of 10 GHz.

The tapered amplifiers are commercial semiconduc-
tor chips which are mounted on homemade supports. We
developed compact support designs with nearly no ad-
justable parts, which allow for a quick temperature stabi-
lization, do not require running water for heat dissipation
and allow for an easy installation process. The support
designs are described in detail in the appendix.
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Fig. 3. Laser systems for 6Li and 40K. The frequencies and
amplitudes of the various beams are controlled by AOMs in
single pass (sp) or double pass (dp) configuration. The EOMs
are used to phase modulate a part of the beam for the diode
laser’s frequency stabilization. Single mode polarization main-
taining fibers (FI) are used for beam shaping and spatial fil-
tering. The indicated AOM frequencies allow to generate the
required beam frequencies (see Fig. 2).

We have also developed an all-solid-state laser for
lithium delivering more than 630 mW output power, with
which we intend to increase further the number of laser-
cooled Li atoms. The setup of this light source is described
elsewhere [17].

The frequency of each diode laser is stabilized via satu-
rated absorption spectroscopy for which a small part of the
DL’s output is used (see Fig. 3). A 20 MHz electro-optical
modulator (EOM) is employed to modulate the phase of
the spectroscopy laser beam yielding the derivative of the
absorption signal through a lock-in detection. The result-
ing error signal is transferred to both the diode’s current
(via a high frequency bias-tee), and, via a PID-controller,
to a piezo that adjusts the external cavity’s length with a
4 kHz bandwidth. An AOM is used to offset the frequency
of the diode laser with respect to the absorption line used
for locking. It allows for fine adjustments of the frequency
while the laser is locked.

The Li diode laser frequency is shifted by −331 MHz
from the 6Li 2S1/2(F = 1/2, F = 3/2) → 2P3/2 crossover
signal and the K diode laser frequency is shifted by
+240 MHz from the conveniently located 4S1/2 (F = 1,

F = 2) → 4P3/2 crossover signal of 39K. Note that the

small excited state hyperfine structures of both 6Li and
39K are unresolved in the spectroscopy.

The saturated absorption spectroscopy for lithium is
realized in a heat pipe of 50 cm length, in which a nat-
ural Li sample (with the isotopic abundances 7Li: 92%,
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6Li: 8%) is heated to 350 ◦C to create a sufficiently high
vapor pressure for absorption. The heat pipe consists of
a standard CF40 tube with the Li-sample placed at its
center. The tube is heated with a pair of thermocoax ca-
bles which are wound around the tube in parallel with
opposite current directions in order to prevent magnetic
fields to build up. Condensation of lithium atoms on the
cell windows needs to be inhibited as Li chemically reacts
with glass. This is achieved by adding an argon buffer gas
at ∼0.1 mbar pressure, as Ar-Li collisions prevent Li to
reach the cell windows in ballistic flight. The optimum
argon pressure was chosen such that it provides enough
collisions, but does not substantially collision-broaden the
absorption spectrum. Water cooling of the metallic parts
close to the windows leads to condensation of the diffus-
ing lithium-atoms before those can reach the windows. To
avoid that lithium slowly migrates to the colder surfaces,
the inside of the tube is covered with a thin stainless steel
mesh (Alfa Aesar, ref. 013477), which induces capillary
forces acting on the condensed atoms. Since the surface
tension of liquid lithium decreases with increasing tem-
perature [18], the capillary forces cause the atoms to move
back to the hotter surfaces.

The saturated absorption spectroscopy for potassium
is realized in a cylindrical glass vapor cell of 5 cm length, in
which a natural K-sample (with the isotopic abundances
39K: 93.36%, 40K: 0.012%, 41K: 6.73%) is heated to 40 ◦C.
Here, a small non-heated appendix of the cell serves as
a cold point to prevent condensation of K-atoms on the
surfaces crossed by the laser beam.

In both laser systems the frequency stabilized mas-
ter laser beam is immediately amplified by a first TA
and subsequently injected into a single-mode polarization
maintaining optical fiber (FI) for beam shaping and spa-
tial filtering (see Fig. 3). The output beam of the opti-
cal fiber is split by a series of polarizing beam splitters
into several beams whose frequencies and intensities are
independently shifted and controlled with AOMs in sin-
gle or double pass configuration. The various beams are
then recombined with a pair of polarizing beam splitters
to linearly polarized bichromatic beams consisting of one
cooling and one repumping frequency. Those are then ei-
ther directly injected into a fiber or into another TA for
further amplification. The fibers finally transfer the beams
to the main experimental table.

The injection of a bichromatic beam into a TA, whose
gain-medium is non-linear, is accompanied with the cre-
ation of sidebands [19]. The sideband creation is due to
parametric amplification of the gain medium by the beat-
ing between the two injected frequencies. In general, side-
bands represent a loss of the power available in the in-
jected frequencies and can excite unwanted transitions. In
our case, where the two injected beam components have
significantly different powers and frequencies (differing by
∼228 MHz for 6Li and by ∼1286 MHz for 40K), the power
losses are below 10%. No unwanted transitions are ex-
cited by the amplified bichromatic beams, except for the
Zeeman slower beam, as that is detuned close to an in-
teger multiple of 228 MHz and would thus perturb the

atoms in the MOT. For this beam the injection of both
frequency components into the same TA was thus avoided
(see Fig. 3).

Acoustically isolated homemade mechanical shutters
are placed in front of each fiber on the optical tables al-
lowing to switch off the laser beams when required. The
shutters consist of a low-cost solenoid-driven mechanical
switch (Tyco Electronics, ref. T90N1D12-12) and a razor
blade attached to it via a small rigid lever arm. These shut-
ters typically have a closing time of ∼100 µs when placed
in the focus of a laser beam and a sufficiently reproducible
time delay of the order of 3 ms.

3 Atom sources

Magneto-optical traps can be loaded in different ways.
The most efficient is the loading from a beam of slow
atoms. This scheme allows isolating the MOT from the
atom source region with a differential pumping tube,
through which the beam is directed. The MOT thus
can be located in a UHV chamber where collisions with
the residual gas are minimized. Furthermore, the MOT
will be quickly loaded when the atomic beam is cold
and has a high flux. The most efficient methods to cre-
ate such beams are Zeeman slowers and 2D-MOTs. For
both atomic species 6Li and 40K, both, Zeeman slow-
ers [14,20,21] and 2D-MOTs [22], have been realized in
the past. In our setup we chose to implement a Zeeman
slower for 6Li and a 2D-MOT for 40K.

3.1 6Li Zeeman slower

3.1.1 Introduction

Zeeman-tuned slowing represents one of the earliest and
most widely used techniques to slow down atoms from
an oven [23]. A Zeeman slower longitudinally decelerates
an atomic beam using the radiative force of a counter-
propagating resonant laser beam. The Doppler effect ac-
cumulated during the deceleration is compensated by the
Zeeman effect, induced by an inhomogeneous magnetic
field, which maintains the atoms on resonance and pro-
vides a continuous deceleration.

Two types of Zeeman slowers are commonly used:
the positive-field and the sign-changing field (“spin-flip”)
Zeeman slower [24]. We have implemented a spin-flip
Zeeman slower since it brings about several advantages.
First, a smaller maximum absolute value of the magnetic
field is required. Second, the Zeeman laser beam is non-
resonant with the atoms exiting the slower and thus does
not push them back into the slower, neither it perturbs
the atoms trapped in the 6Li-MOT. However, the spin-
flip Zeeman slower requires repumping light in the region
where the magnetic field changes sign and thus makes the
optics system slightly more complicated.



A. Ridinger et al.: Large atom number dual-species magneto-optical trap for fermionic 6Li and 40K atoms 5

3.1.2 Experimental setup

The Zeeman slower consists of two distinct parts: the oven,
which creates an atomic beam of thermal atoms, and an
assembly of magnetic field coils. In the oven a nearly pure
6Li sample (5 g) is heated to 500 ◦C and an atomic beam is
extracted through a collimation tube. The magnetic field
coils create an inhomogeneous magnetic field along the
flight direction of the atoms.

The oven consists of a vertical reservoir tube (diame-
ter: 16 mm, length: 180 mm) and a horizontal collimation
tube (diameter: 6 mm, length: 80 mm), which is attached
to it (see Fig. 1). The upper end of the reservoir tube
and the free end of the collimation tube are connected to
CF40-flanges. The flange of the reservoir tube is sealed and
allows connecting a vacuum pump for baking purposes.
The flange of the collimation tube connects the oven to
the rest of the vacuum chamber. All parts of the oven are
made of stainless steel of type 302L and connected us-
ing nickel gaskets instead of copper gaskets as they stand
higher temperatures and react less with lithium. The heat-
ing of the oven is realized with two high power heating ele-
ments (Thermocoax, ref. SEI 10/50-25/2xCM 10), wound
around both, the reservoir and the collimation tube.

The temperature of the oven needs to be stabilized
precisely, since the atomic flux critically depends on the
temperature. This is accomplished by an active stabiliza-
tion circuit and an isolation with glass wool and aluminum
foil. Along the collimation tube a temperature gradient
is maintained in order to recycle lithium atoms sticking
to the inner tube walls through capillary action, as ex-
plained above. In order to amplify the effect of capillary
action, a thin stainless steel mesh with a wire diameter
of 0.13 mm (Alfa Aesar, ref. 013477) is placed inside the
tube. This wire decreases the effective diameter of the col-
limation tube to∼5 mm. For the operating temperature of
500 ◦C, the vapor pressure of lithium in the oven amounts
to 4× 10−3 mbar.

A computer controlled mechanical shutter (Danaher
Motion, ref. BRM-275-03) in front of the oven allows to
block the atomic beam during experiments or when the
6Li-MOT is not in operation.

The oven is pumped through the collimation tube with
a 20 L/s ion pump and isolated from the main chamber
via three differential pumping stages and the tube of the
Zeeman slower. The pumping efficiency through the colli-
mation tube is ∼0.19 L/s resulting in a pressure drop of
a factor ∼100. The second and third differential pump-
ing tubes both have a length of 100 mm and a diameter
of 5 mm and 10 mm, respectively. A 20 L/s ion pump is
placed after each tube. In total a pressure drop of a factor
of ∼2.5× 106 between the oven and the main chamber is
obtained.

The assembly of the oven is a three-step procedure.
First, the metallic parts of the oven are pre-baked at
600 ◦C during 48 h. Then, the oven is filled with the
lithium sample under air atmosphere and baked again at
600 ◦C during 12 h in order to eliminate the impurities
in the lithium sample (mostly LiH). Typically 50% of the
sample is lost during this procedure. Then, the oven is

Fig. 4. (Color online) 6Li Zeeman slower coil assembly and
generated axial magnetic field profile. The thermal atoms com-
ing from the 6Li-oven enter the coil assembly at the position 0,
and a fraction of them is slowed down and finally captured in
the 6Li-MOT, which is located at 71.4 cm. A compensation coil
placed on the opposite side of the MOT (at 84.1 cm) ensures
that the magnetic field is zero at the position of the MOT.

connected to the rest of the vacuum chamber under an ar-
gon atmosphere, since argon does not react with lithium.
Since argon damages ion pumps, the vacuum chamber is
first pumped by a turbo molecular pump during 12 h be-
fore the ion pumps are finally launched and the oven is
operational.

The Zeeman slower coils are mounted on a 65 cm long
standard CF40 tube placed between the oven and the
MOT chamber. A sketch of the coil assembly and the gen-
erated axial magnetic field profile are shown in Figure 4.
The coil assembly extends over L = 55 cm and is sepa-
rated from the position of the MOT by 16 cm. The coils
are connected in series and were designed such that the
desired magnetic field profile is generated for a moderate
driving current of 12 A. The axial magnetic field of the
slower along the flight direction of the atoms is measured
to be 570 G at the entrance and −220 G at the exit.

The magnetic field of the Zeeman slower is non-zero at
the position of the MOT and hence compensated by a coil
placed opposite to the slower coils at a distance of 12.7 cm
from the MOT (see Fig. 4). The compensation coil consists
of 4 coil layers wound around a 10 cm long CF40 standard
tube. They are powered by a separate power supply for
fine adjustments. When compensated, the magnetic field
has an axial gradient of 0.5 G/cm at the position of the
MOT.

The cables of the Zeeman slower coils (APX France,
ref. méplat cuivre émaillé CL H 1.60 × 2.50) stand bake
out procedures up to 200 ◦C. One layer of a heating cable
(Garnisch, ref. GGCb250-K5-19) is permanently placed
underneath the magnetic field coils for these bake out pro-
cedures. To avoid heating of the vacuum parts during the
Zeeman slower’s operation, two layers of water coils were
wound underneath the coil layers.

Slowing and repumping light for the Zeeman slower
is derived from a bichromatic laser beam which is pro-
vided by an optical fiber originating from the laser system.
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It has a total power of Pfiber = 50 mW and its frequencies
are both red detuned by ∆ωslow = ∆ωrep = 75 Γ from
the 2S1/2(F = 3/2) → 2P3/2(F

′ = 5/2) slowing and the
2S1/2(F = 1/2) → 2P3/2(F

′ = 3/2) repumping transi-
tion (see Fig. 2). The intensity Islow of the slowing light
is 8 times bigger than the intensity Irep of the repumping
light. Both beam components have the same circular po-
larization (σ+ at the position where the atoms enter the
slower).

The detuning of the slowing light and the axial mag-
netic field at the entrance of the coil assembly define the
so-called capture velocity vZee

cap of the Zeeman slower. All

atoms with a velocity smaller than vZee
cap are expected to be

decelerated to the same final velocity vZee
fi at the exit of the

slower, provided that they initially populate the correct in-
ternal atomic state. The resonance condition for the atoms
inside the slower yields vZee

cap ∼ 830 m/s and vZee
fi ∼ 90 m/s.

The exit velocity of the slower is thus larger than the cap-
ture velocity of the 6Li-MOT, which is estimated to be
∼50 m/s. However, the atoms are still decelerated signifi-
cantly in the region between the slower exit and the MOT
and are thus expected to be captured by the MOT. The
capture velocity of the Zeeman slower is smaller than the
most probable thermal speed of the atomic beam, which
is given by vp =

√

2kBT/m = 1464 m/s at T = 500 ◦C,
where kB denotes the Boltzmann constant andm the mass
of the 6Li-atoms.

The bichromatic Zeeman slower beam is expanded and
focused by a lens pair. The focusing of the beam accounts
for the divergence of the atomic beam and the loss of beam
power due to absorption and thus yields an efficient uti-
lization of the available laser power. In addition, it induces
a small cooling effect along the transverse direction [24].
The 1/e2-diameter at the position of the MOT is 31 mm
and the focus is at a distance of 120 cm from the MOT,
10 cm behind the oven.

The divergence of the atomic beam is an important pa-
rameter characterizing the Zeeman slower. Three factors
contribute to it: first, the geometry of the oven’s collima-
tion and the subsequent differential pumping tubes, sec-
ond the atom’s deceleration inside the slower, and third
the transverse heating due to the scattered photons during
the slowing process. In order to estimate the divergence
of the atomic beam, we calculate the maximum possible
deflection of an atom which exits the oven with a longi-
tudinal velocity vZee

cap . An atom with this velocity needs
∼1.1 ms to reach the exit of the Zeeman slower and ad-
ditional ∼1.8 ms to reach the MOT. Due to the geome-
try of the collimation and differential pumping tubes it
can have a maximum transverse velocity of ∼16 m/s. The
change in transverse velocity due to the heating is cal-
culated to be ∼2.5 m/s [25] and is thus negligible with
respect to the maximum transverse velocity determined
by the tube geometry. The final transverse displacement
of the atom with respect to the beam axis at the position
of the 6Li-MOT would thus be ∼5 cm, resulting in an
effective beam divergence of ∼90 mrad. This divergence
requires 6Li-MOT beams of a large diameter.

