A. Abdul-latif, A Comparison of Two Self-Consistent Models to Predict the Cyclic Behavior of Polycrystals, Journal of Engineering Materials and Technology, vol.126, issue.1, pp.62-69, 2004.
DOI : 10.1115/1.1633572

A. Ahmadi and H. Zenner, Lifetime simulation under multiaxial random loading with regard to the microcrack growth, International Journal of Fatigue, vol.28, issue.9, pp.954-962, 2006.
DOI : 10.1016/j.ijfatigue.2005.09.015

T. Akahori, M. Niinomi, and A. Ozeki, Effect of microstructure on small fatigue crack initiation and propagation characteristics of Ti-6Al-7Nb alloy, Journal of the Japan Institute of Metals, vol.62, issue.10, pp.952-960, 1998.

R. Alain, P. Violan, and J. Mendez, Low cycle fatigue behavior in vacuum of a 316L type austenitic stainless steel between 20 and 600??C Part I: Fatigue resistance and cyclic behavior, Materials Science and Engineering: A, vol.229, issue.1-2, pp.87-94, 1997.
DOI : 10.1016/S0921-5093(96)10558-X

S. Amiable, S. Chapuliot, A. Constantinescu, and A. Fissolo, A comparison of lifetime prediction methods for a thermal fatigue experiment, International Journal of Fatigue, vol.28, issue.7, pp.692-706, 2006.
DOI : 10.1016/j.ijfatigue.2005.09.002

URL : https://hal.archives-ouvertes.fr/hal-00111459

A. F. Armas, C. Petersen, R. Schmitt, M. Avalos, and I. Alvarez-armas, Mechanical and microstructural behaviour of isothermally and thermally fatigued ferritic/martensitic steels, Journal of Nuclear Materials, vol.307, issue.311, pp.311-509, 2002.
DOI : 10.1016/S0022-3115(02)01086-3

P. J. Armstrong and C. O. Frederick, A mathematical representation of the multiaxial baushinger effect, 1966.

L. Babout, T. J. Marrow, D. Engelberg, and P. J. Withers, X-ray microtomographic observation of intergranular stress corrosion cracking in sensitised austenitic stainless steel, Materials Science and Technology, vol.11, issue.9, pp.1068-1075, 2006.
DOI : 10.1063/1.1699865

N. Baffie, J. Stolarz, and T. Magin, Influence of strain-induced martensitic transformation on fatigue short crack behaviour in an austenitic stainless steel, Matériaux et Techniques 5-6, pp.57-64, 2000.

F. Barbe, L. Decker, D. Jeulin, and G. Cailletaud, Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model, International Journal of Plasticity, vol.17, issue.4, pp.513-536, 2001.
DOI : 10.1016/S0749-6419(00)00061-9

F. Barbe, S. Forest, and G. Cailletaud, Intergranular and intragranular behavior of polycrystalline aggregates.Part 2: Results, International Journal of Plasticity, vol.17, issue.4, pp.537-563, 2001.
DOI : 10.1016/S0749-6419(00)00062-0

K. Basu, M. Das, D. Bhattacharjee, and P. C. Chakraborti, Effect of grain size on austenite stability and room temperature low cycle fatigue behaviour of solution annealed AISI 316LN austenitic stainless steel, Materials Science and Technology, vol.24, issue.11, pp.1278-1284, 2007.
DOI : 10.1080/14786436808227524

M. R. Bayoumi and A. K. Ellatif, Characterization of cyclic plastic bending of austenitic AISI 304 stainless steel, Engineering Fracture Mechanics, vol.51, issue.6, pp.1049-1058, 1995.
DOI : 10.1016/0013-7944(94)00224-6

C. Bjerken and S. Melin, A tool to model short crack fatigue growth using a discrete dislocation formulation, International Journal of Fatigue, vol.25, issue.6, pp.559-566, 2003.
DOI : 10.1016/S0142-1123(02)00144-5

C. Bjerken and S. Melin, A study of the influence of grain boundaries on short crack growth during varying load using a dislocation technique, Engineering Fracture Mechanics, vol.71, issue.15, pp.2215-2227, 2004.
DOI : 10.1016/j.engfracmech.2003.10.006

A. E. Blom, A. Hedlund, W. Zhao, A. Fathalla, B. Weiss et al., Short fatigue crack growth in Al 2024 and Al 7475, Behaviour of Short Fatigue Cracks MEP, vol.1, 1985.

L. Bodelot, L. Sabatier, and E. Charkaluk, Experimental setup for fully coupled kinematic and thermal measurements at the microstructure scale of an AISI 316L steel, Materials Science and Engineering: A, vol.501, issue.1-2, pp.52-60, 2009.
DOI : 10.1016/j.msea.2008.09.053

URL : https://hal.archives-ouvertes.fr/hal-00367330

J. F. Breedis and W. D. Robertson, The martensitic transformation in single crystals of iron-chromium-nickel alloys, Acta Metallurgica, vol.10, issue.11, pp.1077-1088, 1962.
DOI : 10.1016/0001-6160(62)90076-7

S. Brinckman and E. Van-der-giessen, A fatigue crack initiation model incorporating discrete dislocation plasticity and surface roughness, International Journal of Fracture, vol.42, issue.470, pp.155-167, 2007.
DOI : 10.1007/s10704-008-9190-x

T. Broom and R. K. Ham, The Hardening and Softening of Metals by Cyclic Stressing, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.242, issue.1229, pp.166-179, 1229.
DOI : 10.1098/rspa.1957.0165

W. P. Bullen, A. K. Head, and W. A. Wood, Structural Changes during the Fatigue of Metals, Proc. Roy. Soc A216, 1953.
DOI : 10.1098/rspa.1953.0025

G. Cailletaud, A micromechanical approach to inelastic behaviour of metals, International Journal of Plasticity, vol.8, issue.1, pp.55-73, 1992.
DOI : 10.1016/0749-6419(92)90038-E

