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Résumé

Les éléments de diffraction sont largement utilisés aujourd’hui dans un nom-

bre grandissant d’applications grâce à la progression des technologies de mi-

crostructuration dans le sillage de la microélectronique. Pour un design opti-

mal de ces éléments, des méthodes de modélisation précises sont nécessaires.

Plusieurs méthodes ont été développées et sont utilisées avec succès pour

des réseaux de diffraction unidimensionnel de différents types. Cependant,

les méthodes existantes pour les réseaux deux dimensionnel ne couvrent pas

tous types de structures possibles. En particulier, le calcul de l’efficacité de

diffraction sur les réseaux métalliques à deux dimensionnel avec parois verti-

cales représente encore une grosse difficulté pour les méthodes existantes. Le

présent travail a l’objectif le développement d’une méthode exacte de calcul

de l’efficacité de diffraction de tels réseaux qui puisse servir de référence.

La méthode modale développée ici - dénommée ,,true-mode” en anglais -

exprime le champ électromagnétique sur la base des vrais modes électromag-

nétiques satisfaisant les conditions limites de la structure 2D à la différence

d’une méthode modale où les modes sont ceux d’une structure approchée

obtenue, par exemple, par développement de Fourier. L’identification et la

représentation de ces vrais modes à deux dimensions restait à faire et ce n’est

pas le moindre des résultats du présent travail que d’y avoir conduit.

Les expressions pour la construction du champ sont données avec des

exemples de résultats concrets. Sont aussi fournies les équations pour le calcul

des intégrales de recouvrement et des éléments de la matrice de diffusion.



Resume

Diffractive elements are widely used in many applications now as the mi-

crostructuring technologies are making fast progresses in the wake of micro-

electronics. For the optimization of these elements accurate modeling meth-

ods are needed. There exists well-developed and widely used methods for

one-dimensional diffraction gratings of different types. However, the meth-

ods available for solving two-dimensional periodic structures do not cover all

possible grating types. The development of a method to calculate the diffrac-

tion efficiency of two-dimensional metallic gratings represents the objective

of this work.

The one-dimensional true-mode method is based on the representation

of the field inside the periodic element as a superposition of particular solu-

tions, each one of them satisfying exactly the boundary conditions. In the

developed method for the two-dimensional gratings the representation of the

field within the grating in such way is used.

In the present work, the existing modal methods for one-dimensional

gratings can be used as the basis for the construction of the modal field

distribution functions within two-dimensional gratings. The modal function

distributions allow to calculate the overlap integrals of the fields outside the

grating with those within the structure. The transition matrix coefficients

are formed on the basis of these integrals. The final stage is the calculation

of the scattering matrix based on two transition matrices.

The equations for the field reconstruction are provided and accompanied

by examples of results. Further equations used to calculate the overlap inte-

grals and scattering matrix coefficients are provided.



Résumé substantiel

Les éléments de diffraction sont largement utilisés aujourd’hui dans un nom-

bre grandissant d’applications grâce à la progression des technologies de

microstructuration dans le sillage de la microéilectronique. Pour un de-

sign optimal de ces éléments, des méthodes de modélisation précises sont

nécessaires. Plusieurs méthodes ont été développées et sont utilisées avec

succès pour des réseaux de diffraction unidimensionnel de différents types.

Cependant, les méthodes existantes pour les réseaux deux dimensionnel ne

couvrent pas tous types de structures possibles. En particulier, le calcul de

l’efficacité de diffraction sur les réseaux métalliques à deux dimensionnel avec

parois verticales représente encore une grosse difficulté pour les méthodes ex-

istantes (méthodes FDTD, Fourier-modal). Le présent travail a l’objectif le

développement d’une méthode exacte de calcul de l’efficacité de diffraction

de tels réseaux qui puisse servir de référence.

La méthode modale développée ici - dénommée ,,true-mode” en anglais -

exprime le champ électromagnétique sur la base des vrais modes électromag-

nétiques satisfaisant les conditions limites de la structure 2D à la différence

d’une méthode modale où les modes sont ceux d’une structure approchée

obtenue, par exemple, par développement de Fourier. L’identification et la

représentation de ces vrais modes à deux dimensions restait à faire et ce n’est

pas le moindre des résultats du présent travail que d’y avoir conduit.

Le rappel des notions de base est fait dans l’introduction à partir des

équations de Maxwell dont on va chercher les solutions satisfaisant les condi-

tions limites pour résoudre le problème de la diffraction. Le formalisme utilisé

pour l’expression d’ondes planes incidentes de polarisation quelconque dans

un espace homogène est établi ainsi que la forme utilisée pour l’expression

des résultats intermédiaires et finaux. Cette introduction est supposée aider

ceux qui sont intéressés à travailler sur la méthode modale.

Dans ce travail, les modes des réseaux à une dimension sont utilisés

comme base pour la construction du champ des modes des réseaux à deux di-

mensions. Pour cette raison, l’introduction au chapitre suivant est consacrée

à la méthode modale de Fourier ainsi qu’à la méthode des vrais modes qui



y sont décrites en détail. Dans la section sur la méthode des vrais modes,

le lecteur peut identifier les étapes principales conduisant à la résolution du

problème de diffraction.. Cette partie est un extrait de l’état des connais-

sances existantes dans le cas unidimensionnele. Le lecteur est renvoyé aux

sources primaires mais il pourrait déjà développer son propre code à une

dimension sur la base du contenu de cette section.

La méthode modale de Fourier est ensuite décrite avec une extension

originale pour son application à des profils à parois inclinées. Elle peut être

utilisée avec profit pour la représentation du champ dans chaque tranche

élémentaire en lesquelles le profil réel est segmenté lorsque les bords sont

notablement obliques. Lorsqu’ils sont verticaux le choix de la méthode des

vrais modes est plus indiqué.

La partie centrale de ce travail est divisée en deux sections. La première

est consacrée aux modes à deux dimensions latérales: définition du mode,

représentation de sa forme, recherche du mode et de son champ; la deuxième

section contient la description des étapes ultérieures nécessaires pour aboutir

à la matrice de diffusion. Toutes les étapes cöıncident avec celles de la

méthode consacrée aux réseaux à une dimension. Après que les constantes de

propagation ont été obtenues le champ modal est construit et un coefficient

de normalisation est déterminé. La connaissance du champ modal permet

de calculer les intégrales de recouvrement aux frontières du réseau à deux

dimensions. La dernière étape est le calcul de la matrice de diffusion à partir

des matrices de transition de chaque tranche du profil.

Les expressions pour la construction du champ sont données avec des

exemples de résultats concrets. Sont aussi fournies les équations pour le calcul

des intégrales de recouvrement et des éléments de la matrice de diffusion.
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Chapter 1

Preface

1.1 Short problematics

The solution of the diffraction problem answers, in general, to the question

what light distribution or what field distribution will there be after the in-

teraction with the diffraction element. When the problem is formulated in

this way there is no difference or no interest in the processes which occur in-

side the grating. Chandezon’s method[1], Rayleigh method[2], Fourier-modal

method[3] are the methods of this kind: they answer the question what is

the light in the reflection region and what light is transmitted.

This answer is enough for the most variety of problems. However, these

methods can not explain why there certain effect occurs. For example,

Chang-Hasnain[4] and Bonnet[5] effects can not be explained with the meth-

ods mentioned above. To explain the phenomena and to interpret the be-

haviour of the grating it is necessary to ”look inside” the grating and to

understand what happens inside the grating.