Table 1. Optimized values for the parameters of the 6Li
Zeeman slower, yielding a 6Li-MOT capture rate of ∼1.2 ×
109 atoms/s at an oven temperature of 500 ◦C. The definition
of the symbols is given in the text. The natural linewidth of
6Li is Γ/(2π) = 5.87 MHz. The length of the Zeeman slower
coil assembly is 55 cm.

6Li Zeeman slower
Pfiber (mW) 50
∆ωslow (Γ ) –75
∆ωrep (Γ ) –75
Irep/Islow 1/8
Bmax (G) 570

(a) (b)

Fig. 5. (Color online) 6Li-MOT capture rate as a function
of (a) the power of the Zeeman slowing light for a constant
repumping light power of 5.6 mW and (b) the intensity ratio
between repumping and slowing light of the Zeeman slower for
a constant slowing light power of 45 mW. The intensities of the
superimposed beams depend on the position inside the slower,
since the beams are focused toward the oven. At the position
where the magnetic field changes sign, a power of 10 mW corre-
sponds to an intensity of 2.5 Isat, with the saturation intensity
Isat given in Table 3.

3.1.3 Experimental results

For our application the essential parameter which charac-
terizes the performance of the Zeeman slower is the cap-
ture rate of the 6Li-MOT. We studied its dependence as
a function of several Zeeman slower parameters, such as:
the temperature of the oven, the power of the slowing
light, the magnitude of the magnetic field and the inten-
sity ratios between the repumping and slowing light. The
optimized values of these parameters are displayed in Ta-
ble 1, leading to a 6Li-MOT capture rate of ∼1.2 × 109

atoms/s. The capture rate was deduced from a very short
loading of the MOT, for which atom losses can still be
neglected (∼250 ms).

Figure 5a shows the dependence of the 6Li-MOT cap-
ture rate on the power of the Zeeman slowing light. The
curve increases with increasing beam power and indicates
saturation for higher powers. In the experiment the slow-
ing light power is 45 mW, for which the curve in Figure 5a
starts to saturate, demonstrating that the size of the slow-
ing beam is well chosen. In particular it shows that the
beam is not absorbed significantly by the atoms inside
the slower.

The dependence of the 6Li-MOT capture rate on the
intensity ratio between repumping and slowing light of
the Zeeman slower is depicted in Figure 5b. The curve
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(a) (b)

Fig. 6. (Color online) 6Li-MOT capture rate as a function of
(a) the axial magnetic field of the Zeeman slower and (b) the
temperature of the Li-oven. Circles represent the experimen-
tal data and the solid curve the theoretical prediction from
equation (3).

increases with increasing repumping intensity and sat-
urates for higher intensities. For the intensity ratio
Irep/Islow ∼ 0.1 the repumping intensity in the region
where the magnetic field of the Zeeman slower changes
sign, is of the order of the saturation intensity. There-
fore the transition probability of the repumping transi-
tion saturates at Irep/Islow ∼ 0.1, explaining the behavior
in Figure 5b. The graph shows that the Zeeman slower
only requires a small repumping intensity. It is important
that the repumping light has the same circular polariza-
tion as the slowing light, since it helps to optically pump
the atoms to the cycling transition used for slowing.

Figure 6a shows the 6Li-MOT capture rate as a func-
tion of the magnitude of the axial magnetic field of the
Zeeman slower. The position of the maximum depends on
the detuning of the slowing light.

Figure 6b shows the dependence of the 6Li-MOT cap-
ture rate on the oven temperature T (circles) as well as
a (scaled) theoretical prediction (solid curve) for the ex-
perimental data. The curve shows a nearly exponential
increase of the capture rate with the temperature. The
theoretical prediction is based on a model which assumes
no collisions between the atoms (i.e., no intrabeam colli-
sions and no collisions between the beam and the MOT
atoms). It is derived as follows.

In the absence of collisions, the normalized velocity dis-
tribution of the Zeeman-slowed atoms exiting the slower
does not depend on the temperature of the oven. Assum-
ing that the 6Li-MOT captures mainly atoms which have
been slowed by the Zeeman slower, the capture rate ṄM of
the 6Li-MOT is a temperature-independent fraction of the
flux ṄZ of the Zeeman-slowed atoms: ṄM(T ) = κ1ṄZ(T ).
The proportionality constant κ1 depends on the diver-
gence of the atomic beam and the capture velocity of the
6Li-MOT. The flux of the Zeeman-slowed atoms ṄZ is
given by the flux of the oven atoms which have a speed
smaller than the Zeeman slower’s capture velocity vZee

cap

and which are in the correct internal atomic state to be de-
celerated by the Zeeman slower (i.e. F = 3/2, mF = 3/2).

Assuming the oven to be in thermal equilibrium, ṄZ is
given by [22,26]

ṄZ(T ) = κ2ns(T )A

∫ ΩZ

0

dΩ
cos θ

4π

∫ vZee
cap

0

vf(v, T )dv, (1)

with a temperature-independent constant κ2, which
equals the fraction of atoms which are in the correct in-
ternal atomic state. ns(T ) is the atomic density in the
oven, A = 2 × 10−5 m2 the aperture surface of the oven,
ΩZ = A′/l2 = 5 × 10−4 the solid angle of the atomic
beam (with A′ the aperture surface of the last differential
pumping tube and l the distance between the two aperture
surfaces A,A′) and dΩ = 2π sin θdθ, with θ the emission
angle with respect to the oven axis. f(v, T ) is the normal-
ized speed distribution function given by

f(v, T ) =

√

2m3

πk3
BT

3
v2 exp

(

−
mv2

2kBT

)

. (2)

Since the solid angle of the atomic beam is small, it is

cos θ ≈ 1 and thus
∫ ΩZ

0 dΩ cos θ ≈ ΩZ.

The explicit temperature dependence of the 6Li-MOT
capture rate is then obtained via ṄM(T ) = κ1ṄZ(T )
by substituting into equation (1) the ideal gas equa-
tion ns(T ) = ps/(kBT ) and the relation ps =
pa exp[−L0/(kBT )] for the saturated vapor pressure ps,
with pa = 1.15 × 108 mbar and the latent heat of vapor-
ization L0/kB = 18 474 K [27]. This relation applies to
the temperature range 300–500 ◦C with an accuracy of
5%. Thus, we have

ṄM(T ) = κAΩZpa

√

m3

8π3k5
BT

5
e
−

L0
kBT

∫ vZee
cap

0

v3e
−

mv
2

2kBT dv, (3)

with κ = κ1κ2. Scaling equation (3) to the experimental
data for a given (low) temperature (T = 350 ◦C) yields
the theoretical prediction for the curve shown in Figure 6.
The scaling yields κ = 10−3, thus 0.1% of the atoms, which
enter the Zeeman slower with a velocity smaller than vZee

cap ,

are captured by the 6Li-MOT.
The main contribution to the small value of κ is the

large divergence of the slowed atomic beam: κ is propor-
tional to the ratio of the atomic beam cross section and
the capture surface of the 6Li-MOT, which is estimated to
∼10−2 (assuming the 6Li-MOT capture surface to be a cir-
cle of 1.1 cm diameter). Two-dimensional transverse laser
cooling of the atomic beam could vastly increase the value
of κ. The remaining 10% are due to an inefficient capture
of the 6Li-MOT and to a significant fraction of oven atoms
occupying the incorrect internal atomic states.

The obtained theoretical prediction agrees well with
the experimental data for temperatures below 475 ◦C (see
Fig. 6b). For temperatures above 475 ◦C, the experimen-
tal data deviate from the prediction indicating that in-
trabeam collisions or collisions between the atoms in the
beam and the MOT become important. We found that
for T = 500 ◦C collisions between the thermal 6Li beam
and the trapped 6Li-MOT atoms indeed take place, which
we verified by measuring the lifetime of the 6Li-MOT in
presence and absence of the thermal 6Li beam, making
use of the mechanical block placed at the exit of the oven.
The lifetime was found 10% larger for the case where the
thermal 6Li beam was blocked. In a similar way the ther-
mal 6Li beam also affects the lifetime of the 40K-MOT.
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In order to avoid a reduction of the number of trapped
40K atoms in the dual-species MOT, we therefore limit
the 6Li-oven temperature to 500 ◦C.

With the help of equation (1) the lifetime of the oven
can be estimated. Assuming that the collimation tube of
the oven recycles all atoms sticking to its wall and the vac-
uum pumps have no impact on the Li pressure in the oven,
the total atomic flux through the collimation tube is ob-
tained by replacing A′ = A, vZee

cap = ∞ and l = 8 cm (the
length of the collimation tube) in equation (1). For the
working temperature T = 500 ◦C the lithium vapor pres-
sure is ps = 4.8× 10−3 mbar, corresponding to a density
ns = 4.5×1019 m−3. Thus, the atom flux through the col-
limation tube is ṄO = 3.5× 1014 s−1 =̂ 3.5× 10−12 kg/s.
With 3 g of 6Li this corresponds to an oven lifetime of
τoven ∼ 25 years. (The importance of the recycling be-
comes manifest when comparing this value to the hy-
pothetical lifetime of the oven, would the collimation
tube be replaced by an aperture of the same surface. In
this case the atom flux through this aperture would be

Ṅhyp
O = (πl2/A)ṄO ∼ 1000ṄO and thus τhyp

oven ∼ 10 days.)

3.2 40K 2D-MOT

3.2.1 Introduction

2D-MOTs have been widely used over the past years to
produce high flux beams of cold atoms [14,22,28–31]. In
some cases they offer advantages over the more common
Zeeman slowers. Even though Zeeman slowers can pro-
duce higher fluxes and are more robust, they have the fol-
lowing disadvantages. They produce unwanted magnetic
fields close to the MOT which need to be compensated
by additional fields, they require a substantial design and
construction effort and are space consuming. The atomic
beam source of Zeeman slowers needs to be operated at
higher temperatures than the vapor cell used as source for
2D-MOTs and the material consumption can be high. In
the case of the rare isotope 40K, this drawback is major:
no pure source of 40K exists and enriched 40K samples
are very expensive (4000 Euros for 100 mg of a 4% en-
riched sample). Therefore a 40K Zeeman slower would be
very costly. A 2D-MOT can be operated at lower pressures
and is thus more economic. In addition it allows separat-
ing 40K from the more abundant 39K, since it produces
an atomic beam which nearly only contains the slowed
atoms (i.e. no thermal background). These considerations
motivated us to implement a 2D-MOT for 40K.

3.2.2 Principle of operation

In a 2D-MOT, an atomic vapor is cooled and confined
transversally and out-coupled longitudinally through an
aperture tube. The role of the aperture tube is two-fold.
First, it isolates the 2D-MOT from the MOT chamber by
differential pumping, and second, it acts as a geometric
velocity filter, since only atoms with a small transverse
velocity pass through. As the transverse cooling is more

Mirror hole

Differential

pumping tube

Pushing

beam

Retarding

beam

Transversal

beams

5 cm

Fig. 7. (Color online) Sketch of the parallelepipedical glass
cell used for the 40K 2D-MOT. A mirror is placed inside the
vacuum chamber to allow an independent control over the lon-
gitudinal beam pair. The mirror has a hole in its center and
creates a dark cylindrical region in the reflected beams.

efficient for atoms which have a small longitudinal veloc-
ity – since those spend more time in the cooling region –
most of the transversally cold atoms are also longitudi-
nally cold. Thus, the filter indirectly filters atoms also ac-
cording to their longitudinal velocity. A 2D-MOT thus
produces an atomic beam which is transversally and lon-
gitudinally cold.

The flux of a 2D-MOT can be improved by adding
a longitudinal molasses cooling to the 2D-MOT config-
uration [28]. Thus, the atoms spend more time in the
transverse cooling region due to the additional longitu-
dinal cooling. The longitudinal beam pair is referred to
as the pushing and the retarding beam, where the push-
ing beam propagates in the direction of the atomic beam
(see Fig. 7). We implemented such a configuration, mak-
ing use of a 45◦-angled mirror inside the vacuum chamber.
This mirror has a hole at its center which creates a cylin-
drical dark region in the reflected retarding beam. In this
region, the atoms are accelerated along the longitudinal
direction by the pushing beam only, which allows an effi-
cient out-coupling of the atomic beam.

3.2.3 Experimental setup

The vacuum chamber of the 2D-MOT consists of standard
CF40 components and a parallelepipedical glass cell (di-
mensions 110 mm × 55 mm × 55 mm), which is depicted
in Figure 7. Its long axis is aligned horizontally, paral-
lel to the differential pumping tube and the direction of
the produced atomic beam. The mirror inside the vacuum
chamber is a polished stainless steel mirror with an ellip-
tical surface (diameters 3.0 cm and 4.2 cm). It is attached
to the differential pumping tube inside the vacuum. It al-
lows to overlap the two longitudinal laser beams whose
powers and orientations can thus be independently con-
trolled externally. The mirror’s material has a reflectivity
of only 50%, but inhibits chemical reaction of potassium
with its surface. The differential pumping tube intercepts
the mirror at its center. The tube has a diameter of 2 mm
over a distance of 1.5 cm and then stepwise widens up
to 10 mm over a total distance of 22 cm. The 40K-MOT
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is located 55 cm away from the 2D-MOT center. Assum-
ing a ballistic flight of the atoms, the geometry of the
differential pumping tube defines an upper limit of the di-
vergence of the atomic beam, which is calculated to be
∼35 mrad. The atomic beam thus is expected to have a
diameter of ∼2 cm when it reaches the 40K-MOT. The
differential pumping tube has a conductance of 0.04 L/s.
The generated pressure ratio between the 2D-MOT and
the 3D-MOT chambers is ∼103.

The potassium source is an isotopically enriched 40K
sample (containing 4 mg of 40K, 89.5 mg of 39K and 6.5 mg
of 41K, from Technical Glass Inc., Aurora, USA), placed
at a distance of 20 cm from the glass cell. It was purchased
in a small ampule which was broken under vacuum inside
a modified stainless steel CF16 bellow. The small vapor
pressure of potassium at room temperature (10−8 mbar)
requires heating of the entire 2D-MOT chamber. We heat
the source region to 100 ◦C, all intermediate parts to 80 ◦C
and the glass cell to 45 ◦C. The gradient in temperature
ensures that the potassium migrates into the cell and re-
mains there. The resulting K-pressure in the glass cell was
measured by absorption of a low intensity probe. We found
2.3 × 10−7 mbar, which implies a partial pressure of the
40K-isotope of 1× 10−8 mbar. In contrast to lithium, the
source lifetime is mainly determined by the pumping speed
of the ion pump. At the measured pressure the lifetime of
the source is estimated to ∼2 years.

Four air-cooled rectangular shaped elongated race-
track coils (dimensions 160 mm × 60 mm) are placed
around the glass cell to produce a 2D quadrupole field
with cylindrical symmetry and a horizontal line of zero
magnetic field. This racetrack coil geometry allows an in-
dependent control of the transverse position of the mag-
netic field zero, and minimizes finite coil fringe effects at
the coil ends. The coils are controlled by four separate
power supplies. For optimized operation, the transverse
magnetic field gradients are ∂xB = ∂yB = 11 G/cm.

Cooling and repumping light for the 2D-MOT is de-
rived from a bichromatic laser beam which is provided
by an optical fiber originating from the laser system. It
has a total power of Pfiber = 450 mW and its frequen-
cies are red detuned by ∼3.5 Γ from the 4S1/2(F =
9/2) → 4P3/2(F

′ = 11/2) cooling and by ∼2.5 Γ from
the 4S1/2(F = 7/2) → 4P3/2(F

′ = 9/2) repumping
transition (see Fig. 2). The beam is separated into four
beams and expanded by spherical and cylindrical tele-
scopes to create the transverse and longitudinal 2D-MOT
beams. The transverse beams have an elliptical cross sec-
tion (1/e2-diameters: 27.5 mm and 55 mm), are circularly
polarized and retro-reflected by right-angled prisms, which
preserve the helicity of the beams. The power losses in the
surface of the glass cell and the prisms weaken the power
of the retro-reflected beams by ∼17% (the loss contribu-
tion of the absorption by the vapor is negligible due to the
high laser power). This power imbalance is compensated
by shifting the position of the magnetic field zero. The
longitudinal beams are linearly polarized and have a cir-
cular cross section (1/e2-diameter: 27.5 mm). 75% of the
fiber output power is used for the transverse beams, 25%

Table 2. Optimized values for the parameters of the 40K 2D-
MOT, yielding a 40K-MOT capture rate of ∼ 1.4×109 atoms/s.
The definition of the symbols is given in the text. The natural
linewidth of 40K is Γ/(2π) = 6.04 MHz.