D. Cedat, M. Libert, M. L. Flem, O. Fandeur, C. Rey et al., Experimental characterization and mechanical behaviour modelling of molybdenum???titanium carbide composite for high temperature applications, International Journal of Refractory Metals and Hard Materials, vol.27, issue.2, pp.267-273, 2009.
DOI : 10.1016/j.ijrmhm.2008.09.018

URL : https://hal.archives-ouvertes.fr/hal-00751976

L. Chevalier, S. Calloch, F. Hild, and Y. Marco, Digital image correlation used to analyze the multiaxial behavior of rubber-like materials, European Journal of Mechanics - A/Solids, vol.20, issue.2, pp.169-187, 2001.
DOI : 10.1016/S0997-7538(00)01135-9

URL : https://hal.archives-ouvertes.fr/hal-00014019

B. H. Choe and H. C. Lee, Cyclic softening and hardening behavior of a nickel-base superalloy, Scripta Metallurgica et Materialia, vol.32, issue.8, pp.1283-1287, 1995.
DOI : 10.1016/0956-716X(94)00018-D

L. F. Coffin, A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal, Transactions of ASME, 1954.

A. Constantinescu, E. Charkaluk, G. Lederer, and L. Verger, A computational approach to thermomechanical fatigue, International Journal of Fatigue, vol.26, issue.8, pp.805-818, 2004.
DOI : 10.1016/j.ijfatigue.2004.01.006

URL : https://hal.archives-ouvertes.fr/hal-00138135

P. Cunat, ciers Inoxydables : critères de choix et structure, 2003.

F. Curtit, Description and evaluation of fatigue critiria under random multiaxial stress, EDF report, vol.67, 2007.

S. Daneshpour, M. Kocak, S. Langlade, and M. Horstmann, Effect of overload on fatigue crack retardation of aerospace Al-alloy laser welds using crack-tip plasticity analysis, International Journal of Fatigue, vol.31, issue.10, pp.31-1603, 2009.
DOI : 10.1016/j.ijfatigue.2009.04.005

X. Demulsant and J. Mendez, MICROSTRUCTURAL EFFECTS ON SMALL FATIGUE CRACK INITIATION AND GROWTH IN Ti6A14V ALLOYS, Fatigue & Fracture of Engineering Materials and Structures, vol.15, issue.12, pp.1483-1497, 1995.
DOI : 10.1016/0142-1123(92)90010-A

C. Depres, Modelisation physique des stades precurseurs de l'endommagement en fatigue dans l'acier inoxydable austenitique 316L, Thèse de doctorat, 2004.

C. Depres, M. Fivel, and L. Tabourot, A dislocation-based model for low-amplitude fatigue behaviour of face-centred cubic single crystals, Scripta Materialia, vol.58, issue.12, pp.1086-1089, 2008.
DOI : 10.1016/j.scriptamat.2008.02.027

C. Depres, C. F. Robertson, and M. C. , Crack initiation in fatigue: experiments and three-dimensional dislocation simulations, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 387, pp.288-291, 2004.

V. S. Deshpande, A. Needleman, and E. Van-der-giessen, Discrete dislocation plasticity modeling of short cracks in single crystals, Acta Materialia, vol.51, issue.1, pp.1-15, 2003.
DOI : 10.1016/S1359-6454(02)00401-9

B. Devincre, L. Kubin, and T. Hoc, Physical analyses of crystal plasticity by DD simulations, Scripta Materialia, vol.54, issue.5, pp.741-746, 2006.
DOI : 10.1016/j.scriptamat.2005.10.066

URL : https://hal.archives-ouvertes.fr/hal-00019068

B. Devincre and L. P. Kubin, Mesoscopic simulations of dislocations and plasticity, Materials Science and Engineering: A, vol.234, issue.236, pp.8-14, 1997.
DOI : 10.1016/S0921-5093(97)00146-9

K. M. Dobrich, C. Rau, and C. E. , Quantitative characterization of the threedimensional microstructure of polycrystalline Al-Sn using X-ray microtomography, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 35A, pp.1953-1961, 2004.

C. Doudard, F. Hild, and S. Calloch, A probabilistic model for multiaxial high cycle fatigue, Fatigue & Fracture of Engineering Materials and Structures, vol.90, issue.2, pp.107-114, 2007.
DOI : 10.1007/BF00553691

URL : https://hal.archives-ouvertes.fr/hal-00497859

W. J. Drugan and J. R. Willis, A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, Journal of the Mechanics and Physics of Solids, vol.44, issue.4, pp.497-524, 1996.
DOI : 10.1016/0022-5096(96)00007-5

C. Efstathiou, H. Sehitoglu, and J. Lambros, Multiscale strain measurements of plastically deforming polycrystalline titanium: Role of deformation heterogeneities, International Journal of Plasticity, vol.26, issue.1, pp.93-106, 2010.
DOI : 10.1016/j.ijplas.2009.04.006

E. Bartali, A. , V. Aubin, and S. Degallaix, Fatigue damage analysis in a duplex stainless steel by digital image correlation technique, Fatigue & Fracture of Engineering Materials and Structures, vol.345, issue.2, pp.137-151, 2008.
DOI : 10.1016/S0921-5093(01)01381-8

URL : https://hal.archives-ouvertes.fr/hal-00761463

W. Elber, Fatigue crack closure under cyclic tension, Engineering Fracture Mechanics, vol.2, issue.2, pp.37-45, 1970.

P. Erieau and C. Rey, Modeling of deformation and rotation bands and of deformation induced grain boundaries in IF steel aggregate during large plane strain compression, International Journal of Plasticity, vol.20, issue.10, pp.1763-1788, 2004.
DOI : 10.1016/j.ijplas.2003.11.014