Diffraction gratings found theirs application in the laser technology. They

are used for selecting the polarisation inside the cavity, for the spectral se-

lectivity of the induced light, etc. The use of gratings in the lasers with

increasing output power meet with the need to calculate the ultimate field

density inside the laser mirrors. After a certain threshold exceeding, a ther-

mally induced geometry change of the mirror begins. If the power dissipation
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is not enough, physical destruction of the mirror begins and the laser mirror

usage becomes impossible. Mirrors can be also damaged with effects induced

with the high density of the electromagnetic field. The modal method is the

most suitable one to answer the questions: what is the field inside the grat-

ing, what is the electromagnetic field distribution. The modal method can

respond to the questions posted above. The solution of the diffraction prob-

lem is built in the modal method in the following steps: a set of solutions to

Maxwell equations is constructed so that each solution (mode) satisfies the

boundary conditions imposed by the grating and the periodicity conditions

imposed by the incident light; parts of the incident radiation transmitted

into each mode are calculated on the next step; the modes propagate to the

opposite grating board with with theirs propagation constants carrying theirs

energy portion; at the opposite border, energy of the modes is partially re-

flected backwards and is partially transmitted into the semi-infinite space at

the opposite side of the grating. It is worth noting that the reflected modes,

after they reach the initial boundary, are also partially reflected and partially

transmitted into the media of incidence. The process is more complicate but

this description is appropriate for the review of the processes occurring inside

the grating.

1.2 The interest in the two-dimensional grat-

ings

To meet the requirements and to be in time with the society’s demands it is

necessary not only to improve the technological methods but it is also nec-

essary to have new methods of calculation and assessment of manufactured

materials. For definite applications,the methods already developed fail to sat-

isfy new requirements. For example, the decrease of operational wavelength

leads to failure of the existing method in one-dimensional grating modelling.

New materials require more accurate methods. Currently, two-dimensional

grating are not used as widely as one-dimensional gratings. One-dimensional

gratings have found their place in wide spectra of applications: reflectors[6, 4]
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and ultra-broadband mirrors[7], encryption[8], beam-splitters[9], diodes[10],

coronagraphy[11], sensors[12]. Two-dimensional gratings are also applied in

many fields, like optical demultiplexers[13], solar cells[14], photonic crystals

theory[15], plasmonics[16].

The most convincing application of the two-dimensional gratings arises

from the diffracted light independence (or smooth dependence) on the in-

cident light polarisation. Another application can be found in checking of

the measured results along one direction with respect to the results obtained

along another direction. Using of the two-dimensional grating for such appli-

cation allows to remain the sample untouched. Currently, there are methods

to calculate two-dimensional grating. They have drawbacks but they are

already used to obtain or estimate diffraction efficiencies.

The development of another method is needed for comparison of the re-

sults obtained by one method with the results obtained by another method.

A high accuracy of the results together with calculation speed are the require-

ments for a new method. A capability to deal with any kind of materials is

also one of the requirements.

1.3 Mode. State

The nature of the light and related effects excite people for a long time. A

stained glass, mirrors, Christmas ornaments proves this interest. A craving

for diamonds, which has delicious play of the light inside, is another example

of a large human interest in things, which transform and convert the light.

The diffraction theory of light on the periodic structures does not have

a history as long as craving for diamonds, but periodic structures as optical

elements have found their place really quickly. These elements are used

today in many technological and production areas. Meanwhile, the use of the

properties of periodic structures for each specific application requires more

accurate results and deep understanding of the light interaction with the

structure. Today a high accuracy of the diffraction elements characteristics

is well demanded and new method are required.

Despite the fact that the problem is simple at first glance, up to present
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days a development of methods for solving the diffraction problem continues.

Each of them finds its adherents, developers and opponents. The Differences

between the methods are in the basic principles, which are addressed while a

method development that leads to the number of methods, so each of them

is more optimal for a particular grating profile.

Undoubtedly that each method solves the same equations with the same

boundary conditions. But when one comes close to the particular problem

he has to make some assumptions or reduce the model to some cases.

Quantum physics introduced a concept of the state. The state is one of

possible configurations, one of possible solutions. It is something that can

characterise the system. Each solution of the quantum physics problem is a

superposition of the problem’s states.

A mode concept is similar to the state one. The mode is some character-

istic of the system. Some kind of the general problem solution which presents

in any particular problem solution. We will refer to that abstract definition

of the mode further in this work. The mode is something that posses certain

properties. The mode is characterised by it’s properties but not by some

physical action or a phenomenon.

1.4 Structure of the thesis

The following sequence of the presentation is found optimal for this work.

First part is devoted to the introduction of the mathematical background

referred in the rest of the work. Basic concepts are expressed so that each

person willing to get into this work is able to find all necessary information

in one place. The literature review provides brief description of the methods

which are commonly and widely used for the diffraction problem resolution.

Their advantages and weak points in comparison with the modal methods

are marked.

Modal methods are described separately and in details because they are

placed as a basis for the modal method on the two-dimensional diffraction

gratings. In these chapter reader will find generalisation of the research in

the modal methods up to date. Provided information is sufficient for the
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separated introduction to the one-dimensional modal methods.

The next chapter is the central part of the work. The modal method to

calculate diffraction efficiency of the two-dimensional grating is developed.

All the traditional steps for the modal methods are described. The chapter

begins with the problem formulation, continue to the dispersion equation and

the dispersion function construction. The following step shows how to get

propagation constants and modal fields’ distributions. The overlap integrals

are then calculated on the basis of the modal field distribution. They are

used in the transition matrix on the following step. And the scattering matrix

composition is the final resolution step.

The conclusion chapter summaries all the information from the previous

chapters.

1.5 Activity report for all the thesis period

I also want to point out what achievements were reached during the thesis

work. First step was to investigate state of the art for the moment of the the-

sis beginning. Main efforts were devoted to the modal vision, understanding

of the modal concept. The literature can provide description of the concept,

but the feeling, the inside of the method and of the modal approach can not

be expressed in the papers. I have followed the founders of the method from

the first publication to the present. Each publication gave new area where

method can be applied or where it became possible to use the method.

The familiarisation with the Rigorous Coupled Wave Analysis (RCWA)

was necessary as it is fraternal method for the true-modal method. RCWA

method is also called Fourier-modal method, because the modal decomposi-

tion in Fourier space is the key property of the method. Nevière and Popov

have improved their differential method by taking into account the inclined

boundaries in [17]. This idea was successfully realised for the Fourier modal

method and it was shown that application of this technique leads to the

substantial accuracy improvement with respect to the traditional implemen-

tation of the RCWA.

An attempt to apply this technique to the true-modal method has not suc-
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ceeded. I believe that this idea can not be applied to the true-modal method

due to the properties of the method. The equation system for the true-modal

method is defined completely. I have not found possibility to introduce new

unknown or new characteristic with unknown amplitude. All the attempts

lead either to the over-defined equation systems (and the introduced param-

eter did not influence on the results, unknown could be neglected) or to the

solution out of the definition zone (fields were with constant term, so that

solution was not applicable for the oscillating field (electromagnetic field).

The tilting of the all coordinate system for the true-modal method has

been already published [18]. This approach has shown its efficiency for the

lamellar tilted gratings. A success of the idea application, with regard to the

fail in the slanted boundaries account, can be attributed to the fact that in

the tilted coordinate system the problem became traditional for the modal

method: with the walls, orthogonal to the internal waves.

After I became on a short hand with the modal method, I moved towards

developing of the true-modal method for the two-dimensional structures. The

problem was initially reduced to the structures with orthogonal periodicity

vectors. The theoretical part of this method is similar to the one-dimensional

ancestor. The two-dimensional case introduces specific properties like cou-

pled modes even for dielectric gratings. The main difficulty was to implement

and debug the realisation of the method. Problem arises from the limited

number of reference methods which can be used on each step of the develop-

ment process. RCWA method provides propagation constants and diffraction

efficiencies in the far-field of the dielectric structure. All the step between

these two points are well hidden and can not be used for analysis purposes.

The two-dimensional method is developed. The results obtained with this

method can be used for the approximate methods calibration.
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Chapter 2

Introduction

2.1 Maxwell’s equations

Maxwell’s equations are a set of partial differential equations that, together

with the Lorentz force law, form the foundation of classical electrodynam-

ics, classical optics, and electronic circuits. These in turn underlie modern

electrical and communications technologies. 1

Maxwell’s equations describe conceptually how electric charges and elec-

tric currents act as sources of the electric and magnetic fields. Furthermore,

they describe how a time varying electric field generates a time varying mag-

netic field and vice verse. Among the four equations, two Gauss’s law de-

scribe how the fields emanate from charges. (For the magnetic field there

is no magnetic charge and therefore magnetic fields lines neither begin nor

end anywhere.) The other two equations describe how the fields ’circulate’

around their respective sources; the magnetic field ’circulates’ around elec-

tric currents and time varying electric field in Ampère’s law with Maxwell’s

correction, while the electric field ’circulates’ around time varying magnetic

fields in Faraday’s law.

