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Abstract

In this thesis we investigate the Renormalization Group (RG) approach in �nite-
dimensional glassy systems, whose critical features are still not well-established, or
simply unknown. We focus on spin and structural-glass models built on hierarchical
lattices, which are the simplest non-mean-�eld systems where the RG framework
emerges in a natural way. The resulting critical properties shed light on the critical
behavior of spin and structural glasses beyond mean �eld, and suggest future
directions for understanding the criticality of more realistic glassy systems.
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Chapter 1

Historical outline

Paraphrasing P. W. Anderson [4], � the deepest and most interesting unsolved problem
in solid state theory is probably the nature of glass and the glass transition�. Indeed,
the complex and rich behavior of simpli�ed models for real, physical glassy systems
has interested theoreticians for its challenging complexity and di�culty, and opened
new avenues in a large number of other problems such as computational optimization
and neural networks.

When speaking of glassy systems, one can distinguish between two physically
di�erent classes of systems: spin glasses and structural glasses.

Spin glasses have been originally [59] introduced as models to study disordered
uniaxial magnetic materials, like a dilute solution of, say, Mn in Cu, modeled by
an array of spins on theMn arranged at random in the matrix of Cu, interacting
with a potential which oscillates as a function of the separation of the spins. Typical
examples of spin-glass systems areFeMnTiO 3 [76, 71, 85, 14], (H3O)Fe3(SO4)2(OH)6

[56], CdCr1:7In0:3S4 [81, 156], Eu0:5Ba0:5MnO3 [129] and several others.

Spin glasses exhibit a very rich phenomenology. Firstly, the very �rst magne-
tization measurements ofFeMnTiO 3 in a magnetic �eld showed [76] the existence
of a cusp in the susceptibility as a function of the temperature. Occurring at a
�nite temperature Tsg, this experimental observation is customary interpreted as
the existence of a phase transition.
Later on, further experimental works con�rmed this picture [ 71], and revealed some
very rich and interesting features of the low-temperature phase: the chaos and mem-
ory e�ect. Consider a sample ofCdCr1:7In0:3S4 in a low-frequency magnetic �eld
[81]. The system is cooled from aboveTsg = 16:7K down to 5K , and is then heated
back with slow temperature variations. The curve for the out-of-phase susceptibility
� 00as a function of the temperature obtained upon reheating will be called the
reference curve, and is depicted in Fig. 1.1.

One repeats the cooling experiment but stops it atT1 = 12K . Keeping the
system at T1, one waits7 hours. In this lapse of time � 00relaxes downwards, i. e. the
system undergoes an aging process. When the cooling process is restarted,� 00merges
back with the reference curve just after a few Kelvins. This immediate merging back
is the chaos phenomenon: aging atT1 does not a�ect the dynamics of the system

3



4 1. Historical outline

Figure 1.1. Out out phase susceptibility � 00of CdCr1:7In0:3S4 as a function of the temper-
ature. The solid curve is the reference curve. The open diamonds-curve is obtained by
cooling the system and stopping the cooling process atT1 = 7K for seven hours. The
solid circles-curve is obtained upon re-heating the system after the above cooling process.
Data is taken from [81].

at lower temperatures. From a microscopic viewpoint, the aging process brings the
system at an equilibrium con�guration at T1. When cooling is restarted, such an
equilibrium con�guration behaves as a completely random con�guration at lower
temperatures, because the susceptibility curve immediately merges the reference
curve. The e�ective randomness of the �nal aging con�guration reveals a chaotic
nature of the free-energy landscape.

The memory e�ect is even more striking. When the system is reheated at a con-
stant rate, the susceptibility curve retraces the curve of the previous stop atT1. This
is quite puzzling, because even if the con�guration after aging atT1 behaves as a ran-
dom con�guration at lower-temperatures, the memory of the aging atT1 is not erased.

Such a rich phenomenology challenged the theoreticians for decades. The theo-
retical description of such models, even in the mean-�eld approximation, revealed
a complex structure of the low-temperature phase that could be responsible for
such a rich phenomenology. Still, such a complex structure has been shown to
be correct only in the mean-�eld approximation, and the physical features of the
low-temperature phase beyond mean �eld are still far from being understood.

Structural glasses, also known as glass-forming liquids or glass-formers, are liquids
that have been cooled fast enough to avoid crystallization [16, 150]. When cooling
a sample ofo � Terphenyl [103], or Glycerol [112], the viscosity � or the relaxation
time � can change of �fteen order of magnitude when decreasing the temperature of
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a factor two, as shown in Fig. 1.2.

Figure 1.2. Base-10 logarithm of the relaxation time � and of the viscosity � as a function of
the logarithm of the inverse reduced temperatureTg=T, where Tg is the glass-transition
temperature, for several glass formers. Data is taken from [150].

This striking increase of the viscosity can be interpreted in terms of a particle
jamming process, and suggests that a phase transition occurs at a �nite temperature
Tg. The physical features of this transition are strikingly more complex than the
ordinary �rst order transitions yielding a crystal as the low-temperature state.

Indeed, crystals break the translational symmetry at low temperatures, the
particles being arranged on a periodic structure. Ergodicity is broken as well,
because the only accessible microscopic con�guration of the particles is the crystal.
The sharp increase in the viscosity of a glass below the glass-transition point yields
also evidence of ergodicity breaking: elementary particle moves become extremely
slow, and energetically expensive, in such a way that the system is stuck in a
mechanically-stable state. Di�erently from the crystal, this state has the same
symmetry properties as the liquid: no evident symmetry breaking occurs, and there
is no static order parameter to signal the transition. Moreover, at Tg the excess
entropy Se of the glass over the crystal is remarkably high, suggesting that there is
a big degeneracy of mechanically-stable states a glass can get stuck in below the
transition point.

Once the system is frozen in one of these exponentially many con�gurations,
there is no way to keep it equilibrated below Tg. Accordingly, the equilibrium
properties in the whole temperature phase cannot be investigated in experiments.
Still, interesting properties of the low-temperature phase result from the pioneering
works of Kauzmann [93], who �rst realized that if the excess entropy of a glass
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former [143] is extrapolated from aboveTg down in the low-temperature phase, there
is a �nite temperature TK , the Kauzmann temperature, where this vanishes. This is
rather startling because, if the geometry of the crystal is not too di�erent from that
of the liquid, one expects the entropy of the liquid to be always larger than that of
the crystal. There have been countless speculations on the solution of this paradox
[93, 16, 150], and the existence of a Kauzmann temperature in a real glass-former is
nowadays a still hotly-debated and untamed problem from both an experimental
and theoretical viewpoint.

Despite the triking di�erence between these two kinds of systems spin glasses
and structural glasses have some deep common features. Indeed, according to a
wide part of the community, spin-glass models with quenched disorder are good
candidates to mimic the dynamically-induced disorder of glass-forming liquids [16],
even if some people are still critical about this issue [102]. There are several points
supporting the latter statement. For instance, it has been shown that hard particle
lattice models [18] describing the phenomenology of structural glasses, display the
phenomenology of spin systems with quenched disorder like spin glasses. Accordingly,
there seems to be an underlying universality between the dynamically-induced disor-
der of glass-formers and the quenched disorder of spin glasses, in such a way that
the theoretical description of spin glasses and that of structural glasses shared an
important interplay in the last decades. More precisely, in the early80's the solution
of mean-�eld versions of spin [136] and structural [53] glasses were developed, and
new interesting features of the low temperature phase were discovered. Since then,
a huge amount of e�orts has been done to develop a theoretical description of real,
non-mean-�eld spin and structural glasses. A contribution in this direction through
the implementation of the Renormalization Group (RG) method would hopefully
shed light on the critical behavior of such systems.

Before discussing how the RG framework could shed light on the physics of �nite-
dimensional spin and structural glasses, we give a short outline of the mean-�eld
theory of spin and structural glasses, and on the e�orts that have been done to
clarify their non-mean-�eld regime.

The Sherrington-Kirkpatrick model

The very �rst spin-glass model, the Edwards-Anderson (EA) model, was introduced
in the middle 70's [59] as a model describing disordered uniaxial magnetic materials.
Later on, Sherrington and Kirkpatrick (SK) [ 144] introduced a mean-�eld version of
the EA model, which is de�ned as a system ofN spins Si = � 1 with Hamiltonian

H [~S] = �
NX

i>j =1

J ij Si Sj ; (1.1)

with J ij independent random variables distributed according to a Gaussian distribu-
tion with zero mean and variance1=N.

The model can be solved with the replica method [119]: given n replicas
~S1; ~S2; : : : ; ~Sn of the system's spins, the order parameter is then � n matrix
Qab � 1=N

P N
i =1 Sa;i Sb;i representing the overlap between replicaa and replica
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b. The free energy is computed as an integral over the order parameter, and ther-
modynamic quantities are calculated with the saddle-point approximation, which is
exact in the thermodynamic limit. SK �rst proposed a solution for the saddle point
Q�

ab, which was later found to be inconsistent, since it yields a negative entropy
at low temperatures. This solution is called the replica-symmetric (RS) solution,
because the matrix Q�

ab has a uniform structure, and there is no way to discern
between two distinct replicas. Some mathematically non-rigorous aspects of the
replica approach had been blamed [155] to explain the negative value of the entropy
at low-temperatures. Amongst these issues, there is the continuation of the replica
index n from integer to non-integer values, and the exchange of then ! 0-limit with
the thermodynamic limit N ! 1 . Still, no alternative approach was found to avoid
these issues.

In the late 70's Parisi started investigating more complicated saddle points. In
the very �rst work [ 134], an approximate saddle point was found, yielding a still
negative but small value of the entropy at low temperatures. The solution was
called replica-symmetry-broken solution, becauseQ�

ab was no more uniform, but
presented a block structure. Notwithstanding the negative values of the entropy at
low temperatures, the solution was encouraging, since it showed a good agreement
with Monte Carlo (MC) simulations [ 95], whereas the replica-symmetric solution
showed a clear disagreement with MC data. Later on, better approximation schemes
for the saddle point were considered [135], where the matrix Q�

ab was given by a
hierarchical structure of blocks, blocks into blocks, and so on. The step of this
hierarchy is called the replica-symmetry-breaking (RSB) stepK . The �nal result
of such works was presented in the papers of 1979 and 1980 [133, 136], where the
full-RSB ( K = 1 ) solution was presented. According to this solution, the sad-
dle point Q�

ab is uniquely determined in terms of a function q(x) in the interval
0 � x � 1, being the order parameter of the system. Parisi's solution resulted
from a highly nontrivial ansatz for the saddle point Q�

ab, and there was no proof
of its exactness. Still, the entropy of the system resulting from Parisi's solution is
always non-negative, and vanishes only at zero temperature, and the quantitative
results for thermodynamic quantities such as the internal energy showed a good
agreement [133] with the Thouless-Almeida-Palmer (TAP) solution [ 153] at low
temperatures. These facts were rather encouraging, and gave a strong indication
that Parisi's approach gave a signi�cant improvement over the original solution by SK.

Still, the physical interpretation of the order parameter stayed unclear until
1983 [137], when it was shown that the function q(x) resulting from the ba�ing
mathematics of Parisi's solution is related to the probability distribution P(q) of
the overlap q between two real, physical copies of the system, through the relation
x(q) =

Rq
�1 dq0P(q0). Accordingly, in the high temperature phase the order parame-

ter q(x) has a trivial form, resulting in a P(q) = � (q), while in the low-temperature
phase the nontrivial form of q(x) predicted by Parisi's solution implies a nontrivial
structure of the function P(q). In particular, the smooth form of P(q) implies the
existence of many pure states.

Further investigations in 1984 [117] and 1985 [121] gave a clear insight into the
way these pure states are organized: below the critical temperature the phase space is
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fragmented into several ergodic components, and each component is also fragmented
into sub-components, and so on. The free-energy landscape could be qualitatively
represented as an ensemble of valleys, valleys inside the valleys, and so on. Spin
con�gurations can be imagined as the leaves of a hierarchical tree [119], and the
distance between two of them is measured in terms of number of levelsk one has
to go up in the tree to �nd a common root to the two leaves. To each hierarchical
level k of the tree one associates a value of the overlapqk , where the set of possible
values qk of the overlap is encoded into the functionq(x) of Parisi's solution.

Parisi's solution was later rederived with an independent method in 1986 by
Mézard et al [118], who reobtained the full-RSB solution starting from simple physi-
cal grounds, and presented it in a more compact form.

Finally, the proof of the exactness of Parisi's solution came in 2006 by Talagrand
[149], whose results are based on previous works by Guerra [69], and who showed
with a rigorous formulation that the full-RSB ansatz provides the exact solution of
the problem.

This ensemble of works clari�ed the nature of the spin-glass phase in the mean-
�eld case. According to its clear physical interpretation, the RSB mechanism of
Parisi's solution became a general framework to deal with systems with a large
number of quasi-degenerate states. In particular, in 2002 the RSB mechanism was
applied in the domain of constraint satisfaction problems [120, 122, 123, 19], showing
the existence of a new replica-symmetry broken phase in the satis�able region which
was unknown before then.

Despite the striking success in describing mean-�eld spin glasses, it is not clear
whether the RSB scheme is correct also beyond mean �eld. Amongst the other
scenarios describing the low-temperature phase of non-mean-�eld spin glasses, the
droplet picture has been developed in the middle80's by Bray, Moore, Fisher, Huse
and McMilllan [ 111, 64, 61, 60, 62, 63, 27]. According to this framework, in the
whole low-temperature phase there is only one ergodic component and its spin
reversed counterpart, as in a ferromagnet. Di�erently from a ferromagnet, in a
�nite-dimensional spin glass spins arrange in a random way determined by the
interplay between quenched disorder and temperature.

On the one hand, there have been several e�orts to understand the striking
phenomenological features of three-dimensional systems in terms of the RSB [78],
the droplet or alternative pictures [81]. Still, none of these was convincing enough
for one of these pictures to be widely accepted by the scienti�c community as the
correct framework to describe �nite-dimensional systems.

On the other hand, there is no analytical framework describing non-mean-�eld
spin glasses. Perturbative expansions around Parisi's solution have been widely
investigated by De Dominicis and Kondor [52, 55], but proved to be di�cult and
non-predictive. Similarly, several e�orts have been done in the implementation in
non-mean-�eld spin glasses of a perturbative �eld-theory approach based on the
replica method [72, 99, 39], but they turned out to be non-predictive, because nonper-
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turbative e�ects are completely untamed. Amongst the possible underlying reasons,
there is the fact that such �eld-theory approaches are all based on a� 3-theory, whose
upper critical dimension is dc = 6 . Accordingly, a predictive description of physical
three-dimensional systems would require an expansion in� = dc � 3 = 3, which
can be quantitatively predictive only if a huge number of terms of the � -series were
known [173]. Finally, high-temperature expansions for the free energy [141] turn out
to be badly behaved in three dimensions [51], and non-predictive.

Since analytical approaches do not give a clear answer on such �nite-dimensional
systems, most of the knowledge comes from MC simulations, which started with
the �rst pioneering works from Ogielsky [131], and were then intensively carried on
during the 90's and 00's [15, 109, 110, 104, 108, 132, 100, 7, 87, 171, 89, 91, 82, 47, 83,
48, 106, 73, 10, 49, 86, 3, 8]. None of these gave a de�nitive answer on the structure
of the low-temperature phase, and on the correct physical picture describing it. This
is because a sampling of the low-temperature phase of a strongly-frustrated system
like a non-mean-�eld spin glass has an exponential complexity in the system size
[9, 160]. Accordingly, all such numerical simulations are a�ected by small system
sizes, which prevent from discerning which is the correct framework describing the
low-temperature phase. An example of how �nite-size e�ects played an important
role in such analyses is the following. According to the RSB picture, a spin-glass
phase transition occurs also in the presence of an external magnetic �eld [119], while
in the droplet picture no transition occurs in such a �eld [ 64]. MC studies [89, 92]
of a one-dimensional spin glass with power-law interactions yielded evidence that
there is no phase transition beyond mean �eld in a magnetic �eld. Later on, a
further MC analysis [105] claimed that the physical observables considered in such a
previous work were a�ected by strong �nite-size e�ects, and yielded evidence of a
phase transition in a magnetic �eld beyond mean �eld through a new method of
data analysis. Interestingly, a recent analytical work [126] based on a replica analysis
suggests that below the upper critical dimension the transition in the presence of an
applied magnetic �eld does disappear, in such a way that there is no RSB in the
low-temperature phase [124].

This exponential complexity in probing the structure of the low-temperature
phase has played the role of a perpetual hassle in such numerical investigations, and
strongly suggests that the �nal answer towards the understanding of the spin-glass
phase in �nite dimensions will not rely on numerical methods [75].

The Random Energy Model

The simplest mean-�eld model for a structural glass was introduced in 1980 by
Derrida [53, 54], who named it the Random Energy Model (REM). In the original
paper of 1980, the REM was introduced from a spin-glass model with quenched
disorder, the p-spin model. It was shown that in the limit p ! 1 where correlations
between the energy levels are negligible, thep-spin model reduces to the REM: a
model of N spins Si = � 1, where the energy� [~S] of each spin con�guration ~S is a
random variable distributed according to a Gaussian distribution with zero mean and
variance 1=N. Accordingly, for every sample of the disorderf � [~S]g~S, the partition
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function of the REM is given by

Z =
X

~S

e� �� [~S]: (1.2)

This model became interesting because, despite its striking simplicity, its solution
reveals the existence of a phase transition reproducing all the main physical features
of the glass transition observed in laboratory phenomena. Indeed, there exists a
�nite value Tc of the temperature, such that in the high temperature phase the
system is ergodic, and has an exponentially-large number of states available, while
in the low-temperature phase the system is stuck in a handful of low-lying energy
states. The switchover between these two regimes is signaled by the fact that the
entropy is positive for T > T c, while it vanishes for T < T c. Interestingly, this
transition does not fall in any of the universality classes of phase transitions for
ferromagnetic systems [173]. Indeed, on the one hand the transition is strictly second
order, since there is no latent heat. On the other hand, the transition presents the
typical freezing features of �rst-order phase transitions of crystals [115].

Later on, people realized that the phenomenology of the REM is more general,
and typical of some spin-glass models with quenched disorder, like thep-spin model.
Indeed, the one-step RSB solution scheme of the SK model was found [50] to be
exact for both of the p-spin model and the REM [115], and the resulting solutions
show a critical behavior very similar to each other. Accordingly, the REM, the p-spin
model and other models with quenched disorder are nowadays considered to belong
to the same class, the1-RSB class [16].

The solution of the p-spin spherical model reveals that the physics of such1-RSB
mean-�eld models is the following [16]. There exists a �nite temperature Td such
that for T > T d the system is ergodic, while forT < T d it is trapped in one amongst
exponentially-many metastable states: These are the Thouless Almeida Palmer
(TAP) [ 153] states. Since the energy barriers between metastable states are in�nite
in mean-�eld models, the system cannot escape from the metastable state it is
trapped in. The nature of this transition is purely dynamical, and it shows up in
the divergence of dynamical quantities like the relaxation time � , while there is
no footprint of it in thermodynamic quantities. We will denote by f � (T) the free
energy of each of these TAP states and byf p(T) the free energy of the system in
its paramagnetic state. Accordingly, the total free energy of the glass belowTd is
given by f � (T) � T �( T). Since there is no mark of the dynamical transition in
thermodynamic quantities, one has that the free energy of the glass belowTd must
coincide with f p(T)

f p(T) = f � (T) � T �( T): (1.3)

Below Td, there exists a second �nite temperatureTK < T d, such that the complexity
vanishes at and belowTK : the number of TAP states is no more exponential, and
the system is trapped in a bunch of low-lying energy minima: the system undergoes
a Kauzmann transition at TK . The nature of this transition is purely static, and
shows up in the singularities of thermodynamic quantities such as the entropy.
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An important physical question is whether this mean-�eld phenomenology persists
beyond mean �eld. In 1989 Kirkpatrick, Thirumalai and Wolynes (KTW) [ 96]
proposed a theoretical framework to handle �nite-dimensional glass formers, which is
known as the Random First Order Transition Theory (RFOT). Their basic argument
was inspired by the following analogy with ferromagnetic systems. Consider a
mean-�eld ferromagnet in an external magnetic �eld h > 0. The free energy has two
minima, f + and f � , with positive and negative magnetization respectively. Being
h > 0, one hasf � > f + . Even though the + -state has a lower free energy, it cannot
nucleate because the free-energy barriers are in�nite in mean �eld. Di�erently, in
�nite dimensions d the free-energy barriers are �nite, and the free-energy cost for
nucleation of a droplet of positive spins with radius R reads

� f = C1Rd� 1 � (f � � f + )C2Rd; (1.4)

where the �rst addend is the surface energy cost due to the mismatch between the
positive orientation of the spins inside the droplet and the negative orientation of
the spins outside the droplet, while the second addend represents the free-energy
gain due to nucleation of a droplet of positive spins, and is proportional to the
volume of the droplet. According to the above free-energy balance, there exists a
critical value R� such that droplets with R < R � do not nucleate and shrink to zero,
while droplets with R > R � grow inde�nitely. Inspired by the physics emerging
from mean-�eld models of the 1-RSB class, KTW applied a similar argument to
glass-forming liquids. Before discussing KTW theory, is important to stress that
the dynamical transition at Td occurring in the mean-�eld case disappears in �nite
dimensions. This is because the free-energy barriers between metastable states are
no more in�nite in the thermodynamic limit. Thus, the sharp mean-�eld dynamical
transition is smeared out in �nite dimensions, and it is plausible that Td is replaced
by a crossover temperatureT� , separating a free �ow regime forT > T � from an
activated dynamics regime forT < T � [16].

According to KTW, for T < T � the system is trapped in a TAP state with
free energyf � . Following the analogy with the ferromagnetic case, the TAP state
is associated with the � -state, while the paramagnetic state with the + -state.
Accordingly, by Eq. (1.3) one hasf � � f + = T� . Nucleation of a droplet of sizeR
of spins in the liquid state into a sea of spins in the TAP state has a free-energy cost

� f = C1R� � T � C2Rd;

where the exponent� is the counterpart of d � 1 in the ferromagnetic case, Eq. (1.4).
Since the presence of disorder is expected to smear out such a surface e�ects with
respect to the ferromagnetic case, one has� < d � 1. Liquid droplets with radius

smaller than R� �
�

C1 �
T � C2d

� 1
d� � disappear, while droplets with radius larger that R�

extend to in�nity. Since there are many spatially localized TAP states, droplets
can't extend to in�nity as in the mean-�eld case. The system is rather said to be in
a mosaic state, given by liquid droplets that are continually created and destroyed
[16].

In analogy with the 1-RSB phenomenology, RFOT theory predicts that � van-
ishes at a �nite temperature TK < T � . Below this temperature liquid droplets cannot
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nucleate anymore, becauseR� = 1 , and the system is said to be in a ideal glassy
state, i. e. a collectively-frozen and mechanically-stable low-lying energy state. Sill,
the crucial question of the existence of a Kauzmann transition in real glass-formers is
an open issue. It cannot be amended experimentally, because real glasses are frozen
in an amorphous con�guration below Tg, and the entropy measured in laboratory
experiments in this temperature range does not give an estimate of the number of
degenerate metastable states. Accordingly, analytical progress in non-mean-�eld
models of the1-RSB class describing the equilibrium properties belowTg would
yield a signi�cant advance on this fundamental issue.

A clear way to explore critical properties of non-mean-�eld systems came from
the RG theory developed by Wilson in his papers of 1971 [164, 165]. The RG theory
started from a very simple physical feature observed experimentally in physical
systems undergoing a phase transition [161]. Consider, for instance, a mixture of
water and steam put under pressure at the boiling temperature. As the pressure
approaches a critical value, steam and water become indistinguishable. In particular,
bubbles of steam and water of all length scales, from microscopic ones to macro-
scopic ones, appear. This empirical observation implies that the system has no
characteristic length scale at the critical point. In particular, as the critical point
is approached, any typical correlation length of the system must tend to in�nity,
in such a way that no �nite characteristic length scale is left at the critical point.
Accordingly, if we suppose to approach the critical point by a sequence of elementary
steps, the physically important length scales must grow at each step. This procedure
was implemented in the original work of Wilson, by integrating out all the length
scales smaller than a given threshold. As a result, a new system with a larger typical
length scale is obtained, and by iterating this procedure many times one obtains a
system whose only characteristic length is in�nite, and which is said to be critical.

The above RG scheme yields a huge simpli�cation of the problem. Indeed, systems
having a number of microscopic degrees of freedom which is typically exponential
in the number of particles are reduced to a handful of e�ective long-wavelength
degrees of freedom. These are the only physically relevant degrees of freedom in the
neighborhood of the critical point, and all the relevant physical information can be
extracted from them.

In the �rst paper of 1971 Wilson's made quantitative the above qualitative
picture for the Ising model. Following Kadano�'s picture [ 84], short-wavelengths
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degrees of freedom were integrated out by considering blocks of spins acting as a unit,
in such a way that one could treat all the spins in a block as an e�ective spin. Given
the values of the spins in the block, the value of this e�ective spin could be easily
�xed to be +1 if the majority of spins in the block are up, and � 1 otherwise. The
resulting approximate RG equations were analyzed in the second paper of 1971 [165],
where Wilson considered a simpli�ed version of the Ising model and showed that
this framework could make precise predictions on physical quantities like the critical
exponents, which were extracted in perturbation theory. There the author realized
that if the dimensionality d of the system was larger than4 the resulting physics in
the critical regime was the mean-�eld one, while for d < 4 non-mean-�eld e�ects
emerge. These RG equations for the three-dimensional Ising model were treated
perturbatively in the parameter � � 4 � d, measuring the distance from the upper
critical dimension d = 4 , in a series of papers in the70's [169, 166]. The validity of
this perturbative framework was later con�rmed by the reformulation of Wilson's
RG equations in the language of �eld theory. There, the mapping of the Ising model
into a � 4-theory and the solution of the resulting Callan-Symanzik (CS) equations
[28, 147, 173] for this theory made the RG method theoretically grounded, and the
proof of the renormalizability of the � 4-theory [29] to all orders in perturbation
theory served as a further element on behalf of this whole theoretical framework.
Finally, the picture was completed some years later by high-order implementations
of the � -expansion for the critical exponents [157, 41, 40, 43, 42, 94, 68, 97, 98] which
were in excellent agreement with experiments [173, 1] and MC simulations [140, 5].

Because of this ensemble of works, the RG served as a fundamental tool in
understanding the critical properties of �nite-dimensional systems. Hence, it is
natural to search for a suitable generalization of Wilson's ideas to describe the
critical regime of non-mean-�eld spin or structural glasses. The drastic simpli-
�cation resulting from the reduction of exponentially many degrees of freedom
to a few long-wavelength degrees of freedom would be a breakthrough to tackle
the exponential complexity limiting our understanding of the physics of such systems.

Still, a construction of a RG theory for spin or structural glasses is far more
di�cult than the original one developed for ferromagnetic systems. Indeed, in the
ferromagnetic case it is natural to identify the order parameter, the magnetization,
and then implement the RG transformation with Kadano�'s majority rule. Con-
versely, in non-mean-�eld spin or structural glasses, the order parameter describing
the phase transition is fundamentally unknown.

For non-mean-�eld spin glasses, the RSB and droplet picture make two radi-
cally di�erent predictions on the behavior of a tentative order parameter in the
low-temperature phase. In the RSB picture the order parameter is the probability dis-
tribution of the overlap P(q), being P(q) = � (q) in the high-temperature phase and
P(q) a smooth function of q in the low-temperature phase [133]. Such a smooth func-
tion re�ects the hierarchical organization of many pure states in the low-temperature
phase. In the droplet picture [64] P(q) reduces to two delta functions centered on the
value of a scalar order parameter, the Edwards-Anderson order parameterqEA [59].
Such an order parameter is nonzero if the local magnetizations are nonzero, i. e. if the
system is frozen in the unique low-lying ergodic component of the con�guration space.
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For structural glasses, after important developments in the understanding of the
critical regime came in 2000 [66], a signi�cant progress in the identi�cation of the
order parameter has been proposed in 2004 [25] and numerically observed in 2008
[17] by Biroli et al., who suggested that the order parameter is the overlap between
two equilibrated spin-con�gurations with the same boundary conditions: the in�u-
ence of the boundary conditions propagates deeper and deeper into the bulk as the
system is cooled, signaling the emergence of an amorphous order at low temperatures.