URL : https://hal.archives-ouvertes.fr/hal-00019025

Y. Estrin, L. S. Tóth, A. Molinari, and Y. Bréchet, A dislocation-based model for all hardening stages in large strain deformation, Acta Materialia, vol.46, issue.15, pp.5509-5522, 1998.
DOI : 10.1016/S1359-6454(98)00196-7

L. P. Evers, D. M. Parks, W. A. Brekelmans, and M. G. Geers, Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation, Journal of the Mechanics and Physics of Solids, vol.50, issue.11, pp.2403-2424, 2002.
DOI : 10.1016/S0022-5096(02)00032-7

URL : http://repository.tue.nl/713141

P. Evrard, I. Alvarez-armas, V. Aubin, and S. Degallaix, Polycrystalline modeling of the cyclic hardening/softening behavior of an austenitic???ferritic stainless steel, Mechanics of Materials, vol.42, issue.4, pp.395-404, 2010.
DOI : 10.1016/j.mechmat.2010.01.007

URL : https://hal.archives-ouvertes.fr/hal-00761223

P. Evrard, V. Aubin, S. Degallaix, and D. Kondo, Formulation of a new single crystal law for modeling the cyclic softening, Mechanics Research Communications, vol.35, issue.8, pp.589-594, 2008.
DOI : 10.1016/j.mechrescom.2008.06.001

URL : https://hal.archives-ouvertes.fr/hal-00333429

J. A. Ewing and J. W. Humfrey, The Fracture of Metals under Repeated Alternations of Stress, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.200, issue.321-330, pp.241-253, 1903.
DOI : 10.1098/rsta.1903.0006

B. Farahmand, G. Bockrath, and J. Glassco, Fatigue and fracture mechanics of high risk parts: application of LEFM & FMDM theory, 1997.
DOI : 10.1007/978-1-4615-6009-8

A. Fatemi and J. Colin, Variable amplitude cyclic deformation and fatigue behaviour of stainless steel 304L including step, periodic, and random loadings, Fatigue & Fracture of Engineering Materials & Structures, vol.33, issue.4, pp.205-220, 2010.

A. Fatemi and D. Socie, A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT-OF-PHASE LOADING, Fatigue & Fracture of Engineering Materials and Structures, vol.106, issue.3, pp.149-165, 1988.
DOI : 10.1007/BF00184149

E. Ferrie, J. Y. Buffiere, and W. Ludwig, 3D characterisation of the nucleation of a short fatigue crack at a pore in a cast Al alloy using high resolution synchrotron microtomography, International Journal of Fatigue, vol.27, issue.10-12, pp.10-12, 2005.
DOI : 10.1016/j.ijfatigue.2005.07.015

E. Ferrie, J. Y. Buffiere, W. Ludwig, A. Gravouil, and L. Edwards, Fatigue crack propagation: In situ visualization using X-ray microtomography and 3D simulation using the extended finite element method, Acta Materialia, vol.54, issue.4, pp.1111-1122, 2006.
DOI : 10.1016/j.actamat.2005.10.053

URL : https://hal.archives-ouvertes.fr/hal-00436215

A. Fissolo, C. Gourdin, O. Ancelet, S. Amiable, A. Demassieux et al., Crack initiation under thermal fatigue: An overview of CEA experiencePart II (of II): Application of various criteria to biaxial thermal fatigue tests and a first proposal to improve the estimation of the thermal fatigue damage, International Journal of Fatigue, vol.31, issue.7, pp.1196-1210, 2009.
DOI : 10.1016/j.ijfatigue.2008.11.018

P. A. Fomichev, Method for the evaluation of the service life under random loading based on the energy criterion of fatigue fracture, Strength of Materials, vol.32, issue.3, pp.224-235, 2008.
DOI : 10.1007/s11223-008-9011-5

P. Forsyth and C. Stubbington, The slip band extrusion effect observed in some aluminum alloys subjected to cyclic stresses, Journal Institute of Metals, vol.3395, 1955.

C. Garcia, Caractérisation microstructurale d'aciers inoxydables austénitiques (304L) sollicités en fatigue, 2006.

M. Gerland, R. Alain, B. A. Saadi, and J. Mendez, Low cycle fatigue behaviour in vacuum of a 316L-type austenitic stainless steel between 20 and 600??C???Part II: Dislocation structure evolution and correlation with cyclic behaviour, Materials Science and Engineering: A, vol.229, issue.1-2, pp.68-86, 1997.
DOI : 10.1016/S0921-5093(96)10560-8

P. Goudeau, P. Villain, N. Tamura, and H. A. Padmore, Mesoscale x-ray diffraction measurement of stress relaxation associated with buckling in compressed thin films, Applied Physics Letters, vol.83, issue.1, pp.51-53, 2003.
DOI : 10.1063/1.1591081

N. Haddar, Fatigue thermique d'un acier inoxydable austénitique 304L: simulation de l'amorçage et de la croissance des fissures courtes en fatigue isotherme et anisotherme, 2003.

R. Hamam, S. Pommier, and F. Bumbieler, Variable amplitude fatigue crack growth, experimental results and modeling, International Journal of Fatigue, vol.29, issue.9-11, pp.9-11, 2007.
DOI : 10.1016/j.ijfatigue.2007.02.005

R. Hamam, S. Pommier, and F. Bumbleler, Variable amplitude fatigue crack growth, experimental results and modeling, International Journal of Fatigue, vol.29, issue.9-11, pp.9-11, 2007.
DOI : 10.1016/j.ijfatigue.2007.02.005

G. A. Harmain, A model for predicting the retardation effect following a single overload, Theoretical and Applied Fracture Mechanics, vol.53, issue.1, pp.80-88, 2009.
DOI : 10.1016/j.tafmec.2009.12.008

S. Heino and B. Karlsson, Cyclic deformation and fatigue behaviour of 7Mo???0.5N superaustenitic stainless steel???slip characteristics and development of dislocation structures, Acta Materialia, vol.49, issue.2, pp.353-363, 2001.
DOI : 10.1016/S1359-6454(00)00200-7

O. Helgeland, Cyclic Hardenins and. Fatique of Copper Sinqle Crystals, Journal of the Institute of Metals, vol.93, pp.570-575, 1965.

