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Président de jury : M. AUBRY Denis Ecole Centrale Paris
Rapporteurs : M. DUREISSEIX David INSA Lyon

M. GAGLIARDINI Olivier Université Joseph Fourier /
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Directeur de thèse : M. BEN DHIA Hachmi Ecole Centrale Paris
Examinateurs : M. LAROUR Eric Caltech - Jet Propulsion Laboratory

M. RIGNOT Eric University of California Irvine
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Abstract

Ice flow numerical models are essential for predicting the evolution of ice sheets in a warm-
ing climate. Recent research emphasizes the need for higher-order and even full-Stokes flow
models instead of the traditional Shallow-Ice Approximation whose assumptions are not
valid in certain critical but spatially limited areas. These higher-order models are however
computationally intensive and difficult to use at the continental scale. The purpose of this
work, therefore, is to develop a new technique that reduces the computational cost of ice
flow models while maximizing their accuracy. To this end, several ice flow models of vary-
ing order of complexity have been implemented in the Ice Sheet System Model, a massively
parallelized finite element software developed at the Jet Propulsion Laboratory. Analysis
and comparison of model results on both synthetic and real geometries shows that sophisti-
cated models are only needed in the grounding line area, transition between grounded and
floating ice, whereas simpler models yield accurate results in most of the model domain.
There is therefore a strong need for coupling such models in order to balance computa-
tional cost and physical accuracy. Several techniques and frameworks dedicated to model
coupling already exist and are investigated. A new technique adapted to the specificities of
ice flow models is developed: the Tiling method, a multi-model computation strategy based
on the superposition and linking of different numerical models. A mathematical analysis of
a mixed Tiling formulation is first performed to define the conditions of application. The
treatment of the junction between full-Stokes and simpler models that decouple horizontal
and vertical equation is then elaborated in order to rigorously combine all velocity compo-
nents. This method is finally implemented in the Ice Sheet System Model to design hybrid
models that combine several ice flow approximations of varying order of complexity. Fol-
lowing a validation on synthetic geometries, this method is applied to real cases, such as
Pine Island Glacier, in West Antarctica, to illustrate its relevance. Hybrid models have the
potential to significantly improve physical accuracy by combining models in their domain
of validity, while preserving the computational cost and being compatible with the actual
computational resources.

Key-words: glaciology, glaciers, ice sheet flow, numerical modeling, hybrid model, Tiling
method, multi-model.
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Résumé

La modélisation numérique des écoulements de glace est indispensable pour prédire l’évolution
des calottes polaires suite au réchauffement climatique. De récentes études ont souligné
l’importance des modèles d’écoulement dits d’ordre supérieur voir même de Stokes au lieu
de la traditionnelle approximation de couche mince dont les hypothèses ne sont pas valables
dans certaines zones critiques mais à l’étendue limitée. Cependant, ces modèles d’ordre
supérieur sont difficiles à utiliser à l’échelle d’un continent en raison de leurs temps de
calculs prohibitifs. Ce travail de thèse propose une nouvelle technique qui permet de ré-
duire les temps de calculs tout en maximisant la précision des modèles. Plusieurs modèles
d’écoulement de glace de complexité variables ont été mis en place dans ISSM (Ice Sheet
System Model), un code élément fini massivement parallèle développé par le Jet Propul-
sion Laboratory. L’analyse et la comparaison des différents modèles, à la fois sur des cas
théoriques et réels, montrent que l’utilisation des modéles les plus complets est principale-
ment nécessaire au voisinage de la zone d’échouage, transition entre les parties flottantes
et posées de la glace, mais aussi que des modèles plus simples peuvent être utilisés sur la
majeure partie des glaciers. Coupler différents modèles présente donc un avantage signifi-
catif en terme de temps de calcul mais aussi d’amélioration de la physique utilisées dans
les modèles. Plusieurs méthodes de couplage de modèles existent et sont présentées dans ce
manuscrit. Une nouvelle technique, dite de tuilage, particulièrement adaptée au couplage
de modèles d’écoulement de glace est décrite ici : son principe repose sur la superposition et
le raccordement de plusieurs modèles mécaniques. Une analyse mathématique est effectuée
afin de définir les conditions d’utilisation de cette méthode de tuilage. Le traitement du
couplage entre un modèle de Stokes et des modèles simplifiés, pour lesquels le calcul des
vitesses horizontales et verticales est découplé, est ensuite présenté. Cette technique a été
mise en place dans ISSM afin de pouvoir créer des modèles hybrides combinant plusieurs
modèles d’écoulement de complexité variable. Après avoir été validée sur des cas synthé-
tiques, cette technique est utilisée sur des glaciers réels comme Pine Island Glacier, dans
l’Antarctique de l’Ouest, afin d’illustrer sa pertinence. Les modèles hybrides ont le potentiel
d’améliorer la précision des résultats en combinant différents modèles mécaniques, utilisés
chacun dans les zones où leurs approximations sont valides, tout en réduisant les temps de
calcul et en étant compatibles avec les ressources informatiques actuelles.

Mots-clés: glaciologie, glaciers, écoulement des calottes polaires, modélisation numérique,
modèle hybride, méthode de tuilage, multi-modèle.
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Chapter 1

Introduction

1.1 History of glaciers and ice caps

1.1.1 The past 65 million years

Ice covers around 10% of the earth land surface [Paterson, 1994] and is present on every
continent. During the last 65 million years, the extent of ice coverage has considerably
changed over time. Ice sheets are relatively recent features that appeared in Antarctica
as climate changed from temperate to polar about 35 million years ago. The Antarctic ice
sheet formed about 34 million years ago [Mayewski et al., 2009]. This ice sheet was dynamic
and fluctuating in response to variations in the Earth orbit. Only about 14 millions years
ago did the Antarctic ice sheet become persistent, thicker, cooler and somewhat similar to
the actual ice sheet [Flower and Kennett , 1994]. It is thought to have persisted through
the early Pliocene warming. The Greenland ice sheet developed about 7 million years ago
[Mayewski et al., 2009], and the first ice sheets in northern Europe and North America
occured around 2.5 million years ago, following a global cooling around 3 million years ago
[Shackleton et al., 1984].

Over the last million years, the Earth regularly alternated between glacial, where ice covered
most of the Northern Hemisphere, and interglacial periods [Mayewski et al., 2009; Cuffey
and Paterson, 2010]. Studies of ice cores [Petit et al., 1999; EPICA Community members,
2004, 2006] reveal the response of ice sheets to modifications in insolation patterns caused by
orbital forcing and the association between atmospheric greenhouse gases and temperatures.
Glacial and interglacial periods alternated over periods of about 100,000 years, consisting
of long glacial cycles lasting about 90,000 years with temperatures 5◦C colder and sea level
120 meters lower than present, and short warm interglacial periods with a sea level close to
the present one, lasting about 10,000 years [Mayewski et al., 2009]. The warm events were
more pronounced and shorter during the last 500,000 years than during the previous 500,000
ones [Petit et al., 1999]. Climatic events happening in the north and south polar regions
seems to be correlated even when warm events in Antarctica preceded those in Greenland
[EPICA Community members, 2006].
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1.1.2 The last 50 years

Mass balance of a glacier is defined by the difference between the mass inputs and losses.
The mass inputs are caused by surface accumulation due to snow or ice precipitations,
snow drifting or any solid deposition (like subsurface accumulation caused by water freezing
or basal accretion in the case of ice shelves). Mass losses are caused by melting, surface
sublimation and ice calving [Paterson, 1994].

To evaluate the mass balance of large glaciers and ice caps, several methods exist. The first
possibility is to use the mass flux methods that estimate the difference between accumulation
and depth-averaged ice flux at gates (usually the grounding line) during a certain amount
of time [Whillans and Bindschadler , 1988]. The second one consists in performing repeated
measurements of the surface elevations with airborne or spaceborne altimeters [Zwally et al.,
2005] and then converting this volume change into a mass change by considering changes in
firn compaction and crustal isostatic adjustment. Another possibility is to use spaceborne
gravimetry [Velicogna and Wahr , 2005] to measure spatial and temporal variations in the
Earth’s gravity field with tandem satellites.

Recent observations point out an acceleration of ice loss in Greenland with a widespread
acceleration of glaciers below 66◦ north between 1996 and 2000, which expandeded north-
ward in 2005, resulted in an estimated increase in mass loss from 83 Gt/yr in 1996 to 183
Gt/yr in 2005 using the mass flux method [Rignot and Kanagaratnam, 2006]. Gravity mea-
surements between 2002 and 2009 conclude to a similar acceleration of mass loss from 104
to 246 Gt/yr [Velicogna, 2009]. Combining these observations, Rignot et al. [2011] estimate
the ice discharge rate of the Greenland Ice Sheet between 1992 and 2009 to 250 ± 40 Gt/yr
and its acceleration to 18 Gt/yr2.

In West Antarctica, ice discharge from the main glaciers (Pine Island, Thwaites and Smith
glaciers) is estimated to be around 227 Gt/yr and the mass loss has increased 170% following
the acceleration of these glaciers, or from 39 ± 15 Gt/yr to 105 ± 27 Gt/yr between 1996
and 2007 [Thomas et al., 2004; Rignot , 2008]. Inflow of warm ocean waters is thought to
have caused these modifications in ice dynamics [Shepherd et al., 2004; Payne et al., 2004].

Major changes are also happening in the Antarctic Peninsula where thousand years old
ice shelves are not only retreating but also experience rapid collapse in response to regional
warming. Seven out of twelve ice shelves have significantly retreated or been almost entirely
lost and 87% of the 244 marine glacier fronts have retreated during the past 61 years [Cook
et al., 2005; Cook and Vaughan, 2010]. The collapse of these ice shelves have resulted in
significant acceleration of their tributary glaciers. After the desintegration of Larsen A in
1995, its tributary glaciers experienced acceleration, thinning and retreat [Rott et al., 2002;
De Angelis and Skvarca, 2003]. Similarly for the collapse of a large section of Larsen B ice
shelf in 2002, the lower parts of four glaciers flowing into the collapsed portion of the shelf
accelerated and began to thin within months after the collapse; two tributary glaciers that
were flowing into the surviving part of the ice sheld experienced no changes [Scambos et al.,
2004; Rignot et al., 2004].

East Antarctica seems to be less affected, which could be due to a modest increase in
snowfall that could lead to a small thickening [Alley et al., 2005]. However, two regions,
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Totten and Cook glaciers, have significantly negative mass balance conditions, proving that
East Antarctica is not immune to changes [Rignot , 2006]. Overall, Rignot et al. [2011]
estimate the average ice discharge rate in Antarctica between 1992 and 2009 to 200 ± 150
Gt/yr and its acceleration to 14 Gt/yr2.

1.1.3 An uncertain future

Without human intervention, a climate similar to the present one would extend well into
the future, but the predicted increase in greenhouse gases makes this scenario very unlikely
[EPICA Community members, 2004]. Anthropogenic effects are affecting the climate, and
model suggests that over the 21st century, the Antarctic interior will warm by 3.4 ± 1◦C
and sea ice extent will decrease by about 20% [Mayewski et al., 2009].

Global warming is happening faster than anticipated by models projections. One of the
main effects of this warming is the rise of sea level. IPCC-AR4 [2007] forecast the sea level
rise to be less that 1 meter by 2100 in response to thermal extension of the ocean and the
melting of glaciers at mid-latitude and in polar regions. But ice dynamics is not included
in this estimate. If mountain glaciers melting and ocean dilation were the main causes of
sea-level rise during the twentieth century, influx of fresh water from the Antarctic and
Greenland ice sheets will soon overtake steric effects as the most important contributions
to sea level rise.

A recent study by Rignot et al. [2011] based on observations over the last decade concludes
that the increase in sea level caused by ice discharge from the Antarctic and Greenland Ice
Sheets will reach 56 cm if the current rate of acceleration in ice sheet loss (36.5 Gt/yr2)
remains constant during the next century. However a constant acceleration is unlikely. The
potential increase in sea level due to the collapse of the West Antarctic Ice Sheet is estimated
to 3.3 meters [Bamber et al., 2009b]. If all the ice of the Greenland Ice Sheet were to melt,
the sea level rise following this event would reach 7 meters; for Antarctic Ice Sheet, the sea
level rise would increase by 65 meters (5 meters for West Antarctica and 60 meters for East
Antarctica).

1.1.4 Importance of ice dynamics

Several processes drive changes of the ice sheet evolution. They can be separated into surface
mass balance and dynamic changes. Surface mass balance changes include modifications in
the amount of precipitations or changes in the amount of precipitation that is effectively
transformed into ice. Snowfalls tend to increase when climate warms in cold polar regions
but changes can also be caused by shifts in atmospheric circulation [Van den Broeke, 2000].
Surface mass balance can be reduced by increased summer air temperature that enhance
surface melt and decrease the amount of precipitation reaching the surface as snow rather
than rain [Cuffey and Paterson, 2010].

Dynamic changes are caused by modifications in ice properties, glaciers’ geometry or forces
applied to the ice. Thinning and retreat of marine terminated ice streams reduce the but-
tressing forces and cause ice streams to accelerate [Schmeltz et al., 2002]. Warming of oceans
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increases ice shelves bottom melting and lead to ice shelves thinning and grounding line re-
treat. Gagliardini et al. [2010] showed that not only the melt rate but also its repartition
influence the ice sheet response. Any mechanism that reduces the ice viscosity or increases
the bed slipperiness tends to thin the ice sheet [Cuffey and Paterson, 2010]. Indirect mech-
anisms also affect the ice sheet evolution as glaciers and ice sheets interact with the rest of
the Earth system.

Detailed and realistic modeling of the Antarctic and Greenland Ice Sheets is therefore needed
to improve our understanding of the ice sheets evolution and to make projections of sea
level rise in a warming climate. As pointed out by the Intergovernmental Panel on Climate
Change (IPCC) Fourth Assessment Report [IPCC-AR4 , 2007], uncertainties associated to
ice sheets evolutions dominate the projections of sea level rise. IPCC-AR4 [2007] forecasts
are therefore conservative as they do not take into account the ice dynamics. Modeling the
dynamics of an ice sheet consists not only of modeling the evolution of its velocity fields,
but also the evolution of its temperature and geometry. Therefore, accurate modeling of ice
sheets response requires a good representation of the physics of ice motion, well-constrained
boundary conditions and computationally scalable software packages.

Several initiatives are being developed and funded to improve projections and produce
reasonable estimates of ice sheet contribution to sea level. The two largest efforts are the
European initiative ice2sea and the American effort SeaRISE. However, these programs rely
on ice flow models that need to be improved to better include the physical processes that
drive ice sheets evolution.

1.2 Ice flow models

Ice flow models are based on the momentum balance, mass continuity and heat budget
equations. Ice flow models can be divided into two categories: flow line/flow band models
that only include one horizontal dimension and planview/3d models that include the two
horizontal dimensions. Flow line or flow band models requires lateral shear to be parame-
terize. For this reason, they are difficult to use to model dynamic changes and will not be
discussed in this thesis. We will focus on planview and 3d models for this work.

1.2.1 Beginnings of ice sheet modeling

Ice sheet modeling started in the late 1970’s with Mahaffy [1976] and Jenssen [1977] but
was limited by the computational power available at that time. Following the increase in
computational power and the rigorous establishment of the thermo-dynamic equations for
ice flow [Fowler and Larson, 1980; Morland and Sawicki , 1985], ice sheet models started to
perform continental-scale simulations [Huybrechts and Oerlemans, 1988; Huybrechts, 1990].
These models were mainly based on the Shallow Ice Approximation, also called shallow ice
sheet approximation as it is a good approximation to model grounded ice with almost no
sliding [Hutter , 1982b, 1993; Morland and Sawicki , 1985].

These models have been used to reconstruct glacial/interglacial cycles and understand the
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sensitivity of both Greenland Ice Sheet [Greve, 1997b; Ritz et al., 1997] and Antarctic Ice
Sheet [Pollard and DeConto, 2009] to changes. The majority of these models use the finite
difference method to solve the thermo-dynamic equations on regular grids, even though
finite element models are becoming more popular. The typical horizontal grid size vary
between 20 and 50 km.

However, if these models are able to perform paleoclimate reconstructions, the results after
thousand of years of spin-up do not coincide with the present-day conditions accurately
enough to use this type of initialization to model the future evolution of ice sheets for the
next hundreds of years.

1.2.2 Recent efforts and initiatives

The Shallow Ice Approximation allows to correctly reproduce the motion of grounded ice
with little sliding and is valid for the majority of areas on ice sheets, but breaks down in
critical areas like the ice divides, the shear margins or the grounding line, and is not ap-
propriate to model floating ice. For this reason, new approximations have been developed
to model ice flow. The most common ones include a bidimensional vertically integrated
model, called shallow ice stream approximation or shallow ice shelf approximation devel-
oped by MacAyeal [1989] and Morland and Zainuddin [1987] and the higher order three
dimensional model proposed by Blatter [1995] and Pattyn [2003]. Both models decouple
the full-Stokes equations into horizontal and vertical equations, in order to limit the compu-
tational ressources required. Several recent models also solve the full-Stokes equations for
three dimensional models [Martin et al., 2004; Zwinger et al., 2007; Pattyn, 2008; Morlighem
et al., 2010], but these models are difficult to use for continental scale simulations.

These new approximations are much more computationally intensive than the Shallow Ice
Approximation and cannot be used for paleoclimate reconstruction. Unlike models whose
initialization is based on long spin-up, these new models must rely on data assimilations to
reproduce the present day conditions. This method was introduced in ice sheet modeling by
MacAyeal [1992, 1993] to infer unknown parameters, like basal drag friction or ice viscosity,
and correctly reproduce the measured velocity. This method has been extensively used
for the shelfy-stream approximation [Rommelaere and MacAyeal , 1997; Vieli and Payne,
2003; Joughin et al., 2004; Larour , 2005; Khazendar et al., 2007] and recently applied to
higher-order and full-Stokes models by Morlighem et al. [2010]; Jay-Allemand et al. [2011].

Several large initiatives are underway to develope models able to improve projections of
sea level rise. Some of the most active members of the modeling glaciology community
include the Parallel Ice Sheet Model (PISM) developed by the University of Alaska [Bueler
et al., 2005; Bueler and Brown, 2009], the Community Ice Sheet Model (CISM), based on
the Glimmer community model and that is part of the Community Earth System Model
[Rutt et al., 2009], SICOPOLIS [Greve, 1997a], one of the only model that treat ice as a
polythermal fluid, and Elmer [Zwinger et al., 2007], a software based on finite elements.

A fully operational, three dimensional, thermomechanically coupled, evolutive ice sheet
model with higher-order or full-Stokes dynamics is not yet available. However, new compu-
tational ressources and efficiency of numerical methods have progressed to the point where
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such a model is likely to be possible in the coming years, taking advantage of adaptive grids
to obtain high spatial resolution where required [Blatter et al., 2010].

1.2.3 Further improvements

Although many improvements were made in ice sheet modeling during the last decade, many
more still need to be done to improve the accuracy and reliability of ice sheet projections.

A major challenge facing the models is the quality of available datasets. The new higher-
order models involve greater computational costs and long spin-ups become prohibitive,
so they need to rely on data assimilation for their initialization. The consistency between
the different present-day datasets becomes crucial as they drive the response of ice sheet
models. As pointed out by Rasmussen [1988], the inconsistency of the datasets limits the
reliability of the projection models. Models that are initialized with data assimilation to
reproduce the present-day conditions start by artificially redistributing the glacier mass,
not as a realistic projection but to reconcile the inconsistencies when the datasets are not
consistent. We showed [Seroussi et al., 2011] that at a high-resolution, ice sheet models are
fundamentally limited by the inconsistencies between ice thicknesses that are measured at
low spatial resolutions (several kilometers) along flight tracks and surface velocities that are
derived from InSAR (Interferometric Synthetic Aperture Radar) at very high resolutions
(50 to 300 meters). Although classical ice sheet models were not affected by this problem,
because of (1) their low spatial resolution and (2) long spin-ups, the quality of current ice
thicknesses makes new ice sheet models extremely difficult to use. New ice sheet models
are required to improve estimates of the ice sheet contribution to sea level rise but can be
affected by sparse ice thickness observations.

Full-Stokes models are thought to be essential to model the grounding line area, transition
between the grounded and floating ice [Nowicki and Wingham, 2008; Durand et al., 2009;
Morlighem et al., 2010] as other models fail to reproduce the ice behavior in this critical area
at which most changes are occurring. However using full-Stokes models at a continental
scale is so computationally intensive that this is a very difficult goal to achieve. Furthermore,
a very high spatial resolution is needed in these critical areas [Nowicki and Wingham, 2008;
Durand et al., 2009] making the cost of full-Stokes models even more prohibitive. First
applications using a three dimensional full-Stokes model with grounding line evolution have
been made recently but are limited to idealized geometries [Favier et al., 2012].

1.3 Overview of this thesis

Ice sheet modeling is at the frontier of many disciplines: glaciology, computational mechan-
ics, applied mathematics and computer science but also to a smaller extent remote sensing,
data processing and all the Earth system components that interact with the ice sheets. This
manuscript reflects this diversity and includes elements of both glaciology and numerical
modeling. The main goal of this thesis is to propose some improvements to the numerical
modeling of ice sheet thermo-dynamics, using enhanced multi-model formulations.
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1.3. OVERVIEW OF THIS THESIS

The second chapter is a brief state of the art of the physics and numerics of ice sheet systems.
We describe the different parts of an ice sheet system and the notations used in this thesis.
We then detail the conservation of mass, momentum and energy principles and apply them
to the case of ice, modeled as a viscous and incompressible fluid. We present the boundary
conditions of the system for each model and derive the general thermo-dynamic problem
describing our system. We finally list several methods that have been developed to combine
different physical or mechanical models describing the same system.

The third chapter introduces several common ice flow approximations, all derived from the
full-Stokes problem. We rigorously establish the equations and boundary conditions of these
mechanical models from the weak formulation of the full-Stokes problem. We then discuss
the domain of validity for each of these approximations.

The fourth chapter details the numerical implementation strategies as well as the algorithms
used in this work. We explain the choices made for the space and time discretizations,
present the weak formulation and Galerkin approximation of both mechanical and thermal
models, present the algorithms used to solved the non linearity of these two problems and
introduce the iterative schemes used to perform steady-state and transient simulations.
We then describe the strategies chosen for the software architecture, the parallelization
and partitioning of the domain and present some simple applications to square geometries
commonly used to compare model results.

The following chapter focuses on the coupling of different mechanical models. We first detail
the tiling method, a new method adapted from the Arlequin framework that is adapted to
multi-model formulations that can be advantageously used to combine ice flow models, and
present its main characteristics. We then apply this method to couple three of the most
common ice flow models: the shelfy-stream approximation, a higher-order model and the
full-Stokes equations. We emphasize the specificities of the coupling between these three
models.

The last chapter proposes some applications and results on both idealized and real geome-
tries, to validate the technique and its implementation. We first validate the method on
square ice sheets and ice shelves, then on an ice sheet with a bumpy bed that is not trans-
mitted to the surface (an interesting test case as full-Stokes and simpler models behave
differently) and finally apply the method to the case of Pine Island Glacier, West Antarc-
tica, as previous studies showed that a full-Stokes model is necessary in the critical region
of the grounding line.
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Physics of glaciers and numerical
methods: a brief state of the art
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CHAPTER 2. PHYSICS OF GLACIERS AND NUMERICAL METHODS

This chapter introduces the thermo-mechanical equations governing the physics of ice sheet
systems. The mechanical quantities (momentum, energy, mass, ...) are subject to funda-
mental conservation laws. In the context of continuum mechanics, conservation laws lead
to a set of field equations that must be satisfied for every point of Ω and at all time. Equa-
tions governing ice flow are the general equations used for any continuum solid or fluid
and are derived from conservation principles. Ice sheets interact with other components
of the Earth system: ocean, atmosphere and land. A detailed description of the thermal
and mechanical properties at these interfaces is therefore needed to describe ice flow. We
conclude this chapter by presenting some coupling methods that allow combining different
physical or mechanical models and present the requirements for coupling different ice flow
models of varying order of complexity.

2.1 Ice sheet system

We detail here the different parts of an ice sheet system and provide some definitions. We
then describe the same system from a modeling perspective and define the notations.

2.1.1 Components of ice sheet systems

Figure 2.1: Description of ice sheet systems, http://en.wikipedia.org/wiki/Ice_shelf

Figure 2.1 shows the different parts of an ice sheet system. Ice sheets are formed by the slow
transformation of snow into ice, which then deforms under its own weight. Ice sheets are
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very large masses of ice that cover areas over 50 000 km2. In some regions, the ice slides over
the underlying bedrock and the ice velocity can reach several thousands of meters per year.
These rivers of ice are called ice streams. If they terminate into the ocean and start to float,
the floating part is called ice shelf. Marine terminated glaciers are ice sheets whose bedrock
rests below sea level. No floating part develops for this type of glacier, so ice directly calves
into the sea to form icebergs when they reach the ocean. The grounding line marks the
transition between the grounded ice and the floating ice. The almost vertical ice cliff at the
seaward end of an ice shelf or a marine terminated glacier is the ice front. Ice sheet systems
interact with the ocean, the atmosphere and the bedrock upon which they lay.

2.1.2 Three-dimensional geometry and notations

To model this complex system, we adopt the following representation (Figure 2.2) that
shows a cross-section of the system. Let Ω be the domain we consider, which represents
indistinctly ice sheets, ice streams or ice shelves.

Bedrock

Ice Ω

Air

Ocean
Γu Γi

Γb

Γw

Γs

Figure 2.2: Description of the modeled ice sheet system (cross-section)

The border of the domain ∂Ω is divided into several sections to represent the interfaces
between ice and other media (ocean, atmosphere, ...). We use the following notations:

• Γs is the ice/air interface, the upper surface of the domain Ω

• Γb is the ice/bedrock interface, which is part of the lower surface of Ω

• Γi is the ice front, the almost vertical cliff where a glacier thins and ends. At the ice
front, ice can be in contact with ocean or air.
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• Γw is the ice/water interface below ice shelves, it does not include the ice front

• Γu is the lateral part of the border, ∂Ω, that is not an ice front. It includes points
that are neither on the ice/air interface, nor on the ice/ocean interface, nor on the
ice/bedrock interface, nor on the ice front: Γu = ∂Ω \ (Γs ∪ Γw ∪ Γb ∪ Γi)

• s (x, y) is the upper surface elevation

• b (x, y) is the lower surface elevation

• H (x, y) is the ice thickness (H = s− b)

2.1.3 Plane view geometry and notations

Some approximations and equations are bidimensional, in the horizontal plane. The nota-
tions for these bidimensional problems are slightly different (see figure 2.3). Ice occupies the
domain ω of the plan, which represents indistinctly ice sheets, ice streams and ice shelves.

γiIce ωγu

Bedrock

Ocean

Figure 2.3: Bidimensional modeled ice sheet system (top view)

The border of the domain ∂ω is divided into:

• γi the ice front

• γu the part of the border ∂ω that is not on the ice front: γu = ∂ω \ γi

Notations for the ice thickness, H, the upper surface elevation, s, and the lower surface
elevation, b, remain the same. For a plane view problem, the ice/bedrock, ice/air and
ice/ocean interfaces do not exist contrary to the three dimensional problem; these conditions
are included in the description of the plane view models.
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2.2 Mass balance

2.2.1 Mass balance equation

� Law of conservation of mass

Conservation of mass leads to the general mass balance equation or continuity equation:

∂ρ

∂t
+∇ · ρv = ṡ (2.1)

where ρ is the mass density of the ice, v its velocity, ∇ the divergence operator and ṡ a
function describing the production and destruction of ice (source and sink). This equation
is independent of the coordinate system used.

� Ice mass balance

We consider that the accumulation of ice only occurs at the surface of the glacier and that
melting only occurs at the glacier’s base, so there is no local production or destruction of
ice. The accumulation and melting that take place on the upper and lower surface are not
considered in the local mass balance equation:

∂ρ

∂t
+∇ · ρv = 0 (2.2)

� Ice incompressibility

For an incompressible body, the density remains unchanged during the motion:

dρ

dt
= 0 (2.3)

It follows that the mass balance equation (Eq. 2.2) is reduced to:

∇ · v = 0 (2.4)

The incompressibility of the ice is a reasonable assumption made in all ice sheet models
(Hooke [2005], p10). This is not true near the surface of a glacier where snow and firn are
undergoing compaction, but it is a valid assumption in most of the ice mass. The depth
at which firn becomes ice (density of 839 kg/m3) varies depending on the accumulation
rate and the temperature, but this depth is typically 60m to 70m [Paterson, 1994], to be
compared to the total ice thickness that reaches 3000m.
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2.2.2 Boundary condition

We define here the kinematic boundary conditions for the glacier lower and upper surface.

