W. Wang, F. Jia, Q. Huang, and J. Zhang, A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material, Microelectronic Engineering, vol.77, issue.3-4, pp.223-229, 2005.
DOI : 10.1016/j.mee.2004.11.005

J. B. Lee, Z. Chen, M. G. Allen, A. Rohatgi, and R. Arya, A high voltage solar cell array as an electrostatic MEMS power supply. Micro Electro Mechanical Systems, Proceedings of IEEE Workshop, pp.331-336, 1994.

D. M. Bennett, R. Selfridge, P. Humble, and J. N. Harb, Hybrid power systems for autonomous MEMS, Smart Structures and Materials 2001: Smart Electronics and MEMS, pp.354-362, 2001.
DOI : 10.1117/12.436621

M. H. Mickle, M. Lovell, L. Mats, L. Neureuter, and D. Gorodetsky, Energy harvesting, profiles, and potential sources, International Journal of Parallel and Distributed Systems and Networks, vol.4, pp.150-160, 2001.

J. F. Randall, T. Suzuki, H. Katane, O. Saotome, and . Saito, On the use of photovoltaic ambient energy sources for powering indoor electronic devices. Ph.D. dissertation, EPFL (Swiss Federal Institute of Technology A proposal of electric power generating system for implanted medical devices, IEEE Transactions on Magnetics, vol.35, issue.11, pp.3586-3588, 1999.

D. N. Fry, D. E. Holcomb, J. K. Munro, L. C. Oakes, and M. J. Maston, Compact portable electric power sources, Oak Ridge National Laboratory report, p.13360, 1997.
DOI : 10.2172/663584

P. Glynne-jones and N. M. White, Self???powered systems: a review of energy sources, Sensor Review, vol.21, issue.2, pp.91-97, 2001.
DOI : 10.1108/02602280110388252

H. A. Sodano, D. J. Inman, and G. Park, A review of power harvesting from vibration using piezoelectric materials. The Shock and Vibration Digest, pp.197-205, 2004.

M. A. Qiwai, J. P. Thomas, J. C. Kellogg, and J. Baucom, Energy harvesting concepts for small electric unmanned systems, Proceedings of SPIE, Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics, pp.84-95, 2004.

L. Mateu and F. Moll, Review of energy harvesting techniques and applications for microelectronics, Proceedings of SPIE 5837, VLSI Circuits and Systems II, p.359, 2005.

J. A. Paradiso and T. Starner, Energy Scavenging for Mobile and Wireless Electronics, IEEE Pervasive Computing, vol.4, issue.1, pp.18-27, 2005.
DOI : 10.1109/MPRV.2005.9

S. J. Roundy, Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion, 2003.

S. Priya, Advances in energy harvesting using low profile piezoelectric transducers, Journal of Electroceramics, vol.5055, issue.4, pp.167-184, 2007.
DOI : 10.1007/s10832-007-9043-4

S. Roundy, P. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Computer Communications, vol.26, issue.11, pp.1131-1144, 2003.
DOI : 10.1016/S0140-3664(02)00248-7

L. Wang and F. G. Yuan, Energy harvesting by magnetostrictive material (MsM) for powering wireless sensors in SHM, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007, p.652941, 2007.
DOI : 10.1117/12.716506

H. Ostaffe, RF energy harvesting enables wireless sensor networks. Sensors (http://www.sensorsmag.com/sensors-mag/rf-energy-harvesting-enables-wireless- sensor-networks-6175), 2009.

T. Starner and J. A. Paradiso, Human generated power for mobile electronics. Low- Power Electronics, pp.45-46, 2004.

J. K. Ward and S. Behrens, Adaptive learning algorithms for vibration energy harvesting, Smart Materials and Structures, vol.17, issue.3, p.35025, 2008.
DOI : 10.1088/0964-1726/17/3/035025

C. R. Saha, T. O. Donnell, H. Loder, S. Beeby, and J. Tudor, Optimization of an Electromagnetic Energy Harvesting Device, IEEE Transactions on Magnetics, vol.42, issue.10, 2006.
DOI : 10.1109/TMAG.2006.879447

P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices, Proceedings of the IEEE, vol.96, issue.9, pp.1457-1486, 2008.
DOI : 10.1109/JPROC.2008.927494