D. Hennessy, G. Steckel, and C. Altstetter, Phase transformation of stainless steel during fatigue, Metallurgical Transactions A, vol.24, issue.3, pp.415-424, 1976.
DOI : 10.1007/BF02642838

M. Herbig, A. King, P. Reischig, H. Proudhon, E. M. Lauridsen et al., 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography, Acta Materialia, vol.59, issue.2, pp.590-601, 2011.
DOI : 10.1016/j.actamat.2010.09.063

URL : https://hal.archives-ouvertes.fr/hal-00527628

E. Heripre, M. Dexet, J. Crepin, L. Gelebart, A. Roos et al., Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials, International Journal of Plasticity, vol.23, issue.9, pp.1512-1539, 2007.
DOI : 10.1016/j.ijplas.2007.01.009

Y. Hong, Y. Qiao, N. Liu, and X. Zheng, EFFECT OF GRAIN SIZE ON COLLECTIVE DAMAGE OF SHORT CRACKS AND FATIGUE LIFE ESTIMATION FOR A STAINLESS STEEL, Fatigue & Fracture of Engineering Materials & Structures, vol.29, issue.11, pp.1317-1325, 1998.
DOI : 10.1046/j.1460-2695.1998.00093.x

H. L. Huang, A study of dislocation evolution in polycrystalline copper during low cycle fatigue at low strain amplitudes, Materials Science and Engineering: A, vol.342, issue.1-2, pp.38-43, 2003.
DOI : 10.1016/S0921-5093(02)00312-X

H. L. Huang and N. J. Ho, The study of fatigue in polycrystalline copper under various strain amplitude at stage I: crack initiation and propagation, Materials Science and Engineering: A, vol.293, issue.1-2, pp.7-14, 2000.
DOI : 10.1016/S0921-5093(00)01246-6

D. Hull and D. J. Bacon, Introduction to Dislocations, Fourth Edition, 1965.

D. Hull and D. J. Bacon, Introduction to Dislocations, 2001.
DOI : 10.1119/1.1974472

URL : http://dx.doi.org/10.1016/s1369-7021(11)70217-6

H. B. Huntington, The Elastic Constants of Crystals, 1958.
DOI : 10.1016/S0081-1947(08)60553-6

K. Hussain, A. Tauqir, A. Haq, and A. Q. Khan, Overload effect on fatigue crack propagation in 2024-Al alloy, Fatigue '99: Proceedings of the Seventh International Fatigue Congress, pp.1-4, 1999.

W. P. Jia and J. V. Fernandes, Mechanical behaviour and the evolution of the dislocation structure of copper polycrystal deformed under fatigue???tension and tension???fatigue sequential strain paths, Materials Science and Engineering: A, vol.348, issue.1-2, pp.133-144, 2003.
DOI : 10.1016/S0921-5093(02)00630-5

M. H. Kelestemur and T. K. Chaki, The effect of overload on the fatigue crack growth behaviour of 304 stainless steel in hydrogen, Fatigue <html_ent glyph="@amp;" ascii="&"/> Fracture of Engineering Materials and Structures, vol.24, issue.1, pp.15-22, 2001.
DOI : 10.1046/j.1460-2695.2001.00373.x

S. T. Kim, D. Tadjiev, and H. T. Yang, Fatigue Life Prediction under Random Loading Conditions in 7475-T7351 Aluminum Alloy using the RMS Model, International Journal of Damage Mechanics, vol.15, issue.1, pp.89-102, 2006.
DOI : 10.1177/1056789506058605

URL : https://hal.archives-ouvertes.fr/hal-00571150

A. King, M. Herbig, W. Ludwig, P. Reischig, E. M. Lauridsen et al., Non-destructive analysis of micro texture and grain boundary character from Xray diffraction contrast tomography, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.268, pp.3-4, 2009.

H. Kitagawa and S. Takahashi, Applicability of fracture mechanics to very small cracks or cracks in the early stage, Proceedings of the 2nd International Conference on the Behaviour of Materials, pp.627-631, 1976.

K. Kobayashi, K. Yamaguchi, M. Hayakawa, and M. Kimura, Grain size effect on high-temperature fatigue properties of alloy718, Materials Letters, vol.59, issue.2-3, pp.383-386, 2005.
DOI : 10.1016/j.matlet.2004.09.029

K. Komano, S. Ishihara, A. J. Mcevily, and H. Shibata, Effect of microstructure on small fatigue crack initiation and propagation behavior of Ti-6AI-4V alloy, Progresses in Fracture and Strength of Materials and Structures, pp.1-4, 2007.

A. M. Korsunsky, D. Dini, F. P. Dunne, and M. J. Walsh, Comparative assessment of dissipated energy and other fatigue criteria???, International Journal of Fatigue, vol.29, issue.9-11, pp.9-11, 2007.
DOI : 10.1016/j.ijfatigue.2007.01.007

U. Krupp, Fatigue Crack Propagation in Metals and Alloys-Microstructural Aspects and Modelling Concepts, 2007.

B. Kunkler, O. Duber, P. Koster, U. Krupp, C. P. Fritzen et al., Modelling of short crack propagation ??? Transition from stage I to stage II, Engineering Fracture Mechanics, vol.75, issue.3-4, pp.3-4, 2008.
DOI : 10.1016/j.engfracmech.2007.02.018

P. Lacombe, B. Baroux, and G. Béranger, Les aciers inoxydables, 1990.

T. Lagoda, Energy models for fatigue life estimation under uniaxial random loading. Part I: The model elaboration, International Journal of Fatigue, vol.23, issue.6, pp.467-480, 2001.
DOI : 10.1016/S0142-1123(01)00016-0

T. Lagoda, Energy models for fatigue life estimation under uniaxial random loading. Part II: Verification of the model, International Journal of Fatigue, vol.23, issue.6, pp.481-489, 2001.
DOI : 10.1016/S0142-1123(01)00017-2

A. Le-pecheur, Fatigue thermique d'un acier inoxydable austénitique :influence de l'état de surface par une approche multi-échelles, 2008.

