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I. ABBREVIATIONS

'-SMA Alpha smooth muscle actin 
atRA Allo-trans retinoid acid
AHR   Airway hyperresponsiveness
BAL Bronchoalveolar lavage
BFA Brefeldin A
CFA Complete Freund's adjuvant
CFSE Carboxyfluorescein succinimidyl ester
ChIP Chromatin immunoprecipitations
CHX Cycloheximide
CKO Conditional knock-out
CNS Conserved non-coding DNA sequence
CIA Collagen-induced arthritis
CII Collagen II
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DMSO Dimethyl sulfoxide 
EAE Experimental autoimmune encephalomyelitis 
ELISA Enzyme-linked immunosorbent assay
GFP Green fluorescent protein 
GVHD Graft-vs-host disease
H&E Hematoxylin and eosin
HPRT Hypoxanthine guanine phosphoribosyl transferase
IHC Immunohistochemistry
i.n. Intranasal
i.p. Intraperitoneal
i.v. Intravenous
iTregs CD4+CD25+Foxp3+ cells generated ex vivo with IL-2 and TGF-y
LN Lymph node
nTregs Naturally-occurring CD4+CD25+Foxp3+ cells 
MCh Methacholine 
MS Multiple sclerosis
IFN Interferon
KO Knock out
OVA Ovalbumin
PAS Periodic-Acid-Schiff 
PBS Phosphate buffered saline
PMA Phorbol 12-myristate 13-acetate
RA Rheumatoid arthritis
SLE Systemic lupus erythematosus
SMC Smooth muscle cell
Tregs Regulatory T cells
TGF- Transforming growth factor- 
( ) TGF- !*+,+-./*!
TSS Transcription start site 
WT Wild type
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II. ABSTRACT

Therapeutic effects of TGF- -induced regulatory T cells on the established autoimmune and 

inflammatory diseases

By

Song Guo Zheng

Advisor of thesis: Professor Bernhard Ryffel

While it has been well recognized that both natural Foxp3+ regulatory T (nTreg) cells and TGF- -

induced Treg (iTreg) cells can prevent autoimmune diseases in animal models, recent studies 

revealed that injection of nTregs has less therapeutic effects on established autoimmune diseases. It 

is less clear if iTregs can treat the established autoimmune diseases. We now provide evidence that 

unlike nTregs, transfer of iTreg cells markedly ameliorate established autoimmune diseases such as 

allergic asthma, autoimmune arthritis, and chronic GVHD with a lupus like syndrome.

In allergic asthma we observed that adoptive transfer of iTreg significantly suppressed airway and 

peri-vascular inflammation. iTreg infusion also markedly reduced airway résistance, eosinophil 

recruitment, mucus hyper-production, airway remodeling and IgE levels. This therapeutic effect was 

associated with increase of Treg cells (CD4+Foxp3+) in the draining lymph nodes, and with 

reduction of Th1, Th2, and Th17 cell responses as compared to untreated and non-Treg cell treated 

controls.

In collagen-induced arthritis (CIA) both antigen-specific iTregs and expanded nTregs prevented

appearance and development of disease. However, only iTregs transfer suppressed established CIA. 

CIA mice given iTregs have a significantly lower incidence of disease and lower clinic scores than 

mice given nTregs, Teff cells or no cells. We found while nTregs were converted into Th1/Th17 

cells in vitro and in vivo in the inflammatory milieu, iTregs were resistant to T effector cell 

conversion in the similar condition. Injection of iTregs to naïve mice displayed similar levels of 

Foxp3 stability as comparing with nTregs. Of note, the stability of Foxp3 expression was only found 

in iTreg cells during established CIA. iTregs suppressed Th17 cell differentiation that paralleled 

with improved clinical scores, collagen II (CII)-specific IgG production and bone erosion. In the 

chronic GVHD model mimicking lupus the transfer of iTregs to the established lupus disease

significantly decreased the levels of anti-dsDNA and proteinuria, and markedly prolonged the 

survival of lupus. Blocking of TGF- 0(12- )! -".34"5! 678#9! "#.8-TGF- ! "#.8:/$5! /*! (12- )%!
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(ALK5) inhibitor, or anti-IL-10R antibody almost completely abolished the therapeutic effects of 

iTregs on lupus-like syndromes, suggesting that TGF- ! "#$0/*! %&-10 secreted by iTregs play a 

crucial role in the cell therapy. iTregs can induce the formation of tolerogenic DCs through TGF- !

signaling on DCs but not IL-10 signaling. We further observed that DCs isolated from cGVHD with 

a typical lupus syndrome receiving iTregs but not control cells expressed lower levels of CD80 and 

CD86 and adoptive transfer of these DCs to another lupus-like disease mouse can suppress the 

disease development through TGF- ! *".3+*! .3"#! %&-10 signal pathway. We therefore suggest that 

iTregs are stable and able to target DCs in the inflammatory milieu. These DCs then have become 

tolerogenic DCs and further suppress disease progression through its direct or indirect effect 

(inducing new iTregs) in autoimmune and inflammatory disease settings and may result in a long-

term protective effect of iTregs in autoimmune diseases. Moreover, we also demonstrated that all-

trans retinoic acid (atRA) promotes and sustains the Foxp3+ regulatory T cells, and identified that 

atRA significantly increased histone methylation and acetylation within the promoter and conserved 

non-coding DNA sequence (CNS) elements at the Foxp3 gene locus and the recruitment of 

phosphor-RNA polymerase II, while DNA methylation in the CNS3 was not significantly altered.

These results will further help to enhance the quantity and quality of development of iTregs and may 

provide novel insights into clinical cell therapy for patients with autoimmune diseases and those 

needing organ transplantation.
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III. INTRODUCTION, RATIONALE AND OBJECTIVES

III.1 Phenotypic and Functional Characteristic of Regulatory T Cells

It is now well accepted that a cell population called “CD4+CD25+regulatory or suppressor cells” are 

critically involved in immune tolerance and homeostasis.  In the early 1970s, Gershon and 

colleagues initially reported that thymocytes from his experimental animal model included a 

population of suppressor T cells (Gershon and Kondo, 1970). This suggestion was not appreciated 

until Sakaguchi et al found that a population of CD4+CD25+ cells did indeed possess 

immunosuppressive activity that is now referred to as “regulatory T cells or natural regulatory T 

cells, nTregs (Sakaguchi et al., 1995).

CD4+CD25+ cell populations also exist in humans, although only the CD4+CD25bright cell population 

appears to display an immune suppressive effect. A better approach for the identification of human 

Treg cells is to target the CD4+CD25+CD127-/low population (Seddiki et al., 2006).

CD25 is also an activation marker for lymphocytes. Thus, the utility of CD25 expression as a Treg 

marker is limited since it does not discriminate between activated T effector cells and Tregs. 

Fortunately, the nuclear transcription factor Foxp3 has been identified as a much more specific 

marker for Treg cells.  Foxp3 is critically involved in the development and function of Treg 

cells(Fontenot et al., 2003). In mice, the lack of functional Foxp3 expression results in a fatal 

autoimmune and lymphoproliferative disorder known as scurfy and mutations of the human FOXP3 

gene results in a human syndrome known as IPEX (immune dysregulation, polyendocrinopathy, 

enteropathy, X-linked), which is characterized by autoimmune disease expression in multiple 

endocrine organs (Wildin et al., 2001).

Despite the fact that Foxp3-GFP "knock-in" studies clearly demonstrate that there is a very broad 

spectrum of CD25 expression on Treg cells and that the intranuclear location of Foxp3 makes it 

difficult to use this protein for immunoaffinity-based purification methods although we have 

recently identified a new technique to improve the isolation of the live Treg cells (Zhou et al., 

2010b), CD4+CD25+ cells are still widely used in the field of the biology of Treg cells without using 

genetically modified tissues, particular in human studies. Although Foxp3 is considered as a specific 

marker for Tregs in mouse, this may not be the case for human Tregs. Recent data demonstrate that 

FOXP3 (FOXP3 for human cells and Foxp3 for mouse cells) may be upregulated in rapidly 

proliferating human T cells and might be viewed as an activation marker for human T cells (Allan et 
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al., 2007). More studies are needed to determine how FOXP3 might also be expressed on rapidly 

proliferating human T effector cells and more specific molecular markers to identify human Tregs 

are also desirable.

Many studies have revealed that the numbers of CD4+CD25+ cells and CD4+FOXP3+ cells in 

patients with various autoimmune diseases are diminished and that this Treg deficit is associated 

with disease activity (Tritt et al., 2008). This peripheral Treg deficit in patients with autoimmune 

diseases is not resultant from their redistribution to different organs (Miyara et al., 2005).

Diminishment of Tregs in the face of autoimmunity is not a universal finding.  Other groups have 

actually observed the converse; that the numbers of human CD4+CD25+ cells can be increased under 

these circumstances (Yan et al., 2008). Since CD25 and FOXP3 can also be classified as activation

markers, this aspect may reflect the disparity between these findings. Miyara et al have further 

classified human FOXP3+ cells into three cell subsets: CD45RA+FOXP3low, CD45RA-FOXP3hi and 

CD45RA-FOXP3low. Functional assay demonstrated that the CD45RA-FOXP3low subset contains 

non suppressor cells, that the CD45RA+FOXP3low subset contains resting Tregs and that active 

Tregs are found in the CD45RA-FOXP3hi subset. Using these criteria, they found that Treg cell 

numbers were indeed diminished in patients with active autoimmune disease (Miyara et al., 2009).

In addition to Treg frequency, others have also reported that autoimmune disease can alter the 

functional activity of Tregs. For example, the suppressive activity of CD4+CD25+ cells isolated from 

active rheumatoid arthritis patients was significantly decreased (Valencia et al., 2006). It is likely 

that some intrinsic defect in CD4+CD25+ cells in active rheumatoid arthritis patients accounts for 

their decreased functional activity. Similarly, the frequency of CD4+CD25+ cells in patients with 

multiple sclerosis (MS) is unaltered, however, the functional activity of these cells to suppress T cell 

immune responses including antigen-specific or non-specific stimulation is also decreased (Haas et 

al., 2005; Kumar et al., 2006; Viglietta et al., 2004). These results suggest that the manipulation of 

nTregs to restore their numbers and function may be therapeutic.

Although most people claim that CD4+CD25+ in peripheral blood belong to natural Treg cells, we 

and others would suggest that CD4+CD25+cells in PBMCs consist of a mixture of both thymic 

nTregs and those induced in the periphery (induced Tregs, iTregs) (Horwitz et al., 2008; Zhou et al., 

2011, Lan Q et al; Zheng S.G.). There is no specific marker that can distinguish nTregs from iTregs 

so far. Although Shevach’s group recently reported that Helios, an Ikaros family transcription factor, 

may be helpful for distinguishing nTregs from iTregs (Thornton et al., 2010), others reported that 
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Helios is also highly expressed on Th2 and T follicular helper cells and may be associated with the 

differentiation of these cells (Serre et al., 2011).     

It has been well known that the adoptive transfer of nTregs can prevent the appearance and 

development of autoimmune diseases in many animal models. Conversely, there are also 

considerable numbers of studies demonstrating that the therapeutic effect of nTregs on established 

diseases is fairly unsatisfactory. For example, the efficacy of adoptive transfer of nTregs to 

established collagen-induced arthritis (CIA) is poor for controlling the disease progression (Zhou et 

al., 2010a). Injection of nTregs to established lupus had mild protective effects and it failed to 

suppress lupus glomerulonephritis and sialoadenitis (Bagavant and Tung, 2005; Scalapino et al., 

2006). Moreover, adoptive transfer of nTregs was unable to suppress other Th17-mediated 

autoimmune disease (Huter et al., 2008).

There are several possibilities that could explain the inability of nTregs to treat CIA and other 

autoimmune diseases. First, pro-inflammatory cytokines may hamper their suppressive activity. 

Pasare et al have reported that nTreg suppressive activity can be abolished by IL-6 (Pasare and 

Medzhitov, 2003). Valencia et al also revealed that elevated TNF-'! ;"5! 8#.+*<+*+! 48.3! .3+!

suppressive capacity of nTregs (Valencia et al., 2006). There is no question that these pro-

inflammatory cytokines are elevated in RA patients (Wakkach et al., 2003). Secondly, Th17 cells 

may be resistant to the suppressive effects exerted by nTregs. This could explain how nTregs are 

able to prevent development of disease before Th17 cells become established, while demonstrating 

ineffective suppression after disease expression is evident. Third, nTregs are inherently unstable and 

can be converted to Th1, Th2, Th17 and Tfh effector cells when they encounter an inflammatory 

milieu (Lu et al., 2010b; Tsuji et al., 2009; Wan and Flavell, 2007; Xu et al., 2007; Zhou et al., 

2010a).

There are still other reasons that could hamper the utilization of nTregs as therapeutics. First, the 

intranuclear location of Foxp3 makes it difficult to purify nTregs for functional study. Second, 

nTregs constitute only 1-2% of human CD4+ T cells. nTregs must be expanded ex vivo to gain 

sufficient numbers for therapy. Although several groups have claimed that expansion in vitro can

overcome this problem (Hippen et al., 2011), other laboratories have reported that repeated 

expansion alters Treg phenotype and function (Hoffmann et al., 2009). Third, the expansion of 

nTregs from patients with RA and MS for therapeutic purposes may be problematic due to potential 

other intrinsic defects in RA and MS Tregs. nTreg instability, Teff cell resistance and the influence 
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of an inflammatory milieu may individually or collectively account for the inability of nTregs to 

control established autoimmune diseases.  

Of interest, the plasticity of nTregs under inflammatory conditions could be fixed with cytokines or 

other compounds. Our group recently reported that while nTregs become Th17 cells in the presence 

of IL-6, these cells also lost their suppressive role in suppressing progression of the lupus-like 

syndromes and CIA.  We also documented that pretreatment of nTregs with IL-2 combined with 

TGF- , or all-trans retinoic acid (atRA), a vitamin A metabolite, can render these nTregs resistant to 

Teff cell conversion and allow them to begin to suppress lupus and CIA progression (Zheng et al., 

2008; Zhou et al., 2010a).  This indicates that the manipulation of nTregs still holds a promise in the 

treatment of autoimmune diseases.

III.2 Constitution and Types of Regulatory T Cells

Current studies have demonstrated that Treg cells are a heterogeneous set of cells that consist of 

CD4+CD25+Foxp3+ cells, IL-10-producing CD4+ Tr1 cells, TGF- -producing Th3 cells, CD8+ cells, 

NK T cells, CD4-CD8-
(! ,+==7! "#$! >?!(! ,+==7! (Horwitz et al., 2004; Tang and Bluestone, 2008).

CD4+ Treg subsets can be further classified into three main populations, thymus-derived, naturally 

occurring CD4+CD25+Foxp3+ cells (nTregs) described as above, endogenous induced Tregs in vivo

and those that can be induced ex vivo from CD25- precursors in peripheral lymphoid organs (iTregs)

(Zheng et al., 2002). Although IL-10-induced Tr1 cells represent another cell population of iTregs, 

they do not express Foxp3 and produce considerable levels of IL-10 (Pot et al., 2011). As IL-10 may 

promote autoimmune response through stimulating B cell activation and its level is highly increased 

in active systemic lupus erythematosus (SLE) patients (Yu et al., 2011), Tr1 may not be suitable for 

the treatment of SLE and other autoimmune diseases. TGF- -induced Tregs will be defined as 

iTregs in this thesis.

While Yamagiwa et al reported that TGF- !-*/;/.+7 endogenous CD4+CD25+ cells (Yamagiwa et 

al., 2001), our group first reported that TGF- !$/+7!3"@+!"#!":8=8.5! ./! 8#$6,+!ABC+CD25- cells to 

become CD4+CD25+ Treg cells in vitro (Zheng et al., 2002). When Foxp3 was identified as Treg 

marker in Tregs, several groups including us immediately found that TGF- ! ,"#! 8#$6,+! 2/D-E!

expression in iTregs (Chen et al., 2003; Fantini et al., 2004; Zheng et al., 2004a). Additionally, other 

studies have also clearly demonstrated the capacity of Foxp3+ Tregs in vivo through TGF- -

dependent mechanism (Liang et al., 2005).
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Phenotypically, both nTregs and iTregs express similar molecules such as CD25, CTLA-4, GITR, 

CCR4, CD62L and Foxp3, and express CD45RBlow in mice and CD45RO in humans. 

CD4+CD25+Foxp3+ cells in the periphery have been considered as a mixed population comprised of 

nTregs and iTregs. Although Helios might possibly help to distinguish nTregs from iTregs 

(Thornton et al., 2010), more specific molecular markers are needed to distinguish both Treg cell 

populations. 

Although both nTreg and iTreg subsets share similar phenotypes and display comparable 

suppressive 

activity, several 

factors distinctly 

affect their 

development,

stability and 

function (Table 

1). First, nTregs 

develop in the 

thymus through 

recognition of self 

antigens.  A high 

and medium 

affinity cognate 

interaction 

between self-

peptide:MHC complex and T cell receptor is required for this process. They also require CD28 co-

stimulation because they do not develop in CD28 deficient mice (Salomon et al., 2000).  Although 

IL-2 and TGF- !-="5!"#!8;-/*."#.!*/=+!8#!.3+!;"8#.+#"#,+!/<!.3+!-//=!78F+!/<!#(*+97 (Marie et al., 

2005), both cytokines are redundant for their development since both IL-2 and TGF- !G#/,G-out 

mice contain CD4+CD25+Foxp3+ regulatory T cells in the thymus (Piccirillo et al., 2002). By 

contrast, the generation of iTregs is dependent upon the presence of both TGF- !"#$!(12- !*+,+-./*!

signals since the absence of TGF- ! / *! (12- ! *+,+-./*7! /*! :=/,G8#9! .3+! (12- ! *+,+-./*! 789#"=!

prevents the induction of Foxp3 expression and the subsequent functional suppressive capacity (Lu

et al., 2010a; Lu et al., 2010b). Similarly, IL-2 plays an essential role in the differentiation of Foxp3+

iTregs. TGF- !<"8=7!./!8#$6,+!2/D-E+ iTregs from naïve CD4+CD25- precursor cells in IL-2 deficient 
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mice (Zheng et al., 2007). The conversion of CD4+CD25- cells in the periphery to CD25+ iTregs 

requires a suboptimal TCR stimulation and thus environmental antigens may sufficiently trigger 

iTreg development. The absence of CD28 co-stimulatory molecules does not affect the 

differentiation of iTregs (Lan Q and Zheng SG, unpublished data), but inhibitory CTLA-4

costimulatory molecule and CTLA-4/B7.1 signaling is crucially required for the generation of 

iTregs (Zheng et al., 2006b).  This conclusion is further documented by an observation that the 

blocking of CTLA-4/B7.1 signal abolished the capacity of TGF- !./!8#$6,+!8(*+97!8#!48=$!.5-+!;8,+!

(Read et al., 2006). OX40/OX40L, an alternate CD28/B7-independent co-stimulatory pathway, also 

negatively regulates the development and function of both nTregs and iTregs. While stimulation of 

mature nTregs by OX40 results in the loss of suppression of T cell proliferation and cytokine 

production, the generation of iTregs is completely abolished by OX40 although OX40 does not 

affect the generation of nTregs (So and Croft, 2007).

Recently, Housley et al reported that while the TNF-R2 expression is essential for nTregs-mediated 

suppression of colitis, its expression is not required for iTreg-mediated suppression (Housley et al., 

2011). Differing IL-2 and co-stimulatory molecule requirements for Treg cell development, and 

TNFRII expression requirements for the suppressive function of both nTregs and iTregs suggests 

that nTregs and iTregs are possibly heterogeneous populations and that integration of both Treg 

subsets is required for the maintenance of normal immune homeostasis.  It is also likely that both 

nTreg and iTreg subsets can either act in concert or separately on different targets. In addition, as 

anti-TNF-'!.3+*"-5!3"7!:++#!48$+=5!67+$!8#!.*+".8#9!-".8+#.!48.3!*3+6;"./8$!"*.3*8.87, further studies 

are required to understand whether this therapy differentially regulates nTregs and/or iTregs 

development in individual diseases.
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Fig. 1. Multi effects of TGF- on regulatory and effector T 
cells. TGF- inhibits the differentiation, proliferation and function 
of various immune cells including Th1, Th2 and Tfh cells. TGF- also 
promotes iTreg, Th17 and Th9 cell differentiation depending upon 
the cytokine environment. Additionally, TGF- inhibits maturation
and function of other immune cells such as CD8+ CTL, NK cell, DC 
and macrophages.

As TGF- !+8.3+*!-*/;/.+7!2/D-E
+ iTregs, Th9 or 17 cells depending upon other cytokines involved 

(Figure 1), and as nTreg 

cells express a membrane-

bound form of TGF- ! "#$!

this TGF- ! 3"7! <6#,.8/#"=!

activities, it is reasonable 

to assume that IL-6 can 

convert nTregs to become 

Th17 and other T helper 

cells (Xu et al., 2007). To 

demonstrate this, Xu et al

used purified nTregs from 

Foxp3 GFP knock in-mice 

to exclude the possibility that 

CD4+CD25+Foxp3- non-

Tregs made this conversion. 