Gauss’s law
~∇ · ~D = ρ

1This section is partial copy of the article, which can be found on the [19] and further
links.
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where ~∇· denotes divergence, ~D is the electric displacement field, and ρ is

the total electric charge density (including both free and bound charge).

Gauss’s law describes the relationship between an electric field and the

generating electric charges: the electric field points away from positive charges

and towards negative charges. In the field line description, electric field

lines begin only at positive electric charges and end only at negative electric

charges. ’Counting’ the number of field lines in a closed surface, therefore,

yields the total charge enclosed by that surface. More technically, it relates

the electric flux through any hypothetical closed ”Gaussian surface” to the

electric charge within the surface.

Gauss’s law for magnetism

~∇ · ~B = 0

where ~∇· denotes divergence and ~B is the magnetic induction.

Gauss’s law for magnetism states that there are no ”magnetic charges”

(also called magnetic monopoles), analogous to electric charges. Instead, the

magnetic field due to materials is generated by a configuration called a dipole.

Magnetic dipoles are best represented as current loops but resemble positive

and negative ’magnetic charges’, inseparably bound together, having no net

’magnetic charge’. In terms of field lines, this equation states that magnetic

field lines neither begin nor end but make loops or extend to infinity and

back. In other words, any magnetic field line that enters a given volume

must somewhere exit that volume. Equivalent technical statements are that

the sum total magnetic flux through any Gaussian surface is zero, or that

the magnetic field is a solenoidal vector field.

Faraday’s law

~∇× ~E = −∂
~B

∂t

where ~∇× denotes curl and ~B is the magnetic induction.

Faraday’s law describes how a time varying magnetic field creates (”in-

duces”) an electric field. This aspect of electromagnetic induction is the

operating principle behind many electric generators: for example a rotating
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bar magnet creates a changing magnetic field, which in turn generates an

electric field in a nearby wire.

Ampère’s law with Maxwell’s correction

~∇× ~H =~j+
∂ ~D

∂t

where ~∇× denotes curl, ~H is the magnetising field, j is the current density,

and ~D is the electric displacement field.

Ampère’s law with Maxwell’s correction states that magnetic fields can be

generated in two ways: by electrical current (this was the original ”Ampère’s

law”) and by changing electric fields (this was ”Maxwell’s correction”).

Maxwell’s correction to Ampère’s law is particularly important: It means

that a changing magnetic field creates an electric field, and a changing electric

field creates a magnetic field. Therefore, these equations allow self-sustaining

”electromagnetic waves” to travel through empty space (see electromagnetic

wave equation).

The speed calculated for electromagnetic waves, which could be predicted

from experiments on charges and currents, exactly matches the speed of light;

indeed, light is a form of electromagnetic radiation (so are X-rays, radio

waves, and others). Maxwell understood the connection between electro-

magnetic waves and light in 1861, thereby unifying the previously-separate

fields of electromagnetism and optics.

The light is an electro-magnetic wave with wavelength belonging to a

definite range (human visible light for example has wavelengths ranging from

760nm to 380nm ). Maxwell’s equations are valid for all the electro-magnetic

waves including light.

In case of the light propagation we can exclude displacement current j

and electrical charges density ρ from the equations. The system is resolved

(as a rule) for materials with permeability equals that of vacuum (µ = µ0).

The wavelength is fixed for particular problem formulation and light sup-

posed to be monochromatic. The time dependence thus far is described

with exp(−jωt) term. We can rewrite the original system, taking in account
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previous assumptions, in the form:

~∇× ~E = jωµ0
~H

~∇× ~H = −jωε~E
~∇ · ~D = 0
~∇ · ~H = 0

(2.1)

The resolution of the system (2.1) with given boundary conditions gives the

diffraction problem solution.

2.1.1 Incident light polarisation

x

y

z

EH

k

Figure 2.1: Illustration of the

electromagnetic wave decom-

position

Vectors of electric and magnetic fields of

a plane wave in an isotropic medium are

mutually orthogonal. Their amplitudes are

strictly related. Any of these vectors in turn

can be represented as a superposition of two

orthogonal vectors. This allows to represent

a plane wave as a superposition of two or-

thogonally polarised waves propagating in

the same direction.

Plane of incidence of a plane wave on

some boundary is defined so that both vec-

tors, one is normal to the boundary and an-

other is the wave vector of incidence wave,

belong to that plane of incidence.

A wave with magnetic field lying in the plane of incidence and electric

field orthogonal to this plane is called the TE-wave. Wave, which magnetic

field is orthogonal to the plane of incidence is called TM-wave.

Decomposition of the incident electromagnetic wave with an arbitrarily

oriented electric field (and associated magnetic field) into two differently

polarised waves is unique, simplifies expression of fields and allows to manage

all polarisation states.
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2.1.2 Vector diagram of the diffracted light

m=0

-1
-2-3

m=0

+1

-1-2-3

n1

n2

-1

Figure 2.2: Diffraction nota-

tion

Knowing the grating periods allows us to

make assumptions about what orders will

be propagated (to be measurable in the far

field) but does not allow to define the inten-

sity of each of the orders. As an example of

such expectations on the period would have

resulted in a grating with a period smaller

than the wavelength in the case of normal in-

cidence: reflection occurs only in the zeroth

order, while regarding to the substrate ma-

terial there no transmission can occur into

the zeroth as well as into higher diffraction

orders. The expression for the angles at

which diffraction maxima will be visible is the following:

Λ (n1sinα− n2sin θ) = mλ

where m denotes the diffraction order number, n1 - refractive index of the

media, from which the light insides, n2 is the refractive index of the media

into which the waves are transmitted (is case of reflected waves n2 = n1 ), α

is the incidence angle, Θ is the diffraction maximum angle , Λ is the grating

period. From this expression, given that sinx ≤ 1 easily get the condition

under which the diffraction peaks are visible, i.e. order will be observed in

the far field: ∣∣∣∣∣n1 sinα− mλ
Λ

n2

∣∣∣∣∣ ≤ 1 (2.2)

Intuitively, the technique of vector diagrams demonstrates this passage. The

essence of this technique is that represented by two semicircles with a com-

mon centre on both sides of the horizontal line. On one side is represented

by semicircle with a radius equal to k1 = 2π
λ0
n1, i.e., value of the wave vec-

tor in the half with coefficient index n1, and on the other hand, respectively,

k2 =
2π
λ0
n2, that is equal to the wave vector in the second half. Then, depicted
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a line from the centre These semi-circles in the direction of the corresponding

angle of incidence. Parallel segment connecting the centre and a point on

the semicircle is transferred so that the point of the semicircle hit on the

normal to the horizontal line drawn through the centre of a semicircle. The

point where to move initially at the centre of semi circle, will reference and

match zero directions. Through this point of the line perpendicular to the

horizontal, we get 2 points of intersection with the semicircle. Having line

from the centre of semi-circles to these points of intersection, we clearly see

at what angle will apply the zeroth order. In order to see other orders, we put

both sides of the reference points of segments equal to K = 2π
Λ
. Restoring

-1-2-3-4 m=0 +1 +2

k=n  k2

0

k=
n  k1

0

a) Example of the configuration
when substrate is with larger

refractive index then the cover of the
grating. Grating vector is small with

respect to both the indexes.

m=0

k=n  k2

0

k=n  k1
0

+1-1-2

b) Example of the configuration
when substrate is with small

refractive index. Grating vector is
smaller then the wave vector in the
cover but larger then in substrate.

from each such point the normal to the horizontal line, we get the point of

intersection a semicircle. Carrying out these points from the centre line of

half circles, we get directions distribution of diffraction orders. The number

of diffraction order corresponds to the number of the line and the sign of the

order’s number corresponds to the the direction in which we wove aside the

zeroth reflected order (if in the same direction, where the source was moved

segment corresponding to the incident wave - positive, the opposite - nega-

tive). In the case when the intersection with the semicircle does not occur,
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the diffracted waves do not propagate, and condition (2.2) fails.