C. B. Williams and R. B. Yates, Analysis of a micro-electric generator for microsystems, Sensors and Actuators A: Physical, vol.52, issue.1-3, pp.8-11
DOI : 10.1016/0924-4247(96)80118-X

P. Glynne-jones, M. J. Tudor, S. P. Beeby, and N. M. White, An electromagnetic, vibration-powered generator for intelligent sensor systems, Sensors and Actuators A: Physical, vol.110, issue.1-3, pp.344-349, 2004.
DOI : 10.1016/j.sna.2003.09.045

I. Sari, T. Balkan, and H. Külah, An electromagnetic micro energy harvester based on an array of parylene cantilevers, Journal of Micromechanics and Microengineering, vol.19, issue.10, p.105023, 2009.
DOI : 10.1088/0960-1317/19/10/105023

S. Roundy, P. K. Wright, and J. M. Rabaey, Energy scavenging for wireless sensor networks: with special focus on vibrations, 2004.
DOI : 10.1007/978-1-4615-0485-6

. Lang, Vibration-to-Electric energy conversion, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp.64-76, 2001.

E. O. Torres and G. A. Rincon-mora, Electrostatic energy-harvesting and batterycharging CMOS system prototype. Circuits and Systems I: Regular Papers, IEEE Transactions, vol.56, pp.1938-1948, 2009.
DOI : 10.1109/tcsi.2008.2011578

L. Solymar, D. Walsh, and U. K. , Lectures on the Electrical Properties of Materials, American Journal of Physics, vol.39, issue.6, 1993.
DOI : 10.1119/1.1987989

M. Umeda, K. Nakamura, and S. Ueha, Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator, Japanese Journal of Applied Physics, vol.35, issue.Part 1, No. 5B, pp.3267-3273, 1996.
DOI : 10.1143/JJAP.35.3267

N. Elvin, A. A. Elvin, and M. Spector, A self-powered mechanical strain energy sensor, Smart Materials and Structures, vol.10, issue.2, pp.293-299, 2001.
DOI : 10.1088/0964-1726/10/2/314

H. A. Sodano, G. Park, D. J. Leo, and D. J. Inman, Use of piezoelectric energy harvesting devices for charging batteries, Smart Structures and Materials 2003: Smart Sensor Technology and Measurement Systems, pp.101-108, 2003.
DOI : 10.1117/12.484247

G. Ottman, H. F. Hofmann, and G. A. Lesieutre, Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode, IEEE Transactions on Power Electronics, vol.18, issue.2, pp.696-703, 2003.
DOI : 10.1109/TPEL.2003.809379

A. Badel, D. Guyomar, E. Lefeuvre, and C. Richard, Efficiency Enhancement of a Piezoelectric Energy Harvesting Device in Pulsed Operation by Synchronous Charge Inversion, Journal of Intelligent Material Systems and Structures, vol.16, issue.10, pp.889-901, 2005.
DOI : 10.1177/1045389X05053150

URL : https://hal.archives-ouvertes.fr/hal-00404198

D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, Toward energy harvesting using active materials and conversion improvement by nonlinear processing, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.52, issue.4, pp.584-595, 2005.
DOI : 10.1109/TUFFC.2005.1428041

C. Richard, D. Guyomar, D. Audigier, and H. Bassaler, Enhanced semi-passive damping using continuous switching of a piezoelectric device on an inductor Proceedings of SPIE 3989, Smart Structures and Materials, pp.288-299, 2000.

M. E. Staley and A. B. Flatau, Characterization of energy harvesting potential of Terfenol-D and Galfenol, Smart Structures and Materials 2005: Smart Structures and Integrated Systems, pp.630-640, 2005.
DOI : 10.1117/12.604871

L. Wang and F. G. Yuan, Structural vibration energy harvesting by magnetostrictive materials (MsM) The 4th China-Japan-US Symposium on Structural Control and Monitoring, pp.147-152, 2006.

G. Min, D. M. Rowe, and K. Kontostavlakis, Thermoelectric figure-of-merit under large temperature differences, Journal of Physics D: Applied Physics, vol.37, issue.8, pp.1301-1304, 2004.
DOI : 10.1088/0022-3727/37/8/020

D. M. Rowe, Thermoelectric waste heat recovery as a renewable energy source, International Journal of Innovations in Energy Systems and Power, vol.1, pp.13-23, 2006.