We used both wild type and 

Foxp3 GFP knock-in mice to 

confirm this observation (Zheng et al., 2008). Endogenous TGF- !-*/$6,+$!:5!#(*+97!87!,*8.8,"==5!

required for this conversion since blocking TGF- ! *+,+-./*! %! 789#"=! /*! 678#9! #(*+97! <*/;!(12- !

receptor II dominant mice resulted in the failure of Th17 conversion (Lu et al., 2010b; Zheng et al., 

2008). Moreover, activation of nTregs with IL-6 resulted in decreased Foxp3 expression and 

suppressive activity both in vitro and in vivo. Furthermore, adoptive transfer experiments revealed 

that nTregs treated with IL-6 ex vivo lost their ability to protect mice from a lupus-like disease 

(Zheng et al., 2008). Thus, in an IL-6 rich inflammatory milieu, nTregs may be unstable and lose the 

functional activity. In the current study, we will further investigate whether nTregs can be converted 

into Th17 cells in an in vivo model.

In sharp contrast, TGF- -induced iTregs were found to be completely resistant to the Th17 

conversion by IL-6. This difference cannot be explained by insufficient production of TGF- ! :5!

iTregs since both nTregs and iTregs expressed similar levels of membrane-bound TGF- !HIJ-25%). 

Furthermore, the resistance of iTregs to Th17 conversion also may not be explained by alterations in 

TCR stimulation since anti-CD3/CD28 activated nTregs can still differentiate into Th17 cells upon 
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IL-6 stimulation. To account for this difference between nTregs and iTregs, we found that the 

combination of IL-2 and TGF- !$/4#-regulated IL-6 receptor expression and function in activated 

T cells.  We have observed that both cytokines markedly decreased IL-6 receptor alpha-chain 

(CD126) and beta-chain (CD132) expression on CD4+ cells and these cells expressed significantly 

lower level of phosphorylated STAT3 expression when stimulated by IL-6 (Zheng et al., 2008). All-

trans retinoic acid (atRA) has a similar effect on nTreg stability under inflammatory conditions as 

well (Zhou et al., 2010a). In the current study, we will compare the stabilities and functionalities of 

both Treg cell subsets in autoimmune inflammatory disease in vivo.

Nonetheless, others have reported that TGF- -induced iTregs were unstable in vitro (Floess et al., 

2007) and in vivo following antigen-stimulation (Chen et al., 2011), and lack protective activity to 

prevent lethal graft-versus-host disease (GVHD) (Floess et al., 2007; Koenecke et al., 2009). It has 

been claimed that the Foxp3 promoter on TGF- -induced iTregs but not nTregs is methylated and 

accounts for their instability (Floess et al., 2007). However, we have recently observed that the 

methylation status in Foxp3 gene loci does not affect Foxp3 stability. Moreover, addition of atRA to 

TGF- !-*/;/.+$!8(*+9!cell stability and maintenance in vitro and in vivo and this effect is unrelated 

to CpG methylation in Foxp3 promoter but related to acetylation of Foxp3 histone (Lu et al., 2011).

Others have also observed protective human TGF- -induced Tregs that exhibit methylated Foxp3 

(Hippen et al., 2011). To explain these controversial results, we consider the technical reasons are 

possibly responsible for the generation of unstable, ineffective TGF- -induced iTregs in these 

groups. They have used high concentrations of plate-bound anti-CD3 with TGF- K! 43+*+"7! /6*!

group has used suboptimal concentrations of anti-CD3 and anti-CD28 coated beads with IL-2 and 

TGF- L!%.!3"7!:++#!G#/4#!.3".!7.*/#9K!767."8#+$!(A)!7.8;6=".8/#!",.8@".+7!.3+!;(M)0Akt signaling 

pathway which facilitates Teff cell differentiation and inhibits Foxp3 expression and Treg 

differentiation (Sauer et al., 2008). Treg generation is best established with suboptimal TCR 

stimulation that facilitates Foxp3expression (Horwitz et al., 2008).

These studies also raise the possibility that nTregs and iTregs may have distinct roles in the adaptive 

immune response.  In response to microbial infections nTregs could possibly serve as a first line of 

host defense by differentiation to IL-17-producing cells, which contribute to neutrophil mobilization 

and have other pro-inflammatory effects.  After eradication of invading pathogens, the late 

appearance of TGF- -induced iTregs would not only terminate the antigen-specific response, but 

also prevent the emergence of non-specifically stimulated or cross-reactive self-reactive T cells. 

Accordingly, failure of this mechanism could result in an immune-mediated disease.
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III.3 Molecular Mechanisms Underlying the iTreg Cell Differentiation

Current studies have demonstrated that several signaling pathways, such as the TGF- 0N;"$K IL-

2/IL-2R/STAT, T cell receptor (TCR) and costimulatory signaling pathways are crucial for the 

induction of Foxp3 transcription although the TGF- ! *+,+-./*! HT R) signaling pathway is 

considered to be the key one. 

As the lack of either T RI or T RII will terminate the cellular response to TGF- (Wrana et al., 

1992), it is understandable that transcription factor Foxp3 cannot be induced by TGF- ! 8#! ( )!

deficient T cells (Lu et al., 2010b). In lymphocytes, TGF- binds to its cognate receptor complex 

composed of type I (ALK5) and type II receptors. TGF- type I receptor (T RI) and type II receptor 

(T RII) associate as interdependent components of a heteromeric complex. ( RII is required to 

activate ( RI in the ligand–receptor complex, and activated T RI Ser/Thu kinases phosphorylate 

downstream specific SMAD2 and SMAD3. Upon phosphorylation, these two SMADS bind to their 

common partner, SMAD4, to formSMAD2/4 and SMAD3/4 complexes. These complexes then 

translocate to the nucleus and modulate target gene expression (Lagna et al., 1996; Rubtsov and 

Rudensky, 2007). Unlike Smad2 and Smad4 null mice, Smad3 null mice are viable and survive to 

adulthood (Datto et al., 1999). Accumulating evidence has revealed that Smad3 is essential for the 

suppressive effect of TGF- on IL-2 production and T cell proliferation (McKarns et al., 2004).

Smad3 is also required for the suppressive effects of TGF- on Th2 type cytokine production and 

Th2 type diseases in the skin (Anthoni et al., 2008).

Recent studies have also begun to explore the roles of Smad pathways in iTreg differentiation. 

Anthoni and colleagues examined the role of Smad3 in a Smad3-/- murine model of contact 

hypersensitivity and found that the lack of intact TGF- signaling via Smad3 resulted in an 

increased pro-inflammatory, Th2 and Th17 type response in the skin with reduced Foxp3 mRNA in 

the lymph nodes (Anthoni et al., 2008). These data implicate that the Smad3 may be involved in

iTreg cell differentiation. Using an in vitro culture system, several groups found that Smad2 or 

Smad3 plays a significant role in TGF- -iTreg generation (Jana et al., 2009; Xu et al., 2010).

Tone and colleagues identified an evolutionarily conserved enhancer site in Foxp3 gene that 

bindsSmad3 and nuclear factor of activated T cells (NFAT), suggesting that TGF- regulates Foxp3 

transcription through a Smad3 dependent pathway. Smad3 and NFAT functioned in a coordinated 

fashion and were essential for histone acetylation in the enhancer region and induction of Foxp3 
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transcription(Tone et al., 2008). Xu et al also found that retinoic acid (RA) augmentation of TCR-

and TGF- -induced Foxp3 transcription were related processes involving modifications of baseline 

(TGF- -induced) phosphorylated Smad3 (pSmad3) binding to a conserved enhancer region 

(enhancer I). This led to increased histone acetylation in the region of the Smad3 binding site and 

increased binding of pSmad3 (Xu et al., 2010).

Nonetheless, we and others have recently reported that Smad2 or Smad3 plays a partial role in iTreg 

differentiation in vitro but plays no roles in iTreg differentiation in vivo (Lu et al., 2010b; Takimoto 

et al., 2010). Although it is possible the either Smad2 or Smad3 can compensate for each other, we 

also observed that TGF- O7! $/4#7.*+";! non-Smad pathways actually play an important role in 

iTreg development. TGF- ! ,"# activate SMAD-independent pathways such as MAPKs, in T 

cells(Zhang, 2009). In fact, TGF- !8#38:8.8/#!/<!%2P-> induced signaling and Th1 gene expression in 

CD4+ T cells is Smad3 independent but MAPK dependent mechanism (Park et al., 2007). Among 

MAPKs, we further observed that ERK and JNK but not P38 activation is involved in TGF- -

mediated Foxp3 induction (Lu et al., 2010b). ERK and JNK may activate AP1 that will coordinate 

with NTAT to regulate Foxp3 expression. In this project, one of goals is to determine how atRA 

affects Smad or non-Smad pathways during iTreg cell differentiation.

Although TCR activation is needed for the TGF- -mediated Foxp3 induction, its role in this process 

is complicated.  Antigen stimulation TCR activates the transcription factor NFAT, a key regulator in

T cell activation and anergy. NFAT forms cooperative complexes with the AP-1 family of 

transcription factors and regulates T cell activation-associated genes. Treg function is mediated by 

an analogous cooperative complex of NFAT with the forkhead transcription factor Foxp3 (Wu et al., 

2006). TCR engagement also activates nuclear factor (NF)-QR (NF-QRS!"#$!phosphatidylinositol 3-

kinase (PI3K)/Akt/mTOR (mammalian target of rapamycin) axis. Most of these transcription factors 

conversely play a negative role in the iTreg differentiation although cRel and p65, two out of five 

NF- QR family members: c-Rel, RelA-p65, RelB, NF-kB1 (p50-p105), and NF-kB2 (p52-p100) play 

a positive role in iTreg cell differentiation (Ruan et al., 2009). Thus, rapamycin suppresses 

PI3K/Akt/mTOR axis and promotes iTreg differentiation (Ruan et al., 2009). This is likely that 

different signaling intensities of TCR activation will result in the expression of different 

transcription factors and subsequently affect the development of different T effector cell subsets 

(Zhou et al., 2011).

Many cytokines also affect iTreg differentiation. TGF- -mediated Foxp3 induction is markedly 
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reduced in IL-2-deficient T cells and addition of exogenous IL-2 promotes and sustains Foxp3 

expression (Davidson et al., 2007; Zheng et al., 2007). In fact, IL-2- and IL-2R-deficient mice have 

a low frequency of Foxp3+cells (Malek and Bayer, 2004). CD28/B7 costimulatory signaling may 

promote Treg cell production and maintenance through IL-2 production. As IL-4, IL-7, IL-15, and 

IL-IT!"=7/!73"*+!,/;;/#!>!,3"8# with IL-2R, these cytokines may also affect iTreg differentiation. 

It has been reported that IL-2-/-IL-15-/- double KO mice have a much lower Treg frequency than IL-

2-/- mice, suggesting that IL-15 also affects iTreg cell differentiation and maintenance (Burchill et al., 

2007). IL-7 also plays an important role in the maintenance of long-lived memory iTreg phenotype 

and function (Li et al., 2011). Conversely, IL-4, IL-21, IL-27 as well as IL-6 suppress iTreg cell 

differentiation. 

Signaling downstream of the IL-2R can act through the Janus kinase (JAK)/STAT pathway.  STATs

comprise a family of several transcription factors that are activated by a variety of cytokines, 

hormones, and growth factors. STATs are activated through tyrosine phosphorylation, mainly by 

JAK kinases, which lead to their dimerization, nuclear translocation and regulation of target gene 

transcriptions. STAT5 molecule is a key component of the IL-2 signaling pathway, the deficiency of 

which often results in autoimmune pathology due to reduced number of Treg cells (Burchill et al., 

2007).
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Fig.2. Multi effects of TGF- , TCR and cytokine 
signaling pathway-related transcription factors in the 
regulation of Foxp3 expression and maintenance.

Activated STAT5 is translocated into the nucleus where it binds to highly conserved tandem 

consensus STAT binding motifs located in the promoter region and/or first intron of the Foxp3 gene 

and promotes Foxp3 expression (Burchill et al., 2007; Zorn et al., 2006). STAT5a/b is required for 

optimal induction of 

Foxp3 in vitro and binds

directly to the Foxp3 

gene (Yao et al., 2007).

Conversely, IL-6, IL-21 

and IL-27 activate 

STAT-3 and p-STAT-3

then bind a gene silencer 

in a second conserved 

enhancer region 

(enhancer II) 

downstream from 

enhancer I; this leads to a loss of 

pSmad3-binding to enhancer I and 

eventually suppresses Foxp3 

expression (Xu et al., 2010). IL-4 activates STAT6, and p-STAT6 binds to a promoter just before 

exon I of the Foxp3 gene and suppresses Foxp3 gene transcription. Retinoic acid can suppress p-

STAT6 binding to the Foxp3 promoter and promotes iTreg differentiation. Thus, control of 

accessibility and binding of different transcription factors provides a common framework for 

positive and negative regulation of TGF- -induced Foxp3 transcription.

These transcription factors could also work together to regulate Foxp3 expression. Ruan et al

propose a c-Rel-dependent enhanceosome model, which may apply to explain the regulation of 

iTreg cell differentiation. They suggest that antigen-presenting cells (APC) carrying specific 

peptides engage precursor T cells by TCR and CD28, in the presence of TGF- !" #$%&'$()"(*"+,-!"

CD28, and TGF- "./0/1'(.2"#/&32"'("'4/"&0'$5&'$()"(*"6778!"94$04"14(214(.:#&'/2"6;<&"=$)4$8$'(."

of kBa), releasing c-Rel and p65. The freed c-Rel-p65 dimer then migrates into the nucleus, binds to 

the Foxp3 promoter, and induces the formation of a Treg cell-specific multifactorial transcriptional 

complex including NFAF/AP1/Smad/STAT called ‘‘enhanceosome’’ which comprises transcription 

factors that bind not only to the promoter but also to the distal enhancers. Current studies have 

demonstrated that the Foxp3 gene is controlled by a core promoter and at least three distal enhancers
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(Mantel et al., 2006; Tone et al., 2008). More recently, researchers have identified that Foxp3 

differentiation and maintenance is controlled by three non-coding DNA sequence (CNS1-3)

elements (Zheng et al., 2010). While CNS1 containing a TGF- -NFAT response element and CNS3 

containing c-Rel response element are associated with Treg differentiation, CNS2 containing Cbf- -

Runx1, Stat and CpG DNA mostly regulates Foxp3 maintenance. Thus, Treg cell-specific 

enhanceosome in Foxp3 CNS regions in turn serves as the ‘‘on-and-off’’ switch of the Foxp3 gene 

and the Treg cell differentiation and maintenance program. A schematic representative of various 

signaling pathway related transcription factors that regulate Foxp3 transcription and expression has 

been demonstrated in Figure 2.

III.4 Preventive and Therapeutic Roles of Regulatory T Cell Subsets

Both iTregs and nTregs share similar functional characteristics. Adoptive transfer of iTregs 

generated ex-vivo also can prevent the development of autoimmune diseases.  For example, Wahl

group has demonstrated that adoptive transfer of TGF- -converted/induced iTregs prevented house 

dust mite–induced allergic pathogenesis and inflammation in lungs in an asthmatic mouse model 

(Chen et al., 2003). In lupus model, our study has demonstrated that iTreg prevented disease 

development (Zheng et al., 2004b). Weber et al observed that injection of murine islet-specific CD4+

iTregs prevented spontaneous development of type 1 diabetes and inhibited development of 

pancreatic infiltrates and disease onset orchestrated by Th1 effectors in NOD mice (Weber et al., 

2006). Dipaolo et al reported similar preventive role of iTregs in a murine model of autoimmune 

gastritis (Dipaolo et al., 2007). Similarly, iTreg cells also significantly prevented Th1-mediated 

colitis on CD4+CD62L+ T cell transfer in vivo (Fantini et al., 2006). Selvaraj et al demonstrated that 

adoptively transferred iTregs were as potent as natural Foxp3+ Treg in preventing EAE development

(Selvaraj and Geiger, 2008). It seems both antigen-specific and non-specific iTregs prevent 

autoimmune diseases although the former is more efficacious than the latter. 

In addition to their use in a preventative role, adoptive transfer of these cells to ongoing diseases still 

suppressed disease development in a lupus-like syndrome model (Zheng et al., 2004b). We have 

developed a chronic graft-vs-host disease model characterized by rapid and vigorous formation of 

SLE-like autoantibodies and the formation of severe immune-complex glomerulonephritis.  DBA/2

(D2) mouse T cells induce this syndrome when injected into (DBA/2 x C57BL/6) F1 mice. We 

found TGF- -treated DBA/2 T cells not only lost their ability to induce graft-vs-host disease but also 

prevented other parental T cells from inducing lymphoid hyperplasia, B cell activation, and an 

immune complex glomerulonephritis. Moreover, a single transfer of TGF- -conditioned T cells to 
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animals that had already developed anti-dsDNA Abs decreased the antibody titer, suppressed 

proteinuria, and doubled survival (Zheng et al., 2004b). This result was further confirmed by a study 

from Su et al (Su et al., 2008). Selvaraj et al observed that iTregs were still efficacious in ongoing 

experimental autoimmune encephalomyelitis (EAE), animal model of multiple sclerosis, and 

Godebu et al also reported that iTregs can revise type I diabetes in animal (Godebu et al., 2008;

Selvaraj and Geiger, 2008). Similarly, in autoimmune gastritis model, Nguyen et al found that 

antigen-specific iTregs also still suppressed inflammation and associated pathology when 

administered late in the process of ongoing disease(Nguyen et al., 2011).

As nTregs seem to be unable to control the progress of established collagen-induced arthritis (CIA), 

we will plan to conduct a head-to-head comparison of therapeutic effects of antigen specific thymus-

derived nTregs and TGF- -induced iTregs on the established CIA in the current study. We chose 

antigen-specific Tregs since these are more protective than polyclonal Tregs in autoimmune diseases 

(Penaranda and Bluestone, 2009). It has been known that polyclonal nTregs can prevent disease but 

are ineffective in established CIA disease (Morgan et al., 2003; Zhou et al., 2010a). We will test the 

hypothesis that antigen-specific iTregs are superior to nTregs in ameliorating established CIA. We 

will determine whether iTregs remained stable and fully functional following transfer. The recent 

studies of Nugyen et al indicated that chemokines secreted by antigen-specific TGF- -induced 

iTregs regulated T cell trafficking and thereby suppressed ongoing autoimmune. They reported that 

these iTregs were therapeutic in an ongoing autoimmune gastritis model (Nguyen et al., 2011).

Others have also reported that only TGF- -induced iTregs but not nTregs suppressed Th17-mediated 

diseases (Huter et al., 2008). These studies all implicate that iTregs may have a therapeutic potential 

in suppressing the established autoimmune diseases.  

III.5 Objective of the PhD Project

Previous studies have revealed that Tregs play an important role in the prevention of autoimmune 

diseases. However, the adoptive transfer of nTregs to the established autoimmune diseases is less 

therapeutic and these cells are unstable and can convert to T effector cells and lose the suppressive 

activity. Interestingly, the iTregs are resistant to T effector cell conversion and stable in vitro in the 

inflammation-like environment. In this study, we will use an in vivo model, en established collagen-

induced arthritis (CIA), to learn whether both Treg subsets have a different stabilities and 

functionalities in vivo. We will make a head-to-head comparison to determine the preventive and 

therapeutic roles of both Treg subsets in the ongoing and established CIA. We will learn whether 
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infusion of iTregs also suppress the ongoing allergic asthma and chronic GVHD with a lupus-like 

disease in the project. 

To explain the long-term effect of single infusion of iTregs on autoimmune diseases, although others 

have claimed that long-term survival of selected antigen-specific iTregs can account for this 

phenomenon (Godebu et al., 2008), “infectious tolerance” may be another main reason for immune 

tolerance effect of iTregs (Andersson et al., 2008; Zheng et al., 2004a). To determine whether

infectious tolerance contributes to long-term protective effect of iTregs on autoimmune diseases, we 

will investigate the interaction of iTregs and DC in the chronic graft-vs-host disease with a typical 

lupus syndrome in the current study. We will test whether infusion of iTregs to lupus mice can 

induce the formation of tolerogenic DCs. We will further determine underlying mechanisms if it is a 

case. In this study, we will use DC-specific T RII conditional KO mice to address this issue. We 

will also determine molecular mechanisms by which atRA promotes iTreg generation, maintenance 

and function. These studies will further disclose the mystery of development and function of iTregs

in autoimmunity. 
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Abstract

Both nature (nTreg) and induced-regulatory T lymphocytes (iTreg) are potent regulator of 

autoimmune and allergic disorders. Defects in Treg cells have been reported in patients with allergic 

asthma, and therefore replenishment of Treg cells might attenuate asthma. Here we report that 

adoptive transfer of iTreg cells generated ex-vivo with IL-2 and TGF- effectively attenuated lung 

and airway allergic inflammation in a murine model of asthma. Immunized mice given 5x106 iTreg 

cells just before antigen challenge displayed markedly reduced airway résistance, eosinophil 

recruitment, mucus hyper-production, airway remodeling and IgE levels. This therapeutic effect was 

associated with increase of Treg cells (CD4+Foxp3+) in the draining lymph nodes, and with 

reduction of Th1, Th2, and Th17 cell response as compared to untreated and non-Treg cell treated 

controls. Therefore, adoptive transfer of iTreg reduces the allergic response, which might be a novel 

and promising therapeutic approach to treat severe asthma.