2.1.3 Littrow configuration. Brewster’s angle

A special but common case is that in which the light is diffracted back to-

wards the direction from which it came ( α = −β ); this is called Littrow

configuration, for which the grating equation becomes

mλ = 2d sin(α)

Brewster’s angle (also known as the polarisation angle) is an angle of

incidence at which the TM-polarised light is perfectly transmitted through a

transparent dielectric surface, with no reflection. When unpolarised light is

incident at this angle, the light that is reflected from the surface is therefore

perfectly linearly TE-polarised. This special angle of incidence is named after

the Scottish physicist, Sir David Brewster (1781–1868).

2.1.4 Poynting vector

The Poynting vector can be thought of as representing the energy flux of an

electromagnetic field. It is named after its inventor John Henry Poynting.

Oliver Heaviside and Nikolay Umov independently co-invented the Poynting

vector. In Poynting’s original paper and in many textbooks it is defined as

~S = ~E× ~H

which is often called the Abraham form; hereis ~E the electric field and ~H

the auxiliary magnetic field. Sometimes, an alternative definition in terms

of electric field ~E and the magnetic field ~B is used. The Poynting vector is

averaged value. An averaging of the monochromatic wave over the time gives

the expression: 〈
~S
〉
=

〈
~E× ~H

〉
2
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and an averaging result over the spacial coordinates depends on the field

dependencies and different for different modes.

A vector definition and approach for the energy flux definition will be used

later for the normalisation of the modes. Any field decomposition over the

basis functions is based on the orthogonality of the basis functions. The total

field flux is a superposition of the each modal flux contribution. Regarding

the Poynting vector, the averaging over the period of the structure gives that〈
~Ei × ~Hj

〉
= 0 for the basis functions fi(x) and fj(x) when i 6= j.

The Poynting vector defines the energy flux and can not be used for the

evanescent waves, because it is proportional to the wave vector projection on

the interesting direction:

〈Sz〉 = Re

(〈
ExH

∗
y − EyH

∗
x

〉
2

)
= Re

(
kzA

2C 〈fi(x)f ∗
i (x)〉

)
where A is the amplitude of the wave, C is some constant depending on the

base function, and 〈fi(x)f∗
i (x)〉 is the base function averaging over the spacial

coordinates (x is this case). We use the expression similar to the Poynting

vector but allowing us to deal with the evanescent waves:

〈Pz〉 =

〈
ExHy

∗ − EyHx
∗
〉

2

where H is the magnetic field component of the conjugated problem and for

the normalisation we can write:

A =

√√√√ 〈Pz〉

kzC
〈
fi(x)fi

∗
(x)
〉

2.2 The mathematical form of the solutions

representation
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Figure 2.3: Incidence definition

We fix the incidence angle of the

beam on the grating and denote po-

lar angle θ and azimuthal angle φ.

According to the diffraction theory,

the reflected and the transmitted

wave vector projections will be de-

fined by the incident angles θ, φ, the

wavelength λ of the incident light

and the grating period Λx:

kxm =
2π

λ
sin(θ) cos(φ) +m · 2π

Λx

the coefficient n is the order num-

ber (on simply order). Amplitudes

of each wave with wave-vector kxn can be written in a form of the amplitudes

vector (A0 . . . An)
T .

If the incident wave has the wave-vector projection equal

kx0′ =
2π

λ
sin(θ) cos(φ) +m′ · 2π

Λx

then all the diffracted waves will have the wave-vector projections kxn′ equal:

kxn′ = kx0′ + n′ · 2π
Λx

We can notice that solutions obtained for both these problems have the same

basis in the Rayleigh orders domain.

An incident radiation thus far can be expressed as a vector of incoming

beams with non-zero amplitudes for the actually radiating light.

Diffracted and reflected waves are expressed in the same basis. Thus far

it was possible to build a solution in the matrix form, where amplitudes in

one basis correspond to amplitudes in another basis. This representation

does not increase the complexity of the problem because it is necessary to

calculate amplitudes of all the outgoing waves even in the case when one
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interests only several (or single) diffraction order efficiencies.

It is suitable to use complex values for the description of the amplitudes.

The complex values allow to store the magnitude of the particular order along

with the phase difference between each of them.

Four groups of the amplitudes can be distinguished : attributed to each

side of the interface and according to the direction of propagation. Here the

term interface is used intentionally to emphasise that at any cross-section of

the geometry such groups can be found.

We can establish relations between these sets in different forms: a corre-

spondence of the amplitudes (of the waves going up and down) at one side

of the boundary with the amplitudes on the other side and a correspondence

between the amplitudes of the waves going to the boundary (from the both

sides) to the sets of the amplitudes going from the boundary. Each corre-

spondence can be expressed in the matrix form. The matrix corresponding to

the relation of the first type is called transmission T matrix and the second

one is the scattering S matrix. These matrices will be described in details

below.

Such correspondence can be written not only for the orders but for any

two basis. So, matrices will give information of the correspondence of the

modes to orders, orders to orders of modes to modes.

L.Li proposed in [20] to use R-matrix formalism providing comparison

with another formalism and giving examples when using of the R-matrix

approach is more suitable. This method is not widely used nowadays in the

diffraction theory and we will not consider this formalism here.

2.2.1 Transition matrix

The transition matrix gives correspondence of the amplitudes (written in

some basis) at one side of the boundary to the amplitudes at another side of

the boundary (possibly expressed in another basis)( see fig.2.4):(
b+

b−

)
= T

(
a+

a−

)
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a

b- +

+-

Figure 2.4: Notation of the sets at the arbitrary interface

and in opposite direction: (
a+

a−

)
= T

(
b+

b−

)

Here the vectors at the sides a and b of the boundary consist of the sub-

vectors corresponding to the going upwards (superscript +) and downwards

(superscript −) sets of amplitudes.In case of the infinite matrices the follow-

ing equation is true:

T = T−1

This expression fails for the truncated matrices (which are used in calcula-

tions).

The sets are not obliged to be in the same basis, so sets a± and b± are,

generally, in different basis. The matrix T can be divided into the sub-

matrices:

T =

(
T++ T+−

T+− T−−

)
where each sub-matrix T ft describes contribution of the amplitudes set with

sign f to the set of amplitudes with sign t. Such subdivision of the matrix

allows to see mutual influence of the amplitudes on each other. Here the

terms ”influence” and ”correspondence” are used to stress that formulae

express the equalities rather then equations. This type of matrices are useful

”to get inside” the grating, for example: when amplitudes of all the orders
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above the boundary are known, by multiplication of the known amplitudes

by the transition matrix we obtain amplitudes of the modes inside the grating

(on the other side of the boundary).

Calculation of the transition matrix of the layered structure is reduced

to the multiplication of the T-matrices obtained for each elementary layer of

the structure. The T-matrices multiplication is the same as for traditional

matrices (subdivision is not obligatory). This property gives simplification

for analytical derivations and an analytical investigation of the properties

of the structure or the method. Numerical calculation demands truncation

of analytically infinite matrices to some finite ones. L.Li in [21] justified

possibility of such truncations and expressed the rules for the applicability

of such truncation for Fourier methods.

The T-matrices application for the complex profiles is limited in numerical

application due to the numerical instabilities [22]. The scattering matrices

are more accurate in this regard.

2.2.2 Scattering matrix

The scattering matrix shows a correspondence between waves incident on

the interface with waves leaving the interface. As a boundary here can be

understood an interface between grating and the semi-infinite media or the

whole grating or even stack of layers. In the terms of the fig.2.4 the scattering

matrix is defined: (
a−

b+

)
= S

(
a+

b−

)
The scattering matrix can be subdivided into the 2× 2 matrix:

S =

(
Saa Sba

Sab Sbb

)
=

(
S00 S01

S10 S11

)

Where each sub-matrix Sft gives expressions for the influence of the set at

the side f to the side at the side t of the boundary. The diagonal elements of

the whole S matrix are reflection coefficients of the structure. They express

amplitudes of the waves on the same side of the boundary generated by the
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incidence from the same side.