� Surface kinematic boundary condition

The evolution of the surface of a glacier is defined by:

∂s

∂t
+ us

∂s

∂x
+ vs

∂s

∂y
− ws = Ṁs (2.5)

where Ṁs is the surface mass balance in ice equivalent and us, vs, ws the components of
velocity at the surface.

� Lower kinematic boundary condition

The evolution of the lower surface of a glacier is defined by:

∂b

∂t
+ ub

∂b

∂x
+ vb

∂b

∂y
− wb = Ṁb (2.6)

where Ṁb is the basal mass balance in ice equivalent and ub, vb, wb the components of
velocity on the lower surface.

2.2.3 Depth-integrated mass balance equation

Glacier evolution is dictated by geometrical changes. These geometrical changes are due
to mass conservation, which includes dynamic thinning/thicknening and external forcings.
The conservation of mass states that the temporal change in ice thickness is the difference
between the net mass balance of the glacier (i.e., surface mass balance plus basal mass
balance) and the volume flux divergence.

To establish the mass conservation equation, we integrate the incompressibility equation
from the bed to the surface:

∫ s(x,y)

b(x,y)

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz = 0 (2.7)

We define the depth-averaged horizontal velocity v̄ = (ū, v̄)T , such that:
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ū =
1

H

∫ s(x,y)

b(x,y)
udz

v̄ =
1

H

∫ s(x,y)

b(x,y)
vdz

(2.8)

Equation (2.7) is equivalent to:

∫ s(x,y)

b(x,y)

(
∂u

∂x
+
∂v

∂y

)
dz + w (x, y, s(x, y))− w (x, y, b(x, y)) = 0 (2.9)

We write ws = w (x, y, s(x, y)) and wb = w (x, y, b(x, y)).

To integrate the two other terms in the integral, we use Leibniz rule of integration1 which
gives:

∂

∂x

∫ s(x,y)

b(x,y)
udz − ∂s

∂x
u (x, y, s(x, y)) +

∂b

∂x
u (x, y, b(x, y))

+
∂

∂y

∫ s(x,y)

b(x,y)
vdz − ∂s

∂y
v (x, y, s(x, y)) +

∂b

∂y
v (x, y, b(x, y))

+ ws − wb = 0 (2.11)

Using the bed and surface kinematic boundary conditions and the definition of the depth-
averaged velocity gives:

∂

∂x
(Hū) +

∂

∂y
(Hv̄) +

∂s

∂t
− Ṁs −

∂b

∂t
+ Ṁb = 0 (2.12)

As the ice thickness is H = s− b and introducing the bidimensional divergence operator ∇·,
the depth-averaged mass conservation equation is:

∂H

∂t
= −∇ · (v̄H) + Ṁs − Ṁb (2.13)

1Leibniz rule of integration:

∂

∂x

∫ b(x)

a(x)

f (x, z) dz =

∫ b(x)

a(x)

∂

∂x
f (x, z) dz +

∂b

∂x
f (x, b (x)) − ∂a

∂x
f (x, a (x)) (2.10)
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2.3 Momentum balance

2.3.1 Momentum balance equation

� Law of conservation of Momentum

Newton’s second law of motion states that the sum of all forces is equal to the rate-of-change
of linear momentum. Ice is considered as a deformable continuum body so the equilibrium
of linear momentum is the same as for any solid or fluid subjected to gravity (Coriolis effect
is negligible):

∇ · σ + ρg = ρ
dv

dt
(2.14)

where σ is the Cauchy stress tensor, ρ the ice density, v the ice velocity, dv/dt the material
derivative and g the acceleration due to gravity.

� Ice momentum balance

Although recent observations show an acceleration of many glaciers in Greenland and
Antarctica [Rignot et al., 2002b; Joughin et al., 2003; Rignot and Kanagaratnam, 2006],
these accelerations are small and the terms associated to these accelerations are negligible
compared to the acceleration due to gravity in particular [Reist , 2005]. Ice is therefore
generally modeled with quasi-static models (Paterson [1994], p258):

∇ · σ + ρg = 0 (2.15)

2.3.2 Ice behavior law

� Incompressibility

Because ice is considered incompressible, its behavior law only involves the deviatoric stress
tensor. The isotropic pressure does not contribute to its deformation (Hooke [2005], p13
and Paterson [1994]). The stress tensor is decomposed into a deviatoric stress and pressure
as follows:

σ′ = σ − 1

3
Tr (σ) [I] = σ + p [I] (2.16)

where σ′ is the deviatoric stress tensor, p the isotropic pressure and [I] the identity matrix.

Let (x, y, z) be a cartesian coordinate system, with z the vertical axis pointing upward.
In terms of deviatoric stress components and pressure, the momentum balance equations
(2.14) are:
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∂σ′xx
∂x

+
∂σ′xy
∂y

+
∂σ′xz
∂z

− ∂p

∂x
= 0

∂σ′yx
∂x

+
∂σ′yy
∂y

+
∂σ′yz
∂z

− ∂p

∂y
= 0

∂σ′zx
∂x

+
∂σ′zy
∂y

+
∂σ′zz
∂z

− ∂p

∂z
− ρg = 0

(2.17)

� Isotropy

Ice is often assumed to be an isotropic material, but this is not exact for thick ice masses
[Gow and Williamson, 1976; Azuma and Higashi , 1985]. Studies on Greenland and Antarc-
tic ice cores [Thorsteinsson et al., 1997; Azuma et al., 1999; Bargmann et al., 2010] show
that ice is isotropic only near the upper surface, as the crystallographic axes are randomly
distributed. Preferred directions start to develop deeper into the ice, from a random ori-
entation distribution at the upper surface to a vertical single maximum fabric along the
direction close to the vertical next to the glacier bed. Ice can only be considered isotropic
in the first hundreds of meters before a girdle starts to develop (sometimes observed even
in the lower part of the firn) and the fabric is completely anisotropic after a couple of
thousands of meters. However, the primary purpose of these drillings is to understand the
climatic changes in the past. Therefore drillings are performed in areas with very little
or no movement. Ice properties in ice streams and other fast moving areas remain poorly
understood.

Models that include a description of ice fabric exist. They have been used mainly to study
ice divides and compare modeled ice anisotropy and fabrics to ice core data [Gagliardini and
Meyssonnier , 1999, 2000] and are often based on orthotropic linear flow laws [Gillet-Chaulet
et al., 2005]. We will here consider ice as an isotropic material for the sake of simplicity.
This assumption is common to most large scale ice flow models even if theoretical studies
start quantifying the influence of anisotropy on the ice flow through the use of enhancement
factors [Ma et al., 2010].

� Glen’s flow law

As ice is considered viscous and incompressible, its behavior law only involves the deviatoric
stress tensor:

σ′ = 2µε̇ (2.18)

where µ is the viscosity. The viscosity is scalar as ice is considered isotropic.

The most common behavior law used to model ice is viscous power law whose coefficients
are based on John W. Glen’s experiments [Glen, 1955]. This law is known as Glen’s flow
law in glaciology and stands that:
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ε̇e =

(
σ′e
B

)n
(2.19)

where B is the ice hardness, which increases as the ice becomes stiffer, and n is a parameter
empirically determined (most studies have found that n ' 3, see Hooke [2005], p15 and
Paterson [1994], p86). This parameter is called flow law exponent. ε̇e and σ′e are the second
invariants of the strain rate and deviatoric stress tensors, defined as:

ε̇e =
1√
2

 ∑
i,j=1..3

ε̇2
ij

1/2

σ′e =
1√
2

 ∑
i,j=1..3

σ′2ij

1/2

(2.20)

The effective viscosity can be identified as:

µ =
B

2 ε̇e
n−1
n

(2.21)

� Viscosity temperature dependence

The viscosity parameter B depends on many parameters (ice temperature, fabric, etc). As it
is mostly affected by temperature, it can be described with a simple Arrhenius relationship:

A = A0 exp

(
− Q

RTh

)
(2.22)

where A = B−1/n is the creep parameter, Th the Kelvin temperature adjusted for melting
point depression, A0 a prefactor, R the universal gas constant and Q the activation energy
for creep.

Field measurements of glacier ice give a value around 60 kJ.mol−1 for the creep activation
energy [Paterson, 1994; Cuffey and Paterson, 2010]. Ideally the prefactor A0 should be
constant, observations show a variability that could be due to ice fabric or ice purity.

Above −10 ◦C, ice softens more than predicted by the Arrhenius relationship and tabulated
values based on field measurements such as those provided in table 2.1 are often used
[Paterson, 1994; Cuffey and Paterson, 2010].

2.3.3 Mechanical boundary conditions

� Ice/Air interface

The upper surface of ice sheets and glaciers is in contact with the atmosphere. This interface
is considered as a free surface as the air pressure is negligible compared to ice pressure. The
mechanical boundary condition at the ice/air interface is therefore:
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Temperature (◦ C) Creep parameter A (s−1 kPa−3)

0 6.8 10−15

-2 2.4 10−15

-5 1.6 10−15

-10 4.9 10−16

-15 2.9 10−16

-20 1.7 10−16

-25 9.4 10−17

-30 5.1 10−17

-35 2.7 10−17

-40 1.4 10−17

-45 7.3 10−18

-50 3.6 10−18

Table 2.1: Recommended factor for the creep parameter A for a flow law exponent n = 3
[Paterson, 1994]

σn ' 0 (2.23)

� Ice/Ocean interface

For ice shelves and glacier floating termini, the lower surface of ice is in contact with the
ocean as well as some parts of the ice front. At the ice/ocean interface, a Neumann boundary
condition is therefore applied.

The force applied is equal to the water pressure:

σn = −pw n = ρwgb n (2.24)

where ρw is the ice density and b the ice lower surface elevation with respect to sea level.

At the ice front, ice can either be in contact with air or in contact with both air and ocean
(ocean on the lower part and air on the upper part). A Neumann boundary condition is
therefore applied. If ice is only in contact with air at the ice front, the boundary condition
is similar to the ice/air interface:

σn ' 0 (2.25)

Where ice is in contact with the ocean, the force applied is equal to the water pressure:

σn = ρwgzn (2.26)
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where z is the elevation of the point considered. This condition can therefore be summarized
as:

σn = −pi n = ρwgmin (0, z)n (2.27)

so pi = pw for z < 0 (points below see level) but is equal to zero for areas above sea level.

� Ice/Bedrock interface

At the ice/bedrock interface, we specify the normal velocity and the tangential force. A
viscous friction law is used to model basal friction:

τb = −α2uτ (2.28)

where τb is the tangential components of external forces, uτ = u− (u · n)n the tangential
velocity at the ice/bedrock interface and α a ”friction-like” coefficient. This viscous friction
law is commonly used in ice sheet modeling [MacAyeal , 1989; Cuffey and Paterson, 2010].

We ensure that no ice penetrates into the bedrock using a non-interpenetration condition
at this ice/bedrock interface. Assuming that the bedrock does not move and there is no
melting or freezing at the ice/bedrock interface, the velocity normal to the ice/bedrock
interface is set to zero and equation (2.6) is reduced to:

wb = ub
∂b

∂x
+ vb

∂b

∂y
(2.29)

where (ub, vb, wb) are the components of velocity on the lower surface,

2.3.4 Full-Stokes equations

If we introduce the behavior law described above (section 2.3.2) and add the incompress-
ibility equation in system (2.17), we find the Stokes equations, commonly referred to as
full-Stokes equations in glaciology. Let (u, v, w) be the velocity components in a the Carte-
sian coordinate system, the equations read:
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∂

∂x

(
2µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂z

(
µ
∂u

∂z
+ µ

∂w

∂x

)
− ∂p

∂x
= 0

∂

∂x

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂y

(
2µ
∂v

∂y

)
+

∂

∂z

(
µ
∂v

∂z
+ µ

∂w

∂y

)
− ∂p

∂y
= 0

∂

∂x

(
µ
∂u

∂z
+ µ

∂w

∂x

)
+

∂

∂y

(
µ
∂v

∂z
+ µ

∂w

∂y

)
+

∂

∂z

(
2µ
∂w

∂z

)
− ∂p

∂z
− ρg = 0

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

(2.30)

2.3.5 Simplified mechanical models

These three simplified models are all derived from the full-Stokes equations. In this section,
we just present the equations, their rigorous derivation will be presented in chapter 3.

� Higher-order model

The three dimensional higher-order model was derived by Blatter [1995] and Pattyn [2003].
The assumptions made are:

• ∂w

∂x
<<

∂u

∂z

• ∂w

∂y
<<

∂v

∂z

• ∂σxz
∂x

<<
∂σzz
∂z

• ∂σyz
∂y

<<
∂σzz
∂z

So the full-Stokes equations are reduced to:
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∂

∂x

(
4µ
∂u

∂x
+ 2µ

∂v

∂y

)
+

∂

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂z

(
µ
∂u

∂z

)
= ρg

∂s

∂x

∂

∂x

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂y

(
4µ
∂v

∂y
+ 2µ

∂u

∂x

)
+

∂

∂z

(
µ
∂v

∂z

)
= ρg

∂s

∂y

∂

∂z

(
2µ
∂w

∂z

)
− ∂p

∂z
− ρg = 0

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

(2.31)

� Shelfy-stream approximation

The bidimensional shelfy-stream approximation was pioneered by MacAyeal [1989] and
Morland and Zainuddin [1987]. The assumptions made in this model are:

• ∂w

∂x
<<

∂u

∂z

• ∂w

∂y
<<

∂v

∂z

• ε̇xz = 0

• ε̇yz = 0

So the full-Stokes equations, after depth-average integration are reduced to the following
bidimensional equations:



∂

∂x

(
4µ̄H

∂u

∂x
+ 2µ̄H

∂v

∂y

)
+

∂

∂y

(
µ̄H

∂u

∂y
+ µ̄H

∂v

∂x

)
− α2u = ρgH

∂s

∂x

∂

∂x

(
µ̄H

∂u

∂y
+ µ̄H

∂v

∂x

)
+

∂

∂y

(
2µ̄H

∂u

∂x
+ 4µ̄H

∂v

∂y

)
− α2v = ρgH

∂s

∂y

∂

∂z

(
2µ
∂w

∂z

)
− ∂p

∂z
− ρg = 0

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

(2.32)

� Shallow ice approximation

The shallow-ice approximations is a semi-analytical three dimensional model presented by
Hutter [1983]. The only components of the stress tensor not neglected in this model are σ′xz
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and σ′yz. Additionally the horizontal derivative of vertical velocity are neglected compared
to the vertical derivatives of horizontal velocities so the full-Stokes equations are reduced
to:



∂

∂z

(
µ
∂u

∂z

)
− ρg ∂s

∂x
= 0

∂

∂z

(
µ
∂v

∂z

)
− ρg ∂s

∂y
= 0

∂p

∂z
+ ρg = 0

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

(2.33)

� Other models

Other models exist to describe the flow of ice sheets (see e.g. Hindmarsh [2004] for a more
complete list of existing models). Combinations of different models are also possible.

Pollard and DeConto [2009] model the evolution of the West Antarctic during the last five
million years with a combination of models. Their model uses the shallow ice approxima-
tion (SIA) for grounded ice [Hutter , 1982a] and the shallow-shelf approximation (SSA) for
floating ice [MacAyeal , 1989]. As the SIA is an analytical model, it is not influenced by
the results computed on the floating part with the SSA, the two models can therefore be
computed separately. In order to capture the grounding line effects, a mass-flux condition
is used at the transition between the two models [Schoof , 2007].

Another hybrid modeling approach, that combines SSA and SIA, is presented by Bueler and
Brown [2009]. Both SSA and SIA are computed separately, and the ice velocity is taken as
a weighted sum of the SSA and the non-sliding SIA. The SSA is used as a sliding law for
the SIA, and a parameter is used to balance the amount of displacement due to SSA and
SIA, ranging from SSA only on floating parts to SIA only when ice is frozen to the bedrock.
This approach does not consist in model coupling, as the ice flow model is taken as linear
combination of the two contributions, assumed to be independent.

As these models took the first steps in integrating hybrid models into the field of ice sheet
modeling, here we propose to go further and introduce a strong coupling between the main
ice flow approximations. A rigorous coupling of ice flow models is described in chapter 5.
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2.4 Energy balance

2.4.1 Energy balance equation

� Law of conservation of Energy

The energy balance equation states that for an isolated system, the total energy is constant
over time. If we consider that the heat flux vector follows Fourier’s law, the conservation of
energy is:

d

dt
(ρcT ) = ∇ · (k ∇ T ) + Φ (2.34)

where T is the ice temperature, c is the ice heat capacity, k the ice heat conductivity and
Φ the internal source of energy, such as viscous heating due to deformation.

The material derivative is the sum of the local derivative and the convective derivative:

d

dt
(ρcT ) =

∂

∂t
(ρcT ) + v · ∇ (ρcT ) (2.35)

So the conservation of energy imposes:

∂

∂t
(ρcT ) = −v · ∇ (ρcT ) +∇ · (k ∇ T ) + Φ (2.36)

The deformational heating or viscous heating due to internal deformation of ice [Paterson,
1994] is:

Φ = Tr (σε̇) (2.37)

� Ice thermal model

The temperature of the ice affects the flow through the parameter B, and also affects the
melting rate, which in turn affects the geometry and sliding of the glacier. A thermal model
is therefore essential to have a realistic model of ice flow. The temperature distribution is
determined by solving the thermal equation that only include one unknown.

We use several assumptions in the thermal model. The heat capacity and conductivity of
the ice are considered constant: we neglect their thermal and spatial dependence. These
assumptions are common and described by Hooke [2005], p117, and lead to a linear heat
equation:

∂T

∂t
= −v · ∇T +

k

ρc
∆T +

Φ

ρc
(2.38)
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The local heat transfer is thus a result of advection, conduction, and internal deformation
heating. The ice velocity is one parameter of the thermal equation. The thermal and
mechanical problems cannot be solved independently and we therefore have a couple thermo-
mechanical problem. Additionally, if ice temperature reaches the pressure melting point2,
ice starts to melt and the energy is used to transform ice into water. The temperature must
therefore verify the assumption T < Tpmp where Tpmp is the pressure melting point. This
constraint is discussed in section 2.4.3.

2.4.2 Thermal boundary conditions

� Ice/Air interface

The temperature on the upper surface is considered to be equal to the air temperature, we
therefore impose it to be equal to the mean annual temperature:

Ts = Tair (2.39)

Using the mean annual temperature as a boundary condition for the thermal model is a
common way to impose surface tempature (i.e.,Hulbe and MacAyeal [1999]; Pattyn [2003]).
If this approximation is not true in general, it remains a good assumption for cold and dry
sites where the maximum air temperature rarely rises to 0◦C. As the temperature variability
decreases with depth, the temperature of the air differs at most by 2◦C compared to the
firn temperature at 10 meters, with an average difference around 0.7◦C (e.g., Cuffey and
Paterson [2010] p. 405, Brandt and Warren [1997]).

� Ice/Ocean interface

At the ice/ocean interface, a heat flux is imposed. It mainly depends on the temperature
difference between the ocean and the ice. Simple parameterizations can be used to specify
this flux. Holland and Jenkins [1999] propose the following relation:

k ∇ T |b · n = −ρwcpMγ (Tb − Tpmp) (2.40)

where Tb the ice temperature on the lower surface, Tpmp the pressure metling point, k the
ice thermal conductivity, n the outward pointing normal vector, ρw the water density, cpM
the mixed layer specific heat capacity and γ the thermal exchange velocity.

2The pressure melting point is a term used in glaciology to define the temperature at which ice melts
under a given pressure.

February 10, 2012 29



CHAPTER 2. PHYSICS OF GLACIERS AND NUMERICAL METHODS

� Ice/bedrock interface

At the ice/bedrock interface, heat flux comes from both the geothermal heat flux and heat
due to basal friction. When ice temperature reaches the pressure melting point at the
base, ice starts to melt and energy is dissipated with this melting. The thermal boundary
condition is therefore:

k ∇ T |b · n = G− τb · uτ (2.41)

where G is the geothermal heat flux and the uτ the tangential velocity at the ice/bedrock
interface.

2.4.3 Thermal problem

There are two different ice thermal regimes:

1. Cold ice: all the ice is below the melting point and there is no liquid water

2. Temperate ice: ice is at pressure melting point everywhere; solid ice and liquid water
coexist.

These two regimes sometimes coexist and ice is then defined as polythermal : some areas
contain cold ice, others temperate ice.

The heat budget equation presented previously in this chapter does not account for phase
changes and does not include the constraint that ice temperature cannot exceed pressure
melting point and is not appropriate to model temperate ice. If the heat provided is sufficient
to increase the ice temperature to the pressure melting point, the excess heat induces ice to
melt into water. Several methods exist to tackle this problem of phase change. We briefly
present here some of the techniques used to represent ice temperature.

� Ice temperature in Greenland and Antarctica

Ice reaches melting point not only in mountain glaciers [Aschwanden and Blatter , 2009]
but also in some parts of the Greenland ice sheet [Greve, 1997a, b] and the Antarctic ice
sheet [Calov et al., 1998; Savvin et al., 2000; Siegert et al., 2005]. Greve [1997a] showed
that the basal temperature reaches melting point in almost half of the Greenland ice sheet,
these areas being mainly located along the coast. Aschwanden et al. [submitted] find similar
results using an enthalpy method (see section 2.4.3). A comparison of basal temperature
and melting rate is provided in figures 2.4 and 2.5 for a cold ice model (see section 2.4.3)
and a model using an enthalpy formulation.

For the Antarctic ice sheet, Siegert et al. [2005] showed that the ice basal temperature is
at the pressure melting point in many areas and that the basal water thickness reaches 0.2
m in some areas, where the subglacial temperatures are warm and the bedrock is smooth,
which induced strong basal sliding.

30 February 10, 2012



2.4. ENERGY BALANCE
14 Aschwanden and others: An enthalpy formulation for glaciers and ice sheets

Figure 6. Pressure-adjusted temperature at the base for the control run (left) and the cold-mode run (right). Hatched area indicates

where the ice is temperate. Values are in degrees Celsius and contour interval is 2 ◦C. The dashed line is the cold-temperate transition

surface.

so on. We have identified which fields are needed as bound-

ary conditions for an enthalpy formulation, possibly provided

through such coupling.

The enthalpy formulation can be used to simulate both

fully-cold and fully-temperate glaciers. Neither prior knowl-

edge of the thermal structure nor a parameterization of the

cold-temperate transition surface (CTS) is required.

Our application to Greenland shows that an enthalpy for-

mulation can be used for continent-scale ice flow problems.

The magnitude and distribution of basal melt rate, a ther-

modynamical quantity critical to modeling fast ice dynamics

in a changing climate, can be expected to be more realistic

in an energy-conserving enthalpy formulation than in most

existing ice sheet models.
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� Cold ice model

Cold ice models treat ice as an incompressible viscous fluid that conducts heat and contains
only one constituent: solid ice. To prevent ice temperatures from exceeding the pressure
melting point, a Dirichlet condition is generally employed to impose the temperature to be
at the pressure melting point at these locations [Hutter , 1993]:

Tpmp (p) = T0 − c (p− p0) (2.42)

where Tpmp is the ice pressure melting point at pressure p, T0 the reference pressure melting
point (0.01 ◦ C) at pressure p0 (630 Pa).

The excess heat is artificially transformed into basal mass balance, for example in Rutt et al.
[2009]:

Ṁb =
k

ρL

(
∂T ∗

∂z
− ∂T

∂z

)
(2.43)

where Ṁb is the basal mass balance (melting rate), k the ice thermal conductivity, ρ the ice
density, L the specific latent heat of fusion, T ∗ the temperature computed (before imposing
the temperature to be equal to the pressure melting point) and T the final temperature
(equal to the pressure melting point).

Greve [1997b] and Aschwanden et al. [submitted] showed that using this model instead of a
polythermal model creates only small differences on the Greenland ice sheet. Greve [1997b]
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Figure 7. Thickness of the basal temperate ice layer for the control run (left) and the cold-mode run (right). Values are in meters and

contour interval is 25 m. The dashed line is the cold-temperate transition surface. Dotted areas indicate where the bed is temperate but

the ice immediately above is cold.
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runs a steady-state model of the Greenland ice sheet under present-day conditions. The
model is initialized with the present-day topography and a homogeneous temperature of
-10◦C. After 100,000 years, the two models (cold ice and polythermal ice models) exhibit
different volume and maximum height of temperate ice, but the total volume, maximum
height, fraction of basal temperature at the pressure melting point and area covered by ice
are similar. The difference is of the order of 1%.

Cold ice models do not account for the latent heat stored as liquid water within temperate
ice, such schemes are therefore not conserving energy when temperate ice is present. How-
ever, a cold ice model is a reasonable and simple way of representing ice temperature in the
ice, as long as the pressure melting point is only reached on basal points.

� Temperate ice model

Temperate ice is at the pressure melting point everywhere and ice is composed of both solid
ice and liquid water. Temperate ice models are based on the classical mixture theories and
include a moisture content [Müller , 1985]. Each point is considered to be simultaneously
occupied by all the constituents of the mixture, here ice and water.

There is a hierarchy of mixture models [Müller , 1985] depending on the amount of the
components into the mixture. The first category is appropriate for modeling diffusive motion
of a particular substance contained as a contaminant of impurity in another substance. In
this case, the balance laws of momentum and energy are only formulated for the mixture
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as a whole. The second category models the interaction forces between the constituents.
The energy balance is formulated for the mixture as a whole but both momentum and
mass balances are formulated for all the constituents. The last category is a full-mixture
thermodynamics where all balance equations are formulated for all the components.

As only a small fraction (less than 5%) of the volume is composed of water Hutter [1993];
Greve [1997a], the water can be considered as a tracer component whose motion is relative
to the mixture model and described by Fickian diffusion [Müller , 1985]. In this model, only
one momentum and energy balance equations are formulated for the mixture as a whole but
two mass balances are used, one for each component of the mixture Müller [1985]; Hutter
[1993].

Müller [1985] introduces the volume fraction of water in the mixture ωv and the mass
fraction of water in the mixture ωm:

ωv =
Vw
V

and ωm =
mw

m
(2.44)

where Vw is the volume of water, V the total volume of the mixture, mw the mass of water
and m the total mass of the mixture. If we write ρi the ice density and ρw the water density,
the density of the mixture ρ and its velocity v are:

ρ = (1− ωv) ρi + ωvρw

ρv = (1− ωv) ρivi + ωvρwvw

(2.45)

with vi the ice velocity and vw the water velocity.

As the amount of water into the ice is small, the density of temperate ice stays close to
the cold ice density (variation of less than 0.5% if there is 5% water in the mixture [Greve,
1997a]), so the mixture is considered incompressible and its mass balance is ∇ · v = 0.

The energy balance of the system is:

∂ε

∂t
= −∇ · (εv +D) + Φ (2.46)

where ε is the internal energy of the system, D the diffusivity of the mixture and Φ the
internal deformation heat.

As the ice is temperate, all constituents of the mixture are at pressure melting point. The
energy of the mixture is therefore:

ε = c Tpmp + L ωm (2.47)

where c is the ice heat capacity and L the latent heat of fusion.

If we consider the diffusivity of the mixture to follow a Fourier law D = −k∇Tpmp (because
the mixture temperature is the pressure melting point), the thermal diffusivity of temperate
ice to be k and the motion of liquid water relative to the mixture motion to be described by
a Fickian diffusion law ωm (vw − v) = −ν∇ωm, the energy balance of the mixture is after
transformations:

d

dt
(cTpmp + Lωm) = Lν∆ωm +∇ · (k∇Tpmp) + Φ (2.48)
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� Polythermal ice model

Ice is called polythermal when it contains both cold ice and temperate ice. Polythermal ice
models include both types of ice, these two areas being separated by the cold-temperate tran-
sition surface (CTS) [Hutter , 1993]. Polythermal ice models have been developed by Fowler
and Larson [1978]; Hutter [1993] and Greve [1997a] to correctly include phase changes.

The main addition of these models is therefore the inclusion of the cold-temperate transition
surface to separate the cold ice from the temperate ice. The transition between cold and
temperate ice is not smooth but constitutes a phase-change interface and therefore happens
at a singular interface where Stefan-type matching conditions are applied.

Polythermal models track liquid water produced in temperate ice areas by dissipation heat-
ing. These models therefore have the ability to better compute the ice temperature as well
as basal melt rates, which matters in fast flow areas that are controlled by the presence of
pressurized water in the ice bed [Schoof , 2010]. This model has been successfully applied,
in the case of Greenland in particular [Greve, 1997a, b].

However, energy jump conditions at the cold-temperate surface transition are difficult to
apply and make polythermal models very complicated to develop and implement. An al-
ternative solution is to employ enthalpy formulations.