Keywords: Asthma, Lung inflammation, T regulatory cells, induced T regulatory cells.
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Introduction

Chronic allergic airway inflammation and airway hyperresponsiveness (AHR) are characteristic of 

atopic asthma pathophysiology. More than 7% of Americans suffer from asthma (Moorman et al., 

2007), and annual expenditure for health and lost productivity due to asthma is estimated at nearly 

$20 billion. The currently available therapeutic approaches for asthma usually include quick 

symptomatic relief measures directed to relaxation of airway smooth muscle (bronchodilator) and 

long-term control with suppression of airway inflammation (Fanta, 2009). However, these existing 

standard asthma therapies have several caveats and remain inadequate. For example, inhaled anti-

inflammatory corticosteroids only suppress but do not cure asthmatic inflammation, and long-term 

use of corticosteroids causes many pleiotropic side effects. Other more recently developed therapies, 

including inhibitors of leukotriene production and leukotriene receptor blockade, and anti-IgE 

monoclonal antibody (omalizumab), are used as alternative treatments for persistent asthma. 

However, limited efficacy, high cost, and lack of responsiveness in some asthma patients are the 

major drawbacks. Thus, novel and more effective therapeutic approaches for asthma are still needed. 

Recent studies have found that immune function dysregulation is one of the key pathogenic 

mechanisms underlying chronic asthma(Doherty and Broide, 2007). Reduction and/or defects in 

regulatory T (Treg) cells, which function as negative regulators to suppress excessive immune 

response and maintain immunological tolerance have been detected in asthma patients(Apostolou 

and von Boehmer, 2004). Therefore, replenishment of Treg cells is thought to be a promising cell 

therapeutic approach. However, the use of thymus-derived naturally occurring regulatory T (nTreg) 

cells has several caveats that may significantly diminish their practical application for asthma 

treatment. These include limited availability, susceptibility to inflammation-triggered apoptosis, 

inability in suppressing pro-inflammatory Th17 cells, and self-conversion to Th17 and/or other T 

effector cells in the milieu of inflammation. In contrast, Treg cells that are induced by TGF- and 

IL-2 in combination with low dose antigen exposure have similar phenotypic and functional 

characteristics to nTreg cells, without the caveats of nTreg cells mentioned above. Herein, we report 

that adoptive transfer of the induced-Treg (iTreg) cells to Ovalbumin (OVA)-sensitized mice 

effectively attenuates OVA-induced airway allergic inflammation, airway hyperresponsiveness, and 

other asthma-like lung pathology by modulating the systemic immune system.  
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Materials and Methods

Animal care

C57BL/6 mice were purchased from the Jackson Laboratory and bred at the specific pathogen-free 

animal facility at Keck School of Medicine at University of Southern California. All experiments 

were approved by the Institutional Animal Care and Use Committee at University of Southern 

California.

OVA-sensitized mouse asthma model and exogenous cell infusion 

6 to 8-week-old female mice weighing 20-25g were used for the experiments. Mice were sensitized 

by intraperitoneal (i.p.) injections of 25ug OVA (Grade V, Sigma Chemical Co.) mixed with 

aluminum hydroxide (Pierce) at day 1, and followed by another booster i.p. injection at day 14. 

These sensitized mice then were challenged with 20>g of OVA or saline control through an 

intranasal (i.n.) route for three consecutive days (days 25, 26, and 27)to generate an acute allergic 

asthma model.5x106 of iTreg cells or control cells generated as described below were intravenously 

injected into mice on day 22, three days before antigen challenge. 

Generation of in vitro TGF- -induced regulatory T (iTreg) cells 

Splenic CD4+CD25-CD62L+CD44low naive T cells were isolated by autoMACS (Miltenyi Biotech) 

from C57BL/6 female mice, which were littermates to the mice used for generating the OVA-

asthma model. iTreg cells were then prepared using the methods described in our previous 

publication(Zheng et al., 2007). Briefly, naïve CD4+ T cells were first isolated by negative selection, 

in which naïve CD4+ T cells were labeled with FITC-conjugated anti-CD25 mAb and sorted for 

CD4+CD25- T cells. The CD4+CD25- T cells were then labeled with PE-conjugated anti-CD62L and 

Cyc-conjugated CD44, and positively selected by anti-PE magnetic beads 

(CD4+CD62L+CD44lowCD25- cells). These isolated naïve T cells were stimulated with anti-CD3/28 

coated beads (1:5 ratio, five cells to one bead) in the presence of IL-2 (40 U/ml) and TGF- ?" =@"

ng/ml) for 4-6 days to generate iTreg cells; controls cells were treated with anti-CD3/CD28 beads 

with IL-2 only. The iTreg cell phenotypes were verified by related molecular marker expression 

(CD4+CD25+Foxp3+) detected by Flow Cytometery. Also the immune suppressive activity of iTreg 

cells was verified using a standard in vitro suppressive assay as previously reported (Zhou et al., 

2010b).

Determination of airway hyperresponsiveness (AHR) in vivo
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On day 28 (24 hours following the last i.n. administration of either normal saline or OVA challenge), 

the mice were anesthetized with intraperitoneal injections of sodium pentobarbital (90mg/kg). When 

an appropriate depth of anesthesia was achieved, a tracheostomy was performed, in which a

standard 20G × 32 mm Abbocath®-T cannula (Abbott, Sligo, Ireland) was gently inserted into the 

trachea and secured with suture. The mice were then connected to a computer controlled small 

animal ventilator (FlexiVent, Scireq, Canada) and ventilated at 150 breath/min with a tidal volume 

of 10ml/Kg and a positive end-expiratory pressure of 3 cmH2O. Methacholine (MCh, 40 mg/ml in 

PBS) was then delivered to the subject by nebulized aerosol. The frequency-independent airway 

resistance (Raw) in mouse lung was then automatically measured by FlexiVent/SciReq software, 

and the MCh challenge experiments are repeated at least three times.

Bronchoalveolar lavage (BAL)

The bronchoalveolar lavage was performed three times with 0.8 ml of normal saline in each time, 

and pooled together. The number of cells in BAL was counted using a hemocytometer. The 

remaining samples were then centrifuged at 4ºC for 4 min at 400xg to separate cell-free supernatant 

and cells. An aliquot of supernatant was used to measure BAL protein concentration by Bradford 

method (Bio-Rad). 

Lung histopathology and immunohistochemistry

The lungs were inflated with PBS under 25 cm H2O, and fixed in 4% paraformaldehyde overnight at 

40C. The fixed tissues were then processed for paraffin embedding. 5->A"#B)%"'$22B/"2/0'$()2"9/./"

stained with Hematoxylin and Eosin (H&E) for lung morphological analyses. Eosinophils in the 

lung tissue were stained with Discombe’s Solution (Discombe, 1946). Periodic-Acid-Schiff (PAS) 

staining was used to characterize glycoproteins using a kit purchased from Sigma. Briefly, slides 

were deparaffinized and hydrated, then immersed in Periodic Acid Solution for 5mins. After 

washing with several changes of distilled water, the slides were incubated in Schiff's reagent for 

15mins and counterstained with hematoxylin. The numbers of airways with PAS-positive epithelial 

cells versus PAS-negative epithelia were then determined in each lung section. Lung inflammatory 

histopathology was evaluated using a semi-quantitative method reported by other group(Richards et 

al., 1996). Briefly, at least two sections of each mouse lung were examined using the following 

criteria. Alveolar inflammation foci were scored 0-5 (0=no foci, 1=CD!"@EF -15, 3=16-25, 4=26-35, 

5=GHDIJ" +4/" 1/.$-vascular and peribronchiolar inflammation was also scored separately on a 0-5

scale (0=no inflammation, 1=minimal, 2=mild, 3=moderate, 4=marked, 5=severe). Thus, the total 

inflammation score is the average of alveolar and peri-vascular/bronchiolar inflammation. At least 
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five mice in each group were selected for this analysis. Immunohistochemical studies were 

performed using Zymed Histostain-Plus system (Zymed). Alpha smooth muscle actin (K-SMA)

antibody was purchased from Sigma (St Louise, MO). Normal serum was used as negative control.

Serum cytokine analysis

Serum was prepared from blood collected after measuring AHR. Samples were frozen at L@MN,"

until analysis. The levels of cytokines (IL-4, IL-5 and IL-13) and IgE in sera were measured using 

ELISA kits purchasing from Invitrogen or BioLegend, following the manufacturer’s instructions.

Intracellular cytokine staining and Flow Cytometry analysis 

Lymphocytes in axillary draining lymph nodes and spleen were collected and stained for surface or 

intracellular markers with combinations of fluorochrome-conjugated mAb specific for CD3, CD4, 

CD8a, CD62, CD44, IL-17A (BioLegend, San Diego, CA), as well as IL-O!"6PQR"=<S"<$(20$/)0/2"

Pharmingen, San Diego, CA). In the case of intracellular IL-4, IL-?T" &)3" 6PQR!" 0/##2" 9/./"

2'$AB#&'/3"9$'4"MJ@D">%UA#"VWX"&)3"MJ@D">%UA#"$()(A:0$)"=,&#8$(04/A!"Y&"Z(##&!",XI"*(."?"4(B.!"

&)3" *(##(9/3" 8:" &33$'$()" (*" 8./*/#3$)" X" =D" >%UA#[" ,&#8$(04/AI" &)3" $)0B8&'$()" *(." &33$'$()&#" O"

hours prior to processing for intracellular staining. The phenotypes and intracellular cytokine 

expression were analyzed using a LSRII Flow Cytometry (BD Biosciences, San Diego, CA).

Statistical analysis

The data are presented as the mean. A Student’s two-tailed t test was used to compare data between 

the different experimental groups. Differences were considered statistically significant for P

values<0.05. 
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Fig.4. Attenuated allergic inflammation 
by iTreg cells. (a) Total proteins in BAL fluids 
from mice with different treatments were 
quantified; (b) Eosinophil, detected by 
Discombe’s staining (red intracellular granules), 
was the major type of cells that were infiltrated 
in small airways and adjacent vasculature; (c)
IgE level in serum from different groups of mice 
was quantified by an ELISA. Increased IgE level 
in serum by OVA-induced allergic reaction was 
significantly reduced with iTreg treatment. 
*P<0.05.

Fig.3. Reduced inflammation in lung 
tissues by adoptive transferring of iTreg 
cells prior to OVA challenge. (a) Lung tissue 
sections from the mice with indicated treatments 
were stained with H&E. Mice with i.n. instillation 
of saline were used as “Normal” control. iTreg-
OVA and T cell-OVA represent mice were treated 
with adoptive transfer of iTreg cells versus 
control T cells prior to OVA challenge, 
respectively. (b) The intensities of lung 
inflammation were graded with scores 0 to 5 
(none to severe inflammation, see Materials and 
Methods for details).  *P<0.05, **P<0.01, n=5.

Results

Adoptive transfer of in vitro TGF- -induced Treg (iTreg) cells attenuated OVA-induced 

allergic inflammation in mouse respiratory airways and alveoli.

In OVA-sensitized mice, repeated i.n. OVA challenges at day 25-27 resulted in severe small airway 

and alveolar inflammation, indicated by excessive inflammatory cell infiltration surrounding small 

airways and vasculature, as well as alveolar septa (Fig.3).

The serum level of IgE was significantly increased, and infiltration of eosinophil around airway was 

also verified by Discombed staining (Fig. 4). Consistent with the lung histological changes, the total 

amount of proteins in BAL fluid was significantly increased (Fig. 4). The number of cells in BAL 

also increased more than 10-fold than the control groups (data not shown). Moreover, epithelial cell 

hypertrophy with increased mucin expression in small airways, thickened airway smooth muscle cell 

(SMC) layer, and resultant smaller lumen with rippled epithelial surface of small airways were also 

observed in OVA-challenged mouse lungs (Fig. 5). Therefore, a typical OVA-allergic airway 

inflammatory model was verified. 
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Using this established OVA-allergic mouse model, 

the anti-inflammatory effect of adoptive transfer of 

iTreg cells was then examined. Three days before 

OVA challenge (Day 22), a single transfer of 5x106

iTreg cells was given to the mice via tail vein 

injection. T cells cultured without TGF- addition 

was 

used as an additional specificity control. After three-

day i.n. OVA challenge, lung specimens were 

harvested for detailed analyses. iTreg cells, but not 

control T cells, significantly attenuated OVA-induced 

allergic inflammation including reduced infiltration of 

inflammatory cells, particularly eosinophils, in airway 

and alveolar septa, decreased levels of serum IgE and 

BAL proteins (Fig. 3-4), as well as reduction in the 

number of cells in BAL by 2-fold (p<0.05). 

Alterations of airway walls subsequent to allergic 

inflammation, including epithelial hypertrophy and 

increased mucin production (PAS-positive staining), as well as thickened smooth muscle cells in 

small airways (Fig. 5), were likewise significantly attenuated. These results indicate that adoptive 

Fig.5. Abnormal airway wall 
remodeling was subsided with 
iTreg cell treatment. (a) Excessive 
mucin expression in small airway 
epithelial cells was detected by PAS 
staining (red color). (b) The numbers of 
airways with PAS-positive epithelial cells 
per lung tissue section were quantified in 
different experimental groups (n=5), 
suggesting overproduction of mucin. (c)
Clara cells in small airway epithelia were 
stained by CCSP immunofluorescence 
staining (green) and the surrounding 
airway smooth muscle cells were 
immunostained by SMA (red). **P<0.01.

Fig. 6. Adoptive transfer of iTreg cells 
significantly reduced AHR. Airway 
resistance was measured upon Mch 
(40mg/ml) aerosol delivery. Although the 
airway resistance was still significantly higher 
in iTreg cell-treated group than that in normal 
control group, significant reduction of airway 
resistance was achieved in iTreg cell-treated 
group compared to non-treated (OVA) or 
control T cell-treated group. (*P<0.05, 
**P<0.01).
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transfer of iTreg cells prior to OVA allergic challenge can effectively prevent lung inflammation 

and abnormal airway remodeling.    

Adoptive transfer of iTreg cells also effectively inhibited airway hyperresponsiveness (AHR) in 

OVA-challenged mice. 

OVA-sensitized mice with repetitive i.n.

administration of OVA developed significant 

AHR to methacholine (MCh) challenge 

compared to normal control mice (Fig. 6). 

However, adoptive transfer of iTreg cells 

prior to repetitive challenge of OVA 

significantly inhibited AHR, although 

increased AHR was still detected. In contrast, 

adoptive transfer of T control cells did not 

significantly reduce AHR, although slight 

reduction in AHR was detected in some mice. 

Thus, adoptive transfer of iTreg cells, but 

not control T cells, prior to allergen 

exposure can also effectively reduce AHR 

in addition to the reduction in airway 

inflammation described above.

Adoptive transfer of iTreg cells 

modulated systemic immune response to 

OVA-allergic challenge. 

Numerous studies have found that asthmatic inflammation is related to abnormal cellular immunity, 

including defective Treg cells, inappropriate ratio of Th2 over Th1 cell population, and excessive 

Th17 cells. Thus, we have evaluated these immune cells and their related cytokine production.   

Fig.7. Adoptive transfer of iTreg cells 
significantly diminished Th1/Th2/Th17 cell 
frequencies in draining lymph nodes in 
asthmatic mice. Cells from axillary lymph nodes 
were isolated and stimulated with PMA and 
Ionomycin (5 hours), and BFA (4 hours). 
Intracellular expression of IFN- , IL-5, and IL-
17A in CD3+ T cells were determined by FACS. (a)
A representative of 9 mice in each group. Cells 
were gated on CD3+ cells.   (b) Results were mean 
± SEM of values of 9 mice in each group. *P<0.05,
**P<0.01, ***P<0.001.
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A 2-fold increase of Treg cells (CD4+Foxp3+) was detected in the draining lymph nodes and the 

spleen of the mice receiving adoptive transfer of iTreg cells prior to OVA challenge, while there 

were no significant changes in 

Treg cells in the comparison to 

OVA or T control cell-OVA

groups. More interestingly, 

increased Th1, Th2, and Th17 

cells caused by repetitive OVA 

challenge was significantly 

attenuated by adoptive transfer of 

iTreg cells prior to OVA 

administration (Fig. 7), but not 

by control T cells. Consistent with this, serum Th2 cytokines including IL-5 and IL-13 were 

significantly increased upon OVA challenge (Fig. 8). Adoptive transfer of iTreg cells, but not T 

control cells, was able to partially block these increases in mice. Therefore, adoptive transfer of 

iTreg cells may modulate both local and systemic immunity, and thus prevent excessive cellular 

response against OVA-induced allergic reaction and inflammation. 

Fig.8.  Adoptive transfer of iTreg cells inhibited OVA-
induced increase of Th2 cytokines. IL5 and IL13 in 
mouse serum were quantified by specific ELISA. Significant 
reduction of IL5 and IL13 in the group receiving iTreg 
treatment was detected compared to OVA challenge only 
control group. **P<0.01.
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Discussion

Asthma is a chronic inflammatory disorder of the conducting airways with abnormal hyper-

responsiveness and airway remodeling, resulting in airflow restriction during breathing (Boxall et 

al., 2006; Doherty and Broide, 2007). Studies have found that immune function dysregulation is one 

of the key pathogenic mechanisms underlying airway chronic allergic inflammation, in particular 

imbalance between Th2 cell and Th1 cell responses (Amin et al., 2000; Romagnani, 2006). More 

recently, another pivotal subset of CD4+ T cells, Treg cells, were also found to be important in 

suppressing allergic responses (Bacchetta et al., 2007; Larche, 2007), although defects in Treg cell 

function have been related to reduced immune tolerance and subsequent autoimmune diseases. The 

majority of naturally occurring Treg (nTreg) cells in peripheral lymph tissues is derived from the 

thymus. However, Treg cells can also be induced in the periphery in an antigen-specific, TGF- -

dependent fashion (iTreg), through low dose antigen exposure (Apostolou and von Boehmer, 2004;

Zheng et al., 2002).

Allergen specific Treg cell function is defective in patients with allergic diseases including 

asthma. For example, CD4+CD25+ T cells from grass pollen-allergic individuals were less able to 

suppress proliferative responses and IL-5 production by CD4+CD25- T cells (Ling et al., 2004).

Significant reduction of the CD4+CD25+ T cell ratio in peripheral blood was detected in patients 

with persistent or exacerbation of asthma when compared to control groups (Xue et al., 2007). In 

addition, Treg cells in allergic asthma patients were also decreased in bronchoalveolar lavage (BAL) 

fluid, possibly due to reduced CCL1-mediated chemotaxis (Hartl et al., 2007; Nguyen et al., 2009).

Moreover in mouse asthma models, nTreg cells are present in the lung tissue of sensitized mice and 

increase upon allergen inhalation. Inhibition of nTreg cells augments respiratory allergen-induced 

AHR and IgE production, as well as Th2 cytokine levels in BAL fluid (van Oosterhout and 

Bloksma, 2005). In addition, Th17 cells are a distinct Th population from Th1 and Th2 cells

(Infante-Duarte et al., 2000). Th17 cells are involved in many immune disorders including airway 

hypersensitivity, through production of IL-17, IL-17F, IL-21, and IL-22 that act as pro-

inflammatory cytokines (Nakae et al., 2002). Therefore, Th17 cells are considered to be pro-

inflammatory effectors. IL-17 mRNA and proteins were reported to be increased in the lungs, 

sputum, BAL fluids, and sera from asthmatics, and the level of IL-17 correlated with the degree of 

severity of airway hypersensitivity in asthma patients (Barczyk et al., 2003; Laan et al., 2002; Molet 

et al., 2001; Wong et al., 2001), suggesting an important pathogenic role of Th17 and IL-17 in 

asthma pathogenesis and exacerbation.  
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Although both nTreg and iTreg cells share similar phenotypic characteristics and immune 

suppressive functions, studies by our group and others have suggested substantive differences

regarding their generation, maintenance, and activity. In particular, unlike nTreg development, 

CTLA-4 (cytotoxic T lymphocyte antigen-4, CD152)-B7, but not CD28-B7 signal, is required for 

the development of TGF- -iTreg cells (Zheng et al., 2006b). Moreover, IL-2 is also essential for the 

generation of TGF- -induced iTreg cells (Zheng et al., 2007). Most importantly, iTreg cells are 

resistant to pro-inflammatory cytokine IL-6-induced self-conversion to Th17 cells (O'Connor et al., 

2010; Zheng et al., 2008), and also inhibit Th17 cell generation from other T cells (see articles II).