40K 2D-MOT
Pfiber (mW) 450
∆ωcool (Γ ) –3.5
∆ωrep (Γ ) –2.5
Irep/Icool 1/2
Ipush/Iret 6
∂xB, ∂yB (G/cm) 11
K vapor pressure (mbar) 2.3 × 10−7

for the longitudinal beams. The intensity ratio between
pushing and retarding beam along the atomic beam axis
is ∼6 (for reasons explained below).

3.2.4 Experimental results

For our purpose the essential parameter which character-
izes the performance of the 2D-MOT is the capture rate
of the 40K-MOT. We studied its dependence as a function
of several 2D-MOT parameters, such as: the vapor pres-
sure in the 2D-MOT cell, the total cooling light power,
the detuning of the cooling frequency and the intensity ra-
tios between the repumping and cooling light and between
the pushing and retarding beam. The optimized values of
these parameters are displayed in Table 2, leading to a
40K-MOT capture rate of ∼1.4× 109 atoms/s.

The mean velocity of the atoms in the atomic beam
can be estimated as follows. It is approximately given by
the average time required for the atoms of the 2D-MOT
region to reach the 3D-MOT. This time was measured by
recording the time delay of the onset of the 40K-MOT
loading after switching on the 2D-MOT beams. We mea-
sured a time delay of ∼23 ms and deduce a mean longitu-
dinal velocity of the captured atoms of ∼24 m/s. At this
velocity, the displacement due to gravity of the beam of
atoms from the 40K-MOT center is ∼2.6 mm, which is
negligible compared to the size of the 40K-MOT beams
and the divergence of the atomic beam.

Figure 8a shows the dependence of the 40K-MOT cap-
ture rate on the detuning ∆ωcool of the 2D-MOT cooling
light. The curve has a maximum at ∆ωcool = −3.5 Γ and
a full width at half maximum (FWHM) of 2.7 Γ . The
maximum is the result of two opposing effects: the scat-
tering force of the 2D-MOT beams decreases with increas-
ing detuning whereas the capture velocity increases [24].
The first effect implies a less efficient transverse cooling
whereas the second leads to a more efficient capture of
atoms. An additional effect might influence the shape of
the curve: since the scattering force of the pushing beam
depends on the detuning, also the mean-velocity of the
atomic beam depends on it [28,29,31]. Since we mea-
sure the 40K-MOT capture rate rather than the flux of
the 2D-MOT, the mean-velocity might exceed the cap-
ture velocity of the 40K-MOT. However, as shown in ref-
erences [28,29,31], the mean-velocity of the beam only
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(a) (b)

Fig. 8. (Color online) 40K-MOT capture rate as a function of
(a) the detuning and (b) the total power of the cooling light
used for the 2D-MOT (for a constant intensity ratio between
the cooling and repumping light). The total power refers to the
sum of the powers in the six 2D-MOT beams, where a power
of 470 mW corresponds to a total intensity of ∼47 Isat at the
center of the 2D-MOT, with the saturation intensity Isat given
in Table 3.

Table 3. Characteristic parameters of the dual-species
6Li-40K-MOT.

40K-MOT 6Li-MOT
Pfiber (mW) 220 110
∆ωcool (Γ ) –3 –5
∆ωrep (Γ ) –5 –3
Γ/(2π) (MHz) 6.04 5.87
Icool per beam (Isat) 13 4

Isat (mW/cm2) 1.75 2.54
Irep/Icool 1/20 1/5
∂zB (G/cm) 8 8
Nsingle (×109) 8.9 5.4
Ndual (×109) 8.0 5.2

nc (×1010 at./cm3) 3 2
T (µK) 290 1400

slightly changes with the detuning, such that we expect
this effect to only weakly influence the curve. From the
shape of the curve we conclude that the 40K-MOT cap-
ture rate is not very sensitive to changes of ∆ωcool.

The dependence of the 40K-MOT capture rate on the
total power of the 2D-MOT cooling light is depicted in
Figure 8b. The total power refers to the sum of the pow-
ers in the six 2D-MOT beams. According to the chosen
beam sizes, the maximum power of 470 mW corresponds
to a total intensity of ∼47 Isat (for zero detuning) at the
center of the 2D-MOT, with the saturation intensity Isat
given in Table 3. The curve almost linearly increases with
light power without a clear indication of saturation. The
increase is due to two effects. First, the 2D-MOT capture
velocity increases with laser power due to the power broad-
ening of the atomic spectral lines. Second, the scattering
force increases, resulting in a steeper transverse confine-
ment, which facilitates the injection of the atoms into the
differential pumping tube. At some point, the curve is ex-
pected to saturate, since the temperature of the cooled
atoms and light-induced collisions between them increase
with light power. These effects, however, are less limiting
in a 2D-MOT as compared to a 3D-MOT, since the atomic
density in a 2D-MOT is typically three orders of magni-
tude smaller due to the absence of a three-dimensional

(a) (b)

Fig. 9. (Color online) 40K-MOT capture rate as a function
of the intensity ratio between (a) repumping and cooling light
of the 2D-MOT for two different repumping detunings ∆ωrep

and a constant total cooling light power of 300 mW (which
corresponds to a total intensity of ∼30 Isat) and (b) the pushing
and the retarding beams of the 2D-MOT. The intensities of the
pushing and retarding beams refer to the intensities along the
atomic beam axis.

confinement. Thus, in a 2D-MOT a high light power would
be required to reach the regime of saturation.

Figure 9a shows the dependence of the 40K-MOT cap-
ture rate on the intensity ratio between the cooling and
repumping light of the 2D-MOT for the two different re-

pumping detunings ∆ω
(1)
rep = −2.5 Γ and ∆ω

(2)
rep = −6.5 Γ

and for a constant total cooling light power of 300 mW.
The graph shows that for both frequencies the 40K-MOT
capture rate increases with increasing repumping intensity
and that it saturates at high intensities. It also shows that
the maximum capture rate is bigger for the smaller detun-
ing. The intensity dependence of the curves results from
the likewise intensity dependence of the transition prob-
ability for an atomic transition. The maximum capture
rate is bigger for the smaller detuning, since this detuning
contributes more efficiently to the cooling process. In our
experiment, a fixed total laser power is available for both
repumping and cooling light. It is distributed such that
the resulting capture rate is maximized. It was found to
be maximum for an intensity ratio of Irep/Icool ∼ 1/2. For

that ratio the detuning ∆ω
(2)
rep = −2.5 Γ also yields the

maximum capture rate.

The dependence of the 40K-MOT capture rate on the
intensity ratio between pushing and retarding beam is
depicted in Figure 9b. The curve has a maximum at
Ipush/Iretard ∼ 6. It is zero for values of Ipush/Iretard be-
tween 0 and 3, then increases until the maximum and falls
off again with a smaller slope. From the curve we can ex-
tract information about the importance of the reflectivity
of the mirror inside the vacuum and of the size of its hole.
For a given intensity ratio Ipush/Iretard along the (horizon-
tal) direction of the atomic beam, the mirror’s reflectiv-
ity determines the intensity ratio I∗push/I

∗

retard along the
vertical direction above the reflecting surface of the mir-
ror (see Fig. 7). If I∗push/I

∗

retard differs from 1, the atomic
beam can experience a vertical deflection in this region.
The hole inside the mirror creates a dark cylinder in the
pushing beam after its reflection, so that in the region
above the hole only light from the retarding beam has a
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vertical direction, which can also give rise to a vertical
deflection of the atomic beam.

In the following we estimate the deflection of the
atomic beam, which is induced by the unbalanced retard-
ing beam in the small region above the hole. Assuming the
atomic beam to have reached its final longitudinal velocity
of 24 m/s when entering into the hole, the atoms spend
85 µs in the region above the hole. Neglecting Doppler
shifts and the presence of the pushing beam along the
horizontal direction (no transverse beams are present in
the region above the mirror), the atoms will scatter Nph =
Rsc × (85 µs) ∼ 75 photons, with Rsc being the scatter-
ing rate [24] for the given detuning ∆ωcool = −3.5 Γ and
peak intensity I∗retard = 2.5Isat. The recoil velocity of 40K
being given by vrec = 0.013 m/s, each atom will accumu-
late a transverse velocity of vdev ∼ 1 m/s. This leads to a
downwards deflection of the atomic beam by an angle of
∼40 mrad, which is more than a factor two bigger than
the maximum deflection angle allowed by the differential
pumping tubes. The atoms will thus not reach the 40K-
MOT.

This deflection needs to be anticipated by an intensity
imbalance I∗push > I∗retard in the region above the reflecting
surface of the mirror, as that results in an upwards deflec-
tion of the atomic beam. For the given mirror reflectivity
of 50%, I∗push > I∗retard is equivalent to Ipush/Iretard > 4,
which corresponds to the experimental observation de-
picted in Figure 9b. The deflection of the atomic beam in
the region above the hole could be avoided using a beam
block which creates a dark cylinder in the region above
the mirror which overlaps with the one in the pushing
beam. In this configuration the position of the curve opti-
mum in Figure 9b would change from Ipush/Iretard = 6 to
Ipush/Iretard = 4. For mirrors with a reflectivity close to
100% the position of the curve optimum could thus even
be changed to Ipush/Iretard = 1, for which the longitudi-
nal optical molasses cooling would be most efficient lead-
ing to a maximum 2D-MOT flux. Due to the polarization
gradients generated by the transverse 2D-MOT beams the
longitudinal optical molasses cooling is, however, still very
efficient even in case of an intensity imbalance of 6 along
the atomic beam axis.

We now study the dependence of the 40K-MOT cap-
ture rate on the vapor pressure of potassium (all isotopes)
in the 2D-MOT cell, which is shown in Figure 10 (circles)
together with a fit to a theoretical model (solid curve). The
vapor pressure was measured by recording the absorption
profile of a low intensity probe. The curve in Figure 10 has
a maximum at a vapor pressure of 2.3×10−7 mbar. In the
absence of collisions, the curve should increase linearly
with pressure, which is indeed observed for low pressures.
For high pressures, collisions become important and limit
the 40K-MOT capture rate. The dependence of the 40K-
MOT capture rate L on the pressure p can be described
by the function [31]

L = L0 exp

[

−

(

Γcoll + β

∫

n2(r)d3r

)

〈tcool〉

]

, (4)

Fig. 10. (Color online) 40K-MOT capture rate as a function
of the potassium vapor pressure (all isotopes). Circles: experi-
mental data, solid curve: fit of the experimental data by equa-
tion (5). Due to the low abundance of the 40K-isotope in our
potassium sample (4%), the 40K-MOT capture rate is limited
by collisions between the 40K-atoms and the other K-isotopes
in the 2D-MOT cell. At room temperature the potassium vapor
pressure is 1× 10−8 mbar.

where L0 denotes the hypothetical capture rate of the
40K-MOT in the absence of collisions in the 2D-MOT
chamber, Γcoll denotes the collisional loss rate due to col-
lisions in the 2D-MOT chamber between the cooled atoms
and the background atoms, 〈tcool〉 is the average time
which the atoms spend inside the 2D-MOT cooling re-
gion, n(r) is the position-dependent atomic density in the
atomic beam, and β is the two-body loss rate coefficient
which describes the cold collisions between the 40K atoms
in the atomic beam. L0 is proportional to the atomic den-
sity nK in the vapor cell, and Γcoll = nKσeff 〈v〉, where σeff

is the effective collision cross section, and 〈v〉 ∼ 400 m/s
the mean velocity of the thermal potassium atoms. The
term describing the cold collisions is approximately pro-
portional to n2

K due to the small density obtained in the
2D-MOT. For the investigated pressure range, the ratio
p/nK only changes slightly with temperature and can thus
be considered constant. Therefore equation (4) can be
written as

L(p) = κ1p exp
(

−κ2p− κ3p
2
)

, (5)

with the constants κ1, κ2, κ3, which are obtained from the
fit shown in Figure 10. At the curve’s maximum, the fit
yields κ2p/κ3p

2 = 8, showing that the collisions which
limit the 40K-MOT capture rate are mainly the collisions
with the hot background atoms, consisting mostly of 39K.

The background atoms are predominantly potassium
atoms. These can collide either with the excited or the
non-excited 40K-atoms of the atomic beam. Depending
on the isotopes of the colliding partners, these collisions
have different cross sections. Collisions between an ex-
cited and a non-excited atom of the same isotope usually
have a very large cross section due to the strong resonant
dipole-dipole interaction, described by a C3/R

3-potential.
In 2D-MOT systems of other atomic species these col-
lisions have been identified as the ones which limit the
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flux of the 2D-MOT [28,29,31]. In the case of 40K, the
scattering rate for these collisions is reduced by the small
abundance of 40K in the vapor. Therefore other collisions
might limit the flux. In order to identify the flux-limiting
collisions we calculate the cross section of different possi-
ble collisions and deduce the corresponding collision rates.
The cross sections can be calculated using the approach
described in reference [32] for losses out of a cold atom
cloud. The cross section for collisions involving an excited
and a non-excited 40K-atom is given by [32]

σ40,40∗

eff = π

(

4C3

mvesc 〈v〉

)2/3

, (6)

where m is the mass of the 40K-atom, vesc ∼ 1 m/s is
the estimated transverse velocity kick needed to make an
atom miss the 40K-MOT, and C3 = 5.4 × 10−48 J m3

is the dispersion coefficient for the resonant dipole-dipole
interaction [33]. The cross section for collisions involving
a non-excited 40K-atom and a non-excited K-atom of the
different isotopes is given by [32]

σ40,39
eff ∼ σ40,41

eff ∼ σ40,40
eff = π

(

15πC6

8mvesc 〈v〉

)1/3

, (7)

where C6 = 3.7 × 10−76 J m6 is the dispersion coeffi-
cient for the underlying van der Waals interaction [33].
Substituting the experimental parameters, one obtains:

σ40,40∗

eff = 2.7 × 10−16 m2 and σ40,39
eff ∼ σ40,41

eff ∼ σ40,40
eff =

1.3 × 10−17 m2. The resulting collision rates are propor-
tional to the atomic densities n39, n40 and n41 of the
corresponding isotopes in the vapor and the relative num-
ber of excited 40K-atoms in the atomic beam, which was
estimated to P ∼ 0.1 for the given beam detunings and
intensities. One obtains

Γ 40,40∗

coll = Pn40σ
40,40∗

eff 〈v〉 = 4.4× 10−16nK, (8)

Γ 40,39
coll = (1− P )n39σ

40,39
eff 〈v〉 = 4.4× 10−15nK, (9)

Γ 40,40
coll = (1− P )n40σ

40,40
eff 〈v〉 = 2.0× 10−16nK, (10)

Γ 40,41
coll = (1− P )n41σ

40,41
eff 〈v〉 = 3.0× 10−16nK (11)

(nK denoting the atomic density of potassium in the vapor

cell). The dominant collision rate here is Γ 40,39
coll (Eq. (9))

for collisions involving a non-excited 40K-atom and a non-
excited 39K-atom from the background. The largest col-

lision rate for collisions between two 40K-atoms, Γ 40,40∗

coll ,

is by a factor of 10 smaller than Γ 40,39
coll . Therefore, colli-

sions involving two 40K-atoms are not the collisions which
limit the flux of the 2D-MOT. This is in contrast to
2D-MOT systems of other species. From the difference

between Γ 40,40∗

coll and Γ 40,39
coll we conclude that the flux of

the 2D-MOT for 40K could still be improved by about
a factor of 10 by using a potassium sample of a higher
isotopic enrichment.