� Enthalpy method

An alternative to polythermal models as described in the previous section is the enthalpy
method. Although frequently used in fluid dynamics, this method is rarely employed in ice
sheet modeling. Mentioned by Hutter [1993], a simplified version was used in a flow line
model by Calvo et al. [1999]. Aschwanden [2008] derived a mathematical model based on
enthalpy before proposing a general enthalpy formulation for glaciology [Aschwanden et al.,
submitted].

An enthalpy formulation can be used for both cold and temperate ice: a small change in
enthalpy reflects a small change in temperature for cold ice and a small change in the fraction
of liquid water for temperate ice. Both cold and temperate ice are therefore treated in a
single formulation with an enthalpy equation. This method does not require tracking the
cold-temperate ice surface and is consequently computationally advantageous. Furthermore,
the energy fluxes in supraglacial runoff and subglacial aquifers can be treated in the same
framework. This framework unifies the treatment of the energy conservation for en-glacial,
sub-glacial and supra-glacial liquid water [Aschwanden et al., submitted].

The specific enthalpy H and internal energy are linked as follows [Aschwanden and Blatter ,
2009]:

H = ε+
p

ρ
(2.49)

where ε is the specific internal energy and p the pressure. If a material is heated under con-
stant pressure (isobaric), the specific enthalpy is directly dependent on the specific internal
energy: ∆H = ∆ε. We only consider this case here.
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For cold ice, we suppose that the diffusivity follows a Fourier law with a diffusivity coefficient
ki. As a change of enthalpy is only associated to a change in temperature, the enthalpy
equation for cold ice is:

ρ

(
∂H

∂t
+ v · ∇H

)
= ∇ ·

(
ki
Ci
∇H

)
+Q (2.50)

In temperate ice, the ice temperature is at the pressure melting point and a change of
enthalpy is associated to a change in the water fraction. The thermal conductivity of the
mixture is k = (1− ωm) ki + ωmkw. As for the case of temperate ice, a Fick-type diffusion
is used to express the diffusive water flux [Hutter , 1982b]:

ρwωvL (vw − v) = −k0

L
∇H (2.51)

where k0 is a small positive constant.

The enthalpy equation for temperate ice is:

ρ
∂H

∂t
+ ρv · ∇H = ∇ ·

(
k0

L
∇H

)
+∇ · (k∇Tpmp) + Φ (2.52)

An enthalpy equation valid for both cold and temperate ice can be written as:

ρ

(
∂H

∂t
+ v · ∇H

)
= Φ +


∇ ·
(
ki
Ci
∇H

)
if H < Hs

∇ ·
(
k∇Tpmp +

k0

L
∇H

)
if Hs < H < Hl

(2.53)

where Hs is the enthalpy of pure ice and Hl the enthalpy of pure liquid water at the pressure
melting point Tpmp.

This approach is appropriate for most polythermal glaciers except for fully temperate glacier
where a momentum balance equation should be specified for each constituent [Hutter , 1983;
Aschwanden et al., submitted], as we make the assumption that liquid water is present in
relatively small quantities (less than 5%) in temperate ice. In the case of Antarctica and
Greenland were most of the ice is cold except for a temperate layer at the ice/bedrock
interface, this model is appropriate.

In glaciers and ice sheets, enthalpy is a function of temperature, water content and pressure.
The temperature and water fraction are retrieved from the enthalpy (see figure 2.6) as
follows:

• For cold ice H < Hs:

T =
H −Hs

c
+ Tpmp

ω = 0

• For temperate ice Hs < H < Hl:
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T = Tpmp

ω =
H −Hs

L

where Hs is the enthalpy of pure ice and Hl the enthalpy of pure liquid water at the pressure
melting point Tpmp. The case of pure water where enthalpy is above the enthalpy of pure
liquid water Hl is not considered here.

Water fraction ωTemperature T

Enthalpy H

1

0

Tpmp

Hs Hl

Cold ice Liquid waterTemperate ice

Figure 2.6: Temperature/Enthalpy (black line) and Temperature/Water fraction (blue line)
functions. Hs and Hl are the enthalpy of pure ice and pure water at the pressure melting
point Tpmp and mark the limit between the cold ice, temperate ice and liquid water domains.

� Methodology adopted in this thesis

The work presented in this thesis focuses primarily on the modeling of the Greenland and
Antarctic Ice Sheet. For these continents, ice mainly reaches the pressure melting point
close to the bedrock. We decided to use a cold ice model for our work. However, as ice
reaches the melting point mostly at the bedrock, we consider that ice is cold everywhere
except at the ice/bedrock interface. The boundary condition on the lower surface must be
changed to account for ice melting in areas where ice reaches the pressure melting point.

The treatment of this condition is detailed in a forthcoming chapter, section 4.3.

2.5 General ice flow problem

The general thermo-dynamic problem describing ice flow is modeled by the following local
equations:

∀M ∈ Ω, ∀t ∈ [0, tf ] , Find (u, v, w, p, T ) :

36 February 10, 2012



2.5. GENERAL ICE FLOW PROBLEM



∂

∂x

(
2µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂z

(
µ
∂u

∂z
+ µ

∂w

∂x

)
− ∂p

∂x
= 0

∂

∂x

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂y

(
2µ
∂v

∂y

)
+

∂

∂z

(
µ
∂v

∂z
+ µ

∂w

∂y

)
− ∂p

∂y
= 0

∂

∂x

(
µ
∂u

∂z
+ µ

∂w

∂x

)
+

∂

∂y

(
µ
∂v

∂z
+ µ

∂w

∂y

)
+

∂

∂z

(
2µ
∂w

∂z

)
− ∂p

∂z
− ρg = 0

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

∂T

∂t
= −v · ∇T +

k

ρc
∆T +

Φ

ρc

∂H
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= −∇ · (v̄T ) + Ṁs − Ṁb

(2.54)

The problem is completed by the mechanical boundary conditions:



Upper surface Γs : σn = 0

Ice/Water interface Γw : σn = pwn

Ice Front Γi : σn = pin

Ice sheet base Γb : τb = −α2uτ

wb = ub
∂b

∂x
+ vb

∂b

∂y

Other lateral borders Γu : u = uobs

(2.55)

and the thermal boundary conditions:



Upper surface Γs : T = Tair

Icesheet base Γb : k∇ T |b · n = G− τb · uτ

Iceshelf base Γw : k ∇ T |b · n = −ρwcpMγ (Tb − Tpmp)

Other borders Γu ∪ Γi : ∇ T · n = 0

(2.56)

This problem is described using the full-Stokes equations and a cold-ice model, but these
components can be replaced by other mechanical and/or thermal models.

February 10, 2012 37



CHAPTER 2. PHYSICS OF GLACIERS AND NUMERICAL METHODS

The mechanical and thermal problems are coupled. However the mechanical and thermal
parts of the problem are generally solved independently. Details on the different mechanical
models employed in ice sheet modeling are provided in chapter 3. The procedure used to
combine thermal, mechanical and mass balance problems and compute steady-state and
evolutive models is then described in chapter 4.

2.6 Multi-model methods

Several sets of equations with different degrees of sophistication are often available to model
the physics of the same system; this is the case for ice sheet flow, as several approximations
of the full-Stokes equations have been developed to reduce computational costs (see chapter
3). Developing new techniques for coupling models and scales of complex mechanical or
physical problems is an active research area in the fields of computational mechanics and
physics.

In this section we briefly list some common methods that have been developed to couple
different models on a partition of the domain occupied by a physical system. We particu-
larly emphasize the Schwarz method and the Arlequin framework [Ben Dhia, 1998, 1999]
(see also e.g. Ben Dhia and Rateau [2001]; Rateau [2003]; Ben Dhia and Rateau [2005];
Ben Dhia [2008]) since the method developed in this thesis is essentially related to these
two approaches.

2.6.1 Problem definition

To describe the coupling methods, we will utilize the framework of continuum mechanics
variational formulations. We consider as an example a domain Ω occupied by a material
body. This domain is composed of two subdomains Ω1 and Ω2 that cover all the domain Ω.
We want to use two different physical or mechanical models on these two subdomains. The
partitioning of the domain Ω is such that Ω1 and Ω2 overlap over a superposition zone or
do not overlap at all (see e.g. figure 2.7).

Domain decomposition without superposition of subdomains is employed by most coupling
techniques. In continuum mechanics, coupling of different models in such cases is based on
the transmission of surface conditions at the interface. These transmissions are either exact
or approximated.

The penalty method is an approximate method commonly used for its ease of use (see
e.g., Courant [1943]). A penalty term, which can be interpreted as a spring with a very
large stiffness, is added to the energy so that when a constraint is not fulfilled, the energy
increases drastically. This penalized energy enforces the constraint in an exact manner when
the spring stiffness goes to infinity. However the practical choice of a non-infinite parameter
is difficult to parameterize. Moreover, the resulting numerical systems are ill-conditioned
and therefore decrease the precision of the results.

Lagrangian methods are used to transmit the exact surface conditions. These approches
are the basic elements for methods of domain decomposition, either primal or dual, and
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Ω1

Ω2

Figure 2.7: Domain decomposition without (left) or with (right) superposition of the two
subdomains

keep inspiring new developments and techniques as they can be easily parallelized. These
methods have been recently applied to multi-scale problems. Let us mention here a couple
of examples.

Farhat and Roux [1991] introduced the FETI (Finite Element Tearing and Interconnecting)
method that is based on a domain decomposition in which the subdomains are completely
disconnected and Lagrange multipliers are introduced to ensure the compatibility at the
interface between the subdomains (see also e.g. Farhat et al. [1994b, a]).

The LATIN (LArge Time INcrement) method was pioneered by Ladeveze [1985] for non-
linear time dependent problems and is based on a non-incremental iterative approach and
further developed by Ladeveze and colleagues (see e.g. Ladeveze [1999]; Dureisseix and
Ladeveze [1998]; Ladeveze and Dureisseix [2000]). The algorithm provides an approxima-
tion of the solution for the entire domain and the entire time interval at each iteration.

2.6.2 Schwarz methods

This type of coupling technique was directly inspired by a purely mathematical work initi-
ated by H. Schwarz [Schwarz , 1870]. All the techniques derived from this work are referred
to as Schwarz methods. These methods classically consider the union of two or more over-
lapping subdomains (see figure 2.8) and solve the equations of the two subdomains inde-
pendently, using the latest values of the approximate solution as the boundary conditions.

These methods are either additive or multiplicative [Xu, 1992; Griebel and Oswald , 1995]
and have been extensively used for parallel computations. Chimera methods [Steger and
Benek , 1987] are adapted from the same principles to deal with problems that are based
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Ω1

Ω2

Γ1

Γ2

Figure 2.8: Domain decomposition with overlapping subdomains

on hybrid meshes. Recently, this methodology has begun to be used to handle multiscale
problems [Lions and Pironneau, 1999; Glowinski et al., 2003].

All Schwarz methods derive from the same basic idea described by H. Schwarz: an iterative
algorithm is used to compute the unknown field on the two subdomains simultaneously
assuming that Dirichlet conditions are known at the boundary of these subdomains; the
Dirichlet conditions are then updated with the computed fields until we reach a convergence
criterion. We write respectively Γ1 and Γ2 the internal boundaries of the two subdomains
Ω1 and Ω2 (see figure 2.8). With these notations and for a general linear elastic problem
where we are interested in finding the displacements u1 and u2 on Ω1 and Ω2 respectively,
this algorithm is:

• Initialization of u0
1 and u0

2

• Compute ui1 using ui−1
2 as a Dirichlet condition on Γ1

• Compute ui2 using ui−1
1 as a Dirichlet condition on Γ2

• Iterate until both ui1 and ui2 converge

Many versions of this method exist, so we suggest that interested readers consult the liter-
ature [Lions, 1988; Dolean et al., 2002; Gander , 2006; Dubois, 2007].

2.6.3 Arlequin method

Finally, we describe the multiscale and multimodel Arlequin framework that has been pio-
neered by H. Ben Dhia [Ben Dhia, 1998, 1999] and further developed by H. Ben Dhia and
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colleagues (see e.g. Ben Dhia and Rateau [2001, 2005]; Ben Dhia [2008]; Ben Dhia et al.
[2008]), and also by other researchers in the field of computational mechanics (see e.g. Hu
et al. [2008, 2010]; Bauman et al. [2009]). This approach is based on the superposition and
the linking of different numerical models. Its main properties are to combine a superposition
of mechanical models, a distribution of the energy between these models and the use of weak
junctions to link them. Since this strategy has been used to derive the simplified method
developed in this thesis (see chapter 5), we give here some details about this technique.

We consider here a standard mechanical problem of linear elasticity and we focus on the
mathematical aspect of the Arlequin Framework. The theoretical justifications of this
method are detailed in Ben Dhia and Rateau [2001]; Rateau [2003]; Ben Dhia and Rateau
[2005]; Ben Dhia [2008]. Interested readers are urged to consult these references as this
section only presents the main ideas of the method.

Let Ω1 and Ω2 be two distinct bounded regular domains of Rd, with d = 2 or 3 in practice.
Let Ω be the union of these two domains, and ΩS their intersection, assumed to be non zero
measured and regular.

model superpostion

Ω2Ω1

ΩS

Figure 2.9: Arlequin domains superposition

Let V be the kinematically admissible velocity field and Γu the part of the domain border
where Dirichelt conditions are applied (for the sake of simplicity, we consider homogeneous
Dirichet conditions). The linear elasticity problem reads:

Find u ∈ V = {u ∈ H1(Ω), u = 0 on Γu},

∀v ∈ V, a (u,v) = l (v)
(2.57)

with:

∀ (u,v) ∈ V × V a (u,v) =

∫
Ω
σ (u) : ε (v) dΩ

∀v ∈ V l (v) =

∫
Ω
f .vdΩ

(2.58)

The dual volume-based coupling Arlequin formulation of the classical problem (2.57) reads:
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Find (u1,u2,Φd) ∈ V1 × V2 ×Md, ∀ (v1,v2,Ψd) ∈ V1 × V2 ×Md :

a (u1,v1) + Cd (Φd,v1) = l1 (v1)

a (u2,v2) + Cd (Φd,v2) = l2 (v2)

Cd (Ψd,u1 − u2) = 0

(2.59)

where it is assumed that the domain Ω is partioned into two overlapping subdomains Ω1 and
Ω2; ΩS being the superposition and gluing zone (see figure 2.9). The spaces of kinematically
admissible fields in each sub-domain are denoted by V1 and V2. The weighted internal and
external virtual works are defined as follows:

∀ (u1,v1) ∈ V1 × V1 a1 (u1,v1) =

∫
Ω1

α1 σ (u1) : ε (v1) dΩ1

∀ (u2,v2) ∈ V2 × V2 a2 (u2,v2) =

∫
Ω2

α2 σ (u2) : ε (v2) dΩ2

∀v1 ∈ V1 l (v1) =

∫
Ω1

β1 f .v1dΩ1

∀v2 ∈ V2 l (v2) =

∫
Ω2

β2 f .v2dΩ2

(2.60)

where weight parameter functions (α1, α2) and (β1, β2) are defined respectively on Ω1 and
Ω2 and satisfy (see e.g. figure 2.10, a partition ensuring the partition of energy):

αi ≥ 0 in Ωi αi = 1 in Ωi \ ΩS α1 + α2 = 1 in ΩS (2.61)

βi ≥ 0 in Ωi βi = 1 in Ωi \ ΩS β1 + β2 = 1 in ΩS (2.62)

Md is the dual mediator space. It is the dual space of M = V1 |ΩS
= V2 |ΩS

= H1 (ΩS) and

the volume coupling operator, denoted by Cd is [Ben Dhia, 1999, 2008]:

∀ (Ψ,v) ∈Md ×M, Cd (Ψ,v) = 〈Ψ,v〉Md,M
(2.63)

where 〈., .〉Md,M
stands for the duality bracket. The dual volume coupling is a natural

mechanical coupling operator, in the sense that, interpreting the Lagrange multiplier Ψd as
a density of forces, it has to be in the dual space Md of the space of the displacements in
ΩS . We refer here to the references mentioned above for other variants of couplig or gluing
operators.
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0

1

α2α1

Ω2Ω1
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Figure 2.10: weight parameter functions in 1d

2.6.4 Requirements for coupling ice flow models

We mentioned in the previous section several techniques to couple different mechanical or
physical models.

The penalty method is easy to implement, however the appropriate choice of the penalty
parameter and the conditioning of the stiffness matrix are the main drawbacks. Schwarz
algorithms could be used for the coupling of different mechanical or physical models (and
for ice models, in particular). However, the convergence of the scheme could be a severe
issue. Finally, the Arlequin framework is very general and allows coupling of any kind of
models at different scales, as mentioned above. This framework (which has inspired other
methods) seems to be mandatory for the coupling of complex mechanical systems (such as
atomistic and continuum). But as it is a very general method, its implementation requires
a lot of modifications in the structure of an existing code. Let us however observe that it
has been very recently implemented within the Abaqus code [Qiao et al., 2011].

For these reasons, we present in chapter 5 a new method derived from the Arlequin frame-
work and adapted to coupling ice flow models as it is:

• less general than Arlequin framework but sufficient for ice flow modeling

• able to couple models with different degrees of freedom

• easy to implement
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2.7 Chapter summary

In this chapter we presented a brief overview of the physics and numerics of ice sheet models.
We described the ice sheet systems and their interactions with other components of the Earth
system. We then focused on the main three aspects of the modeling: mass conservation,
momentum conservation and energy conservation. We established the local equations and
detailed the boundary conditions applied for these three quantities, and derived the general
system of equations that govern ice sheet thermo-dynamics.

Several physical or mechanical models generally exist to describe the same system and can
be advantageously combined. In a last section of this chapter, we listed a few methods that
exist to couple such models. The next chapter presents several ice flow models of varying
order of complexity all derived from the full-Stokes equations.
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CHAPTER 3. SIMPLIFIED MECHANICAL MODELS FOR ICE SHEET FLOW

Solving the full-Stokes equations over the entire ice sheet is a numerical challenge espe-
cially for long paleoclimatic runs [DeConto and Pollard , 2003; Pollard and DeConto, 2009].
Several approximations of the momentum balance have been derived from the full-Stokes
equations, taking advantage of the shallow aspect of the ice sheets and glaciers. The hor-
izontal dimensions of these ice masses is generally several orders of magnitude larger than
its thickness. The approximations consist in neglecting terms from the momentum balance
equations and simplifying the strain rate tensor. We describe here the assumptions used to
derive three of the most common approximations: the higher-order model, the shallow-shelf
approximation or shelfy stream approximation and the shallow ice approximation. We then
summarize the domain of validity for each of these approximations.

The weak formulation, based on the principle of virtual displacements or principle of virtual
work, is a more general and more rigorous formulation of a given continuum mechanics
problem compared to other formulations like the local equations (if singularities are present
for example). For this reason, the purpose of this chapter is to derive simplified models
of the full-Stokes equations using the weak formulation instead of deriving them from the
local equations and boundary conditions as it is usually done [Hutter , 1983; Blatter , 1995;
Pattyn, 2003]. In this chapter we use this approach to derive the higher-order model, the
shelfy-stream approximation and the shallow ice approximation from the full-Stokes weak
formulation. Previous work was done to derive the simplified models from the full-Stokes
equations, based on the Hamilton-type principles or the principle of least action [Bassis,
2010; Dukowicz et al., 2010, 2011] and this is to our knowledge the first time simplified
models are derived using a weak formulation.

3.1 Full-Stokes variational equations

We use the local equations (2.30) and boundary conditions (2.55) defined in the previous
chapter to establish the variational formulation of full-Stokes equations. We use the classical
notations for Hilbert spaces: H1 (Ω) is the Sobolev space that contains the square integrable
functions whose first derivative is also square integrable over the domain, Ω. L2 (Ω) is the
Lebesgue space of square integrable functions over the domain, Ω. Let Vuobs be the space of
kinematically admissible velocity fields, P the space of admissible pressure fields and x ∈ Ω
a point of coordinates (x, y, z):

Vuobs =
{

Φ ∈
(
H1 (Ω)

)3
,Φ = uobs on Γu and Φ · n = 0 on Γb

}
P =

{
q ∈ L2(Ω)

} (3.1)

Observe here that in order to simplify the presentation, without loss of generality, we will
consider the case uobs = 0 and denote by V the space of velocity solution and kinematically
admissible velocity fields. In practive, observed velocities are used to constrain the velocity
on Γu; we use the classical lifting of Dirichlet boundary conditions.

For any kinematically admissible field (Φ, q)T such that Φ = (φx, φy, φz)
T ∈ V and q ∈ P,

the weak formulation of the full-Stokes equations is:

46 February 10, 2012



3.1. FULL-STOKES VARIATIONAL EQUATIONS

∫
Ω

((
2µ
∂u

∂x

)
∂φx
∂x

+

(
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φx
∂y

+

(
µ
∂u

∂z
+ µ

∂w

∂x

)
∂φx
∂z
− p∂φx

∂x
− ∂u

∂x
q

+

(
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φy
∂x

+

(
2µ
∂v

∂y

)
∂φy
∂y

+

(
µ
∂v

∂z
+ µ

∂w

∂y

)
∂φy
∂z
− p∂φy

∂y
− ∂v

∂y
q

+

(
µ
∂u

∂z
+ µ

∂w

∂x

)
∂φz
∂x

+

(
µ
∂v

∂z
+ µ

∂w

∂y

)
∂φz
∂y

+

(
2µ
∂w

∂z

)
∂φz
∂z
− p∂φz

∂z
− ∂w

∂z
q

)
dΩ

+

∫
Γb

α2uτ ·ΦτdΓ =

∫
Ω
ρg ·ΦdΩ +

∫
Γw

pwΦ · ndΓ +

∫
Γi

piΦ · ndΓ (3.2)

where α is a friction coefficient, pi the pressure at the ice front, pw the water pressure applied
at the ice/ocean interface Γw, uτ the velocity at the ice/bedrock interface, tangential to the
surface normal whose components on a cartesian coordonate system are uτ , vτ and wτ and
Φτ the part of the kinematically admissible field tangential to the ice/bedrock interface Γb.

To simplify the equations, we apply the weak formulation to four test functions Φx =
(φx, 0, 0, 0), Φy = (0, φy, 0, 0), Φz = (0, 0, φz, 0) and q = (0, 0, 0, q). This will simplify the
derivation of the simpler models local equations and boundary conditions. With these test
functions, the full-Stokes weak formulation is:

∫
Ω

((
2µ
∂u

∂x

)
∂φx
∂x

+

(
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φx
∂y

+

(
µ
∂u

∂z
+ µ

∂w

∂x

)
∂φx
∂z
− p∂φx

∂x

)
dΩ

+

∫
Γb

α2uτφxdΓ =

∫
Γw

pwnxφxdΓ +

∫
Γi

pinxφxdΓ

∫
Ω

((
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φy
∂x

+

(
2µ
∂v

∂y

)
∂φy
∂y

+

(
µ
∂v

∂z
+ µ

∂w

∂y

)
∂φy
∂z
− p∂φy

∂y

)
dΩ

+

∫
Γb

α2vτφydΓ =

∫
Γw

pwnyφydΓ +

∫
Γi

pinyφydΓ

∫
Ω

((
µ
∂u

∂z
+ µ

∂w

∂x

)
∂φz
∂x

+

(
µ
∂v

∂z
+ µ

∂w

∂y

)
∂φz
∂y

+

(
2µ
∂w

∂z

)
∂φz
∂z
− p∂φz

∂z

)
dΩ

+

∫
Γb

α2wτφzdΓ =

∫
Γw

pwnzφzdΓ−
∫

Ω
ρgφzdΩ

∫
Ω

(
−∂u
∂x
− ∂v

∂y
− ∂w

∂z

)
qdΩ = 0

(3.3)
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3.2 Higher-order model

3.2.1 Model description

A three dimensional model known as higher-order model was derived from these equations
by Blatter [1995] and Pattyn [2003]. This model corresponds to an order one approximation
of the full-Stokes equations with respect to the aspect ratio H/L where H is the glacier’s
height and L its length. This is why it is referred to as Higher-order. Two assumptions are
necessary to derive this model. The first one is that the gradients of the vertical velocity
are small compared to the vertical gradients of the horizontal velocity. The second one is
that the bridging effect is negligible [van der Veen and Whillans, 1989]. We can summarize
these assumptions as:

• ∂w

∂x
<<

∂u

∂z

• ∂w

∂y
<<

∂v

∂z

• ∂σxz
∂x

<<
∂σzz
∂z

• ∂σyz
∂y

<<
∂σzz
∂z

An additional assumption on the friction law used will be necessary to fully decouple the
system between horizontal and vertical equations.

3.2.2 Determination of variational and local equations associated to the
higher-order model

� Variational formulation

Let us now use these assumptions in the weak formulation of the full-Stokes equations (3.3)
to establish the local equations of this model.

If we include the first two assumptions of the higher-order model (∂w/∂x << ∂u/∂z and
∂w/∂y << ∂v/∂z), for any kinematically admissible field (Φ, q)T such as:

Φ ∈ V
q ∈ P (3.4)

the first two systems of full-Stokes weak formulation (3.3) are reduced to:
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∫
Ω

((
2µ
∂u

∂x

)
∂φx
∂x

+

(
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φx
∂y

+

(
µ
∂u

∂z

)
∂φx
∂z
− p∂φx

∂x

)
dΩ

+

∫
Γb

α2uτφxdΓ =

∫
Γw

pwnxφxdΓ +

∫
Γi

pinxφxdΓ

∫
Ω

((
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φy
∂x

+

(
2µ
∂v

∂y

)
∂φy
∂y

+

(
µ
∂v

∂z

)
∂φy
∂z
− p∂φy

∂y

)
dΩ

+

∫
Γb

α2vτφydΓ =

∫
Γw

pwnyφydΓ +

∫
Γi

pinyφydΓ (3.5)

These equations couple the horizontal velocity fields and the ice pressure.

Considering admissible regular fields Φz = (0, 0,Φz, 0) with Φz = 0 on the boundary of
Ω and admissible fields q, and after integracting by parts the third system of the global
full-Stokes system (3.3), we obtain:

∫
Ω

(
∂

∂x

(
µ
∂u

∂z
+ µ

∂w

∂x

)
φz +

∂

∂y

(
µ
∂v

∂z
+ µ

∂w

∂y

)
φz +

∂

∂z

(
2µ
∂w

∂z

)
φz −

∂p

∂z
φz

)
dΩ

=

∫
Ω
ρgφzdΩ

∫
Ω

(
−∂u
∂x
− ∂v

∂y
− ∂w

∂z

)
qdΩ = 0

(3.6)

We now include the last assumption in the last equation (∂σxz/∂x << ∂σzz/∂z and
∂σyz/∂y << ∂σzz/∂z). These two assumptions are equivalent to:

• ∂

∂x

(
µ
∂u

∂z
+ µ

∂w

∂x

)
<<

∂

∂z

(
2µ
∂w

∂z
− p
)

• ∂

∂y

(
µ
∂v

∂z
+ µ

∂w

∂y

)
<<

∂

∂z

(
2µ
∂w

∂z
− p
)

The first equation of the system (3.6) is therefore reduced to:

∫
Ω

(
∂

∂z

(
2µ
∂w

∂z

)
φz −

∂p

∂z
φz

)
dΩ =

∫
Ω
ρgφzdΩ (3.7)

Thus, we have the following system, for the last two equations:
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∫
Ω

(
∂

∂z

(
2µ
∂w

∂z

)
− ∂p

∂z
− ρg

)
φzdΩ = 0

∫
Ω

(
−∂u
∂x
− ∂v

∂y
− ∂w

∂z

)
qdΩ = 0

(3.8)

� Local equation of the pressure field

From equations (3.8), we can deduce the following local equations of the higher-order model,
coupling w and p :


∂

∂z

(
2µ
∂w

∂z

)
− ∂p

∂z
− ρg = 0

−∂u
∂x
− ∂v

∂y
− ∂w

∂z
= 0

(3.9)

Due to the last assumption (bridging effect negligible), we saw that the third equation of
the momentum balance (see equation 3.9) is reduced to:

∂

∂z

(
2µ
∂w

∂z
− p
)

= ρg (3.10)

We integrate this equation between a point at elevation z and the corresponding point on
the upper surface s, along the z-direction:

∫ s

z

∂

∂z

(
2µ
∂w

∂z
− p
)
dz =

∫ s

z
ρgdz (3.11)

This is equivalent to:

2µ
∂w

∂z

∣∣∣∣
s

− 2µ
∂w

∂z

∣∣∣∣
z

− p (s) + p (z) = ρg (s− z) (3.12)

We need here an additional assumption to determine the pressure field everywhere in the
domain. We consider the air pressure to be negligible, so the boundary condition at the
ice/air interface is a free surface. Thus one can easily show that the pressure field p is
related to the vertical component of the velocity field w by:

p (z) = 2µ
∂w

∂z

∣∣∣∣
z

+ ρg (s− z) (3.13)

Now, the local incompressibility equation (see equation 3.9) states that in the domain Ω:
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∂w

∂z
= −∂u

∂x
− ∂v

∂y
(3.14)

So the pressure is equal to:

p (z) = −2µ

(
∂u

∂x
+
∂v

∂y

)
+ ρg (s− z) (3.15)

� Local equations for the horizontal velocity

If we use equation (3.15) for the pressure in the first two equations of the weak full-Stokes
problem, equation (3.3), we obtain the horizontal part of the weak higher-order model:

∫
Ω

((
4µ
∂u

∂x
+ 2µ

∂v

∂y

)
∂φx
∂x

+

(
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φx
∂y

+

(
µ
∂u

∂z

)
∂φx
∂z

)
dΩ

+

∫
Γb

α2uτφxdΓ =

∫
Ω
ρg (s− z) ∂φx

∂x
dΩ +

∫
Γw

pwnxφxdΓ +

∫
Γi

pinxφxdΓ

∫
Ω

((
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φy
∂x

+

(
2µ
∂u

∂x
+ 4µ

∂v

∂y

)
∂φy
∂y

+

(
µ
∂v

∂z

)
∂φy
∂z

)
dΩ

+

∫
Γb

α2vτφydΓ =

∫
Ω
ρg (s− z) ∂φy

∂y
dΩ +

∫
Γw

pwnyφydΓ +

∫
Γi

pinyφydΓ (3.16)

Now, considering admissible horizontal and regular fields nul on the boundary of Ω and
after integration by parts, we can easily deduce the local horizontal equations:


∂

∂x

(
4µ
∂u

∂x
+ 2µ

∂v

∂y

)
+

∂

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂z

(
µ
∂u

∂z

)
= ρg

∂s

∂x

∂

∂x

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂y

(
4µ
∂v

∂y
+ 2µ

∂u

∂x

)
+

∂

∂z

(
µ
∂v

∂z

)
= ρg

∂s

∂y

(3.17)

3.2.3 Determination of the boundary conditions for the higher-order model

� General equation for the boundary conditions

The last equation of the weak formulation (incompressibility) does not include any boundary
condition and is therefore not considered in this paragraph.