A justi�cation of the di�culty in the de�nition of a suitable order parameter
for a spin or structural glass has roots in the frustrated nature of the spin-spin
interactions. To illustrate this point, let us consider a spin system like the SK where
the sign of the couplingsJ ij are both positive and negative, Eq. (1.1), and try
to mimic Wilson's block-spin transformation [ 164] for the SK model. Given the
values of the spins in a block, Kadano�'s majority rule does not give any useful
information on which should the value of the e�ective spin. Indeed, choosing the
e�ective spin to be +1 if most of the spins in the block are up and� 1 otherwise
does not make sense: being theJ ij s positive or negative with equal probability, the
magnetization inside the block is simply zero on average, and does not give any useful
information on which value should be assigned to the e�ective spin. Again, frus-
tration is the main stumbling block in the theoretical understanding of such systems.

In order to overcome this di�culty, we recall that Wilson's approximate RG
equations were found to be exact [161] on a particular non-mean-�eld model for
ferromagnetic interactions, where the RG recursion formulas have a strikingly simple
and natural form. This is Dyson's Hierarchical Model (DHM), and was introduced
by Dyson in 1969 [57]. There, the process of integrating out long-wavelength de-
grees of freedom emerged naturally in an exact integral equation for the probability
distribution of the magnetization. This equation was the forerunner of Wilson's RG
equations.

The aim of this thesis is to consider a suitable generalization of DHM describ-
ing non-mean-�eld spin or structural glasses, and construct a RG framework for
them. These models will be generally denoted by Hierarchical Models (HM), and
will be introduced in Section 2.2. The de�nition of HM is quite general, and by
making some precise choices on the form of the interactions, one can build up
a HM capturing the main physical features a non-mean-�eld spin or structural
glass. Thanks to their simplicity, HM allow for a simple and clear construction of
a RG framework. Our hope is that such a RG framework could shed light on the
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criticality of the glass transition beyond mean �eld, and on the identi�cation of
the order parameter describing the emergence of an amorphous long-range order,
if present. As a long-term future direction, the RG method on HM could also be
useful to understand the features of the low-temperature phase of such glassy systems.

The thesis is structured as follows. In Chapter 2 of Part I we discuss DHM, and
introduce HM for spin or structural glasses. In Part II we study a HM mimicking the
physics of a non-mean-�eld structural glass, the Hierarchical Random Energy Model
(HREM), being a hierarchical version of the REM. In this Part we show how one can
work out a precise solution for thermodynamic quantities of the system, signaling
the existence of a Kauzmann phase transition at �nite temperature. The HREM
constitutes the �rst non-mean-�eld model of a structural glass explicitly exhibiting
such a freezing transition as predicted by RFOT. Interestingly, the solution suggests
also the existence of a characteristic length growing as the critical point is approached,
in analogy with the predictions of KTW. In Part III we study a HM mimicking the
physics of a non-mean-�eld spin glass, the Hierarchical Edwards-Anderson model
(HEA), being a hierarchical version of the Edwards-Anderson model. The RG
transformation is �rst implemented with the standard replica �eld-theory approach,
which turns out to be non-predictive because nonperturbative e�ects are completely
untamed. Consequently, a new RG method in real space is developed. This method
avoids the cumbersome formalism of the replica approach, and shows the existence
of a phase transition, making precise predictions on the critical exponents. The
real-space method is also interesting from a purely methodological viewpoint, because
it yields the �rst suitable generalization of Kadano�'s RG decimation rule for a
strongly frustrated system. Finally, in Part IV we discuss the overall results of this
work, by paying particular attention to its implications and future directions in the
physical understanding of realistic systems with short-range interactions.





Chapter 2

Hierarchical models

In this Chapter we introduce hierarchical models. In Section 2.1 we �rst introduce
the ferromagnetic version of hierarchical models originally introduced by Dyson, and
in Section 2.2 we extend this de�nition to the disordered case, in the perspective to
build up a non-mean-�eld hierarchical model of a spin or structural glass.

2.1 Hierarchical models for ferromagnetic systems

A hierarchical model for ferromagnetic systems has been introduced in the past to
describe non-mean-�eld spin systems [57], and is known as Dyson's Hierarchical
Model (DHM). DHM has been of great interest in the past, because Wilson's RG
equations [164, 165, 163, 167, 168, 169] turn out to be exact in models with power-
law ferromagnetic interactions built on hierarchical lattices like DHM. Indeed, in
this model one can explicitly write an exact RG transformation for the probability
distribution of the magnetization of the system. All the relevant physical information
on the paramagnetic, ferromagnetic and critical �xed point, and the existence of a
�nite-temperature phase transition are encoded into these RG equations. Moreover,
all the physical RG ideas emerge naturally from these recursion relations, whose
solution can be explicitly built up with the � -expansion technique [31, 44, 45, 46].

DHM is de�ned [ 57, 31] as a system of2k+1 Ising spins S1; : : : ; S2k +1 ; Si = � 1,
with an energy function which is built up recursively by coupling two systems of2k

spins

H F
k+1 [S1; : : : ; S2k +1 ] = H F

k [S1; : : : ; S2k ] + H F
k

�
S2k +1 ; : : : ; S2k +1

�
+ (2.1)

� JC k+1
F

0

@ 1
2k+1

2k +1
X

i =1

Si

1

A

2

;

where

CF � 22(1� � F ) ; (2.2)

and F stands for ferromagnetic. The model is de�ned for

1=2 < � F < 1: (2.3)
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The limits (2.3) can be derived by observing that for � F > 1 the interaction energy
goes to0 for large k, and no �nite-temperature phase transition occurs, while for
� F < 1=2 the interaction energy grows with k faster than 2k , i. e. faster than the
system volume, in such a way that the model is thermodynamically unstable.

The key issue of DHM is that the recursive nature of the Hamiltonian function
encoded in Eq. (2.1) results naturally into an exact RG equation. This equation
can be easily derived by de�ning the probability distribution of the magnetization
m for a 2k -spin DHM, as

pk (m) � C
X

~S

e� �H F
k [~S]�

0

@ 1
2k

2k
X

i =1

Si � m

1

A ; (2.4)

where� denotes the Dirac delta function, andCa constant enforcing the normalization
condition

R
dmpk (m) = 1 . Starting from Eq. (2.1), one can easily derive a recursion

equation relating pk to pk+1 . This equation is derived in Section A.1 of Appendix A,
and reads

pk+1 (m) = e�JC k +1
F m2

Z
d� p k (m + � )pk (m � � ); (2.5)

where any m-independent multiplicative constant has been omitted to simplify the
notation. Eq. (2.5) relies the probability distribution of a DHM with 2k spins with
that of a DHM with 2k+1 spins. Accordingly, Eq. (2.5) is nothing but the �ow of
the function pk (m) under reparametrization 2k ! 2k+1 of the length scale of the
system. Historically, Eq. (2.5) has been derived by Dyson [57], and then served as
the starting point for the construction of the RG theory for ferromagnetic systems
like the Ising model. Indeed, Wilson's RG recursion formulas for the Ising model
[164, 165, 163] are approximate, while they turn out to be exact when applied to
DHM, because they reduce to Eq. (2.5). DHM has thus played a crucial role in
the construction of the RG theory for ferromagnetic systems, because in a sense
the work of Wilson on �nite-dimensional systems has been pursued in the e�ort
to generalize the exact recursion formula (2.5) to more realistic systems with no
hierarchical structure, like the three-dimensional Ising model.

Equation (2.5) has also been an important element in the probabilistic formu-
lation of RG theory, originally foreseen by Bleher, Sinai [20] and Baker [6], and
later developed by Jona-Lasinio and Cassandro [79, 31]. Indeed, Eq. (2.5) aims to
establish the probability distribution of the average of 2k spin variables f Si gi for
k ! 1 . In the case where the spins are independent and identically distributed
(IID), the above analogy becomes transparent, because the answer to the above
question is yield by the central limit theorem. Following this connection between
RG and probability theory, one can even prove the central limit theorem starting
from the RG equations (2.5) [31].

Equation (2.5) has been of interest in the last decades also because it is simple
enough to be solved with high precision, and the resulting solution gives a clear
insight into the critical properties of the system, showing the existence of a phase
transition. The crucial observation is that Eq. (2.5) can be iterated k � 1 times
in 2k operations. Indeed, the magnetizationm of a 2k -spin DHM can take 2k + 1
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possible valuesf� 1; � 1 + 2=2k ; � � � ; 0; � � � ; 1 � 2=2k ; 1g. According to Eq. (2.4), the
function pk (m) is nonzero only if m is equal to one of these2k + 1 values. It follows
that in order to compute pk+1 (m), one has to perform a sum in the right-hand side
of Eq. (2.5), involving 2k + 1 terms. This implies that the time to calculate pk (m)
for k � 1 is proportional to 2k . Thus, the use of the hierarchical structure encoded
in Eq. (2.5) yields a signi�cant improvement in the computation of pk (m) with
respect to a brute-force evaluation of the sum in the right-hand side of Eq. (2.4),
which involves 22k

terms.

Let us now discuss the solution of Eq. (2.5). For Eq. (2.5) to be nontrivial for
k ! 1 , one needs to rescale the magnetization variable. Otherwise, theCk+1

F -term
in the right-hand side of Eq. (2.5) would diverge for k ! 1 . Setting

pk (m) � pk (C � k=2
F m); (2.6)

Eq. (2.5) becomes

pk+1 (m) = e�Jm 2
Z

d� pk

 
m + �

C1=2
F

!

pk

 
m � �

C1=2
F

!

: (2.7)

The structure of the �xed points of Eq. (2.7) is discussed in Section A.2 of
Appendix A. In particular, it is shown that there exists a value � c F of � , such
that if � < � c F Eq. (2.7) converges to a high-temperature �xed point, while if
� > � c F Eq. (2.7) converges to a low-temperature �xed point. Both of these �xed
points are stable, and can be qualitatively represented as basins of attraction in
the in�nite-dimensional space wherepk (m) �ows [ 163]. These basins of attraction
are separated by an unstable �xed point p� (m), which is reached by iterating Eq.
(2.7) with � = � c F . p� (m) is called the critical �xed point, and is characterized
by the fact that the convergence ofpk to p� for � = � c F implies the divergence of
the characteristic length scale� F of the system in the thermodynamic limit k ! 1 .
Accordingly, in what follows � c F will denote the inverse critical temperature of DHM.
In the neighborhood of the critical temperature the divergence of� F is characterized
by a critical exponent � F , de�ned by

� F
T ! Tc F

�
A

(T � Tc F ) � F
; (2.8)

whereA is independent of the temperature. The critical exponent� F is an important
physical quantity characterizing criticality, and is quantitatively predictable from
the theory. In Section A.3 of Appendix A we show how� F can be computed starting
from the RG equation (2.7). This derivation serves as an important example of
the techniques that will be employed in generalizations of DHM involving quenched
disorder, that will be discussed in the following Sections.

The calculation of � F relies on the fact that for 0 < � F � 3=4 the critical �xed
point p� (m) is a Gaussian function ofm, while for 3=4 < � F < 1 p� (m) is not
Gaussian, as illustrated in Section A.2. We recall [44, 45, 31, 163, 173, 174] that a
Gaussianp� (m) corresponds to a mean-�eld regime of the model. The expression
mean �eld is due to the following. Consider for instance the thermal average at the
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critical point of a physical observable O(1=2k P 2k

i =1 Si ), depending on the spins~S
through the magnetization of the system. This can be expressed as an average of
O(m) with weight p� (m), where p� (m) = p� (Ck=2

F m)

EF
~S

[O] =
Z

dm p� (m)O(m); (2.9)

where EF
~S

stands for the thermal average

EF
~S

[O] �

P
~S e� � H F

k [~S]O(1=2k P 2k

i =1 Si )
P

~S e� � H F
k [~S]

:

In the mean-�eld approximation one evaluates integrals like that in the right-hand
side of Eq. (2.9) with the saddle-point approximation [173, 74, 130]. If 0 < � F � 3=4,
p� (m) is Gaussian, and so isp� (m), in such a way that the saddle-point approxima-
tion is exact, i. e. the mean-�eld approximation is correct. On the contrary, for
3=4 < � F � 1, p� (m) is not Gaussian, and the system has a non-mean-�eld behavior.
In particular, �uctuations around the mean-�eld saddle point in the right-hand side
of Eq. (2.9) are not negligible. According to this discussion, we call� F = 3 =4 the
upper critical dimension [74, 173, 174, 77] of DHM.

In the mean-�eld region 0 < � F � 3=4, � F can be computed exactly, and is
given by Eqs. (A.16), (A.17). In the non-mean-�eld region � F can be calculated by
supposing that the physical picture emerging for0 < � F � 3=4 is slightly modi�ed in
the non-mean-�eld region. As discussed in Section A.2, this assumption is equivalent
to saying that corrections to the mean-�eld estimate of integrals like (2.9) are small,
i. e. they can be handled perturbatively. Whether this assumption is correct or
not can be checked a posteriori, by expanding physical quantities like� F in powers
of � F = � F � 3=4, and investigating the convergence properties of the expansion.
If the � F -expansion is found to be convergent or resummable [173], the original
assumption is con�rmed to be valid. If it is not, the non-mean-�eld physics is
presumably radically di�erent from that arising in the mean-�eld region, and cannot
be handled perturbatively. As an example, the result toO(� F ) for � F is given by
Eqs. (A.16), (A.19). In [46, 44], the � F -expansion has been performed to high
orders, and found to be nonconvergent. Even though, the authors showed that the
application of a resummation method originally presented in [107] yields a convergent
series for� F , which is in quantitative agreement with the values of the exponent
obtained by Bleher [23]. Finally, we mention that the results from the � F -expansion
of DHM have been found to be in excellent agreement with those obtained with the
high-temperature expansion, which has been studied by Y. Meurice et al. [114].

Since DHM allows for a relatively simple implementation of the RG equations
for a non-mean-�eld ferromagnet, it is natural to ask oneself whether there exists a
suitable generalization of DHM that can describe a non-mean-�eld spin or structural
glass. This generalization will be exposed in the following Section.
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2.2 Hierarchical models for spin and structural glasses

In the e�ort to clarify the non-mean-�eld scenario of both spin glasses and structural
glasses, it is useful to consider a suitable generalization of DHM to the disordered
case. Concerning this, it is important to observe that the extension of DHM to the
random case has been performed only for some particular models.

Firstly, models with local interactions on hierarchical lattices built on diamond
plaques [11], have been widely studied in their spin-glass version, and lead to weakly
frustrated systems even in their mean-�eld limit [ 67]. Notwithstanding this, such
models yield a very useful and interesting playground to show how to implement the
RG ideas in disordered hierarchical lattices, and in particular on the construction of
a suitable decimation rule for a frustrated system.

Secondly, a RG analysis for random weakly frustrated models on Dyson's hi-
erarchical lattice has been done in the past by A. Theumann [151, 152], and the
structure of the physical and unphysical infrared (IR) �xed points has been obtained
with the � -expansion technique. Unfortunately, in these models spins belonging to
the same hierarchical block interact with each other with the same [151] random
coupling, in such a way that frustration turns out to be relatively weak and they are
not a good representative for realistic strongly frustrated systems. This is because
these models are obtained from DHM by replacing the couplingJ in Eq. (2.1)
with a random variable Jk . Thus, the interaction energy between spinsS1; : : : ; S2k

is �xed, and purely ferromagnetic or antiferromagnetic, depending on the sign of
Jk . Di�erently, in strongly frustrated systems like the SK model, the coupling J ij

between any spin pairSi ; Sj is never �xed to be ferromagnetic or antiferromagnetic,
because its sign is randomly drawn for anyi and j .

Thirdly, disordered spin models on Dyson's hierarchical lattice have been studied
by A. Naimzhanov [127, 128], who showed that the probability distribution of the
magnetization converges to a Gaussian distribution in the in�nite-size limit. Also in
this case, the interaction between spinsS1; : : : ; S2k is �xed to be ferromagnetic or
antiferromagnetic, depending on the sign of a random energy" k which is equal to
� 1 with equal probability.

Here we present a di�erent generalization of DHM to a disordered and strongly
frustrated case, �rst introduced in [ 65], and simply call these modelshierarchi-
cal models (HM). Indeed, the de�nition (2.1) holding in the ferromagnetic case
can be easily generalized as follows. We de�ne a HM as a system of2k+1 spins
S1; : : : ; S2k +1 ; Si = � 1, with an energy function de�ned recursively by coupling two
systems, say system1 and system2, of 2k Ising spins

Hk+1 [S1; : : : ; S2k +1 ] = H 1
k [S1; : : : ; S2k ] + H 2

k
�
S2k +1 ; : : : ; S2k +1

�
+ (2.10)

+ � k+1 [S1; : : : ; S2k +1 ] :

The energiesH 1
k ; H 2

k are to be considered as the energy of system1 and system
2 respectively, while � k is the coupling energy between system1 and system 2.
Di�erently from the ferromagnetic case, here the coupling energy� k+1 [S1; : : : ; S2k +1 ]
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of any spin con�guration S1; � � � ; S2k +1 is a random variable, which is chosen to have
zero mean for convenience.

Since the interaction energy � k+1 couples 2k+1 spins, and since its order of
magnitude is give by its variance, one must have

E� [� 2
k+1 ] < 2k+1 ; (2.11)

where E� stands for the expectation value with respect to all the coupling energies
� k of the model. Eq. (2.11) states that the interaction energy between2k+1 spins is
sub extensive with respect to the system volume2k+1 , and ensures [119, 130] that
HM are non-mean-�eld models. The mean-�eld limit will be constantly recovered
in the following chapters as the limit where E� [� 2

k+1 ] becomes of the same order of
magnitude as the volume2k+1 .

As we will show in the following, the form (2.10) of the Hamiltonian corresponds
to dividing the system in hierarchical embedded blocks of size2k , so that the in-
teraction between two spins depends on the distance of the blocks to which they
belong [65, 34, 35], as shown in Fig 2.1.

Figure 2.1. A 23-spin hierarchical model obtained by iterating Eq. (2.10) until k = 3 .
The arcs coupling pairs of spins represent the energies� 1 at the �rst hierarchical level
k = 1 . Those coupling quartets of spins represent� 2 at the second hierarchical level
k = 2 . Those coupling octets of spins represent the energies� 3 at the third hierarchical
level k = 3 .

The random energies� k of HM can be suitably chosen to mimic the interactions
of a strongly frustrated structural glass (Part II), or of a spin glass (Part III), in the
perspective to give some insight into the non-mean-�eld behavior and criticality of
both of these models. In this thesis such features will be investigated by means of
RG techniques. Indeed, as for DHM, the recursive nature of the de�nition (2.10)
suggests that HM are particularly suitable for an explicit implementation of the
RG transformation. As a matter of fact, the de�nition (2.10) is indeed a RG �ow
transformation from the length scale 2k to the length scale2k+1 . As we will show
explicitly in Part III, one can analyze the �xed points of such an RG �ow, in order
to establish if a phase transition occurs, and investigate the critical properties of the
system.

It is important to observe that without the hierarchical structure this would be
extremely di�cult. This is mainly because of the intrinsic and deep di�culty in
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identifying the correct order parameter discussed in Section 1, and thus write an
RG equation for a function (or functional) of it without making use of the replica
method [55, 119] which, up to the present day, could not be used to make predictions
for the non-mean-�eld systems under consideration in this thesis.

After introducing HM in their very general form, we now make a precise choice
for the random energies� k in order to build up a hierarchical model for a structural
glass, the Hierarchical Random Energy Model, and discuss its solution.





Part II

The Hierarchical Random
Energy Model

25
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As discussed in Section 1, the REM is a mean-�eld spin model mimicking the
phenomenology of a supercooled liquid. Given the general de�nition of HM, it is
easy to make a particular choice for the random energies� k in (2.10), to build up
a non-mean-�eld version of the REM, i. e. a HM being a candidate for describing
the phenomenology of a supercooled liquid beyond mean �eld. Indeed, we choose
the energies� k to be independent variables distributed according to a Gaussian
distribution with zero mean and variance proportional to C2k

E� [� 2
k ] � C2k ; (2.12)

where we set
C2 = 2 1� � : (2.13)

For � < 0 the thermodynamic limit k ! 1 is ill-de�ned, because the interaction
energy E� [� 2

k ] grows faster than the volume 2k . For � > 1, E� [� 2
k ] goes to 0 as

k ! 1 , implying that there is no phase transition at �nite temperature. Hence, the
interesting region that we will consider in the following is

0 < � < 1; (2.14)

which is the equivalent of Eq. (2.3) for DHM. As we will discuss in the following,
this HM reproduces the REM in the mean-�eld case� = 0 , and will thus be called
the Hierarchical Random Energy Model (HREM) [ 33, 36]. According to the general
classi�cation of models with quenched disorder given in Section 1, the HREM has to
be considered as a model mimicking a structural glass.

Before discussing the solution of the HREM, it is important to focus our attention
on some important features of the model that make it interesting in the perspective
of investigating the non-mean-�eld regime of a structural glass.

Firstly, the hierarchical structure of the HREM allows an almost explicit solution
with two independent and relatively simple methods.
The �rst method will be described very shortly here (a complete discussion can
be found in [33, 32]) and relies on the fact that the recursive nature of Eq. (2.10)
implies a recursion relation for the function Nk (E ), de�ned as the number of states
with energy E at the k-the step of the recursion. By solving this recursion equation
for large k, one can compute the entropy of the system

s(E) �
1
2k log [Nk (E )] ; (2.15)

and thus investigate its equilibrium properties. The computation time needed to
implement this recursion at the k-th step is proportional to a power of 2k , and
represents a neat improvement on the exact computation of the partition function,
involving a time proportional to 22k

. This recursive method is also signi�cantly
better than estimating thermodynamic quantities with MC simulations, because the
latter are a�ected by a severe increase of the thermalization time when approaching
the critical point, as discussed in Section 1.
The second method investigates the thermodynamic properties of the HREM by
a perturbative expansion in the parameterC, physically representing the coupling
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Figure 2.2. A 23-spin HREM and its interaction structure. Each arc represents an
interaction energy � ( i )

j amongst spins falling below the arc.

constant between spins. As a matter of fact, the relatively simple structure of the
model allows for a fully automated expansion inC of the equilibrium thermody-
namic quantities, which exhibits a neat and clear convergence when increasing the
perturbative order as discussed in Chapter 3.
It follows that the HREM is a model that hopefully encodes the non-mean-�eld
features of a structural glass, and that is solvable with relatively simple and reliable
methods, such as the recursion equation forN (E) and the perturbative expansion in
C. In particular, as we will show in Chapter 3, with such methods one can identify
the existence of a phase transition in the HREM, and then analyze its physical
features.

Secondly, it turns out that the 22k
energy levelsf Hk [~S]g~S of the HREM are

not independent variables as in the REM [53], because here they are correlated
to each other. Indeed, by iterating k times Eq. (2.10), one obtains explicitly the
Hamiltonian for a HREM with 2k spins

Hk [~S] =
kX

j =0

2k � j
X

i =1

� (i )
j [~S(j;i ) ]; (2.16)

where ~S � f S1; � � � ; S2k g, while ~S(j;i ) � f S2j (i � 1)+1 ; � � � ; S2j i g are the spins in the

i -th embedded block at the j -th hierarchical level, and � (i )
j is the interaction energy

� j (see Eq. (2.10)) of thei -th hierarchical embedded block. The interaction energies

� (i )
j of Eq. (2.16) are depicted in Fig 2.2 for a HREM with 23 spins.

According to Eq. (2.16), the energy levels are clearly correlated to each other. As
we will show in Chapter 3, this fact implies that some critical features of the HREM
turn out to be quite di�erent from to those of the REM. In particular, we will show
by an explicit calculation how a naive estimate of the critical temperature based on
the hypothesis that the energy levels are uncorrelated fails miserably, proving the
relevance of energy correlations in the critical regime.

Thirdly, the existence of the hierarchical structure depicted in Fig. 2.10 allows
for the introduction of a notion of distance between spins in the HREM, whereas
in the REM there is no notion of distance, because mean-�eld models have no
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spatial geometry [119]. As we will show in Chapter 4, such a length scale can be
introduced in the HREM by de�ning a suitable correlation function, and extracting
the characteristic length scale associated with its exponential decay at large distances.
It is then interesting to ask oneself whether such a length diverges at the critical
point as in ferromagnetic systems [74, 101, 173, 174, 163, 162, 138]. This point will
be investigated in Chapter 4, by means of the perturbative expansion method.

We will now present the perturbative computation of the equilibrium properties
of the HREM, and discuss the results on the critical behavior of the model [33].





Chapter 3

Perturbative computation of
the free energy

Given a sample of the random energiesf � g � f � (i )
j gj;i , the free energy of a HREM

with 2k spins is de�ned as [115, 119]

f [T; f � g] � �
1

� 2k log [Z [T; f � g]] ; (3.1)

where
Z [T; f � g] �

X

~S

exp
�
� �H k [~S]

�
; (3.2)

� � 1=T is the inverse temperature, andHk [~S] is given by Eq. (2.16). To simplify
the notation, in the following we omit the volume label k in the free energyf and
in the partition function Z unless necessary.

The free energy (3.1) of atypical sample f � g can be computed by hypothesizing
that the self-averaging property holds. According to this property, holding in the
thermodynamic limit of a broad class of disordered systems with quenched disorder
[119, 37], the free energy computed on a �xed and typical sample of the disorder is
equal to the average value of the free energy over the disorder. Here we hypothesize
that this property holds, so that in the thermodynamic limit k ! 1 we compute
f [T; f � g] on a typical samplef � g as the average of Eq. (3.1) over the random energies

lim
k!1

f [T; f � g] = lim
k!1

E� [f [T; f � g]] : (3.3)

The advantage of using the self-averaging property is that the right-hand side
of Eq. (3.3) is easier to compute than the left-hand side by using the replica trick
[119, 115]

E� [f [T; f � g]] = �
1

� 2k lim
n! 0

E� [Z [T; f � g]n ] � 1
n

: (3.4)

According to the general prescriptions of the replica trick [119, 136, 133, 37], the
argument of the limit in Eq. (3.4) is here computed for integer n, and an analytic
function of n is obtained. The left-hand side of (3.4) is then computed by continuing
such a function to real n, and taking its n ! 0 limit.

31
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As observed in Section 1, the use of the replica trick in mean-�eld models can be
non-rigorous, because of the assumption that one can exchange the thermodynamic
limit and the n ! 0 limit [ 119, 115, 136, 37]. It is important to observe that this
issue does not occur in this case. Indeed, by using Eqs. (3.1), (3.3) and (3.4), one
has

lim
k!1

f [T; f � g] = lim
k!1

lim
n! 0

1 � E� [Z [T; f � g]n ]
n� 2k : (3.5)

In order to compute Eq. (3.5) in mean-�eld models, one hypothesizes that one can
�rst compute the right-hand side of Eq. (3.6) in the thermodynamic limit k ! 1
by using the saddle-point approximation, and then take n ! 0, by exchanging the
limits. Being the HREM a non-mean-�eld model, the saddle-point approximation
is wrong even in the thermodynamic limit, so that the right-hand side of Eq. (3.5)
cannot be computed by taking its saddle point, and we do not need to exchange
the limits. Hence, the subtleties resulting from the exchange of the limits do not
occur in this case. In other words, here the replica trick is simply a convenient way
to perform the computation of the quenched free energy, and a direct inspection of
Eq. (3.5) in perturbation theory shows that one can do the computation without
replicas, and obtain the same result as that obtained with the replica trick to any
order in C. We observe that this fact is true also in the mean-�eld theory of spin
glasses, where the full-RSB solution [133] can be rederived [118] without making use
of the replica method.