L. Pecheur, A. , M. Clavel, F. Curtit, C. Rey et al., Influence of surface conditions on fatigue strength through the numerical simulation of microstructure, Revue de M??tallurgie, vol.107, issue.10-11, pp.10-11, 2011.
DOI : 10.1051/metal/2011012

URL : https://hal.archives-ouvertes.fr/hal-00751286

K. Lebedev, Influence of phase transformations on the mechanical properties of austenitic stainless steels, International Journal of Plasticity, vol.16, issue.7-8, pp.749-767, 2000.
DOI : 10.1016/S0749-6419(99)00085-6

F. Lecroisey and A. Pineau, Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system, Metallurgical Transactions, vol.2, issue.2, pp.391-400, 1972.
DOI : 10.1007/BF02642042

Y. Lehericy and J. Mendez, Effect of low cycle fatigue damage on the residual fatigue strength of 304L austenitic stainless steel, 9th International Fatigue Congress, 2006.

Y. Lehericy and J. Mendez, Effect of low cycle fatigue damage on the residual fatigue strength of 304l austenitic stainless steel, 9th International Fatigue Congress, 2006.

J. Lemaitre and R. Desmorat, Engineering Damage Mechanics, 2005.

X. D. Li, Micromechanical model of stage I to stage II crack growth transition for aluminium alloys, Theoretical and Applied Fracture Mechanics, vol.24, issue.3, pp.217-231, 1996.
DOI : 10.1016/0167-8442(95)00045-3

Y. Li, V. Aubin, C. Rey, and P. Bompard, Polycrystalline numerical simulation of variable amplitude loading effects on cyclic plasticity and microcrack initiation in austenitic steel 304L, International Journal of Fatigue, vol.42, 2011.
DOI : 10.1016/j.ijfatigue.2011.07.003

URL : https://hal.archives-ouvertes.fr/hal-00756036

Y. Li and C. Laird, Cyclic response and dislocation structures of AISI 316L stainless steel. Part 1: single crystals fatigued at intermediate strain amplitude, Materials Science and Engineering: A, vol.186, issue.1-2, pp.65-86, 1994.
DOI : 10.1016/0921-5093(94)90306-9

Y. Li and C. Laird, Cyclic response and dislocation structures of AISI 316L stainless steel. Part 2: polycrystals fatigued at intermediate strain amplitude, Materials Science and Engineering: A, vol.186, issue.1-2, pp.87-103, 1994.
DOI : 10.1016/0921-5093(94)90307-7

N. Limodin, J. Rethore, J. Y. Buffiere, F. Hild, W. Ludwig et al., 3D X-ray Microtomography Volume Correlation to Study Fatigue Crack Growth, Advanced Engineering Materials, vol.20, issue.3, pp.186-193, 2011.
DOI : 10.1002/adem.201000235

URL : https://hal.archives-ouvertes.fr/hal-00818812

T. H. Lin, H. Q. Liu, and N. G. Liang, A micromechanical theory of fatigue crack initiation of an aluminum single crystal, International Journal of Fatigue, vol.25, issue.9-11, pp.9-11, 2003.
DOI : 10.1016/S0142-1123(03)00134-8

V. Maillot, G. Degallaix, S. Degallaix, and A. Fissolo, Biaxial thermomechanical fatigue on a 304 L-type austenitic stainless steel, Materialprufung, vol.48, issue.12, pp.44-49, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00133686

N. Malésys, L. Vincent, and F. Hild, A probabilistic model to predict the formation and propagation of crack networks in thermal fatigue, International Journal of Fatigue, vol.31, issue.3, pp.565-574, 2009.
DOI : 10.1016/j.ijfatigue.2008.03.026

C. Manole, C. Depres, and L. Tabourot, Development of a dislocation-based constitutive law for fcc crystals on a wide range of deformation amplitude, 15th International Conference on the Strength of Materials Dresden, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00739686

C. Manole, C. Depres, and L. Tabourot, Development of a dislocation-based constitutive law for fcc crystals on a wide range of deformation amplitude, International Conference on Computational Plasticity Barcelona, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00739686

P. Marmy and T. Kruml, Low cycle fatigue of Eurofer 97, Journal of Nuclear Materials, vol.377, issue.1, pp.52-58, 2008.
DOI : 10.1016/j.jnucmat.2008.02.054

T. J. Marrow, J. Y. Buffiere, P. J. Withers, G. Johnson, and D. Engelberg, High resolution X-ray tomography of short fatigue crack nucleation in austempered ductile cast iron, International Journal of Fatigue, vol.26, issue.7, pp.717-725, 2004.
DOI : 10.1016/j.ijfatigue.2003.11.001

I. N. Mastorakos and H. M. Zbib, Dislocation-cracks interaction during fatigue: A discrete dislocation dynamics simulation, JOM, vol.4, issue.8, pp.59-63, 2008.
DOI : 10.1007/s11837-008-0051-x

V. Maurel, L. Rémy, F. Dahmen, and N. Haddar, An engineering model for low cycle fatigue life based on a partition of energy and micro-crack growth, International Journal of Fatigue, vol.31, issue.5, pp.952-961, 2009.
DOI : 10.1016/j.ijfatigue.2008.09.004

URL : https://hal.archives-ouvertes.fr/hal-00367997

P. C. Maxwell, A. Goldberg, and J. C. Shyne, Stress assisted and strain induced martensite in Fe-Ni-Cr alloys, Metallurgical and Materials Transactions B, vol.5, pp.1395-1318, 1974.