We start from equation (3.16) to establish the boundary conditions. After integration by
parts and considering that (u, v) is solution of the problem so they verify equation (3.17),
we have:
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∫
∂Ω

((
2µ
∂u

∂x

)
nx +

(
µ
∂u

∂y
+ µ

∂v

∂x

)
ny +

(
µ
∂u

∂z

)
nz

)
φxdΓ

=

∫
∂Ω
ρg (s− z)φxnxdΓ

∫
Γb

−α2uτφxdΓ +

∫
Γw

pwnxφxdΓ +

∫
Γi

pinxφxdΓ

∫
∂Ω

((
µ
∂u

∂y
+ µ

∂v

∂x

)
nx +

(
2µ
∂v

∂y

)
ny +

(
µ
∂v

∂z

)
nz − pny

)
φydΓ

=

∫
Γb

−α2vτφydΓ +

∫
Γw

pwnyφydΓ +

∫
Γi

pinyφydΓ

∫
∂Ω

((
µ
∂u

∂z
+ µ

∂w

∂x

)
nx +

(
µ
∂v

∂z
+ µ

∂w

∂y

)
ny +

(
2µ
∂w

∂z

)
nz

)
φzdΓ

=

∫
∂Ω
ρg (s− z)φynydΓ

∫
Γb

−α2wτφzdΓ

∫
Γw

pwnzφzdΓ (3.18)

We decompose ∂Ω as: ∂Ω = Γu ∪Γb ∪Γw ∪Γi to establish the boundary conditions on each
part of the border.

� Ice/Ocean boundary condition for the higher-order model

We first consider kinematically admissible fields that are zero on all the domain border ∂Ω
except at the ice/water interface Γw, as the elevation is z = b, we have:

∫
Γw

((
2µ
∂u

∂x

)
nx +

(
µ
∂u

∂y
+ µ

∂v

∂x

)
ny +

(
µ
∂u

∂z

)
nz − ρgHnx − pwnx

)
φxdΓ = 0

∫
Γw

((
µ
∂u

∂y
+ µ

∂v

∂x

)
nx +

(
2µ
∂v

∂y

)
ny +

(
µ
∂v

∂z

)
nz − ρgHny − pwny

)
φydΓ = 0 = 0

(3.19)

These integrals are zero for any kinematically admissible field whose value is zero on the
boundary of the domain except for Γw. The functions under the integral are therefore zero
everywhere on Γw and the boundary condition at the ice/water interface Γw is:

σn = pwn (3.20)

� Other boundary conditions for the higher-order model

We do the same analysis to derive the following boundary conditions on Γb, the ice bedrock
interface, Γi, the ice front and Γs, the ice-air interface, respectively:
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(σn)|| = −α
2uτ on Γb (3.21)

σn = pin on Γi (3.22)

σn = 0 on Γs (3.23)

where τb = (σn)||.

These static boundary conditions are completed with the kinematical ones applied on Γu.

3.2.4 Summary

The higher-order model allows to decouple horizontal and vertical velocities using the fol-
lowing local equations:

∂

∂x

(
4µ
∂u

∂x
+ 2µ

∂v

∂y

)
+

∂

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂z

(
µ
∂u

∂z

)
= ρg

∂s

∂x

∂

∂x

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂y

(
4µ
∂v

∂y
+ 2µ

∂u

∂x

)
+

∂

∂z

(
µ
∂v

∂z

)
= ρg

∂s

∂y

∂

∂z

(
2µ
∂w

∂z

)
− ∂p

∂z
− ρg = 0

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

(3.24)

The boundary condition of this model at the ice/air interface Γs (upper surface) is a free
surface.

At the ice/water interface Γw it is:

σn = pwn (3.25)

For the ice front Γi, we have:

σn = pin (3.26)

For the ice/bedrock interface Γb:

(σn)|| = −α
2uτ (3.27)
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The kinematic boundary conditions on the rest of the border Γu are:

v = uobs (3.28)

3.2.5 Model validity

These equations allow the displacement to be a combination of sliding and shear deforma-
tion, the model is therefore valid in areas where the movement is mainly due to sliding but
also in areas where it is only due to shear deformation (where ice is frozen at the bedrock
for example).

The boundary condition at the ice/bedrock interface is:

(σn)|| = −α
2uτ on Γb (3.29)

In the general case the ice/bedrock interface has no particular property and this condition
cannot be decoupled similarly to the higher-order equations into horizontal and vertical
components. Indeed the three component of uτ include part of u, v and w. To decouple this
boundary condition, we must make the additional assumption that the slope of the bedrock
is limite and assumed to be equal to zero (so the normal to the surface is coincident with
the z axis). This assumption will be used in the next subsections.

3.3 Shelfy-stream approximation

3.3.1 Model assumptions

Another approximation was derived from the full-Stokes equations by MacAyeal [1989] and
Morland and Zainuddin [1987]. This model is known as the shallow-shelf or shelfy-stream
approximation and is a vertically-integrated bidimensional ice flow model.

Several assumptions are made in this model including the ones made in the higher-order
model. The main one is that the basal drag associated with deforming basal sediments
does not affect significantly the vertical gradients of horizontal velocities. All vertical shear
is neglected so the horizontal velocity does not vary with depth. Similarly to the higher-
order model, the bridging effect is negligible [van der Veen and Whillans, 1989]. These
assumptions are summarized as:

• ∂w

∂x
<<

∂u

∂z

• ∂w

∂y
<<

∂v

∂z

• ε̇xz = 0
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• ε̇yz = 0

We derive the local equations and boundary conditions of this model by including the
previous assumptions in the full-Stokes weak formulation.

3.3.2 Determination of variational and local equations associated to the
shelfy-stream approximation

� Variational formulation

Let us now use these assumptions in the weak formulation of the full-Stokes equations (3.3)
to establish the local equations of this model.

If we include the shelfy-stream assumptions in the full-Stokes weak formulation, for any
kinematically admissible field (Φ, q)T such as:

Φ ∈ V
q ∈ P (3.30)

the first two systems of full-Stokes weak formulation (3.3) are reduced to:

∫
Ω

((
2µ
∂u

∂x

)
∂φx
∂x

+

(
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φx
∂y
− p∂φx

∂x

)
dΩ

+

∫
Γb

α2uτφxdΓ =

∫
Γw

pwnxφxdΓ +

∫
Γi

pinxφxdΓ

∫
Ω

((
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φy
∂x

+

(
2µ
∂v

∂y

)
∂φy
∂y
− p∂φy

∂y

)
dΩ

+

∫
Γb

α2vτφydΓ =

∫
Γw

pwnyφydΓ +

∫
Γi

pinyφydΓ (3.31)

These equations couple the horizontal velocity fields with the pressure.

Considering admissible regular fields Φz = (0, 0,Φz, 0) with Φz = 0 on the boundary of Ω
and admissible fields q, using the shelfy-stream assumptions and after integrating by parts
the third system of the global full-Stokes system (3.3), we obtain the following system for
the last two equations:



∫
Ω

(
∂

∂z

(
2µ
∂w

∂z

)
− ∂p

∂z
− ρg

)
φzdΩ = 0

∫
Ω

(
−∂u
∂x
− ∂v

∂y
− ∂w

∂z

)
qdΩ = 0

(3.32)
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� Local equation of the pressure field

From equations (3.32), we can deduce the following local equations of the shelfy-stream
approximation, coupling w and p :


∂

∂z

(
2µ
∂w

∂z

)
− ∂p

∂z
− ρg = 0

−∂u
∂x
− ∂v

∂y
− ∂w

∂z
= 0

(3.33)

Due to the last assumption (bridging effect negligible), we saw that the third equation of
the momentum balance (see equation 3.33) is reduced to:

∂

∂z

(
2µ
∂w

∂z
− p
)

= ρg (3.34)

As done previously for the higher-order model (assuming the air pressure is negligible), we
can deduce that the pressure is equal to:

p (z) = −2µ

(
∂u

∂x
+
∂v

∂y

)
+ ρg (s− z) (3.35)

� Variational formulation for the horizontal velocity

Using equation (3.35) for the pressure in the first two equations of the weak full-Stokes
problem, equation (3.3), we obtain the horizontal part of the weak shelfy-stream approxi-
mation:

∫
Ω

((
4µ
∂u

∂x
+ 2µ

∂v

∂y

)
∂φx
∂x

+

(
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φx
∂y

)
dΩ

+

∫
Γb

α2uτφxdΓ =

∫
Ω
ρg (s− z) ∂φx

∂x
dΩ +

∫
Γw

pwnxφxdΓ +

∫
Γi

pinxφxdΓ

∫
Ω

((
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φy
∂x

+

(
2µ
∂y

∂x
+ 4µ

∂v

∂y

)
∂φy
∂y

)
dΩ

+

∫
Γb

α2vτφydΓ =

∫
Ω
ρg (s− z) ∂φy

∂y
dΩ +

∫
Γw

pwnyφydΓ +

∫
Γi

pinyφydΓ (3.36)
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3.3.3 Derivation of a bidimensional model for the horizontal velocity

� Depth-averaged viscosity

One consequence of the shelfy-stream approximations is that the horizontal velocity compo-
nents, u and v, do not vary with depth. We can therefore reduce the space of kinematically
admissible fields (φx, φy) to functions that do not vary with z. From now on in this para-
graph, we consider that φx and φy do not vary with z. However, µ varies with z as the
temperature is depth dependent. So we decompose the integration over the volume Ω into
one integral on the mean section ω and a second one over the thickness H. The previous
equations can be modified to:

∫
ω

(∫ s

b
µdz

)((
4
∂u

∂x
+ 2

∂v

∂y

)
∂φx
∂x

+

(
∂u

∂y
+
∂v

∂x

)
∂φx
∂y

)
dω

+

∫
Γb

α2uτφxdΓ =

∫
Ω
ρg (s− z) ∂φx

∂x
dΩ +

∫
Γw

pwnxφxdΓ +

∫
Γi

pinxφxdΓ

∫
ω

(∫ s

b
µdz

)((
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φy
∂x

+

(
2µ
∂u

∂x
+ 4µ

∂v

∂y

)
∂φy
∂y

)
dω

+

∫
Γb

α2vτφydΓ =

∫
Ω
ρg (s− z) ∂φy

∂y
dΩ +

∫
Γw

pwnyφydΓ +

∫
Γi

pinyφydΓ (3.37)

We now introduce the depth-averaged viscosity as:

µ̄ =
1

H

∫ s

b
µdz (3.38)

So the previous equations are:

∫
ω
µ̄H

((
4
∂u

∂x
+ 2

∂v

∂y

)
∂φx
∂x

+

(
∂u

∂y
+
∂v

∂x

)
∂φx
∂y

)
dω

+

∫
Γb

α2uτφxdΓ =

∫
Ω
ρg (s− z) ∂φx

∂x
dΩ +

∫
Γw

pwnxφxdΓ +

∫
Γi

pinxφxdΓ

∫
ω
µ̄H

((
∂u

∂y
+
∂v

∂x

)
∂φy
∂x

+

(
2
∂u

∂x
+ 4

∂v

∂y

)
∂φy
∂y

)
dω

+

∫
Γb

α2vτφydΓ =

∫
Ω
ρg (s− z) ∂φy

∂y
dΩ +

∫
Γw

pwnyφydΓ +

∫
Γi

pinyφydΓ (3.39)
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� Depth-integration of the volumic terms

We now integrate by parts the integrals over ω and Ω:

−
∫
ω

(
∂

∂x

(
4µ̄H

∂u

∂x
+ 2µ̄H

∂v

∂y

)
+

∂

∂y

(
µ̄H

∂u

∂y
+ µ̄H

∂v

∂x

))
φxdω

+

∫
∂ω

(
µ̄H

(
4
∂u

∂x
+ 2

∂v

∂y

)
nx + µ̄H

(
∂u

∂y
+
∂v

∂x

)
ny

)
φxdΓ +

∫
Γb

α2uτφxdΓ

= −
∫

Ω
ρg
∂s

∂x
φxdΩ +

∫
∂Ω
ρg (s− z)φxnxdΓ +

∫
Γw

pwnxφxdΓ +

∫
Γi

pinxφxdΓ

−
∫
ω

(
∂

∂x

(
µ̄H

∂u

∂y
+ µ̄H

∂v

∂x

)
+

∂

∂y

(
2µ̄H

∂u

∂x
+ 4µ̄H

∂v

∂y

))
φydω

+

∫
∂ω

(
µ̄H

(
∂u

∂y
+
∂v

∂x

)
nx + µ̄H

(
2
∂u

∂x
+ 4

∂v

∂y

)
ny

)
φydΓ +

∫
Γb

α2vτφydΓ

= −
∫

Ω
ρg
∂s

∂y
φydΩ +

∫
∂Ω
ρg (s− z)φynydΓ +

∫
Γw

pwnyφydΓ +

∫
Γi

pinyφydΓ (3.40)

As the surface s only depends on x and y, it is possible to decompose the integral over the
volume Ω into an integral over the thickness H and a second one over the mean section ω,
which gives:

∫
Ω
ρg
∂s

∂x
φxdΩ =

∫
ω

(∫ s

b
ρg
∂s

∂x
dz

)
φxdω (3.41)

As we have H = s− b, the equation gives:

∫
Ω
ρg
∂s

∂x
φxdΩ =

∫
ω
ρgH

∂s

∂x
φxdω (3.42)

The same integration is performed for the y component.

� Depth-integration of ice front terms

We need an additional assumption to depth-integrate the ice front terms. We suppose that
the air or water pressure at the ice front Γi for a point at elevation z is:

pi = ρwg min (z, 0) (3.43)

For any point below the water level, pi is the water pressure. For points whose elevation is
above the water pressure, pi = 0.
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As we consider the ice front to be vertical cliffs, it gives:

∫
Γi

pinxφxdΓ =

∫
γi

∫ 0

b
ρwgznxφxdzdl (3.44)

if we note γi = Γi ∩ ∂ω.

The outward pointing normal does not vary with depth as the ice front is a vertical cliff, so:

∫
Γi

pinxφxdΓ =

∫
γi

−1

2
ρwgb

2nxφxdl (3.45)

The same integration is performed for the y component.

Using these two equalities, the first two equations of the full-Stokes system are:

∫
ω

(
∂

∂x

(
4µ̄H

∂u

∂x
+ 2µ̄H

∂v

∂y

)
+

∂

∂y

(
µ̄H

∂u

∂y
+ µ̄H

∂v

∂x

))
φxdω

−
∫
∂ω

(
µ̄H

(
4
∂u

∂x
+ 2

∂v

∂y

)
nx + µ̄H

(
∂u

∂y
+
∂v

∂x

)
ny

)
φxdΓ−

∫
Γb

α2uτφxdΓ

=

∫
ω
ρgH

∂s

∂x
φxdω −

∫
∂Ω
ρg (s− z)φxnxdΓ−

∫
Γw

pwnxφxdΓ +

∫
γi

1

2
ρwgb

2nxφxdl

∫
ω

(
∂

∂x

(
µ̄H

∂u

∂y
+ µ̄H

∂v

∂x

)
+

∂

∂y

(
2µ̄H

∂u

∂x
+ 4µ̄H

∂v

∂y

))
φydω

−
∫
∂ω

(
µ̄H

(
∂u

∂y
+
∂v

∂x

)
nx + µ̄H

(
2
∂u

∂x
+ 4

∂v

∂y

)
ny

)
φydΓ−

∫
Γb

α2vτφydΓ

=

∫
ω
ρgH

∂s

∂y
φydω −

∫
∂Ω
ρg (s− z)φynydΓ−

∫
Γw

pwnyφydΓ +

∫
γi

1

2
ρwgb

2nyφydl (3.46)

� Other boundary terms

We now decompose the integral over ∂Ω as ∂Ω = Γu ∪ Γw ∪ Γb ∪ Γs ∪ Γi:

∫
∂Ω
ρg (s− z)φxnxdΓ =

∫
Γb∪Γw

ρg (s− z)φxnxdΓ (3.47)

On Γs, z = s so the part of the integral over Γs is zero. φx and φy are zero on Γu as
Dirichlet conditions are used on Γu so the fields φx and φy have to be zero on Γu in order
to be part of the kinematically admissible fields, this part of the integral is also zero. Let
us now consider the part of the integral over the ice front Γi:
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∫
Γi

ρg (s− z)φxnxdΓ =

∫
γi

ρg

(∫ s

b
(s− z) dz

)
φxnxdl (3.48)

as the normal of the ice front does not vary with depth. It gives:

∫
Γi

ρg (s− z)φxnxdΓ =

∫
γi

ρg
H2

2
φxnxdl (3.49)∫

Γi

ρg (s− z)φynydΓ =

∫
γi

ρg
H2

2
φynydl (3.50)

On Γb and Γw, as z = b, this integral is:

∫
Γb∪Γw

ρg (s− z)φxnxdΓ =

∫
Γb∪Γw

ρgHφxnxdΓ (3.51)∫
Γb∪Γw

ρg (s− z)φynydΓ =

∫
Γb∪Γw

ρgHφynydΓ (3.52)

So the momentum balance equations we obtain after using these relations are:

∫
ω

(
∂

∂x

(
4µ̄H

∂u

∂x
+ 2µ̄H

∂v

∂y

)
+

∂

∂y

(
µ̄H

∂u

∂y
+ µ̄H

∂v

∂x

))
φxdω

−
∫
∂ω

(
µ̄H

(
4
∂u

∂x
+ 2

∂v

∂y

)
nx + µ̄H

(
∂u

∂y
+
∂v

∂x

)
ny

)
φxdΓ−

∫
Γb

α2uτφxdΓ

=

∫
ω
ρgH

∂s

∂x
φxdω−

∫
γi

ρg
H2

2
φxnxdΓ−

∫
Γb∪Γw

ρgHφxnxdΓ+

∫
γi

1

2
ρwgb

2nxφxdl−
∫

Γw

pwnxφxdΓ

∫
ω

(
∂

∂x

(
µ̄H

∂u

∂y
+ µ̄H

∂v

∂x

)
+

∂

∂y

(
2µ̄H

∂u

∂x
+ 4µ̄H

∂v

∂y

))
φydω

−
∫
∂ω

(
µ̄H

(
∂u

∂y
+
∂v

∂x

)
nx + µ̄H

(
2
∂u

∂x
+ 4

∂v

∂y

)
ny

)
φydΓ−

∫
Γb

α2vτφydΓ

=

∫
ω
ρgH

∂s

∂y
φydω−

∫
γi

ρg
H2

2
φynydΓ−

∫
Γb∪Γw

ρgHφynydΓ+

∫
γi

1

2
ρwgb

2nyφydl−
∫

Γw

pwnyφydΓ

(3.53)

� Parametric surface

To obtain the local equations of the shelfy-stream approximation, all the integrals must be
expressed on the same domain. We use the expression of a parametric surface integral. Let
f(x, y) be a parameterization of a surface S, g a function defined on S and P the projection
of the surface S on the plane z = 0. The integral of g over S is:
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∫
S
g (x, y, z) dS =

∫
P
g (x, y, f (x, y))

(
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2
)1/2

dA (3.54)

As the terms in the integrals over Γb do not vary with z, if we use this relation to change
the integral over Γb into an integral over ω, it gives:

∫
Γb∪Γw

ρgHφxnxdΓ =

∫
ω
ρgHφxn

b
x

(
1 +

(
∂b

∂x

)2

+

(
∂b

∂y

)2
)1/2

(
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2
)1/2

dΓ (3.55)

where nbx and nby are components of the outward pointing normal of the lower surface b and
f = (s− b) /2 to define the z coordinate of the mean section. To simplify the notation, we
introduce J as:

J =

(
1 +

(
∂b

∂x

)2

+

(
∂b

∂y

)2
)1/2

(
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2
)1/2

(3.56)

If we note ωb the part of the domain on the ice sheet and ωw the part of the domain on the
ice shelf, the other integrals over Γb and Γw are similarly rewritten as:

∫
Γb∪Γw

ρgHφynydΓ =

∫
ω
ρgHφyn

b
yJdΓ (3.57)

∫
Γb

α2uτφxdΓ =

∫
ωb

α2uτφxJdΓ (3.58)

∫
Γb

α2vτφydΓ =

∫
ωb

α2vτφyJdΓ (3.59)

∫
Γw

pwnxφxdΓ =

∫
ωw

pwn
b
xφxJdΓ (3.60)

∫
Γw

pwnyφydΓ =

∫
ωw

pwn
b
yφyJdΓ (3.61)
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3.3.4 Determination of the local equations for the bidimensional shelfy-
stream approximation

The weak formulation for the shelfy-stream approximation is therefore:

∫
ω

(
∂

∂x

(
4µ̄H

∂u

∂x
+ 2µ̄H

∂v

∂y

)
+

∂

∂y

(
µ̄H

∂u

∂y
+ µ̄H

∂v

∂x

))
φxdω

−
∫
∂ω

(
µ̄H

(
4
∂u

∂x
+ 2

∂v

∂y

)
nx + µ̄H

(
∂u

∂y
+
∂v

∂x

)
ny

)
φxdΓ−

∫
ωb

α2uτφxJdΓ

=

∫
ω
ρgH

∂s

∂x
φxdω−

∫
γi

ρg
H2

2
φxnxdΓ−

∫
ω
ρgHφxn

b
xJdΓ+

∫
γi

1

2
ρwgb

2nxφxdl−
∫
ωw

pwn
b
xφxJdΓ

∫
ω

(
∂

∂x

(
µ̄H

∂u

∂y
+ µ̄H

∂v

∂x

)
+

∂

∂y

(
2µ̄H

∂u

∂x
+ 4µ̄H

∂v

∂y

))
φydω

−
∫
∂ω

(
µ̄H

(
∂u

∂y
+
∂v

∂x

)
nx + µ̄H

(
2
∂u

∂x
+ 4

∂v

∂y

)
ny

)
φydΓ−

∫
ωb

α2vτφyJdΓ

=

∫
ω
ρgH

∂s

∂y
φydω−

∫
γi

ρg
H2

2
φynydΓ−

∫
ω
ρgHφyn

b
yJdΓ+

∫
γi

1

2
ρwgb

2nyφydl−
∫
ωw

pwn
b
yφyJdΓ

(3.62)

Now considering admissible horizontal and regular fields nul on the boundary of ω, we can
easily deduce the local horizontal equations:

∂

∂x

(
4µ̄H

∂u

∂x
+ 2µ̄H

∂v

∂y

)
+

∂

∂y

(
µ̄H

∂u

∂y
+ µ̄H

∂v

∂x

)
− α2uτJδb = ρgH

∂s

∂x
− ρgHnbxJ − pwnbxJδw

∂

∂x

(
µ̄H

∂u

∂y
+ µ̄H

∂v

∂x

)
+

∂

∂y

(
2µ̄H

∂u

∂x
+ 4µ̄H

∂v

∂y

)
− α2vτJδb = ρgH

∂s

∂y
− ρgHnbyJ − pwnbyJδw

(3.63)

3.3.5 Determination of boundary conditions for the shelfy-stream ap-
proximation

We now derive the boundary conditions from the weak formulation (eq. 3.62). If (u, v) is
a solution of the problem, it verifies the local equations everywhere in ω. The boundary
conditions are therefore:
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∫
∂ω

(
µ̄H

(
4
∂u

∂x
+ 2

∂v

∂y

)
nx + µ̄H

(
∂u

∂y
+
∂v

∂x

)
ny

)
φxdΓ =

∫
γi

1

2

(
ρgH2 − ρwgb2

)
nxφxdl

∫
∂ω

(
µ̄H

(
∂u

∂y
+
∂v

∂x

)
nx + µ̄H

(
2
∂u

∂x
+ 4

∂v

∂y

)
ny

)
φydΓ =

∫
γi

1

2

(
ρgH2 − ρwgb2

)
nyφydl

(3.64)

The only part of the border where there is no Dirichlet boundary condition is the ice front
γi. On this part of the border, the boundary condition is therefore:


µ̄H

(
4
∂u

∂x
+ 2

∂v

∂y

)
nx + µ̄H

(
∂u

∂y
+
∂v

∂x

)
ny =

1

2

(
ρgH2 − ρwgb2

)
nx

µ̄H

(
∂u

∂y
+
∂v

∂x

)
nx + µ̄H

(
2
∂u

∂x
+ 4

∂v

∂y

)
ny =

1

2

(
ρgH2 − ρwgb2

)
ny

(3.65)

So the boundary condition at the ice front is:


σn · ex =

1

2

(
ρgH2 − ρwgb2

)
nx

σn · ey =
1

2

(
ρgH2 − ρwgb2

)
ny

(3.66)

3.3.6 Summary

The shelfy-stream approximation is a bidimensional model that allows to compute the
horizontal and vertical velocity successively. The local equations of this model are described
by equation (3.63) and the boundary conditions ar the ice front by equation (3.66). Dirichlet
boundary conditions are used on the rest of the border.

3.3.7 Simplification

As for the higher-order model, these equations are not completely decoupled yet as the
velocity tangential to the ice/bedrock interface uτ and vτ include in the general the vertical
velocity w. As mentioned above for the higher-order model, we assume that the bedrock
surface gradient is limited to decouple the friction equation.

The local equations of the shelfy-stream approximation are often written as [MacAyeal ,
1989, 1993; Hindmarsh, 2004; Gudmundsson, 2008; Sergienko et al., 2008; Morlighem et al.,
2010]:
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∂

∂x

(
4µ̄H

∂u

∂x
+ 2µ̄H

∂v

∂y

)
+

∂

∂y

(
µ̄H

∂u

∂y
+ µ̄H

∂v

∂x

)
− α2uδb = ρgH

∂s

∂x

∂

∂x

(
µ̄H

∂u

∂y
+ µ̄H

∂v

∂x

)
+

∂

∂y

(
2µ̄H

∂u

∂x
+ 4µ̄H

∂v

∂y

)
− α2vδb = ρgH

∂s

∂y

(3.67)

This form is valid if the slope of the ice lower elevation is limited, so that nbx and nby can
be neglected. It also supposes that the area of the ice lower elevation and mean section are
almost identical, so that the coefficient J we introduced is close to 1. This later assumption
is true if in addition to small slopes in the ice lower surface, upper surface also experience
limited slopes for the grounded part.

3.3.8 Model validity

This model can be used for ice shelves and ice streams sliding on the bed as shear deforma-
tion is negligible in these cases. In areas where there is no sliding (frozen bed), the flow is
mainly due to shear deformation and the approximations made here are not valid anymore.
This model cannot be used in these areas and we need a higher-order model, which includes
vertical shear.