Let us now focus on the explicit computation of the right-hand side of Eq. (3.5)
for integer n and on the n ! 0-limit. One has

E� [Z [T; f � g]n ] =
X

f ~Sa ga=1 ; ��� ;n

exp

0

@� 2

4

kX

j =0

C2j
2k � j
X

i =1

nX

a;b=1

� ~S( j;i )
a ;~S( j;i )

b

1

A ; (3.6)

where ~S1; � � � ; ~Sn denote the spin con�gurations of the n replicas of the system
[136, 137, 37, 130]. We then expand Eq. (3.6) in power of C2, and take the
n ! 0; k ! 1 -limits. It is important to observe that this C2-expansion is equivalent
to a high-temperature expansion. Indeed, in Eq. (3.6) any powerC2j of the coupling
constant is multiplied by a factor � 2, so that the smallness ofC2 is equivalent to
the smallness of the inverse temperature� .
By Eq. (3.5), the expansion of Eq. (3.6) in powers ofC2 results into an expansion
for f [T; f � g], that can be written as

f [T; f � g] =
1X

i =0

C2i � i (T); (3.7)

where for simplicity we omit the k ! 1 -limit, and the dependence off on f � g has
disappeared because of the self-averaging property (3.3). The coe�cients� i (T) can
be explicitly calculated for large i by means of a symbolic manipulation program [170],
handling the tensorial operations on the replica indices [33, 32]. This computation
is carried on for integer n and an analytic function of n is obtained, so that the
limit n ! 0 can be safely taken. In Appendix B we give an example of how these
computations are performed, by doing the explicit calculation of the coe�cient � 0.
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In the following, the expansion (3.7) will be worked out at a �xed order l , under the
underlying assumption that the resulting free energy

f l (T) �
lX

i =0

C2i � i (T) (3.8)

approximates the exact free energy (3.7) asl is large

f l (T) l !1! f 1 (T) = f [T; f � g]:

Before discussing the result of this computation for0 < � < 1, it is interesting
to test perturbation theory in the region � < 0 for the following reason. As stated
in Section 2.2, for � < 0 the thermodynamic limit of the model is ill-de�ned. This
is because the interaction energy� k de�ned in Eq. (2.10) grows with k faster than
the volume 2k according to Eq. (2.12). Notwithstanding this, having the HREM 2k

spins, one can rede�ne the inverse temperature

� ! 2k�= 2�; (3.9)

in such a way that the variance of � k de�ned in Eq. (2.12) becomes

E� [� 2
k ] ! 2k : (3.10)

The thermodynamic limit is now well-de�ned, because the coupling energy scales as
the volume, and the model is a purely mean-�eld one. A direct numerical inspection
of the expansion (3.8) after such a rede�nition of � for � < 0 shows that as l is
increased the free energy of the HREM converges to that of a REM [53, 54] with
critical temperature

T �< 0
c U �

1
2
p

log 2(1� 2� )
: (3.11)

The label U in Eq. (3.14) stands for uncorrelated, because the value (3.14) of the
critical temperature can be easily worked out by hypothesizing that the energy levels
are uncorrelated as in the REM. Indeed, the fact that the free energy (3.8) converges
to that of the REM for � < 0 tells us that in this region correlations are irrelevant,
and the model reduces to a purely mean-�eld one with the same features as the REM.
This is what we expected from the fact that the energy scales as the system vol-
ume (Eq. (3.10)), and serves as an important test of the perturbative expansion (3.7).

We now focus on the region0 < � < 1. From a direct analysis of the data for the
free energyf l (T), it turns out that there exists an l-dependent critical temperature
T l

c, de�ned in such a way that the entropy at the l-th order in C2 vanishes atT = T l
c

sl (T l
c) � �

df l (T)
dT

�
�
�
�
T = T l

c

= 0 : (3.12)

As discussed in Section 1, in the REM the fact that the entropy vanishes at a given
temperature signals a Kauzmann phase transition. Hence, by de�nitionT l

c can be
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considered as thel-th order critical temperature of the system. Since perturbation
theory is approximate, and there is no guarantee that a perturbative expansion
converges at a critical point [74, 173, 174, 138], it is important to check the behavior
of T l

c as l is increased. In Fig. 3.1,T l
c as a function of l is depicted for � = 0 :1.

Even for l � 10, a clear convergence is observed, and the resulting `exact' critical
temperature T1

c is easily determined by �tting T l
c vs. l with a function of the form

a � b� cl , with c < 1, and setting T1
c = a. In this way, T1

c as a function of � is
determined in the region 0 � � � 0:15, where T l

c vs. l for l � 10 exhibits a clear
convergence as a function ofl , and the extrapolation for l ! 1 is meaningful.

According to Eq. (3.12), the entropy of the HREMThe HREM has a
�nite temperature
phase transition à

la Kauzmann. s(T) � �
df 1 (T)

dT
(3.13)

vanishes forT = T1
c . This allows a straightforward interpretation of the phase

transition occurring at T = T1
c , resembling to that occurring in the REM [53]: for

T > T 1
c the entropy is positive, and the system explores an exponentially large num-

ber of states in the con�guration space, while forT < T 1
c the system is trapped in a

handful of low-lying energy states. We have thus shown that the HREM undergoes
a phase transition à la Kauzmann at a �nite temperature T1

c , whose features are
similar to that of the phase transition of the REM and, more generally, of mean-�eld
structural glasses [16].

In the inset of Fig. 3.1, T1
c as a function of � is depicted, andT1

c turns out to
be a decreasing function of� . This fact is physically meaningful, because according
to Eq. (2.13), the larger � the smaller the coupling C between spins, and so the
smaller the temperature T1

c such that for T < T 1
c all the spins are frozen in a

low-lying energy state.
As in the � < 0-case, we can hypothesize that the energy levels act as uncorrelated
random variables, in such a way that the HREM behaves as a REM. In this case,
the critical temperature can be computed exactly, and is given by

T �> 0
c U �

1
2
p

log 2(1� 2� � )
: (3.14)

Di�erently from the � < 0-case, here the decorrelation hypothesis turns out to be
wrong. Indeed, by looking at the inset of Fig 3.1,T1

c does not coincide withT �> 0
c U .

This fact is a clear evidence that correlations between the energy levels play a crucial
role in the region � > 0, and cannot be neglected.

In Fig 3.2 the free energyf l (T) as a function of the temperatureT for � = 0 :1
and di�erent values of l � 10 is depicted. f l (T) is found to converge to a �nite
value f 1 (T) for T > T 1

c , while for T < T 1
c the lower the temperature the worse

the convergence of the sequencef l (T) vs. l . Hence, when descending into the
low-temperature phase fromT > T 1

c , a breakdown of perturbation theory occurs,
signaling the possibility of a nonanalyticity of the free energy at the critical point,
resembling to the nonanalytical behavior of physical quantities occurring in second-
order phase transitions for ferromagnetic systems [74, 101, 173, 174, 138].
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Figure 3.1. Critical temperature T l
c (black points), its �tting function a � b� cl (red solid

curve) and asymptotic value T1
c = 1 :861� 0:021 (blue dashed line) as a function ofl

for � = 0 :1. T1
c = a has been determined as a �t parameter. Inset: critical temperature

T1
c (red points) in the region 0 < � < 0:15 where the �rst 10 orders of the perturbative

expansion show a clear convergence, and critical temperatureT �> 0
c U (black curve), as a

function of � . The error bars on T1
c are an estimate of the error resulting from the �t

on the parameter a. T1
c is clearly non-consistent with T �> 0

c U , showing that correlations
between energy levels are important. The� ! 0+ -limit of T1

c does not coincide with
the � ! 0� -limit of T �< 0

c U because of the abrupt change (3.9) in the normalization of
the temperature when switching from � > 0 to � < 0.

According to the above discussion, the perturbative expansion (3.7) yields a
reliable method to estimate physical quantities in the high-temperature phase
T > T 1

c . Notwithstanding this, no conclusions can be drawn on the behavior of
the free energy in the low-temperature phase with this perturbative framework.
In particular, this method gives no insight into the structure of the states of the
system in the low-temperature phase. An interesting approach yielding a tentative
solution in the low-temperature phase can be worked out by hypothesizing that the
n replicas ~S1; � � � ; ~Sn in Eq. (3.6) are grouped into n=x groups, where each group
is composed byx replicas [119, 115]. For any two replicas a; b in the same group
one has~Sa = ~Sb. We can look at the small C2-expansion (3.7) in the particular
case where the replicas are grouped as described above. We call the free energy
to the l-th order obtained with this ansatz f RSB

l (T; x). RSB stands for replica-
symmetry-breaking, and has the same physical interpretation as the ordinary RSB
mechanism described in Section 1 for structural glasses: as in the REM, a replica-
symmetry-broken structure in the low-temperature phase implies that the system
is no more ergodic, because it is trapped in a handful of low-lying energy states
[16, 119, 130, 53, 54, 136, 137, 115]. By performing the computation explicitly, it is
easy to �nd out that f RSB

l (T; x) = f l (T=x). According to the general prescriptions
of the replica approach [119, 115, 136, 133, 137], as we take then ! 0-limit the
parameter x, originally de�ned as an integer number, has to be treated as a real
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Figure 3.2. Free energy f as a function of temperature T for � = 0 :1. We depict
f l (T � T1

c + T l
c) for l = 1 ; 2; � � � ; 10 (gray points), f 3(T � T1

c + T3
c ) (green dashed curve),

f 6(T � T1
c + T6

c ) (blue dashed curve),f 10(T � T1
c + T10

c ) (black dashed curve), and the
extrapolated free energyf 1 (T) as a function of T (red points and solid curve). We also
depict the critical temperature T1

c (violet dashed line). For any �xed T, f 1 (T) has
been obtained by �tting the sequencef l (T � T1

c + T l
c) vs. l with a function of the form

a � b� cl , with c < 1, and setting f 1 (T) = a. To compute f 1 (T), we used the sequence
f l (T � T1

c + T l
c) vs. l instead of f l (T) vs. l because the former has the same limit as the

latter for l ! 1 , and exhibits a better convergence for the accessible values ofl � 10.
The error bars on f 1 (T) are given by an estimate of the �t error on the parameter a.

number lying in the interval [0; 1]. Hence, the maximization of f RSB
l (T; x) with

respect to x gives x = 1 for T � T l
c, and x = T=Tl

c for T < T l
c. It follows that

according to this this RSB ansatz the exact free energy reads

f RSB
1 (T) =

(
f 1 (T1

c ) T < T 1
c

f 1 (T) T � T1
c

: (3.15)

The form (3.15) of the RSB free energy is the same as that of the REM [119, 53, 54],
and predicts that in the low-temperature phase the HREM has a one-step RSB,
re�ecting ergodicity breaking. On the one hand, this RSB ansatz predicts a free
energy f 1 (T) which is exact for T � T1

c , because it coincides with the free energy
computed with perturbation theory without making use of any ansatz. On the other
hand, there is no guarantee thatf RSB is exact in the low-temperature phase. In
particular, the n replicas could be grouped in a more complicated pattern than the
RSB one described above, and this con�guration could yield a free energy that is
larger than f RSB for T < T 1

c . Since in the replica method the exact free energy is
not the minimum, but the maximum of the free energy as a function of the order
parameter con�gurations [115, 119], such a more complicated pattern would yield
the exact free energy of the system. The investigation of the existence of such an
optimal pattern is an extremely interesting question that could be subject of future
work, and give some insight into the low-temperature phase of the HREM, and
more generally into the low-temperature features of non-mean-�eld structural glasses.
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Once the existence of a phase transition has been established, we ask ourselves
what are its physical features. In particular, an interesting question is whether,
as in second-order phase transitions [74, 163, 162, 173, 174], the system has no
characteristic scale length at the critical point. Indeed, answering this question
for the HREM is particularly interesting, because an analysis of the characteristic
length scales of the system in the critical region could give some insight into the
construction of a RG theory for non-mean-�eld structural glasses.





Chapter 4

Spatial correlations of the
model

Being a non-mean-�eld model, the HREM allows for the de�nition of a distance
between spins. This de�nition is yield naturally by the hierarchical structure of the
couplings shown in Fig. 2.1. Indeed, given two spin sitesi and j , one can de�ne
their ultrametric distance m as the number of levels one has to get up in the binary
tree starting from the leaves, until one �nds a root that is shared by i and j . This
geometrical construction of the ultrametric distance is depicted in Fig. 4.1 for a
HREM with k = 3 . One can thus de�ne the distance betweeni and j as

k i � j k� 2m : (4.1)

Figure 4.1. Ultrametric distance between spinsS2 and S5 in a HREM with k = 3 . In
order to �nd a root shared by S2 and S5, one has to go2 levels up in the binary tree.
Hence, the ultrametric distance betweenS2 and S5 is m = 2 .

Once the notion of distance has been clari�ed, we want to know if the system has
a characteristics length de�ned in terms of this distance, and what is the behavior
of this length in the critical region. In order to do so [32], we de�ne a correlation
function whose exponential decay at large distances yields a characteristic length
scale� of the system. This correlation function is de�ned as

Y(2m ; T) � E�

"

E~S1 ;~S2

" 2m
Y

i =1

� S1;i ;S2;i

##
m!1

� exp
�
�

2m

� (T)

�
; (4.2)

39
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where E~S stands for the thermal average

E~S[O[~S]] �

P
~S e� � H k [~S]O[~S]

Z [T; f � g]
; (4.3)

and � Si ;Sj denotes the Kronecker delta function. The correlation function (4.2) has
the following physical meaning. Given two spin con�gurations ~S1; ~S2, Y (2m ; T)
physically represents the mean overlap between~S1 and ~S2 on the sites1; � � � ; 2m of
the lattice.

Before studying the behavior of � in the region 0 < � < 1, we compute � in
the region � < 0 where the model is purely mean �eld. As discussed in Chapter 3,
for the thermodynamic limit to be well-de�ned for � < 0, one has to rescale the
temperature according to Eq. (3.9). By plugging Eq. (3.9) into Eq. (4.2) and taking
� < 0, one easily obtains the correlation function in the mean-�eld case

Y(2m ; 2� k�= 2T) k!1=

P
~S1 ;~S2

Q 2m

i =1 � S1;i ;S2;i

22 2k (4.4)

= exp( � 2m log 2):

Comparing Eq. (4.4) to the de�nition of � (T) in Eq. (4.2), we obtain the mean-�eld
value of the correlation length

� MF (T) =
1

log 2
: (4.5)

Eq. (4.5) is consistent with the fact that in the mean-�eld case there must be no
notion of physical distance between spins [130], and so the system has no physical
length scale signaling the range of spatial correlations between spins.

This picture should radically change for 0 < � < 1, where a physical spatial
structure and distance does exist. In Chapter 3 we showed that the HREM has a
phase transition at T1

c . According to the above physical meaning of the correlation
function (4.2), one expects long-range spatial correlations to occur atT1

c , because
for T ! T1

c both ~S1 and ~S2 should stay trapped in the same handful of low-lying
energy states, and exhibit a high degree of overlap with each other. Hence,Y (2m ; T)
should tend to 1, in such a way that � diverges.

In the following we compute � for 0 < � < 1 in the same perturbative framework
as in Chapter 3, to investigate the existence of such a long-range spatial correlations
at the critical point. Firstly, Eq. (4.2) can be rewritten with the replica trick

Y (2m ; T) = E�

2

4

P
~S1 ;~S2

e� � (H k [~S1 ]+ H k [~S2 ]) Q 2m

i =1 � S1;i ;S2;i

Z [T; f � g]2

3

5 (4.6)

= E�

2

4 lim
n! 0

X

~S1 ;��� ;~Sn

e� �
P n

a=1
H k [~Sa ]

2m
Y

i =1

� S1;i ;S2;i

3

5

= lim
n! 0

X

~S1 ;��� ;~Sn

exp

0

@� 2

4

kX

j =0

C2j
2k � j
X

i =1

nX

a;b=1

� ~S( j;i )
a ;~S( j;i )

b

1

A
2m
Y

i =1

� S1;i ;S2;i :
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The last line of Eq. (4.6) is very similar to (3.6), used in Chapter 3 to compute the
free energy of the HREM. Hence, the very same techniques used to computef in
perturbation theory can be employed here to calculate the correlation functionY .
In particular, one can expand the correlation function (4.6) in the coupling constant
C2

Y(2m ; T) =
1X

i =0

C2i � m;i (T); (4.7)

and explicitly evaluate the coe�cients � m;i by a symbolic manipulation program
[170] until the order i = 9 . In Appendix C we present the steps of the computation of
� m;0(T), to give some insight into the main techniques employed in the calculation
to high orders.

For any �xed m and T, the exact value of Y (2m ; T) has been computed by
extrapolating the sequence

Yl (2m ; T) �
lX

i =0

C2i � m;i (T) (4.8)

to l ! 1 , with the underlying assumption that for large l Eq. (4.8) converges to
the exact value of the correlation function

Yl (2m ; T) l !1! Y1 (2m ; T) = Y(2m ; T):

The sequenceYl (2m ; T) as a function of m for �xed �; l and T is shown in Fig.
4.2 for m = 3 ; T = 3 :5. Even though Yl is nicely convergent even to relatively low
orders for the values ofm and T considered in Fig. 4.2, an explicit analysis of
Yl (2m ; T) for di�erent values of m shows that the larger m, the larger the number
of orders needed to see a nice convergence with respect tol . This fact can be easily
understood by recalling that the C2-expansion is equivalent to a high-temperature
expansion (see Chapter 3). It is a general feature of high-temperature expansions
[172, 30, 146, 51] that with a �nite number of orders of the � -series, one cannot
describe arbitrarily large length scales. Hence, with a �nite number of orders (9 in
our case) forYl (2m ; T), one cannot describe the correlationsYl (2m ; T) for too large
m.
Another important fact is that, for any �xed m the convergence ofYl (2m ; T) gets
worse as the temperatureT is decreased, because more terms in the� -expansion,
and so in the C2 expansion, are needed.
Practically speaking, these limitations of the perturbative expansion made us take
m � 3 and T > T 0, where T0 is a � -dependent value of the temperature signaling a
breakdown of perturbation theory. As we will discuss in the following, notwithstand-
ing the very small values ofm here available, it has been possible to compute the
correlation length � (T) de�ned in Eq. (4.2) in a wide interval of temperatures.

The correlation length � (T) has been computed for every temperatureT by
�tting the data for Y1 (2m ; T) vs. m, according to the de�nition of � (T) given in
Eq. (4.2).

Once � (T) is known, we investigate its behavior at low temperatures. As stated
above, one cannot take too low values ofT because of the non-convergence of the
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Figure 4.2. Yl (2m ; T) (black points), its �tting function a � b� cl (blue dashed curve) as
a function of l , and Y1 (2m ; T) = a (red solid line), determined as a �t parameter. Here
� = 0 :1; m = 3 and T = 3 :5.

perturbative expansion. Notwithstanding this, it is still possible to approach enough
the critical point T1

c and investigate the existence of long-range spatial correlations.
In particular, we test the validity of the hypothesis of a diverging � (T) for T ! T1

c .
In order to do so, we check whether the data for� (T) is consistent with a power-law
divergence at some temperatureT �

c

� (T)
T ! T �

c
�

C

(T � T �
c ) �

: (4.9)

The validity of the hypothesis (4.9) has been tested in the following way. We suppose
that Eq. (4.9) holds, and determine the value ofT �

c such that the data for � (T) best
�ts with Eq. (4.9). We �t the data for log [� (T)] vs. log(T � T �

c ) for di�erent values
of T �

c . The value T �
c such that log [� (T)] vs. log(T � T �

c ) best �ts with a straight line,
is such that the data for � (T) is consistent with a power-law divergence atT �

c , accord-
ing to (4.9). The top panel of Fig. 4.3 shows that for � = 0 :1 the optimal value of
T �

c is compatible with the critical temperature T1
c for � = 0 :1 obtained in Chapter 3.

The data for � (T) is thus consistent with a diverging correlation length at theThe data for the
correlation length

of the HREM is
consistent with a

power-law
divergence at the

Kauzmann
transition

temperature.

Kauzmann transition temperature T1
c . In the bottom panel of Fig. 4.3, � (T) as

a function of T for � = 0 :1 is depicted, together with its �tting function (4.9)
with T �

c = T1
c . � (T) increases as the temperature is decreased, and its shape is

compatible with a power-law divergence at the Kauzmann transition temperature
T1

c .

Since this work establishes the existence of a thermodynamic phase transition
and the possibility of a diverging correlation length in the HREM, it also shows the
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Figure 4.3. Top: log [� (T)] vs. log(T � T �
c ) for di�erent tentative values of 1 < T �

c < 3:2
and � = 0 :1. The value of T �

c such that � (T) best �ts with the hypothesis (4.9) is
such that log [� (T)] vs. log(T � T �

c ) best �ts with a straight line. This value lies in
the interval [1:8; 2], and is thus consistent with the Kauzmann transition temperature
T1

c = 1 :861� 0:021 of the model. Bottom: � (T) (black points), its �tting function
(4.9) with T �

c = T1
c (solid red curve), � MF (orange dashed line) as a function ofT for

� = 0 :1, and the Kauzmann transition temperature T1
c (blue dashed line). In the region

0 < � < 1, the correlation length � (T) at low temperature is signi�cantly larger than the
mean-�eld value � MF , because of the existence of physical spatial correlations between
spins. Inset: critical exponent � de�ned by Eq. (4.9) as a function of � . � has been
computed by setting T �

c = T1
c and �tting � (T) with Eq. (4.9). Error bars on � are an

estimate of the uncertainty resulting from the determination of � as a �t parameter.
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way forward to the study of �nite-dimensional spin or structural-glass models.
For instance, the REM has been found [154, 26] to have a dynamical phase transition
at �nite temperature if a particular dynamics is chosen: it would be interesting
to study these dynamical properties in the HREM, by introducing some suitable
dynamics of the spins, and by investigating the existence of a dynamical phase
transition, and of a diverging dynamical correlation length.
Another interesting future direction would be to generalize the techniques used in
the solution of the REM to more realistic non-mean-�eld spin or structural-glass
models, like p-spin models [50] built on a hierarchical lattice. Indeed, even though
the HREM serves as a model representing a non-mean-�eld structural glass, its
structure is still far from being realistic: strictly speaking, the spins ~S in the HREM
are not physical degrees of freedom, but serve as mere labels for the energy variables
Hk [~S] as in the REM [53, 115, 130]. Moreover, a criticism one could address to the
solution techniques developed in Chapters 3 and 4 is that these do not give any
insight into the construction of a suitable RG protocol. In particular, a decimation
rule on spins is still lacking.

In the following Part we introduce a HM of a spin glass, in the e�ort to address
these two points: in such a HM spins are real physical degrees of freedom, in such a
way that a decimation rule on spins naturally emerges, and one can explicitly solve
the resulting RG equations.



Part III

The Hierarchical
Edwards-Anderson Model
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As discussed in Section 1, the SK model is a mean-�eld spin glass, whose critical
properties have been clari�ed in Parisi's solution [133, 136, 137, 119, 115, 130].
Whether the physical features of this solution persist also in a non-mean-�eld version
of the SK, or the non-mean-�eld case is described by a radically di�erent scheme
[111, 64, 61, 60, 62, 63, 27, 125], is one of the most hotly debated topics in sta-
tistical physics. Being this a very di�cult question, it is interesting to consider
non-mean-�eld versions of the SK that presumably capture all the non-mean-�eld
physics, and that are simple enough to be solved quite easily, by means of an explicit
implementation of the RG transformation.

Starting from the general de�nition (2.10) of Hierarchical models given in Section
2.2, here we explicitly chose the random energies� k to build up a non-mean-�eld
version of the SK model having these features: the Hierarchical Edwards-Anderson
model (HEA) [65, 34, 35, 36]. The HEA is de�ned by choosing the random energy
� k in the following way [65]

� k+1 [S1; : : : ; S2k +1 ] � �

 
C2

2

! k+1 2k +1
X

i<j =1

J12;ij Si Sj ; (4.10)

where C is still de�ned by Eq. (2.13), and J12;ij are Gaussian random variables with
zero mean and unit variance.

Starting from Eq. (4.10) and from the de�nition of the J12s, it is easy to show
that � k+1 has zero mean, and that its variance satis�es

E� [� 2
k ] k!1� 22k(1� � ) : (4.11)

It follows that for � < 1=2 the interaction energy (6.35) grows faster than the volume
2k , and the thermodynamic limit k ! 1 is not de�ned. The purely mean-�eld
case, i. e. the case where the interaction energy scales withk as the volume2k , is
recovered for� = 1=2. Moreover, for � > 1 the interaction energy (6.35) goes to0
as k ! 1 , in such a way that no phase transition can occur. Hence, in the following
we will take

1=2 < � < 1; (4.12)

which is the equivalent of Eq. (2.3) for DHM.

Physically speaking, the interaction energy (4.10) of the HEA introduces two-
spin interactions, while the interaction energy of the HREM de�ned in Part II has
2k+1 -spin interactions. Another fundamental di�erence between the HEA and the
HREM is that, according to the general classi�cation of models with quenched
disorder given in Section 1, the HEA has to be considered as a model for a spin
glass, while the HREM as a model mimicking the physics of a structural glass [16].
Compared to the HREM, the HEA is a more realistic model, because according to
the de�nition (4.10), here the spins of the system are physical degrees of freedom,
and not mere labels for the energy variables as in the REM and in the HREM. As
we will see in the following, the HEA also allows for an explicit construction of a
suitable decimation rule on spins, and so of a RG transformation.
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An equivalent de�nition of the HEA can be given without using the recursion
relation (2.10). Indeed, one can recover Eq. (2.10) by de�ning the HEA as a system
of 2k spins Si = � 1; 0 � i � 2k � 1, with Hamiltonian

Hk [~S] = �
2k � 1X

i;j =0

J ij Si Sj ; (4.13)

where the J ij s are Gaussian random variables with zero mean and variance&2
ij . &2

ij
is given by the following expression: consider the binary representation of the points
i; j

i =
k� 1X

a=0

ca2k� 1� a; j =
k� 1X

a=0

da2k� 1� a:

If only the last m digits f ck� m ; � � � ; ck� 1g of the binary representation of i are
di�erent from the last m digits f dk� m ; � � � ; dk� 1g of the binary representation of j ,
one has

&2
ij = 2 � 2�m : (4.14)

The de�nition (4.13) is equivalent to the de�nition given by (2.10) and (4.10).

The form (4.13) of the Hamiltonian can be obtained by dividing the system in
hierarchical embedded blocks of size2m , as shown in Fig. 2.1. More precisely, the
integer m can be considered as the ultrametric distance between spinsSi and Sj

de�ned in Fig. 4.1 for the HREM.

The HEA is a hierarchical counterpart of the one-dimensional spin glass with
power-law interactions (PLSG) [99], which has received attention recently [90, 88,
89, 104, 106]. The only di�erence between this PLSG and the HEA is the form of
&2
ij . In the PLSG, Eq. (4.14) is replaced by&2

ij = ji � j j � 2� , where ji � j j denotes
the ordinary absolute value of i � j . This form of the interaction structure, even
though apparently simpler than that of the HEA, makes the implementation of a
RG transformation extremely harder to pursue practically. Indeed, the form (4.14)
of the interactions of the HEA keeps track of the hierarchical structure of the model,
and so of a symmetry that is absent in the PLSG. Di�erently from the PLSG, thanks
to this symmetry the RG equations of the HEA allow for a direct solution that can
be in principle computed with extremely high precision [34, 35], as we will show in
Chapter 5.

We now proceed by exposing the techniques developed to solve the HEA [34, 35,
36]. An important observation is that an explicit evaluation of the partition function
for large k is practically impossible, because this would involve2k spins, and so a
sum of 22k

terms. Moreover, as discussed in Section 1, there is no guarantee [75]
that even the most re�ned MC techniques [58, 145, 73, 8, 3, 10] work properly at
low temperatures for reasonably large system sizes, because of the existence of many
metastable minima in the energy landscape.
An interesting method to overcome these di�culties is to use the hierarchical
structure of the model. Indeed, the recursion equation (2.10) stemming from this
structure results into some RG equations, whose thermodynamic limitk ! 1 can
be studied with some suitable approximation schemes. In Chapter 5, we derive
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these RG equations with the replica approach, and analyze their �xed points with
standard �eld-theory techniques. We show that notwithstanding their simplicity, the
perturbative solution of these RG equations results into a perturbative series which
is probably non-convergent. Hence, an alternative real-space approach which does
not rely on the replica method is developed in Chapter 6. In this latter approach,
the hierarchical structure of the model is again used to write some RG equations
that can be solved numerically with high precision. The replica RG approach and
the real-space approach are then compared, by considering their predictions on the
critical exponents of the model.