4 6Li-40K dual-species MOT

4.1 Introduction

Previously, several groups have studied samples of two
atomic species in a magneto-optical trap [13–15,34–37].
Here we report on the implementation and performance
of our 6Li-40K dual-species MOT and on the study of col-
lisions between atoms of the different species. After a de-
scription of the experimental setup, we start with a char-
acterization of the single-species MOTs and then focus on
the collisions in the dual-species MOT.

4.2 Principle of operation

In a magneto-optical trap six counter-propagating red-
detuned overlapping laser beams cool and magneto-
optically confine atoms in a magnetic quadrupole field
around its zero [24]. MOTs for alkali-atoms require laser
light of two frequencies, namely the cooling and the re-
pumping frequency. The latter ensures that the atoms stay
in the cycling transition used for cooling. Typically the re-
pumping light has a much lower power than the cooling
light as the atoms principally occupy the states belong-
ing to the cooling transition. For 6Li, however, the power
of the repumping light needs to be relatively high, since
6Li has a very small hyperfine structure in the excited
state manifold (of the order of the linewidth). When laser
cooled, 6Li-atoms thus very likely quit the cooling transi-
tion. Therefore, the repumping light needs to contribute
to the cooling process. As a consequence it needs to be
present in all six directions with the same polarization
as the cooling light. Therefore, we use bichromatic MOT-
beams containing both cooling and repumping frequen-
cies. We adapt the same strategy also for 40K.

4.3 Experimental setup

Light for the dual-species MOT is derived from two bichro-
matic laser beams, containing each a cooling and a re-
pumping frequency, which are provided by two separate
optical fibers originating from the respective laser systems.
The beams are superimposed using a dichroic mirror and
then expanded by a telescope to a 1/e2-diameter of 22 mm.
All subsequent beam reflections are realized by two-inch
sized broadband mirrors (Thorlabs, ref. BB2-E02-10). The
beam is separated by three two-inch sized broadband po-
larization cubes (Lambda Optics, ref. BPB-50.8SF2-550)
into four arms that form a partially retro-reflected MOT,
in which only the vertical beam pair is composed of inde-
pendent counter-propagating beams. Each retro-reflected
MOT beam is focused with a lens of focal length 10 cm,
placed at a distance of ∼11 cm in front of the retro-
reflecting mirror, in order to increase the intensity and
therefore compensate for the losses in the optics and the
light absorption by the trapped atoms. The distribution
of the light power over the MOT beams is independently
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adjusted for the two wavelengths using a pair of custom-
made wave plates, placed in front of each broad-band split-
ting cube. The wave plate pair consists of a λ/2 plate of
order 4 for the wavelength 767 nm and a λ/2 plate of order
4 for the wavelength 671 nm. To a very good approxima-
tion each of these wave plates can turn the polarization
direction for one wavelength without affecting the polar-
ization for the other one (since it is 4.5 × 767 ≈ 5 × 671
and 4.5 × 671 ≈ 4 × 767). The circular polarization of
the MOT beams is produced by first order λ/4 plates for
767 nm, which work sufficiently well also for 671 nm. All
four frequency components thus have the same circular po-
larizations in each beam. A mechanical shutter is placed
in the focus of the telescope allowing to produce total ex-
tinction of the MOT light in addition to the partial and
fast switching by the AOMs.

The bichromatic beam for the 40K-MOT has a total
power of Pfiber = 220 mW and its frequencies are red-
detuned by ∼3 Γ from the 4S1/2(F = 9/2)→ 4P3/2(F

′ =
11/2) cooling and by ∼5 Γ from the 4S1/2(F = 7/2) →
4P3/2(F

′ = 9/2) repumping transition (see Fig. 2). The
intensity of the cooling light is ∼20 times bigger than
that of the repumping light. The bichromatic beam for
the 6Li-MOT has a total power of Pfiber = 110 mW
and its frequencies are red-detuned by ∼5 Γ from the
2S1/2(F = 3/2) → 2P3/2(F

′ = 5/2) cooling and by ∼3 Γ
from the 2S1/2(F = 1/2) → 2P3/2(F

′ = 3/2) repumping
transition (Fig. 2). The power of the cooling light is ∼5
times bigger than that of the repumping light.

The magnetic field for the dual-species MOT is cre-
ated by a pair of coils in anti-Helmholtz configuration.
The magnetic field gradient along the vertically directed
symmetry axis is ∂zB = 8 G/cm. This gradient yields an
optimum atom number for the 40K-MOT.

The atoms in the dual-species MOT are probed by ab-
sorption imaging. In order to obtain a two-dimensional
density profile of the atom cloud, three pictures are taken
and recorded by a CCD-camera (PCO imaging, ref. Pix-
elfly qe). The first picture is taken with the imaging beam
tuned near resonance and thus records the shadow cast by
the atom cloud on the CCD-chip of the camera. The sec-
ond picture is taken with the imaging beam tuned far off
resonance (by −10 Γ ) and records the intensity profile of
the imaging beam. The third picture is taken in absence of
the imaging beam and records the background signal. The
change of frequency of the imaging beam allows to take
the first two pictures with a short time delay (2 ms), while
keeping the imaging beam at the same frequency would
require to wait for the atom cloud to disappear before the
second picture could be recorded. Thus, the intensity fluc-
tuations of the imaging beam during the recording process
are minimized and both pictures can be taken with the
same intensity.

Each atomic species requires its own imaging beam,
which is provided by a separate optical fiber originating
from the respective laser system (see Fig. 3). The two
imaging beams are superimposed using a dichroic mir-
ror and expanded by a telescope to a 1/e2-diameter of
27.5 mm. The imaging beams have low intensity (Iimg ∼

0.01Isat in the beam center), are circularly polarized and
pass through the MOT along the horizontal direction, per-
pendicular to the axis of the quadrupole magnetic field
of the MOT. No bias magnetic field is applied when ab-
sorption pictures are taken. The best atom number esti-
mate from the measured absorption pictures is thus given
by using an averaged squared Clebsch-Gordan coefficient,
which is C2 = 0.5 for 6Li and C2 = 0.4 for 40K. Both
beams are red detuned by 2 Γ from the 4S1/2(F = 9/2)→
4P3/2(F

′ = 11/2) and the 2S1/2(F = 3/2) → 2P3/2(F
′ =

5/2) cooling transitions of 40K and 6Li, respectively (see
Fig. 2), so as to reduce saturation effects. For the chosen
length of the imaging pulses (100 µs) no repumping is re-
quired during the imaging process (we verified for 6Li that
even in the case of a resonant imaging beam, the presence
of a repumping beam would yield an increase of the de-
tected atom number of only 8%, which would be even less
for 40K). In order to image the total number of atoms in
the MOTs the atom clouds are exposed for 500 µs to only
the repumping light before the image is taken in order to
optically pump all atoms to the hyperfine ground state
which is imaged. The overall uncertainty of the absolute
atom number determination is estimated to be 50%.

4.4 Experimental results

In single-species operation we characterized the MOTs
using the parameters for the optimized dual-species op-
eration. We determined the atom numbers, the atomic
densities in the cloud center, the loading times and the
temperatures. Furthermore, we studied for each atomic
species the dependence of the steady-state MOT atom
number on the following parameters: the power and de-
tuning of the cooling light and the intensity ratio between
the repumping and cooling light. In dual-species opera-
tion, we studied the dependence of heteronuclear light-
induced cold collisions on the laser power used for the
MOT-beams. The optimum parameters, which lead to
atom numbers of Nsingle ∼ 8.9 × 109 in the 40K-MOT
and Nsingle ∼ 5.4 × 109 in the 6Li-MOT, are displayed
in Table 3 together with the characteristics of the MOTs
(in dual-species operation, the atom numbers only slightly
change due to the additional interspecies collisions to
Ndual ∼ 8.0×109 in the 40K-MOT and Ndual ∼ 5.2×109 in
the 6Li-MOT). The (1− 1/e)-loading times of the MOTs
are ∼5 s for 40K and ∼6 s for 6Li.

Magneto-optical traps with large atom numbers have
a high optical density and are optically dense for weak
resonant laser beams. Therefore, when determining the
atom number via absorption imaging, the frequency of the
imaging beam has to be detuned, so not to “black out”
the image.

Figures 11a, 11b depict the detected atom number of
the two MOTs (circles) as a function of the detuning of
the imaging beam. The detected atom number was de-
rived from the measured optical density assuming the
imaging beam to be resonant. The curves are expected
to have the shape of a Lorentzian with the peak centered
around zero detuning. The experimental data shown in
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Fig. 11. (Color online) (a), (b) Detected atom number in the
MOTs as a function of the detuning of the imaging beams.
Circles correspond to the experimental data and solid curves
to Lorentzian fits of the curve wings with an imposed width,
which was determined by another measurement. (c), (d) Ab-
sorption images of the MOTs and the doubly-integrated opti-
cal density profile n, recorded with a resonant imaging beam.
The graphs (a, c) relate to the 40K-MOT and (b), (d) to the
6Li-MOT. The flat top of n in the graphs (c), (d) and the sat-
uration of the detected atom number for small magnitudes of
the detuning in the graphs (a), (b) demonstrate that the MOTs
are optically dense for the imaging beam when the detuning
is small. Their (extrapolated) central optical densities for a
resonant imaging beam are ∼20 for 40K and ∼15 for 6Li.

Figures 11a, 11b clearly deviate from a Lorentzian behav-
ior – they saturate for small magnitudes of the detuning.
This deviation demonstrates that the MOTs are optically
dense for small detunings. A correct estimate of the atom
number is obtained from an extrapolation of the experi-
mental data to zero detuning based on a Lorentzian fit of
the curve wings (solid curves). A reliable extrapolation,
however, requires imposing the width of the Lorentzian
fit. In order to determine this width, an additional exper-
iment was done (not shown): the data in Figures 11a, 11b
were again recorded and fitted by a Lorentzian for a MOT
with a small atom number and a low optical density (ob-
tained by a short loading of 250 ms). The widths found
by this additional measurement were 1.05 Γ for 40K and
1.5 Γ for 6Li. For 40K this width corresponds to the natu-
ral linewidth of the exited state addressed by the imaging
transition. For 6Li the width is larger than the natural
linewidth, since the small excited hyperfine structure is
unresolved and thus its width (∼0.5 Γ ) and the natu-
ral linewidth add up (this line broadening does not oc-
cur when a bias magnetic field is applied and a closed

transition is used for imaging). The peak values of the
Lorentzian fits in Figures 11a, 11b finally yield the atom
numbers in the MOTs, given in Table 3.

Figures 11c, 11d show images of the MOTs and their
doubly-integrated optical density profiles n for the case of
a resonant imaging beam. The flat top of n as a function of
position shows that the MOTs are optically dense. Their
central optical densities for the resonant imaging beam
are determined to be ∼20 for 40K and ∼15 for 6Li by the
extrapolation technique described above. In addition, the
density profiles in Figures 11c, 11d show that the MOTs
have spatial extensions of the order of 1 cm.

The atomic density in the MOT center is extracted
from the recorded two-dimensional density profile as fol-
lows. The recorded profile is proportional to the atomic
density n(x, y, z) integrated along the imaging beam di-
rection z: g(x, y) ∝

∫

n(x, y, z)dz. When assuming that
the MOT has cylindrical symmetry (with the symmetry
axis along the x-direction), the local atomic density nc at
the MOT center is given by the maximum of the inverse
Abel transform of g(xc, y), where xc is the x-coordinate
of the MOT center

nc = max
r

(

−
1

π

∫

∞

r

(

∂g(xc, y)

∂y

)

dy
√

y2 − r2

)

, (12)

with r =
√

y2 + z2 denoting the distance to the MOT
center [38]. Since the derivative ∂g/∂y is very sensitive to
noise, the density profile g is smoothened before its deriva-
tive is calculated. We obtain nK

c ∼ 3×1010 atoms/cm3 and
nLi

c ∼ 2× 1010 atoms/cm3, respectively.
The temperature of the MOTs in single-species opera-

tion was determined by the time-of-flight method [24]. The
40K-MOT has a temperature of 290 µK and the 6Li-MOT
of 1.4 mK. Both temperatures are higher than the Doppler
cooling limit, because of the high intensity in the MOT
beams. In addition, for 6Li, the unresolved excited hy-
perfine structure (see Fig. 2) inhibits sub-Doppler cooling
effects. The same temperatures are found in dual-species
operation. The measured temperatures and atomic densi-
ties yield the peak phase space densities DK = nK

c Λ
3
K ∼

1.2×10−7 and DLi = nLi
c Λ

3
Li ∼ 1.3×10−7 with the thermal

de Broglie wavelength Λ =
√

2π~2/(mkBT ), respectively.
The dependence of the MOT atom number on the de-

tuning of the cooling light is depicted in Figures 12a, 12b.
The atom number is maximum at ∆ωK

cool = −3 Γ for 40K
and at ∆ωLi

cool = −5 Γ for 6Li, and has a FWHM of 2.3 Γ
and 4.1 Γ , respectively.

Figures 12c, 12d show the dependence of the MOT
atom number on the power of the cooling light per MOT
beam. In the figures, a power of 10 mW corresponds to
an on-resonance peak intensity of ∼3 Isat (Fig. 12c) and
∼2 Isat (Fig. 12d) in each of the six MOT beams. The atom
number increases with increasing light power and satu-
rates for higher powers. The saturation is due to several
effects. First, the absorption probability for the cooling
light saturates for high intensities. Second, the repulsive
forces between the atoms due to rescattered photons and
the temperature of the cloud increase with increasing light



A. Ridinger et al.: Large atom number dual-species magneto-optical trap for fermionic 6Li and 40K atoms 15

40
K

6
Li

(a) (b)

(c) (d)

Fig. 12. (Color online) MOT atom number as a function of
(a), (b) the detuning and (c), (d) the power of the cooling light
per MOT beam for a constant intensity ratio between the cool-
ing and repumping light. The graphs (a), (c) relate to the 40K-
MOT and (b), (d) to the 6Li-MOT. For 40K a power of 45 mW
corresponds to an intensity of 13 Isat, for 6Li a power of 20 mW
corresponds to an intensity of 4 Isat, with the respective satu-
ration intensities Isat given in Table 3.

power [32]. Finally the scattering rate for light-induced
cold collisions increases with increasing light power.

Figure 13 shows the dependence of the 40K-MOT atom
number on the intensity ratio Irep/Icool between repump-
ing and cooling light for three different repumping detun-

ings ∆ω
(1)
rep = −3 Γ , ∆ω

(2)
rep = −5 Γ and ∆ω

(3)
rep = −7 Γ

and a constant cooling light power of 18 mW per MOT
beam. The curves have a maximum at different ratios
Irep/Icool, the position of the maxima lying at higher ra-
tios for lower detunings. Furthermore, the maxima have
different values for the three curves. The maximum is
biggest for the detuning ∆ω

(2)
rep = −5 Γ . The shape of

the curves can be understood as follows. Each curve in-
creases between Irep/Icool = 0 and the position of the
maximum, because the transition probability of the re-
pumping transition increases with increasing repumping
intensity. Thus the atoms are more efficiently cooled by
the cooling light, as they are more efficiently repumped
into the cycling transition. However, when the intensity of
the repumping light becomes too large, the curve decreases
again. Then, due to the strong repumping, the atoms are
exposed to the more intense near-resonant cooling light,
which causes light-induced cold collisions, leading to trap
loss. At the maximum, the repumping is sufficiently strong
to allow for an efficient cooling, and it is sufficiently weak
to preserve the atoms from cold collisions induced by the
strong cooling light. The value of the curve maximum is

biggest for the detuning ∆ω
(2)
rep = −5 Γ . It is situated at

Irep/Icool ∼ 1/20, for which, as one can see below, only

Fig. 13. (Color online) 40K-MOT atom number as a func-
tion of the intensity ratio between repumping and cooling light
for three different repumping detunings ∆ωrep and a constant
cooling light power of 18 mW per MOT beam (which corre-
sponds to an intensity of 6 Isat).