3.4 Shallow ice approximation

3.4.1 Model assumptions

The shallow-ice approximation is a three dimensional model widely used in ice sheet mod-
eling that was presented by Hutter [1983]. While derived from the full-Stokes equations,
similarly to the shelfy-stream approximation and higher-order model, the assumptions made
in this model are completely different from the previous two models. The only terms that
are not neglected in the deviatoric stress tensor are σxz and σyz. The horizontal gradi-
ents of vertical velocity are also neglected compared to the vertical gradients of horizontal
velocities. We can summarize these assumptions as:

• ∂σ′xx
∂x

,
∂σ′xy
∂y

<<
∂σ′xz
∂z

,
∂p

∂x

•
∂σ′xy
∂x

,
∂σ′yy
∂y

<<
∂σ′yz
∂z

,
∂p

∂y

• ∂σ′xz
∂x

,
∂σ′yz
∂y

,
∂σ′zz
∂z

<<
∂p

∂z

• ∂w

∂x
<<

∂u

∂z
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• ∂w

∂y
<<

∂v

∂z

3.4.2 Determination of the variational and local equations for the shallow
ice approximation

� Variational formulation

As for the derivation of the previous simplified models, let us use these assumptions in the
weak formulation of the full-Stokes equations (3.3) to establish the local equations of this
model.

If we include the last two assumptions of the higher-order model (∂w/∂x << ∂u/∂z and
∂w/∂y << ∂v/∂z), for any kinematically admissible field (Φ, q)T such as:

Φ ∈ V
q ∈ P (3.68)

the first two systems of full-Stokes weak formulation (3.3) are reduced to:

∫
Ω

((
2µ
∂u

∂x

)
∂φx
∂x

+

(
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φx
∂y

+

(
µ
∂u

∂z

)
∂φx
∂z
− p∂φx

∂x

)
dΩ

+

∫
Γb

α2uτφxdΓ =

∫
Γw

pwnxφxdΓ +

∫
Γi

pinxφxdΓ

∫
Ω

((
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φy
∂x

+

(
2µ
∂v

∂y

)
∂φy
∂y

+

(
µ
∂v

∂z

)
∂φy
∂z
− p∂φy

∂y

)
dΩ

+

∫
Γb

α2vτφydΓ =

∫
Γw

pwnyφydΓ +

∫
Γi

pinyφydΓ (3.69)

These equations couple the horizontal velocity fields and the ice pressure.

In terms of velocity components, the first three assumptions of the shallow ice approximation
are:

• ∂

∂x

(
2µ
∂u

∂x

)
,
∂

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
<<

∂

∂z

(
µ
∂u

∂z
+ µ

∂w

∂x

)
,
∂p

∂x

• ∂

∂y

(
2µ
∂v

∂y

)
,
∂

∂x

(
µ
∂u

∂y
+ µ

∂v

∂x

)
<<

∂

∂z

(
µ
∂v

∂z
+ µ

∂w

∂y

)
,
∂p

∂y

• ∂

∂x

(
µ
∂u

∂z
+ µ

∂w

∂x

)
,
∂

∂y

(
µ
∂v

∂z
+ µ

∂w

∂y

)
,
∂

∂z

(
2µ
∂w

∂z

)
<<

∂p

∂z
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To include these conditions in the full-Stokes weak formulation, we first need to integrate
by part the first terms of the first three equations.

Considering admissible regular fields Φx = (Φx, 0, 0, 0), Φy = (0,Φy, 0, 0) and Φz =
(0, 0,Φz, 0), with Φx = Φy = Φz = 0 on the boundary of Ω and admissible fields q, and
after integrating by parts the first three systems of the global full-Stokes system (3.3), we
obtain:



∫
Ω

(
∂p

∂x
− ∂

∂z

(
µ
∂u

∂z

))
φxdΩ = 0

∫
Ω

(
∂p

∂y
− ∂

∂z

(
µ
∂v

∂z

))
φydΩ = 0

∫
Ω

(
∂p

∂z
+ ρg

)
φzdΩ = 0

∫
Ω

(
−∂u
∂x
− ∂v

∂y
− ∂w

∂z

)
qdΩ = 0

(3.70)

� Local equation of pressure field

The third equation states that
∂p

∂z
= −ρg (3.71)

If we integrate it between the point at altitude z and the upper surface, and use the addi-
tional assumption that the air pressure at the ice/air interface is neglected, the pressure at
elevation z is such that:

p (z) = ρg (s− z) (3.72)

where s is the upper surface elevation.

� Local equations of the horizontal velocity

Using equation (3.72) into the variational formulation of the horizontal velocity, we obtain:


∂

∂z

(
µ
∂u

∂z

)
= ρg

∂s

∂x

∂

∂z

(
µ
∂v

∂z

)
= ρg

∂s

∂y

(3.73)
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3.4.3 Boundary conditions for the shallow ice approximation

The shallow ice equations (3.73) are integrated along vertical columns between the bedrock
and a given elevation z. A Dirichlet condition is needed for each column, usually applied
at the base of the ice, generally taken as zero if the ice is below the pressure melting point,
or derived from a simplified friction law to account for basal sliding.

3.4.4 Summary

The shallow ice is a simple approximation of the full-Stokes equations that allows efficient
computing of ice velocity. Its local equations are:



∂

∂z

(
µ
∂u

∂z

)
− ρg ∂s

∂x
= 0

∂

∂z

(
µ
∂v

∂z

)
− ρg ∂s

∂y
= 0

∂p

∂z
+ ρg = 0

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

(3.74)

3.4.5 Model validity

The shallow ice is a model valid for ice sheets where movement is only due to vertical shear
deformation. This model is not appropriate to model ice shelves or fast ice streams where
most of the motion is caused by sliding over the bedrock or lateral spreading.

3.5 Domains of validity

We derived four ice flow models from the full-Stokes equations. Simpler models reduce
the computational cost while sophisticated ones allow a better representation of the actual
physics. The table below summarizes the main properties of these models:

Model Dim. Unknowns Reference

Full-Stokes (FS) 3d 4 Stokes [1845]

Blatter-Pattyn (BP) 3d 2 + 1 Blatter [1995]; Pattyn [2003]

Shallow shelf (SSA) 2d 2 + 1 MacAyeal [1989]; Morland and Zainuddin [1987]

Shallow ice (SIA) 1d 1 + 1 + 1 Hutter [1983]

February 10, 2012 67



CHAPTER 3. SIMPLIFIED MECHANICAL MODELS FOR ICE SHEET FLOW

The first approximation widely used in ice sheet modeling was the shallow ice approxima-
tion. Its simplicity and low computational cost allowed it to be used in large-scale models
[Ritz et al., 1997; DeConto and Pollard , 2003]. This approximation takes advantage of the
thickness-length ratio and the main consequence is that ice deformation is only due to ver-
tical shear stress. For this reason, this approximation is not valid for wavelengths smaller
than a few ice thickness. Displacement from basal sliding is also often neglected in this
approximation, so results are more accurate for areas where ice is frozen at the bedrock/ice
interface.

The second approximation, shallow-shelf or shelfy-stream approximation, was developed to
model ice shelves and ice streams. This approximation neglects vertical shear but allows to
include basal sliding. As ice shelves movement is mainly due to spreading and ice streams
displacement primarily slides over soft beds, so this approximation should advantageously be
used for this type of regions. The computational cost is also very low as it is a bidimensional
model. This approximation has been extensively used to infer basal parameters of Antarctic
and Greenland ice stream [MacAyeal , 1992; Joughin et al., 2001; Vieli and Payne, 2003;
Joughin et al., 2006, 2009] as it allows to include basal sliding and properties of ice shelves
[Rommelaere and MacAyeal , 1997; Larour , 2005; Khazendar et al., 2007, 2009].

The higher-order model was introduced later and includes some terms of the vertical shear.
Therefore, this model should not only allow to reproduce ice shelves and ice streams but
should be able to capture the evolution of ice streams within the ice sheet. The computa-
tional cost associated to this model is much more intensive than that of the previous ones
and this model has rarely been used.

To better understand the limitations of these approximations, some theoretical studies have
been performed by Hindmarsh [2004] and Gudmundsson [2008]. They compare results of
several approximations to the full-Stokes solution by analyzing the influence of small per-
turbations to the ice flow. Hindmarsh [2004] uses an infinite plane with a small inclination
and compare several approximations among other are the shallow ice approximation, the
shelfy-stream approximation and the higher-order model. Model computations of these
approximations are compared to analytical solutions and to the full-Stokes solution.

Hindmarsh [2004] shows that for a linear rheology, the solution with the shallow ice model
deviates from the full-Stokes when the wavelength of the perturbation is smaller than 50 ice
thickness and the solution of higher-order model deviates for wavelength smaller that 5 to
10 ice thickness. The value at which the higher-order solution starts to deviate from the full-
Stokes one depends on the slip ratio. For non-linear rheology, Hindmarsh [2004] shows that
the four models we presented are stable. However, the shelfy-stream approximation gives
inaccurate results except for high slip ratio, which is not unexpected for an ice shelf and
ice stream model. Both shallow ice and shelfy-stream approximations fail for wavelength
smaller than 5 to 10 ice thickness, but the shallow ice approximation fails in a more physical
way, as it tends to attenuate the errors whereas the shallow-shelf makes them persist. The
higher-order model is able to correctly reproduce the full-Stokes solution for perturbations
with wavelength below one ice thickness, depending on the slip ratio or the coefficient used in
the friction law. Inclusion of longitudinal stresses increase accuracy for short wavelengths
but still does not allow to reproduce ice behavior for wavelengths shorter than one ice
thickness.
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Results from Gudmundsson [2008] compare the shallow ice and shelfy-stream approximation
to a full-Stokes model for a linear rheology and a linear friction law. According to his
experiments, transmission of basal topography perturbations to the surface topography
are correctly reproduced for perturbations with wavelengths higher than 300 ice thickness
for the shallow ice model and 5 to 8 ice thickness for the shelfy-stream approximation.
Transmission of perturbations in the basal sliding are better transferred by the shallow ice
model, as results from shelfy-stream model slightly differ from the full-Stokes solution for
all wavelength. Finally, transmission of basal sliding perturbations to the surface velocity
are correctly reproduced with the shelfy-stream approximation for the horizontal velocity
(with a small offset) but not for the vertical velocity, as the solution deviates for wavelength
under 500 ice thickness.

All these comparisons have been made for theoretical cases. A study of Pine Island Glacier,
West Antarctica, by Morlighem et al. [2010] indirectly compares results from the shelfy-
stream approximation, higher-order and full-Stokes models by reproducing the surface ve-
locity using control methods. They find that the inferred patterns of basal drag found with
the three models are similar except in the vicinity of the ground line. These results are used
and discussed in chapter 6.

3.6 Chapter summary

In this chapter we described three common approximations used to model ice sheet flow,
all deriving from the full-Stokes equations. Under classical assumptions, but also under a
geometrical one (that seems not to be always sufficiently discussed in the litterature), we
established the local equations and boundary conditions for these three model using the
variational formulation of full-Stokes as it is a more general and more rigorous formulation
for a given continuum mechanical problem. We then detailed the domain of validity for
these three models based on the literature. In the following chapter we detail how these
formulations are implemented using the finite element method.
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In the previous chapters, we detailed the thermal, mechanical and mass conservation equa-
tions that govern the physics of ice sheet systems independently. The general thermo-
mechanical evolutive equations that couple these three aspects and that must be solved for
are:

∀x ∈ Ω, find (u, v, w, p, T,H) :

∂

∂x

(
2µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂z

(
µ
∂u

∂z
+ µ

∂w

∂x

)
− ∂p

∂x
= 0

∂

∂x

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂y

(
2µ
∂v

∂y

)
+

∂

∂z

(
µ
∂v

∂z
+ µ

∂w

∂y

)
− ∂p

∂y
= 0

∂

∂x

(
µ
∂u

∂z
+ µ

∂w

∂x

)
+

∂

∂y

(
µ
∂v

∂z
+ µ

∂w

∂y

)
+

∂

∂z

(
2µ
∂w

∂z

)
− ∂p

∂z
− ρg = 0

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

∂T

∂t
= −v · ∇T +

k

ρc
∆T +

Φ

ρc

∂H

∂t
= −∇ · (v̄H) + Ṁs − Ṁb

(4.1)

In this chapter, we focus on the numerical aspects of the problem. After describing the time
and space discretizations we adopted, we derive the weak formulations for these two prob-
lems and detail the algorithm used to solve the non-linearity introduced by the behavior law
in the mechanical problem and the non-linearity introduced by the phase change of ice at
pressure melting point in the thermal problem. We then explain how the thermal, mechan-
ical and mass balance problems are combined to perform either steady-state or evolutive
simulations. We finally present the model implementation and the main characteristics of
the software and show some simple experiments commonly used to verify the validity of the
solutions.

4.1 Discretization

4.1.1 Space discretization

Glaciers have a very small aspect ratio so the vertical and horizontal discretizations must
be different. Here we use triangles to mesh the bidimensional space with the Triangle
library [Shewchuk , 1996]. We use a mesher inspired from BAMG and YAMS [Frey , 2001;
Hecht , 2006]) to generate anisotropic triangular meshes whose metric is based on the velocity
hessian matrix. This technique distorts the mesh and reduces the discretization errors, while
minimizing the number of elements. Figure 4.1 shows both uniform and anisotropic meshes
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for Jakobshavn Isbræ, West Greenland. Observed surface velocities are used to estimate
the velocity hessian matrix.
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Figure 4.1: Meshes of Jakoshavn Isbræ, West Grenland and InSAR surface velocities over-
laid on a MODIS mosaic of Greenland. a) Uniform mesh b) Anisotropic mesh whose metric
is based on the velocity hessian matrix. Both meshes comprise around 1400 triangular
elements. Adapted from Larour et al. [2012]

Interpolation-based a-priori error estimates of a finite element solution based on piecewise
linear P1 elements depends only on its Hessian, provided that the solution is regular enough
[Habashi et al., 2000]. For each element E of the mesh, the error between the P1 interpolated
field uh and the exact field u is bounded as follows:

|u (x)− uh (x)| ≤ Ch2 sup
x∈E
|Hu (x)| (4.2)

where C is a constant depending on the space dimension, h the characteristic length of the
element, Hu (x) the Hessian matrix of u (x) and |Hu (x)| its spectral norm. Adaptive mesh
refinement takes advantage of this property to generate meshes whose element sizes are such
that the interpolation error is constant for the entire mesh. Let us observe that other error
indicators are available in the literature.

Vertical planes passing through the sides of the triangular edges divide the domain into
vertical columns of ice. These vertical columns are limited by the ice bottom on their lower
surface and the ice surface on the upper part. We then divide the ice thickness into a set
of layers of horizontally variable thickness. Each vertical column is therefore divided into

February 10, 2012 73



CHAPTER 4. NUMERICAL MODELING AND ALGORITHMS

a given number of triangular prisms whose upper and lower surfaces are not necessarily
parallel. The three-dimensional mesh is therefore composed of prismatic elements.

The same mesh is used to compute the thermal, mechanical and prognostic models even
though it has been adapted only for the mechanical model. Since the variations in velocities
are larger and often related to variations in other fields, a mesh adapted to velocity changes
is generally also suitable for thermal and prognostic models.

4.1.2 Time discretization

We use finite differences in time for the time discretization. The time discretization is
necessary for transient models that represent the temporal evolution of a glacier or ice sheet
(evolution of thickness and temperature).

∂f

∂t
' fi+1 − fi

∆t
(4.3)

where ∆t is the time step between ti and ti+1. We employ the Courant-Friedrichs-Lewy
(CFL) condition for stability [Courant et al., 1928; Courant , 1943].
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4.2 Mechanical models implementation

We detail here the implementation of the full-Stokes model, the weak formulation and the
Galerkin approximation. The derivation of the other ice flow models implementation is
similar and is therefore not detailed here. The fundamental problem description, which
includes the local equations and boundary conditions, is equivalent to its weak formulation.

4.2.1 Weak formulation

We use the local equations (2.30) and boundary conditions (section 2.3.3) defined in chapter
2 to derive the weak formulation of the full-Stokes equations.

Let Vuobs be the space of kinematically admissible velocity fields and P be the space of
admissible pressure fields.

Vuobs =
{

Φ ∈
(
H1 (Ω)

)3
,Φ = uobs on Γu and Φ · n = 0 on Γb

}
P =

{
q ∈ L2 (Ω)

} (4.4)

As done in section 3.1, we remind that in order to simplify the presentation, without loss of
generality, we will consider the case uobs = 0 and equate the space of velocity solution and
kinematically admissible velocity fields by setting V = Vuobs . In practice, non homogeneous
Dirichlet conditions based on observed velocities are used and included using lifting.

For any kinematically admissible field (Φ, q) ∈ (V × P), the weak formulation of the full-
Stokes equations is:

∫
Ω

(
∂

∂x

(
2µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂z

(
µ
∂u

∂z
+ µ

∂w

∂x

)
− ∂p

∂x

)
φxdΩ

+

∫
Ω

(
∂

∂x

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂y

(
2µ
∂v

∂y

)
+

∂

∂z

(
µ
∂v

∂z
+ µ

∂w

∂y

)
− ∂p

∂y

)
φydΩ

+

∫
Ω

(
∂

∂x

(
µ
∂u

∂z
+ µ

∂w

∂x

)
+

∂

∂y

(
µ
∂v

∂z
+ µ

∂w

∂y

)
+

∂

∂z

(
2µ
∂w

∂z

)
− ∂p

∂z

)
φzdΩ

+

∫
Ω

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
qdΩ =

∫
Ω
ρgφzdΩ (4.5)

After integration by parts and using the boundary conditions in section 2.3.3, we obtain
the weak formulation of the full-Stokes model as presented in equation (3.2).

For a given, strictly positive viscosity coefficient µ and regular data, this mixed problem
can be proven to be well-posed by applying basically theories of Babuska and Brezzi (see
e.g. [Brezzi and Fortin, 1991]).
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4.2.2 Galerkin approximation

The finite element method is based on the discretization of the solution space. We use
Vh and Ph two sub-spaces of respectively V and P of finite dimension. We suppose that
{Φ1, ...,Φn} and {q1, ..., qm} are two bases of these spaces. We want the weak formulation
established in the previous paragraph to be valid for any test functions, this being true in
particular for the basis functions. ∀ {i, j} ∈ {[1 : n]× [1 : m]}:

∫
Ω

((
2µ
∂u

∂x

)
∂φix
∂x

+

(
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φix
∂y

+

(
µ
∂u

∂z
+ µ

∂w

∂x

)
∂φix
∂z
− p∂φix

∂x

)
dΩ

+

∫
Ω

((
µ
∂u

∂y
+ µ

∂v

∂x

)
∂φiy
∂x

+

(
2µ
∂v

∂y

)
∂φiy
∂y

+

(
µ
∂v

∂z
+ µ

∂w

∂y

)
∂φiy
∂z
− p∂φiy

∂y

)
dΩ

+

∫
Ω

((
µ
∂u

∂z
+ µ

∂w

∂x

)
∂φiz
∂x

+

(
µ
∂v

∂z
+ µ

∂w

∂y

)
∂φiz
∂y

+

(
2µ
∂w

∂z

)
∂φiz
∂z
− p∂φiz

∂z

)
dΩ

−
∫

Ω

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
qjdΩ +

∫
Γb

α2uτ ·ΦidΓ

=

∫
Γw

pwn ·ΦidΓ +

∫
Γi

pin ·ΦidΓ−
∫

Ω
ρgφizdΩ (4.6)

We decompose the solution of the problem on these two bases:

v (x) =
n∑
k=1

vkΦk (x)

p (x) =
m∑
l=1

plql (x)

(4.7)

Using this decomposition, the weak formulation is: ∀ {i, j} ∈ {[1 : n]× [1 : m]}

n∑
k=1

vk

∫
Ω

((
2µ
∂φkx
∂x

)
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∂x

+

(
µ
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∂y

+ µ
∂φky
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µ
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µ
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vk

∫
Ω

((
µ
∂φkx
∂z

+ µ
∂φkz
∂x

)
∂φiz
∂x

+

(
µ
∂φky
∂z

+ µ
∂φkz
∂y

)
∂φiz
∂y

+

(
2µ
∂φkz
∂z

)
∂φiz
∂z

)
dΩ

−
n∑
k=1

vk

∫
Ω

(
∂φkx
∂x

+
∂φky
∂y

+
∂φkz
∂z

)
qjdΩ +

∫
Γb

α2Φkτ ·ΦidΓ

−
m∑
l=1

pl

∫
Ω
ql

(
∂φix
∂x

+
∂φiy
∂y

+
∂φiz
∂z

)
dΩ

=

∫
Γw

pwn ·ΦidΓ +

∫
Γi

pin ·ΦidΓ−
∫

Ω
ρgφizdΩ (4.8)
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where Φkτ is part of the basis function Φk tangential to the bedrock surface.

This formulation is valid for any basis function Φi ∈ V and qj ∈ P. It therefore gives a
system of n+m equations of n+m unknowns. In matrix form, this problem is equivalent
to finding the vectors (U,P ) solution of the following linear system of equations:

(
A B
BT 0

)(
U
P

)
=

(
F
0

)
(4.9)

with:

Ak,i =

∫
Γb

α2Φkτ ·ΦidΓ

+

∫
Ω

((
2µ
∂φkx
∂x

)
∂φix
∂x

+

(
µ
∂φkx
∂y

+ µ
∂φky
∂x

)
∂φix
∂y

+

(
µ
∂φkx
∂z

+ µ
∂φkz
∂x

)
∂φix
∂z

)
dΩ

+

∫
Ω

((
µ
∂φkx
∂y

+ µ
∂φky

∂x

)
∂φiy
∂x

+

(
2µ
∂φky
∂y

)
∂φiy
∂y

+

(
µ
∂φky
∂z

+ µ
∂φkz
∂y

)
∂φiy
∂z

)
dΩ

+

∫
Ω

((
µ
∂φkx
∂z

+ µ
∂φkz
∂x

)
∂φiz
∂x

+

(
µ
∂φky
∂z

+ µ
∂φkz
∂y

)
∂φiz
∂y

+

(
2µ
∂φkz
∂z

)
∂φiz
∂z

)
dΩ

(4.10)

Bk,j = −
∫

Ω

(
∂φkx
∂x

+
∂φky
∂y

+
∂φkz
∂z

)
qjdΩ (4.11)

Fi =

∫
Γw

pwn ·ΦidΓ +

∫
Γi

pin ·ΦidΓ−
∫

Ω
ρgφizdΩ (4.12)

4.2.3 Finite element method

The weak formulation of the full-Stokes problem is a mixed formulation as both velocity
and pressure are solved. As observed before, the continuous problem has a unique solution,
however this is not true for any discretization of this continuous problem and a particular
attention must be paid to the choice of discretization spaces [Brezzi and Fortin, 1991]. The
discretization space adopted defines prismatic element for the three dimensional models.
The basis functions used in the finite element method must ensure that the problem will
be numerically stable. It is for example not possible to choose polynomials that have the
same order for both velocity and pressure. The choice of finite element must fulfill, in
particular, the Ladyzhenskaya-Babuška-Brezzi compatibility condition (LBB) that restricts
the approximation spaces in order to ensure the existence of a unique solution to the discrete
problem.

Let V and P be two Hilbert spaces, || ||V and || ||P the associated norms and b a linear form
continuous on V ×P. The form b satisfies the LBB condition if there is a scalar β > 0 such
that:

inf
p∈P

sup
v∈V

b (v, p)

||v||V ||p||P
≥ β (4.13)
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To satisfy the LBB condition we employ the Residual Free Bubble Function (RFBF) stabi-
lization technique [Brezzi et al., 1996b, a]. This is one of the methods that ensures avoidance
of spurious pressure modes and numerical instabilities associated with inadequate spatial
resolution. This approach has the advantage of providing control over the accuracy of
FE schemes and has been used in Earth Science modeling, ocean modeling in particular
[Nechaev et al., 2003; Guillen-Gonzalez and Rodriguez-Gomez , 2005]. The major idea of
the RFBF stabilization is to enrich the approximation function space of velocities with
”bubble functions” which have zero values on the boundaries of the elements but contribute
to the system matrix through their projections on the original basis functions.

In our case, we use P+
1 P1 (MINI) elements. An additional node is added in the center of the

prism with a quadratic nodal function for the velocity, whose value is zero on the regular
prism nodes (known as bubble function in the literature). The nodal functions used for
the other nodes (the six vertices of the prism) are linear for the pressure and the velocity.
To avoid including these additional nodes and the degrees of freedom associated with these
nodes, we use static condensation (see e.g. [Franca and Farhat , 1995]).

The weak formulations and Galerkin approximations of the Shelfy-stream approximation
and Higher-order models are derived the same way. These two problems only involve degrees
of freedom for velocity and are therefore not mixed problems. Piecewise linear triangular P1

elements are used for the discretization of the shelfy-stream approximation and P1 prismatic
elements for the higher-order model.

4.2.4 Non linear behavior law

In chapter 2, we introduced Glen’s flow law as the deformation law for ice flow. This is a
non-linear flow law, and therefore leads to non-linear partial differential equations for the
velocity. The non-linearity is solved iteratively using the Picard’s iterative method, a fixed
point-like strategy. Reist [2005] (p.39) showed that this method can be used for ice flow
equations and converges if we start from an initial value “close enough” to the solution.

To prove the convergence of the continuous problem, Reist [2005] used the calculus of
variations. He defines the application that for a given uh and its associated viscosity µ (uh)
returns the velocity vh solution of the linear problem described above (see equation (3.2)).
Note that a solution of the problem is a fixed-point of this application. Reist [2005] then
considers the Frechet-Derivative of this application and observed that its spectral radius
is inferior to 1. As this funtion is also the iteration function in the algorithm applied (see
below), if we start from an initial guess not too far from the solution, the suite of functions
solution of this application converges toward uh.

We solve a linear problem for each iteration until convergence. We start with an estimate
of the velocity v0 and do the following steps until the convergence criterion is met:

• Calculate new viscosity µk = µ (Vk)

• Compute velocity Vk+1 such that K (Vk)Vk+1 = F
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When the residual term ||K (Vk)Vk − F ||/||F || is below the convergence criterion, we stop
the iterations.

As the shelfy-stream and higher-order models decouple the horizontal and vertical equations,
an additional step is needed to compute the vertical velocity as a by-product of the horizontal
velocity contrary to full-Stokes model. This is done using the incompressibility equation
with the finite element method, assuming that there is no penetration of ice in the bedrock
so the boundary condition at the ice/bedrock interface is a non-penetration condition.

Figure 4.2 shows the algorithm used for both the shelfy-stream or higher-order models and
for full-Stokes equations, with uh representing the horizontal components of velocity.
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Compute u
h

Initial velocity u = u
h+w

Compute w

a
(

u
h,Φ

)

= l (Φ)

Solution u = u
h+w

∂w

∂z
= −div

(

u
h

)

Viscosity

Compute us

Initial velocity and pressure us

as (us,Φs) = ls (Φs)

Solution us

Viscosity

convergence

convergence

Figure 4.2: Velocity algorithms for the shelfy-stream and higher-order models (left) and for
full-Stokes equations (right)
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4.3 Thermal model implementation

The heat budget equation established in the first chapter (2) is:

∂T

∂t
+ v · ∇T =

k

ρc
∆T +

Φ

ρc
(4.14)

However the ice temperature cannot be above pressure melting point as we saw in section
2.4.3, and appropriate model must be used to correctly model ice temperature. We use here
a cold ice model and assume that the areas of temperate ice are limited in space and located
on the ice/bedrock interface. This assumption is realistic for most parts of the Antarctic
ice sheet but not always true for Greenland (see section 2.4.3). To avoid temperatures that
are above the pressure melting point, we use the penalty method.

4.3.1 Including phase change at the ice/bedrock interface

We include here the solid-liquid phase change processes at the ice/bedrock interface. If
the ice temperature reaches the pressure melting point, it starts melting and the heat
budget equation has to be modified to include the phase change. The temperature/melting
condition is described in scheme 4.3.

T − Tpmp

Ṁb

0

Figure 4.3: Description of the melting-rate/temperature condition. T is the ice temperature,
Tpmp the ice pressure melting point and Ṁb the melting rate

The ice temperature needs therefore to respect the following condition: T ≤ Tpmp. If
the temperature reaches the pressure melting point, the heat equation has to include a
melting term that represents the heat loss. We consider here that ice is below the metling
point everywhere except at the ice/bedrock interface. The boundary condition on the lower
surface Γb must therefore be changed to account for ice melting in areas where ice reaches
the pressure melting point:

k ∇ T |b · n = G− τb · uτ + ρLṀb (4.15)

where L is the ice latent heat of fusion and Ṁb the ice melting rate in m/s, positive or zero.