Moreover, TGF- not only stimulates iTreg cell development, but also protects iTreg cells from 

apoptosis. We have found that more than 50% of T cell receptor-stimulated CD4+ cells are 

apoptotic, however, only 10% of TGF- 1-treated CD4+ cells are apoptotic as determined by 

Annexin-V staining (Zheng et al., 2002). Furthermore, iTreg cells survive longer than control cells 

following adoptive transfer in vivo (Zheng et al., 2002). We also have found recently that iTreg cells 

are resistant to apoptosis in an autoimmune inflammatory milieu (see articles II). In addition, we 

recently observed that 50% of adoptively transferred Foxp3+ iTreg cells could survive at least one 

month in recipients in vivo (Lu et al.). Conversely, nTreg cells are more plastic and unstable under 

proinflammatory conditions (Xu et al., 2007; Zheng et al., 2008). These plasticity and instability 

likely account for the weak protective effect of nTreg cells on asthma and other autoimmune 

diseases. Due to their stability, it is very likely that iTreg cells, but not nTreg cells, may have a 

greater advantage in the treatment of established asthma, particularly when in the chronic phase, as 

well as potentially in other autoimmune and inflammatory diseases.   

Although many studies have demonstrated that adoptive transfer of iTregs can control lupus, 

colitis, gastritis and diabetes in animal models (Fantini et al., 2006; Godebu et al., 2008; Huter et al., 

2008; Zheng et al., 2004b), it is less known whether infusion of iTregs can prevent and control the 

development of asthma. Since immune function dysregulation is one of the key pathogenic 

mechanisms underlying chronic airway inflammation, selective suppression of such abnormal 

immune reactions may be an effective approach in the prevention and treatment of asthma. 

Currently, there is no immune cell therapy available to restore normal immune responses in asthma. 

Our study has demonstrated that iTreg treatment not only suppresses T effector cells, but also 

promotes more CD4+FoxP3+ cells. Our previous studies have demonstrated that injection of iTregs 

can induce recipient to induce in vivo iTregs through a phenomenon called “infectious tolerance” 

(Zheng et al., 2006a). We believe that infusion iTregs may change the balance of Tregs to T effector 

cells. Thus, adoptive transfer of anti-inflammatory Treg cells may prove to be a promising cell 
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therapy for asthma. However, use of thymus-derived naturally occurring regulatory T (nTreg) cells 

may have several caveats that potentially diminish their practical application for asthma treatment. 

These include limited availability, susceptibility to inflammation-triggered apoptosis, inability to 

suppress pro-inflammatory Th17 cells, and self-conversion to Th17 cells in the milieu of 

inflammation as described above. Moreover, intrinsic defect of CD4+CD25+ cells in asthma patients 

also limits the clinical use of these cells as starting population for expansion of nTregs. In contrast, 

iTreg cells have superior anti-inflammatory activities compared to nTreg cells. Induction of iTreg 

cells in vitro not only avoids systemic application of cytokines and growth factors, but also 

generates an approach similar to an autograft, by which CD4+ cells from an asthmatic patient can be 

induced to iTreg in vitro, and then could be adoptively transferred back to the same patient to induce 

immune tolerance to allergens, as well as suppressing abnormal inflammatory responses in the 

airway without significant side effects. Another advantage is that one can induce sufficient numbers 

of iTregs for the treatment of patients with asthma and other autoimmune diseases. Therefore, we 

have tested this approach in the OVA airway allergic mouse model. Adoptive transfer of iTreg cells 

prior to OVA challenge dramatically attenuated airway allergic inflammation as well as AHR. These 

experimental results lay the ground work to further explore potential application of in vitro TGF- -

induced regulatory T cells as a novel cell therapy to better treat chronic allergic asthma.
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Abstract

Transferred CD4+CD25+Foxp3+ regulatory cells (Tregs) can prevent autoimmune disease, but

generally fail to ameliorate established disease. Here we demonstrate that antigen-specific Tregs 

induced with IL-2 and TGF- "ex-vivo (iTregs), but not equivalent expanded thymus-derived nTregs 

can prevent progression of established collagen-induced arthritis. This was because following 

transfer, nTregs exhibited decreased Foxp3 and Bcl-2 expression, decreased suppressive activity, 

and many converted to Th17 cells.  By contrast, transferred iTregs were more numerous, retained 

their suppressive activity in the presence of IL-6 and were resistant to conversion.  Remarkably, ten 

days after transfer iTregs shifted the predominance from Th17 to Treg cells in draining LNs. These 

findings provide evidence that transferred TGF- -induced iTregs are more stable and functional than 

nTregs in mice with established autoimmunity.  Moreover, iTregs can have tolerogenic effects even 

in the presence of ongoing inflammation. The therapeutic potential of iTregs in subjects with 

chronic, immune-mediated inflammatory diseases deserves to be investigated.  

Keywords: Collagen-induced arthritis, rheumatoid arthritis, Inflammation, Nature Tregs, 

induced Treg cells.
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Introduction

CD4+CD25+Foxp3+regulatory T cells (Tregs) are crucial in maintaining immune homeostasis

(Sakaguchi, 2005). Many autoimmune diseases including rheumatoid arthritis (RA) have been 

reported to have abnormalities in the numbers and/or functions of Tregs (Ehrenstein et al., 2004;

Flores-Borja et al., 2008; Heemskerk et al., 2007; van Amelsfort et al., 2004). CD4+Foxp3+Tregs are 

heterogeneous and can be divided into three populations: thymus-derived naturally occurring 

(nTregs), those induced in vivo, and those induced ex-vivo with IL-2, TGF- " \" ./'$)($0" &0$3" (."

rapamycin (Haxhinasto et al., 2008; Horwitz et al., 2008; Sakaguchi, 2005; Zheng et al., 2002).

Although some groups have reported that exogenous polyclonal TGF- "$)3B0/3"+./%2"=iTregs) are 

unstable (Floess et al., 2007), we and others have observed remarkable protective effects of this 

subset in autoimmune animal models (Huter et al., 2008; Selvaraj and Geiger, 2008; Weber et al., 

2006; Zheng et al., 2004b), and that unlike nTregs, these iTregs were resistant to conversion to Th1, 

Th2, Th17 and Tfh cells under inflammatory conditions (Chai et al., 2002; Lu et al., 2010b; Tsuji et 

al., 2009; Wan and Flavell, 2007; Xu et al., 2007; Zheng et al., 2008; Zhou et al., 2010a).

Collagen induced arthritis (CIA) has been recognized as a useful animal model for human RA since 

CIA mimics the symptoms, pathogenesis and progression of RA (Brand et al., 2007). Polyclonal 

nTregs can alter the development and progress of CIA, but are ineffective in controlling established 

disease although they became effective after treatment with retinoid acid (Morgan et al., 2003; Zhou 

et al., 2010a). Since antigen-specific Tregs have more potent protective effects than polyclonal 

Tregs (Penaranda and Bluestone, 2009), the objective of this study was to compare the relative 

effectiveness of collagen peptide-specific, IL-2 expanded, nTregs and iTregs induced with IL-2 and 

TGF- " $)" A$0/" 9$'4" /2'&8#$24/3" 3$2/&2/J"]/" (82/.5/3" that transferred nTregs failed to suppress 

established CIA, but iTreg infusion remarkably ameliorated severity and suppressed progression.

This was because in these mice with established inflammation, nTregs in vivo lost suppressive 

activity and many converted to Th17 cells in vivo. By contrast, Foxp3+ iTregs were stable, more 

numerous, and had tolerogenic effects.  
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Materials and Methods

Mice

Eight-week-old female DBA1/J mice were purchased from The Jackson Laboratory (Bar Harbor, 

ME). Collagen II TcR transgenic Foxp3gfp reporter mice were produced by back-crossing DBA/1J 

mice with C57BL/6 Foxp3gfp knock-in mice for 11 generations to develop Foxp3 reporter mice on 

the DBA/1 background, and then intercrossing with CII TcR Tg mice. All mice were housed and 

treated by National Institutes of Health guidelines for the use of experimental animals with approval 

of University of Southern California Committee for the Use and Care of Animals (Los Angeles, 

California).

Induction and assessment of arthritis

Collagen-induced arthritis (CIA) 9&2" $)3B0/3" 8:" 2B80B'&)/(B2" $)^/0'$()" (*" DM" >#" (*" /AB#2$()"

containing bovine collagen II and complete Freund's adjuvant (1:1 ratio). For assessment of arthritis, 

animals were scored for clinical signs every two days as follows: 0: normal joints; 0.5: swelling of 

one or more digits; 1: erythema and mild swelling of the ankle joint; 2: mild erythema and mild 

swelling involving the entire paw; 3: erythema and moderate swelling involving the entire paw; 4: 

erythema and severe swelling involving the entire paw. The clinical scores for each mouse are the 

sum of the scores for four limbs and the maximal score for each mouse is sixteen.

The generation of CD4
+

induced regulatory T cells (iTregs) ex vivo

Naïve CD4+CD62L+CD25-CD44low T cells were isolated from spleen cells of DBA/1 CII TcR Tg

mice using naïve CD4+ T cell isolation kit (Miltenyi Biotec, Auburn, CA). Cells were cultured in 

48-well plates and stimulated with CII peptide (245-270) (50 >g/ml) in the 1./2/)0/"(*"R–irradiated

(30 Gy) APC, IL-2 (R&D systems, Minneapolis, MN) 40 U/ml with (iTregs) or without TGF- "

2ng/ml (R&D systems) (MED) for 4 days. RPMI 1640 medium supplemented with 100 U/ml 

penicillin, 100 mg/ml streptomycin, 10 mM HEPES (Invitrogen Life Technologies) and 10% heat-

inactivated FCS (HyClone Laboratories, Logan, UT) was used for all cultures. Foxp3 expression 

was determined by flow cytometry. The suppressive activity of these cells against T cell 

proliferation was examined with a standard in vitro suppressive assay as previously reported (Zheng 

et al., 2007). 3×106 cells were transferred to each DBA/1J mouse on day 0, 14 or 28 after CII/CFA 

immunization. 

Natural regulatory T cell (nTreg) generation
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CD4+CD25+ cells sorted from the thymus in CII TcR Tg mice were expanded with CII peptide (245-

270) (DM">%UA#) for 7 days. 300 U/ml IL-2 was renewed every three days. After cultures, cells were 

harvested and beads were removed. The percentage of Foxp3+ cells was examined by flow 

cytometry before and after 7 days’ expansion. 3×106 cells were transferred to DBA/1J mouse on day 

0, 14 or 28 after CII/CFA immunization.

Th17 cell differentiation by IL-6 and TGF- 

Naïve CD4+ cells were isolated from splenocytes of normal mice as before and cultured in 96-well 

1#&'/2J",/##2"9/./"2'$AB#&'/3"9$'4"?>%UA#"2(#B8#/"&)'$-CD3, anti-,S@_"&)3"?M>%UA#"&)'$-IFN-R"&)3"

anti-IL-4 monoclonal antibodies, irradiated APC (1:1 ratio), 10ng/ml IL-6 with or without 2ng/ml 

TGF- "*(."'4./e days. Cells were harvested and stained with anti-IL-17A monoclonal antibody using 

the intracellularflow cytometry staining protocol as described below.

Proliferation Assay 

iTregs generated or nTregs expanded as described above were added to fresh naïve T cells (Treg/T 

cells=1:4) and were stimulated with anti-CD3 mAb (0.025ug/mL) and irradiated APC (30 Gy, 1:1 

ratio) for three days. 3H was added to cultures for the last 16 to 18 hours and T cell proliferation 

([3H]-thymidine incorporation) was measured by using a scintillation counter.

Histology

For histological examination, mice were anesthetized after the final arthritic index was assessed. 

One limb from each mouse was removed and preserved in 10% buffered formalin, decalcified, and 

subsequently trimmed so as to render a longitudinal section through the limb and digits. The 

specimens were processed, blocked, sectioned, and stained with H&E.

Anti-CII antibodies ELISA 

Blood were collected from each mouse on day 14 after adoptive transfer and clotted at room 

temperature for one hour followed byincubation at 40C overnight. Sera were frozen at -200C. Anti-

CII antibodies were measured by ELISA.

Intracellular Staining for Flow Cytometry

For intracellular staining of cytokines, cultured cells were stimulated with PMA (0.25ug/ml), 

ionomycin (0.25ug/ml) for five hours and brefeldin A (5ug/ml) for four hours. Cells were then 

stained with surface markers such as CD4 and CD25 (eBioscience, San Diego, CA) and further 
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fixed, permeabilized and stained with Foxp3, IL-17A, IFN-R, IL-4, IL-2 and IL-10 (Biolegend, San 

Diego, CA).

Real-Time PCR

Total RNA was extracted with the RNeasy mini kit (Qiagen, Valencia, CA). cDNA was generated 

using a Omniscript RT kit (Qiagen, Valencia, CA). Foxp3 and Bcl-2 mRNA expression was 

quantified with ABsolute SYBR Green ROX mix (Thermo, Waltham, MA). Samples were run in 

triplicate and the relative expression of Foxp3 or Bcl-2 was determined by normalizing the 

expression of each target to hypoxanthine guanine phosphoribosyl transferase (HPRT). Primer 

sequences used were as follows: Foxp3 primers: 5'-CCC AGG AAA GAC AGC AAC CTT-3' and 

5'-TTC TCA CAA CCA GGC CAC TTG-3'.Bcl-2, 5'-CCT GGC TGT CTC TGA AGA CC-3' and 

5'-CTC ACT TGT GGC CCA GGT AT-3'; HPRT 5'-TGA AGA GCT ACT GTA ATG ATC AGT 

CAA C-3' and 5'-AGC AAG CTT GCA ACC TTA ACC A-3'.

Statistical analysis

Results calculated by using GraphPad Prism 4.0 software (GraphPad Spftware, San Diego, CA) are 

presented as mean ± SEM. Student t test was used to assess statistical significance between two 

groups, and one-way ANOVA and/or non-parametric tests were used to assess statistical 

significance among multi-groups. P value<0.05 is considered as statistically significant difference.
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Results 

Comparable properties of antigen-specific iTregs induced ex-vivo and expanded nTregs

We and others previously reported that antigen-specific iTregs can be generated in the presence of 

IL-2 and TGF- (Huter et al., 2008; Zheng et al., 2004b). Herein, we used type II collagen (CII)-

specific TcR transgenic mice that express an I-Aq-restricted CII (260–267)-specific TCR composed 

of  !""#$%&'(% )*#$ for our studies. When naïve CD4 CD25-Foxp3-CD44low cells were stimulated 

with CII peptide (245-270), few CD4+ cells expressed Foxp3, a key Treg marker. Exogenous TGF-)%

enabled ~50% of CD4+ cells to express this transcription factor (iTregs) (Fig.9a,b). CD4+CD25+

cells sorted from thymus (nTregs) in CII TcR Tg mice were expanded with CII peptide (245-270) 

and IL-2 for a week and expressed ~75% of Foxp3. The Foxp3 mRNA and protein expressed by 

iTregs and expanded nTregs were comparable (Fig.9c, d). Following induction and expansion, these 

Foxp3+ cells sustained expression of  )*#$% as an indication of antigen specificity (Fig.9e). Both 

antigen-

specific 

iTregs and 

nTregs

exhibited 

reduced 

proliferation 

when re-

stimulated 

with CII 

peptide (245-

270), but 

proliferation was restored with exogenous IL-2 demonstrating that these cells had become anergic; a 

Fig. 9. Differentiation and expansion of antigen-specific iTregs and nTregs. (a) Naïve 
CD4+CD25-CD62L+CD44low cells isolated from collagen-II TcR transgenic Foxp3gfp reporter mice 
were stimulated with collagen II peptide (245-270, 50  g/ml) in the presence of IL-2 ± TGF-! for 
5 days. CD4+CD25+ cells sorted from CII TcR mice were expanded with CII (245-270) and IL-2 for 
one week. Intracellular Foxp3 expression among CD4+CD25+ cells was analyzed by flow cytometry. 
Values are mean ± s.e.m of five separate experiments. P<0.001 in comparison with no TGF-!
treatment. (b) Data are representative of five experiments in a. Total protein was extracted from 
various cells and subjected to western blotting (c) and Foxp3 mRNA expression was determined 
by quantitative RT-PCR after normalization to HPRT (d). Data are representative of four 
independent experiments. (e) Foxp3 expression on CD4+V!8.3+ cells and data are representative 
of five experiments in a.
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hallmark feature of Tregs (Fig. 10a). Accordingly, both subsets also produced little IL-2 or INF-+,%

but produced increased levels of IL-10 relative to CD4+control cells (Fig.10b). Both unmanipulated 

subsets had equivalent suppressive activity (Fig. 11 a,b).

Differences between antigen-specific iTregs and nTregs in suppressing T cell proliferation and Th17 

differentiation in vitro

Recent studies have revealed that 

nTreg’s suppressive activity can be 

abolished with IL-6 (Pasare and 

Medzhitov, 2003) and this finding was 

confirmed in the present study. While 

both nTregs and iTregs displayed 

excellent suppressive activity against T 

cell proliferation, only iTregs 

maintained their suppression in the 

presence of exogenous IL-6 in vitro

(Fig. 11). We conducted two 

separate proliferation assays using 

either CFSE labeling to follow 

proliferation cytometrically (Fig. 

11a) or using 3H thymidine 

incorporation (Fig. 11b) to measure 

DNA synthesis (Zheng et al., 2007).

Both assays revealed similar results. 

Given the close relationship between Th17 cells and nTregs, and the critical role played by each in 

the initiation or prevention of many autoimmune diseases, we next considered examining the effect 

of each Treg population in controlling Th17 differentiation.  In a standard Th17-polarizing culture 

system, we observed that both IL-6 and TGF-)%-'(./0(%&12.3%45% of TCR-stimulated naïve CD4+

cells to express intracellular IL-17A. The addition of nTregs (in a ratio of 1 nTreg to 4 naïve T cells)

actually slightly enhanced CD4+cells expressing IL-17 (Fig. 11c, d) and did not inhibit CD8+cells 

from producing this cytokine (not shown). Importantly, iTregs markedly suppressed the frequency 

of CD4+IL-17+ (Fig. 11c, d), CD8+IL-17+ cells (not shown) and concomitant in vitro production of 

soluble IL-17 was also reduced (Fig. 11e). These results provide further evidence that relative to 

Fig. 10. iTregs displayed anergic status and 
related cytokine profiles. CD4con and iTregs 
generated, as well as nTregs expanded as described in 
sFig. 1a were harvested and restimulated with CII 
peptide (245-270) (50  g/ml) in the presence of 
irradiated APC with or without exogenous IL-2 (20 
units/ml) for three days. [3H]-thymidine was added to 
cultures in the last 18 hours and cell proliferation was 
measured by using a scintillation counter (a). Three days 
after restimulation, PMA and Ionomycin (last 5 hr), and 
BFA (last 4 hr) were added to cultures and cytokine 
production by CD4+ cells were analyzed by flow 
cytometry (b). Data indicate mean ± s.e.m of three 
independent experiments. **p 0.01, ***p 0.001, 
CD4con in comparison to iTregs.
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nTregs, iTregs have a superior ability to down-regulate Th17 cell differentiation even in the 

presence of IL-6.

Protective effects of iTregs and nTregs on arthritis when transferred before or shortly after collagen 

II immunization in vivo.

Fig.11. iTregs but not nTregs sustained their suppressive activity in the presence of 
exogenous IL-6 and suppressed Th17 cell differentiation. (a) Thymic CD4+CD25+ cells 
(nTregs) sorted from CII TcR transgenic mice were expanded with CII peptide (50  g/ml) and IL-2 
(300 units/ml) for one week, and naive CD4+CD25- cells were stimulated with CII peptides, IL-2 
andTGF-! for 4 days (iTregs). T responder cells labeled with CFSE were stimulated with anti-CD3 
mAb ± exogenous IL-6± Treg subsets (1:4 ratios). Cells were gated on the CD8+ T responder cells and 
values indicate CFSE+ (undivided CD8+ T cells). (b) nTregs and iTregs were generated as above except 
from CII TcR Tg Foxp3gfp reporter mice. 3H-thymidine was added to cultures at the last 18 hours and 
incorporation by cycling T cells was measured. (c,d) Naïve T cells were polarized for Th17 cells ± CFSE-
labeling Treg subsets (1:4 ratios) and percentages of IL-17+CD4+ CFSE- were determined by FACS. (e) The 
soluble IL-17A in supernatants was assayed by an ELISA. Data in a, c was representative of four separate 
experiments and values in b, d and e were mean ± s.e.m of three independent experiments. *P<0.05, 
**P<0.01, ***P<0.001, Tregs in comparison to baseline.
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Previous studies revealed that nTregs could limit CIA progression (Morgan et al., 2005; Morgan et 

al., 2003). To investigate the role of iTregs in this process and compare their functional 

characteristics with nTregs, we injected 3 x 106 iTregs or nTregs at the time of CIA challenge. This 

dose previously controlled experimental autoimmune encephalomyelitis (EAE) development(Zhou 

et al., 2010b). CIA incidence and severity was monitored every 3-5 days after cell injection. While

CD4+ control cell infusion did not affect incidence or severity, we observed that both nTregs and 

iTregs markedly decreased the incidence of CIA (Fig. 12a). Among those mice that did eventually 

develop CIA, nTregs and iTregs similarly delayed the onset of disease and decreased the clinical 

scores compared to control groups (Fig. 12b). Both Treg subsets also suppressed IgG2a 

complement-fixing antibodies, and iTregs suppressed total IgG and IgG1 as well (Fig. 12c).