∼20% of the 40K-MOT atoms occupy the cooling cycle
states F = 9/2 or F ′ = 11/2 (see Fig. 14), the others
occupying the “dark” hyperfine ground state F = 7/2.

For very small intensity ratios Irep/Icool ≤ 0.01 the
atom number in the 40K-MOT is larger for higher re-
pumping detunings (Fig. 13). This behavior might be a
consequence of the fact that the 40K-MOT is loaded from
a slow atomic beam. The beam atoms, which have a neg-
ative Doppler shift of more than 5 Γ with respect to the
counter-propagating MOT beams, might absorb the re-
pumping light more likely when it has a higher detuning.

Figure 14 shows the fraction of atoms in the 40K-MOT
(circles) which populate the states F = 9/2 or F ′ = 11/2
(i.e. the cooling cycle states, see Fig. 2) as a function of
the intensity ratio Irep/Icool between repumping and cool-
ing light. In the experiment, the cooling light power was
fixed to 18 mW per MOT beam, and the repumping de-
tuning was ∆ωrep = −5 Γ . The graph was recorded as
follows. The absolute population of the states F = 9/2
and F ′ = 11/2 was measured by simultaneously switching
off both the repumping and cooling light of the 40K-MOT
600 µs before taking the image (with the imaging beam
being near-resonant with the F = 9/2 → F ′ = 11/2-
transition). During the 600 µs time delay, all excited
atoms relax to one of the ground states. For the used de-
tunings and intensities of the MOT-beams ∼90% of the
excited atoms occupy the state F ′ = 11/2 and thus relax
to the ground state F = 9/2, which is imaged. Therefore,
the image approximately yields the sum of the populations
of the states F = 9/2 and F ′ = 11/2. The total popula-
tion of all states (i.e. the total number of trapped atoms)
was measured as described in the previous paragraph.

The curve in Figure 14 is increasing with increasing ra-
tios Irep/Icool and it saturates for high ratios. For the ratio
Irep/Icool = 1/5 about 60% of the 40K-MOT atoms occupy
the cooling cycle states. For this ratio the fluorescence
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Fig. 14. (Color online) Circles: measured fraction of atoms in
the 40K-MOT populating the states F = 9/2 or F ′ = 11/2
(cooling cycle states) as a function of the intensity ratio be-
tween repumping and cooling light for the repumping detuning
∆ωrep = −5 Γ and a constant cooling light power of 18 mW
per MOT beam (which corresponds to an intensity of 6 Isat).
For the ratio which maximizes the total atom number in the
40K-MOT, Irep/Icool ∼ 1/20, only 20% of the trapped atoms
occupy the cooling cycle states. Solid curve: a fit based on
Einstein’s rate equations.

emitted by the 40K-MOT is found to be maximum. For
the ratio Irep/Icool = 1/20, which is used in the experi-
ment, only ∼20% of the atoms occupy the cooling cycle
states. Atom losses due to light-induced collisions are thus
minimized.

The solid curve in Figure 14 shows a fit of the experi-
mental data, based on a simple model, assuming 40K to be
a four-level atom (with the states F = 9/2, F = 7/2, F ′ =
11/2 and F ′ = 9/2). Einstein’s rate equations yield that
the curve obeys the law Pccs = 1/(1 + a+ b/(Irep/Icool)),
with the fitting parameters a = −0.11 and b = 0.17, which
depend on the transition probabilities and the used inten-
sities and detunings.

Figure 15 shows the dependence of the 6Li-MOT atom
number on the intensity ratio Irep/Icool between repump-
ing and cooling light for the repumping detuning ∆ωrep =
−3 Γ and a constant cooling light power of 11 mW per
MOT beam. In contrast to Figure 13, the curve does
not have a maximum but rather increases with increas-
ing Irep/Icool and saturates. This behavior is a result of
the important contribution of the repumping light to the
cooling process, particular to 6Li, as it has an unresolved
excited state hyperfine structure.

In a dual-species MOT, inelastic collisions between
atoms of the two different species can occur and represent
important loss mechanisms. Previous studies have shown
that the principal loss mechanisms for heteronuclear colli-
sions in dual-species MOTs involve one ground-state and
one excited atom of different species [35,36]. Such atom
pairs can undergo radiative escape or fine-structure chang-
ing collisions [39]. Both these loss processes require the

Fig. 15. (Color online) 6Li-MOT atom number as a function
of the intensity ratio between repumping and cooling light for a
constant cooling light power of 11 mW per MOT beam (which
corresponds to an intensity of 2 Isat). In comparison to 40K
(Fig. 13), the optimum atom number requires a larger inten-
sity in the repumping light, which is a consequence of the un-
resolved excited hyperfine structure of 6Li.

two atoms to approach each other sufficiently close such
that a large enough interaction energy is gained to make
the atoms leave the trap. The long-range behavior of the
scattering potentials determines if the atoms can approach
each other sufficiently. For LiK, the scattering potentials
for a singly-excited heteronuclear atom pair are all at-
tractive for the case where the K atom is excited and all
repulsive for the case where the Li atom is excited [40]. As
a consequence, a ground-state K atom and an excited Li
atom repel each other and are prevented from undergoing
inelastic collisions (optical shielding). Inelastic collisions
involving singly-excited heteronuclear atom pairs thus al-
ways contain an excited K atom. In order to minimize
the rate of heteronuclear collisions in the LiK-MOT, the
density of excited K atoms must therefore be reduced.
Furthermore, the atomic density in the trap as well as the
relative speed of the colliding atoms, i.e. the temperature
of the cloud, need to be minimized.

In our 6Li-40K dual-species MOT the following strat-
egy is applied in order to minimize inelastic heteronu-
clear collisions. First the use of very low magnetic field
gradients (8 G/cm), which decreases the atomic densities
(nK

c ∼ 3×1010 atoms/cm3 and nLi
c ∼ 2×1010 atoms/cm3).

Second, low intensities in the repumping light for both,
6Li and 40K, are used in order to decrease the number
of excited atoms. Decreasing the number of excited 6Li
atoms here a priori serves to decrease the temperature of
the 6Li-cloud. Since that is much larger than the temper-
ature of the 40K-cloud, the relative speed of two colliding
atoms and thus the collision rate can be efficiently de-
creased by minimizing the temperature of the 6Li-cloud.
Finally a small mutual influence of the MOTs is obtained:
the atom numbers in the MOTs decrease by ∼4% in the
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Fig. 16. (Color online) (a) Evolution of the atom number in
the 40K-MOT in the absence (t < 100 s) and presence (t >
100 s) of the 6Li-MOT for an increased magnetic field gradient
of 16 G/cm. (b) Trap loss coefficient βKLi for heteronuclear
collisions as a function of the relative excited state population
of the trapped 6Li atoms.

6Li-MOT and ∼10% in the 40K-MOT due to the presence
of the other species.

The importance of decreasing the magnetic field gradi-
ents in order to minimize the heteronuclear collision rate
in the dual-species MOT is demonstrated in Figure 16a,
which depicts the effect of the 6Li-MOT on the 40K-MOT
atom number when a two-times larger magnetic field gra-
dient (16 G/cm) is used. At this gradient the atomic den-
sity in the 6Li-MOT is by a factor of 4 larger than at
the gradient used for the optimized MOT. In the experi-
ment, the 40K-MOT was intentionally reduced in size (by
decreasing the 2D-MOT flux) to ensure a better inclo-
sure in the 6Li-MOT. The curve shows that ∼65% of the
40K-MOT atoms leave the trap due to the enhanced het-
eronuclear collisions. Using a low magnetic field gradient
is therefore helping significantly to decrease the heteronu-
clear collisions.

In the following we determine the trap loss coefficients
for the (optimized) dual-species MOT in order to quan-
tify the heteronuclear collisions. The rate equation for the
atom number in a dual-species MOT (with species A and
B) reads [35]

dNA

dt
= LA − γNA − βAA

∫

n2
AdV − βAB

∫

nAnBdV, (13)

where LA is the loading rate, γ the trap loss rate due
to collisions with background gas atoms and nA, nB the
local atomic densities. βAA and βAB denote the cold col-
lision trap loss coefficients for homo- and heteronuclear
collisions, respectively. LA and γ are determined from the
loading and decay curves of the single-species MOTs. The
obtained values for LA are given in Table 3 and γ is found
to be 1/7.5 s−1. The homonuclear trap loss coefficients
βAA are determined from the steady state atom numbers
in single-species operation using the measured density pro-
files. For the experimental conditions indicated in Table 3,
we obtain

βLiLi = (8± 4)× 10−12 cm3 s−1, (14)

βKK = (6± 3)× 10−13 cm3 s−1. (15)

The determination of the heteronuclear trap loss coeffi-
cients βAB for the optimized dual-species configuration
would require the knowledge of the mutual overlap of
the MOTs, which is difficult to estimate when absorption
images are taken only along one direction. We therefore
choose a configuration, which makes the determination
of βAB less dependent on assumptions about the mutual
overlap (but which does not change the value of βAB). We
reduce the atom flux of species A, in order to decrease the
spatial extension of the trapped cloud of species A and to
place it in the center of the cloud of species B. A video
camera which records the fluorescence of the MOTs from
a different direction than that of the absorption imaging
verifies that this configuration is indeed achieved. Then,
in equation (13) it is

∫

nAnBdV ∼ nB
c NA. Comparing the

steady-state atom numbers for the different configurations
then yields

βLiK = (1± 0.5)× 10−12 cm3 s−1, (16)

βKLi = (3± 1.5)× 10−12 cm3 s−1, (17)

for the experimental conditions indicated in Table 3. Com-
paring all four trap loss coefficients, the dominant is βLiLi

(Eq. (14)) for light-induced homonuclear 6Li-6Li colli-
sions. This is a consequence of the large temperature of
the 6Li-MOT and the unresolved hyperfine structure of
6Li which prohibits the creation of a dark MOT, lead-
ing to a large excited state population. The much smaller
homonuclear trap loss coefficient βKK for 40K (Eq. (15))
is consistent with Figure 13 which shows that, for 40K,
small repumping intensities are favorable. The heteronu-
clear trap loss coefficients βLiK, βKLi (Eqs. (16) and (17))
are also much smaller than βLiLi, indicating that our ap-
plied strategy for decreasing the heteronuclear collisions
is good. In the Amsterdam group the heteronuclear trap
loss coefficients were found by a factor of about 2 larger
than ours [15]. A dark SPOT MOT has been implemented
in order to reduce the excited state population of the 40K
atoms. In the next paragraph we show, however, that it is
also important to reduce the excited state population of
the 6Li atoms.

Figure 16b depicts the dependence of the trap loss co-
efficient βKLi on the relative excited state population of
the 6Li atoms. The graph was obtained by recording the
influence of the 6Li-MOT on the 40K-MOT as the power
of the 6Li-MOT beams was varied. For each power it was
verified that the 40K-MOT was placed in the center of
the 6Li-MOT and the atomic density of the 6Li-MOT was
recorded. In the experiment a magnetic field gradient of
16 G/cm was used. The central atomic density of the 6Li-
MOT was found to be approximately constant, when the
power was varied (nLi

c ∼ 8 × 1010 atoms/cm3). The rela-
tive excited state population for a given beam power was
estimated using Einstein’s rate equations. In addition the
variation of the excited state population was measured
by recording the fluorescence emitted by the 6Li-MOT
and by measuring the number of captured atoms. The
latter changed by a factor of 1.5 in the considered range
of beam powers. The graph in Figure 16b shows that the
trap loss coefficient increases by more than a factor of 2



18 The European Physical Journal D

as the relative excited state population is increased from
∼7% to ∼16%. The error bars shown in the figure refer
to statistical errors. The uncertainty due to systematic
errors is estimated to be 50%. The significant increase
of βKLi demonstrates the importance of minimizing the
number of excited 6Li atoms (and not only that of the
excited 40K atoms). One reason for this increase is the
increase of temperature of the 6Li-MOT, which changes
from ∼1 mK to ∼1.6 mK when the beam power is in-
creased. Another reason could be the occurence of colli-
sions involving doubly-excited Li*K* atom pairs, the rate
of which increases with the excited state populations. The
scattering potentials for these collisions are known to be
of a long-range, as they scale with the internuclear separa-
tion as 1/R5 [41], whereas they scale as 1/R6 for collisions
involving a singly-excited heteronuclear atom pair [33].

5 Conclusions

We have produced a dual-species magneto-optical trap
for fermionic 6Li and 40K with large atom numbers. Two
strategies have been applied in order to achieve this re-
sult. First, the dual-species MOT is placed in an ultra-high
vacuum environment, being continuously loaded from cold
atomic beams. The atomic beams originate from separate
atom sources – a Zeeman slower for 6Li and a 2D-MOT
for 40K – which both yield a large flux of cold atoms.
Second, the homo- and heteronuclear collisions have been
minimized by using small magnetic field gradients and low
light powers in the repumping light. The atom loss in each
MOT due to the presence of the other species decreases
by only 4% (6Li) and 10% (40K) due to the heteronuclear
collisions.

We have given a detailed description of the imple-
mented apparatus, which we hope serves as a guideline
for the construction of next generation experiments with
fermionic 6Li and 40K.

The produced dual-species MOT represents the start-
ing point for the production of a large-atom number quan-
tum degenerate Fermi-Fermi mixture. The atoms trapped
in the dual-species MOT have already been transferred
into the magnetic trap and magnetically transported to
the science chamber with large optical access and low
background pressure. The large depth of magnetic traps
as compared to optical traps allows for a large transfer ef-
ficiency, leading to smaller losses of atoms. In the science
cell, the dual-species cloud will be evaporatively cooled in
a plugged magnetic trap to quantum degeneracy and then
transferred into an optical trap for investigation.
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grant SFRH/BD/68488/2010 and from Fundação Calouste
Gulbenkian.
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Fig. 17. (Color online) Sketch of the tapered amplifier sup-
ports for (a) Li and (b) K. In the figure, TA Li and TA K
refer to the respective tapered amplifier chips, CL1, CL2, CL3
and CL4 to the (only longitudinally adjustable) collimation
lens supports and BCM to the isolated mount for the blade
connectors used to power the chip for K. The supports for the
output collimation lenses are CL2 and CL4.

Appendix: Tapered amplifier mounts

We developed compact support designs for our tapered
amplifier chips, in order to minimize the costs of the laser
sources of our experimental setup. The TAs are commer-
cial semiconductor chips which are mounted on homemade
compact mechanical supports with nearly no adjustable
parts. The support designs allow for an easy installa-
tion process, which does not require any gluing or the
help of micrometric translation stages for the alignment
of the collimation optics, as that can be accomplished by
free hand. Furthermore, the design minimizes the heat
capacity of the support and the produced temperature
gradients, allowing for a quick temperature stabilization
that makes the TAs quickly operational after switch-on.
The temperature stabilization is accomplished using a
Peltier element (Roithner Lasertechnik GmbH, ref. TEC1-
12705T125) connected to a PID control circuit. The heat
of( the chip is dissipated via an aluminum base plate which
is economically cooled by air rather than running water
(the base plate reaches a maximum temperature of 28 ◦C
for diode currents of 2 A).

The commercial TA chips are sold on small heat sinks
which have different dimensions for the two different wave-
lengths. We thus had to design slightly different sup-
ports for the Li- and K-TAs, which are both schematically
shown in Figure 17.