Chapter 5

The RG in the replica approach

In this Chapter we derive and solve the RG equations for the HEA model with the
replica approach [34, 35]. These RG equations can be derived with two di�erent
methods. The �rst, exposed in Section 5.1, derives the RG equations by using
directly the hierarchical structure of the model. We will call this approach method à
la Wilson, because it implements a coarse-graining RG step relating a2k -spin HEA
to a 2k+1 -spin HEA, and this yields a RG equation similar to the RG equations
originally obtained by Dyson [57, 44, 45, 31] for DHM, and so analogous to Wilson's
RG equations [161, 164, 165, 163]. The second approach, exposed in Section 5.2,
reformulates the problem in terms of a� 3-�eld theory [ 173], and the resulting RG
equations are nothing but the Callan-Symanzig equations [173, 174] for such a �eld
theory. The two formulations are tested to be equivalent by an explicit computation
of the critical exponents.

5.1 The RG method à la Wilson

Let us consider the partition function Z [T; f � g] of a HEA with 2k spins, which is
de�ned by Eq. (3.2). According to the general features of the replica approach
[119, 115, 130, 65], the physics of the model is encoded into then ! 0 limit of the
n-times replicated partition function

E� [Z [T; f � g]n ] = E�

2

6
4

X

f ~Sa ga=1 ;:::;n

exp

 

� �
nX

a=1

Hk [~Sa]

!
3

7
5 ; (5.1)

where E� denotes the expectation value with respect to the random distribution of
the energies� k , i. e. with respect to all the random couplingsJ12; ij of Eq. (4.10),
and ~Sa is the spin con�guration of the a-th replica of the system. One can then
consider the n � n matrix Qab [119, 115, 130] physically representing the overlap
between replicasa and b, which is de�ned as

Qab �
1
2k

2k
X

i =1

Sa;i Sb;i 8a 6= b;

Qaa � 08a:
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An interesting quantity which is derived from (5.1) is the probability distribution of
the overlap over the quenched disorderf � g

Pk [Q] � E�

2

6
4

X

f ~Sa ga=1 ;:::;n

exp

 

� �
nX

a=1

Hk [~Sa]

! nY

a<b =1

�

0

@Qab �
1
2k

2k
X

i =1

Sa;i Sb;i

1

A

3

7
5 ;

(5.2)
where the volume dependence has been explicitly restored with the labelk in Pk ,
and � denotes the Dirac delta function. The quantity Pk [Q] is interesting because
when one iterates the recursion equation (2.10), and a2k+1 -spin HEA is built up,
the resulting Pk+1 can be related to Pk by a simple recursion equation, which is

Pk+1 [Q] = exp

 
� 2C4(k+1)

4
Tr [Q2]

! Z
[dQ1dQ2]Pk [Q1]Pk [Q2] � (5.3)

�
nY

a<b =1

�
�

Qab �
Q1;ab + Q2;ab

2

�
;

where Tr denotes the trace over the replica indicesa; b; : : :, and the integral over the
matrix Q is denoted by

R
[dQ] �

RQ n
a<b =1 dQab. Eq. (5.3) is equivalent to the recur-

sion equation (2.5) for DHM [57], and it yields the �ow of the function Pk obtained
by coupling two systems with volume 2k to obtain a system with volume 2k+1 . It
follows that Eq. (5.3) can be considered as the �ow ofPk under the reparametrization
2k ! 2 � 2k of the length scale [164, 165, 163, 173, 174, 77, 138, 74]. According to
these considerations, Eq. (5.3) is a RG equation.

The very same techniques developed in Section 2.1 and in Appendix A to solve
Eq. (2.5) for DHM can be used to solve Eq. (5.3). Notwithstanding this, the solution
of Eq. (5.3) turns out to be much more cumbersome than that of Eq. (2.5), because
the former is a �ow equation for a function Pk [Q] of a matrix Qab, while the latter
is a �ow equation for a function pk (m) of a number m. In what follows we will show
the main steps of the solution of Eq. (5.3).

First of all, we seek for a solution of Eq. (5.3) fork ! 1 , in order to investigate
the critical properties of the HEA in the thermodynamic limit. To this end, let us
rescale the variableQ in Eq. (5.3), by setting

P k [Q] � Pk [C � 2kQ]; (5.4)

in such a way that Eq. (5.3) becomes

P k [Q] = exp

 
� 2

4
Tr [Q2]

! Z
[dP] P k� 1

�
Q + P

C2

�
P k� 1

�
Q � P

C2

�
: (5.5)

Similarly to Eq. (2.6), Eq. (5.4) is the correct rescaling for Eq. (5.3) to converge
to a nontrivial �xed point for k ! 1 , because according to Eqs. (2.13), (4.12) one
has C > 1, and the C4(k+1) -term in the right-hand side of Eq. (5.3) is an increasing
function of k allowing for no nontrivial �xed point for k ! 1 . It follows that
physically speaking, this rescaling aims to look at the RG equations (5.3) on the
scales that are relevant for largek, by means of a `zoom' on the functionPk [Q],
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which is encoded in the de�nition (5.4). An analogous rescaling will be presented in
the real-space approach discussed in Chapter 6.

Eq. (5.5) can now be solved by making an ansatz forP k [Q], following the same
lines as in the solution of DHM illustrated in Appendix A. The simplest form one
can guess forP k [Q] is the Gaussian

P k [Q] = exp
�
� r kTr [Q2]

�
: (5.6)

This form corresponds to a mean-�eld solution [65]. By plugging Eq. (5.6) into Eq.
(5.5), one �nds an evolution equation relating r k to r k� 1

r k =
2r k� 1

C4 �
� 2

4
: (5.7)

Even though the mean-�eld solution (5.6) is a �xed point of the RG equation
(5.5), there is no guarantee that more complex and physically meaningful �xed
points do not exist. By hypothesizing that P k [Q] can be expanded in powers ofQ,
non-gaussian �xed points can be explicitly built up in a perturbative framework, by
following the same lines as in the Ising model [163] and in DHM [ 44, 45, 31]. Indeed,
we can add non-Gaussian terms in Eq. (5.6), proportional to higher powers ofQ,
and consistent with the symmetry properties of the model. For instance, in principle
there would be several possible replica invariants proportional toQ3, but it is possible
to show that the only invariant that is consistent with the original symmetries of
the Hamiltonian Hk is Tr [Q3]. It follows that the simplest non-mean-�eld ansatz for
P k [Q] reads

P k [Q] = exp
�
�

�
r kTr [Q2] +

wk

3
Tr [Q3]

��
: (5.8)

This non-Gaussian ansatz can be handled by supposing that the coe�cientwk ,
representing the deviations from the Gaussian solution, is small for everyk. It is
important to point out that this is an hypothesis which is equivalent to assuming that
the non-mean-�eld regime of this model can be described in terms of a perturbation
of the mean-�eld regime [55]. As discussed in Section 1, there is no general agreement
on the fact that the non-mean-�eld behavior of a spin glass can be described in
terms of a slight modi�cation of the mean-�eld picture [ 111, 64, 61, 60, 62, 63, 27].
Hence, one should keep in mind that this assumption is far from being trivial and
surely innocuous.
As shown in Appendix D, if one plugs the ansatz (5.8) into the RG equation (5.5)
and expands up to O(w3

k ), one �nds a recursion relation for the vector (r k ; wk ),
which is expressed as a function of(r k� 1; wk� 1)

8
><

>:

r k = 2r k � 1
C4 � � 2

4 � n� 2
4

�
wk � 1

2C2 r k � 1

� 2
+ O(w4

k� 1);

wk = 2wk � 1
C6 + n� 2

2

�
wk � 1

2C2 r k � 1

� 3
+ O(w4

k� 1):
(5.9)

Eqs. (5.9) are analogous to Wilson's RG equations for the Ising model. Indeed,
the massr k and the coupling constantuk of the � 4-theory describing the Ising model
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[173] satisfy a recursion equation very similar to Eq. (5.9) [169, 163].

In general Eqs. (5.9) do not have a �nite �xed point r k = r k� 1 � r � ; wk =
wk� 1 = w� for every value of � . Concerning this, let us supposethat there exists a
�nite and nonzero inverse temperature � c such that Eqs. (5.9) have a �nite �xed
point. By de�nition, � c physically represents the inverse temperature such that the
system is invariant under the RG step k ! k + 1 , i. e. under reparametrization of
the length scale. Hence, at� c the system has no characteristic length scale, i. e. it
is critical [161]. We call � c the inverse critical temperature of the HEA, because it
separates the high and low-temperature phases� < � c; � > � c where the system is
not invariant under reparametrization of lengths.

We now set � = � c and sketch qualitatively the �ow of the coe�cient wk towards
its �xed-point value w� . Let us consider �rst the case2=C6 < 1, i. e. � < 0, with

� � � � 2=3: (5.10)

In this case wk is decreased ask ! k + 1 , and tends to zero, in such a way that
P k [Q] tends to a Gaussian solution for largek.
The situation is di�erent when � > 0. In order to better understand the case� > 0,
let us rewrite the recursion equation forwk as

wk � wk� 1 =
�

2
C6 � 1

�
wk� 1 +

n � 2
2

�
wk� 1

2C2r k� 1

� 3

+ O(w4
k� 1); (5.11)

and suppose for simplicity that wk� 1 is positive. Being 2=C6 > 1, the �rst addend in
the right-hand side of Eq. (5.11) is positive, while the second addend is negative in the
physical limit n ! 0. Hence, the �rst addend aims to increasewk , while the second
aims to decrease it. As we will show in the following, these two e�ects compensate
each other, in such a way thatwk tends to a �nite and nonzero �xed point for k ! 1 .

Following the very same lines as Wilson, we callP � [Q]; P� [Q] the �xed-point
probability distributions of the overlap, obtained by setting r k = r � ; wk = w� in
P k [Q]; Pk [Q] respectively. The equations forn = 0 yield

w2
� =

8
<

:

0 � � 0

48 log 2
�

� 2=4
21=3 � 1

� 3
� + O(� 3=2) � > 0:

(5.12)

As anticipated above, for � > 0, wk tends to a �nite and nonzero value, which is
found to be proportional to � in Eq. (5.12).

We recall [44, 45, 31, 163, 173, 174] that a Gaussian P � [Q] corresponds to
a mean-�eld regime of the model. Indeed, in the mean-�eld approximation one
evaluates with the saddle-point method the functional integral yielding the replicated
partition function [119, 130, 115, 133, 136]

E� [Z [T; f � g]n ] =
Z

[dQ]P� [Q]; (5.13)

where Eq. (5.2) and Eq. (5.1) have been used. If� � 2=3, i. e. � < 0, P � [Q] is
Gaussian, and so isP� [Q], in such a way that the saddle-point approximation is
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exact in the right-hand side of Eq. (5.13), i. e. the mean-�eld approximation is
correct. On the contrary, for 2=3 < � � 1, P � [Q] is not Gaussian, and the system
has a non-mean-�eld behavior. In particular, �uctuations around the mean-�eld
saddle point in the right-hand side of Eq. (5.13) cannot be neglected. Hence, we
call � = 2=3 the upper critical dimension [74, 173, 174, 77] of the HEA.
In the computation of a given physical quantity O(� ) for � > 2=3, �uctuations show
up in the guise of some corrections proportional to� to the mean-�eld value of this
quantity. It is important to emphasize that these � -corrections are not merely a
numerical improvement on the predictions for the observable, but somehow encode
the strength of the corrections to the mean-�eld physics. For instance, ifO(� ) was
expanded in powers of� around � = 2=3, and if this expansion could be resummed
and made convergent, this would mean that the non-mean-�eld physics of the system
could be considered as a `small correction' to the mean-�eld physics. On the contrary,
if such a non-mean-�eld physics were substantially di�erent, the latter statement
would be incorrect, and this fact would dramatically show up in a divergent and
non-resummable� -series forO(� ).

These observations can be directly illustrated by considering as observableO
the critical exponent � , related to the divergence of the correlation length�

� T ! Tc� (T � Tc) � � : (5.14)

� can be computed [163] by linearizing the transformation (5.9) in the neighborhood
of r � ; w� . Such a linearization is performed by considering the2 � 2-matrix

M ij �
@(r k+1 ; wk+1 )

@(r k ; wk )

�
�
�
�
r k = r � ;wk = w�

:

It can be shown that � is related to the largest eigenvalue� of M by the relation

� =
log 2
log �

: (5.15)

A straightforward calculation yields � at order � , for n = 0

� =

(
1

2� � 1 � � 2=3
3 + 36� + O(� 2) � > 2=3:

(5.16)

A detailed analysis of the computation of Appendix E reveals that in this O(w3
k )-

calculation resulting in the O(� )-estimate of � , one considers all the one-particle
irreducible (1PI) [ 173, 158, 159] one-loop Feynman diagrams generated by theQ3-
vertex in Eq. (5.8). These are diagramsI 1; I 7 in Fig. 5.1. Similarly, in the
computation at order w5

k , resulting in the O(� 2)-estimate of � , one considers two-loop
1PI Feynman diagrams I 2; � � � ; I 6 and I 8; � � � ; I 10 in Fig. 5.1, and so on.

As can be seen by Eq. (5.16), the coe�cient of� in Eq. (5.16) is quite large, an
it is plausible that the full � -series of� does not converge. According to the above
discussion, the convergence or resummability of the series would give some deep
insight into how strongly the mean-�eld physical picture should be modi�ed in the
non-mean-�eld region � > 2=3. In particular, a non-resummable series would suggest
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Figure 5.1. One and two-loop 1PI Feynman diagrams deriving from the Tr [Q3]-interaction
term, which contribute to the computation of the critical exponent � in the method à la
Wilson presented in Section 5.1, and in the �eld-theory method presented in Section
5.2. In the method à la Wilson, diagrams I 1; � � � ; I 6 with two external lines have
to be considered without crosses on the internal lines, and represent the diagrams
contributing to the Tr [Q2]-term in P k [Q]. In the same method, it can be shown that
diagrams I 7; � � � ; I 10 with three external lines contribute to the Q3; Q4; Q5-terms in
P k [Q]. In the �eld-theory method, diagrams I 1; � � � ; I 6 and I 7; � � � ; I 10 contribute to
the 1PI two-point and three-point correlation functions respectively, and crosses stand
for Tr [Q2]-insertions [173]. This graphical identi�cation of the same diagrams in the two
methods is an important test of their mutual consistency.
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that the non-mean-�eld physics cannot be described in terms of a perturbation of
the mean-�eld one, and would have a strong impact on the general problem of spin
glasses in �nite dimensions. It is thus interesting to investigate the properties of the
� -series by directly computing higher orders in� , and checking the convergence or
the resummability of the series.

The computation of the � -expansion at high orders can be performed with a
computer program. This is a particular feature of the HEA, because thanks to the
hierarchical structure of the system, the RG equations (5.5) have a simple form
compared to the RG equations of the PLSG [99] or of the EA model [72]. Indeed, the
latter are nothing but the Callan-Symanzik equations [28, 147, 173] for a Q3-�eld
theory, and their solution in perturbation theory requires an explicit enumeration
of all the Feynman diagrams deriving from the Q3-vertices, and the computation
of their IR-divergent part. This enumeration is extremely hard to implement in a
computer program, and has never been automated even in the simplest case of the
Ising model [70]. On the contrary, we believe that a symbolic manipulation program
could handle Eqs. (5.5) and automate the computation to higher orders inwk , with
no need to evaluate the IR-divergent part of Feynman integrals, which is not needed
in the present approach à la Wilson.
In order to perform this automation, we have evaluated by hand the �rst few terms
of the series, which has been computed toO(� 2) with the method à la Wilson, and
with a quite independent �eld-theory method exposed in Section 5.2. Both methods
give the same two-loop result for� , which will serve as a severe test for a future
automation of the � -expansion to high orders. This automation is very di�cult from
a purely technical viewpoint, and is beyond the scope of this thesis.

Here we sketch the main steps of the two-loop computation of� , more details
are given in [35]. We showed that if we plug the ansatz (5.8) into the right-hand
side of Eq. (5.5) and systematically neglect terms of order higher thanw3

k , we get a
P k+1 [Q] which is still of the form (5.8), i. e. the RG equations are closed. This is
not true if we keep also terms of order higher thanw3

k . Indeed, it is easy to show
that in this case terms of order Q4 arise in the right-hand side of Eq. (5.5), and
these terms are not present in the original ansatz. This fact implies that toO(w4

k ),
P k [Q] must contain also Q4-terms, and that these terms must be proportional to
w4

k . By plugging the fourth-degree polynomial P k [Q] in Eq. (5.5) and expanding
the right-hand side up to O(w5

k ), Q5-terms are generated. It follows that at O(w5
k ),

P k [Q] must contain alsoQ5-terms, and that these terms must be proportional to w5
k .

If this perturbative framework is consistent, by iterating such a procedure to higher
orders we reconstruct the exact functionP k [Q]. In particular, at the j -th step of
this procedure we generatenj monomials of orderQj , and call these monomials

f I (j )
l [Q]gl=1 ;:::;n j . Hence, if this procedure is iterated until step numberj = p, P k [Q]

can be written in the compact form

P k [Q] = exp

8
<

:
�

2

4c(2)
1; k I (2)

1 [Q] +
pX

j =3

1
j

n jX

l=1

c(j )
l; k I (j )

l [Q]

3

5

9
=

;
; (5.17)
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where

I (2) [Q] � Tr [Q2]; I (3) [Q] � Tr [Q3];

n3 � 1; c(2)
1; k � r k ; c(3)

1; k � wk :

In the present work such a procedure has been pushed up to orderw5
k , and P k [Q]

has been computed as a �fth-degree polynomial inQ. In particular, one generates
n4 = 4 invariants I (4) [Q] of fourth degree andn5 = 4 invariants I (5) [Q] of �fth degree
in Q. The explicit expression for all the monomialsI (j )

l [Q] at this order is given in
Table E.1 of Appendix E. The set of two RG equations (5.9) for the two-dimensional
vector (r k ; wk ) = ( c(2)

1; k ; c(3)
1; k ) obtained in the one-loop calculation here becomes a

set of ten equations for the vectorc(2)
1; k ; c(3)

1; k ; c(4)
1; k ; � � � ; c(4)

4; k ; c(5)
1; k ; � � � ; c(5)

4; k , Eqs. (E.1)-
(E.10). By linearizing these equations at the critical �xed point one can compute
the 10 � 10-matrix M , and extract � . By Eq. (5.15), one can then compute the
exponent � at two loops for � > 0 and n = 0

� = 3 + 36 � +
�
432� 27

�
50 + 55 � 21=3 + 53 � 22=3�

log 2
�
� 2 + O(� 3): (5.18)

The coe�cient of � 2 in Eq. (5.18) is about � 5:1 � 103: the �rst two ordersThe replica
� -expansion for

the critical
exponents of the

HEA is
presumably badly

behaved, and
non-predictive.

of the � -expansion show that this is probably badly-behaved and out of control.
In particular, it is impossible to make any prediction on � with the �rst two or-
ders of the series. Di�erently, the � -expansion for the critical exponents of the
Ising model (consider for instance the exponent
 in [173]) is nonconvergent, but
it settles to a reasonable value as the order is increased from zero up to at least
three, and then it deviates from such a value when higher orders are considered
(see [157, 41, 40, 43, 42, 94, 68, 97, 98] for �ve-loop computations of the exponents).
Though, in that case the expansion can be resummed and made �nite, giving a
result for the exponents which is in excellent agreement with experiments [1] and
MC simulations [140, 5].

As anticipated above, it is interesting to reproduce the two-loop result (5.18)
with an independent method. Indeed, in the e�ort to build up a fully automated
� -expansion it is important to check that the prediction (5.18) is not only correct, but
also well-de�ned, i. e. it does not depend on the RG scheme used in the calculation.
For instance, in this approach à la Wilson the IR limit of the theory is taken by
requiring invariance under the transformation k ! k + 1 , which doubles the system
volume at each step. On the contrary, in Section 5.2 we perform the IR limit by
considering a real parameter� physically representing the typical energy scale of the
system, and by sending it smoothly to zero. As we will show in the next Section,
these two independent ways of taking the IR limit yield the same two-loop result for
� .

5.2 The RG method in the �eld-theory approach

The replica formulation for the HEA allows for a quite general treatment of the IR
behavior of the system, based on the path-integral formulation. This formulation
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can be developed along the lines of the path-integral formulation of the Ising model
[173, 174, 138, 159]. In the latter the partition and correlation functions are repre-
sented in terms of a path integral over a �eld � , weighted with a � 4-action. Setting
" � 4 � d (for the Ising model we use a di�erent font for " , to avoid confusion with
the � of the HEA de�ned in Eq. (5.10)), one �nds that in the physically relevant
case" > 0 this � 4-�eld theory presents IR divergences occurring when the temper-
ature T approaches its critical value. These divergences are removed by means of
the observation that one can construct an auxiliary �eld theory, the renormalized
one, which makes the same physical predictions as the original one and has no IR
divergences. Indeed, it has been shown that these divergences can be removed at any
order in perturbation theory [ 29], and reabsorbed in the renormalization constants.
Once the renormalized theory has been built up, one can extract the critical ex-
ponents in perturbation theory from the "-expansion of the renormalization constants.

Here we show how the result (5.18) for� can be reproduced along these lines,
more details can be found in [35], while an extensive treatment of the renormalization
group theory used here is given in [173].

First, this computation is better performed by taking a de�nition of the HEA
which is slightly di�erent from that of Eqs. (2.10), (4.10), and that has the same
critical exponent � . First, let us relabel the spins S1; � � � ; S2k as S0; � � � ; S2k � 1. We
rede�ne the interaction term in Eq. (4.10) as

� k+1 [S0; : : : ; S2k +1 � 1] ! �

 
C2

2

! k+1 2k � 1X

i =0

2k +1 � 1X

j =2 k

J12;ij Si Sj : (5.19)

The rede�nition (5.19) has the following physical meaning. In the original de�nition
(4.10), one couples two systems, say system1 and system2, with 2k spins each, and
obtains a 2k+1 -spin system. The interaction energy between1 and 2 is given by
couplings between spins belonging to1 (given by the terms in the sum in Eq. (4.10)
with 1 � i; j � 2k ), couplings between spins belonging to2 (given by the terms in
the sum in Eq. (4.10) with 2k + 1 � i; j � 2k+1 ), and couplings between1 and 2
(given by the terms in the sum in Eq. (4.10) with 1 � i � 2k ; 2k + 1 � j � 2k+1 ).
In the rede�nition (5.19), only the latter couplings are kept, and neither couplings
within system 1 nor 2 appear in the de�nition.

The equivalence between the two de�nitions can be shown as follows. If one
considers two spinsSi ; Sj and their interaction energy, it is easy to show [65] that in
the model de�ned by Eq. (5.19) the variance of such an interaction energy scales with
the ultrametric distance between Si and Sj in the same way as in the model de�ned
by Eq. (4.10), and that the two variances di�er only in a constant multiplicative
factor. It follows that the long-wavelength features of the two models are the same.
According to general universality arguments, both of the models must have the same
critical exponents, because these depend only on the long-wavelength features of the
system, like the way interactions between spins decay at large distances [163, 161].
Notwithstanding this fact, non-universal quantities are generally di�erent in the two
models. For instance, it is well known that if one multiplies the interaction strength
between spins by a constant factor, one changes the microscopic energy scale of the
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system. According to dimensional analysis [173], the critical temperature must be
proportional to this energy scale, and is thus multiplied by the same factor. Hence,
the critical temperature of the model de�ned by Eq. (4.10) is di�erent from that
of the model de�ned by Eq. (5.19). This can be veri�ed by considering how the
recursion relation (5.5) is modi�ed when one applies the rede�nition (5.19). Indeed,
if one starts from Eq. (5.19) and goes through the steps of the derivation of Eq. (5.5),
one �nds a recursion equation that di�ers from Eq. (5.5) by a factor multiplying � .
The reason why the de�nition (5.19) is more suitable for this �eld-theory approach
will be clari�ed below.

The path-integral formulation of the HEA can now be introduced by observing
that one can write the replicated partition function (5.1) in terms of a functional
integral over a local overlap �eld Qi; ab � Sa

i Sb
i ; 0 � i � 2k � 1

E� [Z [T; f � g]n ] =
Z

D Q e� S[Q]; (5.20)

where
R

D Q �
RQ 2k � 1

i =0
Q n

a<b =1 dQi; ab stands for the functional integral over the
�eld Qi; ab . The action S[Q] can be worked out by supposing that there exists a
critical temperature Tc such that the characteristic length of the system diverges
as T approachesTc. We stress that this hypothesis has been made also in the RG
approach à la Wilson, where we assumed the existence of aTc such that the RG
equations (5.9) have a nontrivial �xed point, i. e. a �xed point such that the system
has no �nite characteristic length.

By taking T � Tc, one can select the IR-dominant terms in S[Q], and obtain

S[Q] =
1
2

2k � 1X

i;j =0

� 0
i;j Tr

�
Qi Qj

�
+

g
3!

2k � 1X

i =0

Tr [Q3
i ]: (5.21)

In Eq. (5.21) the propagator � 0
i;j depends oni; j through the di�erence I (i ) � I (j ),

where for any 0 � i � 2k � 1 the function I (i ) is de�ned in terms of the expression
in base2 of i as

i =
k� 1X

j =0

aj 2j ; I (i ) �
k� 1X

j =0

ak� 1� j 2j : (5.22)

According to the above de�nition of I (i ), the quadratic term of Eq. (5.21) is
not invariant under spatial translations i ! i + l . Accordingly [158, 173], the
Fourier transform of the propagator � 0

i;j does not depend only on the momentump
associated with the variablei � j , but it generally depend on both of the momenta
p; q associated with the variablesi; j respectively. With this complicated form of
the propagator, any explicit computation of the loop integrals, which is necessary
for the computation of the critical exponents, is extremely di�cult to perform. This
problem can be overcome with a simple relabeling of the sites of the lattice. Indeed,
if one sets

I (i ) ! i; 8i = 0 ; : : : ; 2k � 1;

it is easy to show that Eq. (5.20) still holds, with an action S[Q] which now reads

S[Q] !
1
2

2k � 1X

i;j =0

� i;j Tr
�
Qi Qj

�
+

g
3!

2k � 1X

i =0

Tr [Q3
i ]; (5.23)
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where � i;j � � 0
I � 1(i );I � 1 (j ) . Since � 0

i;j depends oni; j through the di�erence
I (i ) � I (j ), � i;j depends oni; j through the di�erence i � j . It follows that S[Q]
is now translationally invariant, and the ordinary Fourier transform techniques
[148, 113] can be used. In particular, the Fourier transform �( p) of � i;j depends
only on the dyadic norm jpj2 (see [139] for a precise de�nition of the dyadic norm)
of the momentum p relative to the variable i � j , and can be written as

�( p) = jpj2� � 1
2 + m; (5.24)

where the massm is proportional to T � Tc, and has dimensions[m] = 2 � � 1.

The action de�ned by Eq. (5.23) yields a Tr [Q3]-�eld theory, which is known to
describe the spin-glass transition in both short-range [39] and long-range [38, 99]
spin glasses. Notwithstanding this, an interesting and novel feature of the propagator
(5.24) is that it depends on the momentump through its dyadic norm jpj2. This fact
is rather interesting, because it implies a direct analogy with the original derivation
of the RG equations for the Ising model in �nite dimensions, in particular with
the Polyakov derivation [163, 142]. Indeed, the basic approximation scheme in the
Polyakov derivation consists in introducing an ultrametric structure in momentum
space, such that the momentum space is divided into shells and the sum of two
momenta in a given shell cannot give a momentum of a higher momentum scale
cell. This feature is analogous to a general property of the dyadic norm, such
that if p1; p2 are two integers in 0; : : : ; 2k � 1, their dyadic norms satisfy [139]
jp1 + p2j2 � max (jp1j2; jp2j2). This fact implies that if p1; p2 are inside a shell of
radius max (jp1j2; jp2j2), the momentum p1 + p2 is still in that shell. Thus, the dyadic
structure of Eq. (5.24) emerges naturally in more general contexts where there
is no hierarchical structure, such as �nite-dimensional systems with short-range
interactions.