T. Mayama and K. Sasaki, Investigation of subsequent viscoplastic deformation of austenitic stainless steel subjected to cyclic preloading, International Journal of Plasticity, vol.22, issue.2, pp.374-390, 2006.
DOI : 10.1016/j.ijplas.2005.03.008

D. L. Mcdowell, Basic issues in the mechanics of high cycle metal fatigue, International Journal of Fracture, vol.114, issue.3, pp.103-145, 1996.
DOI : 10.1007/BF00012666

D. L. Mcdowell and F. P. Dunne, Microstructure-sensitive computational modeling of fatigue crack formation, International Journal of Fatigue, vol.32, issue.9, pp.1521-1542, 2010.
DOI : 10.1016/j.ijfatigue.2010.01.003

A. J. Mcevily, J. L. Gonzalez, and J. M. Hallen, Dislocation substructures at fatigue crack tips of 304 stainless steel cycled in air or vaccum, Scripta Materialia, vol.35, issue.6, pp.761-765, 1996.
DOI : 10.1016/1359-6462(96)00210-2

M. Mcguire, Stainless steels for design engineers, pp.44073-44075, 2008.

M. A. Miner, Cumulative damage in fatigue, J. Appl. Mech. Trans. ASME, vol.12, issue.67, 1945.

M. Mochizuki, M. Hayashi, and T. Hattori, Numerical Analysis of Welding Residual Stress and Its Verification Using Neutron Diffraction Measurement, Journal of Engineering Materials and Technology, vol.122, issue.1, pp.98-103, 2000.
DOI : 10.1115/1.482772

F. Morel, A critical plane approach for life prediction of high cycle fatigue under multiaxial variable amplitude loading, International Journal of Fatigue, vol.22, issue.2, pp.101-119, 2000.
DOI : 10.1016/S0142-1123(99)00118-8

B. Moreno, J. Zapatero, and J. Dominguez, An experimental analysis of fatigue crack growth under random loading, International Journal of Fatigue, vol.25, issue.7, pp.597-608, 2003.
DOI : 10.1016/S0142-1123(03)00018-5

J. Morrow, Fatigue properties of metals, Proceedings of the division 4 of the SAE iron and steel technical committee, 1964.

H. Mughrabi, The cyclic hardening and saturation behaviour of copper single crystals, Materials Science and Engineering, vol.33, issue.2, pp.207-223, 1978.
DOI : 10.1016/0025-5416(78)90174-X

H. Mughrabi, Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals, Acta Metallurgica, vol.31, issue.9, pp.1367-1379, 1983.
DOI : 10.1016/0001-6160(83)90007-X

Y. Mutoh, T. Moriya, S. J. Zhu, and Y. Mizuhara, INITIATION AND GROWTH OF SMALL FATIGUE CRACK IN TiAl INTERMETALLICS AT ELEVATED AND ROOM TEMPERATURES, Journal of the Society of Materials Science, Japan, vol.47, issue.3Appendix, pp.19-25, 1998.
DOI : 10.2472/jsms.47.3Appendix_19

K. Obrtlik, T. Kruml, and J. Polak, Dislocation structures in 316L stainless steel cycled with plastic strain amplitudes over a wide interval, Materials Science and Engineering: A, vol.187, issue.1, pp.1-9, 1994.
DOI : 10.1016/0921-5093(94)90325-5

O. P. Ostash, V. V. Panasyuk, and E. M. Kostyk, Unified model of nucleation and growth of fatigue cracks. Part 1. Use of force parameters of fracture mechanics of materials in the stage of crack nucleation, Materials Science, vol.16, issue.No. 5, pp.1-18, 1998.
DOI : 10.1007/BF02362609

W. J. Ostergren, A Damage Function and Associated Failure Equations for Predicting Hold Time and Frequency Effects in Elevated Temperature Low Cycle Fatigue, Journal of Testing and Evaluation, vol.4, issue.5, pp.327-337, 1976.

S. Osterstock, Vers la prédiction de l'apparition de réseaux de fissures : influence des paramètres microstructuraux sur la dispersion à l'amorçage, Thèse de doctorat, 2008.

A. Palmgren, The Service Life of Ball Bearings, Zectsckrift des Vereines Deutscher Ingenieure, 1924.

P. C. Paris, The fracture mechanics approach to fatigue, Proceedings of the Tenth Sagamore Conference, 1965.

P. Peralta, C. Laird, U. Ramamurty, S. Suresh, G. H. Campbell et al., Fatigue crack nucleation in metallic materials, Small Fatigue Cracks: Mechanics, Mechanisms, and Applications, pp.17-28, 1999.

F. P. Pickering, Physical metallurgical development of stainless steel, Proceeding of the conference stainless steel prime, 1984.

J. Polak, S. Degallaix, and G. Degallaix, The role of cyclic slip localization in fatigue damage of materials, Le Journal de Physique IV, vol.03, issue.C7, pp.679-684, 1993.
DOI : 10.1051/jp4:19937107

URL : https://hal.archives-ouvertes.fr/jpa-00251724

J. Polak, K. Obrtlik, and M. Hajek, CYCLIC PLASTICITY IN TYPE 316L AUSTENITIC STAINLESS STEEL, Fatigue & Fracture of Engineering Materials and Structures, vol.22, issue.7, pp.773-782, 1994.
DOI : 10.1016/0142-1123(92)90481-Q

S. Pommier, Cyclic plasticity and variable amplitude fatigue, International Journal of Fatigue, vol.25, issue.9-11, pp.9-11, 2003.
DOI : 10.1016/S0142-1123(03)00137-3

R. Quey, P. R. Dawson, and F. Barbe, Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.17-20, pp.17-20, 2011.
DOI : 10.1016/j.cma.2011.01.002

URL : https://hal.archives-ouvertes.fr/hal-00858028

S. G. Raman and K. A. Padmanabhan, A Comparison of the Room- Temperature Behavior of Aisi 304ln Stainless-Steel and Nimonic-90 under Strain Cycling, International Journal of Fatigue, vol.17, issue.4, pp.271-277, 1995.