Depending on the implied properties of the grating and field representa-

tion basis, special properties of the submatrices and their relations can be

established. These properties will not be used in this work and not covered

here for this reason.

The scattering matrix can be calculated from the transition matrix of a

boundary. It is also possible to combine two transition matrices written for

each of the boundaries of the grating into one scattering matrix of the whole

structure. This procedure can be found in [23].

The scattering matrix of the two structures with scattering matrices S1

and S2 can be found according to the generalised multiplication2:

S12 = S1 ◦ S2 = S00
1 + S10

1 (E − S00
2 S

11
1 )

−1
S00
2 S

01
1 S10

1 (E − S00
2 S

11
1 )

−1
S10
2

S01
2

(
(S11

1 )
−1 − S00

2

)−1

(S11
1 )

−1
S01
1 S11

2 + S01
2

(
(S11

1 )
−1 − S00

2

)−1

S10
2


(2.3)

where in each matrix under-script stands for matrix number and superscript

denotes quoter of each matrix. The scattering matrices should be defined in

the same basis to have physical meaning.

For the scattering matrices the multiplication is associative:

S123 = S1 ◦ S2 ◦ S3 = S1 ◦ (S2 ◦ S3) = (S1 ◦ S2) ◦ S3

but not commutative:

S12 = S1 ◦ S2 6= S2 ◦ S1 = S21

A shifting procedure can be described for the scattering matrix in the

order basis. This operation provides a scattering matrix of the layer shifted by

some value x along the axis with respect to the original one. The calculation

2This operation is also reffered as generalised addition. I prefer to stick to multiplication
definition because it is the first and basic operation which is introduced for groups in Group
Theory. Scattering matrices form a group and group theory can be applied to elements of
this group.
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of the shifted scattering matrix is reduced to the the multiplication of the

each order term by the corresponding phase shift.

2.2.3 Conversion from T matrices to S matrix

We can write T and S matrices for a certain interface. These matrices can

be converted to each other according to the equations:

S =

(
(T−−)

−1
T+− (T−−)

−1

T++ + T−+ (T−−)
−1
T+− T−+ (T−−)

−1

)

where notation for T matrix is taken from the 2.2.1.

d

a a
+ -

b b
+ -

m+

m-h

l

2

1

Figure 2.5: Notation used for

the T matrices to S matrix

conversion

We can write transition matrix for each

interface of a layer. To obtain a scattering

matrix of the layer there are several ways.

First way is to consequently multiply the

transition matrices of the boundary, layer

and second boundary and convert obtained

transition matrix into the scattering matrix

of the layer. This approach is good for the

theoretical investigation, but it leads to nu-

merical instabilities in calculations.

Another approach is to combine transi-

tion matrices into special form and reduce

calculation to matrix inversion. Suppose

that we have transition matrices T1 and T2

for each of the interfaces. The modal repre-

sentation inside the layer is defined and propagation constant of each mode

is known. Suppose that modes going upwards are defined at some point l

and going downwards are defined at some point h (see fig. 2.5). We can

write for boundary 2: (
b+

b−

)
= T2 × U2

(
m+

m−

)
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where U2 is diagonal matrix, so that each term corresponds to the phase of

the mode:

U2 =

(
exp(jkmi (d− l)) 0

0 exp(−jkmi (d− h))

)
for the boundary 1 we have:(

a+

a−

)
= T1 × U1

(
m+

m−

)

where the U1 is matrix of the modal phases for the 1-st boundary:

U1 =

(
exp(jkmi (0− l)) 0

0 exp(−jkmi (0− h))

)

The transition matrices Ti are propagation matrices Ui can be multiplied

directly. We define multiplication matrixWi = Ti×Ui and rewrite expression

for each amplitudes set:(
b+

0

)
=

(
W++

2 W−+
2

0 0

)(
m+

m−

)
(

0

a−

)
=

(
0 0

W+−
1 W−−

1

)(
m+

m−

)
(

0

b−

)
=

(
0 0

W+−
2 W−−

2

)(
m+

m−

)
(
a+

0

)
=

(
W++

1 W−+
1

0 0

)(
m+

m−

)
Regrouping expression for b+, a− and b−, a+ we get:(

a−

b+

)
=

(
W+−

1 W−−
1

W++
2 W−+

2

)(
m+

m−

)
(
a+

b−

)
=

(
W++

1 W−+
1

W+−
2 W−−

2

)(
m+

m−

)
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From these expression follows the S matrix expression:

S =

(
W+−

1 W−−
1

W++
2 W−+

2

)(
W++

1 W−+
1

W+−
2 W−−

2

)−1

This way to obtain scattering matrix of the layer with depth d is more stable

in numerical sense.

There is similar expression for the opposite transition matrices T but we

will skip derivation of the expression here.

2.3 Slicing

The techniques developed for the vertical walls can not be directly applied to

arbitrary profile. Meanwhile, there are profiles, a direct calculation of which

can not be done with any existing method. It is possible to approximate the

original profile as a stack of gratings that are convenient for calculating the

specific method. In the case of modal methods, such approximation is the

representation of arbitrary profile in the form of stairs (stair-like approxima-

tion). The validity of such approximation can be found in [24]. For each slice

the S-matrix is calculated. After the matrices for each layer are calculated

one obtains the final matrix by consequent multiplication of the scattering

matrices according to the (2.3). Generally, the representation of the full pro-

file in the form of a stack of layers is called slicing. It seems to be clear that

if more layers are used in the representation then the closer the result will

be to the original profile. This method increases time of the complete struc-

ture calculation linearly with the number of layers used for representation

of the profile. In addition to this limitation, it should be kept in mind that

S-matrix for each layer is calculated with a definite error and that in a matrix

multiplication the error accumulates. As a consequence, there is an implicit

upper limit of the number of layers used. Thus, in order to achieve the best

slicing results, the convergence of interesting values should be investigated

as a function of the layers number. Modal methods shows the decrease of

the error if the number of variables used in the simulation increases. Taking
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into account both the dependencies we find that for the slicing technique the

problem to obtain the most accurate solution reduces to the optimisation

on the two parameters problem, i.e. to the search for the optimum over the

two-dimensional field.

2.3.1 Slicing technique as finite summation and inte-

gration limit

The multiplication of the S matrices, written for the slices of some depth dh,

gives the total scattering matrix. The slicing technique does not imply any

restriction on the number of slices and depth of each slice.

The final scattering matrix is a function of number of slices and converges

to final result. In case of slicing we are multiplying S-matrix, each depending

on the profile and the depth of the slice. The numerical integration utilises

summation of the products of the function value calculated at the point

multiplied with a step corresponding to this point. Numerical integration

and slicing are somehow similar in terms of the calculation of the values at

some coordinate and consequent multiplication (addition) of the obtained

results. There is an optimum for the number of layers, which reaches a

minimum error and provides maximum reliability. Also similarity allows to

use existing methods of numerical integration for calculating of the scattering

matrix of complex structures.

2.4 Methods to validate results

After the method is implemented and the first results are obtained a question

appears whether the results are valid. The first solution is to obtain the

results with another method and to compare the results by the two methods.

This approach to the method validation works only if another method exists

and provides reference results for the particular grating profile. Even when

such method exists and results are comparable the following question arises:

what results are more accurate? to what results can we trust more?

A first and evident solution lies in check of the energy conservation. This
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can be applied only for the lossless materials but also provide some estimation

for the lossy materials.

According to the energy conservation theorem the sum of the energy effi-

ciencies (squared amplitudes of the outgoing orders {divided by permittivity

in case of the magnetic field amplitudes} ) should be equal to unity. It is

generally called the energy balance criterion. The physical interpretation is

simple: the incident energy is equal to the diffracted energy. This method

is not applicable for some methods which are based on this conservation or

utilize somehow this property ( C-method for example).

Another validation criterion comes from the symmetry of the solution

with regard to the substitution of the incoming beams with the outgoing and

vice-verse. This validation called the reciprocity theorem [25].