A perturbative expansion in g of the two and three-point 1PI correlation func-
tions deriving from the action (5.23) reveals that if � < 0 the �eld theory (5.23) is
well-de�ned and �nite, while if � > 0 IR divergences occur whenm ! 0. According
to a simple dimensional argument, if � < 0 the critical exponent � is given by the
�rst line of Eq. (5.16). On the contrary, if � > 0 a more elaborated treatment is
needed to deal with IR divergences and compute� .

For � > 0, IR divergences can be eliminated by de�ning a renormalized �eld
theory having a renormalized mass and coupling constantmr ; gr , which are de�ned
in terms of the bare mass and coupling constant

m = mr + �m; (5.25)

g = m
3�

2� � 1
r gr Zg; (5.26)

where �m is the mass shift due to renormalization, andZg is the renormalization
constant of the coupling g. According to general results on models with long-range
interactions, the �eld Qi; ab is not renormalized, i. e. its renormalization constant
ZQ is equal to one. On the contrary, one has to introduce a renormalization constant
ZQ2 enforcing the renormalization of the Tr [Q2

i ]-�eld. According to the minimal
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subtraction scheme, the renormalization constants�m; Z g; ZQ2 are chosen in such a
way that they subtract the divergences occurring in the two and three-point 1PI
correlation functions of the renormalized theory. In the IR limit mr ! 0, these
divergences appear in the shape of poles in� . Since here�m; Z g; ZQ2 are expanded in
powers of the renormalized couplinggr , and since these IR divergences are subtracted
order by order in gr , the constants �m; Z g; ZQ2 are given by a series ingr whose
coe�cients contain poles in � . From a detailed analysis it turns out that these series
contain only even powers ofgr , that only Zg and ZQ2 are needed to compute� , and
that a-loops Feynman diagrams contribute to orderg2a

r in Zg; ZQ2 . In Appendix F
we sketch the main steps of the one-loop computation ofZg; ZQ2 , which are given in
Eqs. (F.7), (F.8).

By following the very same techniques as those exposed in Appendix F, we
computed Zg; ZQ2 at two loops. For n = 0 one has

Zg = 1 +
g2

r

48� log 2
+ g4

r

"
1

1536� 2(log 2)2 +
5 + 2 � 22=3

512� log 2

#

+ O(g6
r ); (5.27)

ZQ2 = 1 +
g2

r

24� log 2
+ g4

r

"
1

576� 2(log 2)2 � 5
(1 + 11 � 21=3 + 7 � 22=3)

2304� log 2

#

+

+ O(g6
r ): (5.28)

One can also show that�m = O(g4
r ).

Eqs. (5.27), (5.28) explicitly construct the renormalized theory, which is free of
IR divergences. In this theory, we can safely perform the IR limit, and in particular
compute physical quantities in this limit. In order to do this, we introduce a function
g(� ), physically representing the e�ective coupling constant of the model at the
energy scale� . g(� ) can be computed from the Callan-Symanzik equations [28, 147],
as the solution of the di�erential equation

� (g(� )) = �
dg(� )

d�
; (5.29)

where the � -function is de�ned as

� (gr ) � �
@gr
@�

�
�
�
�
g;m

; (5.30)

and � � m
1

2� � 1
r . Eq. (5.29) states that � (gr ) governs the �ow of the e�ective coupling

g(� ) under changes in the energy scale� of the system. � (gr ) can be explicitly
computed in terms of the renormalization constant Zg, Eq. (5.27)

� (gr ) = � 3�g r +
g3

r

8 log 2
+ 3

5 + 2 � 22=3

128 log 2
g5

r + O(g7
r ): (5.31)

The e�ective coupling g(� ) in the IR limit is obtained by letting the energy scale
� go to zero, and is given byg�

r � g(� = 0) . By de�nition, g�
r is a �xed point of the

�ow equation (5.29), and is obtained perturbatively in the shape of a series in� , as
the solution of the �xed-point equation � (g�

r ) = 0 . Moreover, one can show from
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Eq. (5.31) that the IR �xed point g�
r = 0 is stable only for � < 0, while for � > 0

a nontrivial �xed point g�
r 6= 0 of order

p
� arises. The same �xed-point structure

arises in Wilson's method, Eq. (5.12). Notwithstanding this, in Wilson's method the
IR limit is reached by doing a set of discrete stepsk ! k + 1 each of which doubles
the volume of the system, while in this approach this limit is reached by letting the
energy scale� go to zero smoothly.

Once the e�ective coupling in the IR limit is known, the scaling relations yield
the critical exponent � in terms of g�

r and of the renormalization constant ZQ2

� =
1

� 2(g�
r ) + 2 � � 1

; (5.32)

where

� 2(gr ) � �
@logZQ2

@�

�
�
�
�
g; m

: (5.33)

By plugging the two-loop result (5.28) for ZQ2 into Eqs. (5.33) and evaluating � (gr )
for gr = g�

r , we can extract � for n = 0 from Eq. (5.32). The result is exactly the
same as that of with Wilson's method, Eq. (5.18).

The fact that the method à la Wilson and the �eld-theory method yield the
same two-loop prediction for � shows that the IR limit of the HEA is well-de�ned,
because it does not depend on the RG framework used to reach it: even though the
two methods have a few underlying common features, they yield the same result
for the universal quantities of the system, which are encoded into the coe�cients
of the � -expansion. We want to stress that these universal quantities stay the
same when changing the RG approach and rede�ning the microscopical details of
the model, Eq. (5.19). Accordingly, this picture suggests that the ordinary RG
ideas for the Ising model work consistently also in this disordered case: the HEA
has a characteristic length diverging at the critical point, and the universal physi-
cal features in the critical region are governed by long-wavelength degrees of freedom.

Notwithstanding the positiveness of this result, the � -expansion is still non-
predictive, because the �rst few terms of the series (5.18) have a nonconvergent
behavior. On the one hand, one could test empirically the reliability of the present
perturbative approach, and so the convergence properties of the perturbative series,
by solving Eq. (5.5) numerically for integer n > 0 and by comparing the result to
the �rst three orders of the perturbative expansion. On the other hand, it would
be much more di�cult to test whether the series could be made resummable by
some suitable techniques, by explicitly computing high orders of the expansion. To
this end, our two-loop result constitutes a starting point and a severe test of this
high-order computation. An eventual evidence of the resummability of the series
would suggest that the non-mean-�eld behavior of this model can be considered as a
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perturbation of the mean-�eld one. On the contrary, a failure of the resummation
techniques would imply that the non-mean-�eld behavior is radically di�erent from
the mean-�eld one.

Another weak spot of this replica RG approach is that the method does not
identify the correct spin-decimation rule in a non-mean-�eld strongly frustrated case,
which, as discussed in Section 1, is one of the fundamental questions and di�culties
in the construction of a RG theory for �nite-dimensional spin glasses.

Both of these weak spots of the replica RG approach made us seek for an
alternative methodology which, based on a transparent spin-decimation rule, could
overcome over the di�culties of the replica method, and make quantitative predictions
for the critical exponents. This methodology will be illustrated in Chapter 6, and
does not rely on the replica method, but on a real-space RG criterion.



Chapter 6

The RG approach in real space

As discussed in Section 1, a fundamental ingredient for constructing of a RG theory
is the introduction of a decimation rule. Through decimation, one practically
implements a coarse-graining process that changes the length scale with which one
looks at the physics of the system. For ferromagnetic systems, a suitable spin
decimation rule has been originally introduced by Kadano� [84], and relies on the
construction of block spins. As discussed in Section 1, Kadano�'s decimation rule
does not work in a disordered system like the HEA, because the average over disorder
of the magnetization inside a block of spins is trivially zero. In this Chapter we
propose a real-space decimation rule for the HEA which overcomes this problem,
and which is not directly based on the block-spin construction. This method will be
�rst applied to DHM in Section 6.1, and then generalized to the HEA in Section 6.2.

6.1 The RG approach in real space for Dyson's Hierar-
chical Model

Let us consider a DHM, de�ned by Eqs. (2.1), (2.2). The real-space RG method
is built up by initially iterating exactly the recursion equation (2.1) for k = k0

steps, assuming for simplicity that H F
0 [S] = 0 . In this way, a DHM with 2k0 spins

S1; � � � ; S2k 0 and Hamiltonian H F
k0

[S1; � � � ; S2k 0 ] is obtained exactly. Practically
speaking, this means that in the following we compute exactly the physical observ-
ables of this 2k0 -spin DHM. For instance, if k0 = 2 we have a4-spin DHM whose
Hamiltonian is

H F
2 [S1; � � � ; S4] = �

(

CF J

" �
S1 + S2

2

� 2

+
�

S3 + S4

2

� 2
#

+

+ C2
F J

�
S1 + S2 + S3 + S4

4

� 2
)

: (6.1)

We recall for future purpose that in the Hamiltonian (6.1), and similarly for arbitrary
values ofk0, when one goes one hierarchical level up, the couplings are multiplied
by a factor CF . In particular, the �rst addend in braces in Eq. (6.1) physically
represents the couplings at the �rst hierarchical level, while the second addend
represents the couplings at the second hierarchical level.

65
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Figure 6.1. Approximation of the real-space approach fork0 = 2 . In the implementation
of the real-space approach to DHM exposed in Section 6.1, a22-spin DHM with spins
S1; � � � ; S4 and Hamiltonian (6.1) is approximated by a 2-spin DHM with spins S0

1; S0
2

and Hamiltonian (6.2).
In the implementation of the real-space approach to the HEA exposed in Section 6.2, a
22-spin HEA with spins S1; � � � ; S4 and Hamiltonian (6.11) is approximated by a 2-spin
HEA with spins S0

1; S0
2 and Hamiltonian (6.12).

We now want to build up a 2k0+1 -spin DHM starting from such a 2k0 -spin DHM.
As shown in Section 2.1, DHM is a special case where this procedure can be iterated
k times in 2k operations, by using the hierarchical structure of the system resulting
in the recurrence equation (2.5). On the contrary, if the recurrence equations (2.5)
did not hold, in order to build up a 2k -spin DHM one should compute exactly the
partition function, which involves 22k

operations. To our knowledge, for the HEA
model there is no known recursion equation analogous to (2.5). Indeed, the only
recursion equation that one can derive for the HEA is Eq. (5.3), which relies on
the replica approach. To derive a recurrence equation for a function or functional
of a suitably de�ned order parameter without relying on the replica approach is
very di�cult. The origin of this di�culty is nothing but the problem of how to
identify of a suitable order parameter and a function of it, which should replace the
magnetization m and its probability pk (m) in the recursion equation (2.5) of DHM.
Since we have not been able to derive such a recurrence equation without relying
on the replica approach, the construction of a2k -spin HEA model still requires a
computational e�ort of 22k

. It is hence clear that an approximation scheme is needed
to reach the thermodynamic limit k ! 1 for the HEA. We now illustrate this ap-
proximation scheme for DHM �rst, and then generalized it to the HEA in Section 6.2.

Once a 2k0 -spin DHM has been built exactly, we consider2k0 � 1-spin DHM,
where J is replaced by another couplingJ 0. More precisely, such a2k0 � 1-spin
DHM is de�ned by iterating k0 � 1 times Eq. (2.1) with J ! J 0, and for the
sake of clarity its spins will be denoted byS0

1; � � � ; S0
2k 0 � 1 , and its Hamiltonian by

H 0F
k0 � 1[S0

1; � � � ; S0
2k 0 � 1 ]. For k0 = 2 the Hamiltonian of this DHM reads

H 0F
1 [S0

1; S0
2] = � CF J 0

�
S0

1 + S0
2

2

� 2

: (6.2)

Given J , the coupling J 0 is chosen in such a way that the2k0 � 1-spin DHM represents
as well as possible the2k0 -spin DHM, as qualitatively depicted in Fig. 6.1. The
precise meaning of this representation will be illustrated shortly.
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According to the iterative construction of Eq. (2.1), a new DHM is then
constructed by taking two copies of the2k0 � 1-spin DHM. Say that the �rst copy has
spins S0

1; � � � ; S0
2k 0 � 1 and Hamiltonian H 0F

k0 � 1[S0
1; � � � ; S0

2k 0 � 1 ], while the second copy

has spinsS0
2k 0 � 1+1 ; � � � ; S0

2k 0
and Hamiltonian H 0F

k0 � 1[S0
2k 0 � 1+1 ; � � � ; S0

2k 0
]. We make

these two copies interact and form a2k0 -spin DHM with Hamiltonian

H 0F
k0 � 1[S0

1; � � � ; S0
2k 0 � 1 ] + H 0F

k0 � 1[S0
2k 0 � 1+1 ; � � � ; S0

2k 0 ] � J 0Ck0
F

0

@ 1
2k0

2k 0X

i =1

S0
i

1

A

2

: (6.3)

Since each of the DHMs that we make interact represents a2k0 -spin DHM,
the model de�ned by Eq. (6.3) represents a2k0+1 -spin DHM. Once again, this
DHM is then approximated by a 2k0 � 1-spin DHM with coupling, say, J 00, and two
copies of such a2k0 � 1-spin DHM are then taken and coupled again, to obtain
a system representing a2k0+2 -spin DHM. Such a recursive construction is iter-
ated k times, and a system representing a2k0+ k -spin DHM is obtained. Setting
J0 � J; J1 � J 0; J2 � J 00; � � � , this procedure establishes a relation betweenJk and
Jk+1 . Since at each stepk of this procedure we double the system size, this �ow
physically represents the RG �ow of the coupling Jk under reparametrization of the
unit length 2k ! 2k+1 .

Let us now describe how a2k0 -spin system has been approximated by a2k0 � 1-
spin system. Consider a physical observableOF

k0
(�J ) of the 2k0 -spin DHM, whose

spins areS1; � � � ; S2k 0 , and whose Hamiltonian isH F
k0

[S1; � � � ; S2k 0 ]. Consider also
an observableOF

k0 � 1(�J 0) of the 2k0 � 1-spin DHM, whose spins areS0
1; � � � ; S0

2k 0 � 1 ,

and whose Hamiltonian isH 0F
k0 � 1[S0

1; � � � ; S0
2k 0 � 1 ]. The normalized magnetizations

on the left and right half of the 2k0 -spin system are

mL �
1

2k 0 � 1

P 2k 0 � 1

i =1 Si
s

E~S

� �
1

2k 0 � 1

P 2k 0 � 1

i =1 Si

� 2
� ;

mR �
1

2k 0 � 1

P 2k 0

i =2 k 0 � 1+1 Si
s

E~S

� �
1

2k 0 � 1

P 2k 0

i =2 k 0 � 1+1 Si

� 2
� (6.4)

respectively, where E~S stands for the thermal average at �xed temperature T,
performed with the Boltzmann weight exp(� �H F

k0
). Similarly, the normalized

magnetizations on the left and right half of the 2k0 � 1-spin system are

m0
L �

1
2k 0 � 2

P 2k 0 � 2

i =1 S0
is

E ~S0

� �
1

2k 0 � 2

P 2k 0 � 2

i =1 S0
i

� 2
� ;

m0
R �

1
2k 0 � 2

P 2k 0 � 1

i =2 k 0 � 2+1 S0
is

E ~S0

� �
1

2k 0 � 2

P 2k 0 � 1

i =2 k 0 � 2+1 S0
i

� 2
� (6.5)
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respectively, whereE ~S0 stands for the thermal average with the Boltzmann weight

exp(� �H 0F
k0 � 1).

According to Kadano�'s block-spin rule, in order that the 2k0 � 1-spin DHM might
be a good approximation of the2k0 -spin DHM, one should map the block of spins
in the left half of the 2k0 -spin DHM into the block of spins in the left half of the
2k0 � 1-spin DHM, and so for the right half. Accordingly, one should �nd a method
which quantitatively implements the qualitative equalities

mL = m0
L ; mR = m0

R : (6.6)

To this end, we choose the following observables

OF
k0

(�J ) � E~S [mL mR ] ;

OF
k0 � 1(�J 0) � E~S0

�
m0

L m0
R

�
: (6.7)

According to Eqs. (6.6), Kadano�'s block-spin rule described in Eq. (6.6) can be
practically implemented by imposing the constraint

OF
k0

(�J ) = OF
k0 � 1(�J 0): (6.8)

For any �xed J , Eq. (6.8) is the equation determining J 0 as a function of J , as
the value of the coupling of the2k0 � 1-spin DHM such that this is the best-possible
approximation of the 2k0 -spin DHM. According to the above discussion, Eq. (6.8) is
the RG equation relating the coupling J at the scale2k to the coupling J 0 at the
scale2k+1 .

The RG Eq. (6.8) is not exact, because it relies on the fact that a2k0 -spin
DHM is approximated by a 2k0 � 1-spin DHM. Even though, such an approximation
becomes asymptotically exact for largek0, as we will explicitly show in the following.
Another important issue of this RG scheme is that there is a considerable amount of
freedom in the choice of the observablesOF

k0
; OF

k0 � 1, and that the RG equations (6.8)
depend on this choice. This is the reason why in what follows the whole method will
be systematically tested a posteriori, by comparing its predictions to the predictions
obtained heretofore with other methods, if these exist. As we will show shortly, the
encouraging outcome of this comparison makes us guess that ifk0 is large enough,
the results of this RG approach do not depend on the choice of the observables, if
this is reasonable.

Quite large values ofk0 can be achieved by using the hierarchical structure of
the system. Indeed, thanks to this structure the thermal averages appearing in Eqs.
(6.7), which would involve 22k 0 terms in a brute-force computation, can be computed
in 2k0 operations, as shown in Appendix G.

Back to the predictions of Eq. (6.8), one can show that for anyk0 they reproduce
the interval (2.3). Indeed, for � F > 1 Eq. (6.8) givesJ 0 < J 8J; � , in such a way that
the coupling J goes to0 when the RG transformation is iterated many times, and no
phase transition occurs. On the contrary, for � F < 1=2 one hasJ 0 > J 8J; � , in such
a way that the model is thermodynamically unstable. The fact that the interval
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Figure 6.2. �J 0 as a function of �J for CF = 1 :2; k0 = 8 , and point (K c; K c) where the
two curves intersect. According to the discussion in the text, � Q � RS

c F implies that
J 0 Q J .

(2.3) is reproduced is a �rst test of the correctness of the real-space approach. For
1=2 < � F < 1 there is a �nite inverse temperature � RS

c F such that for � < � RS
c F one has

J 0 < J , while for � > � RS
c F one hasJ 0 > J , where the label RS stands for real space.

For � = � RS
c F , J 0 = J , i. e. the system is invariant under reparametrization of the

length scale2k ! 2k+1 . Hence� RS
c F is the critical temperature of the model [161, 163].

The RG transformation (6.8) is illustrated in Fig 6.2, where �J 0 is depicted as a
function of �J for a given CF and k0-value. Interesting properties about universality
emerge from this plot. Indeed, the curve�J 0 as a function of �J intersects the
straight line �J for a unique value of the coupling�J � K c. Now let us iterate the
RG transformation several times, starting with a given J = J0, then determining
J 0 = J1; J 00= J2, and so on. At the �rst step of the iteration, J1 = J0 if and only
if �J 0 = K c. It follows that � RS

c F = K c=J0. Similarly, at the next steps K c=J0 is
the only value of the inverse temperature such thatJk = J0 8k. SinceK c is de�ned
as the solution of the equationsOF

k0
(K c) = OF

k0 � 1(K c), it does not depend on the
initial condition J0, and thus it is universal. As an analogy,K c corresponds to the
dimensionless nearest-neighbor critical coupling of the Ising model, which has been
extensively measured in three dimensions by means of Monte Carlo Renormalization
Group (MCRG) calculations [5, 140]. On the other hand, dimensional quantities
like � RS

c F = K c=J0 are not universal. Indeed,� RS
c F = K c=J0 depends on the coupling

J0 at the initial step of the iteration, i. e. at microscopic length scales. This is in
agreement with the very general RG picture of ferromagnetic systems like the Ising
model [163], where the critical temperature is not universal because it depends on
the microscopic properties of the lattice.

An important universal quantity is the critical exponent � F , de�ned in terms
of the correlation length by Eq. (2.8). According to the general RG theory in the
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neighborhood of the critical �xed point K c, � F is given by

� F =
log 2

log � F RS
; (6.9)

where � F RS is here de�ned as

� F RS �
d�J 0

d�J

�
�
�
�
�J = K c

: (6.10)

Since in this case the RG transformation involves only one variableJ , � F RS is
simply the largest eigenvalue of the1 � 1 matrix linearizing the transformation in
the neighborhood of the critical �xed point. A more complex case where the RG
transformation involves an in�nite number of variables will be discussed in Section
6.2. In Fig. 6.3 we depict � F RS from Eq. (6.10) together with the values of � F

(Eq. (A.16)) presented in [46] resulting from the �eld-theory approach of Section
2.1 and Appendix A, as a function of 1=2 < � F < 1. The �eld-theory method
makes the exact prediction (A.17) for � F in the region 1=2 < � F < 3=4 where the
mean-�eld approximation is exact, while it estimates � F in the non-mean-�eld region
3=4 < � F < 1 by means of a resummed� F = � F � 3=4-expansion. The �rst order of
this expansion is given by Eq. (A.19).

As k0 is increased,� F RS computed with the real-space method approaches theThe real-space RG
approach makes a
prediction for the
critical exponents

of Dyson's
Hierarchical

Model which is in
good agreement

with that obtained
with other

methods.

�eld-theory value � F , con�rming the validity of the real-space RG approach. Notice
that according to Eqs. (A.17) and (A.19), the derivative with respect to � F of � F is
discontinuous at � F = 3=4. On the contrary, � F RS is a smooth function of � F . This
discrepancy is presumably due to the fact thatk0 is not large enough, and should
disappear for largerk0, because the real-space approach is exact fork0 ! 1 .

Since the real-space approach for DHM reproduces the interval (2.3) and, for
large k0, also the critical exponents obtained with other methods, it is natural to
generalize it to the HEA model. Accordingly, its predictions will be compared to
those obtained with the replica approach in the mean-�eld region1=2 < � � 2=3
where the latter is predictive, yielding a precise consistency test of the two approaches.
On the contrary, in the non-mean-�eld region 2=3 < � < 1 the replica approach
is not predictive, and thus a quantitative comparison of the values of the critical
exponents would be meaningless. Even though, an interesting question is whether
the real-space approach is predictive in this non-mean-�eld region. These points will
be addressed in the following Section.

6.2 The RG approach in real space for the Hierarchical
Edwards-Anderson model

It turns out that the de�nition of the HEA which is suitable to implement the
real-space approach is the one where the interaction energies are rede�ned by Eq.
(5.19). Accordingly, in what follows the HEA will be de�ned by Eqs. (2.10), (5.19),
and we set for simplicity H0[S] = 0 .
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Figure 6.3. � F RS and � F as a function of � F for 1=2 < � F < 1. The black dashed line
represents the upper critical dimension� F = 3=4 discussed in Section 2.1 and Appendix
A. The points represent � F RS for 5 � k0 � 12. The orange dashed curve and the red
solid curve represent� F obtained with the �eld-theory method in the mean-�eld region
1=2 < � F � 3=4 and in the non-mean-�eld region 3=4 < � F < 1 respectively. The orange
dashed curve represent the exact mean-�eld value of� F given by Eq. (A.17), and the red
continuous curve represents� F computed with the resummed� F = � F � 3=4-expansion
[46] (see Eq. (A.19) for the �rst order of the � F -expansion).

6.2.1 Simplest approximation of the real-space method

Let us now illustrate how to implement in the spin-glass case the real-space approach
presented in Section 6.1 fork0 = 2 . The reader should follow our derivation in close
analogy with the one exposed in Section 6.1 for DHM. A HEA model with22 spins
S1; � � � ; S4 is built up exactly by means of the recursion equation (2.10). Setting
J ij � C2=2J ij , the Hamiltonian of this model is

H2[S1; � � � ; S4] = �

(

[J 12S1S2 + J 34S3S4] +
C2

2
[J 13S1S3 + J 14S1S4 +

+ J 23S2S3 + J 24S2S4]

)

: (6.11)

By de�nition, the couplings fJ ij gij are IID random variables, and the probability
distribution of each of them will be denoted by p(J ).

Thus, we consider a2-spin HEA model, de�ned by iterating once Eq. (2.10).
For the sake of clarity its spins will be denoted byS0

1; S0
2, and its Hamiltonian reads

H 0
1[S0

1; S0
2] = �J 0

12S0
1S0

2: (6.12)

For each realization of the couplingsfJ ij gij , we chooseJ 0
12 as a function of

fJ ij gij in such a way that the 2-spin HEA model yields the best-possible approxi-
mation of the 22-spin HEA. This procedure is analogous to that exposed in Section
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6.1 for DHM, and is qualitatively depicted in Fig. 6.1. By choosing J 0
12 in this way,

the distribution p(J ) induces a distribution of J 0
12, that we will denote by p0(J 0

12).
The technical details on howp0(J ) is computed from p(J ) will be given shortly.

According to the iterative construction of Eq. (2.10), a new HEA is then
constructed by taking two realizations of the 2-spin HEA. Each realization is given
by drawing the coupling J 0 according to its probability distribution p0(J 0). Say that
the �rst realization has spins S0

1; S0
2 and Hamiltonian H 0

1[S0
1; S0

2] = �J 0
12S0

1S0
2, while

the second realization has spinsS0
3; S0

4 and Hamiltonian H 0
1[S0

3; S0
4] = �J 0

34S0
3S0

4.
We make these two copies interact and form a22-spin HEA with Hamiltonian

H 0
1[S0

1; S0
2] + H 0

1[S0
3; S0

4] �
C2

2
[J 0

13S0
1S0

3 + J 0
14S0

1S0
4 + J 0

23S0
2S0

3 + J 0
24S0

2S0
4]; (6.13)

where J 0
13; J 0

14; J 0
23; J 0

24 have been drawn independently from the distribution p0(J 0).
Since each of the HEA models that we made interact represents a22-spin HEA,
the model de�ned by Eq. (6.13) represents a23-spin HEA. At the next step of the
iteration, this HEA model is again approximated by a 2-spin HEA with coupling,
say, J 00

12, and the probability distribution p00(J 00
12) of J 00

12 is computed from p0(J 0).
Two realizations of such a2-spin HEA are then taken and coupled again, to obtain
a system representing a24-spin HEA. This step is repeatedk-times, and a system
representing a22+ k -spin HEA is obtained.

Setting p0(J ) � p(J ); p1(J ) � p0(J ); p2(J ) � p00(J ); � � � , this procedure estab-
lishes a relation betweenpk (J ) and pk+1 (J ). Since at each stepk of this procedure
we double the system size, this physically represents the RG �ow of the probabil-
ity distribution of the coupling pk (J ) under reparametrization of the unit length
2k ! 2k+1 .