Fig.12. Both nTregs and iTregs significantly prevented the development of 
autoimmune arthritis. 3x106 nTregs or iTregs generated as described in above were 
transferred IV into DBA/1 mice when mice were immunized with collagen II and CFA. (a)
Incidence and (b) severity of CIA in immunized mice receiving nTregs or iTregs and controls. (c)
CII-specific IgG subsets in sera harvested day 45 after immunization and were measured by 
ELISA. At least five mice in each group were included in each experiment and data were combined 
from two independent experiments and expressed as mean ± s.e.m. *P<0.05, **P<0.01, cell 
injection group in comparison to CIA model.
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We next determined the effect of both Treg subsets on CIA when transferred to mice just prior to 

disease onset. Since we observed that mice produce substantial levels of pro-inflammatory cytokines 

at day 14 following CIA challenge (not shown), we injected 3x106Tregs at this time. Twelve days 

after cell injection, the levels of anti-CII IgG1, IgG2a and IgG2b were significantly lower in the 

iTreg group compared with controls, while in mice injected with nTregs, only IgG2b was lower 

(Fig. 13c). At this time the incidence of arthritis had peaked. We observed significantly decreased 

CIA incidence in mice that received iTregs, but not nTregs (Fig. 13a). Nonetheless, among the mice 

that did develop disease nTregs or iTregs similarly significantly suppressed the severity of arthritis 

compared with controls (Fig. 13b). Both Treg types suppressed IL-17+ cells in LNs and spleens in 

CIA, however, iTregs displayed superior efficacy (Fig. 13d). Interestingly, although iTregs 

decreased splenic INF-++ cells, nTregs actually increased them. Thus, as nTregs lose suppressive 

activity they may develop helper activity since INF-+%6728230s B cell differentiation toward plasma 

Fig.13. Suppressive effects of nTregs and iTregs on autoimmune arthritis when 
transferred after immunization but before onset of arthritis. 3x106 nTregs or iTregs 
generated as above were adoptively transferred into DBA/1 mice on day 14 after CII/CFA 
immunization. The incidence (a) and severity (b) in each group of mice is shown. (c) Sera were 
collected on day 45 and the anti-CII specific IgG subsets in sera in each group were measured by 
ELISA. Five mice were included in each group and data were combined from two independent 
experiments and expressed as mean ± s.e.m.*P<0.05, **P<0.01,***P<0.001. (d) Experiments 
were terminated on day 60. Spleen and popliteal (draining) LN cells were harvested and 
stimulated with PMA, Ionomycin and BFA. INF-+% &'(% 9:-17 production by CD4+ cells were 
analyzed by flow cytometry. Data are representative of at least five mice per group.*P<0.05,
**P<0.01, cell injection group in comparison to control CIA mice.



46

cells (Swanson et al., 2010). The results suggest that iTregs induced ex-vivo are at least as effective 

as nTregs in the prevention of CIA. 

Loss of the protective effects of nTregs, but not iTregs, once arthritis was established

To consider clinical relevance, we explored the therapeutic effect of each Treg population on 

established CIA. Consistent with previous reports (Zhou et al., 2010a), transfer 3×106 of nTregs to 

mice with evident arthritis 28 days after collagen immunization, did not significantly decrease 

disease severity (Fig. 14a), autoantibody production (Fig. 14b), joint damage, bone erosion, or

inflammatory cell infiltration (Fig. 14c). Conversely, injection of iTregs almost completely 

Fig.14. iTregs but not nTregs significantly suppressed the development of 
established autoimmune arthritis.  3x106 nTregs or iTregs were adoptively transferred to 
DBA/1 mice that had developed typical arthritis (around day 28 after immunization) and 
arthritis development was monitored following Treg therapy. (a) Clinical scores of each group. 
(b) Anti-CII specific IgG subsets in various groups of mice (± adoptive transfer of Tregs) at two 
weeks as detected by ELISA. Five mice were included in each group and data were combined 
from two independent experiments and expressed as mean ± s.e.m. *P<0.05, **P<0.01, 
***P<0.001, cell injection group in comparison to CIA model. (c). Histological alteration of the 
joints of mice from each group. Joints were removed, fixed and conducted with H&E staining. 
Data are representative of at least five mice per group.
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suppressed the progress of disease for two weeks, and afterwards the severity never reached levels 

observed in controls (Fig. 14a). In addition, iTreg treatment also significantly suppressed IgG2a and 

IgG2b, but not IgG or IgG1 autoantibody production (Fig. 14b).  Moreover, iTreg treatment also 

markedly reduced articular cartilage and joint pathology, inflammatory cell infiltration, and left the 

joint space substantially intact (Fig. 14c).

Fig. 15. iTregs but not nTregs maintained their frequency, phenotype and 
function following adoptive transfer to mice with established arthritis. nTregs 
or iTregs generated as above were labeled with CFSE. 3x106 of these cells were adoptively 
transferred into mice with evident arthritis. 10 days later, mice were sacrificed, spleen, 
blood and LN cells were harvested. Foxp3 expression was identified by flow cytometry in 
either donor (CFSE+) or recipient (CFSE-) cells. (a) Total donor iTregs and nTregs in the 
spleens.Values indicate mean ± s.e.m for five mice per group, ***P<0.001, iTregs in 
comparison to nTregs. (b) Percentages of Foxp3+ cells by donor cells in the spleens before 
and after cell transfer. (c) Donor (CFSE+) cells were sorted at 10 days after infusion and 
Bcl-2 mRNA expression was determined by quantitative RT-PCR. (d) These sorted cells 
were added to T cells isolated from CIA mice. These cells were then stimulated with anti-
CD3 in the presence of irradiated APC. Cell proliferation was determined by [3H]-thymidine 
incorporation. Suppressive rates of nTregs and iTregs were calculated by the formula: 
[proliferative value of baseline - sample value/baseline value x100%]. Data in b-d were 
representative of five mice per group. Experiments were repeated with similar results.
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Decreased stability of nTregs but not iTregs in mice with established arthritis

Given that nTregs, unlike iTregs, lose suppressive activity in vitro when stimulated with pro-

inflammatory IL-6, we considered they might be unstable in vivo. To address this possibility, we 

labeled both Treg subsets with CFSE to distinguish them from recipient cells and transferred them to 

mice with established arthritis. Ten days later the mice were sacrificed and Foxp3 expression in 

donor cells isolated from spleens and LNs were examined by Flow Cytometry. The percentages and 

total numbers of donor nTregs surviving in spleens (Fig. 15a, b) and LNs (Fig. 16) were 

significantly lower than donor iTregs. Examination of sorted subsets revealed that donor nTregs also

expressed significantly lower Bcl-2 mRNA compared to donor iTregs (Fig. 15c). Bcl-2 plays an 

Fig. 16. iTreg but not nTreg were resistant to Th17 cells and increased the ratio of 
Foxp3+ cells to IL-17+ cells in draining LNs of recipients. (a) 3x106 iTregs and nTregs 
were labeled CFSE and transferred to DBA/1 mice 28 days after CII/CFA immunization. Mice 
were sacrificed and IL-17 expression in donor (CFSE+) and recipient (CFSE-) cells in draining 
LNs were determined by flow cytometry 10 days after cell transfer. (b) The ratios of Tregs to Th17 
cells in draining LNs in different groups were shown. Data in a are representative of five mice per 
group and values in b are mean ± s.e.m of five mice per group. Experiment was repeated with 
similar results. **P<0.01, ***P<0.001, CIA in comparison to cell treatment group.
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important role in the prevention of cell apoptosis (Marsden and Strasser, 2003). Additionally, a 

significant proportion of donor nTregs but not iTregs lost expression of Foxp3. Although >75% of 

the CFSE+ nTregs expressed Foxp3 at the time of transfer, 10 days later, <10% of donor nTregs 

expressed Foxp3 in the spleen and ~25% in draining LN. Conversely, donor iTregs mostly 

maintained equivalent Foxp3 they expressed at the time of transfer (~50%)(Fig. 15b, 16a). Thus, it 

was not surprising that donor nTregs recovered in these mice now had markedly less suppressive 

ability than donor iTregs (Fig. 15d).

We further demonstrated that >50% of donor nTregs in draining LNs had become IL-17 cells (Fig. 

16a) although few of them converted into IFN-++ and/or IL-4+ cells (not shown). Fewer nTregs 

converted to Teff cells in the spleen (data not shown). Conversely, donor iTregs were almost 

completely resistant to Th17 cell conversion in draining LNs (Fig. 16a) as well as Th1/Th2 

conversion under similar conditions (not shown).

Transfer of iTregs to CIA mice shifts the predominance from Th17 to Treg cells in draining 

lymph nodes. 

Previous studies reported that the transfer of iTregs can markedly increase recipient Foxp3 Tregs

(Andersson et al., 2008; Zheng et al., 2006a). This was also the case in the present study. As shown 

in Fig. 16a and b, both percentages and total numbers of Foxp3 cells in the recipient LNs were 

markedly increased in the iTreg treatment group relative to untreated CIA. Moreover, the infusion of 

iTregs to established CIA markedly down-regulated IL-17 cell frequencies. FACS analysis revealed 

that both percentages and total numbers of IL-17 cells in the recipient LNs were markedly lower in 

the iTreg treatment group relative to untreated CIA. Before treatment Th17 cells were twice as 

numerous as Tregs in draining LN.  Ten days later after iTreg treatment, Foxp3+ recipient Tregs 

were now predominant. They were four times more numerous as Th17 cells.  By contrast, total 

Tregs and Th17 cells in recipients were unchanged in nTreg treated mice (Fig. 16b). Thus, treatment 

with iTregs could markedly alter the balance between recipient Tregs and Th17 cells, and the 

disease course was changed.
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Discussion

The stability and therapeutic effectiveness of CD4+ regulatory cells induced with IL-2 and TGF-)%

ex-vivo is controversial. We and others have reported that these iTregs have protective activities in 

several experimental models of immune-mediated diseases (Selvaraj and Geiger, 2008; Weber et al., 

2006; Zheng et al., 2004b; Zhou et al., 2010b) and are resistant to conversion to Th17 cells (Zheng 

et al., 2008). By contrast, others have reported that these iTregs were unstable in vitro (Floess et al., 

2007) and in vivo following antigen-stimulation (Chen et al., 2011), and lack protective activity to 

prevent lethal graft-versus-host disease (GVHD) (Floess et al., 2007; Koenecke et al., 2009). To 

address this controversy, we have conducted a head to head comparison of antigen specific thymus-

derived nTregs and TGF-)-induced iTregs. We chose antigen-specific Tregs since these are more 

protective than polyclonal Tregs in autoimmune diseases (Penaranda and Bluestone, 2009). We 

chose established autoimmunity because Tregs are generally therapeutic when transferred before the 

onset of autoimmunity.  In the collagen-induced arthritis (CIA) the model we have chosen in this 

study, polyclonal nTregs can prevent disease but are ineffective in established disease (Morgan et 

al., 2003; Zhou et al., 2010a). Current study clearly demonstrates that antigen-specific iTregs are

superior to nTreg in ameliorating established collagen-induced arthritis. This was because iTregs 

remained stable and fully functional following transfer. Moreover, these iTregs had tolerogenic 

effects in draining LN that resulted in a shift from Th17 to Treg predominance. 

This striking difference between iTregs and nTregs could not be attributed to differences in the 

starting populations of the two Treg subsets. Actually, a greater percentage of nTregs expressed 

Foxp3. They both had equivalent suppressive activities in vitro, and both had equivalent therapeutic 

effects on CIA when transferred before collagen II immunization in vivo. Significant differences 

began to appear when Tregs were injected after CII immunization, but before the onset of arthritis. 

Here, iTregs were more effective in reducing disease incidence. Consistent with a previous report

(Morgan et al., 2003), nTregs also failed to suppress autoantibody production. 

There are several possibilities to explain the inability of nTregs to treat CIA and other autoimmune 

diseases. First, pro-inflammatory cytokines may hamper their suppressive activity. Pasare et al have 

reported that Treg suppressive activity can be abolished by IL-6 (Pasare and Medzhitov, 2003).

Valencia et al also revealed that elevated TNF-!% 8&;% -'307<070% =-3>% 3>0% ?.6670??-@0% /&6&/-3;% 2<%

nTregs (Valencia et al., 2006).  Secondly, Th17 cells may be resistant to nTregs. This may be the 

reason that nTregs are able to prevent the disease before Th17 cells are established. Third, at least 
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some nTregs are inherently unstable and can be converted to Th1/Th2/Th17/Tfh effector cells in an 

inflammatory milieu (Lu et al., 2010b; Tsuji et al., 2009; Wan and Flavell, 2007; Xu et al., 2007;

Zhou et al., 2010a).

Several reasons can explain the therapeutic success of iTregs. First, a previous study with polyclonal 

TGF-)-induced iTregs demonstrated that these iTregs exhibited lower levels of IL-6 receptor and 

subsequent Stat-3 phosphorylation (Zheng et al., 2008).  Thus, they were resistant to IL-6

stimulation and maintained their phenotype and function. Here antigen-specific TGF-)-induced 

iTregs demonstrated similar IL-6 resistance. Furthermore, these iTregs even suppressed Th17 cell 

differentiation that is induced by IL-6 and TGF-)#%93%-?%.'(07?3&'(&1A0%3>&3%'B70C?%A&/D%3>-?%&1-A-3;%

since IL-6 was included in the cultures for Th17 polarization. Secondly, antigen-specific iTregs, but 

not nTregs were stable in mice with established CIA.  Only the former maintained Foxp3 expression 

and exhibited suppressive activity when recovered from draining LN. Thirdly, studies with Bcl-2

gene expression revealed higher expression in recovered iTregs, suggesting that nTregs were 

probably more susceptible to apoptosis than iTregs. Previous reports have revealed that TGF-)%

increases the Bcl-2 expression and decreases T cell apoptosis (Zheng et al., 2002).

The final, and probably most important reason, is that TGF-)-induced iTregs shifted the balance 

between Treg and Th17 cells in draining LN from Th17 to Treg predominance. This is probably 

because the transferred Tregs induced immunogenic recipient antigen-presenting cells to become 

tolerogenic. Thus, ongoing antigen stimulation resulted in Tregs rather than T effector cells (Horwitz 

et al., 2008). Previously, we reported that a single injection of alloantigen-specific iTregs followed 

by continuous alloantigen stimulation steadily increased recipient CD4+CD25+Foxp3+ Tregs (Zheng 

et al., 2006a). Here, we demonstrated that mice with CIA had twice as many recipient Th17 cells as 

Tregs in draining LN. Ten days after iTreg injection, however, recipient Foxp3+ cells were now 

much more numerous than Th17 cells, and the clinical scores of these animals had decreased. Thus, 

even an inflammatory environment injected TGF-)-induced iTregs can have tolerogenic effects. 

The recent studies of Nugyen et al indicate that chemokines secreted by antigen-specific TGF-)%

induced iTregs regulate T cell trafficking and thereby suppress ongoing autoimmune. They reported 

that these iTregs were therapeutic in an ongoing autoimmune gastritis model (Nguyen et al., 2011).

There are technical reasons that possibly explain why some investigators have generated unstable, 

ineffective TGF-)-induced iTregs. These groups have used high concentrations of plate-bound anti-

CD3 with TGF-), and stimulated the CD4+ cells for more than 72 hours. Others have demonstrated 
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that strong, sustained TCR stimulation activates the mTOR/akt signaling pathway which facilitates 

Teff cell differentiation and inhibits Foxp3 expression and Treg differentiation (Sauer et al., 2008).

Treg generation is best established with suboptimal TCR stimulation that facilitates Foxp3+ 

expression (Horwitz et al., 2008). We have used suboptimal concentrations of anti-CD3 and anti-

CD28 coated beads with IL-2 and TGF-)% 32% -'(./0% the stable, protective Foxp3+ Treg cells 

described in this study.  It has been claimed that since TGF-)%-?%.'&1A0%32%(0803>;A&30%E2F6$,%3>0%

Tregs generated will be unstable (Floess et al., 2007). However, we have recently observed that the 

methylation status in Foxp3 gene loci does not affect Foxp3 stability (Lu et al.). Others have also 

observed protective human TGF-)-induced Tregs that exhibit methylated Foxp3 (Hippen et al., 

2011).

The findings we have reported with these TGF-)-induced iTregs induced ex–vivo may not apply to 

endogenous iTregs induced in vivo. Although sub-optimal TCR stimulation and the presence of 

TGF-)% -? also important in the generation of endogenous iTregs, this subset, like nTregs, may be 

susceptible to Th17 conversion. Because of the documented Teff cell resistance to suppression

(Buckner, 2010), it is likely that all endogenous CD4+Foxp3+ subsets exhibit this characteristic. We 

suspect that it is the pharmacological concentrations of the IL-2 and TGF-)% .?0(% 3>&3% /2'<07%

resistance.  It is for this reason that we distinguish endogenous nTreg and iTreg subsets from iTregs 

induced ex-vivo.

The findings reported in this study must be interpreted with caution.  The decrease in arthritis 

severity was transient, and the clinical scores later increased, although they remained significantly 

below than that of control mice. Here we induced mouse iTregs and the protocols used must be 

considerably modified to induce similar human iTregs. Nonetheless, the striking difference between 

iTregs and nTregs observed in this study suggest that the therapeutic potential of human TGF-)%

induced iTregs should be fully explored.   
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Abstract

Foxp3+ regulatory T cells, dendritic cells and their interaction play a crucial role in the maintenance 

of immunotolerance. However, the exact mechanism(s) by which these cells interact in controlling 

immune responses is less understood. Our study demonstrates that CD4+Foxp3+ Treg cells generated 

ex-vivo with IL-2 and TGF-) suppressed lupus-like syndromes through TGF-)%&'(%9:-10 signaling 

pathways. iTregs suppress CD80 and CD86 expression on DCs and induce tolerogenic DC 

formation under both homeostatic and inflammatory conditions through TGF-)R signaling pathways

in DCs. Tolerogenic DCs sequentially suppressed immune response through TGF-) but not IL-10. 

These results demonstrate that interaction between Tregs, TGF-)/IL-10 and DCs sustains the 

suppressive activity of Treg cells in vivo.

Keywords: cGVHD, Lupus, Colitis, T regulatory cells, TGF- , IL-10, DC, Tolerogenic.



55

Introduction

Foxp3+ regulatory T (Treg) cells consisting of heterogeneous natural (nTregs) and induced Treg 

cells (iTregs) play an important role in the maintaining immune tolerance and in preventing

autoimmune diseases (Andersson et al., 2008; Horwitz et al., 2008; Zhou et al., 2011). Abnormality 

in numbers and function of Foxp3+ Treg cells have been reported in many autoimmune disease 

animal models and in patients, thus, manipulation of Tregs might be therapeutic in these 

autoimmune and inflammatory diseases.  

Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that initiate and regulate 

immune responses against foreign as well as self-antigens (Steinman et al., 2003). Different subsets 

of DCs and their mature status affect the consequences of immune responses. While mature DCs 

promote adaptive immune response, semi-mature and immature DCs regulate immune tolerance

(Horwitz et al., 2008). Several cytokine factors can influence the differentiation and the maturation 

status of DCs, for example, TGF- !" #$-10, IL-27, Vitamin D3 and IDO play an important role in 

maintaining the semi-mature tolerogenic phenotype of DCs (Pallotta et al., 2011). Tolerogenic DCs

may suppress autoimmunity upon immunization with self-antigens through direct or indirect effect. 

Tolerogenic DCs that produce significantly low levels of inflammatory cytokines and/or higher 

amounts of anti-inflammatory cytokines are known to induce and/or expand Foxp3+ Tregs in the 

periphery, sequentially suppressing immune response through TGF- and/or IDO-dependent 

mechanisms (Coombes et al., 2007; Favre et al., 2010; Kaplan et al., 2007).

While many studies have demonstrated that DCs can drive the differentiation of induced Tregs 

including Foxp3+ induced iTregs and Foxp3- IL-10-producing Tr1 cells, whether Tregs also drive 

DCs to become tolerogenic DCs is less studied. We and others have previously reported that Treg 

cell therapy can sustain a protective effect even after transferred cells have diminished in vivo

(Selvaraj and Geiger, 2008; Weber et al., 2006; Zheng et al., 2006a). It is likely that “infectious 

tolerance” (Tregs--tolerogenic DCs--Tregs) contributes to this extended effect exerted by Tregs and 

that DCs might be a crucial “relay athlete” in this process. 