K. B. Rao, M. Valsan, R. Sandhya, S. L. Mannan, and P. Rodriguez, Synergistic Interactions during High-Temperature Fatigue of Type-304 Stainless Steel-Grain Size Dependence, Transactions of the Indian Institute of Metals, vol.44, issue.3, pp.255-270, 1991.

S. Ravichandran, R. O. Ritchie, and Y. Murakami, Small Fatigue Cracks:Mechanics, Mechanisms and Applications, 1999.

R. P. Reed, The spontaneous martensitic transformations in 18% Cr, 8% Ni steels, Acta Metallurgica, vol.10, issue.9, pp.865-877, 1962.
DOI : 10.1016/0001-6160(62)90101-3

C. Robertson, M. C. Fivel, and A. Fissolo, Dislocation substructure in 316L stainless steel under thermal fatigue up to 650 K, Materials Science and Engineering: A, vol.315, issue.1-2, pp.47-57, 2001.
DOI : 10.1016/S0921-5093(01)01201-1

P. Rousseau, Aciers inoxydables à haute caractéristiques, Aciers spéciaux, vol.24, pp.6-10, 1973.

J. Rupil, L. Vincent, S. Roux, and F. Hild, IDENTIFICATION AND PROBABILISTIC MODELING OF MESOCRACK INITIATIONS IN 304L STAINLESS STEEL, International Journal for Multiscale Computational Engineering, vol.9, issue.4, pp.445-458, 2011.
DOI : 10.1615/IntJMultCompEng.v9.i4.70

URL : https://hal.archives-ouvertes.fr/hal-00614889

J. P. Rupil, M. , B. Raka, L. Vincent, R. Desmorat et al., Essais de fatigue équibiaxiale à grand nombre de cycles d'un acier 304L : mesure de l'amplitude de déformation et suivi d'endommagement, 20e Congrès Français de Mécanique -CFM, 2011.

A. Saai, H. Louche, L. Tabourot, and H. J. Chang, Experimental and numerical study of the thermo-mechanical behavior of Al bi-crystal in tension using full field measurements and micromechanical modeling, Mechanics of Materials, vol.42, issue.3, pp.275-292, 2010.
DOI : 10.1016/j.mechmat.2009.11.011

URL : https://hal.archives-ouvertes.fr/hal-00453914

B. I. Sandor, Fundamentals of Cyclic Stress and Strain, 1972.

M. Sauzay, Effet de l'anisotropie ??lastique cristalline sur la distribution des facteurs de Schmid ?? la surface des polycristaux, Comptes Rendus M??canique, vol.334, issue.6, pp.353-361, 2006.
DOI : 10.1016/j.crme.2006.03.004

J. Schijve, Fatigue of Structures and Materials. Netherlands, 2009.

E. Schmid and W. Boas, Kristall plastzitat, 1935.

J. Schwartz, Approche non locale en plasticité cristalline : application à l'étude du comportement mécanique de l'acier AISI 316LN en fatigue oligocyclique, 2011.

J. Schwartz, O. Fandeur, and C. Rey, Fatigue crack initiation modeling of 316LN steel based on non local plasticity theory, Procedia Engineering, vol.2, issue.1, pp.1353-1362, 2010.
DOI : 10.1016/j.proeng.2010.03.147

URL : https://hal.archives-ouvertes.fr/hal-00752010

A. Seweryn, A. Buczynski, and J. Szusta, Damage accumulation model for low cycle fatigue, International Journal of Fatigue, vol.30, issue.4, pp.756-765, 2008.
DOI : 10.1016/j.ijfatigue.2007.03.019

M. Shimojo, M. Chujo, Y. Higo, and S. Nunomura, Mechanism of the two stage plastic deformation following an overload in fatigue crack growth, International Journal of Fatigue, vol.20, issue.5, pp.365-371, 1998.
DOI : 10.1016/S0142-1123(98)00008-5

C. S. Shin and S. H. Hsu, On the mechanisms and behaviour of overload retardation in AISI 304 stainless steel, International Journal of Fatigue, vol.15, issue.3, pp.181-192, 1993.
DOI : 10.1016/0142-1123(93)90175-P

K. Shiozawa, S. Nishino, T. Ohtani, and S. Mizuno, Subsurface fatigue-crack initiation and growth of plasma-assisted duplex surface-treated tool steel, Small Fatigue Cracks: Mechanics, Mechanisms, and Applications, pp.39-47, 1999.
DOI : 10.1016/B978-008043011-9/50005-3

K. Shiozawa, Y. Tohda, and S. M. Sun, CRACK INITIATION AND SMALL FATIGUE CRACK GROWTH BEHAVIOUR OF SQUEEZE-CAST Al-Si ALUMINIUM ALLOYS, Fatigue & Fracture of Engineering Materials & Structures, vol.41, issue.2, pp.237-247, 1997.
DOI : 10.1111/j.1460-2695.1997.tb00281.x

K. N. Smith, P. Watson, and T. H. Topper, A stress-strain function for the fatigue of metals, Journal of materials, vol.5, pp.767-778, 1970.