A 22-spin HEA has been approximated by a2-spin HEA as follows. Consider a
physical observableO2(f � J ij gij ) of the 22-spin HEA, depending on the6 couplings
fJ ij gij and � through the dimensionless quantitiesf � J ij gij . Consider also an ob-
servableO1(� J 0

12) of the 2-spin HEA, depending on the couplingJ 0
12 and � through

the dimensionless quantity � J 0
12. We recall that in the real-space approach for DHM

with k0 = 2 we built up the observables (6.7) as products of the magnetizations
inside the left and right-half of the 22-spin DHM and of the 2-spin DHM. In a sense
that choice was natural, because we know that the magnetization is the correct
order parameter of DHM. When one tries to generalize that choice to the HEA,
one has to face the fact that the order parameter for non-mean-�eld spin glasses
is not known, and so the choice of the observables is more di�cult and ambiguous.
Inspired by the fact that the order parameter in the mean-�eld case is the overlap
[133, 136, 137, 119, 130], here we will build up O2; O1 as thermal averages of products
of spin overlaps. We want to stress that to a certain extent this choice relies on
the underlying assumption that the overlap is still the good quantity describing the
physics of the system, and should be thus be veri�ed a posteriori. In particular, there
is no guarantee that this choice is correct for values of� lying in the non-mean-�eld
region 2=3 < � < 1. A detailed analysis of the predictions of this real-space approach
for the critical exponents in this region will be exposed in the following.
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To build up O2 and O1, consider two real replicas ~S1; ~S2 of the spins of the

22-spin model, and two real replicas~S01; ~S02 of the spins of the2-spin model. The
normalized overlap between~S1 and ~S2 on the left and on the right leaf of the 22-spin
HEA are

QL =
S1

1 S2
1 + S1

2 S2
2

2s

E~S1 ;~S2

� �
S1

1 S2
1 + S1

2 S2
2

2

� 2
� ;

QR =
S1

3 S2
3 + S1

4 S2
4

2s

E~S1 ;~S2

� �
S1

3 S2
3 + S1

4 S2
4

2

� 2
� (6.14)

respectively, whereE~S denotes the thermal average at �xed disorderfJ g ij and
temperature, performed with the Hamiltonian (6.11). The normalized overlap

between ~S01 and ~S02 on the left and on the right leaf of the 2-spin HEA are

Q0
L = S01

1 S02
1 ;

Q0
R = S01

2 S02
2 (6.15)

respectively. Following Kadano�'s decimation rule, we want to map the 22-spin
HEA into the 2-spin HEA by imposing that the spins S1; S2 correspond to the spin
S0

1, and that the spins S3; S4 correspond to the spinS0
2. This mapping results in a

correspondence between the overlaps in Eq. (6.14) and those in Eq. (6.15), which
can be qualitatively written as

QL = Q0
L ; QR = Q0

R : (6.16)

Making the following choice for the observables

O2(f � J ij g) � E~S1 ;~S2 [QL QR ] ; (6.17)

O1(� J 0
12) � E~S01 ;~S02

�
Q0

L Q0
R

�
;

Kadano�'s decimation rule encoded in Eq. (6.16) can be practically implemented by
enforcing the constraint

O2(f � J ij g) = O1(� J 0
12); (6.18)

where E ~S0 denotes the thermal average at �xed disorderJ 0
12 and temperature,

performed with the Hamiltonian (6.12). For any realization of the couplings fJ ij gij ,
Eq. (6.18) determinesJ 0

12 as a function of fJ ij gij in such a way that the 2-spin
HEA yields the best-possible approximation of the22-spin HEA. The mapping (6.18)
results into a mapping between the probability distribution p(J ) of each of the
couplings fJ ij gij and p0(J 0

12). Indeed, Eq. (6.18) can be easily rewritten as

O2(f � J ij g) = tanh 2(� J 0
12):

and thus the mapping betweenp(J ) and p0(J 0) is

p0(J 0) =
Z "

Y

i<j

p(J ij )dJ ij

#
1
2

"

�
�

J 0�
1
�

arctanh
� q

O2(f � J ij g)
��

+

+ �
�

J 0+
1
�

arctanh
� q

O2(f � J ij g)
�� #

: (6.19)
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Eq. (6.19) is the RG �ow relating the distribution of the disorder p(J ) at length
scale2k with the distribution of the disorder p0(J 0) at length scale2k+1 , and is the
generalization of Eq. (6.8) holding for DHM. We recall that the RG equation (6.8)
for DHM yields a �ow for a number J , while Eq. (6.19) yields a �ow for a function
p(J ), which can be seen as a setf p(J )gJ of an in�nite number of degrees of freedom,
each of which is the value ofp(J ) at a point J . Accordingly, the solution of Eq.
(6.19) is slightly more complicated than that of Eq. (6.8), and it has been worked
out with two independent techniques. The �rst one transforms Eq. (6.19) into a
recursion equation relating the moments ofp(J ) to the moments of p0(J 0), which is
built up perturbatively by means of a high-temperature expansion, and is presented
in Section 6.2.1.1. The second one is purely numerical, and solves Eq. (6.19) by
means of the population dynamics algorithm, as illustrated in Section 6.2.1.2. In
the following two Sections we thus illustrate these solution techniques for Eq. (6.19),
and analyze the resulting �xed-points structure and show how the critical exponents
can be calculated in thek0 = 2 -approximation. Then, we illustrate how the very
same techniques can be implemented in better approximations of the real-space
approach, i. e. k0 > 2, and analyze the predictions of the real-space approach for
the critical exponents as a function ofk0.

6.2.1.1 Solution of the real-space RG equations with the high-temperature
expansion

Since it is not easy to handle analytically the continuous set of degrees of freedom
f p(J )gJ in Eq. (6.19), it is better to transform the latter into an equation for
the moments of p(J ); p0(J 0). Since there is�J -symmetry, p(J ); p0(J 0) are even
functions of J ; J 0 respectively. Hence, setting

ma �
Z

dJ p(J )J a;

m0
a �

Z
dJ 0p0(J 0)(J 0)a;

one hasm2a+1 = m0
2a+1 = 0 , and Eq. (6.19) can be transformed into an equation

relating f m2aga to f m0
2aga. Indeed, let us call the 6 couplings J 12; J 13; : : : ; J 34

J 1; � � � ; J 6 respectively, and integrate both sides of Eq. (6.19) with respect toJ 0

m0
2a =

Z " 6Y

� =1

dJ � p(J � )

#
1

� 2a

�
arctanh 2a

� q
O2(f � J 
 g
 )

��

� F2a[f m2bgb]: (6.20)

The function F2a depends in a complicated way on the even momentsf m2bgb, and
we have not been able to compute it explicitly. Still, this dependence can be sys-
tematically worked out by expanding in powers of � the square brackets in the
right-hand side of Eq. (6.20). If we truncate the expansion at a given order� 2m , the
right-hand side of Eq. (6.20) becomes a linear combination off m2bgb=1 ;:::;m which
can be computed explicitly. Hence, if we take Eq. (6.20) fora = 1 ; : : : ; m, we obtain
a set of equations relatingf m0

2aga=1 ;:::;m to f m2bgb=1 ;:::;m . This set of equations is
nothing but the �ow p(J ) ! p0(J 0) represented with the discrete set of degrees of
freedom f m2aga=1 ;:::;m ! f m0

2bgb=1 ;:::;m .
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In Appendix H we show explicitly these equations form = 2 , Eq. (H.1), and
discuss their solution. In particular, we show that if we consider only the leading
terms in the � -expansion, the RG equations relatingf m0

2aga=1 ;:::;m to f m2bgb=1 ;:::;m

reproduce the condition � > 1=2 that has been previously derived in Eq. (4.12). On
the contrary, they do not reproduce the condition � < 1. This is presumably due to
the fact that the present approach implements the lowest-order approximationk0 = 2
of the real-space method. Indeed, in Section 6.2.2 we will show that the numerical
implementation of the real-space method fork0 > 2 yields a better description of
the region where� signi�cantly deviates from 1=2, and the condition � < 1 should
be recovered fork0 large enough.

It is easy to see that Eq. (H.1) has an attractive high-temperature �xed point
m2a = 0 8a, and an attractive low-temperature �xed point m2a = 1 8 a. These �xed
points are separated by a repulsive critical �xed point f m�

2aga=1 ;:::;m . In order to
investigate the latter, one can introduce a critical temperature � RS

c such that Eq.
(H.1) converges tof m�

2aga=1 ;:::;m for � = � RS
c . This �xed point is determined by

means of an expansion in powers of� � 1=2, physically representing the distance from
the purely mean-�eld regime � = 1=2 of the model. The critical exponent � de�ned
by Eq. (5.14) is expressed in terms of the largest eigenvalue� RS of the matrix
linearizing Eq. (H.1) in the neighborhood of f m�

2aga=1 ;:::;m through the relation

� =
log 2

log � RS
;

and is given by Eq. (H.7).

This computation can be performed to higher orders. If the expansion is done
up to O(� 2m ), � RS can be computed to order(� � 1=2)m� 1. The calculation has
been done form = 5 by means of a symbolic manipulation program [170], and the
result is

� RS = 1 + 2 log 2 ( � � 1=2) �
219(log 2)2

20
(� � 1=2)2 +

�
113453(log 2)3

1200
(� � 1=2)3 +

56579203(log 2)4

403200
(� � 1=2)4 +

+ O(( � � 1=2)5): (6.21)

Even though only the �rst four terms of the expansion are available, Eq. (6.21)
yields an accurate estimate of� RS in a relatively wide range of values of� . This is
shown in Table 6.1, where the values of� (i )

RS obtained by truncating the expansion
(6.21) to order (� � 1=2)i are listed for di�erent values of 0:54 � � � 0:62 and i .
Since� (i )

RS increases by less than1% when increasingi from 3 to 4, in this region we
can extract the exact value of � RS with good accuracy.

It turns out that the high-temperature expansion cannot be implemented for
k0 > 2, because the symbolic manipulations become too di�cult. Still, the values of
the critical exponent � computed with the high-temperature expansion fork0 = 2
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Table 6.1. � ( i )
RS as a function of i for di�erent values of 0:54 � � � 0:62. The relative

change in � ( i )
RS obtained as one increases the orderi from 3 to 4 is less than1%, and

yields an estimate of the error on the critical exponent� .

� � (1)
RS � (2)

RS � (3)
RS � (4)

RS

0.54 1.05545 1.04703 1.04502 1.0451
0.58 1.1109 1.07723 1.06111 1.06244
0.62 1.16636 1.0906 1.03619 1.04291

will serve as an important test of a di�erent, purely numerical implementation of the
RG equations (6.19) fork0 = 2 , that will be illustrated in the following Section. Once
the agreement between the numerical and analytical approach will be established
for k0 = 2 , the numerical method will be easily implemented fork0 > 2, yielding an
estimate of the exact value of the exponents obtained ask0 is increased.

6.2.1.2 Solution of the real-space RG equations with the population-
dynamics method

The RG equations (6.19) are nonlinear integral equations, and it is di�cult to solve
them analytically and determine p0(J 0) as a functional of p(J ). Accordingly, one
can use some numerical methods. Here we describe a stochastic approach known
as population dynamics, yielding an extremely simple and powerful solution of Eq.
(6.19). Historically, population dynamics appeared �rst in the theory of localization
of electrons in disordered systems [2], and was later developed for spin glasses [116]
and constraint-satisfaction problems [115].

In population dynamics one represents the functionp(J ) as a population of
P numbers fJ i gi =1 ;:::;P , where eachJ i has been drawn with probability p(J i ).
Accordingly if P is large enough, once we knowp(J ) we can compute the population
fJ i gi , while once we know the populationfJ i gi we can computep(J ) from the
relation

p(J )dJ �
1
P

PX

i =1

I [J i 2 (J; J + dJ)]; (6.22)

where the function I [J i 2 (J; J + dJ)] equals one ifJ i 2 (J; J + dJ) and zero
otherwise, and dJ is a suitably chosen small binning interval. Thus, there is a
one-to-one correspondence betweenp(J ) and fJ i gi =1 ;:::;P , and these are di�erent
representations of the same object

p(J ) $ fJ i gi =1 ;:::;P : (6.23)

In practice, once one knows the populationfJ i gi the corresponding p(J ) is
computed by setting

J MAX � max
i

(jJ i j); (6.24)

choosingdJ = 2J MAX =B, and using Eq. (6.22), whereB is a suitably chosen large
integer number.
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Routine 1 Population-dynamics routine
for i = 1 ; : : : ; P

for � = 1 ; : : : ; 6

draw uniformly a random number j in f 1; : : : ; Pg.
set J temp

� = J r .

end

draw uniformly a random sign s = � 1.

set J 0
i = s 1

� arctanh
� q

O2(f � J temp
� g� )

�
.

end

return fJ 0
i gi .

The mapping p(J ) ! p0(J 0) given by Eq. (6.19) yields a mapping between
fJ i gi =1 ;:::;P and the population fJ 0

i gi representingp0(J 0)

p0(J 0) $ fJ 0
i gi =1 ;:::;P : (6.25)

Indeed, oncefJ i gi is known, it is easy to show that one can computefJ 0
i gi by

means of the pseudocode illustrated in Routine 1.
The reader should notice that the population dynamics Routine is extremely

simple and versatile to implement, and that it requires no evaluation of the inte-
grals in the right-hand side of Eq. (6.19). OncefJ 0

i gi is known, this routine is
iterated to compute fJ 00

i gi from fJ 0
i gi , and so on. In particular, by iterating k

times Routine 1 one can compute the populationfJ k i gi representing the probability
distribution pk (J k ). Accordingly, the algorithm is named population dynamics after
the fact that k is analogous to the dynamical-evolution time of the populationfJ k i gi .

The structure of the �xed points of Eq. (6.19) can be now investigated numer-
ically. Indeed, by iterating the population-dynamics Routine at �xed � and by
computing pk (J ) as a function of k, it is easy to show that there is a �nite value
of � = � RS

c such that for � < � RS
c pk (J ) converges to� (J ) as k is increased, while

for � > � RS
c pk (J ) broadens, i. e. its variance is an increasing function ofk. The

reader should observe that this �ow to weak and strong coupling forp(J ) in the
high and in the low-temperature phase respectively is the analog of the �ow to
weak and strong coupling for the numberJ in the real-space approach for DHM,
depicted in Fig. (6.2). The physical interpretation of these two temperature regimes
is that for � < � RS

c pk (J ) �ows to an attractive high-temperature �xed point with
J = 0 where spins are decorrelated, while for� > � RS

c it �ows to an attractive
low-temperature �xed point with J = 1 where spins are strongly correlated. This
fact implies that as the temperature is lowered belowTc a phase transition occurs,
and this transition yields a collective and strongly interacting behavior of spins in
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the low-temperature phase. Even though this result has been derived in thek0 = 2 -
approximation, the implementations of the real-space method fork0 > 2 will con�rm
this picture. The existence of a �nite-temperature phase transition for a diluted
version of the HEA model has been established heretofore with MC simulations by
means of �nite-size scaling techniques [65]. Since the critical properties of such a
diluted version of the HEA should be the same [65] as those of the HEA de�ned
here, the real-space approach con�rms the picture on the criticality of the system
given by MC simulations.

An important feature of the population-dynamics approach is that for � < 1=2
the thermodynamic limit is ill-de�ned, which has been discussed in Part III, Eq.
(4.12). Indeed, the numerics show that for� ! 1=2 � RS

c ! 0, in such a way that
the system is always in the low-temperature phase, i. e. the variance ofpk (J ) is
an increasing function ofk, and the thermodynamic limit k ! 1 is ill-de�ned. On
the other hand, according to Eq. (4.12) one should have that� RS

c ! 1 as � ! 1,
because for� > 1 no �nite-temperature phase transition occurs. Unfortunately, this
condition is not reproduced by the real-space approach. As discussed in Section
6.2.1.1, this is presumably due to the fact that k0 is small, i. e. that Eq. (6.19)
implements only the lowest-order approximation of the real-space method (k0 = 2 ).
This hypothesis is supported by the fact that the estimate of the critical exponents
that we will give in what follows signi�cantly improve as k0 is increased in the region
where� di�ers signi�cantly from 1=2, while they hardly change in the region� � 1=2,
implying that the closer � to 1, the larger the values ofk0 needed. Accordingly, for
� ! 1 a signi�cantly better description would be obtained if larger values of k0 were
accessible, and the� < 1-limit would be recovered.

The numerical implementation of Routine 1 also shows that there is a repulsive
critical �xed point, that we will call p� (J ), which is reached by iterating Routine 1
with � = � RS

c

p� (J ) =
Z " 6Y

� =1

p� (J � )dJ �

#
1
2

"

�
�

J �
1

� RS
c

arctanh
� q

O2(f � RS
c J � g� )

��
+

+ �
�

J +
1

� RS
c

arctanh
� q

O2(f � RS
c J � g� )

�� #

: (6.26)

This critical �xed point is analogous to the critical value of the coupling K c in the
real-space method for DHM, depicted in Fig. (6.2). In the numerical implementation
both � RS

c and p� (J ) are computed by iterating Routine 1 and by dynamically
adjusting � at each step to its critical value, which is approximately determined as
the value of � such that

R
dJ 0p0(J 0)(J 0)2 =

R
dJ p(J )J 2. In order to do so, one

starts with two values of the temperature Tmin ; TMAX such that

Tmin < T RS
c < T MAX ; (6.27)

and then iterates the bisection Routine 2.
Each iteration k of Routine 2 is one step of the RG transformation performed at

temperature T = ( Tmin + TMAX )=2, and if the second moment ofp0(J 0) is smaller
than that of p(J ), T is in the high-temperature phase, and the interval[Tmin ; TMAX ]
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Routine 2 Bisection routine
for k = 1 ; : : : ; kMAX

set T = ( Tmin + TMAX )=2.

set &2 = 1
P

P P
i =1 J 2

i .

compute fJ 0
i gi from Routine 1 and set J i = J 0

i 8i = 1 ; : : : ; P.

set &02 = 1
P

P P
i =1 J 02

i .

if &02 > &2 set Tmin = Tmin + x(TMAX � Tmin ).

else set TMAX = TMAX � x(TMAX � Tmin ).

end

return TRS
c = T and fJ i gi $ p� (J )

is reduced by0 < x < 1 by lowering the upper limit TMAX , and vice versa ifT is
in the low-temperature phase. By iterating this procedure kMAX � 1 times, the
Routine returns an estimate of the critical temperature TRS

c = T and of the critical
�xed point fJ i gi $ p� (J ).
Since population dynamics is a stochastic approach, this bisection Routine is not
deterministic, and might give slightly di�erent results when one runs it several times
if the population size P is not large enough. In particular, such a stochastic character
can introduce some instabilities when approaching the repulsive �xed point, and
these might let the bisection Routine �ow towards the low or high-temperature
�xed point, far away from p� (J ). Accordingly, the parameter x has been chosen by
hand in order to minimize this instability, and the numerical implementation of the
bisection Routine has shown thatx � 0:1 yields a good estimate of the critical �xed
point.

The critical �xed point p� (J ) obtained with this bisection method is depicted
in Fig. 6.4 for a given � -value, where we also representp� (J ) obtained with the
k0 = 3 ; 4-approximations that will be described in what followins.

Once the �xed point p� (J ) has been computed numerically, the critical exponents
can be determined by linearizing the transformation (6.19) in the neighborhood
of p� (J ). Being the RG equations (6.19) a �ow for a continuous set of degrees of
freedomf p(J )gJ , the matrix linearizing the RG transformation in the neighborhood
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Figure 6.4. Fixed point p� (J ) as a function of J for � = 0 :5146 and k0 = 2 ; 3; 4,
obtained by iterating Routine 2 starting with p0(J ) = 1 =

p
2� e�J 2 =2. For k0 = 2 ,

kMAX = 50; P = 2 � 106; x = 0 :1 and B = 96. For k0 = 3 , kMAX = 50; P = 106; x = 0 :1
and B = 96. For k0 = 4 , kMAX = 20; P = 2 � 104; x = 0 :1 and B = 96. p� (J ) has
compact support and a convergent behavior ask0 is increased. This convergence indicates
that k0 is large enough in such a way that the real-space approach is asymptotically
exact for this value of � .

of p� (J ) has continuous indicesJ ; J 0, and is de�ned as

M RS
J ;J 0 �

�p 0(J )
�p (J 0)

�
�
�
�
p= p� ; � = � RS

c

=
6X


 =1

Z
2

4
6Y

� 6= 
 =1

p� (J � )dJ �

3

5 �

�
1
2

"

�
�

J �
1

� RS
c

arctanh
� q

O2(f � RS
c J � g
; J 0

� )
��

+

+ �
�

J +
1

� RS
c

arctanh
� q

O2(f � RS
c J � g
; J 0

� )
�� #

; (6.28)

where f � RS
c J � g
; J 0

� � f � RS
c J 1; : : : ; � RS

c J 
 � 1; � RS
c J 0; � RS

c J 
 +1 ; : : : ; � RS
c J 6g and in

the second line of Eq. (6.28) Eq. (6.19) has been used.

In the rigorous treatment [45] of the � F -expansion for DHM, the linearization of
the transformation pk (m) ! pk+1 (m) in the neighborhood ofp� (m) is formulated in
terms of a linear functional acting on a suitably de�ned space of functions� (m), and
the critical exponents are extracted from the eigenvalues of this functional. These
eigenvalues are determined by the theory of linear functionals, in particular by the
theory of Hermite polynomials. Similarly, here the matrix M RS de�nes a linear
functional L acting on a suitably de�ned space of functions� (J ), and yielding a
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function L [� ](J )

L [� ](J ) �
Z

dJ 0M RS
J ;J 0� (J 0):

Unfortunately, the complicated form (6.28) of M RS did not allow for an analytic
treatment, and in particular the spectrum of M RS , and so the critical exponents,
could not be determined in terms of the spectrum of well-known linear functionals.
Hence, a completely numerical analysis of the spectrum ofM RS has been done.
This analysis is illustrated in Appendix I. As a result, the critical exponent � de�ned
by Eq. (5.14) is determined from the spectrum ofM RS . In Fig. 6.5 we depict
� (n � ) obtained with this k0 = 2 -approximation, � (n � ) obtained with the k0 = 3 ; 4-
approximations that will be discussed in what follows, and� RS obtained with the
high-temperature expansion as a function of� . We also depict the prediction for
21=� of the replica approach discussed in Chapter 5, in both the mean-�eld region
� � 2=3 and the non-mean-�eld region � > 2=3. Fig. 6.5 shows that the prediction
� RS for 21=� obtained with the high-temperature expansion and the prediction � (n � )

for 21=� obtained with population dynamics are in excellent agreement, con�rming
the validity of both methods. Even though, the agreement between� RS ; � (n � ) and
21=� obtained with the replica approach is good only if � is su�ciently close to 1=2.
As we will see shortly, this discrepancy progressively disappears when implementing
approximations with k0 > 2. Since these have been developed along the lines of the
k0 = 2 -approximation, in the following Section we will sketch only the main steps
of the derivation of the real-space RG equations fork0 > 2, and of the resulting
computation of the critical exponents.

6.2.2 Improved approximations of the real-space method

In the real-space approach developed in Section 6.2.1 a2k0 -spin HEA is approximated
by a 2k0 � 1-spin HEA, with k0 = 2 . This approximation can be implemented for
larger k0 and, as discussed above, it becomes asymptotically exact fork0 ! 1 . In
order to generalize the real-space approach tok0 > 2, let us consider a2k0 -spin HEA
with spins S1; : : : ; S2k 0 and Hamiltonian Hk0 [~S], where Hk0 is obtained by iterating
the recursion equations (2.10), (5.19). Let us setC2=2J ij � J ij , where J ij are the
couplings de�ned in Eq. (2.10), (5.19).

Let us then consider a2k0 � 1-spin HEA with spins S0
1; : : : ; S0

2k 0 � 1 and Hamilto-

nian Hk0 � 1[~S0], where Hk0 � 1 is obtained by iterating the recursion equations (2.10),
(5.19). Let us setC2=2J 0

ij � J 0
ij , where J 0

ij are the couplings de�ned in Eq. (2.10),
(5.19). Let us also call theM � 2k0 (2k0 � 1)=2 couplings J 12; J 13; : : : ; J 2k 0 � 1 2k 0

J 1; � � � ; J M respectively, and let us call the M 0 � 2k0 � 1(2k0 � 1 � 1)=2 couplings
J 0

12; J 0
13; : : : ; J 0

2k 0 � 1 � 1 2k 0 � 1 J 0
1; � � � ; J 0

M 0 respectively.

According to the analysis of Section 6.2.1, for each sample of the couplings
fJ � g� we choosefJ 0

� g� as a function of fJ � g� in such a way that the 2k0 � 1-spin
HEA yields the best-possible approximation of the2k0 -spin HEA. This procedure is
qualitatively depicted in Fig. 6.6 for k0 = 3 .

Since in this case the number of couplings of the2k0 � 1-spin HEA is M 0, we
need a set ofM 0 equations to determine the optimal couplingsfJ 0

� g� . This set of
equations ensuring that the 2k0 � 1-spin HEA approximates the 2k0 -spin HEA can
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Figure 6.5. 21=� as a function of � . The red points represent � (n � ) computed with the
population-dynamics implementation of the real-space RG equations withk0 = 2 and
48 � B � 96; kMAX = 50; 106 � P � 2 � 107; x = 0 :1 and initial distribution p0(J ) =
1=

p
2� e�J 2 =2. The brown points represent� (n � ) computed with the population-dynamics

implementation of the real-space RG equations withk0 = 3 and 48 � B � 100; kMAX =
50; 4 � 104 � P � 106; x = 0 :1 and initial distribution p0(J ) = 1 =

p
2� e�J 2 =2. The

violet points represent � (n � ) computed with the population-dynamics implementation
of the real-space RG equations withk0 = 4 and 48 � B � 96; kMAX = 20; 5 � 103 �
P � 2 � 104; x = 0 :1 and initial distribution p0(J ) = 1 =

p
2� e�J 2 =2. For any �xed k0

one cannot compute� for too large � , because the bisection routine used to determine
the critical �xed point is unstable for large � . The blue dashed curve represents� RS

computed with the high-temperature expansion of the real-space RG equations to fourth
order in � � 1=2, see Eq. (6.21). The black dashed curve and the green dashed curve
represent 21=� obtained with the replica approach presented in Chapter 5: the black
dashed curve represents the mean-�eld value of21=� for � � 2=3 given by the �rst line
in Eq. (5.16), while the green dashed curve represents the two-loop result (5.18) for
� > 2=3. The orange dashed curve represents the upper critical dimension� = 2 =3
resulting from the replica approach and discussed in Chapter 5.

be obtained by consideringM 0 physical observablesf O�
k0

(f � J 
 g
 )g� =1 ;:::;M 0 of the
2k0 -spin HEA, depending on theM couplings fJ � g� and on � through the dimen-
sionless quantitiesf � J � g� . Consider alsoM 0 observablesf O�

k0 � 1(f � J 0

 g
 )g� =1 ;:::;M 0

of the 2k0 � 1-spin HEA, depending on the couplingsfJ 0
� g� and on � through the

dimensionless quantity f � J 0
� g� .

In order to build up O�
k0

and O�
k0 � 1, consider two real replicas~S1; ~S2 of the spins

of the 2k0 -spin HEA, and two real replicas ~S01; ~S02 of the spins of the2k0 � 1-spin HEA.
Now consider the2k0 � 1 pairs of contiguous spins(S1; S2); (S3; S4); : : : ; (S2k 0 � 1; S2k 0 )
of the 2k0 -spin HEA, and the normalized overlaps between~S1 and ~S2 on each of the
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Figure 6.6. Approximation of the real-space approach fork0 = 3 . A 23-spin HEA with
spins S1; � � � ; S8 and Hamiltonian H8[~S] is approximated by a 22-spin HEA with spins
S0

1; : : : ; S0
4 and Hamiltonian H2[~S0].

leaves de�ned by these pairs

Q� =
S1

2� � 1S2
2� � 1+ S1

2� S2
2�

2vu
u
t E~S1 ;~S2

" �
S1

2� � 1S2
2� � 1+ S1

2� S2
2�

2

� 2
# ;

where � = 1 ; : : : ; 2k0 � 1, and E~S1 ;~S2 denotes the expectation value with respect

to ~S1; ~S2 with Boltzmann weight e� �H k 0 . Now consider the normalized overlaps
between ~S01 and ~S02 on each of the spins of the2k0 � 1-spin HEA

Q0
� = S01

� S02
� ;

where � = 1 ; : : : ; 2k0 � 1.
Kadano�'s decimation rule is implemented by imposing the correspondence

betweenQ� and Q0
� 8� = 1 ; : : : ; 2k0 � 1. This can be done by choosing the following

observables

O1
k0

(f � J 
 g
 ) = E~S1 ;~S2 [Q1Q2];

O2
k0

(f � J 
 g
 ) = E~S1 ;~S2 [Q1Q3];

: : :

OM 0

k0
(f � J 
 g
 ) = E~S1 ;~S2 [Q2k 0 � 1 � 1Q2k 0 � 1 ]; (6.29)

O1
k0 � 1(f � J 0


 g
 ) = E~S01 ;~S02 [Q0
1Q0

2];

O2
k0 � 1(f � J 0


 g
 ) = E~S01 ;~S02 [Q0
1Q0

3];

: : :

OM 0

k0 � 1(f � J 0

 g
 ) = E~S01 ;~S02 [Q0

2k 0 � 1 � 1Q0
2k 0 � 1 ]; (6.30)

where E~S01 ;~S02 denotes the expectation value with respect to~S01; ~S02 with Boltzmann

weight e� �H k 0 � 1 . The 2k0 -spin HEA can now be approximated by the 2k0 � 1-spin
HEA by enforcing the constraints

O�
k0

(f � J 
 g
 ) = O�
k0 � 1(f � J 0


 g
 ) 8� = 1 ; : : : ; M 0: (6.31)
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In what follows we assume that Eq. (6.31) can be written as

J 0
� = 1=�f � (f � J 
 g
 ); (6.32)

where in Eq. (6.32) we have used the fact that the right-hand side of Eq. (6.31)
depends onfJ 0

� g� through the dimensionless productsf � J 0
� g� .

