R. K. Pachauri and A. Reisinger, Bilan 2007 des changements climatiques, Groupe d'Experts Intergouvernemental sur l, Evolution du Climat GIEC, 2007.

W. W. Clark and J. Rifkin, A green hydrogen economy, Energy Policy, vol.34, issue.17, pp.2630-2639, 2006.
DOI : 10.1016/j.enpol.2005.06.024

Y. Sun, G. Wang, and K. Yan, TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell, International Journal of Hydrogen Energy, vol.36, issue.24, pp.15502-15508, 2011.
DOI : 10.1016/j.ijhydene.2011.08.112

M. Ilie, B. Cojocaru, V. I. Parvulescu, and H. Garcia, Improving TiO2 activity in photo-production of hydrogen from sugar industry wastewaters, International Journal of Hydrogen Energy, vol.36, issue.24, pp.15509-15518, 2011.
DOI : 10.1016/j.ijhydene.2011.09.029

F. T. Bacon, The High Pressure Hydrogen-Oxygen Fuel Cell, Industrial & Engineering Chemistry, vol.52, issue.4, pp.61-67, 1954.
DOI : 10.1021/ie50604a027

D. Yang, B. Li, H. Zhang, J. Zheng, R. Lin et al., The application of Ir???V/C catalyst as a durable anode catalyst for a 1.5kW proton exchange membrane fuel cell stack, Journal of Power Sources, vol.199, pp.68-74, 2012.
DOI : 10.1016/j.jpowsour.2011.10.035

A. M. Affoune, A. Yamada, and M. Umeda, Conductivity and surface morphology of Nafion membrane in water and alcohol environments, Journal of Power Sources, vol.148, pp.9-17, 2005.
DOI : 10.1016/j.jpowsour.2005.01.039

C. G. Vayenas, M. N. Tsampas, and A. Katsaounis, First principles analytical prediction of the conductivity of Nafion membranes, Electrochimica Acta, vol.52, issue.6, pp.2244-2256, 2007.
DOI : 10.1016/j.electacta.2006.03.109

A. M. Zainoodin, S. K. Kamarudin, and W. R. Daud, Electrode in direct methanol fuel cells, International Journal of Hydrogen Energy, vol.35, issue.10, pp.4606-4621, 2010.
DOI : 10.1016/j.ijhydene.2010.02.036

J. Larminie and A. Dicks, Fuel Cell Systems Explained, British Library Cataloguing in Publication Data, pp.1-433, 2003.
DOI : 10.1002/9781118878330

A. Ayad, J. Bouet, and J. F. Fauvarque, Comparative study of protonic conducting polymers incorporated in the oxygen electrode of the PEMFC, Journal of Power Sources, vol.149, pp.66-71, 2005.
DOI : 10.1016/j.jpowsour.2005.02.044

URL : https://hal.archives-ouvertes.fr/hal-00386434

E. Agel, J. Bouet, and J. F. Fauvarque, Characterization and use of anionic membranes for alkaline fuel cells, Journal of Power Sources, vol.101, issue.2, pp.267-274, 2001.
DOI : 10.1016/S0378-7753(01)00759-5

URL : https://hal.archives-ouvertes.fr/hal-00420453

S. M. Haile, Acta materials, pp.5981-6000, 2003.

A. L. Dicks, The role of carbon in fuel cells, Journal of Power Sources, vol.156, issue.2, pp.128-141, 2006.
DOI : 10.1016/j.jpowsour.2006.02.054

V. A. Danilov and M. O. Tade, An alternative way of estimating anodic and cathodic transfer coefficients from PEMFC polarization curves, Chemical Engineering Journal, vol.156, issue.2, pp.496-499, 2010.
DOI : 10.1016/j.cej.2009.09.022

S. Litster and G. Mclean, PEM fuel cell electrodes, Journal of Power Sources, vol.130, issue.1-2, pp.61-76, 2004.
DOI : 10.1016/j.jpowsour.2003.12.055

S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, Review of the proton exchange membranes for fuel cell applications, International Journal of Hydrogen Energy, vol.35, issue.17, pp.9349-9384, 2010.
DOI : 10.1016/j.ijhydene.2010.05.017

M. Sadrabadi and H. Heidari, Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone), Renewable Energy, vol.35, issue.1, pp.226-231, 2010.
DOI : 10.1016/j.renene.2009.05.026