M. Chen, S. Lu, and B. Liao, On the Figure of Merit of Thermoelectric Generators, Journal of Energy Resources Technology, vol.127, issue.1, pp.37-41, 2005.
DOI : 10.1115/1.1811120

C. Wu, Analysis of waste-heat thermoelectric power generators, Applied Thermal Engineering, vol.16, issue.1, pp.63-69, 1996.
DOI : 10.1016/1359-4311(95)00014-5

M. D. Rowe, G. Min, S. G. Williams, A. Aoune, K. Matsuura et al., Thermoelectric recovery of waste heat-case studies, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203), pp.1075-1079, 1997.
DOI : 10.1109/IECEC.1997.661919

D. M. Rowe, V. L. Kuznetsov, L. A. Kuznetsova, and G. Min, Electrical and thermal transport properties of intermediate-valence YbAl 3, Journal of Physics D: Applied Physics, pp.2183-2186, 2002.

M. Stordeur and I. Stark, Low power thermoelectric generator-self-sufficient energy supply for micro systems, XVI ICT '97. Proceedings ICT'97. 16th International Conference on Thermoelectrics (Cat. No.97TH8291), pp.575-577, 1997.
DOI : 10.1109/ICT.1997.667595

J. Fleming, W. Ng, and S. Ghamaty, Thermoelectric-Based Power System for Unmanned-Air-Vehicle/ Microair-Vehicle Applications, Journal of Aircraft, vol.41, issue.3, pp.674-676, 2004.
DOI : 10.2514/1.11486

K. Wojciechowski, J. Merkisz, P. Fu?, P. Lijewski, M. Schmidt et al., Study of recovery of waste heat from exhaust of automotive engine, 5th European Conference on Thermoelectrics, pp.194-198, 2007.

U. Birkholz, U. E. Grob, M. Riffel, H. Roth, and U. Stohrer, Conversion of waste exhaust heat in automobile using FeSi 2 thermoelements, Proc. of the 7th International Conference on Thermoelectric Energy Conversion, pp.124-128, 1988.

K. Matsubara, Development of a high efficient thermoelectric stack for a waste exhaust heat recovery of vehicles, Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT '02., pp.418-423, 2002.
DOI : 10.1109/ICT.2002.1190350

S. R. Hoh-nuttley and N. J. Tech, ferroelectric energy converters; presented at Solid State Devices Research Conf, Itchaca, N. Y, vol.32, issue.755, pp.88-90, 1959.

B. Miller, The ferroelectric converter, Electromechanical Design, vol.3, pp.15-17, 1959.

W. H. Clingman and R. G. Moore, Application of Ferroelectricity to Energy Conversion Processes, Journal of Applied Physics, vol.32, issue.4, pp.675-681, 1961.
DOI : 10.1063/1.1736069

J. D. Childress, Application of a Ferroelectric Material in an Energy Conversion Device, Journal of Applied Physics, vol.33, issue.5, pp.1793-1798, 1962.
DOI : 10.1063/1.1728833

S. R. Hoh, Conversion of thermal to electrical energy with ferroelectric materials, Proceedings of the IEEE, vol.51, issue.5, p.838, 1963.
DOI : 10.1109/PROC.1963.2277

E. Fatuzzo, H. Kiess, and R. Nitsche, Theoretical Efficiency of Pyroelectric Power Converters, Journal of Applied Physics, vol.37, issue.2, p.510, 1966.
DOI : 10.1063/1.1708205

J. A. Gonzalo, Ferroelectric materials as energy converters, Ferroelectrics, vol.11, issue.1, pp.423-429, 1976.
DOI : 10.1080/00150197608237774

R. B. Olsen and D. Evans, Pyroelectric energy conversion: Hysteresis loss and temperature sensitivity of a ferroelectric material, Journal of Applied Physics, vol.54, issue.10, pp.5941-5944, 1983.
DOI : 10.1063/1.331769

R. B. Olsen, D. A. Bruno, J. M. Briscoe, and E. W. Jacobs, Pyroelectric conversion cycle of vinylidene fluoride???trifluoroethylene copolymer, Journal of Applied Physics, vol.57, issue.11, pp.5036-5042, 1985.
DOI : 10.1063/1.335280

R. B. Olsen, D. A. Bruno, J. M. Briscoe, and J. Dullea, High electric field resistivity and pyroelectric properties of vinylidene fluoride???trifluoroethylene copolymer, Journal of Applied Physics, vol.58, issue.8, p.2854, 1985.
DOI : 10.1063/1.335857

R. B. Olsen and R. B. Olsen, Pyroelectric energy converter and method Apparatus and method for pyroelectric power conversion, U.S. Patent U.S. Patent, vol.4647836425, issue.4, p.540, 1984.