Y. S. Song, M. R. Lee, and J. T. Kim, Effect of Grain Size for the Tensile Strength and the Low Cycle Fatigue at Elevated Temperature of Alloy 718 Cogged by Open Die Forging Press, Superalloys 718, 625, 706 and Various Derivatives (2005), pp.706-539, 2005.
DOI : 10.7449/2005/Superalloys_2005_539_549

R. Stephens, A. Fatemi, R. Stephens, and H. Fuchs, Metal fatigue in engineering, 2000.

S. Suresh, Fatigue of Materials (Cambridge Solid State Science Series), 1991.

D. O. Swenson, Transition Between Stage I and Stage II Modes of Fatigue Crack Growth, Journal of Applied Physics, vol.40, issue.9, p.3467, 1969.
DOI : 10.1063/1.1658221

S. Takago, H. Yasui, K. Awazu, T. Sasaki, Y. Hirose et al., Application of In-Plane X-Ray Diffraction Technique for Residual Stress Measurement of TiN Film/WC-Co Alloy, BUNSEKI KAGAKU, vol.55, issue.6, pp.405-410, 2006.
DOI : 10.2116/bunsekikagaku.55.405

S. Takaya and K. Miya, Application of magnetic phenomena to analysis of stress corrosion cracking in welded part of stainless steel, Journal of Materials Processing Technology, vol.161, issue.1-2, pp.66-74, 2005.
DOI : 10.1016/j.jmatprotec.2004.07.017

S. Takaya, T. Suzuki, Y. Matsumoto, K. Demachi, and M. Uesaka, Estimation of stress corrosion cracking sensitivity of type 304 stainless steel by magnetic force microscope, Journal of Nuclear Materials, vol.327, issue.1, pp.19-26, 2004.
DOI : 10.1016/j.jnucmat.2004.01.016

D. Tanguy, M. Razafindrazaka, and D. Delafosse, Multiscale simulation of crack tip shielding by a dislocation, Acta Materialia, vol.56, issue.11, pp.2441-2449, 2008.
DOI : 10.1016/j.actamat.2008.01.031

A. Tewari, A. M. Gokhale, J. E. Spowart, and D. B. Miracle, Quantitative characterization of spatial clustering in three-dimensional microstructures using two-point correlation functions, Acta Materialia, vol.52, issue.2, pp.307-319, 2004.
DOI : 10.1016/j.actamat.2003.09.016

N. Thompson, N. Wadsworth, and N. Louat, Xi. The origin of fatigue fracture in copper, Philosophical Magazine, vol.65, issue.2, pp.113-126, 1956.
DOI : 10.1080/00018735200101161

URL : https://hal.archives-ouvertes.fr/in2p3-00115430

A. P. Turner, Cyclic Hardening and Softening of Stainless-Steel, Jom- Journal of Metals, vol.27, issue.12, pp.49-50, 1975.

E. Van-der-giessen, V. S. Deshpande, H. H. Cleveringa, and A. Needleman, Discrete dislocation plasticity and crack tip fields in single crystals, Journal of the Mechanics and Physics of Solids, vol.49, issue.9, pp.2133-2153, 2001.
DOI : 10.1016/S0022-5096(01)00040-0

L. Vincent, On the ability of some cyclic plasticity models to predict the evolution of stored energy in a type 304L stainless steel submitted to high cycle fatigue, European Journal of Mechanics - A/Solids, vol.27, issue.2, pp.161-180, 2008.
DOI : 10.1016/j.euromechsol.2007.05.005

K. Walker, The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum, Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 462, Am. Soc. for Testing and Materials West Conshohocken, 1970.

F. Walther and D. Elfler, Fatigue life calculation of SAE 1050 and SAE 1065 steel under random loading, International Journal of Fatigue, vol.29, issue.9-11, pp.9-11, 2007.
DOI : 10.1016/j.ijfatigue.2007.01.005

J. Weertman, Dislocation crack tip shielding and the Paris exponent, Materials Science and Engineering: A, vol.468, issue.470, pp.59-63, 2007.
DOI : 10.1016/j.msea.2006.08.128

L. W. Wei, E. R. De-los-rios, and M. N. James, Experimental study and modelling of short fatigue crack growth in aluminium alloy Al7010-T7451 under random loading, International Journal of Fatigue, vol.24, issue.9, pp.963-975, 2002.
DOI : 10.1016/S0142-1123(02)00006-3

X. J. Wei, J. Li, and W. Ke, Crack growth retardation of single overload for A537 steel in a 3.5% NaCl solution under cathodic potential and free corrosion condition, International Journal of Fatigue, vol.20, issue.3, pp.225-231, 1998.

R. E. Williford, C. F. Windisch-jr, and R. H. Jones, In situ observations of the early stages of localized corrosion in Type 304 SS using the electrochemical atomic force microscope, Materials Science and Engineering: A, vol.288, issue.1, pp.54-60, 2000.
DOI : 10.1016/S0921-5093(00)00883-2

W. Woo, Z. L. Feng, X. L. Wang, K. An, C. R. Hubbard et al., neutron diffraction measurement of transient temperature and stress fields in a thin plate, Applied Physics Letters, vol.88, issue.26, 2006.
DOI : 10.1063/1.2209888

J. H. Yang, Y. Li, S. X. Li, C. X. Ma, and G. Y. Li, Simulation and observation of dislocation pattern evolution in the early stages of fatigue in a copper single crystal, Materials Science and Engineering: A, vol.299, issue.1-2, pp.51-58, 2001.
DOI : 10.1016/S0921-5093(00)01415-5

H. Yokoyama, O. Umezawa, K. Nagai, T. Suzuki, and K. Kokubo, Cyclic deformation, dislocation structure, and internal fatigue crack generation in a Ti-Fe-O alloy at liquid nitrogen temperature, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, pp.31-2793, 2000.
DOI : 10.1007/BF02830339

J. Zapatero, B. Moreno, A. Gonzalez-herrera, and J. Dominguez, Numerical and experimental analysis of fatigue crack growth under random loading, International Journal of Fatigue, vol.27, issue.8, pp.878-890, 2005.
DOI : 10.1016/j.ijfatigue.2004.12.008