These methods are the first benchmarks for those who develops a new

method or improve existing ones.

2.5 Method benchmark

If the developed method satisfies criteria described above another treatment

of the method can should be applied. The method should be stable with

regard to the slight variation of the initial parameters. The resulting solutions

should be close to each other (except special cases like resonances). Varying

the parameters the developer can check if the method stable or to define for

which domain the developed method is suitable.

The numerical methods has (as a rule) some parameter, characterising

only the certain run of the method: number of orders under consideration,

number of points considered or some step parameter. Another validity check

is based on the convergence of the results to some point with the increase

of that specific for the simulation parameter. It is also evident that such

convergence exists up to some limit when accumulated errors will surpass

benefits from more accurate problem representation.

We can consider the error of the result as a function of the inverse of

characterising parameter 1
m

(for example number of modes). The analysis

provides accurate results, so we can write that for infinite number of modes
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we get zero error:

e(
1

∞
) = Vt − V (

1

∞
) = 0

where Vt is the true value and the V ( 1
m
) is the value obtained with finite

number of modes m. For any finite number of modes there will always be an

error. When we can not find real value we can use self-convergence to see if

the error decreases with the increasing number of modes.

Results convergence is also a validation method and can be used along

with other validation techniques.

2.6 The processor precision. The floating point

precision. The numerical calculations

The performance of the computers grows quite rapidly. Along with the per-

formance the available for computation memory also increases. Both these

facts gives possibility to implement methods which were impossible to imple-

ment in the past. High performance of the processor also allows to concen-

trate on the ideas to be implemented and pass more and more computational

work to the processor. This way has certain drawbacks. First of all, there

is the productivity reduction. The second reason is the error accumulation.

Each floating point value is presented with the finite precision. The processor

precision α is a value so that

A · (1 + α) = 1 · A

This equation should be treated that there always exists some value, so that

adding this value to one will not influence on the result (value still be one).

This value depends on the mantissa size, on the number of bits used for

the fractional part representation. For example, a single precision type has

accuracy equals to 5.960e−08 and a double precision type has approximately

16 decimal digits.

If appears that better accuracy is necessary for the calculations, the spe-

cial techniques should be used [26]. That will reduce computation perfor-
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mance and the trade-off should be estimated before applying these methods.

Finite summations can not be avoided. And it should be kept in mind that

each floating point value has already representation error (stored value differs

from the calculated one according to the rounding rules). These values are

not equally distributed in sense of the rounding up or down and summation

can significantly influence the final result.

This topic is not widely discussed in physical society but in the computer

science there can be found some explanations and more information [27].

2.7 Fourier transformation

The key instrument for he RCWA and Chandezon’s methods is the Fourier

transform. The Fourier transform is a mathematical operation that decom-

poses a signal into its constituent frequencies. The original signal depends

on space (or time), and therefore is called the space (or time) domain repre-

sentation of the signal, whereas the Fourier transform depends on frequency

and is called the frequency domain representation of the signal. The term

Fourier transform refers both to the frequency domain representation of the

signal and the process that transforms the signal to its frequency domain

representation. 3

In mathematical terms, the Fourier transform ’transforms’ one complex-

valued function of a real variable into another. In effect, the Fourier transform

decomposes a function into oscillatory functions. The Fourier transform and

its generalisations are the subject of Fourier analysis. In this specific case,

both the time and frequency domains are unbounded linear continua. It is

possible to define the Fourier transform of a function of several variables,

which is important for instance in the physical study of wave motion and

optics. It is also possible to generalise the Fourier transform on discrete

structures such as finite groups. The efficient computation of such structures,

by fast Fourier transform, is essential for high-speed computing.

Definition There are several common conventions for defining the Fourier

3This section is partial copy of the article, which can be found on the [28] and further
links.
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transform f̂ of an integrable function f : R → C. Here we will use the

definition:

f̂(ξ) =

∫ ∞

−∞
f(x) e−2πixξ dx,

for every real number ξ.

When the independent variable x represents time, the transform vari-

able ξ represents frequency (in Hertz). Under suitable conditions, f can be

reconstructed from f̂ : by the inverse transform:

f(x) =

∫ ∞

−∞
f̂(ξ) e2πixξ dξ

for every real number x.

The Fourier transform on Euclidean space is treated separately, in which

the variable x often represents position and ξ momentum.

There is a close connection between the definition of Fourier series and

the Fourier transform for functions f which are zero outside of an interval.

For such a function we can calculate its Fourier series on any interval that

includes the interval where f is not identically zero. The Fourier transform

is also defined for such a function. As we increase the length of the interval

on which we calculate the Fourier series, then the Fourier series coefficients

begin to look like the Fourier transform and the sum of the Fourier series

of f begins to look like the inverse Fourier transform. To explain this more

precisely, suppose that T is large enough so that the interval [−T/2, T/2]
contains the interval on which f is not identically zero. Then the n-th series

coefficient cn is given by:

cn =

∫ T/2

−T/2
f(x) exp(−2πi(n/T )x)dx

Comparing this to the definition of the Fourier transform it follows that

cn = f̂(n/T ) since f(x) is zero outside [−T/2, T/2]. Thus the Fourier co-

efficients are just the values of the Fourier transform sampled on a grid of

width 1/T . As T increases the Fourier coefficients more closely represent the

Fourier transform of the function.
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Under appropriate conditions the sum of the Fourier series of f will equal

the function f . In other words f can be written:

f(x) =
1

T

∞∑
n=−∞

f̂(n/T ) e2πi(n/T )x =
∞∑

n=−∞

f̂(ξn) e
2πiξnx∆ξ

where the last sum is simply the first sum rewritten using the definitions

ξn = n/T , and ∆ξ = (n+ 1)/T − n/T = 1/T .

In the study of Fourier series the numbers cn could be thought of as the

”amount” of the wave in the Fourier series of f . Similarly, as seen above, the

Fourier transform can be thought of as a function that measures how much of

each individual frequency is present in our function f , and we can recombine

these waves by using an integral (or ”continuous sum”) to reproduce the

original function.

The field decomposition represented as the Rayleigh series can be treated

as the Fourier decomposition of the total electromagnetic field and applica-

tion of the Fourier technique seems to be very suitable for the diffraction

problem resolution.

Very important property, which defines application of the Fourier decom-

position in the differential equation system solutions, is the following:

ˆαf(x) + β · g(x) = α ˆf(x) + β ˆg(x)

ˆ(
f(x)

∂x

)
= iω ˆf(x)

For the convolution function h(x) of functions f(x) and g(x) defined like

h(x) = (f ∗ g)(x) =
∫∞
−∞ f(y)g(x− y) dy Fourier transform is

ĥ(ξ) = f̂(ξ) · ĝ(ξ)

the dual property for the h(x) = f(x) · g(x) is

ĥ(ξ) = f̂(ξ) ∗ ĝ(ξ)

. According to these formulae the differential operators in Maxwell’s equa-
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tions are reduced to the multiplication.

Another property of the Fourier decompositions concerns theirs multi-

plication. Distributions can be multiplied only when there are no common

singular points. This rule lead to several publications showing convergence

improvement of the obtained results and to the formulation of the Fourier

method for the gratings with slanted walls.

2.7.1 Fast Fourier transform

A fast Fourier transform (FFT) is an efficient algorithm to compute the

discrete Fourier transform (DFT) and its inverse. There are many distinct

FFT algorithms involving a wide range of mathematics, from simple complex-

number arithmetic to group theory and number theory; this section gives

an overview of the available techniques and some of their general properties,

while the specific algorithms are described in subsidiary articles linked below.
4

A DFT decomposes a sequence of values into components of different

frequencies. This operation is useful in many fields (see discrete Fourier

transform for properties and applications of the transform) but computing

it directly from the definition is often too slow to be practical. An FFT

is a way to compute the same result more quickly: computing a DFT of

N points in the naive way, using the definition, takes O(N2) arithmetical

operations, while an FFT can compute the same result in only O(N log N)

operations. The difference in speed can be substantial, especially for long

data sets where N may be in the thousands or millions—in practise, the

computation time can be reduced by several orders of magnitude in such

cases, and the improvement is roughly proportional to N / log(N). This

huge improvement made many DFT-based algorithms practical; FFTs are

of great importance to a wide variety of applications, from digital signal

processing and solving partial differential equations to algorithms for quick

multiplication of large integers.