R. B. Olsen, D. A. Bruno, J. M. Briscoe, and J. Dullea, Cascaded pyroelectric energy converter, Ferroelectrics, vol.35, issue.1, pp.205-219, 1984.
DOI : 10.1080/00150198408240091

H. V. Tiwary, Ferroelectric Polymer for Thermodielectric Energy Conversion, Japanese Journal of Applied Physics, vol.24, issue.S2, pp.878-880, 1985.
DOI : 10.7567/JJAPS.24S2.878

M. Ikura, Conversion of Low-Grade Heat to Electricity Using Pyroelectric Copolymer, Ferroelectrics, vol.267, issue.1, pp.403-408, 2002.
DOI : 10.1080/713715909

D. Guyomar, G. Sebald, E. Lefeuvre, and A. Khodayari, Toward Heat Energy Harvesting using Pyroelectric Material, Journal of Intelligent Material Systems and Structures, vol.16, issue.1, pp.265-271, 2009.
DOI : 10.1177/1045389X08093564

G. Sebald, D. Guyomar, and A. Agbossou, On thermoelectric and pyroelectric energy harvesting, Smart Materials and Structures, vol.18, issue.12, p.125006, 2009.
DOI : 10.1088/0964-1726/18/12/125006

G. Sebald, S. Pruvost, and D. Guyomar, Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic, Smart Materials and Structures, vol.17, issue.1, p.15012, 2008.
DOI : 10.1088/0964-1726/17/01/015012

D. Guyomar, S. Pruvost, and G. Sebald, Energy harvesting based on FE-FE transition in ferroelectric single crystals, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.55, issue.2, pp.279-285, 2008.
DOI : 10.1109/TUFFC.2008.646

G. Sebald, E. Lefeuvre, and D. Guyomar, Pyroelectric energy conversion: Optimization principles, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.55, issue.3, pp.538-551, 2008.
DOI : 10.1109/TUFFC.2008.680

D. Vanderpool, J. H. Yoon, and L. Pilon, Simulations of a prototypical device using pyroelectric materials for harvesting waste heat, International Journal of Heat and Mass Transfer, vol.51, issue.21-22, pp.5052-5062, 2008.
DOI : 10.1016/j.ijheatmasstransfer.2008.04.008

H. Nguyen, A. Navid, and L. Pilon, Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting, Applied Thermal Engineering, vol.30, issue.14-15, pp.2127-2137, 2010.
DOI : 10.1016/j.applthermaleng.2010.05.022

A. Navid and L. Pilon, Pyroelectric energy harvesting using Olsen cycles in purified and porous poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films, Smart Materials and Structures, vol.20, issue.2, p.25012, 2011.
DOI : 10.1088/0964-1726/20/2/025012

K. Chew, F. G. Shin, B. Ploss, H. L. Chan, and C. L. Choy, Primary and secondary pyroelectric effects of ferroelectric 0-3 composites, Journal of Applied Physics, vol.94, issue.2, pp.1134-1145, 2003.
DOI : 10.1063/1.1583154

S. B. Lang, Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool, Physics Today, vol.58, issue.8, pp.31-36, 2005.
DOI : 10.1063/1.2062916

F. Jona and G. Shirane, Ferroelectric crystals, 1993.

B. Neese, B. Chu, S. Lu, Y. Wang, E. Furman et al., Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature, Science, vol.321, issue.5890, pp.821-823, 2008.
DOI : 10.1126/science.1159655

E. Lefeuvre, A. Badel, C. Richard, L. Petit, and D. Guyomar, A comparison between several vibration-powered piezoelectric generators for standalone systems, Sensors and Actuators A: Physical, vol.126, issue.2, pp.405-416, 2006.
DOI : 10.1016/j.sna.2005.10.043

G. Sebald, L. Seveyrat, D. Guyomar, L. Lebrun, B. Guiffard et al., Electrocaloric and pyroelectric properties of 0, Journal of Applied Physics, vol.75100, p.124112, 2006.