W. R. Baumgartner, P. Parz, S. D. Fraser, E. Wallnofer, and V. Hacker, Polarization study of a PEMFC with four reference electrodes at hydrogen starvation conditions, Journal of Power Sources, vol.182, issue.2, pp.413-421, 2008.
DOI : 10.1016/j.jpowsour.2008.01.001

V. A. Danilov and M. O. Tade, An alternative way of estimating anodic and cathodic transfer coefficients from PEMFC polarization curves, Chemical Engineering Journal, vol.156, issue.2, pp.496-499, 2010.
DOI : 10.1016/j.cej.2009.09.022

E. Martin, S. A. Shaheen, T. E. Lipman, and J. R. Lidicker, Behavioral response to hydrogen fuel cell vehicles and refueling: Results of California drive clinics, International Journal of Hydrogen Energy, vol.34, issue.20, pp.8670-8680, 2009.
DOI : 10.1016/j.ijhydene.2009.07.098

Y. Wang, K. S. Chen, J. Mishler, S. Ch, X. C. Cho et al., A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied Energy, vol.88, issue.4, pp.981-1007, 2011.
DOI : 10.1016/j.apenergy.2010.09.030

A. S. Feitelberg, J. Stathopoulos, Z. Qi, . Ch, J. F. Smith et al., Reliability of Plug Power GenSys??? fuel cell systems, Journal of Power Sources, vol.147, issue.1-2, pp.203-207, 2005.
DOI : 10.1016/j.jpowsour.2005.01.012

N. S. Sisworahardjo, T. Yalcinoz, M. Y. El-sharkh, and M. S. Alam, Neural network model of 100??W portable PEM fuel cell and experimental verification, International Journal of Hydrogen Energy, vol.35, issue.17, pp.9104-9109, 2010.
DOI : 10.1016/j.ijhydene.2010.05.124

M. Sadrabadi and H. Heidari, Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone), Renewable Energy, vol.35, issue.1, pp.226-231, 2010.
DOI : 10.1016/j.renene.2009.05.026

Y. Li and T. S. Chung, Exploration of highly sulfonated polyethersulfone (SPES) as a membrane material with the aid of dual-layer hollow fiber fabrication technology for protein separation, Journal of Membrane Science, vol.309, issue.1-2, pp.45-55, 2008.
DOI : 10.1016/j.memsci.2007.10.006

A. F. Ismail, N. H. Othman, and A. Mustafa, Sulfonated polyether ether ketone composite membrane using tungstosilicic acid supported on silica???aluminium oxide for direct methanol fuel cell (DMFC), Journal of Membrane Science, vol.329, issue.1-2, pp.18-29, 2009.
DOI : 10.1016/j.memsci.2008.11.052

K. N. Do and D. Kim, Comparison of homogeneously and heterogeneously sulfonated polyetheretherketone membranes in preparation, properties and cell performance, Journal of Power Sources, vol.185, issue.1, pp.63-69, 2008.
DOI : 10.1016/j.jpowsour.2008.06.087

H. Bai and W. S. Ho, New sulfonated polybenzimidazole (SPBI) copolymer-based proton-exchange membranes for fuel cells, Journal of the Taiwan Institute of Chemical Engineers, vol.40, issue.3, pp.260-267, 2009.
DOI : 10.1016/j.jtice.2008.12.014

Y. Li and T. S. Chung, Exploration of highly sulfonated polyethersulfone (SPES) as a membrane material with the aid of dual-layer hollow fiber fabrication technology for protein separation, Journal of Membrane Science, vol.309, issue.1-2, pp.45-55, 2008.
DOI : 10.1016/j.memsci.2007.10.006

Y. Li and T. S. Chung, Highly selective sulfonated polyethersulfone (SPES)-based membranes with transition metal counterions for hydrogen recovery and natural gas separation, Journal of Membrane Science, vol.308, issue.1-2, pp.128-135, 2008.
DOI : 10.1016/j.memsci.2007.09.053

C. Iojoiu, F. Chabert, M. Marechal, N. El, J. Kissi et al., From polymer chemistry to membrane elaboration, Journal of Power Sources, vol.153, issue.2, pp.198-209, 2006.
DOI : 10.1016/j.jpowsour.2005.05.039

URL : https://hal.archives-ouvertes.fr/hal-00386398

C. Iojoiu, P. Gnova-dimitrova, M. Marechal, and J. Y. Sanchez, Chemical and physicochemical characterizations of ionomers, Electrochimica Acta, vol.51, issue.23, pp.4789-4801, 2006.
DOI : 10.1016/j.electacta.2006.01.022