Now suppose that the couplingsfJ � g are independent and that each of them is
distributed according to a given p(J ). According to Eq. (6.32), the couplingsfJ 0

� g�

are not independent, because the entangled structure of Eq. (6.32) introduces some
correlation between them. Accordingly, the joint probability distribution of fJ 0

� g� is

p0
C (fJ 0

� g� ) =
Z

2

4
M 0
Y

� =1

p(J � )dJ �

3

5
M 0
Y

� =1

�
�

J 0
� �

1
�

f � (f � J 
 g
 )
�

; (6.33)

where the labelC stands for correlated. Hence, starting with a set of uncorrelated
couplings fJ � g� , after one step of the RG transformation we generate some correla-
tion between the couplings. This situation occurs in many cases where one performs
an e�ective reduction of the degrees of freedom of a system under reparametrization
of the length scale. Indeed, it is a quite general fact that if one starts with a set of
degrees of freedom at a given length scaleL , additional degrees of freedom are gener-
ated at the length scale2L . A typical example is the RG �ow for the Ising model in
dimensionsd � 4, where in the e�ective � 4-theory one generates additional� 6; � 8; � � � -
terms after one RG step (see [164, 165, 163, 162, 168] for a general discussion in the
approach à la Wilson and [173] for a discussion in the �eld-theory approach for the
Ising model). Notwithstanding this, it turns out that in the �eld-theory RG approach
[173] these terms are �nite, i. e. non singular in 1=(4 � d), so they do not need to be
absorbed into the renormalization constants, and do not contribute to the critical
exponents. This fact is intrinsically related to the perturbative renormalizability of
the � 4-theory [173], and implies that the RG equations can be written in closed form.

It is not easy to tell if the above correlation can be consistently neglected in this
real-space approach, and the answer to this question could be intrinsically related
to the renormalizability of the theory. In our approach we will not address this
delicate point, and we will simply get rid of the above correlation between theJ 0

� s by
assuming that they are independent, and that each of them is distributed according
to a distribution p0(J 0) given by the average ofM 0 marginalized distributions, each
of which is obtained by integrating p0

C (fJ 0
� g� ) over M 0� 1 couplings

p0(J 0) =
1

M 0

M 0
X

� =1

Z
2

4
M 0
Y


 =1 ;
 6= �

dJ 0



3

5 p0
C (J 0

1; : : : ; J 0
� � 1; J 0; J 0

� +1 ; : : : ; J 0
M 0): (6.34)

By plugging Eq. (6.33) into Eq. (6.34) we obtain the RG equation relating p(J )
to p(J 0)

p0(J 0) =
1

M 0

M 0
X

� =1

Z
2

4
M 0
Y


 =1

p(J 
 )dJ 


3

5 �
�

J 0�
1
�

f � (f � J 
 g
 )
�

: (6.35)
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A procedure along the lines of that presented in Section 6.2.1 can be applied to
Eq. (6.35): once a2k0 -spin HEA has been approximated by a2k0 � 1-spin HEA, one
takes two realizations of the latter and couples them to obtain a system representing
a 2k0+1 -spin HEA, and iterates this procedure. In this way one obtains a sequence
p(J ) � p0(J ); p0(J 0) � p1(J 0); p00(J 00) � p2(J 00); : : : physically representing the RG
�ow of the disorder distribution.

In the numerical implementation p(J ) and p0(J 0) are represented by two popu-
lations, and the RG equations (6.35) are implemented in population dynamics by
generalizing Routine 1. The numerical implementation of Eq. (6.35) shows that the
main qualitative features of the k0 = 2 -case stay the same here. In particular, there
is a �nite value of � , that we will call � RS

c , such that for � < � RS
c pk (J ) converges to

the high-temperature �xed point � (J ) ask is increased, while for� > � RS
c the width

of pk (J ) is an increasing function ofk, and pk (J ) converges to the low-temperature
�xed point. If one iterates Eq. (6.35) with � = � RS

c , the iteration converges to a
�nite critical-�xed-point p� (J ).

The critical �xed point p� (J ) is obtained by implementing Routine 2, and is
depicted in Fig. 6.4 as a function ofJ for a given � -value and k0 = 3 ; 4.

The matrix M RS
J ;J 0 linearizing the RG transformation in the neighborhood of

p� (J ) is de�ned in the same way as in Eq. (6.28), and its eigenvalue� (n � ) de�ned by
Eq. (I.14) yields the critical exponent � de�ned by Eq. (5.14) according to Eq. (I.15).

� (n � ) for k0 = 3 ; 4 is depicted in Fig 6.5 as a function of� . Fig. 6.5 shows that The real-space RG
method makes
precise predictions
for the critical
exponents of the
Hierarchical
Edwards-
Anderson model,
which are in
agreement with
those of the
replica method in
the classical
region. In the
non-classical
region these
predictions cannot
be compared to
those of the
replica method.

even though for k0 = 2 � (n � ) is signi�cantly di�erent from the mean-�eld value
obtained with the replica approach, ask0 is increased both� (n � ) for k0 = 3 and
� (n � ) for k0 = 4 agree very well with the mean-�eld value obtained with the replica
approach in the whole mean-�eld region1=2 < � � 2=3. This is an important a
posteriori test of the whole real-space RG framework presented here. The situation
subtler in the non-mean-�eld region � > 2=3. In this region the � -expansion based
on the replica approach is non-predictive, because the �rst few orders (5.18) of the
series have a nonconvergent behavior. Still, the data of the real-space approach can
be compared to that of MC simulations [65] performed on a diluted version of the
HEA, where � is an increasing function of� in the non-mean-�eld region � > 2=3,
which disagrees with the results of the real-space approach, Fig. 6.5.

There might be several reasons for this disagreement [36]. A �rst issue might be
the smallness ofk0 in the real-space approach: it is plausible that for largerk0 the
derivative of � (n � ) at � = 2=3+ turns out to be negative, in agreement with the MC
results. Another issue might be that the exponent� is not universal: the exponent
� of the HEA model studied here might be di�erent from that of the diluted version
of the HEA studied in MC simulations. Indeed, universality in non-mean-�eld spin
glasses has never been established rigorously [75]. On the one hand, universality
violation in �nite-dimensional systems [12, 13] resulted from numerical studies done
heretofore, even though more recent analyses based on MC simulations [91] and
high-temperature expansion [51] suggest that universality holds. A third important
issue might be that the couplings correlation has been neglected in the real-space
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approach for k0 > 2, see Eq. (6.34). Indeed, this couplings correlation might play a
vital role in the non-mean-�eld region 2=3 < � < 1, and it might yield a radically
di�erent critical behavior of the system if one took it into account.

These issues could be investigated in some future directions of this real-space
method. For instance, it would be interesting to �nd a way to handle couplings
correlation in the real-space approach. One could then investigate the relevance of
this correlation in both the mean and the non-mean-�eld region, and compare the
resulting values of the critical exponents to those obtained with MC simulations.
Another interesting future direction would be to implement this approach in the
presence of an external magnetic �eld. Indeed, by analyzing the existence of a
critical �xed point one could establish whether there is a phase transition in the
non-mean-�eld region, which has been a hotly debated issue in the last years [89, 105],
and could give some insight into the correct picture describing the low-temperature
phase of the system [64]. Finally, it would be interesting to implement the present
approach for more realistic spin-glass systems, like the three-dimensional EA model.
Indeed, a simple analysis shows that this method can be easily generalized to models
with short-range interactions built on a �nite-dimensional hypercube.
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This thesis has investigated the implementation of renormalization-group (RG)
techniques in �nite-dimensional glassy systems, in order to shed light on the critical
behavior of spin and structural glasses beyond mean �eld. In �nite dimensions
the existence of a phase transition in structural glasses is not well-established, and
the structure of the low-temperature phase for both spin and structural glasses is
fundamentally unknown and controversial. Since Wilson's RG equations emerge in a
natural and simple way in ferromagnetic spin models with a hierarchical interaction
structure, in this work we considered two �nite-dimensional models of spin and
structural glasses built on Dyson's hierarchical lattice [57].

After giving a brief introduction on spin and structural glasses in Part I, in Part II
we focused on a structural-glass model built on a hierarchical lattice, the Hierarchical
Random Energy Model (HREM) [33, 32]. In this study, we showed the �rst evidence
of a non-mean-�eld model of a supercooled liquid undergoing a Kauzmann phase
transition. On the one hand, the features of the phase transition are di�erent from
the mean-�eld case [53]. The free energy is found to be nonanalytical at the critical
point, and our study of the correlation length of the system in the critical region
shows that the data is consistent with the existence of a diverging correlation length.
On the other hand, by investigating the properties of the low-temperature phase we
showed that the free energy has a one-step replica-symmetry-breaking (RSB) saddle
point in the low-temperature phase, describing a fragmentation of the free-energy
landscape into disconnected components.

A �rst future direction of this work would be to generalize it to more realistic
models, like 1-RSB models with p-spin interactions and p � 3, which have an
entropy-crisis transition in the mean-�eld case: it would be interesting to build up a
non-mean-�eld version of these models on a hierarchical lattice, and to implement
a suitable generalization of the RG techniques used for the HREM to study their
critical behavior. A second future direction would be to study the dynamics of the
HREM and of these hierarchical1-RSB models. In particular, 1-RSB models have a
dynamical phase transition in the mean-�eld case mimicking the dynamical arrest in
glass-formers at the glass-transition temperature predicted by the Mode Coupling
Theory. If one could check whether this transition persists or is smeared out in such
hierarchical counterparts of mean-�eld 1-RSB models, one could test directly some
of the building blocks of the Random First Order Transition Theory.

In Part III we presented the study of a spin-glass model built on a hierarchical
lattice, the Hierarchical Edwards-Anderson Model (HEA). Di�erently from the
HREM, in the HEA the spins are not mere labels for the energy variables, but they
are physical degrees of freedom. This fact allowed for an implementation of a RG
decimation protocol, which has been implemented with two di�erent approaches.
The �rst approach is based on the replica method [34, 35], while the second one does
not rely on the replica formalism, but on a real-space picture [36].
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In the replica RG approach the infrared (IR) limit of the theory has been taken
with two di�erent methods, and both of them yield the same two-loop prediction for
the � -expansion of the critical exponents. This shows that the IR limit of the theory
is well de�ned, and suggests the existence of a diverging correlation length in the
system. Unfortunately, this approach makes predictions for the critical exponents
only in the classical region, i. e. in the parameter region where the mean-�eld
approximation is exact. In the non-classical region the two-loop� -expansion has
a nonconvergent behavior, in such a way that no conclusion can be drawn on the
actual values of the critical exponents.

In the real-space RG approach a generalization of Kadano�'s block-spin decima-
tion is implemented in spin glasses, and the resulting RG equations are worked out
by means of a series of approximation steps. These equations have been solved by
means of the high-temperature expansion and of the population-dynamics method,
yielding consistent results. Similarly to the replica RG method, the real-space
approach shows that a phase transition occurs in the HEA and that the correlation
length diverges at the critical point. At variance with the replica RG method, this
method makes precise predictions for the critical exponents in both the classical
region, where the critical exponents are in excellent agreement with those of the
replica method, and in the non-classical region. The real-space predictions in this
region are in disagreement with Monte Carlo (MC) simulations done for a diluted
version of the HEA. There might be several possible reasons for this disagreement:
the discrepancy should disappear if better approximation steps were considered in
the real-space approach, or the critical exponents of the HEA model de�ned here
might be di�erent from those of the diluted HEA, i. e. universality might be violated.

There are several future directions for the replica and for the real-space approach.
As far as the replica approach is concerned, the two-loop calculation that we have
done here is a base of departure for an automated computation of the� -expansion
for the critical exponents. Despite its highly technical nature, the calculation of
high orders of the � -series would clarify whether the� -expansion can be resummed
and made convergent, and so whether the non-mean-�eld physics of the system can
be considered as a small perturbation of the mean-�eld one. As far as the real-
space approach is concerned, it would be interesting to improve the approximation
scheme to check whether the disagreement with MC simulations disappears. If the
disagreement does not disappear, one could test the universality of the exponents by
checking directly whether the critical indices stay the same when changing the details
of the quenched-disorder probability distribution. Moreover, in order to shed light
on the structure of the low-temperature phase, it would be interesting to implement
the real-space method in the presence of an external magnetic �eld and to verify the
existence of a phase transition in the non-classical region, by searching for a critical
�xed point of the RG equations. Indeed, the existence of a phase transition in a
�eld is one of the fundamental elements discriminating between the RSB and the
droplet picture for �nite-dimensional spin glasses, and it would shed light on the
features of the low-temperature phase of these systems.



Appendix A

Properties of Dyson's
Hierarchical Model

A.1 Derivation of Eq. (2.5)

Let us derive Eq. (2.5) �rst. We start from the de�nition (2.4), omit any m-
independent multiplicative constant to simplify the notation, and we have
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where we set~S1 � f S1; : : : ; 22k g; ~S2 � f S2k +1 ; : : : ; 22k +1 g, in the �rst line we used Eq.
(2.1) and multiplied by a factor equal to one, and in the third line we used the fact
that the quantities in square brackets in the second line are equal topk (m1); pk (m2)
because of the de�nition (2.4). By changing the variables of integration, Eq. (A.1)
leads to Eq. (2.5).
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A.2 Structure of the �xed points of Eq. (2.7)

Taking H F
0 [S] = 0 , the Hamiltonian H F

k [~S] has � ~S symmetry, and thus according to
Eqs. (2.4), (2.6), pk (m) is an even function ofm. Hence, the simplest approximation
is to assume that it is a Gaussian

pk (m) = e� r F
k m2

; (A.2)

by neglecting higher powers ofm in the exponential. Non-Gaussian terms will be
later added in the argument of the exponential of Eq. (A.2). For the integral of
pk (m) with respect to m to be �nite, we have r F

k > 0.
By plugging Eq. (A.2) into Eq. (2.7), we obtain a recursion equation for r F

k

r F
k+1 =

2r F
k

CF
� �J: (A.3)

Eq. (A.3) can be solved explicitly, and yields

r F
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+
�J

2
CF

� 1
: (A.4)

It follows that if � = � c F , with

� c F � r F
0 =J(2=CF � 1); (A.5)

r F
k has a �nite limit r � = r0 for k ! 1 . This �xed point will be called the critical

�xed point. The critical �xed point is unstable, because any small deviation of �
from � c F would let r F

k �ow away from r F
� towards another �xed point, as one can

see from Eq. (A.4). If � < � c F or � > � c F , this attractive �xed point is called
the high or low-temperature �xed point respectively. According to Eq. (A.5), the
critical temperature depends on the valuer F

0 at the initial step of the iteration,
i. e. at microscopic length scales2k � 1. This fact is in agreement with the very
general picture occurring in ferromagnetic systems like the Ising model [163], where
the critical temperature is not universal, because it depends on the microscopic
properties of the lattice, like the nearest-neighbor couplings between spins.

Another important feature of the solution of Eq. (A.3) is the following. Take
� < � c F and k � 1. According to Eqs. (2.6), (A.2) and (A.4), one has

pk (m) = exp
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� 2k
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#

: (A.6)

Eq. (A.6) shows that for large k the variable m = 1 =2k P 2k

i =1 Si is distributed
according to a Gaussian distribution with variance proportional to 1=2k . This is the
result that one could have guessed with the central limit theorem, supposing the
spins Si to be independent. Now take� = � c F . According to Eqs. (2.6), (A.2) and
to the fact that r k = r � 8k, for large k one has

pk (m) = e� r � Ck
F m2

: (A.7)
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Eq. (A.7) shows that the distribution of m is still Gaussian, but its variance is
proportional to 1=Ck

F , while supposing the spins to be independent by means of the
central limit theorem, one would predict the variance to be proportional to 1=2k .
The physical interpretation of these facts resulting from Eqs. (A.6), (A.7) is the
following. For � < � c F spins can be considered as independent, and som has the
k-dependence predicted by the central limit theorem. On the contrary, at the critical
point strong correlations are developed, resulting in a collective behavior of spins
which cannot be considered as independent anymore, and yielding a magnetizationm
with a k-dependence di�erent from that predicted with the independence hypothesis.

Let us now seek for a more accurate approximation ofpk , by adding a quartic
term in the exponential in the right-hand side of Eq. (A.2)

pk (m) = e� (r F
k m2+ wF

k m4 ) ; (A.8)

where for the integral of pk (m) with respect to m to be �nite, one has wF
k > 0.

In the following we will suppose that the non-Gaussian termwF
k is small for

every k, i. e. that an expansion in powers ofwF
k is meaningful. Practically speaking,

this is equivalent to supposing that the above qualitative picture resulting from the
Gaussian ansatz (A.2) is slightly modi�ed from the introduction of non-Gaussian
terms in Eq. (A.8). The correctness of this assumption will be tested a posteriori
by checking if the resulting perturbative series for physical quantities is convergent,
or if it can be made convergent with some suitable resummation technique [173].
Plugging Eq. (A.8) into Eq. (2.7) and developing in powers ofwF

k , one has
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: (A.9)

The right-hand side of Eq. (A.9) does not have the same form as the ansatz
(A.8). Notwithstanding this, one can rewrite the term in braces in the right-hand
side of Eq. (A.9) as an exponential up to order(wF

k )2, and obtain

pk+1 (m) = exp

(

�

"
2r F

k

CF
� �J +

3
CF r F

k
wF

k �
9

2CF (r F
k )3

(wF
k )2

#

m2 +

�

"
2

C2
F

wF
k �

9
C2

F (r F
k )2

(wF
k )2

#

m4 + O((wF
k )3)

)

: (A.10)

Comparing Eq. (A.10) to Eq. (A.8), one has

8
<

:

r F
k+1 = 2r F

k
CF

� �J + 3
CF r F

k
wF

k � 9
2CF (r F

k )3 (wF
k )2 + O((wF

k )3);

wF
k+1 = 2

C2
F

wF
k � 9

C2
F (r F

k )2 (wF
k )2 + O((wF

k )3):
(A.11)
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The second line of Eq. (A.11) can be rewritten as

wF
k+1 � wF

k =

 
2

C2
F

� 1

!

wF
k �

9
C2

F (r F
k )2

(wF
k )2 + O((wF

k )3):

If follows that � F 7 3=4 implies 2=C2
F 7 1, and sowF

k+1 7 wF
k . Hence, for � � 3=4

wF
k ! 0 for k ! 1 , and any �xed point is Gaussian, while for � F > 3=4 a non-

Gaussian �xed point arises for k ! 1 . Historically, the analysis of Gaussian �xed
points of Eq. (2.6) was �rst done in [20, 22, 21], while non-Gaussian �xed points have
been studied �rst in [ 24], and their analysis was later developed in [46, 45, 44, 80].
According to the above assumption that an expansion in powers ofwF

k is meaningful,
the structure of the �xed points of Eq. (2.7) discussed in the Gaussian case must
still hold. Let us set

� F � � F �
3
4

(A.12)

and show this explicitly in Fig. A.1, where a parametric plot of (r F
k ; wF

k ) as a
function of k is depicted for three di�erent temperatures T < T c F ; T > T c F and
T � Tc F for a given � F and J -value, with � F > 0. The Figure shows the ex-
istence of two attractive �xed points, the high-temperature �xed point and the
low-temperature �xed point, and of an unstable critical �xed point separating
them, as illustrated in the Gaussian case. Given an initial condition, the parameters
r F

k ; wF
k converge to the critical �xed point only if � is equal to its critical value � c F .

Let us now focus on the critical �xed point. This is obtained by setting � = � c F

and by requiring that r F
k+1 = r F

k = r F
� ; wF

k+1 = wF
k = wF

� in Eq. (A.11)
8
<

:

r F
� = 2r F

�
CF

� � c F J + 3
CF r F

�
wF

� � 9
2CF (r F

� )3 (wF
� )2 + O((wF

� )3);

wF
� = 2

C2
F

wF
� � 9

C2
F (r F

� )2 (wF
� )2 + O((wF

� )3):
(A.13)

If wF
� is nonzero, one can divide the second equality of Eq. (A.13) bywF

� , and get

1 �
2

C2
F

= �
9

C2
F (r F

� )2 wF
� + O((wF

� )2): (A.14)

SincewF
� must be positive, we have1� 2=C2

F < 0, i. e. � F > 0. As anticipated above,
a non-Gaussian critical �xed point wF

� 6= 0 exists only if � F > 0, and according to
Eq. (A.14) it is proportional to � F . Accordingly, if � F � 0 one haswF

� = 0 .

A.3 Calculation of � F

The critical exponent � F can be calculated [163] by linearizing Eq. (A.13) in the
neighborhood of the critical �xed point r F

� ; wF
� . Let us introduce the 2 � 2 matrix

M F
ij �

@(r F
k+1 ; wF

k+1 )

@(r F
k ; wF

k )

�
�
�
�
�
r F

k = r F
� ;wF

k = wF
�

: (A.15)

One can show [163], that the critical exponent � F is related to the largest eigenvalue
� F of M F

� F =
log 2

log � F
: (A.16)
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Figure A.1. Parametric plot of (r F
k ; wF

k ) as a function ofk with � F = 0 :01; J = 1 . The black
points represent (r F

k ; wF
k ) for increasing k from top to bottom, with T < T c F . The blue

points represent(r F
k ; wF

k ) for increasingk from left to right, with T > T c F . The red points
represent (r F

k ; wF
k ) for increasing k from top to bottom: here T has been dynamically

adjusted as follows at each stepk. At the step k = 0 of the iteration we consider two
initial values of the temperature Tm F ; TM F such that Tm F < T c F < T M F . Then, we
iterate the following procedure. We chooseT = ( Tm F + TM F )=2 and computer F

k+1 ; wF
k+1

as a function of r F
k ; wF

k with Eqs. (A.11). If r F
k+1 > r F

k , we are in the high-temperature
phase, and thus we lower the upper bound onT by setting TM F ! (Tm F + TM F )=2,
otherwise we are in the low-temperature phase, and we raise the lower bound by
setting Tm F ! (Tm F + TM F )=2. Then we set k ! k + 1 and repeat. By iterating
this procedure many times, we obtain an estimate of the critical temperatureTc F by
successive bisections of the interval[Tm F ; TM F ], and we also obtain an estimate of the
critical �xed point r F

� ; wF
� , which is depicted in the Figure. This bisection procedure is

analog to the bisection Routine 2, illustrated in Section 6.2.1.2 for the RG approach in
real space.

If � F � 0, one hasr F
� = � c F J=(2=CF � 1); wF

� = 0 . M F can be directly computed
from Eq. (A.11), and one has

� F = 2 2� F � 1: (A.17)

Even though Eq. (A.17) has been derived by using the approximate ansatz (A.8),
one can show that any ansatz includingm6; m8; � � � -terms in pk (m) would lead to
Eq. (A.17). Hence, Eq. (A.17) is exact.

If � F > 0, the critical �xed point r F
� ; wF

� can be computed perturbatively as a
power series in� F by observing from Eq. (A.14) that wF

� = O(� F ), and by expanding
the left and the right-hand side of Eq. (A.13) in powers of � F . The result is

r F
� = (1 +

p
2)� c F J �

10
3

(4 + 3
p

2)� c F J log 2� � F + O(� 2
F );

wF
� =

8
9

(3 + 2
p

2)(� c F J )2 log 2� � F + O(� 2
F ): (A.18)
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Using Eqs. (A.15), (A.11), (A.18), one has

� F =
p

2
�

1 +
2
3

log 2� � F + O(� 2
F )

�
: (A.19)

Di�erently from Eq. (A.17), Eq. (A.19) is not exact, because it is the �rst order of
a series in� F .



Appendix B

Calculation of � 0

In order to calculate � 0, let us consider Eq. (3.6) forC = 0 . One has

E� [Z [T; f � g]n ] =
X

f ~Sa ga=1 ;:::;n

exp

0

@� 2

4

2k
X

i =1

nX

a;b=1

� Sa;i ;Sb;i

1

A (B.1)

=
X

f ~Sa ga=1 ;:::;n

exp

0

@� 2

4

2k
X

i =1

nX

a;b=1

1 + Sa;i Sb;i

2

1

A

=
X

f ~Sa ga=1 ;:::;n

exp

0

@� 2

8

2k
X

i =1

nX

a;b=1

Sa;i Sb;i

1

A [1 + O(n2)]

=
X

f ~Sa ga=1 ;:::;n

exp

2

4 � 2

8

2k
X

i =1

 nX

a=1

Sa;i

! 2
3

5

=
X

f ~Sa ga=1 ;:::;n

2k
Y

i =1

r
2
�

Z 1

�1
dxi exp

 

� 2x2
i + �x i

nX

a=1

Sa;i

!

=
2k
Y

i =1

r
2
�

Z 1

�1
dxi e� 2x2

i [2 cosh(�x i )]
n

=

( r
2
�

Z 1

�1
dxe� 2x2

h
1 + n log [2 cosh(�x )] + O(n2)

i
) 2k

= 1 + n2k
r

2
�

Z 1

�1
dxe� 2x2

log [2 cosh(�x )] + O(n2):

In the second line of Eq. (B.1) we write explicitly � Sa;i ;Sb;i in terms of the
spins. In the third line we observe that the �rst addend in the exponential is O(n2),
and so we don't have to calculate it because, according to Eq. (3.5), in order to
compute f we need only the terms inE� [Z [T; f � g]n ] that are linear in n. In the
�fth line we write the exponential in terms of a Gaussian integral, according to the
Hubbard-Stratonovich transformation [ 173]. In the sixth line we sum over the spins.
The expression obtained in the sixth line is an explicit function of n, in such a way
that in the seventh and eighth line we develop such an expression in powers ofn up
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to linear terms.

Plugging Eq. (B.1) in Eq. (3.5) and using Eq. (3.7), one has

� 0(T) = �
1
�

r
2
�

Z 1

�1
dxe� 2x2

log [2 cosh(�x )] :

This calculation has been automated with a symbolic manipulation program
[170], and the coe�cients � i (T) have been computed for0 � i � 10.



Appendix C

Calculation of � m;0

From the last line of Eq. (4.6) with C = 0 , one has

� m;0(T) = lim
n! 0

X

f ~Sa ga=1 ;:::;n

exp

0

@� 2

4

2k
X
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= lim
n! 0
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In the second line of Eq. (C.1) we write explicitly � Sa;i ;Sb;i in terms of the spins. In
the third line we observe that the �rst addend in the exponential is O(n2), and so we
don't have to compute it in the limit n ! 0. In the �fth line we write the exponential
in terms of a Gaussian integral, according to the Hubbard-Stratonovich transfor-
mation [173]. In the sixth line we split the sum over the spins into a sum involving
spins ~Sa

I � Sa;1; � � � ; Sa;2m , and a sum involving spins ~Sa
O � Sa;2m +1 ; � � � ; Sa;2k . In

the seventh line we explicitly calculate the latter sum, and in the eighth line we
observe that this is given by 1 + O(n). In the ninth line we drop the O(n) terms,
and sum over ~S1

I , while in the tenth line we sum over the remaining spins. The
expression obtained in the tenth line is an explicit function of n, in such a way that
in the last line the limit n ! 0 can be taken.

This calculation has been automated with a symbolic manipulation program
[170], and the coe�cients � m;i (T) have been computed for0 � i � 9.



Appendix D

Derivation of the recurrence
equations (5.9)

Plugging Eq. (5.8) into Eq. (5.5), one �nds

P k [Q] = exp

(

�

" 
2r k� 1

C4 �
� 2

4

!