In the current study, we have observed that CD4+Foxp3+ iTregs generated ex vivo with IL-2 and 

TGF- " suppressed lupus-like syndrome development and progress through TGF- - and IL-10-

dependent mechanism in vivo. Co-culture iTregs and DCs in vitro or infusion of iTregs to lupus-like 

syndrome mice can induce CD11c+ cells to become tolerogenic DCs. We further observed that TGF-
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 "%&'&()*%"+, -."signaling on DCs is essential for the induction of the formation of tolerogenic DCs. 

Tolerogenic DCs then suppress immune responses through TGF- "/0)"1*)"#$-10 signaling pathway 

and this is accompanied by an increase in Foxp3+ Treg cells in recipients. Together these results 

have documented the interaction between Tregs, cytokines and DCs in the control of autoimmune 

response and further provide a new insight into therapeutic manipulation of Tregs in autoimmune 

and other inflammatory diseases.  
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Materials and Methods

Mice

Eight-week-old female DBA2, DBA2xC57BL/6 F1, BALB/C, CD45.1 C57BL/6, CD45.2 C57BL/6, 

C57BL/6 Foxp3gfp knock-in and Rag-1 KO mice were purchased from The Jackson Laboratory (Bar 

Harbor, ME). DC-specific TGF- "-## conditional KO mice were a gift from Dr. Pawel Kiela at 

University of Phoenix. These mice (Cre+) were generated by intercrossing of TGF- "-##fl/fl mice and 

CD11cre mice. All mice were housed and treated by National Institutes of Health guidelines for the 

use of experimental animals with approval of University of Southern California Committee for the 

Use and Care of Animals (Los Angeles, California).

The generation of CD4
+

induced regulatory T cells (iTregs) ex vivo

Naïve CD4+CD62L+CD25-CD44low T cells were isolated from spleen cells of DBA2, C57BL/6 or 

C57BL/6 Foxp3gfp knock-in mice using naïve CD4+ T cell isolation kit (Miltenyi Biotec, Auburn, 

CA). Cells were cultured in 48-well plates and stimulated with anti-CD3/CD28 coated beads (1 bead 

to 5 cells, Invitrogen) in the presence of IL-2 (R&D systems, Minneapolis, MN) 40 U/ml with 

(iTregs) or without TGF- " 213456" +-78" 9:9)&59." +CD4con) for 4 days. RPMI 1640 medium 

supplemented with 100 U/ml penicillin, 100 mg/ml streptomycin, 10 mM HEPES (Invitrogen Life 

Technologies) and 10% heat-inactivated FCS (HyClone Laboratories, Logan, UT) was used for all 

cultures. Foxp3 expression was determined by flow cytometry. The suppressive activity of these 

cells against T cell proliferation was examined with a standard in vitro suppressive assay as 

previously reported (Zheng et al., 2007). 5×106 cells were transferred to each D2B6F1 mice.

Co-culture of iTregs or CD4con with DCs

CD11c+ cells were isolated from bone marrow or spleens and cultured with GM-CSF (500 u/ml) and 

IL-4 (500 u/ml) for three days. In some wells, CD4con or iTregs were added to DCs (5:1 ratio) and 

co-cultures were activated with anti-;8<" +=>?@3456." A*%" )B%&&" CD:9>" ;8E=!" ;8EF!" GH;-II 

expression on CD11c+ cells were stained by flow cytometry. 

Induction and assessment of cGVHD with a lupus syndrome

As described previously (Shustov et al., 1998), a chronic GVHD with a lupus-like syndrome was 

induced in D2B6F1 mice by injecting 12 x 106 D2 CD4+ cells through tail vein injection. Other 

groups received this number of D2 cells plus 5x106 CD4con, iTregs or 5x105 DCs isolated from 

lupus-like syndrome mice treated with CD4con or iTregs. To determine the suppressive mechanisms 

of Tregs and tolerogenic DCs in vivo, anti-TGF- I"+2G.7; R&D Systems) (1 mg/mouse) or isotype-
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matched IgG1 antibody, anti-IL-I=-"+2?="@345*09e) or isotype-matched IgG1 antibody and ALK5 

inhibitor (LY-364947, Sigma, 0.5 mg/mouse) were i.p. administrated once a week for total four to 

six weeks. In most experiments, there were five mice per group and experiments have been repeated 

at least two times. Before transfer and weekly thereafter, the animals were bled and serum IgG and 

anti-dsDNA autoantibodies were measured by an ELISA (Du Clos et al., 1986). All samples tested 

for anti-dsDNA were performed at the same time. Serum was diluted 1/400 or 1/800 for anti-DNA 

and 1/40,000 for measuring IgG. Proteinuria was measured using Albustix reagent strips (Bayer, 

Elkart, IN). Mice were sacrificed at time points indicated in the different experiments after transfer 

of parental T cells for assessment of lymphoid hyperplasia and immune complex 

glomerulonephritis. The total numbers and phenotypes of the spleen cells were determined from 

single-cell suspensions. The cells were stained with FITC-anti-H-2b, PE-anti-H-2d (BD PharMingen) 

and single-positive anti-H-2d cells considered to be parental D2 cells. Mice survival was monitored 

every three days. 

Induction and assessment of colitis

0.5 x 106 CD4+CD45Rbhigh cells sorted from splenocytes in naïve C57BL/6 mice (95-100% purity) 

were intravenously injected into Rag1-/- mice (C57BL/6). Other groups were also received by 

200x103 DCs isolated from WT and TGF- RII DC conditional KO mice that have been previously

primed with iTregs or CD4con cells. Body weight was monitored dynamically. Some mice were 

sacrificed at 4 weeks after T/DC cell transfer. Colon removed for histology, colonic explants culture, 

mesenteric lymph node cell suspensions cultured in activation plates with anti CD3/CD28 Ab and 

tissues were measured for quantitative RT-PCR and supernatants analyzed for selected cytokines 

with xMAP multiplex assay.

Proliferation Assay 

iTregs generated or nTregs expanded as described above were added to fresh naïve T cells (Treg/T 

cells=1:4) and were stimulated with anti-CD3 mAb (0.025ug/mL) and irradiated APC (30 Gy, 1:1 

ratio) for three days. In other experiments, T responder cells were stimulated with allogeneic APC or 

DC. [3H] was added to cultures for the last 16-18 hours and T cell proliferation ([3H]-thymidine 

incorporation) was measured by using a scintillation counter.

Histology

For histological examination, mice were anesthetized after the final disease index was assessed. 

Kidney from lupus mice and colon from colitis mice were removed and preserved in 10% buffered 



59

formalin. The specimens were processed, blocked, sectioned, and stained with H&E. Cryostat 

sections of frozen kidney tissue were examined for deposits of IgG using a standard procedure

(Hellmark et al., 1997). Sections were incubated with fluorescence-labeled goat F(ab')2 IgG 

antiserum to mouse IgG. The sections were read blindly by the same investigator, grading the 

intensity of fluorescence from 0 to 4+.

Statistical analysis

Results calculated by using GraphPad Prism 4.0 software (GraphPad Spftware, San Diego, CA) are 

presented as mean ± SEM. Student t test was used to assess statistical significance between two 

groups, and one-way ANOVA and/or non-parametric tests were used to assess statistical 

significance among multi-groups. P value<0.05 is considered as statistically significant difference.



60

Results:

Polyclonally differentiated iTregs suppressed anti-CD3- and alloantigen-triggered T cell 

proliferation.

As reported previously, TGF- "J9"D"'%0'JD6"':)*KJ1&")BD)"'D1"J1C0'&"'*1L&1)J*1D6"1Dïve CD4 +CD25-

cells (non-Tregs) to become iTregs (Zheng et al., 2002). Foxp3, an important transcription factor 

regulating the development and function of Treg 

cells(Fontenot et al., 2003), can be induced and 

mainly expressed on the CD4+ and CD25+ cell 

population after TGF- priming (Fig. 17a).

These CD4+ cells but not CD4+ control cells

(treated without TGF- , CD4con) suppressed 

anti-CD3 stimulated T cell proliferation

including CD4+ and CD8+ cells in CFSE-

labeling (Fig. 17b) and 3H-thymidine 

incorporation assays (Fig. 18a). Given these 

cells were produced by polyclonal stimulation 

and that they displayed the suppressive activity, 

herein we refer to them as “polyclonally 

differentiated iTregs or iTreg”. Placement of 

these iTregs in a Transwell assay containing a 

semi-permeable membrane allows the transport 

of soluble cytokines but prevents cell-contact

abolished the suppressive activity of iTregs. Furthermore, the addition of anti-TGF- !" D1)J-IL-10

or/and anti-IL-10R antibodies did not significantly abolish the suppressive activity of these cells in 

vitro (not shown), suggesting that cell-contact is needed for the suppressive activity of iTregs at 

least in vitro.

Fig. 17. iTregs expressed Foxp3 and 
suppressed T cell proliferation. Naive 
CD4+CD25- cells were stimulated with anti-
CD3/CD28 coated beads and IL-2 (CD4con) 
and TGF- " (CD4TGF ) for 4 days. Foxp3 
expression was determined by FACS (a). T
responder cells labeled with CFSE were
stimulated with anti-CD3 mAb±CD4con 
orCD4TGF (1:4 ratios). Cells were gated on the 
CD8+ T responder cells and values indicate 
CFSE+ (undivided CD8+ T cells) (b). Data was 
representative of four separate experiments.
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It is less known whether polyclonally differentiated iTregs also suppress the antigen-specific 

immune responses. To address this issue, we performed an immune response assay using alloantigen 

stimulated T responder cells isolated from DBA/2 mice that were stimulateC"MJ)B"N-irradiated non-T

cells isolated from 

C57BL/6 mice. The 

CD4con or iTregs 

generated as described 

above from DBA/2 were 

added to some cultures 

(one CD4+CD25+ cell to 

four T responder cells). 

After three-day cultures, 

the iTregs but not CD4con

cells significantly 

suppressed alloantigen-

stimulated T cell 

proliferation (Fig. 17b).

Additionally, when iTregs

were prepared from C57BL/6 

mice, these cells still 

suppressed the immune 

response from T cells 

isolated from DBA/2 mice 

(not shown), suggesting that 

polyclonally differentiated 

iTregs have developed both

antigen-specific and antigen 

non-specific suppressive 

roles against T cell immune 

responses.

Polyclonally differentiated iTregs suppressed chronic graft-vs-host diseases with a lupus-like 

syndrome through TGF- R and IL-10R signaling pathways

Fig. 18. Polyclonal iTregs suppress anti-CD3 and 
alloantigen stimulated T cell proliferation and 
alloantigen-mediated chronic graft-versus-host diseases 
(cGVHD) with a lupus-like syndrome. iTregs (CD4TGF- ) or 
CD4con cells generated as described in methods and materials 
from were added to CD25-depleted T cells (1 to 5 ratio) in the 
presence of anti-CD3 and irradiated APC (a), or CD25-depleted T
cells in the presence of allogeneic APC (b) for 3 days. 3H-
thymidine was added to cultures for the last 18 hours and 
incorporation by cycling T cells was measured. Values were mean 
± s.e.m of three independent experiments. *P<0.05, **P<0.01, 
iTregs in comparison to baseline. 12x106 fresh CD4+ cells, iTregs 
or CD4con cells from DBA/2 mice were adoptively transferred 
into D2B6F1 mice and the levels of anti-DNA (c) and proteinuria 
(d) were examined at time indicated. 5x106 CD4con or iTregs and 
12x106 fresh CD4+ cells from DBA/2 mice were co-transferred 
into D2B6F1 mice, anti-DNA level was dynamically examined (e)
and mice survival was monitored (f).  Five mice in each group 
were included in each experiment and data were combined from 
two independent experiments. **P<0.01, ***P<0.001, iTregs + 
D2 cells in comparison to D2 alone.
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Chronic graft-vs-host disease (cGVHD) is characterized by a typical lupus-like syndrome including 

elevated anti-dsDNA, proteinuria and lupus nephritis when parental DBA/2 splenocytes, T or CD4+

cells are adoptively transferred into DBA/1xC57BL/6 F1 mice (Kautz-Neu et al., 2011). The disease 

is initiated by the activation of the donor cells (D2, H2d) when they encounter with B6 (H2b)

antigen. Previous study revealed that antigen-specific iTregs suppressed cGHVD syndromes (Zheng 

et al., 2004b). In the present study, we will determine whether polyclonally differentiated iTregs 

also suppress the alloantigen-mediated cGVHD.

As D2 T cells are pathogenic cells and polyclonal iTregs originated from D2 cells, we first asked 

whether the latter still held a similar pathogenic effect. As shown in Fig. 18c, adoptive transfer of 

12x106 fresh D2 CD4+ T cells to F1 mice resulted in the elevated anti-DNA production compared to 

mice that received no cells. The rapid heightened anti-dsDNA titers were observed at 2 weeks and 

sustained until at least 12 weeks after cell transfer. The infusion of similar doses of CD4con cells 

had a similar capacity on inducing anti-dsDNA antibody production in F1 mice. In sharp contrast, 

injection of 12x106 of polyclonally differentiated iTregs did not result in the elicitation of anti-

dsDNA antibody. Mice receiving iTregs exhibited anti-DNA levels that were almost comparable to 

naïve F1 mice without any infusion of D2 cells, indicating that TGF- priming had changed the 

behavior of CD4+D2 cells. F1 mice developed markedly high levels of proteinuria at 12 weeks 

following fresh CD4+D2 or CD4con cells transfer yet iTregs infusion did not result in any 

significant amounts of proteinuria (Fig. 18d), further demonstrating that these TGF- priming cells 

can alter their characteristics. 

We further determined whether following TGF- priming these cells can suppress immune 

responses in the cGVHD with a lupus-like syndrome. To assess this possibility, we co-transferred 

12x106 D2 CD4+ cells and either 5x106 iTregs or CD4con cells. We chose this dose of Tregs 

because a similar dose of antigen-specific Tregs had an ideally protective effect on cGVHD 

symptoms (Zheng et al., 2004b). As shown in Fig. 18e, co-transfer of CD4+D2 cells plus iTregs but 

not CD4+ control cells markedly suppressed the production of anti-dsDNA antibodies. In sharp 

contrast, transfer of CD4+D2 cells alone resulted in the death of all mice by 20 weeks post-transfer. 

Co-transfer of CD4con cells with CD4+D2 cells slightly but not significantly prolonged the survival 

of mice. Interestingly, co-transfer of CD4+ iTregs with CD4+D2 cells significantly prolonged the 

survival of cGVHD mice. These results showed that polyclonally differentiated iTregs exhibit 
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suppressive functionality in both antigen specific and antigen non-specific fashions in vitro and in 

vivo.

The mechanism(s) whereby Tregs suppress immune responses is still not yet well defined. Both 

nTregs and iTregs expressed membrane-bound TGF- !"D1C"9&'%&)&C"D')JL&",OP- "D1C4*%"#$-10 and 

this feature is 

important for their 

suppression as well as 

Th17 cell conversion 

(Xu et al., 2007;

Zheng et al., 2008).

To determine whether 

these cytokines are 

also involved in the 

suppressive 

mechanisms of iTregs 

in cGVHD with a 

lupus-like syndrome 

in vivo, we used 

antibodies to 

neutralize these 

cytokines and 

receptor inhibitors in 

the mouse model. As 

shown in Fig. 19A,

co-transfer of iTregs and CD4+D2 cells significantly suppressed IgG upregulation (left panel) and 

prolonged mice survival (right panel), administration of anti-TGF- "D1)J/*C:"1*)"*16:" '*5(6&)&6:"

abolished the suppression on IgG upregulation by iTregs, but actually increased the levels of IgG 

production. Further study will be necessary to determine whether iTregs have changed to a T helper 

cell phenotype following TGF- " D1tibody treatment. Anti-TGF- administration completely 

reversed the protective effect of iTregs on lupus mice survival, if any, it in fact slightly accelerated 

the death of lupus mice. This result could not be explained by the effect of antibody on disease self 

Fig. 19. The suppressive effect of iTregs on cGVHD with a 
lupus-like syndrome is almost completely dependent upon 
TGF- and partially upon IL-10.  12x106 fresh D2 CD4+ cells or 
together with 5x106 iTregs were transferred into D2B6F1 mice and these 
mice were also given with anti-TGF- or control IgG. IgG levels (a, left 
panel) were examined and mice survival (a, right panel) was monitored. 
In other groups, ALK5 inhibitor or control DMSO (b), anti-IL-10R or 
control IgG (c) was administrated and mice survival was monitored.  
Five mice in each group were included in each experiment and data were 
combined from two independent experiments. *P<0.05, **P<0.01, anti-
TGF- , anti-IL-10R or ALK5 inhibitor in comparison to control IgG or 
DMSO.
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rather than iTregs because administration of similar doses of antibody alone did not significantly 

alter the levels of IgG nor did it affect survival.  

To further determine 

whether the TGF- 

signal pathway is crucial 

for the suppression of 

iTregs in lupus-like 

syndrome mice, we also 

blocked the TGF- 

receptor I (ALK5) using 

ALK5 inhibitor in iTreg-

infused lupus mice. We 

observed that injection 

of ALK5 inhibitor 

almost completely abolished the protective effect of iTregs on lupus-like mice survival (Fig. 19b). 

Due to solubility issue, the ALK5 inhibitor must be dissolved in dimethyl sulfoxide (DMSO). To 

control for any non-specific DMSO toxicity in the immune response, we injected a similar dose of 

DMSO alone, and this did not change the disease course. Moreover, blockade of IL-10 signaling by 

infusing anti-IL-10R antibody also significantly altered the survival of lupus-like disease mice 

treated with iTregs although the effect was less in mice treated with anti-IL-10R than in mice treated 

with anti-TGF- antibody or ALK5 inhibitor (Fig. 19c). Together, these results suggest that iTregs 

Fig.20. iTregs induce the formation of tolerogenic DCs in vitro. CD4con or iTregs 
generated from CD45.1 B6 mice and CD11c+ cells isolated from B6 mice were co-cultured (5:1 
ratio) in the presence of GM-CSF, IL-4 and anti-CD3 for three days. CD80 and CD86 expression on 
CD11c+ cells were analyzed by flow cytometry (a). Data are representative of three separate 
experiments. When cells were harvested, CD4+ cells were removed by magnetic beads and the 
remaining CD11c+ cells were added to CD25-depleted T cells (1: 5 ratio) for additional three days. 
3H-thymidine was added to cultures for the last 18 hours and incorporation by cycling T cells was 
measured (b). Values were mean ± s.e.m of three independent experiments. ***P<0.001, DC 
primed with iTregs in comparison to fresh DC. CD11c+ cells isolated from either bone marrow 
(BMDC) or spleen and primed with iTreg or CD4con cells were split as described above and added 
to naïve CD4+CD25- cells isolated from CD45.2 B6 mice (1:5 ratio) in the presence of IL-2 (40 
units/ml) for three days and Foxp3 expression was measured on gated CD4+CD45.2+ cells using 
flow cytometry (c). Data are representative of three separate experiments. CD45.2+CD4+ cells 
primed with DCs were isolated and added to CD25-depleted T cells in the presence of anti-CD3 and 
APC for an additional three days. 3H-thymidine was added to cultures at the last 18 hours and 
incorporation by cycling T cells was measured (d). Values were mean ± s.e.m of three independent 
experiments. ***P<0.001, CD4+ cells primed with DC that had been previously primed with iTregs 
in comparison to baseline.
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can suppress a lupus-like autoimmune response mainly through TGF- "D1C"partially via IL-10 signal 

pathways.

Polyclonally differentiated iTregs induced the formation of tolerogenic dendritic cells through 

TGF- !"#$%&'ing pathway in DCs.