URL : https://hal.archives-ouvertes.fr/hal-00333315

R. Guan, H. Dai, C. Li, J. Liu, and J. Xu, Effect of casting solvent on the morphology and performance of sulfonated polyethersulfone membranes, Journal of Membrane Science, vol.277, issue.1-2, pp.148-156, 2006.
DOI : 10.1016/j.memsci.2005.10.025

C. Manea and M. Mulder, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications, Journal of Membrane Science, vol.206, issue.1-2, pp.443-453, 2002.
DOI : 10.1016/S0376-7388(01)00787-6

W. J. Lau and A. F. Ismail, Theoretical studies on the morphological and electrical properties of blended PES/SPEEK nanofiltration membranes using different sulfonation degree of SPEEK, Journal of Membrane Science, vol.334, issue.1-2, pp.30-42, 2009.
DOI : 10.1016/j.memsci.2009.02.012

A. Rahimpour, S. Siavash-madaeni, S. Ghorbani, A. Shockravi, and Y. Mansourpanah, The influence of sulfonated polyethersulfone (SPES) on surface nano-morphology and performance of polyethersulfone (PES) membrane, Applied Surface Science, vol.256, issue.6, pp.1825-1831, 2009.
DOI : 10.1016/j.apsusc.2009.10.014

R. Guo, X. Fang, H. Wu, and Z. Jiang, Preparation and pervaporation performance of surface crosslinked PVA/PES composite membrane, Journal of Membrane Science, vol.322, issue.1, pp.32-38, 2008.
DOI : 10.1016/j.memsci.2008.05.015

S. Zhou, J. Kim, and D. Kim, Cross-linked poly(ether ether ketone) membranes with pendant sulfonic acid groups for fuel cell applications, Journal of Membrane Science, vol.348, issue.1-2, pp.319-325, 2010.
DOI : 10.1016/j.memsci.2009.11.015

L. Zhang, P. Yu, and Y. Luo, Dehydration of caprolactam???water mixtures through cross-linked PVA composite pervaporation membranes, Journal of Membrane Science, vol.306, issue.1-2, pp.93-102, 2007.
DOI : 10.1016/j.memsci.2007.08.036

Z. Li, F. Dong, L. Xu, S. Wang, and X. Yu, Preparation and properties of medium temperature membranes based on zirconium sulfophenylphosphate/sulfonated poly(phthalazinone ether sulfone ketone) for direct methanol fuel cells, Journal of Membrane Science, vol.351, issue.1-2, pp.50-57, 2010.
DOI : 10.1016/j.memsci.2010.01.027

C. Zahreddine, Y. S. Pak, and G. Xu, The conductivity of the novel PTFE polymer electrolytes, Solid State Ionics, vol.58, issue.1-2, pp.185-187, 1992.
DOI : 10.1016/0167-2738(92)90026-L

G. Xu and Y. S. Pak, Proton and deutron NMR study of PTFE ionomer membranes, Solid State Ionics, vol.50, issue.3-4, pp.339-343, 1992.
DOI : 10.1016/0167-2738(92)90238-K

B. Tsuchiya, Y. Konishi, S. Nagata, and T. Shikama, Interaction of water vapor with gamma-radiation-induced defects in proton conductive polymers, Solid State Ionics, vol.180, issue.6-8, pp.585-588, 2009.
DOI : 10.1016/j.ssi.2008.12.030

M. Wakizoe, O. A. Velevt, and S. Rinivasan, Analysis of proton exchange membrane fuel cell performance with alternate membranes, Electrochimica Acta, vol.40, issue.3, pp.335-344, 1995.
DOI : 10.1016/0013-4686(94)00269-7

N. S. Kaveh, S. N. Ashrafizadeh, and F. Mohammadi, Development of an artificial neural network model for prediction of cell voltage and current efficiency in a chlor-alkali membrane cell, Chemical Engineering Research and Design, vol.86, issue.5, pp.461-472, 2008.
DOI : 10.1016/j.cherd.2007.12.009

N. S. Kaveh, F. Mohammadi, and S. N. Ashrafizadeh, Prediction of cell voltage and current efficiency in a lab scale chlor-alkali membrane cell based on support vector machines, Chemical Engineering Journal, vol.147, issue.2-3, pp.161-172, 2009.
DOI : 10.1016/j.cej.2008.06.030