For lithium the semiconductor chip (Toptica, ref. TA-
670-0500-5) is delivered on a heat dissipation mount of
type “I”. It is placed between two axially aligned cylindri-
cal lens tubes (CL1 and CL2 in Fig. 17a), each of which
containing an aspheric collimation lens of focal length
4.5 mm (Thorlabs, ref. C230TME-B). The support of the
tubes and the chip are precisely machined such that the
chip’s output beam falls on the center of the respective
collimation lens (CL2 in Fig. 17a). The tubes are sup-
ported by cylindrically holed tightenable hinges in which
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they can move only longitudinally, along the direction of
the amplified laser beam. This restriction of the tube’s mo-
tion facilitates the alignment of the collimation lenses. The
support design does not allow for a transverse alignment of
the collimation lenses. Since this alignment is not very crit-
ical for the performance of the TA, we found it needless to
allow this degree of freedom and relied on precise machin-
ing (possible imperfections could be compensated utilizing
the mechanical play of the large attachment screw holes of
the commercial heat sinks of the chips). When tightened
by a screw, the hinges fix the position of the tubes. Since
the tightening applies a force perpendicular to the longi-
tudinal direction, it does not move the tubes along this
(critical) direction. They might only move slightly along
the transverse direction, which does not affect the final
performance of the TA.

For potassium, the semiconductor chip (Eagleyard, ref.
EYP-TPA-0765-01500-3006-CMT03-0000) is delivered on
a heat dissipation mount of type “C”. Placing this mount
between two hinges as for the case of lithium is less conve-
nient since the heat dissipation mount has to be attached
by a screw in the longitudinal direction which requires ac-
cess from one side. Therefore one hinge is replaced by a
rail which guides a parallelepipedically formed mount for
the second (output) collimation lens (CL4 in Fig. 17b).
The motion of this mount is also fixed by tightening a
screw applying forces perpendicular to the rail direction,
which does not move the collimation lens along the critical
longitudinal direction. For all our TAs, the positioning of
the collimation lenses never had to be adjusted again once
they were aligned.

The commercial heat dissipation mount of the potas-
sium chip is inconvenient for a simple powering of the chip.
The very fragile gold wire, which has to be connected to
the negative source of the current supply, has to be pro-
tected by a mechanical support before being connected
to a cable. Therefore we soldered it to a blade connector
that is fixed by an isolated plastic mount (BCM Fig. 17b)
and which is connected to the current supply. To avoid
an overheating of the chip during the soldering process we
permanently cooled the gold wire by blowing cold dry air
from a spray can on it.

The output beams of the TA chips are astigmatic
and thus require additional collimation. The choice of the
collimation optics needs to be adapted to the specifica-
tions of the subsequent optical fiber, which in our case
requests a collimated circular Gaussian beam of 2.2 mm
1/e2-diameter for optimum coupling efficiency. The mode-
matching was found optimum for a pair of lenses con-
sisting of one spherical lens (with f = 15 cm for Li and
f = 4 cm for K) and a cylindrical lens (with f = 8 cm for
Li and f = 2.54 cm for K), which are placed outside the
TA’s housing. The cylindrical lenses are supported by ro-
tatable mounts, in order to facilitate the mode-matching
into the fibers. For all our TAs we achieve fiber-coupling
efficiencies larger than 50% (Li) and 60% (K).

When injected with 20 mW, the Li-TAs yield an out-
put power of 500 mW at 1 A driving current and the K-
TAs yield an output power of 1500 mW at 2.5 A driving

current. In order to increase the lifetime of the chips, we
limit the driving currents to smaller values and we switch
the chips on only for periods of experimentation. When
switched on, the TAs quickly reach a stable functioning
(usually within 10 min) due to the compactness of the
mechanical support, which allows for a quick temperature
stabilization.
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Abstract We present an all-solid-state narrow-linewidth

laser source emitting 670 mW output power at 671 nm de-

livered in a diffraction-limited beam. The source is based on

a frequency-doubled diode-end-pumped ring laser operat-

ing on the 4F 3/2 → 4I 13/2 transition in Nd:YVO4. By using

periodically poled potassium titanyl phosphate (ppKTP) in

an external buildup cavity, doubling efficiencies of up to

86% are obtained. Tunability of the source over 100 GHz

is accomplished. We demonstrate the suitability of this ro-

bust frequency-stabilized light source for laser cooling of

lithium atoms. Finally, a simplified design based on intra-

cavity doubling is described and first results are presented.

1 Introduction

The lithium atomic species is of great interest for cold-atom

experiments and the study of quantum degenerate gases. As

a member of the alkali group, it offers strong coupling to

electromagnetic fields and a simple level structure including

cycling transitions, thus making it suitable for laser cooling.

The significant natural abundance of fermionic (6Li) as well
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as bosonic (7Li) isotopes allows exploration of both sorts of

quantum statistics. The interaction parameter at ultra-cold

temperatures, the s-wave scattering length, is easily tunable

for both species by applying a DC magnetic field in the

vicinity of a Feshbach resonance [1]. The large width of

these resonances, in addition to the light mass, adds up to

the favorable properties of lithium for ultra-cold-atom ex-

periments.

To produce large samples of quantum degenerate gases,

one needs large numbers of pre-laser-cooled atoms in a

magneto-optical trap (MOT). This first step is mandatory be-

fore proceeding to the evaporative cooling phase that leads

to quantum degeneracy by reducing the atom number in fa-

vor of phase-space density. To optimize the MOT capture

process, one usually fixes the laser intensity around a satu-

ration intensity and uses the available output power to max-

imize the beam diameter. Thus, more laser power leads to a

better capture efficiency and larger atom numbers. Another

important requirement is the quality of the spatial mode

needed to efficiently couple the laser light to single-mode

(SM) optical fibers.

The wavelength of the lithium D-line resonances

(670.8 nm in air) currently restricts the choice of light

sources to two different kinds of lasers: dye lasers and exter-

nal cavity diode lasers (ECDLs). Dye lasers typically deliver

watt-level output of monochromatic light in a diffraction-

limited beam [2]. The drawbacks of this technology are

an important maintenance effort, high intrinsic phase noise

and the requirement of an expensive pump laser. ECDLs

are typically limited to 50-mW output with limited spa-

tial mode quality; hence, further amplification by injection-

locked slave lasers or tapered amplifiers is needed to run a

cold-atom experiment.

It is thus desirable to develop suitable single-frequency

lasers with watt-level output power. Further applications of



26 U. Eismann et al.

Fig. 1 The laser setup, consisting of the fiber-coupled pump source

FP, two pump focusing lenses f1,2, the cavity mirrors M1–4 and the

Nd:YVO4 active medium. The λ/2 wave plate and the TGG Fara-

day crystal in a magnet ensemble impose unidirectional oscillation,

whereas two etalons E1,2 establish single-mode operation. The optical

path of the laser beam is depicted in green. For some mechanical com-

ponents, we show a sectional view to improve visibility of the beam

path. The distance betweenM1 andM2 is 295 mm

such sources include atom interferometry experiments [3],

pumping of Cr:LiSAF lasers [4] and lithium isotope separa-

tion [5].

Light sources emitting at 671 nm based on frequency

doubling of 1342-nm Nd:YVO4 or Nd:GdVO4 lasers have

been realized previously [6–15], reaching up to 9.5 W of

cw multi-mode output [15]. A solid-state single-frequency

laser source delivering 920 mW at around 657 nm has been

presented in [16].

Here we report on the construction and characterization

of an all-solid-state laser source with 670-mW output power

in a TEM00 mode operating at 671 nm. This is made pos-

sible by frequency doubling a home-made 1.3-W, 1342-nm

Nd:YVO4 single-mode ring laser in an external cavity. The

advantages of our source are: watt-level output power in a

single longitudinal and transverse mode with excellent beam

quality, narrow linewidth (<1 MHz) and long-term fre-

quency stabilization onto the lithium resonance lines. Fur-

thermore, multi-mode-diode-laser pumping at 808 nm is in-

expensive and only low-maintenance efforts are required for

establishing reliable day-to-day operation.

The paper is organized as follows: in Sect. 2, we de-

scribe the infrared (IR) single-frequency laser design and re-

sults. Section 3 focuses on the frequency doubling of the in-

frared radiation, whereas Sect. 4 treats the spectroscopy and

frequency-locking systems. In Sect. 5 the red laser emission

is characterized in terms of relative intensity noise, linewidth

and long-term stability. In Sect. 6, we describe a second

setup in progress using intra-cavity doubling that has the

potential to deliver similar output power at 671 nm while

offering higher simplicity of the laser source design.

2 Infrared laser

2.1 Laser setup

To realize a single-longitudinal-mode (SLM) laser, it is fa-

vorable to use a design avoiding standing waves and thus

the resulting spatial hole burning in the active medium [17].

Thus, we have chosen a ring cavity with proper intra-cavity

etalons as frequency-selective elements.

The setup is presented in Fig. 1. The pump source is

a commercial fiber-coupled Coherent FAP-400 diode stack

emitting up to 42.6 W at 808 nm (90% energy width:

4 nm). Its metal housing is temperature stabilized to op-

timize the spectral overlap between pump emission and

the gain medium absorption. The fiber output (core radius:

200 µm, numerical aperture NA = 0.22) is imaged in the

gain medium using two lenses (f1 = 75 mm and f2 =

200 mm) to a top-hat spot of radius wpump = 530 µm. The

Nd:YVO4 crystal of dimensions 3×3×10 mm3 is 0.2 at.%-

doped, a-cut and anti-reflective (AR) coated at 808 nm and

1342 nm. It is wrapped in indium foil and fixed in a solid

water-cooled copper mount to efficiently remove heat. Care

needs to be taken to avoid acoustic excitations of the mount

due to turbulent water flow; thus, only a small continuous

flux of tap water was applied to prevent frequency fluctua-

tions of the laser output.

The four mirrors M1−4 (highly reflective at 1342 nm ex-

cept for the output coupler M2, transmitting at 808 nm) form

a folded ring or bow-tie cavity. The two concave mirrors M3

and M4 have a radius of curvature of Rcc = 100 mm. Ther-

mal design is crucial for the laser: even at moderate pump

powers, strong thermal lensing occurs because of the large

quantum defect between pump and lasing photon energies

and excited-state absorption to higher levels [18–20]. Op-

timum spatial overlap of the pump fiber image in the laser

crystal (top-hat profile of radius wpump) and the laser mode

(1/e2 radius wlaser) is established by fine tuning the dis-

tance between M3 and M4. The choice of the mode-size ra-

tio ρ = wlaser/wpump ≃ 1 allowed for a stable TEM00 op-

eration at optimum output power.1 The cavity design re-

mains stable in the presence of a thermal focal length down

1Chen et al. [21] suggest a ratio ρ = 0.8, for which we observe reduced

output power as well as higher-order transversal mode oscillation.
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Table 1 Frequency scales in the setup. Typical frequencies are free

spectral ranges νFSR as described in the text and FWHM for the gain

profile from [19]. Reflectivities R are given for the output and input

coupling mirrors in case of the two cavities and for the two etalon sur-

faces, respectively. The finesses F and Q-factors of the laser cavity

and E1 are calculated from the R-values as stated, neglecting further

losses. F and Q were measured for the doubling cavity, see Sect. 3.3

Typ. freq. Typ. R F /Q-factor

Gain profile width 300 GHz

Laser cavity 81 cm 360 MHz 96.5% 110/6× 107

Doubl. cavity 41 cm 730 MHz 93.6% 86/3× 107

Etalon E1, 0.5 mm 210 GHz 3.3% –/–

Etalon E2, 4 mm 26 GHz 28% 2/2000

to fth = 170 mm in the Nd:YVO4 crystal. Care was taken

to design the cavity as short as possible to increase the

laser’s mechanical stability and the cavity free spectral range

(FSR), facilitating SLM behavior.

Unidirectional oscillation is ensured by a combination of

a Faraday rotator and a wave plate. The Faraday rotator is

custom built by the LCAR group according to the original

design presented in [22]. As a medium displaying the Fara-

day effect, a cylindrical AR-coated terbium gallium garnet

(TGG) crystal is chosen. To minimize absorption, the length

of the TGG crystal is limited to lTGG = 6 mm, and its diam-

eter is 5 mm. The ensemble of NdFeB ring magnets delivers

a magnetic field integral of IB =
∫ lTGG
0 B(z)dz = 8 T mm

along the TGG axis. Single-pass measurements resulted in a

rotation angle of ϕrot = −(9.3± 0.1)◦ and thus in a Verdet

constant of V = ϕrot/IB = −(20.3 ± 0.2) rad T−1 m
−1
for

the given crystal at 1342 nm. Back rotation and stable unidi-

rectional operation at high intra-cavity powers is established

by an AR-coated zero-order λ/2 wave plate, which is pre-

ferred to multi-order wave plates because of instabilities re-

lated to thermal effects [23]. The polarizing intra-cavity ele-

ment is the Nd:YVO4 crystal which provides higher gain in

the c-direction as well as birefringence. The oscillation di-

rection is chosen as indicated in Fig. 1 to spatially separate

residual pump light from the output beam.

Stable SLM behavior could not be established using a

single intra-cavity etalon. Thus, two infrared fused silica

etalons E1,2 of free spectral ranges νFSR,1 = 210 GHz and

νFSR,2 = 26 GHz are installed, where νFSR = c/nLrt; c is

the speed of light in vacuum, n the refractive index and Lrt
the round-trip length. An overview of the typical frequency

scales of the setup is given in Table 1. E1 is non-coated,

offering a modulation of the cavity transmission due to its

Fresnel reflectivity of R = 3.3% per surface, whereas E2 is

single-layer coated, yielding R = 28%.

A second role of the etalons is coarse frequency tun-

ing of the output radiation. However, angular tuning yields

walk-off losses and thus reduces the available output power.

By applying the method of [24] to ring lasers, the mini-

mum walk-off loss2 can be estimated to be Lwo = 0.02%

for E2. It can be neglected for E1, for which even an an-

gular tuning of an entire free spectral range only yields

Lwo = 0.03% additional loss. To avoid the higher tilt loss

of E2 (Lwo = 2.8% for angular tuning over one free spectral

range of νFSR = 26 GHz), we chose to keep it still at the min-

imum angle and to change its temperature to tune the laser.

For that purpose, it is enclosed in a temperature-stabilized

copper mount.

Fine tuning of the laser frequency is established by

mounting mirrors M3 and M4 on piezoelectric transducers

(PZTs): a slow PZT (M4) displaying large displacement of

around 2 µm at maximum voltage of 150 V and a fast PZT

(M3) with a displacement of around ±50 nm limited by the

±15-V driver.

The laser was mounted on a 50-mm-thick breadboard.

A combined aluminum–acrylic–glass housing was provided

to isolate acoustic perturbations and for keeping the setup

continuously under a dried air atmosphere to prevent dust

and moisture from having detrimental effects on stable long-

term operation.

2.2 Laser operation and characteristics

We now present a detailed description of the laser’s oper-

ational characteristics. Pump light absorption in the gain

medium depends on the wavelength of the radiation [25],

hence on the pump diode stack temperature. Setting the

chiller temperature to 24◦C at maximum pump current re-

sulted in highest output power.

By choosing a coupling mirror transmission value Toc =

3.5%, a maximum single-mode output power Pout of 1.3 W

was obtained, see Fig. 2. The lasing threshold was found at

an absorbed pump power Pabs = 9.8 W. The power rises

linearly above threshold with a slope efficiency of ηsl =

dPout/dPabs = 37%. Between Pabs = 11 W and 12 W, the

output power departs from a linear behavior, and becomes

unstable. We attribute this to intra-cavity-power-induced

heating of etalon E2 and the related change of its resonance

frequency, thereby leaving the optimum operation range.

Above Pabs = 12 W, we recover the initial slope with sta-

ble operation. At Pabs (Pout) = 12.9 W (1.17 W), the slope

efficiency drops to ηsl = 12%, indicating the presence of

detrimental thermal effects. This behavior was qualitatively

found before, see for instance Ref. [26]. Since no degrada-

tion of the laser parameters was observed for highest output

powers, the laser was always pumped at maximum current

2The loss estimate of Ref. [24] yields zero for perpendicular incidence.

