Automatic recognition of low-level and high-level surgical tasks in the Operating Room from video images

Florent Lalys 1
1 VisAGeS - Vision, Action et Gestion d'informations en Santé
INSERM - Institut National de la Santé et de la Recherche Médicale : U746, Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Résumé : La besoin d'une meilleure intégration des nouveaux systèmes de chirurgie assistée par ordinateur dans les salles d'opération à récemment été souligné. Une nécessité pour atteindre cet objectif est de récupérer des données dans les salles d'opérations avec différents capteurs, puis à partir de ces données de créer des modèles de processus chirurgicaux. Récemment, l'utilisation de vidéos dans la salle d'opération a démontré son efficacité pour aider à la création de systèmes de CAO sensibles au contexte. Le but de cette thèse était de présenter une nouvelle méthode pour la détection automatique de tâches haut niveaux (i.e. phases chirurgicales) et bas-niveaux (i.e. activités chirurgicales) à partir des vidéos des microscopes uniquement. La première étape a consisté à reconnaitre automatiquement les phases chirurgicales. L'idée fut de combiner des techniques récentes de vision par ordinateur avec une analyse temporelle. Des classifieurs furent tout d'abord mis en œuvre pour extraire des attributs visuels et ainsi caractériser chaque image, puis des algorithmes de classification de séries temporelles furent utilisés pour reconnaitre les phases. La deuxième étape a consisté à reconnaitre les activités chirurgicales. Des informations concernant des outils chirurgicaux et des structures anatomiques furent détectées et combinées avec l'information de la phase précédemment obtenu au sein d'un système de reconnaissance intelligent. Après des validations croisées sur des vidéos de neurochirurgie et de chirurgie de l'œil, nous avons obtenu des taux de reconnaissance de l'ordre de 94% pour la reconnaissance des phases et 64% pour la reconnaissance des activités. Ces systèmes de reconnaissance pourraient être utiles pour générer automatiquement des rapports post-opératoires, pour l'enseignement, l'apprentissage, mais aussi pour les futurs systèmes sensibles au contexte.
Type de document :
Thèse
Medical Imaging. Université Rennes 1, 2012. English
Liste complète des métadonnées

Littérature citée [61 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-00695648
Contributeur : Florent Lalys <>
Soumis le : mercredi 9 mai 2012 - 15:15:37
Dernière modification le : vendredi 16 novembre 2018 - 01:39:18
Document(s) archivé(s) le : vendredi 10 août 2012 - 02:25:23

Identifiants

  • HAL Id : tel-00695648, version 1

Citation

Florent Lalys. Automatic recognition of low-level and high-level surgical tasks in the Operating Room from video images. Medical Imaging. Université Rennes 1, 2012. English. 〈tel-00695648〉

Partager

Métriques

Consultations de la notice

631

Téléchargements de fichiers

840