Our previous reports demonstrated that iTregs adoptively transferred to recipient mice had a limited 

lifespan but sustained long-term protective role in prevention of allograft rejection (Zheng et al., 

2006a). As iTregs can educate naïve T cells to become a new generation of Foxp3+ Tregs (Zheng et 

al., 2004a) and DCs may be involved in this propaganda effect (Andersson et al., 2008), herein we 

have tested the effect of iTregs on DCs maturation and function. When CD11c+ cells isolated from 

bone-marrow (BM) were co-cultured with CD4con or CD4+ iTregs, iTregs but not CD4con 

markedly suppressed the 

up-regulation of CD80 

and CD86 expression by 

DCs (Fig. 20a). CD4con 

or iTregs were induced 

from CD45.1 C57BL/6 

mice. These DCs 

produced low levels of 

IL-12 and IL-23 (not 

shown) and displayed 

decreased antigen-

presenting function. When 

these DCs that had been 

previously co-cultured with 

iTregs were added to T 

responder cells, the 

proliferative ability of 

these T cells was

significantly lower 

compared to T cells 

stimulated with freshly 

Fig. 21. TGF- but not IL-10 signaling is required for the 
formation of tolerogenic DCs induced by iTregs. CD11c+cells 
aloneor those in combination with CD4con or iTregs (1:5 ratio) were 
stimulated with GM-CSF, IL-4 and anti-CD3 for three days. In some 
cultures, anti-IL-10R, control IgG or ALK5 inhibitor was added to 
cultures. CD80 (a) and CD86 (b) expression was determined by flow 
cytometry. Values were mean ± s.e.m of four independent 
experiments. ***P<0.001, ALK5 inhibitor in comparison to DMSO. 
(c) CD80 and CD86 expression on CD11c+ cells in naïve WT (+/+) 
and TGF- RII conditional KO on DC mice (-/-). Data are 
representative of five mice in each strain. (d) Splenic CD11c+ cells 
isolated from WT and TGF- RII conditional KO on DC mice were co-
cultured with CD4con or iTregs (1:5 ratio) in the presence of GF-CSF, 
IL-4 and anti-CD3 for three days. MHC-II, CD80 and CD86 
expression on CD11c+ cells were analyzed by flow cytometry. Data are 
representative of five independent experiments.
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isolated DCs and DCs that had been previously co-cultured with CD4con cells (Fig. 20b). When 

naïve CD4+CD25- cells from CD45.2 C57BL/6 mice were co-cultured with DCs that had been 

previously treated with CD45.1 iTregs but not CD4con cells in the absence of TGF- "A*%")B%&&"CD:9!"

about 25% of the naïve CD4+CD25- cells began expressing CD25 andFoxp3cells (Fig. 20c). These 

cells were gated on CD45.2, thereby excluding the possibility that the Foxp3+ cells were carried 

over with the initial iTregs. Furthermore, using a T cell suppression assay, we demonstrated that 

these newly generated CD4+CD25+Foxp3+cells developed suppressive capacity.  Both BMDC and 

splenic DCs displayed a similar ability to develop into “tolerogenic DCs” (Fig. 20d).

Since both TGF- "D1C" #$-10 are involved in the suppressive activity of iTregs in vivo and have a

functional capacity to induce tolerogenic DCs (Pallotta et al., 2011), we determined the role of these 

cytokines in the iTreg-induced formation of tolerogenic DCs. As shown in Fig. 21a and b, co-

cultures of DCs with iTregs but not CD4con cells suppressed CD80 and CD86 upregulation, but this 

process was completely abrogated with the addition of ALK5 inhibitor. Surprisingly, addition of 

anti-IL-10R did not reverse the CD80 and CD86 expression on DCs primed with iTregs. DCs that 

had been primed with iTregs plus ALK5 but not plus anti-IL-10R antibody mostly restored their

antigen-presenting capacity and lost ability to induce other CD4+CD25- cells to become Foxp3+ 

cells (not shown), indicating that iTregs induce the formation of tolerogenic DCs mainly through 

TGF- "%D)B&%")BD1"#$-10 signaling pathway.

We further determined the role of TGF- " 9J31D6J13" (D)BMD:"*1" )B&" J1C0')J*1" *A" )*6&%*3&1J'"8;9"

using mice with a conditioned knockout of , -##" in DCs. The phenotypic features of these mice 

have been just described by Kiela’s group (personal communication). Although these mice 

eventually developed autoimmunity, between 6-8 weeks of age, the CD80 expression by CD11c+

cells was similar between cre- (wild type) and cre+ (conditional DC , -##" QR." 5J'&>" ;8EF"

expression on CD11c+ cells was almost undetectable in both cre- and cre+ mice (Fig. 21c). When 

CD11c+ cells isolated from cre- and cre+ mice were stimulated, we observed that both CD80 and 

CD86 expression was similarly up-regulated. Interestingly, the addition of iTregs but not CD4con 

cells, significantly suppressed CD80 and CD86 upregulation in cre- mice but not in cre+ mice (Fig. 

21d). When isolated from cre- mice, iTregs did not alter the MHC-II expression on DCs, and the 

functional ability of these DCs to trigger allogeneic immune responses was decreased, however, 

DCs from cre+ mice developed potent antigen-stimulating abilities, even after priming with iTregs 

(data not shown). These results indicate that the TGF- "9J31D6J13"(D)BMD:"J1"8;9"J9"'%0'JD6"A*%")B&"

formation of tolerogenic DCs induced by iTregs. 
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Polyclonally differentiated iTregs suppressed the expansion and maturation of DCs in vivo

Experiments performed in vitro experiments do not necessarily reflect in vivo realities. To study this 

possibility, particularly under inflammatory disease conditions in vivo, we conducted the 

experiments using the cGVHD lupus-like syndrome model. We demonstrated that CD11c+ cells 

expressed substantial amounts of CD80 and CD86 in F1 mice three weeks after CD4+ D2 cell

transfer. Interestingly, co-transfer iTregs and DC cells prevented the upregulation of CD80 and 

CD86 on CD11c+ cells 

(Fig. 22 aand b) as well as 

B cells (data not shown).  

Conversely, co-transfer of 

CD4con cells did not 

suppress CD80 and CD86 

upregulation on CD11c+

and B cells at three weeks 

after cell transfer. 

DCs play an important 

role in the pathogenesis in 

SLE (Monrad and Kaplan, 

2007). Similarly, F1 

mice displayed three-fold 

expansion of total splenic 

CD11c+ cells three weeks 

after D2 cell transfer 

compared to naïve mice. 

Co-transfer of CD4con 

with D2 cells did not 

alter the total numbers of 

splenic CD11c+ cells in the spleen. Nonetheless, co-transfer of iTregs with D2 cells almost 

completely suppressed the expansion of CD11c+ cells in F1 mice (Fig. 22c). To determine their 

functional activity, these splenic CD11c+ cells were further sorted and added to BALB/C naïve T 

cells for a three day in vitro culture, CD11c+ cells sorted from either cGVHD or CD4con cell-

Fig. 22.Adoptive transfer of iTregs to lupus mice suppresses 
the expansion of DCs and decreases B7 expression by DCs.
12x106 fresh D2 CD4+ cells alone or together with 5x106 CD4con or 
iTregs were transferred into D2B6F1 mice. Three weeks later, CD80 
and CD86 expression in each group of mice was examined on CD11c+

cells (a, b) and total splenic CD11c+ cells were counted (c). Data are 
representative or values are mean ± s.e.m of five mice in each 
experiment and combined with two independent experiments. (d)
CD11c+ cells were sorted from each group of mice as above and added 
to cultures containing CD25-depleted T cells isolated from BLAB/C 
mice for three days. T cell proliferation was determined as above. 
Values are mean ± s.e.m of three separate experiments.
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infused cGVHD mice initiated strong alloresponses. In contrast, CD11c+ cells sorted from iTreg-

infused cGVHD mice exhibited a reduced ability to stimulate allo T cell proliferation (Fig. 22d).

Tolerogenic DCs suppressed cGVHD through TGF- (!)*+!%,+!-.-10R signaling pathway

To further analyze the functional characteristics of tolerogenic DCs in lupus mice treated with iTreg, 

we have adoptively transferred these DCs to D2B6F1 mice that had received D2 CD4+ T cells. As 

shown in Fig. 23a, compared to D2B6F1 mice which received D2 CD4+ cells alone, infusion of 

CD11c+ cells with D2 CD4+ cells in lupus mice treated with iTregs to D2B6F1 mice significantly 

prevented the anti-

DNA production in 

sera at three weeks 

post transfer. These 

DCs also suppressed 

the donor 

engraftments in 

recipient spleens 

(Fig. 23b). The sizes 

of donor 

engraftments are 

linked to disease 

severity of lupus in 

this model. 

Importantly, these 

DCs also markedly 

prolonged the 

survival of lupus 

mice (Fig. 23c). In 

contrast, infusion of 

similar doses of DCs from CD4con-infused lupus mice did not appear to suppress neither anti-DNA 

production, donor engraftment expansion nor prolong the survival, exhibiting instead levels in each 

of these categories that are comparable to D2 CD4+ cell infusion alone (Fig. 23a-c). Because 

tolerogenic DCs can suppress immune responses either directly or indirectly, we also examined the 

Foxp3+ cell frequency in lupus mice after tolerogenic DC treatment. We observed that infusion of 

Fig. 23. DCs isolated from lupus mice treated with iTregs but 
not CD4con cells suppress lupus disease. 12x106 fresh D2 CD4+

cells alone or together with 5x106 CD4con or iTregs were transferred into 
D2B6F1 mice. Three weeks later, CD11c+ cells were sorted and 5x105 DC 
and 12x106 fresh D2 CD4+ cells were co-transferred into D2B6F1 mice. 
Anti-DNA levels in sera (a) and donor engraftments (H-2d+H-2b- cell 
population) in the spleens (b) were determined in 2 weeks following cell 
transfer. Mice survival was monitored (c) and Foxp3+ cell frequency at
one month following cell transfer was determined by flow cytometry.
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DCs from iTreg–treated mice markedly increased the frequency of Foxp3+ cells to levels 

comparable to lupus mice or mice treated with DCs from CD4con-infused mice. Using a standard 

suppression assay, we also demonstrated that the increased Foxp3+ cell population could be 

considered as true suppressor cells (not shown).     

We next tried to explore 

the underlying 

mechanism of how 

tolerogenic DCs 

suppress lupus. As in 

Fig. 24, co-transfer of 

CD11c+ cells (iDC) sorted 

from lupus mice that 

received iTregs markedly 

prolonged survival (Fig. 24a)

and suppressed splenomegaly 

and enlarged lymph nodes (Fig. 24b). Administration of ALK5 inhibitor with iDC not only 

completely blocked the suppressive activity of iDC in cGVHD, but also slightly accelerated mice 

death.  Unexpectedly, anti-IL-10R administration did not significantly decrease the mice survival in 

iDC infusion group. iDC also 

suppressed IgG deposition in kidney 

and ALK5 inhibitor but not anti-IL-

10R antibody reversed the protective 

effect of iDC on IgG production and 

deposition (Fig. 25), suggesting iTregs 

infusion induces the formation of 

tolerogenic DCs in the context of 

inflammatory diseases in vivo and 

these DCs suppress T cell-mediated 

immune responses through TGF- "

signaling rather than via the IL-10

signaling pathway.

We conducted another experiment to determine if the TGF- " 9J31D6J13"(D)BMD:" J1"8Cs is 

also crucial in the induction of tolerogenic DCs in vivo. iTregs were first induced as above except 

Fig. 24. Tolerogenic DCs suppress lupus through TGF- 
but not IL-10 signaling. 5x105 CD11c+ cells sorted from lupus
mice treated with iTregs or CD4con and 12x106 fresh D2 CD4+ cells 
were co-transferred into D2B6F1 mice. Alk5 inhibitor or DMSO 
control, anti-IL-10R or control IgG was administrated in some 
groups. Survival was monitored (a) and the sizes of spleens and 
lymph nodes at 20 weeks following cell transfer were measured (b). 
All experiments were repeated at least twice with similar results.

Fig. 25. Tolerogenic DCs suppressed IgG deposit in 
kidney in cGVHD mice through T R but not IL-10R 
signaling.



70

from Foxp3 GFP knock-in mice (C57BL/6 strain). GFP+ (Foxp3+) cells and control cells (GFP-)

were sorted and added to DCs isolated from WT (cre-) andDC conditional TGF- -##"KO (cre+) mice 

for priming for three 

days. CD4+CD45Rbhi

cells were transferred 

into Rag-1 KO mice. 

In other groups, DCs 

previously primed 

with iTregs or CD4con 

cells were recovered 

and co-transferred into 

Rag-1 KO mice. The 

cytokine production in 

mesenteric lymph nodes 

was determined using 

ELISA and quantitative 

RT-PCR. While both IFN-N" D1C" ,SP-T" (rotein (Fig. 24c, d) and mRNA (Fig. 26) were highly 

elevated by 2 weeks after CD4+CD45Rbhi cell transfer, co-transfer of cre- DCs primed with iTregs 

but not cre- DCs primed with CD4con cells dramatically suppressed IFN-N"D1C",SP-T production. 

Nonetheless, co-transfer of cre+ DCs primed with iTregs or CD4con cells did not suppress IFN-N"

and TNF-T production, further documenting that iTregs induced the formation of tolerogenic DC via

TGF- "signaling on DCs.  

Fig. 26. TGF- signal in DCs is crucial for the formation of tolerogenic DCs induced 
by iTregs. iTregs were co-cultured with DCs from wild type (Cre-) and TGF- RII DC conditional 
KO mice (Cre+) for three days and these DCs and naïve CD4+CD45RBhigh cells were co-transferred 
into Rag-1 KO mice. Mice were sacrificed 4 weeks after cell transfer. MLN cell suspensions 
cultured in activation plates with anti CD3/CD28 Ab and TNF-! (a) and IFN- (b) mRNA 
expression was determined by qRT-PCR, and TNF-! (c) and IFN- (d) protein levels were 
determined by Elisa. All experiments were repeated at least twice with similar results.
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Discussion

It has been well documented that both nTregs and iTregs suppress the development of autoimmune 

diseases. However, the mechanisms whereby Treg subsets suppress immune response are still in 

question. Although cell contact is required for the suppression of immune response of nTregs in 

vitro (Piccirillo et al., 2002), immunosuppressive factors such as TGF- and/or IL-10 are indeed 

involved in the suppression of immune response and disease progress by nTregs in vivo (Fahlen et 

al., 2005; Maloy et al., 2003).

Suppressive mechanisms employed by iTregs in immune responses are also less well defined. In the 

current study, we have demonstrated that TGF- and T R signaling are absolutely required and IL-

10 plays a partial role in the suppression of lupus, although these soluble factors did not contribute 

to the suppressive activity of iTregs in vitro. These findings are consistent with those for nTregs. It

is possible that cell contact may play a dominant role in vitro due to the limited mobility of cells in a 

confined space. However, it is clear that cytokines produced by Treg subsets have a systemic role in 

the suppression of immune response in vivo.

To confirm that TGF- and its receptor signaling pathway contribute to iTregs-mediated suppression 

in lupus, we analyzed suppression in the context of either anti-TGF- antibody or TGF- R1 (ALK5) 

inhibitor. Both agents abolished the suppressive function exerted by iTreg treatment to a similar 

degree. As TGF- itself plays an important role in the maintenance of immune tolerance (Letterio et 

al., 1996), we treated lupus mice with anti-TGF- and ALK5 inhibitor in the absence of iTreg

transfer. We found that the doses did not significantly alter the disease course of lupus. Thus, we can 

rule out that TGF- and its signaling are related to the suppression of iTreg function.

In general, antigen-specific Tregs have a more potent suppressive ability than non-specific Tregs

(Tang and Bluestone, 2008). Another advantage of antigen-specific Tregs is that they can selectively 

suppress immune responses without comprising other beneficial immune responses, and therefore 

are especially suitable for providing protection from organ transplantation rejection. Nonetheless, in 

some autoimmune diseases, such as lupus, the specific antigens are not known or ill–defined and 

polyclonal Tregs may be suitable for this situation. In the current study, we identified that polyclonal 

iTregs suppressed anti-CD3 and alloantigen stimulated T cell responses and alloantigen-mediated 

cGVHD that is comparable to antigen-specific iTregs (Zheng et al., 2004b), implicating that the 

manipulation of polyclonal iTregs may be therapeutic for these systemic autoimmune diseases that 
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lack identification of specific antigens. Previous study has also demonstrated that the suppressor 

effector function of nTregs is antigen nonspecific when they have been activated (Thornton and 

Shevach, 2000).

DCs play an important role in initiating immune responses and maintaining immune tolerance. DCs 

are professional antigen presenting cells and are essential mediators of immunity. DCs mature when 

they encounter antigen and initiate immune response through antigen presentation, co-stimulatory 

molecule signaling and cytokine production, and sequentially mediate adaptive immune responses.

DCs are also crucial for immune tolerance since their ablation has been shown to result in 

autoimmunity, highlighting the active role that DCs play under steady state conditions in 

maintaining immune tolerance (Letterio et al., 1996). Immature or semi-mature DCs may mediate 

the functional activity of tolerogenic DCs.

Consistent with previous reports (Colonna et al., 2004), we have observed tolerogenic DCs induced 

by iTregs expressed low levels of CD80 and CD86, and produced low levels of IL-12 and IL-23.

These DCs displayed a decreased antigen-presenting ability and even educated other conventional 

CD4+CD25- cells to become Foxp3+ regulatory T cells in the absence of exogenous TGF- . Of note, 

adoptive transfer of iTregs to lupus mice can still induce the formation of tolerogenic DCs. Previous 

studies have demonstrated that various anti-inflammatory and immunosuppressive agents such as 

TGF- and/or IL-10 potentiate or confer tolerogenicity on DCs (Morelli and Thomson, 2007). In the 

current study, we have revealed that TGF- plays a dominant role in the induction of tolerogenic 

DCs both in vitro and in vivo.

Ample in vitro evidence has been collected with respect to the inhibitory effect of TGF- !"#!$%!

activation and maturation. Monocyte-derived DCs expanded in the presence of IL-10, and TGF- !

demonstrated reduced IL-12 and IL-23 production and favored T cell anergy and the induction of 

Foxp3+ regulatory T cells (Torres-Aguilar et al., 2010). Interestingly, the current study reveals that 

TGF- rather than IL-10 produced by iTregs is responsible for the formation of tolerogenic DCs in 

vitro and in vivo. Moreover, DCs became tolerogenic in lupus mice when they were exposed to 

iTregs. This is likely that the transferred iTregs produced substantial amounts of active TGF- and 

lower levels of IL-10 (Zheng et al., 2002).

The crucial role of TGF- !&#!'()!&#*+,'&"#!"-!'".)/"0)#&,!$%1!,2#!3)!-+/'()/!documented using mice 

4&'(! 2! ,"#*&'&"#2.! 5#",5"+'! "-! 6 78! +#*)/! 2!$%-specific promoter, which results in deletion of 
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TGF- 7! 1&0#2.&#0! &#! 2..!%$99,+ DCs (DC-6 78*).!:&,) or Cre+). Others have used conditional 

knockout mice "-!6 71 and this approach also blocked the TGF- ! 1&0naling on DCs (Kel et al., 

2010). We demonstrated that while iTregs can induce DCs isolated from wild type mice to display 

the phenotypes of tolerogenic DCs and can suppress colitis initiated by naïve CD4+ cells in Rag-1

KO mice, this did not occur if the DCs were isolated from DC-6 78*).!:&,).

It is not surprising that adoptive transfer of tolerogenic DCs also suppressed lupus development in 

the current study. It has been known that tolerogenic DCs can produce TGF- , IL-10, IL-27, retinoic 

acid, indoleamine-2,3-dioxygenase and vitamin D (Wakkach et al., 2003). These factors either 

suppress immune response directly or induce regulatory T cell subsets first and then suppress 

immune response indirectly. In our study, we have observed that TGF- ! 3+'! #"' IL-10 plays an 

important role in the suppression of lupus disease following adoptive transfer of tolerogenic DCs. It 

is possible that these tolerogenic DCs mainly produced TGF- ! /2'()/! '(2#! ;<-10. This study 

suggests that tolerogenic DCs may be represented by different subsets that produce different 

immunosuppressive factors. Although we cannot rule out the direct action of tolerogenic DCs, we 

believe that these DCs have at least indirectly caused the suppression of lupus since iDCs treatment 

also increased the frequency of Foxp3+ Tregs in these mice.

It is less well understood why a single injection of iTregs can result in long-term protective effects 

since these iTregs have a limited lifespan (Selvaraj and Geiger, 2008; Weber et al., 2006; Zheng et 

al., 2006a; Zheng et al., 2008; Zheng et al., 2004b). It is very likely that infusion of iTregs under 

autoimmune inflammatory disease conditions and in organ transplantation models can induce the 

formation of tolerogenic DCs in the recipients, These tolerogenic DCs can then release TGF- and 

educate the recipient’s conventional T cells to become a new generation of Foxp3+ Tregs in the 

presence of self or foreign antigens through a mechanism called “infectious tolerance”. These new 

Tregs can continue to maintain immune tolerance and control disease development.  
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VIII. OVERALL DISCUSSION AND PERSPECTIVE

In the current study, we have gained several novel observations: 1). iTregs are equivalent with 

nTregs in the prevention of autoimmune diseases. 2). Both antigen-specific or polyclonal iTregs 

suppress autoimmune diseases. 3). iTregs but not nTregs suppressed Th17 cell differentiation in 

vitro and in vivo in the presence of IL-6 and other pro-inflammatory cytokines. 4). Unlike nTregs, 

iTregs are stable in the inflammatory condition in vivo. 5). iTregs rather than nTregs suppressed the 

established CIA. 6). iTregs infusion enhances the Foxp3+ cell frequency and decreases the Th17 cell 

numbers in disease models. 7). iTregs induce the formation of tolerognic DCs and these DCs then 

suppress autoimmune diseases through either direct or indirect mechanisms. 8). Both TGF- !2#*!;<-

10 are required for the suppressive activity of iTregs in vivo, interestingly, only TGF- ! &1!

responsible for the induction of tolerogenic DC formation. 9). Tolerogenic DCs suppress disease 

mainly through TGF- !1&0#2.&#0!=2'(42>?!!9@A?!atRA promotes and sustains the Foxp3+ regulatory T 

cells through increasing histone methylation and acetylation within the promoter and conserved non-

coding DNA sequence (CNS) elements at the Foxp3 gene locus. Most importantly, we have 

identified that iTregs possess the different features in the inflammatory conditions and these cells 

might be superior in the controlling the established autoimmune diseases compared to nTregs. 