R. B. Olsen, D. A. Bruno, and J. M. Briscoe, Pyroelectric conversion cycles, Journal of Applied Physics, vol.58, issue.12, pp.4709-4716, 1985.
DOI : 10.1063/1.336244

Y. Xu, Ferroelectric materials and their applications, 1991.

T. Liu and C. S. Lynch, Domain engineered relaxor ferroelectric single crystals. Continuum Mechanics and Thermodynamics, pp.119-135, 2006.
DOI : 10.1007/s00161-006-0017-6

L. Kouchachvili and M. Ikura, Pyroelectric conversion???Effects of P(VDF???TrFE) preconditioning on power conversion, Journal of Electrostatics, vol.65, issue.3, pp.182-188, 2007.
DOI : 10.1016/j.elstat.2006.07.014

S. B. Riffat and X. Ma, Thermoelectrics: a review of present and potential applications, Applied Thermal Engineering, vol.23, issue.8, pp.913-935, 2003.
DOI : 10.1016/S1359-4311(03)00012-7

D. Damjanovic, P. Muralt, and N. Setter, Ferroelectric sensors, IEEE Sensors Journal, vol.1, issue.3, pp.191-206, 2001.
DOI : 10.1109/JSEN.2001.954832

M. H. Lee, R. Guo, and A. S. Bhalla, Pyroelectric Sensors, Journal of Electroceramics, vol.2, issue.4, pp.229-242, 1998.
DOI : 10.1023/A:1009922522642

J. He, J. Chen, Y. Zhou, and J. Wang, Regenerative characteristics of electrocaloric Stirling or Ericsson refrigeration cycles. Energy Conversion and Management, pp.2319-2327, 2002.

A. Khodayari, S. Pruvost, G. Sebald, D. Guyomar, and S. Mohammadi, Nonlinear pyroelectric energy harvesting from relaxor single crystals, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.56, issue.4, pp.693-699, 2009.
DOI : 10.1109/TUFFC.2009.1092

B. A. Tuttlea and D. A. Payne, ceramics, Ferroelectrics, vol.60, issue.1, pp.603-606, 1981.
DOI : 10.1080/00150198108223496

A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3, Science, vol.311, issue.5765, pp.1270-1271, 2006.
DOI : 10.1126/science.1123811

E. Birks, L. Shebanov, and A. Sternberg, Electrocaloric effect in PLZT ceramics Ferroelectrics, pp.125-129, 1986.

H. Qian and L. A. , PHENOMENOLOGICAL THEORY OF THE DIELECTRIC RESPONSE OF LEAD MAGNESIUM NIOBATE AND LEAD SCANDIUM TANTALATE, International Journal of Modern Physics B, vol.10, issue.16, pp.2007-2025, 1996.
DOI : 10.1142/S021797929600091X

L. E. Cross, Relaxor ferroelectrics, pp.241-267, 1987.
DOI : 10.1080/00150198708016945

T. R. Shrout and H. Arvind, Preparation of lead-based ferroelectric relaxors for capacitors, American Ceramic Society Bulletin, vol.66, pp.704-711, 1987.

C. A. Randall, D. J. Barber, R. W. Whatmore, and P. Groves, Short-range order phenomena in lead-based perovskites, Ferroelectrics, vol.50, issue.1, pp.277-282, 1987.
DOI : 10.1111/j.1151-2916.1971.tb12286.x

M. Ozgul, Polarization switching and fatigue anisotropy in relaxor-lead titanate ferroelectric single crystals Ph, 2003.

J. Kuwata, K. Uchino, and S. Nomura, system, Ferroelectrics, vol.14, issue.1, pp.579-582, 1981.
DOI : 10.1080/00150198108223490

URL : https://hal.archives-ouvertes.fr/hal-01054853

D. E. Cox, B. Noheda, G. Shirane, Y. Uesu, K. Fujishiro et al., Universal phase diagram for high-piezoelectric perovskite systems, Applied Physics Letters, vol.79, issue.3, pp.400-402, 2001.
DOI : 10.1063/1.1384475

URL : http://arxiv.org/abs/cond-mat/0102457

M. E. Lines, A. M. Glass-jona, and G. Shirane, Principles and Applications of Ferroelectrics and Related Materials 108 H. D. Megaw. Ferroelectricity in Crystals Ferroelectric Crystals, E. Nettleton. Ferroelectrics, vol.109, issue.207, pp.93-111, 1957.