The general thermal boundary condition at the ice/bedrock interface Γb is:
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k ∇ T |b · n = G− τb · uτ +


ρLṀb if T = Tpmp

0 if T < Tpmp

(4.16)

4.3.2 Signorini formalism

To include this melting condition, we use a formalism similar to Signorini’s contact law or
Kuhn and Tucker conditions (see e.g. Duvaut and Lions [1972]).

In our problem, the conditions to fulfill are:

T ≤ Tpmp ⇔ Temperature below or at the pressure melting point

Ṁb ≥ 0 ⇔ Positive or zero melting

(T − Tpmp) Ṁb = 0 ⇔ Condition of complementarity

(4.17)

Inequalities are not easy to introduce in weak formulations. We therefore use a penalty
method (e.g., Courant [1943]) and introduce a Sign field S (see Ben Dhia [1988]; Ben Dhia
and Zammali [2007]) to approximate them by equations:

ρLṀb = κ S × (T − Tpmp) (4.18)

where the sign field function S is equal to 1R+ (T − Tpmp), 1R+ being the indicator function
of the sem-axis of positive reals, defined by:

1R+ (x) =

{
1 if x ≥ 0
0 else

(4.19)

If κ tends towards infinity, we recover Signorini’s formalism (see figure 4.4).

T − Tpmp

Ṁb

0

κ

Figure 4.4: Description of the melting-rate/temperature condition. T is the ice temperature,
Tpmp the ice pressure melting point, Ṁb the melting rate and κ the penalty coefficient
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In our problem, the unit of κ is W m−2 K−1, so κS (T − Tpmp) is equivalent to a heat flux.
κ is equivalent to a heat transfer coefficient in a Newton’s cooling law. Indeed in a Newton’s
cooling law, the energy, E, is solution of the differential equation such as:

dE

dt
= −hA∆T (t) (4.20)

where h is the heat transfer coefficient, A the surface area of the heat being transfered and
∆T the time-dependant thermal gradient between an object and its environment.

As for contact problems, one can also use a Lagrangian formalism that is more rigorous
(e.g. Alart and Curnier [1991]; Wriggers [2002]; Ben Dhia and Zarroug [2002]; Ben Dhia
and Zammali [2007]).

4.3.3 Weak formulation

The heat budget equation is, find T and S such that:

∂T

∂t
+ v · ∇T =

k

ρc
∆T +

Φ

ρc
(4.21)

The boundary conditions of the model are:

Upper surface Γs : T = Tair

Icesheet base Γb : k∇ T |b · n = G− τb · uτ + κ S × (T − Tpmp)

Iceshelf base Γw : k ∇ T |b · n = −ρwcpMγ (Tb − Tpmp)

Other borders Γu ∪ Γi : ∇ T · n = 0

(4.22)

where Γs is the upper surface, Γb the ice/bedrock interface, Γw the ice/water interface,
Tair the air temperature at the surface, Tb the ice temperature on the lower surface, Tpmp
the pressure melting point, G the geothermal flux, τb the friction stress at the ice/bedrock
interface, k the ice thermal conductivity, uτ the ice velocity tangential to the ice/bedrock
interface, n the outward pointing normal vector, ρw the water density, cpM the mixed layer
specific heat capacity [Holland and Jenkins, 1999] and γ the thermal exchange velocity.

Similarly to the previous section, we establish the weak formulation of this model. Let VTair
be the space of kinematically admissible temperature fields.

VTair =
{
θ ∈ H1 (Ω) , θ = Tair on Γs

}
(4.23)

Similarly to the mechanical problem, we consider here that homogeneous Dirichlet condi-
tions are applied. For any admissible temperature fields θ ∈ V0, the weak formulation of
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the thermal equation is:∫
Ω

(
∂T

∂t
θ +

k

ρc
∇T · ∇θ + θv · ∇T

)
dΩ +

∫
Γw

ρwcpMγ

ρc
TθdS

=

∫
Ω

Φ

ρc
θdΩ +

∫
Γw

ρwcpMγ

ρc
TpmpθdS +

∫
Γb

1

ρc
(G− τb · uτ + κ S × (T − Tpmp)) θdS

(4.24)

We use finite differences in time and an implicit time scheme. The Galerkin approximation
is derived similarly for the thermal equation as for the mechanical equations. The weak
formulation becomes:

Find T ∈ V, ∀ θ ∈ V a (T, θ) = l (θ) (4.25)

with:

a (T, θ) =

∫
Ω

(
1

∆t
Tθ + θv · ∇T +

k

ρc
∇T · ∇θ

)
∂Ω

+

∫
Γw

ρwcpMγ

ρc
TθdS −

∫
Γb

1

ρc
(κ ST ) θdΓ (4.26)

l (θ) =

∫
Ω

(
1

∆t
T−θdΩ +

Φ

ρc
θ

)
dΩ +

∫
Γw

ρwcpMγ

ρc
TpmpθdΓ

+

∫
Γb

1

ρc
(G− τb · uτ − κ STpmp) θdΓ (4.27)

S = 1R+ (T − Tpmp) (4.28)

where T− is the ice temperature at the previous time step. The non-linearity induced by the
constraint that ice temperature must remain below the pressure melting point is discussed
in the next paragraph.

4.3.4 Thermal non-linearity

Ice melting introduces a non-linearity in the problem as areas where ice is at the pressure
melting point are not a priori known. This thermal non-linearity is raised up by the unknown
sign field S and we use the following algorithm to solve this nonlinear equation for one
particular time step (see also figure 4.5):

1. Initial field S = S1

2. Compute solution T1 and update S = S2 = 1R+ (T1 − Tpmp)

3. If S2 = S1 stop, else iterate until Si = Si−1

The melting is computed as a by-product:

Ṁb =
κ

ρL
S × (T − Tpmp) (4.29)
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Compute T

Initial temperature T and sign field S

Update sign field S

a (T, θ) = l (θ)

Solution T and S

S = 1R+
(T − Tpmp)

Convergence of S

Figure 4.5: Thermal algorithm used to solve the non-linearity associated to the constraint
the ice temperatue must be below or at the pressure melting point

4.3.5 Stabilized finite elements

� Limits of the finite element method for convective dominated flows

Brooks and Hughes [1982] noticed that in convection dominated flows, results are sometimes
affected by wiggles (spurious node to node oscillations). These anomalies are created by
the finite element discretization of the problem described previously.

Several methods have been developed to tackle this problem. Here, we follow Hughes et al.
[1989]; Franca et al. [2006] and add stabilization terms to the galerkin formulation. These
mesh-dependent terms are consistent with the formulation and numerically stabilize the
solution.
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� Stabilized formulation

If the convective coefficient is larger than the diffusive coefficient, the Galerkin method leads
to oscillations. The stabilized formulation includes an additional term so the problem we
solve for is:

Find T ∈ V, ∀θ ∈ V A (T, θ) = L (θ) (4.30)

with:
A (T, θ) = a (T, θ) + b (T, θ)

L (θ) = l (θ) +m (θ)
(4.31)

and

b (T, θ) =

∫
Ω
τ

(
− k

ρc
4T + v · ∇T

)
v · ∇θ

m (θ) =

∫
Ω

τΦ

ρc
v · ∇θ

(4.32)

with τ the stabilization parameter that is detailed in the next section.

� Stabilization parameter

The parameter τ that appears in the stabilized formulation depends on the mesh properties,
the velocity and thermal parameters. It is expressed as:

τ =
hK

2||v||
min

(
1,
hK ||v||mK

2κ

)
(4.33)

with the parameters:

• hK is the element diameter, the minimal length of the element edges

• mK is the stabilization parameter

• ||v|| is the velocity norm
(
u2 + v2 + w2

)1/2
• κ =

k

ρc
is the diffusivity coefficient of the thermal equation

The stabilization parameter depends on the type of elements and is equal to 1/3 for wedges
elements.

To avoid dividing by a zero if the velocity is zero, we use:
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• τ =
hK

2||v||
if

hK ||v||mK

2κ
> 1

• τ =
h2
KmK

4κ
if

hK ||v||mK

2κ
< 1

The velocity norm is computed on each gauss point and the parameter must therefore be
computed at each gauss point.
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4.4 Combining thermal and mechanical models

4.4.1 Steady-state solution

The thermal and mechanical equations are coupled by the viscosity parameter (temperature
dependent), the advection and deformational heating. In order to have a thermo-mechanical
steady state, we need to reach convergence of both velocity and temperature.

Here, we use a fixed point scheme (Picard scheme), and we solve alternatively for the velocity
and the temperature until both fields have converged according to a convergence criterion.
We start with a priori estimates of velocities and temperature. Since solving temperature
and velocity is also a non-linear problem and requires iterative schemes, a double loop is
needed to solve the thermo-mechanical steady-state equations.

To reach the steady-state equilibrium, we use the convergence scheme described in figure
4.6. For each step, we compute the velocity and the temperature as explained above. We
stop the iterations when the relative variations of both temperature and velocity between
two iterations are below a specified tolerance.

4.4.2 Evolutive models

This section details the steps performed for the resolution of transient models. All the
equations are resolved independently to reduce the numerical cost. Changes in ice thickness,
H, will change the forces applied to the ice sheet system. For example a change in surface
slope modifies the driving stress, which will change the ice velocity.

We start with a given configuration of the glacier where the ice geometry (thickness, surface,
bedrock) and temperatures are know. The velocity can be estimated using observations. For
each time step, we start by computing the new temperature. The ice viscosity parameter, B,
is updated accordingly. The new velocity is then calculated. We use the mass conservation
to calculate the thickness for the next time step and change the geometry of the glacier
accordingly. The mesh is finally updated to match the new configuration (horizontal layers
follow the new surface and bed elevations).

The time steps are either computed based on the CFL condition or prescribed (in this case
we ensure that the prescribed time step is compatible with CFL condition). Scheme 4.7
summarizes these steps.

We use the Arbitrary Eulerian-Lagrangian method [Donea and Belytschko, 1992] to update
the mesh at each time step. It is convenient for our problem to use a mesh that is horizontally
fixed (Eulerian approach) but that evolves vertically as the lower and upper surfaces change
with time. The only equation that is affected by the mesh velocity is the thermal model,
for which the advection needs to be modified to take into account the vertical velocity of
the mesh.
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Initial state: v0 and T0

Energy balance

Steady-state: vf and Tf

Ti+1 = fe (Ti,vi)

Convergence

Momentum balance

vi+1 = fm (vi, Ti+1)

Figure 4.6: Algorithm for the steady-state convergence (velocity and temperature)
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Initial state: v0, H0 and T0

Energy balance

Final state: vf , Hf and Tf

Ti+1 = fe (Ti,vi, Hi)

t < tf

Momentum balance

vi+1 = fm (vi, Hi, Ti+1)

Mass balance

Hi+1 = fma (Hi,vi, Ti+1)

Update mesh

Figure 4.7: Algorithm used for evolutive models
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4.5 Model implementation

All these algorithms have been implemented in the Ice Sheet System Model (ISSM) de-
veloped in collaboration between the Jet Propulsion Laboratory, University of California
Irvine and the MSSMat Laboratory at École Centrale Paris [Larour et al., 2012]. ISSM is
a thermo-dynamic finite element model massively parallelized. We describe here its main
properties.

4.5.1 Languages

ISSM uses the C language for the implementation of the finite elements. Objects man-
agement relies on the C++ language so that polymorphic capacities can be used. The
advantage of this solution is to be both flexible and scalable.

For ease of use, a Matlab interface has been developed. It allows easy pre and post-
processing. The C/C++ core is interfaced to the Matlab environment using Matlab’s
external API (Application Program Interface). This results in a seamless integration of
ISSM in Matlab.

4.5.2 Parallel architecture

ISSM can be used in a serial mode within Matlab but is above all a parallel architecture
designed to run models on large clusters. When running on these large clusters, the C/C++
core is compiled as a standalone executable. Parallelism is achieved through the Message
Passing Interface (MPI) so the software can be used on both distributed or shared memory
clusters.

The PETSc library is used to define numerical objects such as vectors, matrices and solvers.
These objects are directly used in ISSM and are abstracted to hide the difference between
the serial and parallel implementation. PETSc also provides access to a large array of
solvers.

We mainly rely on MUMPS (Multifrontal Massively Parallel Sparse direct solver) to com-
pute the models solutions. This solver is poorly scalable but does not suffer from conver-
gence issues as it relies on a direct solving method. The solving phase represents more than
90% of the computational time when using this direct solver but still allows us to tackle
problems with several millions of degrees of freedom. Further work will be necessary to
use iterative solvers, especially to solve the full-Stokes equations that require appropriate
preconditioning.

4.5.3 Mesh partitioning

To partition the mesh elements and nodes across a cluster, ISSM relies on METIS, a library
for partitioning and ordering matrices and graphs. This partitioning scheme results in
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partitions that have equal numbers of elements on each cluster node which ensures a good
computational load balance, as resulting stiffness matrices are well-partitioned. Figure 4.8
presents an example of partitioning of Pine Island Glacier, West Antarctica, into partitions
that have the same number of elements.

Figure 4.8: Partitioning of the elements of Pine Island Glacier, West Antarctica, in 20
subdomains. Each domain is represented by a different color, the black lines are the elements
edges. The model domain of this example is chosen to coincide with the geographic limits
of Pine Island basin and limited to areas where observed velocities are available.

4.5.4 Model validation

� Verification

We developed a suite of tools and a set of tests to automatically carry out nightly runs.
These nightly runs consist in approximately a hundred test cases based on a variety of
configurations that range from synthetic square ice shelves and ice sheets to simplified
version of Pine Island and Nioghalvfjerdsfjorden glaciers. Tests include computation of
velocity, temperature, thickness for steady-state or transient cases and about two thousand
output fields are tested against archive files. An HTML report is automatically generated
and sent by email every night. This ensures that no error is introduced in the software while
developing new capacities.
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� Comparison with ISMIP-HOM benchmark

Model results of ISSM were compared against existing benchmarks such as ISMIP-HOM (Ice
Sheet Model Intercomparison Project for Higher-Order Models) benchmark [Pattyn et al.,
2008]. This benchmark targets validation for three dimensional ice flow models. Our results
show an excellent agreement with the participating models, for all A to F tests. Here, we
present some of these results, specifically for tests A, C and F. For these tests, we rely on
regular triangular elements for the bidimensional mesh with 50 intervals in both horizontal
directions. The bidimensional meshes are vertically extruded into 20 vertical layers to form
prismatic elements. These tests are performed with the higher-order and the full-Stokes
models.

Test A is a static experiment that involves an ice slab flowing over a sinusoidal bumpy-bed
(see figure 4.9) with zero velocity at the base. We use the penalty method to impose periodic
boundary conditions on the sides. The test is performed for six domain lengths (L) ranging
from 5 km to 160 km. Figure 4.10 shows that our modeled surface velocity agrees well with
the benchmark velocity computed by other software in the benchmark. Results from both
higher-order and full-Stokes models are within the interval described by the benchmark
models [Pattyn et al., 2008].
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Figure 4.9: Geometry of ISMIP-HOM benchmark test A, representing the upper and lower
surfaces of the model domain.

Experiment C of the ISMIP-HOM benchmark is similar to A, except for a flat bedrock and
a bed that is not frozen as shown on figure 4.11. The basal friction coefficient is prescribed
by a sinusoidal periodic law, so periodic boundary conditions are also applied here. Our
results using both full-Stokes and higher-order models agree quite well with the benchmark
results (see figure 4.12), and are also within the intervals described by other models. We
note that the results for both models are very similar at all domain lengths.

The last ISMIP-HOM benchmark presented here is experiment F, which is a transient
experiment for a slab of ice that flows over a sloping bed. The initial bedrock and surface
are parallel and ice thickness is prescribed at 1,000 m. A gaussian bump is introduced
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Figure 4.10: Results of ISMIP-HOM benchmark test A. Surface velocity (m/yr) across the
bump at y=L/4 for different length scales, with L ranging from 5 to 160 km. Values com-
puted with ISSM higher-order (NFS ISSM) and full-Stokes (FS ISSM) models are compared
to the values found by other models (NFS and FS) in the original ISMIP-HOM benchmark
[Pattyn et al., 2008].

at the center of the basal topography. As in the previous two experiments, penalties are
applied to simulate the periodic boundary conditions. They are used for both velocity and
thickness. The free surface and velocity evolve until a steady-state solution is reached.
This experiment is run with basal sliding (slip bed) and without basal sliding (no-slip bed).
Results are presented in figure 4.13 for both models. The steady-state surface found by both
models and for both basal conditions agrees very well with the results of the ISMIP-HOM
benchmarks. The steady-state surface velocity found for the non-slip bed is slightly higher
than the results of other models. Steady-state surface velocity solved by ISSM is higher for
the higher-order solution and lower for the full-Stokes solution by about 1m/yr compared to
the case of the slip bed experiment. Only a handful of ice sheet models have performed these
tests. In addition, this test exhibits challenges in terms of mass conservation, especially
for finite element based treatments of mass transport [Gagliardini and Zwinger , 2008].
In order to check whether our implementation conserves mass throughout the transient
run, we computed the total mass of the ice slab at each step of the run. The mass is
constant throughout the run, at a precision of 8 digits. This demonstrates that our numerical
implementation efficiently conserves mass within single float precision.
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Figure 4.11: Geometry of ISMIP-HOM benchmark test C, representing the upper and lower
surfaces of the model domain. The color of the lower surface is the friction coefficient applied
at the ice/bedrock interface [N.m/s].

4.6 Chapter summary

In this chapter, we presented the numerical aspects and choices made in this thesis. We
first described the spatial discretization adopted and the mesh used in this work as well as
the time discretization. We then detailed the implementation of the mechanical problems,
established the weak formulation of the full-Stokes model and the associated Galerkin ap-
proximation, as well the choices made in the implementation of the finite element model
and the resolution of the non linearity of these equations. We also focused on the thermal
problem to properly include the phase change when ice reaches pressure melting point; we
described the formalism we adopted here and the choices made for the resolution of the
non linearity of the thermal problem and in the stabilization of this convection dominated
problem. We finally concluded this chapter by describing the main characteristics of the Ice
Sheet System Model, the software in which all these formulations have been implemented.
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Figure 4.12: Results of ISMIP-HOM benchmark test C. Surface velocity (m/yr) across the
bump at y=L/4 for different length scales, with L ranging from 5 to 160 km. Values com-
puted with ISSM higher-order (NFS ISSM) and full-Stokes (FS ISSM) models are compared
to the values found by other models (NFS and FS) in the original ISMIP-HOM benchmark
[Pattyn et al., 2008].
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Figure 4.13: Results of ISMIP-HOM benchmark test F. Steady-state surface velocity (m/yr)
and steady state surface elevation (m) along the central flowline for non-sliding and sliding
cases. Values computed with ISSM higher-order (NFS ISSM) and full-Stokes (FS ISSM)
models are compared to the values found by other models (NFS and FS) in the original
ISMIP-HOM benchmark [Pattyn et al., 2008]. Analytical results derived with a first-order
perturbation analysis of a flow down a uniformly inclined plane Gudmundsson [2003] are
also shown in black for the no-slip bed.
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CHAPTER 5. TILING METHOD

Several ice flow models of increasing complexity have been developed to represent the dy-
namics of ice sheet systems. Simpler models require less computational time and ressources
whereas sophisticated models capture the ice dynamics more accurately in all types of area.
Hybrid models that combine several approximations have the potential to accurately capture
ice dynamics while maintaining reasonable computational time.

In this chapter, we first describe a new coupling technique, the Tiling method, adapted
specifically for our problem. We then apply it in order to combine the shelfy-stream ap-
proximation, the higher-order model and the full-Stokes equations.

5.1 Tiling method

The Tiling method is inspired by the Arlequin framework previously presented in section
2.6.3. It is based on a superposition zone where two different models are strongly blended,
hence the name Tiling method. It mainly differs from the Arlequin framework in that there is
only one mesh, which implies that this technique is not adapted to multiscale problems. The
Tiling method does not require a domain decomposition and the domain is not “physically”
split into two subdomains. Let us outline here the main ideas of this approach by considering
a generic problem.

5.1.1 New formulation of a continuous problem

Let Ω be the model domain and V the set of kinematically admissible fields for Ω. We write
a and l the bilinear and linear forms associated to the variational formulations and aΩ and
lΩ their restriction to Ω. These two forms respectively represent the virtual work of internal
and external forces. The generic problem to solve for is:

Find u ∈ V, ∀v ∈ V aΩ (u,v) = lΩ (v) (5.1)

Instead of solving this mono-model problem with the finite element method, the idea is to
first reformulate this problem using a domain decomposition. We consider two subdomains
of Ω denoted by Ω1 and Ω2 such that:

Ω = Ω1 ∪ Ω2 (5.2)

These two subdomains are overlapping in a transition zone. The overlapping region, denoted
by Ωt, is called the transition zone or superposition zone. It is defined by: (see Fig. 5.1)

Ωt = Ω1 ∩ Ω2 6= ∅ (5.3)

Let V1 and V2 be the sub-spaces of kinematically admissible fields for the two subdomains,
such that V = V1 + V2.
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V2 (Ω2)

model superposition

V1 (Ω1) Ωt

Figure 5.1: Separation of the domain in two subdomains

The solution u is taken as the sum of the contributions of velocity from the two subdomains:

u ∈ V (Ω) = (V1 (Ω1) + V2 (Ω2))
u = u1 |Ω1

+ u2 |Ω2

(5.4)

In order to have a continuous solution, u, we need to impose additional boundary conditions
on the boundary of the superposition zone ∂Ωt. All points on ∂Ωt have homogeneous
Dirichlet conditions for one of the two contributions (Fig. 5.2). For the sake of simplicity
and without limiting the extent of the method, we detail here these additional Dirichlet
conditions in the specific case where one subdomain is strictly included in the second one,
i.e., no nodes of this first subdomain is on the border of the domain ∂Ω. Under these
conditions, the additional Dirichlet conditions are:

u1 |Ω1
= 0 on ∂Ω1 ∩ ∂Ωt

u2 |Ω2
= 0 on ∂Ω2 ∩ ∂Ωt

(5.5)

Ωt

u2 |
Ω2

u1 |
Ω1

u

Figure 5.2: Example of solution in 1d

The kinematically admissible fields are now:

Vt1 = {u1 |Ω1
∈ V1 (Ω1) ,u1 |Ω1

= 0 on ∂Ω1 ∩ ∂Ωt}
Vt2 = {u2 |Ω2

∈ V2 (Ω2) ,u2 |Ω2
= 0 on ∂Ω2 ∩ ∂Ωt}

(5.6)
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If we use the bilinearity of a, the linearity of l, and if we decompose the test function, v, on
the two spaces, the problem formulation using the domain decomposition becomes:

Find u = u1 |Ω1
+ u2 |Ω2

∈ (Vt1 + Vt2) ,

∀v = v1 |Ω1
+ v2 |Ω2

∈ (Vt1 + Vt2) :

aΩ1

(
u1 |Ω1

,v1 |Ω1

)
︸ ︷︷ ︸

model 1

+ aΩ2

(
u2 |Ω2

,v2 |Ω2

)
︸ ︷︷ ︸

model 2

+

aΩt

(
u1 |Ωt

,v2 |Ωt

)
+ aΩt

(
u2 |Ωt

,v1 |Ωt

)
︸ ︷︷ ︸

model coupling

= l
(
v1 |Ω1

)
︸ ︷︷ ︸

model 1

+ l
(
v2 |Ω2

)
︸ ︷︷ ︸

model 2

(5.7)

The coupling terms allow the coupling of u1 and u2 on the superposition zone.

This continuous problem is singular because of the existence of the volume superposition
zone where the two subdomains are used simultaneously leading to an infinite redundant set
of equations. We take advantage of the problem discretization to overcome this redundancy
problem.

5.1.2 Domain discretization

In order to tackle the redundancy issue for finite element discretization of the continuous
problem (5.7), our basic idea consists of reducing the superposition zone to only “one layer”
of elements so that all nodes of Ωt are on the border of this zone ∂Ωt. Each node is associated
with only one model except on ∂Ωt where one of the two models is constrained. Therefore,
both u1 and u2 are never simultaneously computed on the same node in the mesh. Under
these conditions, the discretized problem is regular.

To build this superposition zone, one possibility is to define a line (or a surface for three
dimensional domains) that represents the border between the two subdomains and coincides
with the elements edges. Then, find all the elements containing at least one of these points,
keeping only the elements in one of the two subdomains (if all are kept, there will be
two layers of elements, one inside the first subdomain and the other one inside the second
subdomain). Figure 5.3 exhibits an example for a bidimensional domain decomposition.
Let us observe here that in this discrete setting, coupling with the tiling method may recall
the one used by Belytschko et al. [1995] to couple finite and discrete elements. Let us also
observe that the same formulation (5.7) has also been derived by Ben Dhia and Jamond
to introduce a fine local model with a defect in a safe and global one; the transition zone
being made of a one layer of coarse global elements (Ben Dhia and Jamond, 2008, private
unpublished communication).

We hereafter adapt this method to the coupling of different ice flow models and show that
for certain couplings, essential new technical tools must be designed in order for the method
to be relevant. This is believed to be an original contribution, developed in this thesis.

102 February 10, 2012



5.1. TILING METHOD

 

 

Model 1 only
Model 2 only
Superposition zone

Figure 5.3: Example of superposition zone in 2d

5.1.3 Multi-model problem

The basic idea of the Tiling method consists of taking advantage of the reformulation of the
finite element problem in order to introduce two different mechanical models for the two
subdomains Ω1 and Ω2. Schematically, let a1,Ω1 , a2,Ω2 and l1,Ω1 , l2,Ω2 be the bilinear and
linear forms associated to the variational formulations of the two mechanical models in their
respective domains. Let a1−2,Ωt and a2−1,Ωt be the transition blending bilinear forms in the
transition domain Ωt. We define a weak multi-model formulation associated to problem
(5.7) by:

Find u = u1 |Ω1
+ u2 |Ω2

∈ (Vt1 + Vt2) ,

∀v = v1 |Ω1
+ v2 |Ω2

∈ (Vt1 + Vt2) :

a1,Ω1

(
u1 |Ω1

,v1 |Ω1

)
︸ ︷︷ ︸

model 1

+ a2,Ω2

(
u2 |Ω2

,v2 |Ω2

)
︸ ︷︷ ︸

model 2

+

a1−2,Ωt

(
u1 |Ωt

,v2 |Ωt

)
+ a2−1,Ωt

(
u2 |Ωt

,v1 |Ωt

)
︸ ︷︷ ︸

model coupling

= l1,Ω1

(
v1 |Ω1

)
︸ ︷︷ ︸

model 1

+ l2,Ω2

(
v2 |Ω2

)
︸ ︷︷ ︸

model 2

(5.8)
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We see that the final formulation is the sum of the two mono-model formulations and there
are two additional coupling terms on the left hand side: a1−2,Ωt(u1,v2) and a2−1,Ωt(u2,v1).
These terms, which must be defined for each model coupling, are non-zero only for the
elements inside the blending superposition zone, where both u1 and u2 are simultaneously
non-zero. Elements outside of this zone are treated as mono-model.

This method is easily parallelizable and requires limited modifications of an existing code,
as the additional coupling terms must be taken into account only in the superposition zone.
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5.2 Coupling shelfy-stream and higher-order models

In this section, we detail the coupling between the bidimensional shelfy-stream approxima-
tion (SSA) and the three dimensional higher-order model (HO) (see sections 3.3 and 3.2
for more details on these two models) using the Tiling method. These two models are de-
rived from the full-Stokes equations and the horizontal and vertical velocities are computed
separately.

We use the tiling method, as described in section 5.1 to couple these two models. SSA and
HO solve the same system of decoupled equations with the same degrees of freedom, the
latter with a three dimensional model and the former with a bidimensional depth-integrated
model. Coupling them with the Tiling method is relatively straightforward, even if some
adjustments must be made in the superposition zone.

5.2.1 Notations

Let uM and uP be the horizontal velocity associated respectively to the shelfy-stream
approximation (SSA) and the higher-order (HO) model. The assumptions made for these
two models lead to the following kinematics:

uM = uM (x, y) ex + vM (x, y) ey

uP = uP (x, y, z) ex + vP (x, y, z) ey

(5.9)

Therefore the strain rates ε̇ associated to these velocities are:

ε̇ (uM ) =



∂uM
∂x

1

2

(
∂uM
∂y

+
∂vM
∂x

)
0

1

2

(
∂uM
∂y

+
∂vM
∂x

)
∂vM
∂y

0

0 0 −∂uM
∂x
− ∂vM

∂y


(5.10)

ε̇ (uP ) =



∂uP
∂x

1

2

(
∂uP
∂y

+
∂vP
∂x

)
1

2

∂uP
∂z

1

2

(
∂uP
∂y

+
∂vP
∂x

)
∂vP
∂y

1

2

∂vP
∂z

1

2

∂uP
∂z

1

2

∂vP
∂z

−∂uP
∂x
− ∂vP

∂y


(5.11)
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5.2.2 Domain decomposition

We divide the domain Ω into two subdomains ΩM and ΩP corresponding to the areas where
SSA and HO are respectively applied. These two subdomains overlap into a superposition
zone that is not empty ΩMP = ΩM ∩ ΩP 6= ∅.