Taken together, these results strongly implicate that the manipulation of iTregs might provide a 

novel approach in the treatment of patients with autoimmune diseases. It deserves to have a clinical 

trial to develop human iTreg cell therapy in patients with autoimmune diseases although data 

generated from animal has to be carefully explained in human. 

VIII.1 iTregs are stable and functional in the inflammatory condition

Compelling evidence has now suggested that nTregs are plastic and unstable in the inflammatory 

condition. Although the significance of this plasticity is not yet established, it is very likely that the 

plasticity of nTregs decreases the immunosuppressive ability of these cells to suppress immune 

response and relative diseases. These statements can be proofed by the observations that nTregs had 

the poorly therapeutic effects on the established autoimmune diseases and Th17-mediated diseases

(Huter et al., 2008; Zhou et al., 2010a). It is also less known whether they have become pathogenic 

and effector cells when nTregs display their plasticity in the inflammatory condition.

Unlike nTregs, iTregs are completely resistant to Th17 cell conversion. We have first reported this 

observation and the result was further confirmed by other researchers recently (O'Connor et al., 
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2010). Although iTregs may also convert to Th1 cells in the certain conditions, this conversion did 

not affect their suppressive activity (O'Connor et al., 2010).

While most studies demonstrating the different stabilities of Treg cell subsets have been conducted 

in the experimental systems in vitro, we now provided further evidence that iTregs but not nTregs 

are stable in the established CIA in vivo. We clearly demonstrated that most of nTregs have 

converted to Th17 cells in draining lymph nodes around 10 days after cell transfer although they are 

less converted to Th17 cells in the spleens. Interestingly, few of nTregs can convert to Th1, Th2 and 

Tfh cells even in the draining lymph nodes in CIA. These cells are no longer suppressor cells after 

they are sorted out and functionally assayed. This is curious whether these cells begin to cause 

diseases. We plan to transfer these cells to Rag-1 KO mice to learn whether these cells can cause 

colitis and EAE in the future experiments. Unlike nTregs, iTregs seem to be resistant to Th17 cell 

conversion in the draining lymph nodes and spleens. Similarly, few of iTregs can convert to Th1, 

Th2 and Tfh cells. When these cells were sorted out, they still suppressed immune responses. These 

results implicate that iTregs have a more stable feature in the inflammatory condition.

One of interesting findings in the current project is that iTregs are more numerous than nTregs in the 

established CIA. In addition to nTregs conversion to Th17 cells, we also demonstrated that nTregs 

predispose to cell apoptosis. Conversely, iTregs seem to be more resistant to cell apoptosis in the 

inflammatory condition. This provides another advantage for iTreg cell therapy in the autoimmune 

and inflammatory diseases.

It has to be mentioned that the mechanisms underlying the iTreg cell stability is less known. 

Although we have observed that iTregs expressed much lower IL-6R and subsequently lower levels 

of phosphorylated Stat3 after stimulating with IL-6 compared to nTregs, this is possible that iTregs 

may produce other specific proteins or transcription factors that we have not yet identified 

contribute to iTreg cell stability. We will focus our study on this aspect in the next 2-3 years.

VIII.2 iTregs but not nTregs ameliorate established autoimmune and Th17-mediated diseases

iTregs are not only resistant to T effector cell conversion, but also suppress the Th17 cell 

differentiation from naive CD4+ cells when stimulated with anti-CD3/CD28 antibodies in the 

presence of IL-6 and TGF- ?!6(&1!-&#*&#0!&1!#"B).!2#*!&#')/)1'&#0?!C.'("+0(!'(&1!&1!/)21"#23.)!'(2'!

the addition of nTregs to Th17-polarizing cell culture system do not inhibit the Th17 cell 
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differentiation since exogenous IL-6 can make nTregs themselves to become Th17 cells and 

addition of exogenous TGF- promote this Th17 conversion. 

How iTregs suppress Th17 cell differentiation in this system is unclear. Several factors can explain 

this interesting finding. 1). iTregs may produce high level of active TGF- ?!%+//)#'! 1'+*&)1! (2B)!

demonstrated that while low dose of active TGF- ! -2B"/1!6(9D! ,)..! *&--)/)#'&2'&"#E! (&0(! .)B).! "-!

active TGF- !:2>!1+==/)11!6(9D!,)..!=/"*+,'&"#?!8A?!&6/)01!:2>!=/"*+,)!:"/)!2,'&B)!;<-10. It has 

been documented that IL-10 may suppress Th17 cell development (Chaudhry et al., 2011). 3).

iTregs still produce IL-2 and express T-bet (Th1 transcription factor), which may contribute to the 

effect of iTregs on Th17 cell suppression and their stability. Study has indicated that IL-2 can 

restrain the Th17 cell development (Laurence et al., 2007).

The ability of iTregs to suppress Th17 cell development can be further documented in current 

project in CIA in vivo. We demonstrated that iTregs but not nTregs can markedly down-regulate the 

CD4+IL-17+ cells in the draining lymph nodes in the established CIA after cell transfer. Additionally, 

only iTregs infusion can suppress CD4+IFN-F+ cells whereas nTregs infusion conversely promotes

CD4+IFN-F+ cells at least in the spleens. Similarly, iTregs infusion can also suppress Th17 cell 

frequency in the ongoing asthma model. It is consistent with previous study that nTregs fails to 

control Th17-mediated autoimmune diseases (Huter et al., 2008), our data also demonstrated that 

nTregs has no therapeutic effect on established CIA. However, infusion of iTregs to the established 

CIA completely prevented the disease progression and significantly ameliorated the severities of 

CIA that had developed at least in some stages of CIA.  Thus, the ability of iTregs to suppress Th17 

cell development may provide a rationale that administration of iTregs can control and even treat 

Th17-mediated diseases. 

Of great interest, infusion of iTregs to the established CIA can increase Foxp3+ iTregs in the 

recipient mice. We believe the increase of Foxp3+ cells in the recipients is due to increase of induced 

iTregs rather than the expansion of nTregs. Although we have used Helios staining to try to 

distinguish them, however, this staining is not convinced to make a solid conclusion since Helios is 

not a specific marker for Tregs. We have conducted more experiments to show this could be an 

“infectious tolerance” mechanism, where iTregs infusion may dominantly affect DCs to induce the 

formation of tolerogenic DCs and then induce the development of a new generation of iTregs in the 

recipients in the presence of appropriate antigen stimulation.
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VIII.3 iTregs suppress disease via TGF- !"#$!%&-10 dependent mechanisms

Although many studies have focused on the Treg’s development and function, it is still less clear 

how Tregs suppress immune response and control autoimmunity. In an in vitro system, cell contact 

is always needed for the suppressive activity of iTregs since the neutralization of several soluble 

cytokines with immunosuppressive activity cannot abolish the suppressive effect but it can if the 

transwell experiments are set up. In the current project, we also found that iTregs, like nTregs, need 

cell contact to suppress immune responses. However, it is always said that the result produced from 

in vitro does not necessarily reflect the reality in vivo. We have observed this contradiction in the 

current work. We did find the TGF- !2#*!&'1!/),)ptor signaling pathway plays a dominant role in the 

suppressing lupus diseases because the neutralization of TGF- !4&'(!2#'&-TGF- !2#'&3"*>!"/!+1)!"-!

ALK5 inhibitor can completely abolish the protective effect of iTregs on lupus. Additionally, 

blockade of IL-10R signaling also significantly ablated iTregs effect on lupus treatment. Thus, we 

believe that iTregs suppress autoimmune disease mainly through the production of TGF- !2#*!;<-10 

although other mechanisms may also exist. 

VIII.4 iTregs induce the formation of tolerogenic DCs in the inflammatory condition

There are several reasons that promote us to raise a hypothesis that iTregs can act through an 

“infectious tolerance” mechanism in the controlling autoimmunity. 1). iTregs have a certain life-

span, however, the single injection of iTregs can result in a fair long-term protective effect. Thus, 

the long-term effect could be executed by something else. 2). Using congenic markers (CD45.1 and 

CD45.2), we have found that injection of iTregs can increase the Foxp3+ iTregs in the recipient in 

transplantation model (Zheng et al. 2006). Now we have further evidence that this result can be 

repeated in CIA and lupus models. 3). iTregs suppress autoimmunity mainly through TGF- !2#*!;<-

10 production. TGF- !=.2>1!2!,/ucial role in the induction of Foxp3+ iTregs and IL-10 promotes this 

effect. 4). DCs plays an important role in the maintaining immune tolerance in the haemostatic 

condition. Tolerogenic DCs are responsible for the immune tolerance and TGF- !2#*G"/!;<-10 can 

induce the formation of tolerogenic DCs. 

To address this hypothesis, we now have demonstrated that the infusion of iTregs to lupus mice can 

induce the formation of a typical “tolerogenic DC” subset in lupus mice. These DCs expressed much 

lower levels of CD80 and CD86, weak ability to initiate the alloantigen responses and even induced

other naive CD4+CD25- cells to become Foxp3+ Treg cells in the absence of exogenous TGF- ?!

When adoptive transfer of these DCs to lupus mice, they began to suppress lupus. We therefore 
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propose that iTregs can educate DCs to become tolerogenic DCs that will educate other T cells to 

become Foxp3+ iTregs in a circuit or “infectious tolerance” fashion.

As TGF- !,2#!&#*+,)!H"I=J+ iTregs in the absence of DCs in vitro, we also evaluated the role of 

DCs in the induction of Foxp3+ iTregs in vivo?!C1!6 7!1&0#2.&#0!&1!,/+,&2.!-"/!&6/)01!*&--)/)#'&2'&"#E!

we developed a DCs-1=),&-&,! 6 7;;! ,"#*&'&"#!KL!:"+1)?!M)! (2B)! /)B)2.)*! '(2'! &6/)01!4&..! #"!

longer induce the formation of tolerogenic DCs in DCs-1=),&-&,!6 7;;!KL!:"+1)E!1+00)1'&#0!'(2'!

6 7! 1&0#2.&#0! =2'(42>! "#! $%1! &1! ,/+,&2.! -"/! '()! &#*+,'&"#! "-! '".)/"0)#&,! $%1! 2#*! &#-),'&"+1!

tolerance.

Although both TGF- !2#*!;<-10 are important for the suppressive activity of iTregs, it seems TGF- !

plays a dominate role in the induction of tolerogenic DCs, although this conclusion needs to be 

further decided by using DCs-specific IL-10R condition KO mice. Moreover, tolerogenic DCs 

suppress lupus through TGF- !3+'!#"'!;<-10, suggesting the tolerogenic DCs formed by infusion of 

iTregs may be different from that induced by IL-10-priming in vitro.

VIII.5 Molecular mechanisms underlying the promotion of iTreg development

Several signaling pathways, such as the TGF- GN:2*E!;<-2/IL-2R/STAT, T cell receptor (TCR) and 

costimulatory signaling pathways are needed for the induction of Foxp3 transcription and TGF- !

receptor (T R) signaling pathway is crucial.

Current studies have begun to look the role of 6 R signaling in the regulation of iTregs 

differentiation. 6 R signaling regulates target gene mostly through Smad pathway. Several groups 

have found that Smad3 plays a significant role in the iTregs differentiation and Smad3-NFAT-AP1 

and STAT5 may form a complicated enhanceosome that regulates Foxp3 expression. However, non-

Smad3 pathway may also play some roles in the differentiation of iTregs. We previously have 

reported that ERK and JNK, two MAPKs, are needed for the iTregs differentiation (Lu et al., 2010b).

TGF- !2."#)!#)B)/!&#*+,)1!9@@O!"-!#2&B)!%$P
+ cells to become Foxp3+ cells. Thus, the discovery 

of other additives that promote the ability of TGF- ! '"! &#*+,e and enhance Foxp3 expression and 

maintenance will be also an attractive approach for iTreg cell therapy. All-trans retinoic acid (atRA), 

a vitamin A metabolite, could be a proper candidate since atRA can promote iTregs and restrain 

Th17 cell differentiation (Mucida et al., 2007).
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In this study, we further confirmed the ability of atRA to promote iTregs. However, we also 

observed the new ability of atRA to sustain Foxp3 expression by iTregs. This can be documented in 

vitro and in vivo. We also identified the mechanisms by which atRA sustains iTregs through 

suppressing the apoptosis of iTregs.

M)! -&/1'! "31)/B)*! '(2'! 2'7C!*")1! #"'! &#,/)21)!6 7;! 2#*! ;;! )I=/)11&"#! 3>!%$P
+ cells, suggesting 

2'7C!2--),'1!'()!*"4#1'/)2:!"-!6 7!1&0#2.&#0!/2'()/!'(2#!6QH- !2#*!6 7!3&#*&#0!23&.&'>?

Although some groups reported that Smad3 plays a significant role in the regulation of Foxp3 

expression, our study demonstrated that the ability of atRA to increase Foxp3 induction is not 

associated with Smad3 expression and upregulation because atRA maintains similar functional 

activity in CD4+ cells isolated from Smad3 KO mice. Conversely, atRA promotes ERK activation 

and ERK pathway seems to be essential for this process, suggesting that non-Smad pathway plays 

an important role in atRA-mediated Foxp3 expression.

While others reported that DNA methylation in Foxp3 gene promoter and CpG sites in the +4,201 to 

+4,500 intronic CpG island in conserved non-coding DNA sequence 3 (CNS3) at the Foxp3 gene 

locus affects Foxp3 expression and maintenance by Tregs (Floess et al., 2007; Kim and Leonard, 

2007). Our study observed that the enhanced effect of atRA on iTregs differentiation is not 

associated with the DNA demethylation in CpG islands in CNS3. More studies are needed to 

determine whether DNA CpG methylatonin Foxp3 non-coding region is important for Foxp3 

expression and maintenance.

Nonetheless, we did find atRA affects the histone modification. Our study revealed that atRA or 

TGF- ! '/)2':)#'! ,2#! 1&0#&-&,2#'.>! &#,/)21)! '()! :)'(>.2'&"#! &#! (&1'"#)! RJKP! &#! '()! H"I=J! 0)#)!

promoter and both atRA and TGF- !'/eatment can upregulate methylation of H3K4 in CNS2 at the 

Foxp3 locus, indicating that atRA and TGF- !(2B)!2!1>#)/0&1'&,!/".)!&#!'()!:2&#')#2#,)!"-!H"I=J!

but a separate role in Foxp3 induction. 

One of the novel observations we made in this study is that atRA promotes the Foxp3 binding in 

chromatin. We observed that the histone (H3) acetylation status in iTregs induced by TGF- !2#*!

atRA is significantly increased, suggesting that histone/protein deacetylases (HDACs) regulate 

chromatin remodeling and Foxp3 gene expression and function. We conclude that alterations in the 

induction and maintenance of Foxp3 gene expression and the conformational changes which 
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promote its binding on chromatin might both account for increased suppressive activity and stability 

of iTregs induced by TGF- !2fter adding atRA.

VIII. 6. Future plans

In addition to science, PhD applicant (Song Guo Zheng) who is working as an investigator and 

director of immune tolerance center at University of Southern California (Los Angeles, US) and an 

investigator and chair of East Immune Institute at Tongji University Shanghai East Hospital 

(Shanghai, China) would like to make a further collaboration with investigators from CNRS 

(Orleans, France) to further study the development and function of regulatory T cells in 

autoimmunity and organ transplantation after his PhD degree is awarded in CNRS. To facilitate this 

triangle-side collaboration to pursue this goal, the selected investigators who work in three places 

will be re-appointed as visiting professors in other institutes and PhD students and postdoctoral 

fellows can be exchanged to receive further training in the different scientific and cultural 

environments. Eventually, three sides will collaborate to apply for the international funds and other 

major funds. 
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Song Guo Zheng
Effets thérapeutiques des cellules T regulatrices induitent par TGF- ! sur 

l’autoimmunité et l’inflammation préétablies
Des études récentes ont montré que les cellules nTregs ont moins d'effets thérapeutiques lors de traitements de 

maladies auto-immunes. L'étude actuelle cherche à déterminer si les iTregs pourraient, être plus efficaces.
Dans l'asthme allergique, nous avons observé que le transfert adoptif de iTreg supprime de façon significative 

l’inflammation des voies respiratoires et péri-vasculaires, réduit la résistance et le remodelage de ces voies aériennes, le 
recrutement des éosinophiles, l’hyperproduction de mucus, et les niveaux d'IgE. Cet effet thérapeutique a pu être associé 
à une augmentation du nombre de Tregs (CD4 

+
Foxp3 

+
) dans les ganglions lymphatiques drainant, et à la réduction des 

réponses Th1, Th2, Th17.
Dans l'arthrite induite par le collagène (CIA), les  iTregs antigène-spécifiques comme  les nTregs proliférant, 

préviennent le développement de la pathologie. Toutefois, seul le transfert d’iTregs permet de supprimer la CIA lorsque 
celle-ci est déjà établie. Dans cette situation, les nTregs contrairement aux  iTregs, étaient converties en Th17, et 
perdaient l’expression de Foxp3, cela dans des expériences aussi bien in vitro qu’in vivo. Les  iTregs suppriment la 
différenciation Th17, ce qui corrèle avec l'amélioration des scores cliniques et des symptômes.

Dans le modèle GVHD chronique, la perfusion d’iTregs diminue les symptômes du lupus. Le blocage de la 
liaison TGF-"/TGF-"R ou des voies de signalisation de l'IL-10 abolit de façon significative les effets thérapeutiques des 
iTregs. Celles-ci rendent les DC tolérogéniques, par l’intermédiaire du TGF-" mais pas de l’IL-10. Les DC isolées de 
souris atteintes de lupus et  recevant des iTregs peuvent supprimer la progression de la maladie grâce au TGF-" mais 
pas à l'IL-10. Ainsi, iTregs ciblent les DC dans le milieu inflammatoire et ces DC devenues tolérogéniques empêchent la 
progression de maladies auto-immunes grâce à des effets directs ou indirects (induisant par exemple de nouvelles  
iTregs.

Par ailleurs, nous démontrons que l’acide rétinoïque « all-trans » (atRA) promeut et soutient les cellules Tregs 
Foxp3

+
. atRA augmente la méthylation des histones et l'acétylation, dans les locus du gène Foxp3, tandis que la 

méthylation de l'ADN du gène Foxp3 n'est pas significativement modifiée. Ces résultats peuvent fournir de nouvelles 
connaissances sur la thérapie cellulaire clinique pour les patients atteints de maladies auto-immunes et pour ceux qui ont 
besoin de greffes d'organes.

Mots clés : Treg, TGF-b, Autoimmunité, Inflammation, Tolérance

Therapeutic effects of TGF- -induced regulatory T cells on the established 
autoimmune and inflammatory diseases

Recent studies revealed that nTregs has less therapeutic effects on established autoimmune diseases. Current 
study asks if iTregs induced ex-vivo with TGF- can treat the established autoimmune diseases. In allergic asthma we 
observed that adoptive transfer of iTreg significantly suppressed airway and peri-vascular inflammation, reduced airway 
résistance, eosinophil recruitment, mucus hyper-production, airway remodeling and IgE levels. This therapeutic effect 
was associated with increase of Tregs (CD4

+
Foxp3

+
) in the draining LNs, and with reduction of Th1, Th2, and Th17 

responses.
In collagen-induced arthritis (CIA) both antigen-specific iTregs and expanded nTregs prevented CIA. However, 

only iTregs transfer suppressed established CIA. nTregs but not iTregs were converted into Th17 and lost Foxp3 in vitro

and in vivo in established CIA. iTregs suppressed Th17 cell differentiation that paralleled with improved clinical scores
and symptoms.

In the chronic GVHD model mimicking lupus the iTregs infusion significantly decreased lupus symptoms.
Blocking of TGF- !"#$- %&'(&)*-10 signaling pathways significantly abolished the therapeutic effects. iTregs induced the 
formation of tolerogenic DCs through TGF- but not IL-10 signaling on DC. DC isolated from lupus mice receiving iTregs 
can suppress lupus development through TGF- & but not IL-10 signaling. Thus, iTregs target DC in the inflammatory 
milieu and newly formed tolerogenic DC suppress disease progression through its direct or indirect effect (inducing new 
iTregs) in autoimmune disease settings. 

Moreover, we demonstrated that all-trans retinoic acid (atRA) promotes and sustains the Foxp3
+

regulatory T 
cells. atRA increased histone methylation and acetylation within Foxp3 gene locus, while DNA methylation in Foxp3 gene 
was not significantly altered. These results may provide novel insights into clinical cell therapy for patients with 
autoimmune diseases and those needing organ transplantation.

Keywords : Treg, TGF- , Autoimmunity, Inflammation, Tolerance
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