R. E. Nettleton, Ferroelectric phase transitions a review ot theory and experiment, Ferroelectrics, vol.2, issue.1, p.93, 1971.
DOI : 10.1080/00150197108241496

W. J. Merz, Single Crystals, Physical Review, vol.95, issue.3, p.690, 1954.
DOI : 10.1103/PhysRev.95.690

A. Renault, H. Dammak, G. Calvarin, and P. Gaucher, Electric-field-induced orthorhombic phase in Pb[(Zn1???3Nb2???3)0.955Ti0.045]O3 single crystals, Journal of Applied Physics, vol.97, issue.4, p.44105, 2005.
DOI : 10.1063/1.1849819

URL : https://hal.archives-ouvertes.fr/hal-00126116

W. S. Chang, L. C. Lim, P. Yang, C. Tu, F. Wang et al., Phase transformations in poled PZN-4.5%PT single crystal revealed by combined property measurements and high-resolution diffraction technique, Journal of Applied Physics, vol.104, issue.5, p.54102, 2008.
DOI : 10.1063/1.2969782

M. L. Mulvihill, S. E. Park, G. Risch, Z. Li, K. Uchino et al., The Role of Processing Variables in the Flux Growth of Lead Zinc Niobate-Lead Titanate Relaxor Ferroelectric Single Crystals, Japanese Journal of Applied Physics, vol.35, issue.Part 1, No. 7, pp.3984-3990, 1996.
DOI : 10.1143/JJAP.35.3984

L. C. Lima and K. K. Rajan, High-homogeneity High-performance flux-grown Pb(Zn1/3Nb2/3)O3???(6???7)%PbTiO3 single crystals, Journal of Crystal Growth, vol.271, issue.3-4, pp.435-444, 2004.
DOI : 10.1016/j.jcrysgro.2004.07.081

A. Benayad, D. Kobor, L. Lebrun, B. Guiffard, and D. Guyomar, Characteristics of Pb[(Zn1/3Nb2/3)0.955Ti0.045]O3 single crystals versus growth method, Journal of Crystal Growth, vol.270, issue.1-2, pp.137-144, 2004.
DOI : 10.1016/j.jcrysgro.2004.06.017

D. Kobor, L. Lebrun, G. Sebald, and D. Guyomar, Characterization of pure and substituted 0, Journal of Crystal Growth, vol.955275, pp.580-588, 2005.

F. J. Kumar, L. C. Lim, C. Chilong, and M. J. Tan, Morphological aspects of flux grown 0.91PZN-0.09PT crystals, Journal of Crystal Growth, vol.216, issue.1-4, pp.311-316, 2000.
DOI : 10.1016/S0022-0248(00)00446-2

A. Benayad, A. Hajjaji, B. Guiffard, L. Lebrun, and D. Guyomar, single crystals grown by the modified Bridgman method, Journal of Physics D: Applied Physics, vol.40, issue.3, pp.840-845, 2007.
DOI : 10.1088/0022-3727/40/3/022

H. Cao, B. Fang, H. Xu, and H. Luo, Crystal orientation dependence of dielectric and piezoelectric properties of tetragonal Pb(Mg1/3Nb2/3)O3???38%PbTiO3 single crystal, Materials Research Bulletin, vol.37, issue.13, pp.2135-2143, 2002.
DOI : 10.1016/S0025-5408(02)00890-5

H. Y. Zhu, S. Pruvost, D. Guyomar, and A. Khodayari, Thermal energy harvesting from Pb(Zn1/3Nb2/3)0.955Ti0.045O3 single crystals phase transitions, Journal of Applied Physics, vol.106, issue.12, p.124102, 2009.
DOI : 10.1063/1.3271144

Z. Cheng, V. Bharti, T. Xu, H. Xu, T. Mai et al., Electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymers, Sensors and Actuators A: Physical, vol.90, issue.1-2, pp.138-147, 2001.
DOI : 10.1016/S0924-4247(01)00496-4