S. Cleghorn, J. Kolde, and W. Liu, Handbook of fuel cells, Technology and Applications, vol.3, pp.566-575, 2003.

M. K. Debe, A. K. Schmoeckel, G. D. Vernstrom, and R. Atanasoski, High voltage stability of nanostructured thin film catalysts for PEM fuel cells, Journal of Power Sources, vol.161, issue.2, pp.1002-1011, 2006.
DOI : 10.1016/j.jpowsour.2006.05.033

R. Sousy and B. Ameduri, Functional fluoropolymers for fuel cell membranes, Progress in Polymer Science, vol.30, issue.6, pp.644-687, 2005.
DOI : 10.1016/j.progpolymsci.2005.03.004

L. Ghassemzadeh, K. D. Kreuer, J. Maier, and K. Müller, Evaluating chemical degradation of proton conducting perfluorosulfonic acid ionomers in a Fenton test by solid-state 19F NMR spectroscopy, Journal of Power Sources, vol.196, issue.5, pp.2490-2497, 2011.
DOI : 10.1016/j.jpowsour.2010.11.053

C. H. Wirguin, Recent advances in perfluorinated ionomer membranes: structure, properties and applications, Journal of Membrane Science, vol.120, issue.1, pp.1-33, 1996.
DOI : 10.1016/0376-7388(96)00155-X

A. Eisenberg, Clustering of Ions in Organic Polymers. A Theoretical Approach, Macromolecules, vol.3, issue.2, pp.147-154, 1970.
DOI : 10.1021/ma60014a006

A. Eisenberg, Clustering of Ions in Organic Polymers. A Theoretical Approach, Macromolecules, vol.3, issue.2, pp.147-150, 1969.
DOI : 10.1021/ma60014a006

J. Y. Li and S. N. Nasser, Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane, Mechanics of Materials, vol.32, issue.5, pp.303-314, 2000.
DOI : 10.1016/S0167-6636(00)00002-8

H. G. Haubold, . Th, H. Vad, P. Jungbluth, and . Hiller, Nano structure of NAFION: a SAXS study, Electrochimica Acta, vol.46, issue.10-11, pp.1559-1563, 2001.
DOI : 10.1016/S0013-4686(00)00753-2

G. Gebel and O. Diat, Neutron and X-ray Scattering: Suitable Tools for Studying Ionomer Membranes, Fuel Cells, vol.46, issue.324, pp.261-276, 2005.
DOI : 10.1002/fuce.200400080

V. D. Noto, N. Boaretto, E. Negro, and G. Pace, New inorganic???organic proton conducting membranes based on Nafion and hydrophobic fluoroalkylated silica nanoparticles, Journal of Power Sources, vol.195, issue.23, pp.7734-7742, 2010.
DOI : 10.1016/j.jpowsour.2009.10.028

L. E. Karlsson and P. Jannasch, Polysulfone ionomers for proton-conducting fuel cell membranes: sulfoalkylated polysulfones, Journal of Membrane Science, vol.230, issue.1-2, pp.61-70, 2004.
DOI : 10.1016/j.memsci.2003.10.033

R. W. Kopitzke, C. A. Linkous, and G. L. Nelson, Thermal stability of high temperature polymers and their sulfonated derivatives under inert and saturated vapor conditions, Polymer Degradation and Stability, vol.67, issue.2, pp.335-344, 2000.
DOI : 10.1016/S0141-3910(99)00135-4

F. Liu, B. Yi, D. Xing, J. Yu, and H. Zhang, Nafion/PTFE composite membranes for fuel cell applications, Journal of Membrane Science, vol.212, issue.1-2, pp.213-223, 2003.
DOI : 10.1016/S0376-7388(02)00503-3

R. Bouchet and E. Siebert, Proton conduction in acid doped polybenzimidazole, Solid State Ionics, vol.118, issue.3-4, pp.287-299, 1999.
DOI : 10.1016/S0167-2738(98)00466-4

Z. S. Qureshi, K. M. Deshmukh, S. R. Jagtap, N. S. Nandurkar, and B. M. Bhanage, Ultrasound assisted regioselective sulfonation of aromatic compounds with sulfuric acid, Ultrasonics Sonochemistry, vol.16, issue.3, pp.308-311, 2009.
DOI : 10.1016/j.ultsonch.2008.10.001

P. G. Dimitrova, B. Baradie, D. Foscallo, C. Poinsignon, and J. Y. Sanchez, Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid, Journal of Membrane Science, vol.185, issue.1, pp.59-71, 2001.
DOI : 10.1016/S0376-7388(00)00634-7