However, one needs to account for a minimum angle on the order of the

Gaussian beam divergence angle to circumvent multi-cavity behavior,

causing instability of laser operation.
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Fig. 2 Single-frequency laser output power as a function of pump

current. Two regimes can be distinguished in the data (circles), and

linear fits are performed (solid/dashed lines) for Pabs < 12.9 W and

Pabs > 12.9 W. Points in the unstable domain near Pabs = 11.5 W were

left out of the fit

for all further measurements. Removal of the etalons yields

a rise in output power of∼20%. This can be partly attributed

to detuning of the laser frequency ω of ≃25 GHz from the

emission peak when lasing at half the lithium resonance fre-

quency.

The temperature derivative of the frequency of maximum

etalon transmission νmax yields

dνmax

dT
=

νmax

νFSR

dνFSR

dT
= −νmax

(

1

n

dn

dT
+
1

Lr

dLr

dT

)

, (1)

where T is the etalon temperature. Putting in the val-

ues for IR fused silica from [27] yields dνmax/dT =

−1.42 GHz K−1. The emission wavelength was measured

by single-pass frequency doubling the laser light, as de-

scribed in the next section. This resulted in a second-

harmonic (SH) output power in the 1-mW range, suffi-

cient to drive a CCD-based wavelength meter (High Finesse

WS-6). The measured temperature dependence of the laser

emission frequency ν is dν/dT = (−1.45±0.01)GHz K−1.

Tunability of ≃50 GHz is achieved, yielding ≃100 GHz of

tunability for the SH output. To operate the laser at a given

frequency without mode hops caused by etalon temperature

drifts, the temperature of the etalon Tset needs to be stabi-

lized to an interval Tset ± δT , where δT can be estimated to

be

δT <
νFSR, laser

2|dν/dT |
≃ 0.1◦C. (2)

This is accomplished using a home-made temperature con-

troller, offering stability well below this requirement.

Continuous scanning of the laser frequency is achieved

by sweeping the voltage applied to the slow PZT (M4). For

the dynamic range of 0–150 V, this results in more than

three times the full mode-hop-free scan range of νFSR,laser =

360MHz. By applying simultaneous (linear) scanning of the

PZT and angle tuning of etalon E2, mode-hop-free contin-

uous frequency tuning of the laser over 1.1 GHz could be

demonstrated, with a resulting maximum output power drop

of ≃10% due to etalon walk-off loss.

The beam coupled out of M2 has a 1/e
2 waist radius

of 640 µm (820 µm) and a divergence angle of 0.8 mrad

(0.9 mrad) in the horizontal (vertical) plane. The astigma-

tism results from the cavity design and non-isotropic thermal

lensing in the Nd:YVO4 crystal. By employing only spher-

ical lenses, and thus imperfect mode matching, a coupling

efficiency to a SM optical fiber of 75% was obtained. Sta-

ble output power and beam parameters over weeks of daily

operation were demonstrated.

3 Second-harmonic generation

3.1 General considerations

Frequency-doubled light is generated using a second-order

process in a nonlinear medium. In the limit of weak conver-

sion, this yields a second-harmonic (SH) output power P2ω

in the form

P2ω = ηP 2
ω, (3)

with Pω the pump beam power of frequency ω and η the

conversion efficiency. In [28], Boyd and Kleinman derived

the following expression for η, assuming Gaussian beams:

η =
2ω3d2

ijL

πε0c4nω,in2ω,j

h(α,β), (4)

where dij is the effective nonlinear coefficient of the mate-

rial with i(j) the polarization of the fundamental (SH) wave,

nω(2ω),i(j) the corresponding refractive indices of the ma-

terial, L the nonlinear material length, ε0 the vacuum per-

mittivity and c the speed of light in vacuum. The function

h(α,β) is given as

h(α,β) =
1

4α

∣

∣

∣

∣

∫ α

−α

eiβ(T )τ

1+ iτ
dτ

∣

∣

∣

∣

2

, (5)

with the focusing parameter α = L/2zR, where zR is the

Gaussian beam Rayleigh length assumed here equal for both

waves, yielding a smaller waist for the SH light. The phase-

matching parameter

β =
4πzR

λ

(

nω,i(T ) − n2ω,j (T )
)

(6)

is temperature and polarization dependent in the case of

birefringent media. The derivation assumes no depletion of

the fundamental wave and absence of losses. The integral

in (5) needs to be calculated numerically except for limiting

cases, yielding a global maximum of hmax(2.84,0.573) =

1.068. Putting in values for the usual nonlinear media, this
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Fig. 3 (a) Setup of the single-pass efficiency measurements. The IR

laser output (depicted in green) is mode cleaned by a polarization-

maintaining SM fiber (F ). The power leaking through mirror Mref is

referenced on a photodiode (PD), and the beam is then focused into

the ppKTP crystal by a lens (L). Mirror Msep separates SH (red) from

fundamental light, which is sent into a beam dump (BD), whereas the

converted light power is measured with a power meter (PM). For ref-

erencing to the dark-current values, a shutter periodically switches on

and off the IR light. (b) Temperature-dependent single-pass doubling

efficiency. Measured data (circles), fit to (5) (solid line)

results in a doubling efficiency η in the %/W range at best.

Thus, for the available cw laser power, single-pass doubling

is not an option and one has to resort to resonantly enhanced

intra-cavity doubling.

Quasi-phase matching in periodically poled materials is

favorable in the intra-cavity case because of the excellent

beam quality achievable without beam walk-off [29, 30].

The accessibility of the much greater diagonal elements dii

of the nonlinear tensor allows for higher single-pass effi-

ciencies (4) while keeping the phase-matching condition of

optimum β . Compared to the bulk case, the same equa-

tions (3)–(6) hold, by performing the following replace-

ments: β → β − 2πzR/Λ, where Λ is the poling period

and dij → deff = 2dii/π . As a nonlinear medium, periodi-

cally poled potassium titanyl phosphate (ppKTP) was cho-

sen because of its high transparency from 350 to 4300 nm,

its high nonlinear coefficient d33 = 16.9 pm/V [31] and its

high damage threshold.

3.2 Single-pass measurements

We first describe the characterization of the nonlinear crys-

tal using a single-pass method. The completely automatized

measurement setup is represented in Fig. 3. The spatial

mode-cleaning fiber output power was ≃500 mW, resulting

in a maximum of P2ω ≃ 2 mW of red light output, the two

beams being separated using mirror Msep. The fundamental

power was monitored using a Ge photodiode (PD) exploit-

ing the finite transmission through mirror Mref. The signal

was calibrated against the IR power Pω hitting the crystal.

The finite transmittance of Mref at 671 nm was taken care

of, and the SH power measured using a commercial power

meter (Thorlabs S130A). The response of the power me-

ter’s Si photodiode at 1342 nm is negligible, and so is the

corresponding transmission of Msep. The shutter, driven at

1 Hz with a 50% duty cycle, allowed for the determination

of dark-current offset drifts for both power measurements,

which is of highest importance for low conversion efficien-

cies. The crystal is mounted on a transverse (xy) translation

stage and temperature controlled to ∼10 mK using a Peltier

element and a home-made temperature controller. A set tem-

perature ramp was applied to the controller, scanning the

full 55◦C range in about 30 min. The slow ramp allowed

for adiabatic behavior of the temperature measurement, per-

mitting independent determination of the temperature of the

crystal measured by a LM35 sensor attached to the crystal

mount.

The ppKTP crystal used in the experiments was fab-

ricated in-house at the Royal Institute of Technology by

electric field poling at room temperature [32]. Its length

is 19.2 mm, featuring an optical aperture of 6 × 1 mm2.

The length of the periodically poled region is 17.25 mm.

The poling period was chosen to be Λ = 17.61 µm, re-

sulting in expected plane-wave phase matching at 23.5◦C

using the temperature-dependent Sellmeier equations from

[33, 34]. Both surfaces are AR coated at 1342 nm and

671 nm.

Experimental results are presented in Fig. 3. A weighted

numerical fit to (4) well describes the measured data. The

temperature dependence of the phase-matching parame-

ter β was taken into account up to quadratic order. The

full 99% width of the peak of 0.7◦C allows the use of

standard temperature controllers. However, the optimum

phase-matching temperature of 33.2◦C differs from the the-

oretical value. This can be explained by a small differ-

ence to the Sellmeier equations as presented in [34] and

a non-perfect alignment between pump beam and crys-

tal axis. The maximum measured single-pass efficiency of

1.13%/W represents 74% of the theoretical maximum of

1.53%/W from formula (4) with the parameters α as fit-

ted and d33 for KTP from [31]. This can be explained by

imperfections of the domain grating, most probably devi-

ations from the 50% duty cycle. We thus derive an effec-
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Fig. 4 The doubling cavity setup consisting of the four mirrors M ′
1–4

and the ppKTP nonlinear crystal. The light is coupled to the cavity

eigenmode using lenses L′
1,2, whereas L′

3 collimates the SH output.

Some mechanical components are sectioned to improve visibility of

the laser (SH) beam, depicted in green (red). The distance M ′
3–M

′
4 is

95 mm, the dimensions of the coupling light paths are not to scale

tive nonlinear coefficient of deff = 9.2 pm/V for our crys-

tal.

3.3 Doubling cavity

The doubling cavity setup is similar to the one presented in

[35] and depicted in Fig. 4. As for the laser, a four-mirror

folded ring cavity is used, building up a powerful travel-

ing fundamental wave. The pump light is coupled through

the plane mirror M′
1 for which several reflectivity values

Rc are available to account for impedance matching. All

other mirrors are highly reflective at 1342 nm and trans-

mitting at 671 nm. M′
3 and M

′
4 are concave with a ra-

dius of curvature of 75 mm. M′
2 (M

′
3) was glued on the

same type of fast (slow) PZT as used in the laser cavity

(Sect. 2.1), allowing it to act on the cavity length in the

50 nm (2 µm) range. The nonlinear crystal is inserted in

the cavity’s smaller waist of w0 ≃ 55 µm. The weaker-

than-optimal focusing leads to a slightly reduced h(α =

1.22,0.818) = 0.865, or a fraction h/hmax = 81% of the

optimum value, yielding η = 0.92%/W. This choice rep-

resents a trade-off between maximum single-pass doubling

efficiency and intensity-related detrimental effects such as

nonlinear and SH-induced absorption [36] and gray track-

ing [37]. The cavity length was minimized and the geome-

try chosen to be shifted with respect to the stability range

center. It also avoids frequency degeneracy of higher-order

transverse cavity eigenmodes and the TEM00 mode. It also

accounts for a circular beam in the crystal and thus for a

circular SH output. Mode matching between the laser out-

put and the cavity was accomplished using a set of spher-

ical lenses. The crystal mount is identical to the one de-

scribed in Sect. 3.2. The frequency-doubled light is trans-

mitted through M′
4 and collimated using a f ′

3 = 150 mm

lens to a 1/e2 beam radius of 0.9 mm. The doubling cav-

ity is kept in a housing equaling the laser housing in design

and function.

Table 2 Passive losses in the doubling cavity measured from cavity

transmission spectra at low power and conversion efficiency. 1 − Rc

is the specified coupler power transmission, Lemp are the measured

empty-cavity round-trip power losses, Ltot are losses including the pp-

KTP crystal and Lc are the inferred crystal insertion losses according

to Lc = 1− (1− Ltot)/(1− Lemp)

1− Rc Lemp Ltot Lc

5% 6.4% 7.1% 0.7%

10% 10.4% 11.2% 0.9%

17% 17.9% 19.0% 1.3%

For low intra-cavity powers of up to ∼500 mW and

the crystal temperature tuned far from the optimum phase-

matching value, nonlinear conversion can be neglected.

While scanning the cavity length by 1L, one measures a

power signal leaking through M′
2, proportional to the intra-

cavity power

P(δL) =
∑

lm

Plm

1+ F sin2 (ϕlm + ω1L/c)
, (7)

where F is a fit parameter. Plm are the contributions from

the TEMlm modes, displaying a constant cavity round-trip

phase of ϕlm, and c is the speed of light in vacuum. The

mode-matching efficiency is defined as ηmo = P00/
∑

Plm.

It was maximized to ηmo = 92%. The linear cavity round-

trip losses Lemp/tot can be quantified from the fit parame-

ter F , where emp (tot) means the empty cavity (cavity in-

cluding ppKTP crystal). The results are presented in Table 2.

Inserting the crystal raises the losses by Lc ≃ 1%. This can

be accounted for by residual absorption and scattering in the

ppKTP crystal and imperfections of its AR coatings. Taking

into account nonlinear conversion, the fundamental mode

intra-cavity power P00 = Pω at TEM00 resonance (referred

to as cavity resonance) is a solution of

Pω =
(1− Rc − L1)ηcPp

(1−
√

Rc(1− Lpa)(1− ηPω))2
, (8)

which can be calculated numerically, where Pp is the funda-

mental pump power, L1 is the coupling mirror (M′
1) trans-

mission loss and Lpa is the total cavity passive loss exclud-

ing the coupler transmission. The single-pass doubling ef-

ficiency η is calculated according to (4) with d33 as mea-

sured in Sect. 3.2. Setting Lpa = Lc and L1 = 0, the so-

lution of (8) yields a maximum SH power of 710 mW at

the maximum available pump power of Pp = 860 mW. This

is accomplished for an optimized coupling mirror reflectiv-

ity of Rc = 92%, yielding a power conversion efficiency of

ηconv = P2ω/Pp = 84%.

After locking the cavity to the laser, as will be described

in Sect. 4.1, the SH power P2ω versus Pω was measured

for Rc = 95%, see Fig. 5. For low powers, the conver-

sion shows quadratic behavior as stated in (3). A fit yields
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Fig. 5 Intra-cavity conversion for the cavity locked to the laser, as de-

scribed in Sect. 4.1. Measured data (circles) versus parabolic fit (solid

line). At P2ω = 640 mW, the conversion becomes less efficient (dashed

line)

a single-pass efficiency of η = 0.78%/W, slightly lower

than predicted. However, starting from the threshold value

Pω (P2ω) = 9.0 W (640 mW), only a slow linear rise in

SH power with intra-cavity power is obtained, reaching its

maximum at Pω(P2ω) = 10.7 W (670 mW). We attribute

this behavior to fast intensity-dependent detrimental effects.

This is confirmed by the lock error signal, which becomes

very noisy above threshold. In contrast to [38, 39], the cav-

ity remains locked for all power levels. When changing the

pump power, the SH output follows without observable hys-

teresis. Long-term degradation is not observed, indicating

the absence of gray tracking. However, for further charac-

terization the setup is operated just below threshold to avoid

the related rise in intensity noise. A maximum doubling ef-

ficiency of ηconv = 86% is obtained just below threshold,

compatible with the theoretical predictions.

4 Lock and saturation spectroscopy

Frequency locking of the laser system to the lithium D-

line transitions requires frequency-doubled light to perform

spectroscopy on atomic lithium vapor. Thus, first the dou-

bling cavity needs to be frequency locked to the free-running

laser. In a second step, the laser is stabilized to half the re-

quired frequency using lithium saturated absorption phase

modulation spectroscopy. The setup is presented in Fig. 6.

4.1 Cavity lock

To frequency lock the doubling cavity to the laser frequency,

an error signal needs to be generated. We use a modulation

technique: an electro-optical modulator (EOM1 in Fig. 6)

phase modulates the infrared pump light at a modulation

frequency of ν1 = 1 MHz. In the doubling process, this re-

sults in a phase modulation of the frequency-doubled light,

Fig. 6 Locking scheme. Straight lines depict light paths, dashed lines

electronic signals. First, the doubling cavity is locked to the free-run-

ning laser using control circuit components indexed 1. A part of the

SH light is used for lithium spectroscopy. In a second step, this refer-

ence serves to lock the laser frequency with respect to half of one of

the lithium resonance frequencies with a tunable offset, using control

circuit 2. The frequency offset is determined by the double-pass AOM

driving frequency νoff

which is detected and demodulated using a home-made syn-

chronous detection circuit. It allows us to produce an error

signal with a 3-dB bandwidth of 100 kHz, which is fed into

a lock circuit.