4This section is partial copy of the article, which can be found on the [29] and further
links.
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The most well known FFT algorithms depend upon the factorisation of

N, but (contrary to popular misconception) there are FFTs with O(N log N)

complexity for all N, even for prime N. Many FFT algorithms only depend

on the fact that exp(−2πi
N
) is an N−th primitive root of unity, and thus can

be applied to analogous transforms over any finite field, such as number-

theoretic transforms.

Since the inverse DFT is the same as the DFT, but with the opposite sign

in the exponent and a 1/N factor, any FFT algorithm can easily be adapted

for it.

2.8 Existing methods developed for one-dimensional

gratings

The problem to obtain exact solution for the diffraction problem on the one-

dimensional grating has a long history. A high result accuracy and solution

tolerance to the grating parameters are dictated by the applications of the

elements: mirrors in lasers, sensors, filters. The accuracy of the model pro-

vides an answer if it is possible to apply solutions in the desired domain and

to produce it with a present technology.

Starting from these assumptions, the most important criteria become the

accuracy and reliability of the results provided with a particular method.

Another important factor, when choosing a method to be used, is a calcula-

tion time and a memory consumption. This factor plays important role when

scanning over parameters of the grating (period, depth, profile, materials) or

wavelengths is performed [30]. When the slicing technique is applied, the

method’s performance also plays an important role.

It is possible to make a correspondence between grating profile and more

suitable method for resolution of the diffraction problem on the grating with

such profile. This correspondence arises from the representation of the profile

and resolution method.
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2.8.1 C-method

The C-method was called after the author of this approach. Chandezon et

al. introduced this approach in the [31]. In this paper the authors showed

a method to calculate diffraction efficiencies for both polarisation of the in-

coming beam.

The core idea of the method is to write the Maxwell’s equations in the

”translation coordinate system”. This system is bound with one of the sur-

faces of the grating, so that corrugated surface of the grating becomes a

coordinate plane in the new system.

The Maxwell’s equations are then reformulated in terms of the new co-

ordinate system in the Fourier space. This action leads to simplification of

the boundary condition and simplified problem resolution.

As the new coordinate system is bound with the profile then the profile

shape should be characterised by the invertible function. This method is

applicable for the smooth profiles or at least for the profiles without over-

hanging.

2.8.2 FDTD method

(i, j, k) (i+1, j, k)

(i, j, k+1)

(i+1, j+1, k)

(i+1, j+1, k+1)

Ez

Ex

Ey

Hy
Hx

Hz
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Finite-difference time-domain 5 (FDTD) is a popular computational elec-

trodynamics modelling technique. It is considered easy to understand and

easy to implement in software. Since it is a time-domain method, solutions

can cover a wide frequency range with a single simulation run.

The FDTD method belongs in the general class of grid-based differential

time-domain numerical modelling methods. The time-dependent Maxwell’s

equations (in partial differential form) are discretised using central-difference

approximations to the space and time partial derivatives. The resulting finite-

difference equations are solved in either software or hardware in a leapfrog

manner: the electric field vector components in a volume of space are solved

at a given instant in time; then the magnetic field vector components in the

same spatial volume are solved at the next instant in time; and the process

is repeated over and over again until the desired transient or steady-state

electromagnetic field behaviour is fully evolved.

In order to use FDTD a computational domain must be established. The

computational domain is simply the physical region over which the simulation

will be performed. The E and H fields are determined at every point in

space within that computational domain. The material of each cell within

the computational domain must be specified. Typically, the material is either

free-space (air), metal, or dielectric. Any material can be used as long as the

permeability, permittivity, and conductivity are specified.

Once the computational domain and the grid materials are established,

a source is specified. The source can be an impinging plane wave, a current

on a wire, or an applied electric field, depending on the application

Since the E and H fields are determined directly, the output of the sim-

ulation is usually the E or H field at a point or a series of points within the

computational domain. The simulation evolves the E and H fields forward

in time.

Processing may be done on the E and H fields returned by the simulation.

Data processing may also occur while the simulation is ongoing.

While the FDTD technique computes electromagnetic fields within a com-

5This section is partial copy of the article, which can be found on the [32] and further
links.
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pact spatial region, scattered and/or radiated far fields can be obtained via

near-to-far-field transformations[33].

The basic FDTD space grid and time-stepping algorithm trace back to

a seminal 1966 paper by Kane Yee in IEEE Transactions on Antennas and

Propagation [34]. The descriptor ”Finite-difference time-domain” and its

corresponding ”FDTD” acronym were originated by Allen Taflove in a 1980

paper in IEEE Transactions on Electromagnetic Compatibility [35].

Since about 1990, FDTD techniques have emerged as primary means

to computationally model many scientific and engineering problems dealing

with electromagnetic wave interactions with material structures. Current

FDTD modelling applications range from near-DC (ultralow-frequency geo-

physics involving the entire Earth-ionosphere waveguide) through microwaves

(radar signature technology, antennas, wireless communications devices, dig-

ital interconnects, biomedical imaging/treatment) to visible light (photonic

crystals, nanoplasmonics, solitons, and biophotonics)[36]. In 2006, an esti-

mated 2,000 FDTD-related publications appeared in the science and engi-

neering literature.

2.8.3 Rayleigh method

Lord Rayleigh in the 1907 put forward the diffraction theory by a reflection

grating, where he assumed the discrete set of upward reflected spectral waves

(together with the incident field) to be a complete description of the total

field up to the boundary surface of the grating. In the [37] van den Berg and

Fokkema have shown in a fairly simple way the conditions under which the

Rayleigh hypothesis holds rigorous for wide class of profiles. These authors

applied later [38] Rayleigh hypothesis to the perturbation of the plane sur-

face. Recently the validity of the Rayleigh hypothesis was demonstrated for

the deep gratings [39, 40]. Thus far this method is valid and can be applied

for the diffraction efficiency computation among the other methods.
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2.8.4 Rigorous Coupled Wave Analysis (Fourier-modal

method)

Another method, which uses Fourier transform, was introduced by Knop [3]

and later adopted by Moharam and Gaylord in [41]. This method represents

the field inside the grating as a superposition of Fourier harmonics. The

plane-wave basis allows representation in the Fourier space where differential

operators are represented as a multiplication of the field components by the

corresponding frequencies.

This method is quite easy to understand and implement. This quality

gave a popularity and a wide application to this method. The most suit-

able profile for this method is lamellar grating. It can be binary grating or

containing more then two components over a period.

The convergence of this method for the TM polarisation was the question

to solve for a long time. The explanation of the slow convergence and a

way to get faster convergence was given in the Ph.Lalanne’s paper [42]. His

explanation was later reformulated by L.Li in [43].

For the arbitrary profiles the slicing technique is used when each of the

slices is represented as a lamellar grating. Later in the [44], after the Néviere

Popov’s paper [17], the method was extended to be applicable for the arbi-

trary profiles sliced into the trapezoidal profiles.

Previously described methods provide far-field efficiencies (except FDTD,

which provides a near field distribution at the grating surface), they answer

what will be the reflected or transmitted light but do not allow ”to look

inside” the grating.

Not all the existing methods are covered in the section above. There are

also intergal methods, generalized sources method, fictional sources method,

and others. Another methods are not covered here because they use ideas

and approaches totally different from those which are used in modal methods.

The important information about the electromagnetic solutions inside

the grating (like field distribution, energy flux) are not described precisely

by these methods and it is necessary to apply other techniques or to use

true-modal method.
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2.8.5 True-modal method

The true-modal method is based on the representation of the field inside the

grating as a superposition of the modes, the basic solutions of the particular

problem consisting of the boundary conditions and incidence conditions.