V. Bharti and Q. M. Zhang, Dielectric study of the relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer system, Physical Review B, vol.63, issue.18, p.184103, 2001.
DOI : 10.1103/PhysRevB.63.184103

Q. M. Zhang, Z. Cheng, and V. Bharti, Relaxor ferroelectric behavior in high-energy electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymers, Applied Physics A: Materials Science & Processing, vol.70, issue.3, pp.307-312, 2000.
DOI : 10.1007/s003390050051

F. Xia, Z. Cheng, H. Xu, H. Li, and Q. Zhang, High Electromechanical Responses in a Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) Terpolymer, Advanced Materials, vol.42, issue.21, pp.1574-1577, 2002.
DOI : 10.1002/1521-4095(20021104)14:21<1574::AID-ADMA1574>3.0.CO;2-#

B. P. Neese, The multifunctional properties of PVDF-based Polymers, 2009.

A. C. Jayasuriya, A. Schirokauer, and J. I. Scheinbeim, Crystal-structure dependence of electroactive properties in differently prepared poly(vinylidene fluoride/hexafluoropropylene) copolymer films, Journal of Polymer Science Part B: Polymer Physics, vol.280, issue.42, pp.2793-2799, 2001.
DOI : 10.1002/polb.10035

K. Tashiro, In Ferroelectric Polymers 130 H. Kawai. The piezoelectricity of poly(vinylidene fluoride), Japanese Journal of Applied Physics, vol.638, pp.975-976, 1969.

J. G. Bergman, J. H. Mcfee, and G. R. Crane, PYROELECTRICITY AND OPTICAL SECOND HARMONIC GENERATION IN POLYVINYLIDENE FLUORIDE FILMS, Applied Physics Letters, vol.18, issue.5, pp.203-205, 1971.
DOI : 10.1063/1.1653624

T. Yagi, M. Tatemoto, and J. Sako, Transition Behavior and Dielectric Properties in Trifluoroethylene and Vinylidene Fluoride Copolymers, Polymer Journal, vol.3, issue.4, pp.209-223, 1980.
DOI : 10.1002/pol.1958.1203112320

F. Bauer, Relaxor fluorinated polymers: novel applications and recent developments. Dielectrics and Electrical Insulation, IEEE Transactions, vol.17, pp.1106-1112, 2010.
DOI : 10.1117/12.879586

V. Bharti, H. S. Xu, G. Shanthi, Q. M. Zhang, and K. Liang, Polarization and structural properties of high-energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer films, Journal of Applied Physics, vol.87, issue.1, pp.452-461, 2000.
DOI : 10.1063/1.371883

Q. M. Zhang, F. Xia, Z. Cheng, H. Xu, H. Li et al., Poly(vinylidene fluoroethylene-trifluoroethylene) based high performance electroactive polymers, Proceedings. 11th International Symposium on Electrets, pp.181-190, 2002.
DOI : 10.1109/ISE.2002.1042975

Q. M. Zhang, V. Bharti, and X. Zhao, Giant Electrostriction and Relaxor Ferroelectric Behavior in Electron-Irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolymer, Science, vol.280, issue.5372, pp.2101-2104, 1998.
DOI : 10.1126/science.280.5372.2101

H. Xu, Z. Cheng, D. Olson, T. Mai, Q. M. Zhang et al., Ferroelectric and electromechanical properties of poly(vinylidene-fluoride???trifluoroethylene???chlorotrifluoroethylene) terpolymer, Applied Physics Letters, vol.78, issue.16, pp.2360-2362, 2001.
DOI : 10.1063/1.1358847

A. Petchsuk, Ferroelectric terpolymers, based on semicrystalline VDF/TRFE/chlorocontaining termonomers : Synthesis, electrical properties, and functionalization reactions PhD Thesis, 2003.