URL : https://hal.archives-ouvertes.fr/hal-00418238

A. J. Vanzyl, J. A. Kerres, W. Cui, and M. Junginger, Application of new sulfonated ionomer membranes in the separation of pentene and pentane by facilitated transport, Journal of Membrane Science, vol.137, issue.1-2, pp.173-185, 1997.
DOI : 10.1016/S0376-7388(97)00190-7

Z. H. Lin, C. J. Guan, X. L. Feng, and C. X. Zhao, Synthesis of macroreticular p-(??-sulfonic-perfluoroalkylated)polystyrene ion-exchange resin and its application as solid acid catalyst, Journal of Molecular Catalysis A: Chemical, vol.247, issue.1-2, pp.19-26, 2006.
DOI : 10.1016/j.molcata.2005.11.008

J. F. Klebe, United States Patent, pp.20-23, 1971.

J. Benavente, J. M. Garcia, R. Riley, A. E. Lozano, and J. De-abajo, Sulfonated poly(ether ether sulfones), Journal of Membrane Science, vol.175, issue.1, pp.43-52, 2000.
DOI : 10.1016/S0376-7388(00)00395-1

J. M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa et al., Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells, Solid State Ionics, vol.147, issue.1-2, pp.189-194, 2002.
DOI : 10.1016/S0167-2738(02)00011-5

J. A. Asensio, S. Borros, and P. G. Romero, Enhanced conductivity in polyanion-containing polybenzimidazoles. Improved materials for proton-exchange membranes and PEM fuel cells, Electrochemistry Communications, vol.5, issue.11, pp.967-972, 2003.
DOI : 10.1016/j.elecom.2003.09.007

R. Souzy and B. Ameduri, Functional fluoropolymers for fuel cell membranes, Progress in Polymer Science, vol.30, issue.6, pp.644-687, 2005.
DOI : 10.1016/j.progpolymsci.2005.03.004

URL : https://hal.archives-ouvertes.fr/hal-00382623

B. Smitha, S. Sridhar, and A. A. Khan, Solid polymer electrolyte membranes for fuel cell applications???a review, Journal of Membrane Science, vol.259, issue.1-2, pp.10-26, 2005.
DOI : 10.1016/j.memsci.2005.01.035

T. Sasuga, N. Hayakawa, K. Yoshida, and M. Hagiwara, Degradation in tensile properties of aromatic polymers by electron beam irradiation, Polymer, vol.26, issue.7, pp.1039-1045, 1985.
DOI : 10.1016/0032-3861(85)90226-5

R. K. Nagarale, G. S. Gohil, and V. K. Shahi, Recent developments on ion-exchange membranes and electro-membrane processes, Advances in Colloid and Interface Science, vol.119, issue.2-3, pp.97-130, 2006.
DOI : 10.1016/j.cis.2005.09.005

E. Vallejo, G. Pourcelly, C. Gravach, R. Mercier, and M. Pineri, Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/Mz+ by electrodialysis comparison with a perfluorosulfonic membrane, Journal of Membrane Science, vol.160, issue.1, pp.127-137, 1999.
DOI : 10.1016/S0376-7388(99)00070-8

URL : https://hal.archives-ouvertes.fr/hal-00559875

F. Piroux, E. Espuche, R. Mercier, M. Pinéri, and G. , Gas transport mechanism in sulfonated polyimides, Journal of Membrane Science, vol.209, issue.1, pp.241-253, 2002.
DOI : 10.1016/S0376-7388(02)00350-2

URL : https://hal.archives-ouvertes.fr/hal-00558784

F. Piroux, E. Espuche, R. Mercier, and M. Pinéri, Water vapour transport mechanism in naphthalenic sulfonated polyimides, Journal of Membrane Science, vol.223, issue.1-2, pp.127-139, 2003.
DOI : 10.1016/S0376-7388(03)00315-6

URL : https://hal.archives-ouvertes.fr/hal-00558725

J. Qiao, T. Hamaya, and T. Okada, New highly proton conductive polymer membranes poly(vinyl alcohol)???2-acrylamido-2-methyl-1-propanesulfonic acid (PVA???PAMPS), Journal of Materials Chemistry, vol.109, issue.41, pp.4414-4415, 2005.
DOI : 10.1039/b507924a

J. Qiao and T. Okada, Highly Durable, Proton-Conducting Semi-interpenetrating Polymer Networks from PVA/PAMPS Composites by Incorporating Plasticizer Variants, Electrochemical and Solid-State Letters, vol.9, issue.8, pp.379-381, 2006.
DOI : 10.1149/1.2206888