Tr [Q2] +
2wk� 1

3C6 Tr [Q3]

#)

� (D.1)

�
Z

[dP] exp [� Sk� 1[P; Q]] ;

Sk� 1[P; Q] �
2r k� 1

C4 Tr [P2] +
2wk� 1

C6 Tr [QP 2]:

The integral in Eq. (D.1) is Gaussian, and thus it can be calculated exactly by
using standard formulas [173]. Indeed, de�ning 8a > b the index A � (a; b), the
n(n � 1)=2 integration variables f Pabga<b =1 ;:::;n can be labeled with the indexA:
f Pabga<b =1 ;:::;n ! f PA gA=1 ;:::;n (n� 1)=2. In order to compute the Gaussian integral in
Eq. (D.1), we observe that

@2Sk� 1[P; Q]
@PA @PB

=
8r k� 1

C4 � AB +
4wk� 1

C6 M AB [Q];

where

M ab;cd[Q] � Nab;cd[Q] + Nab;dc[Q]; (D.2)

Nab;cd[Q] � � bcQda + � acQdb: (D.3)

Calculating the Gaussian integral, Eq. (D.1) becomes

P k [Q] = exp

(

�

" 
2r k� 1

C4 �
� 2

4

!

Tr [Q2] +
2wk� 1

3C6 Tr [Q3]

#)

�

�
�
det

�
8r k� 1

C4 � AB +
4wk� 1

C6 M AB [Q]
�� � 1

2
; (D.4)

where in Eq. (D.4) and in the following, Q-independent multiplicative constants are
omitted.

Supposing that wk is small for every k, the determinant in the right-hand side
of Eq. (D.4) can now be expanded in powers ofwk� 1. Calling Tr the trace over
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A-type indices, we use the relationlog det = Tr log for the matrix in round brackets
in Eq. (D.4)

�
det

�
8r k� 1

C4 � AB +
4wk� 1

C6 M AB [Q]
�� � 1

2
= (D.5)

exp

(

�
1
2

"
wk� 1

2C2r k� 1
Tr [M [Q]] �

1
2

�
wk� 1

2C2r k� 1

� 2

Tr [M [Q]2] +

+
1
3

�
wk� 1

2C2r k� 1

� 3

Tr [M [Q]3] + O(w4
k� 1)

#)

:

By using the de�nitions (D.2) and (D.3), one has Tr [M [Q]] = 0 . Then, by using
Eqs. (D.2), (D.3), one has

Tr [M [Q]2] =
X

AB

M [Q]AB M [Q]BA

=
X

a>b;c>d

(Nab;cd[Q] + Nab;dc[Q]) (Ncd;ab[Q] + Ncd;ba[Q])

=
X

a6= b;c6= d

Nab;cd[Q]Ncd;ab[Q]

=
X

a6= b;c6= d

(� bcQda + � acQdb)( � daQbc + � caQbd)

=
X

a6= b;c6= d

� caQ2
bd

=
X

abcd

(1 � � ab)(1 � � cd)� caQ2
bd

= ( n � 2)
X

ab

Q2
ab

= ( n � 2)Tr [Q2]: (D.6)

In the second line of Eq. (D.6) we write the sum over the indicesA; B; : : : in
terms of a sum over the replica indicesa; b; : : :. In the third line we use the symmetry
of Nab;cd[Q] with respect to a $ b and rewrite the sum over a > b; c > d in terms
of a sum with a 6= b; c6= d. In the �fth line we �nd out that only one of the terms
stemming from the product (� bcQda + � acQdb)( � daQbc + � caQbd) does not vanish,
because of the constraintsa 6= b; c6= d; Qaa = 0 (see Eq. (5.2)), and because of the
Kronecker � s in the sum. Once we are left with the nonvanishing term, in the sixth
line we write explicitly the sum over a 6= b; c6= d in terms of an unconstrained sum
over a; b; c; dby adding the constraints (1 � � ab)(1 � � cd). In the seventh line we
calculate explicitly the sum over the replica indices, and write everything in terms
of the replica invariant I (2)

1 [Q] � Tr [Q2] (see Table E.1).

By following the steps shown Eq. (D.6), all the other tensorial operations can be
done. In particular, one �nds

Tr [M [Q]3] = ( n � 2)Tr [Q3]: (D.7)
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By plugging Eqs. (D.6), (D.7) into Eq. (D.5), and then substituting Eq. (D.5)
into the recursion relation (D.4), one �nds

P k [Q] = exp

(

�

"  
2r k� 1

C4 �
� 2

4
�

n � 2
4

�
wk� 1

2C2r k� 1

� 2
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Tr [Q2] + (D.8)

+
1
3

 
2wk� 1

C6 +
n � 2

2

�
wk� 1

2C2r k� 1

� 3
!

Tr [Q3] + O(w4
k� 1)

#)

:

Comparing Eq. (D.8) to the ansatz (5.8) for P k , one �nds the recursion relations
(5.9) for the coe�cients r k ; wk .





Appendix E

Results of the two-loop RG
calculation à la Wilson

Here we sketch the results of the perturbative calculation to the orderw5
k mentioned

in Section 5.1. The invariants I (j )
l [Q] yielding P k [Q] as a �fth-degree polynomial in

Q are given in Table E.1.

The recurrence RG equation (5.5) relatingP k� 1[Q] to P k [Q] yields a set of
equations relating the coe�cients f c(j )

l; k � 1gj;l to f c(j )
l; k gj;l . After a quite involved

calculation, one �nds that these are

c(2)
1; k =
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@
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2C4c(2)
1; k� 1

�
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n(n � 1)
4

�
+ ( n � 2)

c(4)
3; k� 1

8C4c(2)
1; k� 1

+
3c(4)

4; k� 1

8C4c(2)
1; k� 1

+

+ O
�
(c(3)

1; k� 1)6
�

; (E.1)

Table E.1. Invariants generated to the order p = 5 . In each line of the table we show the
invariants I ( j )

1 [Q]; : : : ; I ( j )
n j [Q] from left to right.

j I (j )
l [Q]

2 Tr [Q2]

3 Tr [Q3]

4 Tr [Q4] Tr [Q2]2
P

a6= c Q2
abQ

2
bc

P
ab Q4

ab

5 Tr [Q5] Tr [Q2]Tr [Q3]
P

abcdQ2
abQbcQbdQcd

P
abcQ3

abQacQbc
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c(4)
1; k =

2c(4)
1; k� 1

C8 �
n
2

0

@
c(3)

1; k� 1

2C2c(2)
1; k� 1

1

A

4

+ O
�
(c(3)

1; k� 1)6
�

; (E.3)

c(4)
2; k =

2c(4)
2; k� 1

C8 �
3
2

0

@
c(3)

1; k� 1

2C2c(2)
1; k� 1

1

A

4

+ O
�
(c(3)

1; k� 1)6
�

; (E.4)

c(4)
3; k =

2c(4)
3; k� 1

C8 + 8

0

@
c(3)

1; k� 1

2C2c(2)
1; k� 1

1

A

4

+ O
�
(c(3)

1; k� 1)6
�

; (E.5)

c(4)
4; k =

2c(4)
4; k� 1

C8 + 4

0

@
c(3)

1; k� 1

2C2c(2)
1; k� 1

1

A

4

+ O
�
(c(3)

1; k� 1)6
�

; (E.6)

c(5)
1; k =

2c(5)
1; k� 1

C10 +
n + 6

2

0

@
c(3)

1; k� 1

2C2c(2)
1; k� 1

1

A

5

+ O
�
(c(3)

1; k� 1)7
�

; (E.7)

c(5)
2; k =

2c(5)
2; k� 1

C10 � 40

0

@
c(3)

1; k� 1

2C2c(2)
1; k� 1

1

A

5

+ O
�
(c(3)

1; k� 1)7
�

; (E.8)

c(5)
3; k =

2c(5)
3; k� 1

C10 + 30

0

@
c(3)

1; k� 1

2C2c(2)
1; k� 1

1

A

5

+ O
�
(c(3)

1; k� 1)7
�

; (E.9)

c(5)
4; k =

2c(5)
4; k� 1

C10 + 5

0

@
c(3)

1; k� 1

2C2c(2)
1; k� 1

1

A

5

+ O
�
(c(3)

1; k� 1)7
�

: (E.10)



Appendix F

One-loop RG calculation in the
�eld-theory approach

In this Appendix we present the computation of the RG functions Zg; ZQ2 to order g2
r .

In the bare theory, 1PI correlation functions are de�ned by the action (5.23), and
they can be obtained as the derivative of the bare1PI generating functional �[ Q]
with respect to Qi; ab . Similarly, the renormalized 1PI correlation functions are the
derivatives with respect to Q of the generating functional � r [Q] of the renormalized
theory, which depends on the renormalized parametersmr ; gr . Accordingly, � r [Q]
can be expanded in powers ofgr by means of the loop expansion

� r [Q] =
1
2

2k � 1X

i;j =0

� ij Tr [Qi Qj ] +
m3�

r gr

3!

X

i

Tr [Q3
i ]

 

Zg + (F.1)

+
n � 2

8
m

6�
2� � 1
r I 7g2

r

!

+ O(g5
r ):

The Feynman diagram I 7 is depicted in Fig. 5.1, and is equal to

I 7 =
1
2k

2k � 1X

p=0

1
�
mr + �m + jpj2� � 1

2

� 3 : (F.2)

It is easy to show that I 7 has a �nite limit for k ! 1 . Indeed, the propagator
(5.24) in the sum in the right-hand side of Eq. (F.2) depends onp through its dyadic
norm. Hence, the sum overp in the right-hand side of Eq. (F.2) can be easily
transformed into a sum over all the possible values ofjpj2. In order to do so, we
recall [139] that the number of integers 0 � p � 2k � 1 which satisfy jpj2 = 2 � j

is given by 2� j + k� 1. This number is the volume of a shell in a space of integer
numbers p, where the distance between two integersp1; p2 is given by the dyadic
norm jp1 � p2j2. Hence, Eq. (C.1) becomes

I 7 =
k� 1X

j =0

2� j � 1 1
�
mr + �m + 2 � j (2� � 1)

� 3 (F.3)

k!1=
1X

j =0

2� j � 1 1
�
mr + �m + 2 � j (2� � 1)

� 3 ;
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where in the second line of Eq. (F.3) thek ! 1 limit has been taken, because the
sum in the �rst line is convergent in this limit. One can also show that �m = O(g2

r );
and thus rewrite (F.3) as

I 7 =
1X

j =0

2� j � 1 1
�
mr + 2 � j (2� � 1)

� 3 + O(g2
r ): (F.4)

Looking at Eq. (F.4), we observe that I 7 is divergent for mr ! 0. In particular, the
smaller mr , the larger the values ofj dominating the sum. It follows that in the IR
limit mr ! 0 the sum in the right-hand side of Eq. (F.4) can be approximated by
an integral, because in the regionj � 1 dominating the sum the integrand function
is almost constant in the interval [j; j + 1] . Setting q � 2� j , for mr ! 0 we have
� qlog 2dj = dq, and

I 7 =
1

2 log 2

Z 1

0

dq

[mr + q2� � 1]3
+ O(g2

r )

=
m

� 6�
2� � 1

r

2 log 2

Z m
� 1

2� � 1
r

0

dx

(1 + x2� � 1)3 + O(g2
r )

=
m

� 6�
2� � 1

r

2 log 2

Z 1

0

dx

(1 + x2� � 1)3 + O(g2
r ); (F.5)

where in the last line of Eq. (F.5) the mr ! 0-limit has been taken. By considering
the asymptotic behavior for x ! 1 of the integrand function in the last line of Eq.
(F.5), one �nds that its integral is convergent for � > 0 and divergent for � < 0, in
such a way that it has a singularity for � ! 0+ . Its � -divergent part can be easily
evaluated

I 7 =
m

� 6�
2� � 1

r

4 log 2
�

�
3 +

1
1 � 2�

�
�

�
1 +

1
1 � 2�

�
+ O(g2

r )

= m
� 6�

2� � 1
r

�
1

12� log 2
+ O� (1)

�
+ O(g2

r ); (F.6)

where � is the Euler's Gamma function, and in the second line of Eq. (F.6) we
developed the right-hand side in the �rst line in powers of � around � = 0 , where
O� (1) denotes terms which stay �nite as � ! 0.
We now plug Eq. (F.6) into Eq. (F.1), and require that � r [Q], the generating
functional of the renormalized theory, is �nite, i. e. that it has no terms singular in
� . Accordingly, we require that the � -singular part of I 7 is canceled byZg: this is
the minimal subtraction scheme. Taking n = 0 , this subtraction implies that

Zg = 1 +
1

48� log 2
g2

r + O(g4
r ): (F.7)

A very similar calculation can be done by considering the generating functional
�[ Q; K ], whose derivatives with respect to Qi; ab and K j yield 1PI correlation
functions with Qi; ab and Tr [Q2

j ]-insertions, and by introducing the corresponding
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functional of the renormalized theory � r [Q; K ]. By requiring that � r [Q; K ] is �nite,
we obtain

ZQ2 = 1 +
1

24� log 2
g2

r + O(g4
r ): (F.8)

Eqs. (F.7), (F.8) are the one-loop renormalization constantsZg; ZQ2 .





Appendix G

Computation of the observables
6.7 in Dyson's Hierarchical
Model

In order to compute the observables (6.7), it is convenient to introduce for any
k a discrete magnetization variable � taking 2k + 1 possible valuesf� 1; � 1 +
2=2k ; � � � ; 0; � � � ; 1 � 2=2k ; 1g, and its probability distribution

� k (� ) �

P
~S e� �H F

k [~S]�
�

1
2k

P 2k

i =1 Si = �
�

Zk
; (G.1)

where

Zk �
X

~S

e� �H F
k [~S];

and � denotes the Kronecker delta. Eq. (2.1) implies [57] that � k (� ) satis�es a
recursion equation analogous to Eq. (2.5)

� k+1 (� ) = eJ�C k +1
F � 2 X

� 1 ;� 2

� k (� 1)� k (� 2)�
�

� 1 + � 2

2
= �

�
; (G.2)

where a� -independent multiplicative constant has been omitted in the right-hand
side of Eq. (G.2).

Given �J , the recursion equation (G.2) can be iterated numericallyk0 � 1 times
in 2k0 operations. Once� k0 (� ) is known, the observableOF

k0
(�J ) can be easily

computed. Indeed, according to Eqs. (6.7), (6.4), we have

OF
k0

(�J ) =
E~S

h�
1

2k 0 � 1

P 2k 0 � 1

i =1 Si

� �
1

2k 0 � 1

P 2k 0

i =2 k 0 � 1+1 Si

�i

E~S

� �
1

2k 0 � 1

P 2k 0 � 1

i =1 Si

� 2
� : (G.3)
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G. Computation of the observables 6.7 in Dyson's Hierarchical

Model

The numerator of Eq. (G.3) is

E~S

2

4

0

@ 1
2k0 � 1

2k 0 � 1
X

i =1

Si

1

A

0

@ 1
2k0 � 1

2k 0X

i =2 k 0 � 1+1

Si

1

A

3

5 =

=
1

Zk0

X

~S

exp

2

6
4 � �

�
H F

k0 � 1[~S1] + H F
k0 � 1[~S2]

�
+ �JC k0

F

0

@ 1
2k0

2k 0X

i =1

Si

1

A

2
3

7
5 �

�

0

@ 1
2k0 � 1

2k 0 � 1
X

i =1

Si

1

A

0

@ 1
2k0 � 1

2k 0X

i =2 k 0 � 1+1

Si

1

A �

�
X

� 1 ;� 2

�

0

@ 1
2k0 � 1

2k 0 � 1
X

i =1

Si = � 1

1

A �

0

@ 1
2k0 � 1

2k 0X

i =2 k 0 � 1+1

Si = � 2

1

A

=
Z 2

k0 � 1

Zk0

X

� 1 ;� 2

e�JC k 0
F

� � 1+ � 2
2

� 2

� 1� 2� k0 � 1(� 1)� k0 � 1(� 2); (G.4)

where S1 � f S1; � � � ; S2k 0 � 1 g; S2 � f S2k 0 � 1+1 ; � � � ; S2k 0 g, and in the �rst line of Eq.
(G.4) we used the recurrence relation (2.1), and we multiplied by a factor equal to
one, while in the second line we used the de�nition (G.1). By following the same
steps as in Eq. (G.4), the denominator in Eq. (G.3) is

E~S

2

6
4

0

@ 1
2k0 � 1

2k 0 � 1
X

i =1

Si

1

A

2
3

7
5 =

Z 2
k0 � 1

Zk0

X

� 1 ;� 2

e�JC k 0
F

� � 1+ � 2
2

� 2

� 2
1� k0 � 1(� 1)� k0 � 1(� 2):

(G.5)
By dividing Eq. (G.4) by Eq. (G.5), the multiplicative constants cancel out, and we
are left with

OF
k0

(�J ) =

P
� 1 ;� 2

e�JC k 0
F

� � 1+ � 2
2

� 2

� 1� 2� k0 � 1(� 1)� k0 � 1(� 2)
P

� 1 ;� 2
e�JC k 0

F

� � 1+ � 2
2

� 2

� 2
1� k0 � 1(� 1)� k0 � 1(� 2)

: (G.6)

The right-hand side of Eq. (G.6) can be computed in2k0 operations.



Appendix H

Solution of the real-space RG
equations with the
high-temperature expansion

In this Appendix we show how the RG equations (6.20) can be solved with a sys-
tematic expansion in powers of� , by illustrating an explicit example where this
expansion is performed up to order� 4.

Expanding in powers of � the arctanh term in the right-hand side of Eq. (6.20)
we have

(
m0

2 = C4

2 m2 + C4

2 � 2(m2)2 + C8

8 � 2(m2)2 � C8

24 � 2m4;
m0

4 = 3C8

16 (m2)2 + C8

16 m4:
(H.1)

An important feature of Eq. (H.1) is that it reproduces the fact that for � < 1=2
the thermodynamic limit is ill-de�ned, as we discussed in Part III, Eq. (4.12). In
order to see this, let us look at the �rst line of Eq. (H.1). The �rst addend in the
right-hand side is the O(� 2)-term resulting from the � -expansion of the term in square
brackets in the right-hand side of Eq. (6.20), while the other addends areO(� 4)-
terms. Keeping only the �rst term and using Eq. (2.13), we have m0

2 = 2 1� 2� m2

. Accordingly, if � < 1=2 we havem0
2 > m 2, i. e. the variance of the couplingJ

increases at each RG step, in such a way that in the thermodynamic limitk ! 1
the interaction energy diverges, and the model is ill-de�ned. On the other hand, Eq.
(H.1) does not reproduce the condition� < 1. This fact will emerge also in the nu-
merical solution of the RG equations (6.19), and it will be discussed in Section 6.2.1.1.

Eq. (H.1) is formally analogous to Eq. (A.11) for DHM, and to Eq. (5.9),
(E.1), (E.2) for the HEA. Accordingly, it is easy to see that Eq. (H.1) has a stable
high-temperature �xed point m2 = m4 = 0 , and a stable low-temperature �xed
point m2 = m4 = 1 . These �xed points are separated by an unstable critical �xed
point m2 = m�

2; m4 = m�
4. By iterating k times Eq. (H.1) we generate the sequence

m2 k ; m4 k , and we depict the �ow f m2 k ; m4 kgk in Fig. H.1 for di�erent values of the
temperature. Fig. H.1 shows that there is a value of the temperatureTRS

c such that
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H. Solution of the real-space RG equations with the

high-temperature expansion

for T = TRS
c f m2 k ; m4 kgk converges tom�

2; m�
4, while for T ? TRS

c f m2 k ; m4 kgk

converges to the high or low-temperature �xed point respectively.

Figure H.1. Parametric plot of (m2 k ; m4 k ) as a function of k with � = 0 :6. The black
points represent(m2 k ; m4 k ) for increasingk from left to right, with T < T RS

c . The blue
points represent (m2 k ; m4 k ) for increasing k from top to bottom, with T > T RS

c . The
red points represent(m2 k ; m4 k ) for increasing k from top to bottom: here T has been
dynamically adjusted to TRS

c at each stepk with the same procedure as that described
in the Caption of Fig A.1 for DHM.

We now use the same procedure as that illustrated in Section A.2 to calculate
m�

2; m�
4, by taking � = � RS

c in such a way that Eq. (H.1) has a nontrivial �xed point
ma = m0

a = m�
a

(
m�

2 = C4

2 m�
2 + C4

2 (� RS
c )2(m�

2)2 + C8

8 (� RS
c )2(m�

2)2 � C8

24 (� RS
c )2m�

4;
m�

4 = 3C8

16 (m�
2)2 + C8

16 m�
4:

(H.2)

The second line in Eq. (H.2) yields

m�
4 = 3C8(m�

2)2=[16(1� C8=16)]; (H.3)

and by plugging Eq. (H.3) into the �rst line of Eq. (H.2) we obtain

m�
2 =

C4

2
m�

2

(

1 +

"

1 +
C4

4
+

C12

26(� 1 + C8=16)

#

(� RS
c )2m�

2

)

: (H.4)

Eq. (H.4) has a solution m�
2 = 0 which is ruled out, and a nonzero solution

m�
2 / 1 � C4=2. In the following we will compute this solution with an expansion in

the neighborhood of� = 1=2. According to Eq. (2.13) one has1� C4=2 = O(� � 1=2),
thus we havem�

2 = O(� � 1=2), and m�
4 = O(( � � 1=2)2). More precisely, from Eqs.

(H.4), (H.3) we have

m�
2 =

3 log 2
2(� RS

c )2 (� � 1=2) + O(( � � 1=2)2);

m�
4 =

9(log 2)2

4(� RS
c )4 (� � 1=2)2 + O(( � � 1=2)3): (H.5)
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Once the critical �xed point has been found, we can linearize the RG transfor-
mation (H.1) in the neighborhood of m�

2; m�
4 to extract the critical exponents. To

this end, we introduce the 2 � 2 matrix

M ij �
@m0

2i

@m2j

�
�
�
�
�
~m= ~m�

(H.6)

and its largest eigenvalue� RS . From Eqs. (H.6), (H.1), (H.5) one �nds

� RS = 1 + 2 log 2 ( � � 1=2) + O(( � � 1=2)2): (H.7)

This high-temperature expansion can be implemented to higher orders in� .
More precisely, it turns out that if the expansion of the term in square brackets in Eq.
(6.20) is done up to order� 2m , one obtains a set ofm RG equations analogous to
Eq. (H.1), relating f m2aga=1 ;:::;m to f m0

2aga=1 ;:::;m . The critical �xed point and the
matrix M linearizing the RG transformation in its neighborhood are then extracted.
The largest eigenvalue� RS of M can be computed as a power series in� � 1=2 up
to order (� � 1=2)m� 1. This computation has been done form � 5 by means of a
symbolic manipulation program [170], and the result is given in Eq. (6.21).





Appendix I

Numerical discretization of the
matrix M RS in the
k0 = 2-approximation

In this Section we describe the numerical computation of the matrixM RS and of
its spectrum through a discretization of the continuous variableJ .

Suppose that by iterating Routine 2 we computed the critical �xed point p� (J ) $
fJ i gi . As shown in Fig. 6.4,p� (J ) has a compact support[�J MAX ; J MAX ], where
J MAX is de�ned by Eq. (6.24). This feature of the critical �xed point suggests a
rather natural way to compute M RS

J ;J 0, based on a discretization of the continuous
variable J in the compact interval [�J MAX ; J MAX ]. Let us consider

J (i ) �
�

1
2

+ ( i � 1)
�

2J MAX

B
� J MAX ; 8i = 1 ; : : : ; B; (I.1)

and the B � B matrix

Mij � M RS
J (i );J (j ) : (I.2)

The matrix M, and soM RS , can be easily computed numerically with a population-
dynamics routine which is quite similar to Routine 1.

In Fig. I.1 we depict M RS
J ;J 0 as a function of J ; J 0, computed by means of

Eq. (I.2) for a given � -value, and we show that by taking B large enough the
discretization method reconstructs a smooth function ofJ ; J 0.

The eigenvalues ofM can be easily extracted numerically, and the eigenvalues
of M RS , which are related to the critical exponents, can be easily obtained from
those of M as follows. Then-th eigenvalue � (n) and the left and right eigenfunctions
� L

n (J ); � R
n (J ) of M RS are de�ned by

Z
dJ 0M RS

J ;J 0� R
n (J 0) = � (n) � R

n (J ); (I.3)
Z

dJ � L
n (J )M RS

J ;J 0 = � (n) � L
n (J 0): (I.4)
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I. Numerical discretization of the matrix M RS in the

k0 = 2 -approximation

Figure I.1. Matrix M RS
J ;J 0 as a function ofJ ; J 0 in the k0 = 2 -approximation obtained with

the discretization method (I.2) with � = 0 :6215, P = 107; B = 96; kMAX = 50; x = 0 :1.
The matrix is not symmetric, and thus some eigenvalues are complex. Notwithstanding
this, the explicit numerical computation of the spectrum of M RS shows that the
eigenvalue yielding the critical exponent� is real.

The n-th eigenvalue � (n)
D and the left and right eigenvectors � L

D n (i ); � R
D n (i ) of M are

de�ned by

BX

j =1

Mij � R
D n (j ) = � (n)

D � R
D n (i ); (I.5)

BX

i =1

� R
L n (i )Mij = � (n)

D � L
D n (j ): (I.6)

If we multiply Eqs. (I.5), (I.6) by dJ � 2J MAX =B, take the large-B limit, transform
the sums in Eqs. (I.5), (I.6) into integrals and use the de�nition (I.2), by comparing
Eqs. (I.5), (I.6) to Eqs. (I.3), (I.4) we obtain the following identi�cations holding in
the B ! 1 -limit

� (n)
D � dJ = � (n) ; (I.7)

� R
D n (i ) = � R

n (J (i )) ; (I.8)

� L
D n (i ) = � L

n (J (i )) : (I.9)

In particular, from Eq. (I.7) we can extract the eigenvalues of M RS from those of
M.

In order to extract the critical exponents, one should observe that there is an
eigenvalue, that we will call � (1) , which can be calculated analytically and which
does not contribute to � even though it is part of the spectrum of M RS . Indeed,
by multiplying Eq. (6.28) by p� (J 0), integrating with respect to J 0 and using Eq.
(6.26), we obtain Z

dJ 0M RS
J ;J 0p� (J 0) = 6 p� (J ); (I.10)

while by multiplying Eq. (6.28) by a constant A and integrating with respect to J



119

we have Z
dJ A M RS

J ;J 0 = 6A: (I.11)

Comparing Eqs. (I.10), (I.11) to Eqs. (I.3), (I.4) we have

� (1) = 6 ;

� R
1 (J ) = p� (J );

� L
1 (J ) = A: (I.12)

Following the very same procedure as Wilson's [163], if we iterate the RG equations
(6.19) k times for T � TRS

c and then iterate l times, the di�erence betweenpk+ l and
p� is given by

pk+ l (J ) � p� (J ) =
Z

dJ 0[(M RS ) l ]J ;J 0[pk (J 0) � p� (J 0)]

=
Z

dJ 0
X

n
(� (n) ) l � R

n (J )� L
n (J 0)[pk (J 0) � p� (J 0)]; (I.13)

where [(M RS ) l ]J ;J 0 is the J ; J 0-th component of the matrix (M RS ) l , and in the sec-
ond line of Eq. (I.13) the spectral representation ofM RS has been used. According
to the third line of Eq. (I.12), the integral in the second line of Eq. (I.13) vanishes
for n = 1 because of the normalization condition

R
dJ 0pk (J 0) =

R
dJ 0p� (J 0) = 1 .

Hence, the eigenvalue� (1) does not contribute either to the exponential divergence
of pk+ l from p� nor to � [163]. This fact is rather natural, because the eigenvalue
� (1) = 6 is an artefact of the k0 = 2 -approximation, where a 22-spin HEA model with
exactly six couplings fJ � g� is reduced to a2-spin HEA. This fact will be elucidated
further in Section 6.2.2 when illustrating the k0 > 2-approximations. Indeed also for
k0 > 2 there is an eigenvalue� (1) = 2 k0 (2k0 � 1)=2 which depends explicitly on the
approximation degreek0, but which does not contribute to � .

The eigenvalue ofM RS determining � is easily found by de�ning n� in such a
way that

j� (n � ) j = max
n

(j� (n) j) and
Z

dJ � L
n �

(J )[pk (J ) � p� (J )] 6= 0 ; (I.14)

and by observing that [163] the critical exponent � de�ned by Eq. (5.14) is given by

� =
log 2

log � (n � )
: (I.15)





Part V

Reprints of the papers
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