R. J. Klein, F. Xia, Q. M. Zhang, and F. Bauer, Influence of composition on relaxor ferroelectric and electromechanical properties of poly(vinylidene fluoride-trifluoroethylene- chlorofluoroethylene), Journal of Applied Physics, vol.97, issue.9, p.94105, 2005.
DOI : 10.1063/1.1882769

K. Ren, Y. Liu, H. Hofmann, and Q. M. Zhang, An active energy harvesting scheme with an electroactive polymer, Applied Physics Letters, vol.91, issue.13, p.132910, 2007.
DOI : 10.1063/1.2793172

H. Zhu, S. Pruvost, P. J. Cottinet, and D. Guyomar, Energy harvesting by nonlinear capacitance variation for a relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer, Applied Physics Letters, vol.98, issue.22, p.222901, 2011.
DOI : 10.1063/1.3595325

G. Kofod, Dielectric elastomer actuators, 2001.

Z. Cheng, R. S. Katiyar, X. Yao, and A. S. Bhalla, Temperature dependence of the dielectric constant of relaxor ferroelectrics, Physical Review B, vol.57, issue.14, pp.8166-8177, 1998.
DOI : 10.1103/PhysRevB.57.8166

G. Akcay, S. P. Alpay, J. V. Mantese, and J. G. Rossetti, Magnitude of the intrinsic electrocaloric effect in ferroelectric perovskite thin films at high electric fields, Applied Physics Letters, vol.90, issue.25, p.252909, 2007.
DOI : 10.1063/1.2750546

S. G. Lu, B. Neese, B. J. Chu, Y. Wang, and Q. M. Zhang, Large electric tunability in poly(vinylidene fluoride-trifluoroethylene) based polymers, Applied Physics Letters, vol.93, issue.4, p.42905, 2008.
DOI : 10.1063/1.2966934

V. Bobnar, B. Vodopivec, A. Levstik, M. Kosec, B. Hilczer et al., Dielectric Properties of Relaxor-like Vinylidene Fluoride???Trifluoroethylene-Based Electroactive Polymers, Macromolecules, vol.36, issue.12, pp.4436-4442, 2003.
DOI : 10.1021/ma034149h

C. Navid, L. Lynch, and . Pilon, Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting, Smart Materials and Structures, vol.19, issue.5, p.55006, 2010.
DOI : 10.1088/0964-1726/19/5/055006

URL : http://escholarship.org/uc/item/0c66v4pr.pdf

S. Fujisaki, H. Ishiwara, and Y. Fujisaki, Low-voltage operation of ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer capacitors and metal-ferroelectric-insulator-semiconductor diodes, Applied Physics Letters, vol.90, issue.16, p.162902, 2007.
DOI : 10.1063/1.2723678

. Prénoms, Hongying TITRE : Recupération d'Énergie Thermique à partir de Variations de Température NATURE : Doctorat Numéro d'ordre, pp.2011-0086

É. Ecole-doctorale:-Électronique, . Et-automatique-de-lyon, and . Spécialité, Énergie et Systèmes RESUME : Le développement des équipements portables, des réseaux de capteurs sans fil et systèmes auto-alimentés d'une manière générale génère une forte demande pour les dispositifs de récupération de micro-énergie. Une des voies les plus intéressantes pour auto-alimenter des dispositifs consiste à développer des systèmes recyclant l'énergie ambiante afin de renouveler sans cesse l'énergie consommée par le dispositif. En dehors de la récupération d'énergie électromécanique

. Au-cours-de-cette-thèse, énergie thermique en énergie électrique fondée sur des variations temporelles de température a été développée et améliorée Parmi les matériaux ferroélectriques, des monocristaux de PZN-4.5PT et le terpolymère P(VDF-TrFE-CFE) 61.3/29.7/9 mol % ont été choisis comme matériaux actifs en raison de leurs propriétés remarquables sous champ électrique, En utilisant des cycles thermodynamiques intelligents, par exemple, Ericsson ou à cycle de Stirling, l'efficacité de la conversion de l'énergie pourrait être considérablement améliorée

L. Dans-la-première-partie and . Récupération, énergie pyroélectrique en utilisant des monocristaux de PZN-4.5PT a été principalement étudiée sous deux aspects: l'effet de fréquence et des transitions de phase sur les cycles d'Ericsson. Il a été montré que l'énergie récupérée diminue de façon non linéaire avec une augmentation de la fréquence. De plus, l'utilisation optimale des transitions de phase pendant le cycle d'Ericsson permet d'améliorer grandement l'énergie récupérée en choisissant une gamme de température de travail appropriée. A partir de ces résultats, deux cycles d'Ericsson asymétriques (LH et HL) ont été réalisés avec succès