J. A. Asensio, S. Borros, and P. G. Romero, Enhanced conductivity in polyanion-containing polybenzimidazoles. Improved materials for proton-exchange membranes and PEM fuel cells, Electrochemistry Communications, vol.5, issue.11, pp.967-972, 2003.
DOI : 10.1016/j.elecom.2003.09.007

R. Bouchet and E. Siebert, Proton conduction in acid doped polybenzimidazole, Solid State Ionics, vol.118, issue.3-4, pp.287-299, 1999.
DOI : 10.1016/S0167-2738(98)00466-4

M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, and N. Ogata, Synthesis and proton conductivity of thermally stable polymer electrolyte: poly(benzimidazole) complexes with strong acid molecules, Electrochimica Acta, vol.45, issue.8-9, pp.1395-1398, 2000.
DOI : 10.1016/S0013-4686(99)00349-7

N. P. Balsara, Solid State & materials, Science, vol.3, pp.589-595, 1998.

C. A. Linkous, H. R. Anderson, R. W. Kopitze, and G. L. Nelson, Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures, International Journal of Hydrogen Energy, vol.23, issue.7, pp.525-529, 1998.
DOI : 10.1016/S0360-3199(97)00113-4

K. D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, Journal of Membrane Science, vol.185, issue.1, pp.29-38, 2001.
DOI : 10.1016/S0376-7388(00)00632-3

P. L. Antonucci, A. S. Arico, P. Creti, E. Ramunni, and V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion??-silica electrolyte for high temperature operation, Solid State Ionics, vol.125, issue.1-4, pp.431-437, 1999.
DOI : 10.1016/S0167-2738(99)00206-4

J. A. Kerres, Development of ionomer membranes for fuel cells, Journal of Membrane Science, vol.185, issue.1, pp.3-27, 2001.
DOI : 10.1016/S0376-7388(00)00631-1

K. Sasajima, H. Munakata, and K. Kanamura, Properties of Composite Membrane Consisting of 3DOM Silica Matrix Filled with Sulfonated Poly(1,4-phenylene ether ether sulfone) at Various Ratios, Journal of The Electrochemical Society, vol.155, issue.2, pp.143-147, 2008.
DOI : 10.1149/1.2815443

V. A. Sethuraman, J. W. Weidner, A. T. Haug, and L. V. Protsailo, Durability of Perfluorosulfonic Acid and Hydrocarbon Membranes: Effect of Humidity and Temperature, Journal of The Electrochemical Society, vol.155, issue.2, pp.119-124, 2008.
DOI : 10.1149/1.2806798

P. G. Dimitrova, B. Baradie, D. Foscallo, C. Poinsignon, and J. Y. Sanchez, Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid, Journal of Membrane Science, vol.185, issue.1, pp.59-71, 2001.
DOI : 10.1016/S0376-7388(00)00634-7

URL : https://hal.archives-ouvertes.fr/hal-00418238

S. Xue and G. Yin, Methanol permeability in sulfonated poly(etheretherketone) membranes: A comparison with Nafion membranes, European Polymer Journal, vol.42, issue.4, pp.776-785, 2006.
DOI : 10.1016/j.eurpolymj.2005.10.008

W. Zhang, C. M. Tang, and J. Kerres, Separation and pulvirization Technology, pp.22-23, 2001.

J. A. Kerres, Development of ionomer membranes for fuel cells, Journal of Membrane Science, vol.185, issue.1, pp.3-27, 2001.
DOI : 10.1016/S0376-7388(00)00631-1

S. Samajdar, F. F. Becker, and B. K. Banik, Surface-mediated highly efficient regioselective nitration of aromatic compounds by bismuth nitrate, Tetrahedron Letters, vol.41, issue.42, pp.8017-8020, 2000.
DOI : 10.1016/S0040-4039(00)01397-6

M. Shi and S. C. Cui, Perfluorinated rare earth metals catalyzed nitration of aromatic compounds, Journal of Fluorine Chemistry, vol.113, issue.2, pp.207-209, 2002.
DOI : 10.1016/S0022-1139(01)00551-6

S. J. Pak, G. D. Lyle, R. Mercier, and J. E. Mcgrath, Synthesis and characterization of novel toughened thermosets derived from pendent amines on the backbone of poly(arylene ether sulphone)s, Polymer, vol.34, issue.4, pp.885-895, 1993.
DOI : 10.1016/0032-3861(93)90377-M