The lock circuit combines a proportional-integrating (PI)

stage and splits the resulting lock signal into two frequency

ranges: 0 Hz to ν3 dB,slow = 72 Hz for the slow PZT and

72 Hz to ν3 dB,fast = 34 kHz. The amplitude of the slow PZT

signal is further amplified by a commercial high-voltage

amplifier (Falco Systems WMA-280). The upper-frequency

limits were chosen to avoid oscillation of the loop at res-

onances attributable to the PZTs. When scanning the laser

frequency via the slow PZT (M4), the ramp signal (modi-

fied by an adjustable gain) is fed forward to the lock sig-

nal, thus minimizing lock deviations and stabilizing output

power. The implementation of the relocking scheme of Ref.

[40] renders the doubling-cavity lock significantly more sta-

ble to external disturbances.

4.2 Saturation spectroscopy and laser lock

A small fraction of the frequency-doubled light is sent

through a 200-MHz acousto-optic modulator (AOM)

double-pass setup to frequency shift the light used for

spectroscopy by 2νmod. It is employed to perform satu-

rated absorption spectroscopy in an atomic lithium vapor

cell. The required vapor pressure is obtained by heating

a metallic lithium sample of natural isotope composition

(8% 6Li, 92% 7Li) to 330◦C under vacuum. We use a 50-

cm-long CF-40 tube with broadband AR-coated windows.

The final sections of the tube are water cooled to pre-

vent too high temperatures at the CF-40 flanges and win-

dows. Nickel gaskets are employed because of their chem-

ical inertness to lithium vapor. A small amount of argon
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Fig. 7 (a) Lock-in saturated absorption spectroscopy of lithium

vapor and (b) corresponding transitions. The transitions are

2 2S1/2 → 2 2P3/2 for
6Li (D2) and 2 2S1/2 → 2 2P1/2 for

7Li (D1).

Not all levels are shown, and the hyperfine structure of the 6Li excited

state remains unresolved. Double indexes mark crossover lines

buffer gas is used to force lithium atoms by collision to

stick to the side walls before arriving at the window sur-

faces. The argon pressure is kept low enough to not cause

significant collisional broadening of the saturated spec-

troscopy lines. A metallic mesh put inside the tube cov-

ers the tube walls to regain condensed lithium from the

colder parts exploiting the temperature-dependent surface

tension.

The spectroscopy beam 1/e2 radius is ≃1 mm; the pump

power is of the order of 10 mW, of which typically 50%

is transmitted through the lithium cell on atomic resonance.

The beam then passes through a neutral density filter and

an EOM2, which serves to phase modulate the light at

ν2 = 20 MHz. A quarter-wave plate and a mirror retro-

reflect the beam with a polarization rotated by 90◦, thus cre-

ating the probe beam of ∼200-µW power. Around 100 µW

of probe light is detected on a fast photodiode (Newport

1801). Lock-in detection using a commercial amplifier (Top-

tica PD110) allows us to generate a dispersive error sig-

nal. A typical example of a ≃600-MHz scan over a part of

the lithium lines is shown in Fig. 7. The hyperfine struc-

ture of both lithium isotopes is clearly resolved and er-

ror signals of SNR ≥ 100 in a 1-MHz bandwidth are de-

tected. The saturated spectroscopy transmission signal can

serve as the auto relock reference. This requires a well-

pronounced peak or dip structure, as satisfied for some of

the lines.

To lock the laser frequency with respect to one of the res-

onances, a two-way PI circuit similar to the one used for

locking of the doubling cavity is employed. The AOM fre-

quency and thus the lock offset frequency can be changed

by a few MHz while the laser remains locked.

5 Laser characterization

We now present further characterizations of the light source

in terms of intensity noise and linewidth. The excellent beam

Fig. 8 The SH relative intensity noise spectrum (A), noise for an

equivalent photocurrent from a non-coherent source (B) and noise of

the detection circuit with no photocurrent (C)

quality of the SH light is confirmed by a SM fiber coupling

efficiency of 83%.

5.1 Relative intensity noise

The relative intensity noise spectral density SRIN(ν) of the

SH output was measured by shining a beam of ∼120 µW

on a low-noise photodiode (Newport 1801, 125-MHz band-

width) and recording the signal using a digital oscilloscope

(Pico Technology PicoScope 4424) in AC mode, yield-

ing the relative power fluctuations ε(t) after normalization,

where I (t)/〈I 〉T = 1+ ε(t) with I (t) the intensity and 〈I 〉T

its temporal average. The definition of SRIN(ν) is

SRIN(ν) = lim
tm→∞

1

tm

〈∣

∣

∣

∣

∫ tm

0

ε(t)ei2πνt dt

∣

∣

∣

∣

2〉

(9)

with the measurement time tm and 〈· · · 〉 denoting tempo-

ral averaging. It was realized by employing a time-dis crete

Fourier transformation method and averaging over 100 spec-

tra.

The result is shown in Fig. 8. The broad peak at

≃100 kHz can be attributed to the laser relaxation oscil-

lations. The structure in the 10-kHz region can be attributed

to the locking system. Above 300 kHz, SRIN drops to the

photon shot-noise level, as indicated by the spectrum of a

non-coherent source producing an equivalent photocurrent

(spectrum B in Fig. 8). The narrow peaks at 1 MHz and har-

monics stem from the phase modulation of the pump light,

see Sect. 4.1. The square root of the integral of SRIN(ν) from

1 kHz to 5 MHz (1 kHz to 0.9 MHz) yields a RMS relative

intensity noise of 1.1× 10−3 (0.8× 10−3).

5.2 Absorption spectroscopy of ultra-cold atoms

The laser setup was used as an absorption imaging light

source for our lithium quantum gas experiment described

elsewhere [41]. A sample of around 1.2 × 105 7Li atoms
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Fig. 9 In-situ absorption imaging of ultra-cold atoms in an optical

dipole trap. The laser was detuned by δ from the atomic resonance

using the offset lock described in Sect. 4.2, varying the detected atom

number (circles). A Lorentzian of width ΓFit = 2π × (6.1± 0.4)MHz

is fitted to the data (solid line)

above Bose–Einstein condensation threshold was prepared

in an elongated optical dipole trap. Putting a 700-G mag-

netic offset field, the internal electronic states of the atoms

are to be described in the Paschen–Back regime. The corre-

sponding lift of degeneracy for the F = 2→ F ′ = 3 transi-

tion frequencies results in a cycling transition, rendering this

method insensitive to constant homogeneous stray fields. By

applying a laser frequency detuning δ with respect to atomic

resonance using the offset lock as described in Sect. 4.2, one

detects a different atom number N(δ) while assuming con-

stant trap conditions according to

N(δ)

N(0)
=

[

1+

(

2δ

Γ

)2]−1

, (10)

where Γ is the measured linewidth of the transition and

N(0) the atom number detected at resonance.

The results are presented in Fig. 9. A least-squares fit ac-

cording to (10) results in a linewidth of Γfit = 2π × (6.1±

0.4) MHz, a value compatible with the natural linewidth of

2π × (5.872±0.002)MHz of [42]. Within our experimental

resolution, we infer that the laser linewidth is much smaller

than the natural linewidth of the atomic transition. Assum-

ing a Lorentzian line shape for the laser, the linewidth can

be given as 200+400
−200 kHz, compatible with zero.

5.3 Long-term stability

Figure 10 shows a long-term stability plot of the laser system

under laboratory conditions. The system remained locked

during the measurement time of 8.5 h. The SH output power

drops by 7% and shows small modulations of a period of

≃15 min. This is attributable to slight angular tilts when the

cavity’s slow PZT (M4/M
′
3) is driven. This effect, changing

the alignments, is confirmed by monitoring the laser output

power, which drops by 5% in the same time interval and

displays the same modulations.

Fig. 10 Long-term stability of the SH output power, experiencing a

drop of 7% over the measurement time. The system remained offset

locked to the lithium resonance

6 Intra-cavity doubling

We also implemented the more direct approach of intra-

cavity doubling a 1342-nm laser. This concept simplifies

the optical design since only one cavity is needed. It was

achieved by using a setup similar to the one presented in

Fig. 1. All cavity mirrors are highly reflective at 1342 nm

and mirror M3 is also transmitting at 671 nm. A nonlinear

crystal is put in the waist between mirrors M3 and M4.

For the Faraday rotator, we have tried various arrange-

ments, using either gadolinium gallium garnet (GGG) or

TGG as the Faraday material and we have used either a ro-

tatory power plate (made either of TeO2 or of crystalline

quartz) or a half-wave plate to compensate the Faraday rota-

tion. Although theory [43] favors the use of a rotatory power

plate with respect to a half-wave plate, we have found that

the wave plate was more convenient, with a slightly larger

output power.

6.1 Infrared power

In a setup involving intra-cavity frequency doubling, it is es-

sential to have very low parasitic losses Lpar [44]. We start

by evaluating these losses by measuring the emitted infrared

laser power as a function of the output mirror transmission

Toc for a fixed absorbed pump power Pabs = 13W for which

thermal effects in the Nd:YVO4 crystal remain small. The

data is presented in Fig. 11. Accurate values of the trans-

mission coefficient of the various output mirrors have been

obtained with an absolute uncertainty near 0.03% by mea-

suring successively the direct and transmitted powers of a

laser beam in an auxiliary experiment. According to [21,

45–48], the output power Pout is given by

Pout = PsatToc

[

G0

Toc + Lpar
− 1

]

, (11)
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Fig. 11 Output power Pout of the laser emitting at 1342 nm as a func-

tion of the mirror transmission Toc. The data points are experimental

while the curve is the best fit using (11)

where Psat is the gain medium saturation power and G0

the laser gain. We performed a nonlinear curve fit yield-

ing Lpar = (0.0101 ± 0.0006), Psat = (26.3 ± 2.0) W and

G0 = (0.150 ± 0.006). The measured losses Lpar of ∼1%

are in accordance with expectations for a cavity made of

four mirrors (three high-reflection mirrors plus the output

mirror), three AR-coated crystals and a Brewster plate. In

Appendix, we relate the values measured for Psat and G0 to

the parameters of the lasing crystal and the laser cavity. We

find good agreement with literature values.

6.2 Doubling and frequency behavior

Several Nd:YVO4 lasers emitting at 671 nm have been

built based on intra-cavity frequency doubling using a

LBO (lithium triborate, LiB3O5) crystal [6–14]. The largest

achieved power was 5.5 W but none of these lasers have run

in SLM operation. We have tried frequency doubling with

both LBO and BIBO (bismuth triborate, BiB3O6) crystals

installed in the small waist of the laser cavity (see Fig. 1).

The BIBO crystal gave slightly more power but with a sub-

stantially more astigmatic laser mode. Therefore, we used a

LBO crystal of 15-mm length and 3× 3 mm2 cross section.

We apply type I SH generation, with critical phase matching

at θ = 86.1◦ and φ = 0◦. The crystal is AR coated with a

specified residual reflection equal to 0.15% at 1342 nm and

0.5% at 671 nm.

The nonlinear optical coefficient of LBO is deff =

0.817 pm V−1. Using the expressions given in Ref. [49]

and the SNLO software [50] to evaluate the crystal proper-

ties, we have calculated the expected optimum conversion

coefficient η for this crystal.

We get η = 7.3 × 10−5 W−1 with an optimum waist

in the crystal equal to w0 = 29 µm. We use a slightly

larger laser waist of ≃45 µm, for which theory predicts

η = 4.9 × 10−5 W−1. We have measured η by running the

laser with a weakly IR-transmitting mirror M2, with a cou-

pling transmission value Toc = (0.55±0.03)%, and by mea-

suring simultaneously the emitted power at both 1342 nm

and 671 nm. We have found η = (4.7 ± 0.5) × 10−5 W−1,

in excellent agreement with the theoretical value.

Finally, by replacing the IR-transmitting mirror M2 by

a highly reflective one, we have extracted the SH output

through mirror M3, which has a transmission near 95% at

671 nm. When the laser operates at the peak of its gain

curve, corresponding to a visible emission near 671.1 nm,

we get up to 1 W of SH light. At the lithium resonance

wavelength 670.8 nm and with an intra-cavity 500-µm-thick

etalon made of fused silica and with a reflectivity of R ≃

30%, the current output power reaches ∼600 mW. Progress

towards frequency stabilization as described in Sect. 4.2 is

ongoing. With this simpler optical system, we expect perfor-

mances comparable to those obtained with external cavity

frequency doubling presented in Sect. 3.3.

7 Conclusion

We have presented a frequency-stabilized laser source to ad-

dress the D-line transitions in atomic lithium. Up to 670 mW

of single-mode output power has been generated, currently

limited by intensity-dependent effects in the doubling crys-

tal. Tunability, narrow-band spectral quality and stable long-

term locked operation were demonstrated. This proves the

suitability of the system as a laser source for experiments

involving cooling and trapping of lithium species. We also

presented first results of a simpler alternative setup featur-

ing intra-cavity doubling. Higher output powers could be

achieved by optimizing the doubling cavity design for less

intensity in the ppKTP crystal by enlarging the waist or us-

ing less thermally sensitive doubling nonlinear materials.

Further increase of the laser power at 1342 nm is feasible

using a pump source at 888 nm [25], reducing the quantum

defect and thus the detrimental thermal effects.
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Appendix: Additional material

The theoretical values of Psat and G0 are given by

G0 = ηQη0
λp

λl
×

Pabs

Psat
, (12)

Psat = η0Isat
Veff

Lmed
, (13)

where η0 is the overlap efficiency of the pump and laser cav-

ity mode in the gain medium, ηQ the quantum efficiency of

emission, Veff the gain medium effective volume and Lmed

its length, λp and λl the pump and laser wavelengths, re-

spectively, and Pp the pump laser power. In [21, 45–48] the

length Lmed is multiplied by 2 because the calculation con-

cerns standing-wave cavities and this factor is suppressed in

the case of a ring cavity. Chen et al. [47] give the general

expressions of Veff/Lmed and of η0 as a function of the laser

mode waist wl and pump mode waist wp.

In our experiment, the pumpmode is obtained by expand-

ing the mode emitted by a 200-µm-diameter optical fiber of

NA= 0.22 by a factor of 5. After expansion, the pumpmode

divergence is small and it is a reasonably good approxima-

tion to assume that the pump mode waist is constant over the

crystal volume. We get

η0 =
w2
l (w

2
l + 2w2

p)

(w2
l + w2

p)
2

= 0.63, (14)

Veff

Lmed
=

π

2

(

w2
l + 2w2

p

)

= 6.4× 10−3 cm2, (15)

where we have used for the laser mode waist the value wl =

400 µm calculated at the position of the Nd:YVO4 crystal.

This calculation assumes that the thermal focal length of this

crystal is 100 mm but the mode parameters are not very sen-

sitive to this focal length, because its position is close to

the large waist of the laser cavity. The pump mode waist

wp = 500 µm is deduced from the fiber diameter and the

expansion ratio.

By combining G0 and Psat, we get η0 = 0.50 ± 0.06,

reasonably close to our theoretical value. To get the value

of Veff/Lmed, we need to know the saturation intensity

Isat = hνl/στe, where σ is the stimulated emission cross

section, τe the excited-state lifetime and νl = c/λl. The max-

imum value of σ for stimulated emission near λl = 1342

nm is σ = 17 × 10−20 cm2: this value was measured with

a spectral resolution near 2.5 nm [18] and the same value

has been found in an unpublished study [19]. The excited-

state lifetime increases when the neodymium-ion concen-

tration decreases [20, 51]. We have used the largest liter-

ature value τe = 1.1 × 10−4 s corresponding to a 0.4%

Nd concentration. We thus get Isat = 7.9 ± 0.8 kW/cm2,

with an estimated 10% error bar. The quantum yield ηQ de-

pends on the neodymium-ion concentration [52] and practi-

cally ηQ = 1 for 0.2 at.%-doped crystals. By combining our

measured values of G0 and Psat, we deduce Veff/Lmed =

(6.6± 0.9) × 10−3 cm2, in good agreement with (15). This

gives confidence in our determination of the 1% loss of our

cavity without second-harmonic generation.
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