Figure 5.4 shows the decomposition of the domain on a horizontal cross section, the me-
chanical model used is the same throughout the thickness (the type of element does not
depend on the vertical coordinate).

ΩP

model superpostion

ΩM ΩMP

∂ΩP

∂ΩM ∂ΩMP

Figure 5.4: Decomposition of the domain between SSA and HO

Let ∂ΩM be the border of SSA domain, ∂ΩP the border of HO domain, ∂ΩMP the border
of the transition zone, Γu the part of the border where a Dirichlet condition is applied,
assumed to be homogeneous for the sake of simplicity, and Γσ the part of the domain where
a Neumann condition is applied.

We also write ΓM and ΓP the intersections of the border of the transition zone ∂ΩMP with
respectively ΩM and ΩP :

ΓM = ∂ΩM ∩ ∂ΩMP

ΓP = ∂ΩP ∩ ∂ΩMP

(5.12)

5.2.3 Kinematically admissible fields

We are seeking a velocity field u that is solution of SSA on ΩM and solution of HO on ΩP .
The velocity u is taken as the sum of the contributions of velocity on the two subdomains:

u = uM |ΩM
+ uP |ΩP

(5.13)

Homogeneous Dirichlet conditions must be added on the border of the transition zone
as specified in section 5.1 to avoid discontinuity of the solution. In the case where one
subdomain is stricty included into the second one:
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uM = 0 on ΓM

uP = 0 on ΓP

(5.14)

If VM and VP are the space of kinematically admissible fields for SSA and HO for the same
problem with a mono-model approach, the kinematically admissible fields for SSA and HO,
with the hybrid approach are:

VtM = {Φ ∈ VM (Ω) ,uM = 0 on ΓM}

VtP = {Φ ∈ VP (Ω) ,uP = 0 on ΓP }
(5.15)

5.2.4 Hybrid formulation

We now establish the weak formulation of this problem. Using the tiling formulation (5.8),
the problem becomes:

Find u = uM + uP ∈ (VtM + VtP )

∀Φ ∈ (VtM + VtP ) a (u,Φ) = l (Φ)
(5.16)

where a (u,Φ) and l (Φ) are:

a (u,Φ) = aM

(
uM |ΩM

,ΦM |ΩM

)
︸ ︷︷ ︸

SSA

+ aP

(
uP |ΩP

,ΦP |ΩP

)
︸ ︷︷ ︸

HO

+ aM−P

(
uM |ΩMP

,ΦP |ΩMP

)
+ aP−M

(
uP |ΩMP

,ΦM |ΩMP

)
︸ ︷︷ ︸

coupling terms

(5.17)

l (Φ) = l
(
ΦM |ΩM

)
︸ ︷︷ ︸

SSA

+ l
(
ΦP |ΩP

)
︸ ︷︷ ︸

HO

(5.18)

The elements outside of the transition zone are not affected by the coupling, contrary to
the elements in the superposition zone ΩMP because the coupling terms are equal to zero
outside of the superposition zone. The bilinear forms associated with the coupling terms
that must be added within the superposition zone are:
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aM−P

(
uM |ΩMP

,ΦP |ΩMP

)
=

∫
ΩMP

(
4µ
∂uM
∂x

+ 2µ
∂vM
∂y

)
∂φPx
∂x

+ µ

(
∂uM
∂y

+
∂vM
∂x

)
∂φPx
∂y

dΩ +

∫
Γb

α2uMφPxdΓ

+

∫
ΩMP

µ

(
∂uM
∂y

+
∂vM
∂x

)
∂φPy
∂y

+

(
2µ
∂uM
∂x

+ 4µ
∂vM
∂y

)
∂φPy
∂y

dΩ +

∫
Γb

α2vMφPydΓ

(5.19)

aP−M

(
uP |ΩMP

,ΦM |ΩMP

)
=

∫
ΩMP

(
4µ
∂uP
∂x

+ 2µ
∂vP
∂y

)
∂φMx

∂x
+ µ

(
∂uP
∂y

+
∂vP
∂x

)
∂φMx

∂y
dΩ +

∫
Γb

α2uPφMxdΓ

+

∫
ΩMP

µ

(
∂uP
∂y

+
∂vP
∂x

)
∂φMy

∂y
+

(
2µ
∂uP
∂x

+ 4µ
∂vP
∂y

)
∂φMy

∂y
dΩ +

∫
Γb

α2vPφMydΓ

(5.20)

The finite element discretization and the mesh in particular must of course follow the con-
ditions added in section 5.1 to avoid redundancy: the transition zone must be composed of
only “one layer” of elements.

5.2.5 Treatment of ice viscosity

Two different models coexist in the transition zone and special care must be given to the
treatment of ice viscosity, µ, in this area. Indeed, the viscosity depends on the effective
strain rate and this strain rate is not constant with depth in the transition zone because of
the contribution of HO. The strain rate used in the transition zone is:

ε̇ (u) = ε̇ (uM + uP ) = ε̇ (uM ) + ε̇ (uP ) (5.21)

ε̇ (u) therefore varies with depth.

We use the most general viscosity law, the one used in HO, for both models in the su-
perposition zone. As this viscosity varies throughout the thickness, SSA is no longer a
bidimensional model and cannot be computed using a 2d surface. We must integrate the
formulation over the volume and use a HO type viscosity, µ, instead of the depth-averaged
viscosity, µ̄, usually used for SSA.
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Results of hybrid models combining SSA and HO are presented in chapter 6, as well as a
comparison with SSA and HO mono-models.
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5.3 Coupling higher-order and full-Stokes models

In this section, we detail the coupling between the higher-order (HO) and full-Stokes (FS)
models using the tiling method (see sections 3.2 and 3.1 for details on these models). The
degrees of freedom solved for in these two models are different: in HO, the equations are
decoupled, the horizontal components of velocity (u and v) and the vertical component (w)
are solve sequentially, whereas in FS all the three components of velocity as well as the
pressure are solved simultaneously.

Coupling FS to HO horizontal equations ensures the continuity of u and v but not w. To
ensure the continuity of the vertical velocity, we must include a vertical velocity component
in HO that is coupled to FS in the superposition zone. We use an iterative algorithm with
an a priori estimate of the HO vertical velocity, which is updated at each iteration using the
incompressibility equation so that vertical and horizontal velocities of HO remain consistent.
The pressure is a Lagrange multiplier and therefore does not have to be coupled between
the two models.

5.3.1 Notations

Let vp and vs be the velocity fields associated respectively to the higher-order (HO) and
the full-Stokes (FS) models, (up, vp, wp) and (us, vs, ws) their components in a cartesian
coordinate system. The subscripts p and s refer respectively to HO and FS.

We use the superscript h to indicate that we refer only to the horizontal components of a
vector and the superscript v to indicate that we only refer to the vertical component of this
same vector. A tilde indicates that these components are extended with zeros in order to
have a three dimensional vector. For example:

vp =

 up
vp
wp

 , vhp =

(
up
vp

)
, ṽhp =

 up
vp
0

 , ṽvp =

 0
0
wp

 (5.22)

5.3.2 Domain decomposition

We want to find the velocity on a domain Ω where HO is applied everywhere except on a
region where FS is used (see Fig. 5.5). We divide the domain Ω into two subdomains Ωp

and Ωs corresponding to the areas where HO and FS are respectively applied. These two
subdomains overlap on a superposition zone that is not empty: Ωps = Ωp ∩ Ωs 6= ∅.

Figure 5.5 shows the decomposition of the domain on a horizontal cross section.

Let ∂Ωp be the border of HO domain, ∂Ωs the border of FS domain, Γu the part of the
border of Ω where a Dirichlet condition is used, Γσ the part of the border of Ω where a
Neumann boundary condition is used (see Fig.5.5). For the sake of simplicity, we consider
that all Dirichlet conditions are homogeneous Dirichlet conditions.
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ΩsΩp

Ωps

Γs

Γp

Figure 5.5: Domain decomposition between HO, FS and the transition zone

We also define Γp and Γs the border of the transition zone such that:

Γp = ∂Ωp ∩ ∂Ωps

Γs = ∂Ωs ∩ ∂Ωps

(5.23)

As mentioned in section 5.1, the discretization of the domain must be such that the super-
position zone is composed of only one layer of elements to avoid redundancy.

5.3.3 Kinematically admissible fields

The solution of HO horizontal equations in Ω is composed of the two horizontal components
of velocity. The space of kinematically admissible fields Vhp,Ω is such that:

Vhp,Ω =
{
Φ ∈ H1(Ω)2,Φ = 0 on Γu

}
(5.24)

The solution of FS is the combination of velocity vs and pressure ps fields. The spaces of
kinematically admissible fields for the velocity and pressure fields are respectively Vs,Ω and
P such that:

Vs,Ω =
{

Φ ∈ H1 (Ω)3 ,Φ = 0 on Γu and Φ · n = 0 on Γb

}
P =

{
q ∈ L2 (Ω)

} (5.25)

We are seeking a velocity field v = vp + vs and a pressure field p = ps. We use additional
boundary conditions for the velocity fields:
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vs = 0 on Γs

vp = 0 on Γp

(5.26)

The space of kinematically admissible fields for HO horizontal equations and FS for the
hybrid model are therefore reduced to Vhtp and Vts such that:

Vhtp =
{

Φ ∈ Vhp,Ω,Φ = 0 on Γp

}
Vts = {Φ ∈ Vs,Ω,Φ = 0 on Γs}

(5.27)

There is no boundary condition on the pressure p as it is a Lagrange multiplier which enforces
the incompressibility in the full-Stokes equations. Furthermore, for this same reason, the
pressure does not need to be coupled between HO and FS. The pressure is only computed
on FS; for HO it is estimated afterwards using the hydrostatic assumption.

5.3.4 Hybrid problem

Before establishing the weak formulation of the hybrid problem, we write the mono-model
formulations for HO and FS.

� Higher-order weak formulation

The space of kinematically admissible horizontal velocity fields is Vhp,Ω such that:

Vhp,Ω =
{
Φ ∈ H1(Ω)2, Φ = 0 on Γu

}
(5.28)

For any admissible field Φp
h ∈ Vhp,Ω, we have:

ap

(
vhp ,Φp

h
)

= lp

(
Φp

h
)

(5.29)

where ap and lp are the bilinear and linear forms associated to the virtual work of internal
and external forces (see section 3.2).

� Full-Stokes weak formulation

The space of kinematically admissible velocity and pressure fields are Vs,Ω and P such that:
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Vs,Ω =
{
Φs ∈ H1(Ω)3, Φ = 0 on Γu

}
P =

{
q ∈ L2(Ω)

} (5.30)

So for any admissible fields Ψs = (Φs, q) ∈ Vs,Ω × P, we have:

as (vs,Ψs) + bs (p,Ψs) = ls (Ψs) (5.31)

where as and bs are two bilinear forms associated to the virtual work of internal forces and
ls is a linear form associated to the virtual work of external forces (see section 3.1 for more
details on these forms).

� Hybrid model weak formulation

Following the description of the tiling method in section 5.1, the weak formulation of the
hybrid HO/FS problem is:

Find
(
vhp ,vs, p

)
∈
(
Vhtp × Vts × P

)
, ∀

(
Φh
p ,Φs, q

)
∈
(
Vhtp × Vts × P

)
:

ap,Ωp

(
vhp |Ωp

,Φh
p |Ωp

)
︸ ︷︷ ︸

HO

+ as,Ωs

(
vs |Ωs

,Ψs |Ωs

)
+ bs,Ωs

(
p |Ωs

,Ψs |Ωs

)
︸ ︷︷ ︸

FS

+ ap−s,Ωps

(
vp |Ωps

,Ψs |Ωps

)
+ as−p,Ωps

(
vhs |Ωps

,Φh
p |Ωps

)
︸ ︷︷ ︸

coupling terms

= lp,Ωp

(
Φh
p |Ωp

)
︸ ︷︷ ︸

HO

+ ls,Ωs

(
Ψs |Ωs

)
︸ ︷︷ ︸

FS

(5.32)

with ai,Ωi the restriction of ai to Ωi, Ψs = (Φs, q), vp = ṽhp + ṽvp and vhs the horizontal
components of vs. ṽvp is an a priori estimate of the vertical velocity component of HO. As
this vertical component is not part of the solution we are seeking, terms including it must
be on the right hand side of the equation:
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ap,Ωp

(
vhp |Ωp

,Φh
p |Ωp

)
︸ ︷︷ ︸

HO

+ as,Ωs

(
vs |Ωs

,Ψs |Ωs

)
+ bs,Ωs

(
p |Ωs

,Ψs |Ωs

)
︸ ︷︷ ︸

FS

+ ap−s,Ωps

(
ṽhp |Ωps

,Ψs |Ωps

)
+ as−p,Ωps

(
vhs |Ωps

,Φh
p |Ωps

)
︸ ︷︷ ︸

coupling terms

= lp,Ωp

(
Φh
p |Ωp

)
︸ ︷︷ ︸

HO

+ ls,Ωs

(
Ψs |Ωs

)
︸ ︷︷ ︸

FS

− ap−s,Ωps

(
ṽvp |Ωps

,Ψs |Ωps

)
︸ ︷︷ ︸

coupling terms

(5.33)

In this example of coupling HO and FS, coupling terms are added both to the left hand
side to couple ṽhp to FS terms and to the right hand side to ensure the continuity of ṽvp .

5.3.5 Details of the coupling terms

The terms ap,Ωp

(
vhp |Ωp

,Φh
p |Ωp

)
, as,Ωs

(
vs |Ωs

,Ψs |Ωs

)
, bs,Ωs

(
p |Ωs

,Ψs |Ωs

)
, lp,Ωp

(
Φh
p |Ωp

)
and ls,Ωs

(
Ψs |Ωs

)
are the usual terms of HO and FS formulations. The other terms are

additional terms due to the coupling of the two models.

These terms are:

as−p,Ωps

(
vhs ,Φ

h
p

)
=

∫
Ωps

[(
4µ
∂us
∂x

+ 2µ
∂vs
∂y

)
∂φx
∂x

+

(
µ
∂us
∂y

+ µ
∂vs
∂x

)
∂φx
∂y

+ µ
∂us
∂z

∂φx
∂z

]
dΩ

+

∫
Ωps

[(
µ
∂us
∂y

+ µ
∂vs
∂x

)
∂φy
∂x

+

(
4µ
∂vs
∂y

+ 2µ
∂us
∂x

)
∂φy
∂y

+ µ
∂vs
∂z

∂φy
∂z

]
dΩ

(5.34)

if we write (φx, φy) the components of Φh
p .
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ap−s,Ωps

(
ṽhp ,Ψs

)
=

∫
Ωps

[(
2µ
∂up
∂x

)
∂φx
∂x

+

(
µ
∂up
∂y

+ µ
∂vp
∂x

)
∂φx
∂y

+

(
µ
∂up
∂z

)
∂φx
∂z

]
dΩ

+

∫
Ωps

[(
µ
∂up
∂y

+ µ
∂vp
∂x

)
∂φy
∂x

+

(
2µ
∂vp
∂y

)
∂φy
∂y

+

(
µ
∂vp
∂z

)
∂φz
∂z

]
dΩ

+

∫
Ωps

[(
µ
∂up
∂z

)
∂φz
∂x

+

(
µ
∂vp
∂z

)
∂φz
∂y

]
dΩ

+

∫
Ωps

[
−∂up
∂x
− ∂vp

∂y

]
qdΩ

(5.35)

if we write (φx, φy, φz, q) the components of Ψs.

ap−s,Ωps

(
ṽvp ,Ψs

)
=

∫
Ωps

[(
µ
∂wp
∂x

)
∂φx
∂z

]
dΩ

+

∫
Ωps

[(
µ
∂wp
∂y

)
∂φz
∂z

]
dΩ

+

∫
Ωps

[(
µ
∂wp
∂x

)
∂φz
∂x

+

(
µ
∂wp
∂y

)
∂φz
∂y

+

(
2µ
∂wp
∂z

)
∂φz
∂z

]
dΩ

+

∫
Ωps

[
−∂wp
∂z

]
qdΩ

(5.36)

if we write (φx, φy, φz, q) the components of Ψs.

5.3.6 Vertical velocity

An additional constraint is to ensure that the incompressibility equation is verified every-
where in the domain, in the superposition zone Ωps in particular.

To solve for the vertical velocity, we use the incompressibility equation, applied to the
complete velocity v = vp + vs. The incompressibility equation is written in terms of the
components of vp and vs:

∂ (wp + ws)

∂z
= −∂ (up + us)

∂x
− ∂ (vp + vs)

∂y
(5.37)

The kinematically admissible fields needed to recover HO vertical velocity on Ω are Vvp such
that:
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Vvp =
{

Φz ∈ H1(Ω),Φz = 0 on Γu
}

(5.38)

In the hybrid problem, this equation has already been used on Ωs and we only need to
solve it on Ωp. As mentionned before, additional homogeneous Dirichlet conditions must
be added to ensure the continuity of w = wp + ws. The space of kinematically admissible
fields becomes:

Vvtp =
{

Φz ∈ Vvp ,Φz = 0 on Γp
}

(5.39)

The weak formulation associated to this equation is:

∫
Ωp

wp
∂Φ

∂z
dΩ =

∫
Ωp

∂ws
∂z

ΦdΩ +

∫
Ωp

(
∂ (up + us)

∂x
+
∂ (vp + vs)

∂y

)
ΦdΩ

+

∫
Γsurf

wpΦnzdΓ +

∫
Γbed

wpΦnzdΓ

(5.40)

where Γsurf and Γbed are the lower and upper boundary of the domain (ice/air interface at
the surface and ice/bedrock at the bottom).

We use a non-penetration boundary condition at the ice/bedrock interface and do not
constrain the vertical velocity on the upper surface, so this velocity is unknown and the
integral on the upper surface will be part of the stiffness matrix (on the left hand side).
Once again this condition (no penetration of ice in the bedrock) applies to the complete
basal velocity vp + vs:

wp(b) = (up + us)
∂b

∂x
+ (vp + vs)

∂b

∂y
− ws(b)− Ṁb (5.41)

where Ṁb is the basal melting, positive when melting occurs at the bedrock.

If we add the previous boundary condition into the weak formulation, we get:

∫
Ωp

wp
∂ (Φ)

∂z
dΩ−

∫
Γsurf

wpΦnzdΓ =

∫
Ωp

(
∂ (up + us)

∂x
+
∂ (vp + vs)

∂y

)
ΦdΩ

+

∫
Ωp

∂ (ws)

∂z
ΦdΩ +

∫
Γbed

(
(up + us)

∂b

∂x
+ (vp + vs)

∂b

∂y
− ws − Ṁb

)
ΦnzdΓ

(5.42)

The modifications introduced affect the vertical solution only on Ωps, where FS velocity, vs,
is not equal to zero. On the rest of HO domain, this formulation is identical to the usual
vertical velocity weak formulation.
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5.3.7 Iterative scheme

The following scheme (5.6) sumarizes how iterations are performed and how the a priori
estimate of wp is updated.

Compute vs + ṽ
h
p

Initial velocity v = ṽ
h
p + ṽ

v
p + vs

Compute wp

ap
(

vp
h,Φh

p

)

+ as (vs,Ψs) + bs (p,Ψs)

Solution v = vs+ṽ
h
p+ṽ

v
p

Viscosity and wp

= lp
(

Φ
h
p

)

+ ls (Φs)− as
(

ṽ
v
p,Φs

)

convergence

∂wp

∂z
= −div

(

vs+ṽ
h
p

)

ap−s

(

ṽ
h
p,Ψs

)

+ as−p

(

vs
h,Φh

p

)

Figure 5.6: Convergence algorithms used to combine HO and FS with the tiling method

We start from a given velocity field and compute the associated ice viscosity. We compute
vhp and vs using the hybrid model that combines FS and the horizontal equations of HO.
We then update wp using the incompressibility equation on Ωp and update the viscosity.
These steps are repeated until the convergence criterion is reached.

This convergence scheme is similar to the one used for HO or SSA except that the vertical
equation is computed at each iteration. This adds only a small cost to the computation as
the incompressibility equation only involves one scalar field.
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5.4 Coupling shelfy-stream and full-Stokes models

The shelfy-stream approximation is a bidimensional model very similar to the higher-order
model, except for the terms ε̇xz and ε̇yz that are neglected. The model equations are then
vertically integrated in order to have a bidimensional model. A method similar to the one
described above to couple the higher-order and full-Stokes models can be applied to couple
the full-Stokes and shelfy-stream models.

This coupling combines the difficulties encountered in the two previous couplings. In the
superposition zone, we must use a viscosity µ that varies with depth even for the shelfy-
stream approximation. The shelfy-stream horizontal equations and full-Stokes equations
are solved simultaneously, which ensures continuity of the horizontal velocity. We use an a-
priori estimate of the vertical velocity for the shelfy-stream approximation, which is updated
at each iteration of the viscosity, similar to the way coupling is done between higher-order
and full-Stokes models.

5.5 Chapter summary

In this chapter we first presented a new method for coupling different mechanical models.
This method is mainly derived from the Arlequin framework and Schwarz methods. The
tiling method is less general than the Arlequin framework and therefore is not suitable for
any combination of meshes and models. However, its implementation is not invasive and
requires limited modifications in an existing software. This solution is adapted to the case
of coupling different ice flow models, all deriving from the full-Stokes equations. We then
explained the application of the tiling method for the coupling of the shelfy-stream, higher-
order and full-Stokes models and detailed the adaptations that must be made in this specific
case. In the next chapter, we present some results obtained using this technique.
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CHAPTER 6. RESULTS

In this chapter we present results of hybrid models coupled with the tiling method for
both synthetic cases and real glaciers. We first apply this method to square ice shelves
and ice sheets using hybrid models that combine first the shelfy-stream approximation with
the higher-order model and then the higher-order and full-Stokes models. We compare
these results to others that were computed with different coupling techniques, penalties and
iterative methods in particular. We then study the case on an ice sheet flowing over a very
rough bed. We finally apply this method to Pine Island Glacier, West Antarctica, where we
know that full-Stokes is needed in the vicinity of the grounding line and to the Greenland
ice sheet.

6.1 Synthetic experiments

The aim of this section is to validate the results obtained with the tiling method on simple
geometries. To do so, we use square examples and compare the results obtained with the
tiling method to the two mono-models used in the coupling and to other coupling methods
when they are available. We start with the coupling between the shelfy-stream and higher-
order models, then look at the results for coupling between higher-order and full-Stokes
models. For these experiments, we use piecewise linear P1 elements for the shelfy-stream
and higher-order models, and P1+P1 elements for full-Stokes model.

6.1.1 Geometry

We use a very simple geometry, which consists of a square ice sheet or ice shelf. The ice
shelf is in hydrostatic equilibrium and the ice sheet base is set slightly above the equilibrium
in order to have a non zero friction at the base. The ice density and viscosity are the same
everywhere. Figure 6.1 represents the ice thickness on a flow line of the ice shelf.

We constrain the velocity (homogeneous Dirichlet conditions) on three edges and water pres-
sure is applied on the fourth edge to simulate an ice front (see figure 6.2 for a representation
of the boundary conditions on a horizontal cross section).

6.1.2 Coupling shelfy-stream and higher-order models

� Ice shelf

We use the geometry described above and compare the results when using the shelfy-stream
approximation on the whole domain, a higher-order model on the whole domain and when
coupling these two models.

For the coupling, we use the shelfy-stream approximation on the right half of the ice shelf
and the higher-order model on the left half of the domain. The type of model used is the
same throughout the thickness. Figure 6.3 shows the type of element on a horizontal section
of the ice shelf.
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Figure 6.1: Thickness on a flow line

Γu: Imposed velocity

Γσ: Water pressure

0

1000

0 1000

y

xz

Figure 6.2: Boundary conditions on a horizontal cross section (units are in km)

We run a diagnostic model to compute the velocity with these three models. Figure 6.4
shows the three components of velocity for each model.

As expected for an ice shelf, there is no difference between the results from the bidimensional
and three dimensional models. Indeed ice shelves motion is dominated by lateral spreading
and there is almost no vertical shear. Results from the hybrid model are identical to the
two mono-models and the transition zone is impossible to detect visually.

� Ice sheet

We perform the same experiment for a square ice sheet with a geometry similar to the ice
shelf experiment (see figure 6.1), except that the bedrock is 20 m above the hydrostatic
equilibrium. A small friction is applied on the base (α=20, see equation 2.28). The reparti-
tion of elements between shelfy-stream and higher-order in the hybrid model is identical to
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Shelfy−Stream
Higher−Order
Superposition zone

Figure 6.3: Type of elements used in tiling on a horizontal cross section, the type of ap-
proximation used is the same for each element of a column

the previous example (ice shelf experiment, see figure 6.3). In this example, homogeneous
Dirichlet conditions are applied on all four edges of the domain; there is no ice front.

We compute the velocity for the three models: the two mono-models and the hybrid model.
Figure 6.5 shows the three components of surface velocity for the three models and allows
comparison of the results.

In this example, the velocities computed with the three models are very similar on this
example. Ice motion on ice sheets is a combination of sliding and vertical shear. The
friction coefficient applied is small so most of the motion is due to sliding and the computed
velocities from the bidimensional and three dimensional models are almost equal. If the
friction were higher and most of the displacement was caused by vertical shearing, only the
three dimensional model would be able to include this effect. This experiment confirms the
feasibility of our approach but does not enable us to conclude about its relevance.

� Comparison of tiling and penalty method

In this section, we compare the results obtained for hybrid models with two different cou-
pling technique: the tiling method and the penalty method. Areas where the shelfy-stream
approximation and the higher-order models are used are almost identical for the two meth-
ods, however the tiling method uses a coupling in the volume while coupling takes place on
a surface with the penalty method, therefore resulting in small differences at the transition
between the two models. Figure 6.6 exhibits these differences in the type of elements used
in the models.

We apply these two techniques on the previous experiments (square ice shelf and square ice
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Figure 6.4: Comparison of the three components of surface velocity for the shelfy-stream
approximation (left), the hybrid model (center) and the higher-order model for a square ice
shelf
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Figure 6.5: Comparison of the three components of surface velocity for the shelfy-stream
approximation (left), the hybrid model (center) and the higher-order model for a square ice
sheet
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Figure 6.6: Type of elements used in tiling and penalty methods on a horizontal cross
section, the type of approximation used is the same for all elements on the same column

sheet) to ensure that the results are similar and not affected by the technique used for the
coupling. Figure 6.7 shows the results for the ice shelf experiment and figure 6.8 does the
same for the ice sheet experiment. The results are similar between the two techniques in
these two examples.

� Computational time

We now investigate the computational time required to run these models. Table 6.1 sum-
marizes the computational time needed to run the square ice shelf and square ice sheet
experiments for the four models (shelfy-stream approximation, higher-order model, hybrid
model using the tiling method and hybrid model using the penalty method).

Computing the three-dimensional velocity is at least twenty times longer than using a two-
dimensional model. This is expected as the number of degrees of freedom for this model is
much higher: it is multiplied by the number of vertical layers of the model (if there are 10
vertical layers in the model, there will be 10 times more degrees of freedom to solve for in
the three dimensional model).

The computational time required to run the hybrid models is situated between the compu-
tation needed to run a pure shelfy-stream model and the one of a pure higher-order model.
The two coupling methods lead to similar computational times.
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Figure 6.7: Comparison of the three components of velocity for a hybrid model combining
the shelfy-stream approximation with the higher-order model with tiling method (left) and
the penalty method (right) on a square ice shelf
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Figure 6.8: Comparison of the three components of velocity for a hybrid model combining
the shelfy-stream approximation with the higher-order model with tiling method (left) and
the penalty method (right) on a square ice sheet
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Model Ice shelf Ice sheet

Shelfy-stream 16s 26s

Higher-order model 584s 1109s

Tiling Shelfy-stream/Higher-order 165s 397s

Penalties Shelfy-stream/Higher-order 257s 484s

Table 6.1: Computational time required to solve the problem for each model

6.1.3 Coupling higher-order and full-Stokes

As in the previous section for the coupling between the shelfy-stream and higher-order
models, we now study the coupling between the higher-order and full-Stokes models on
square ice shelves and ice sheets and compare the results with the associated mono-models.

� Ice shelf

We use the geometry described above on a square ice shelf with homogeneous Dirichlet
conditions on three edges and an ice front where water pressure is applied on the fourth
edge. We compare the results of models based on higher-order model, full-Stokes model and
a hybrid model that combine the previous two models. For the hybrid model, we use the
higher-order model on the left half of the ice shelf and full-Stokes model on the right half.
The type of model used is the same throughout the thickness. Figure 6.9 shows the type of
elements used on a horizontal cross-section of the domain.

Results of the velocity computed with these three models are presented in figure 6.10. The
horizontal velocity is the same for the three models contrary to the vertical velocity. This
difference comes from different treatment adopted in the two models. In full-Stokes, the
vertical velocity is simply computed with the other component, whereas in the higher-order
model, it is deduced using the incompressibility equation. However, one needs a boundary
condition for this equation and no simple boundary condition can be applied (for ice sheets
we use the non-penetration of ice in the bedrock); we therefore suppose that the ice shelf
is in steady-state. This simple case in not in steady-state, therefore the vertical velocity
in the higher-order is not accurate and differs from the one of full-Stokes. As the vertical
velocities of higher-order and full-Stokes models are completely different, the one for the
hybrid model is a combination of the two.

The jump in the pressure field at the transition zone is due to the fact that the pressure
is not coupled between the models and its continuity is therefore not ensured. This field
is computed at the same time as the velocity fields for full-Stokes, using no additional as-
sumption, while it is calculated afterwards as a by-product using the hydrostatic assumption
for the higher-order model. This assumption is globally correct but does not conduct to
the exact same pressure than with full-Stokes; therefore, the transition between the two
subdomains appears in the pressure field.
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Figure 6.9: Type of elements used in tiling on a horizontal cross section

� Ice sheet

We now perform an experiment on a square ice sheet with similar geometry and boundary
conditions. We compute the velocity and pressure for three models: a higher-order model,
a full-Stokes model and a hybrid model that combines the latter two model with the tiling
method (see figure 6.9 for the repartition of elements in the hybrid model).

Figure 6.11 shows the results for the three models. The three components of velocity are
similar for the three models. As for the square ice shelf experiment, the boundary between
the higher-order and full-Stokes model is visible on the hybrid model as the pressure is
computed afterwards in the higher-order model using the hydrostatic assumption.

� Convergence time

Table 6.2 compares the computation time required to compute the ice velocity and pressure
for the two previous experiments (square ice shelf and ice sheet) and the three models
(higher-order, full-Stokes and hybrid models). Running an experiment with a full-Stokes
model is almost ten times longer than doing the same experiment with a higher-order model
in this case, even though there are only twice as many degrees of freedom. Using a hybrid
model instead reduced this time by at least two in our examples. Additional experiments
with varying number of elements should be performed before conclusions can be drawn
about the computational gain of this method.
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Figure 6.10: Comparison of ice velocity and pressure at the base of a square ice shelf for a
higher-order model (left), a hybrid model (center) and full-Stokes model (right)
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Figure 6.11: Comparison of the ice velocity and pressure on the lower surface (ice/bedrock
interface) of a square ice sheet for a higher-order model (left), a hybrid model (center) and
a full-Stokes model (right)
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Model Ice shelf Ice sheet

Higher-order model 4.6s 5.8s

Full-Stokes model 32.0s 41.0s

Hybrid model higher-order/full-Stokes 15.5s 14.9s

Table 6.2: Computational time required to solve the problem for each model
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6.2 Flow over a rough bed

In this experiment, we test the efficiency of the Tiling method and its ability to combine
models. The experiment consists of an ice slab flowing over a sloping bed, the ice surface is
a sloping surface with same inclination as the bed. Near the ice front, a very rough bed is
introduced, with bumps and hollows whose typical length scale is equal to one ice thickness
6.12. The average ice thickness is 1000 meters. This experiment is useful for testing the
Tiling method, as the shelfy-stream, higher-order and full-Stokes models do not yield the
same results.
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Figure 6.12: Geometry of the rough bed experiment

We assume the ice sheet to be isothermal so the ice hardness, B, does not vary; and we apply
a friction coefficient at the ice/bedrock interface that is uniform. The boundary conditions
are similar to the ones applied in the previous section (see figure 6.2). Non-homogeneous
Dirichlet conditions are applied on three edges (Dirichlet conditions values are imposed to
be equal to zero for the x and z directions and to 100 m/yr for the y direction), and water
pressure is applied on the fourth edge.

Three ice flow mechanical models described in this thesis are employed to compute the
ice velocity: shelfy-stream, higher-order and full-Stokes models. Ice velocity and pressure
computed with these three models are presented in figure 6.13. This is not a realistic case
as there would not be such a transition in bedrock roughness, but this experiment is a good
test case to test the Tiling method, as the three models do not yield the same results.

The shelfy-stream and higher-order models are almost not affected by the rough bed (the
results from these two models are very similar), while, in contrast, the velocity in the full-
Stokes model near the ice front clearly influenced by the rough bed. The difference between
the velocities of full-Stokes and the simplified models varies between 50 and 100 m/yr at
the ice front and decreases upstream.

These results suggest that a full-Stokes model is required on and around the rough bed area
to correctly capture the ice flow. We create three hybrid models that couple higher-order
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Figure 6.13: Comparison of ice velocity and pressure on the lower surface of the ice sheet
for a shelfy-stream (left), a higher-order (center) and a full-Stokes model (right)
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and full-Stokes models with the Tiling method: full-Stokes over the rough bed area and
higher-order in the rest of the domain. The size of the patch of full-Stokes varies between
the three models (see figure 6.14 for the repartition of the mechanical models).
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Figure 6.14: Repartition of the elements for the three hybrid models

Figure 6.15 shows the computed ice velocity and pressure for the three models. As expected,
if the size of the patch of full-Stokes elements is too small, the flow is not slowed enough,
and a very large patch that covers most of the domain is not necessary. With patches large
enough to cover the influence area of the rough bed, the hybrid models are able to capture
the effect of the rough bed, so that the modeled velocity is similar to the one modeled with
a pure full-Stokes model.

The computational time of the hybrid models is longer than the time needed to compute
the higher-order model but shorter than the time of full-Stokes model and depends on the
size of the full-Stokes patch (see table 6.3 for a comparison of the computational time of all
the models).

Type of model used Computational time

Shelfy-stream approximation 2.11 s

Higher-order model 62.9 s

Full-Stokes model 390 s

Hybrid higher-order/full-Stokes 1 87.4 s

Hybrid higher-order/full-Stokes 2 104.8 s

Hybrid higher-order/full-Stokes 3 203.4 s

Table 6.3: Computational time required to solve the problem for each model

A strategy similar to the one proposed by Ben Dhia et al. [2011] for atomic to continuum
coupling could be used to define the size of the full-Stokes patches required.
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Figure 6.15: Comparison of ice velocity and pressure on the lower layer of the ice sheet for
three hybrid models
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6.3 Application to Pine Island Glacier

Pine Island is a major outlet glacier in West Antarctica that has been accelerating, thinning
and retreating since the 1970’s [Rignot , 1998; Schmeltz et al., 2002; Rignot , 2008]. It has
been extensively studied [Payne et al., 2004; Joughin et al., 2009; Morlighem et al., 2010] to
understand its basal properties. Results from Morlighem et al. [2010] showed the importance
of non-hydrostatic effects in the area above the grounding line and concluded that simple
models like shelfy-stream or higher-order could not be used in this area as the rising bed
exerts a backpressure on the flow and the bridging effect cannot be neglected (see figure
6.16). On the rest of the basin, however, both sophisticated and simpler models result
in the same patterns of basal drag, suggesting that shelfy-stream and higher-order can be
used on most of the domain for static studies. We are going to apply the Tiling method in
order to use shelfy-stream or higher-order on the entire domain except in the vicinity of the
grounding line, where FS is required.
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Figure 6.16: Basal drag infered on Pine Island Glacier from several ice flow models:
A)MacAyeal B)Blatter-Pattyn C)Full-Stokes from Morlighem et al. [2010]

To reproduce the glacier configuration, we use satellite radar interferometry-derived sur-
face velocities from Rignot et al. [2002b] (see figure 6.17-a), surface air temperatures from
Giovinetto et al. [1990], basal heat fluxes from Maule et al. [2005], surface elevation of
Antarctica from Bamber et al. [2009a] and ice thickness from Vaughan et al. [2006]. The
model domain of Pine Island glacier is similar to the one used in Morlighem et al. [2010]
and corresponds to the limits of Pine Island Basin. We use an anisotropic triangular mesh
whose metric is based on the hessian matrix of the velocity. This mesh is then vertically
extruded into ten layers to create the three-dimensional mesh. The horizontal size of the
elements varies between 500 meters in the vicinity of the grounding line and 5 km at the
ice divide, the model contains about 150,000 prismatic elements (see mesh on figure 6.18).

The ice hardness depends mainly on temperature so we use a thermal model derived from
the energy conservation to estimate B, assuming thermal steady-state:

ρc v · ∇T = kth∆T + Φ (6.1)

where T is the ice temperature, c the ice heat capacity, kth the ice thermal conductivity,
Φ the deformational heating and ∆ the Laplace operator. The surface temperature is
imposed and the boundary condition at the ice/bedrock includes geothermal and frictional
heat fluxes.
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The basal drag coefficient and the ice shelf viscosity cannot be directly measured and are
therefore inferred using a control method. We use a partial differential equation constrained
optimization algorithm, which consists of a gradient minimization of a cost function that
measures the misfit between observed and modeled horizontal surface velocities. Morlighem
et al. [2010] showed that a full-Stokes model is required in the vicinity of the grounding line,
so we use the full-Stokes solution to infer the unknown parameters. We infer 1) the ice shelf
viscosity on the ice shelves and 2) the basal drag coefficient at the ice/bedrock interface on
grounded ice. We use the same parameters and boundary conditions for all experiments
with lower order and hybrid models. We first run the shelfy-stream and higher-order models
using the exact same parameters and then create hybrid models combining full-Stokes with
the shelfy-stream or higher-order models and test their validity for this configuration.

Application of an inverse method enables a good fit between the model and observations (see
figure 6.17 a and b). The average difference between the observed and modeled velocity
is 20 m/yr. If we use the basal drag inferred from the full-Stokes model and apply it
as a boundary condition for the ice/bedrock interface with a pure shelfy-stream or pure
higher-order model, the modeled velocity deviates significantly from the observed velocity
because they both neglect the bridging effect [Kamb and Echelmeyer , 1986; van der Veen
and Whillans, 1989; Morlighem et al., 2010]. In the vicinity of the grounding line, the
modeled velocity reaches respectively 5,200 m/yr and 5,000 m/yr with the shelfy-stream
and higher-order models instead of 3,200 m/yr (see figure 6.17 b-d and figure 6.19).

Upstream of this area, however, the shelfy-stream and higher-order models are in good
agreement with the results obtained from full-Stokes and with the observed velocities, with
differences not exceeding 200 m/yr. Therefore, the basal drag field inverted by full-Stokes
is usable as a boundary condition for the shelfy-stream or higher-order models up to 50
km upstream of the grounding line, which corroborates the conclusions of Morlighem et al.
[2010].

We apply the tiling method on a hybrid model composed of full-Stokes model in the vicinity
of the grounding line, from 50 km upstream to 35 km downstream of the grounding line
on the fast moving ice stream, and the shelfy-stream of higher-order model on the rest of
the domain (see figures 6.18 and 6.17 e-f). A forward model for this configuration shows
an excellent fit with the observed velocities using full-Stokes basal drag as a boundary
condition (see figure 6.19). The results deviate on average by 31 m/yr from full-Stokes for
the hybrid higher-order/full-Stokes model and by 36 m/yr for the hybrid shelfy-stream/full-
Stokes model, with a maximum difference around 200 m/yr on the fast ice stream, which
represents less than 5% on this fast moving area. This difference is comparable to the
difference between observed and modeled velocities (around 20 m/yr).

The computational time for a forward model of Pine Island Glacier is respectively 6.5s,
133s and and 805s for the shelfy-stream, higher-order and full-Stokes models on a 16-cpu
machine, which represents a factor of 20 between the shelfy-stream and higher-order models
and 6 between higher-order and full-Stokes. On these simulations, the area covered by the
patch of full-Stokes elements in the hybrid model represents less than 10% of the glacier’s
domain but the number of full-Stokes elements is about 30% of the total number of elements.
This is because we use an anisotropic mesh so the size of the elements greatly varies. The
computational cost needed to run a hybrid higher-order/full-Stokes model reduced by half
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Figure 6.18: Mesh and type of elements used on Pine Island Glacier, West Antarctica for
the hybrid model (top view). On the superposition zone, the elements are both FS and
higher-order or FS and shelfy-stream.

in this case (391s) and by more than three for a hybrid model shelfy-stream/full-Stokes
(267s). It is therefore possible to include the accuracy of full-Stokes at a reasonable cost in
critical areas where it is required, thus improving the model accuracy (see table 6.4).
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in m/yr along a flow line of Pine Island Glacier, West Antarctica. The computed veloci-
ties all use basal-drag inverted for using full-Stokes model as a boundary condition at the
ice/bedrock interface but different forward model: pure full-Stokes (red solid line), higher-
order (green dotted line), shelfy-stream (loght blue dotted line), hybrid higher-order/full-
Stokes (dark blue dahed line) and hybrid shelfy-stream/full-Stokes (pink dashed line). The
vertical line represents the position of the grounding line in 1996 [Rignot et al., 2002a].

Model Computational time

Shelfy-stream approximation 6.5 s

Higher-order model 133 s

Full-Stokes model 805 s

Hybrid shelfy-stream/full-Stokes 267 s

Hybrid higher-order/full-Stokes 391 s

Table 6.4: Computational time required to solve a diagnostic model of Pine Island Glacier
with different mechanical models
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6.4 Application to the Greenland Ice Sheet

The objective of this thesis was to develop a technique for simulations of ice sheet flow at
the continental scale, using a full-Stokes model in critical areas and simpler models in areas
where they are valid. In this section, we present a static model of the Greenland ice sheet
using a hybrid model that combines the full-Stokes and higher-order models.

� Datasets

This simulation is based on the dataset provided by the SeaRISE assessment (http://
websrv.cs.umt.edu/isis/index.php/SeaRISE_Assessment). The observations include
mean annual surface temperature [Fausto et al., 2009], precipitations [Burgess et al., 2010],
basal heat flux [Shapiro and Ritzwoller , 2004], bedrock topography, ice thickness and sur-
face elevation [Bamber et al., 2001]. Observed surface velocities are also provided [Joughin
et al., 2010] and filled with balance velocities (see e.g. [Bamber et al., 2000]) in areas where
observations are not available.

� Initialization

The objective of the SeaRISE assessment is to run evolutive models of the Greenland ice
sheet for 500 years following different scenarios. We only present here the first step of
these experiments, which is the model initialization. The initial geometry is defined by the
present-day bedrock and surface topography. The extent of the domain is determined by
the area where the ice is more than 5 meters deep.

A thermo-mechanical steady-state is run (see section 4.4.1 for more details) to ensure that
velocity and temperature fields are consistent, and to initialize the ice hardness. The basal
friction at the base of the ice sheet remains poorly understood and we rely on inverse meth-
ods to infer this parameter and match the observed surface velocity. We use the procedure
described in Morlighem et al. [2010] to perform this assimilation. This initialization is per-
formed using a higher-order model that only includes grounded ice, as the spatial extent of
ice shelves in Greenland is limited, to simplify the simulation.

We use an anisotropic bidimensional mesh, with element size ranging from 1 km along the
coast to 25 km in the interior of the ice sheet. This mesh is extruded into 10 layers to create
a model of about 500,000 elements.

� Hybrid model

The discharge of Greenland ice is controlled by a few fast flowing ice streams, so we want
to use the most sophisticated model in these critical areas. We construct a hybrid model
based on the three-dimensional higher-order model, in which several patches of full-Stokes
are introduced (see figure 6.20). Dirichlet conditions are applied for areas where the ice
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thickness is below 10 m. The velocity computed with this hybrid model is showed on figure
6.21, the transition between the different mechanical models is seamless.

 

 

Full−Stokes
Higher−order
Superposition zone

Figure 6.20: Modeled surface velocity of the Greenland ice sheet (m/yr)

� Possible improvements

This simulation confirms the feasability and the relevance of our approach of constructing
a hybrid model containing several patches of full-Stokes with different extent. This tool is
integrated into ISSM so that only the diagnostic computation is affected by this change,
and transient models can easily be performed using a hybrid model.

A detailed analysis of this result is beyond the scope of this thesis, but investigations should
be made concerning the need for using a full-Stokes model, the repartition and size of full-
Stokes patches and their evolution with time. Finally, investigating the differences between
this hybrid model and pure higher-order or full-Stokes models would be of great interest.

6.5 Chapter summary

Simplification of the ice flow equations reduces the computational time required to run
numerical models, which is useful for large-scale modeling, but it has been shown that these
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Figure 6.21: Modeled surface velocity of the Greenland ice sheet (m/yr)
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approximations fail to reproduce certain critical aspects of ice dynamics.

In this chapter we presented applications of the tiling method on both synthetic cases and
real glaciers. In order to test the validity of the method, we first tested it on examples where
both coupled models behave similarly. We then analyzed the case of a square ice sheet with
a bump on the bed, which revealed that the full-Stokes model behaves differently than
the other two models in such cases. We finally applied it on Pine Island Glacier, West
Antarctica, as we know that a full-Stokes is needed in the vicinity of the grounding line
for this glacier. All results from hybrid models, models that are combinations of different
models, confirmed our expectations as their computational time is reduced compared to
simple full-Stokes or higher-order models. This shows that ice flow models can be improved
by including sophisticated models only in critical areas where such models are needed,
therefore resulting in more efficient use of computational resources.

It is now essential to determine where each model is valid, and where sophisticated models
are required. The next step is now to improve our knowledge and understanding of these ice
flow models, their domain of validity in particular, for both idealized and real geometries.
Criteria should be devised to determine what approximations to use. The regions where
each approximation is employed should then automatically evolve with time based on these
physical criteria.
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Conclusion

In this concluding chapter, we present the main developments achieved in this thesis, discuss
the results and present the limitations of the present work. Suggestions for the application
of the tiling method and for further developments of the numerical model are then presented
before the general conclusion of this manuscript.

7.1 Main achievements and limitations

The main purpose of this work was to develop and apply a technique to couple different
mechanical models of ice sheet flow of varying complexity. Before working on this problem,
the first step was to build a parallel finite element platform inspired from Cielo, an in-
house finite element code, with the ISSM team. We then implemented all these models into
the Ice Sheet System Model. The shelfy-stream approximation was already part of Cielo,
whereas other models had to be included in this framework. Mathieu Morlighem and I
started by adding the higher-order, full-Stokes models and shallow ice approximation into
ISSM; the latter model is rarely used as it is a semi-analytical solution. Other models such
as thermal, prognostic or balance thickness solutions were also added. A fair amount of
time was devoted to implementing these solutions, creating a reliable platform and carrying
out tests to validate the results (comparison of our results with analytical solutions and
benchmarks experiments such as those presented in chapter 4). Finally, all the capabilities
implemented in ISSM led us to participate in the SeaRISE assessment (http://websrv.
cs.umt.edu/isis/index.php/SeaRISE_Assessment), an effort organized by the National
Aeronautics and Space Administration (NASA) to estimate the upper bound of ice sheet
contribution to sea-level rise by performing sensitivity experiments over the next 500 years
and involving a dozen ice sheet models.

We then investigated several model coupling techniques. Our first approach was to employ
simple techniques, such as the penalty method or Rigid Body motion. If this approach was
adapted to couple the shelfy-stream and higher-order models, it was difficult to extend it
to a full-Stokes model. We then considered iterative methods to combine full-Stokes to one
of the two other simpler models, but the convergence of this method was very slow and
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required many iterations. Initialization with a good approximation of the solution helped
reduce the computational time but remained inefficient for areas where results from a full-
Stokes model were different from those from simpler models. We then considered using
a more general method, such as the Arlequin framework. However, implementing such a
general framework in an existing parallel software requires a lot of modifications and is not
really necessary for our problem (no real need to include multi-scale effects, coupling of
models relatively similar, ...). After looking at how to simplify this solution, we realized
that a method such as the tiling method, that combines models by local superposition and
linking was an appropriate solution to combine ice flow models.

After analyzing its conditions of applications, the tiling method was first applied to mono-
model systems to ensure its validity. We then applied this techinque to the coupling of the
shelfy-stream approximation with a higher-order model; this implementation was straight-
forward as the only specificity of this case is to ensure a compatible viscosity between the two
models. To couple full-Stokes to one of the simpler models, an additional step was required:
the vertical velocity of the models must be coupled even though it is computed separately
for the simpler models. This was achieved by using an iterative scheme in which the vertical
velocity of the simpler model is updated at each step of the convergence. After testing on
idealized geometries, for cases where the two models behave either similarly or differently,
the method was applied to real glaciers. One major application was the analysis of Pine
Island Glacier, West Antarctica. Previous studies [Morlighem et al., 2010] showed that a
full-Stokes model was needed in the vicinity of the grounding line but that simpler models
could be used in the rest of the domain. A hybrid model that combines full-Stokes model
around the grounding line, from 50 km upstream to 20 km downstream of the grounding
line, and either shelfy-stream or higher-order model in the rest of the basin was used to
compute the ice flow, which supported their results.

Combining ice flow models of varying complexity has the potential to improve models’
physical accuracy while limiting their computational costs. Even though this technique
improves results, it is clear that more work needs to be done in determining the domains of
validity of each model, particularly when modeling real glaciers. Several studies showed that
a full-Stokes model is required in the vicinity of the grounding line [Nowicki and Wingham,
2008; Durand et al., 2009] but the extent of this area is poorly know. Furthermore, it is
not clear if other areas should also be modeled with full-Stokes models, for example steep
regions, as the assumptions made for the friction law might not be valid. Criteria should
be defined to determine a priori the regions where each approximation can be employed,
based on topography and observed velocity. A strategy similar to the one proposed by
Ben Dhia et al. [2011] for atomic to continuum coupling could be used to define the size of
the higher-order or full-Stokes patches.

Another limitation of this model is that the domain decomposition between the different
models is static in our implementation, as these areas cannot evolve with time. Once criteria
defining the domains of validity for each mechanical model are available, an important step
will be to let the domain decomposition vary within a transient run, to better consider the
evolution of the glacier.

The tiling method can be applied to many different systems and models and should not
be restrained to ice sheet modeling. This method can be directly applied, for example, to

148 February 10, 2012



7.2. PERSPECTIVES

beam models where more sophisticated models can be used close to the clamped edge of
the beam, and simpler models can be used far from this edge.

Another important study achieved during my PhD but that is not developed in this thesis is
the analysis of data consistency, though it is not included in this thesis. Ice flux divergence
is an important quantity that determines the rate of thickness change of a glacier. How-
ever, large variations are detected when combining high-resolution surface velocity datasets
with low-resolution measurements of ice thickness, which is inconsistent with what we know
of glaciers surface mass balance, basal mass balance and thinning rate. We studied this
problem on Nioghalvfjerdsfjorden, in North Greenland, and demonstrated that these incon-
sistencies, common to all glaciers, come from the interpolation of ice thickness measured on
thickness tracks onto regular grids using schemes that do not conserve mass [Seroussi et al.,
2011].

7.2 Perspectives

Providing realistic projections of ice sheet response in a warming climate and estimating
their contribution to sea level rise is a major challenge for the glaciology community. Ice
sheet numerical models are a fantastic and unique tools to better understand the physical
processes controlling ice sheet flow and to project their behavior in a changing environment.
Numerical modeling has gained a lot of attention in the last decades and the Ice Sheet System
Model is part of this new generation of models, focused on developing high-resolution,
higher-order models or data assimilation. Despite great progress, a lot of work remains.
Here I describe suggested improvements for ISSM.

The thermal model based on penalties sometimes takes a long time to converge and could
be replaced by an enthalpy model capable of modeling both cold and temperate ice. Such
a model also has the advantage of being easily coupled with a cryo-hydrology model. Most
thermal models neglect the heat transport due to water flow through the ice [Fowler and Lar-
son, 1978]. This heat transport is thought to influence the thermodynamics of glaciers, es-
pecially in Greenland where large amount of melted ice flows throughout the cryo-hydrologic
system during the melt season [Fountain and Walder , 1998].

Phillips et al. [2010] created a parameterization that allows incorporation of cryo-hydrologic
warming into thermal ice sheet models. This cryo-hydrologic system can affect the thermal
regimes of ice sheet within years to decade whereas the conduction of heat takes at least
centuries to affect the thermal response of ice sheets. This mechanism has the potential
to explain the rapid response of ice sheets to climate warming. This parameterization is
based on the spatial average of temperature over representative areas and is controlled by
the density and spacing of the cryo-hydrologic features. It does not require a complete
description of the cryo-hydrologic system geometry or the complete resolution of the heat
transfer system and is therefore computationally advantageous. Phillips et al. [2010] adds
a term corresponding to heat exchange with the cryo-hydrologic system in the heat budget
equation:
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∂T
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+ v · ∇T = k∆T +
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+

k
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Tch − T
R2

(7.1)

where Tch is the water temperature in the cryo-hydrologic system and R the average spacing
between the cryo-hydrologic features. The temperature of the water in the cryo-hydrologic
system is at the pressure melting point during the melt season. During winter, the water
can refreeze if its enthalpy is reduced enough by the contact with the ice. This method
was developed for a column model and has to be extended to three dimensional models.
Including such a model combined with an enthalpic treatment of the energy budget will
allow to better represent the thermal aspect of our model.

Ice shelves and floating glacier termini are strongly affected by modifications in climate as
demonstrated by the recent, spectacular collapses of several ice shelves in the Antarctic
Peninsula. Ice shelves play a major role in the stability of their tributary glaciers as but-
tresses for the inland ice and control the discharge of ice to the ocean. The interactions
between floating and grounded ice are still poorly understood, which limits the ability to
predict the future evolution of major outlet glaciers and ice streams. A precise description
of the grounding line is necessary to capture these effects however the exact location of the
grounding line and its rate of advance or retreat is numerically challenging.

In ISSM, as in most ice sheet models, the position of the grounding line is determined
by a hydrostatic equilibrium criterion. Recently, Nowicki and Wingham [2008] developed
a more rigorous grounding line model based on contact mechanics and the solution of the
full-Stokes equations. Several full-Stokes models now use this technique to model grounding
line dynamics [Nowicki and Wingham, 2008; Durand et al., 2009], however they are all flow
band models that rely on parameterization to account for the ice shelf buttressing that
results principally from contact with embayment walls and ice rises, and they use a contact
condition to determine the grounding line position. Furthermore, these models have been
used only on idealized geometries and have not been applied to real glaciers or ice streams.
Despite their limitations, these models showed that a very high spatial resolution is required
in the vicinity of the grounding line and that ice shelves do not comply with the flotation
condition in this region, as they are not in hydrostatic equilibrium in the first kilometers
downstream of the grounding line. In the future, with improved computer resources, it
might worth investigating these localized processes with a full Arlequin formulation.

Other models have been developed for planview simulations that include the two horizontal
dimensions. Such models [Goldberg et al., 2009; Joughin et al., 2010] are based on the
Shallow Shelf approximation. Goldberg et al. [2009] show that the extent and profile of an
ice shelf affect the dynamics of the grounded ice sheet. Contrary to full-Stokes models, these
models cannot employ a contact condition to determine the position of the grounding line,
and therefore rely on the hydrostatic equilibrium condition, which has been demonstrated
not to be accurate in the first kilometers downstream of the grounding line. Accurately
modeling the grounding line position and its evolution requires three-dimensional full-Stokes
models.

Another key feature missing in ISSM is the treatment of the ice front motion. Currently,
ice fronts are fixed and no calving law is applied, which is equivalent to applying a free-
flux boundary condition, and therefore having a stable fixed front. The position of ice
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shelves calving front is of major importance for the stability of the Antarctic Ice Sheet, as
observed after the collapse of Larsen A or Larsen B [Rott et al., 2002; Rignot et al., 2004].
The position of an ice front affects the behavior of the glaciers as it influences the stress
field through lateral drag in an ice shelf embayment, the flow of their tributary glaciers,
and therefore mass flux across the grounding line. A comprehensive calving law describing
the advance and retreat of this front remains a challenge as a full calving model would
require very small time steps and consideration of features with scales around 1 meter, such
as iceberg formation. Therefore, calving parameterization is often employed rather than
a calving model [Amundson and Truffer , 2010]. Even though these parameterizations do
not consider all the physical processes involved, including a moving ice front and a simple
calving parameterization will help improve the accuracy of model results.
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