Each mode is characterised with some propagation constant (propagation

speed) and field distribution. The solution of the problem attribute the am-

plitudes to each mode to fulfil the Maxwell’s equations. Modes are solutions

of the electromagnetic equations and the real light propagation inside the

grating is describe with this method in the most accurate fashion.

This method allows to look inside the grating, to investigate the processes

of the energy propagation, inter-modal exchange and explain some effects like

wide-band reflection or polarisation. The paper [23] gives good example of

the explanation provided with the true-modal method.

The methods can be separated to the calculation methods, which utilise

some mathematical tricks to solve Maxwell’s equations, and the models. As

a model here I understand some problem description and development of

the model based on the physical processes. From this point of view, only

true-modal method is a model based on the physical process of the light

propagation inside the grating.
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Chapter 3

Building a true-modal solution

for a one-dimensional grating

The one-dimensional method is well adopted to be used as a base method for

constructing the two-dimensional basis of a simple structure used later for

investigation. It was also shown that true-modal method can be used for the

metal gratings under conical incidence[45]. This chapter revisit the field of

the true-modal method for one-dimensional binary grating structures. Spe-

cial attention is given to the fact that analytical solutions are not limited to

the wave-vector projection been real and applicable for the imaging complex

values.

3.1 Introduction

The true-modal technique will be described in detail. Special attention is

devoted to this method because it will be intensively used in the following

development of the true-modal method for two-dimensional structures. The

first section is devoted to describing the geometry of the problem, and in-

troducing the basic variables and parameters. Then to reduce the difficulty

of the problem, all the solutions are partitioned into two main groups. Such

partition is based on the polarisation definition. Dispersion equations will

be provided for each type of the polarisation. These equations define a set of
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propagation-constant values for binary gratings. A generalisation for grating

structures composed of more then two components is provided after that.

A short explanation of the conjugated problem will be introduced to get an

orthogonal basis, which allows to normalise mode amplitude distributions

along the period. Unique amplitude definition, which is based on the or-

thogonality, allows to compare modes with each other in terms of the energy

transition. Formulae for the overlap integrals will then be given, providing an

explanation based on an understandable physical insight. The last steps for

the resolution of the one-dimensional problem are to construct and calculate

the transition matrix components (which are based on the overlap integral

values) and the final calculation of the scattering matrix based on the two

transition matrices.

3.2 Description of one-dimensional grating

From a technological point of view, gratings consisting of only two materials

are the most convenient (and simple) in production. The profile functions can

be sinusoidal or lamellar (or close to one of them) . Technological limitations

sometimes lead to gratings with a trapezoidal profile function (when walls are

slightly slanted towards the top of the grating). In case of small deviations it

is still possible to consider approximate solutions as the walls were vertical.

A typical problem geometry is depicted in fig.3.1. A coordinate system

is connected with the grating in the following way: the x−axis coincides

with the direction of the grating periodicity; z direction is perpendicular to

the grating surface (positive direction is taken so that reflected waves have

positive projections) and y−axis is taken, so that xyz coordinate system is

right handed. A plane wave with wavelength λ and wave vector k = 2π
λ

illuminates the grating at polar angle Θ and azimuthal angle φ (taken from

the x direction anticlockwise). Notation of incident wave vector projections

are the same as in sec. 2.1.1. We want to construct Maxwell’s equations

solution for the grating region, so that the dependence on the z−coordinate

will be separated and each function, describing the field distribution inside
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Figure 3.1: Typical binary grating configuration

the grating, will have the following view:

f(x, y, z) = g(x, y) · h(z)

There are many functions that satisfy Maxwell’s equations, and admitting

the separation of the depth variable. One can select a group of functions

among these functions such that any distribution of the field in the grating

is represented as the composition of these functions. In other words, it is

possible to construct a functional basis so that any solution inside the grat-

ing would be represented as a basis functions composition with amplitudes

defined from the problem formulation.

This approach, when a general solution is decomposed into functional

(modal) basis, is called modal method. It is initially claimed, thus far, that

all solutions will be represented by the modes (basic functions). In the one-

dimensional grating case with walls perpendicular to the grating surface,

these modes are three dimensional functions such that the coordinate de-

pendence along the coordinate with the translational symmetry (y− axis)

is dictated only by incident wave vector projection, the depth-dependence is

defined by the propagation constant of the mode (and wave vector projection
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along the translational symmetry) and the coordinate dependence along the

periodicity direction is represented as a function with predefined properties.

In geometry of the fig.3.1, the dependence would look like:

f(x, y, z) = ψ(x)g(y) exp(±jkz(β)z)

where β is the modal constant (modal propagation constant), kz(β) is the

projection of the modal constant on the depth-coordinate, ψ(x) is the modal

distribution function, corresponding to the particular value of the modal

constant and g(y) is the function along the translation symmetry direction

(unique for all mode),

3.3 Mode polarisation

We can write down the coordinate dependence of the reflected and transmit-

ted plane waves:

~Eo(x, y, z) = ~E exp(jkxox) exp(jk
yy) exp(jkzz) exp(−jωt)

~Ho(x, y, z) = ~H exp(jkxox) exp(jk
yy) exp(jkzz) exp(−jωt) (3.1)

where o is order number, kxo = ikx + 2π
d

is Rayleigh’s order decomposition,

ky = iky, kz = ±
√
ωεs − (kxo )

2 − (ky)2 (positive for reflected orders and

negative for transmitted waves) and s stands for the number of semi-infinite

media. It is easy to verify that this representation satisfies the Maxwell’s

equations (2.1), or written in derivatives:

−jωεEx = ∂Hz

∂y
− ∂Hy

∂z
jωµHx = ∂Ez

∂y
− ∂Ey

∂z

−jωεEy = ∂Hz

∂x
− ∂Hx

∂z
jωµHy = ∂Ez

∂x
− ∂Ex

∂z

−jωεEz = ∂Hy

∂x
− ∂Hx

∂y
jωµHz = ∂Ey

∂x
− ∂Ex

∂y

We now construct the basis functions, which will continue to represent the

field inside the grating. We operate with the solutions given by the modal

constant equals to β. So we have that β2 = (kz)2 + (ky)2. We fix this

dependence in exponential form exp(jkyy) exp(±jkzz) and rewrite Maxwell’s
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equations:

ωε(x)Ex(x, y, z) = jkzHy(x, y, z)− jkyHz(x, y, z)

−jωε(x)Ey(x, y, z) = ∂Hz(x,y,z)
∂x

− jkzHx(x, y, z)

−jωε(x)Ez(x, y, z) = ∂Hy(x,y,z)

∂x
− jkyHx(x, y, z)

ωµ(x)Hx(x, y, z) = jkyEz(x, y, z)− jkzEy(x, y, z)

jωµ(x)Hy(x, y, z) = ∂Ez(x,y,z)
∂x

− jkzEx(x, y, z)

jωµ(x)Hz = ∂Ey(x,y,z)

∂x
− jkyEx(x, y, z)

Observing the equation system written in that form it can be seen, that using

Hx(x, y, z) = 0 for the first three equations leads to the field description as

a one-dimensional function with its amplitude vector laying in the plane

of walls (y − z). Same action can be applied to the second triple of the

equations with Ex = 0. Introducing this restriction, we declare that for

one type of solutions the electric vector will be lying parallel to the walls

of the grating and for the other this property will be valid for the magnetic

vector. In literature, waves with the electric vector laying along the grating

walls called the TE (transverse electrical), and another type of wave is called

TM (transverse magnetic). We will use the same definition. Introducing

the amplitude of the modal field ae,h where the superscript denotes electrical

or magnetic field amplitude, we may write down expression for the y− and

z− projections and thereby reduce the problem to one-dimensional function.

After substitution of the projection expressions into Maxwell’s equations we

obtain:
TM mode TE mode

Ex =
β

ωε(x)
ahψh(x) 0

Ey =
1

jωε(x)
ky

β
ahψh

′
(x) kz

β
aeψe(x)

Ez = − 1
ωε(x)

kz

β
ahψh

′
(x) −ky

β
aeψe(x)

Hx = 0 − β
ωµ
aeψe(x)

Hy =
kz

β
ahψh(x) − 1

jωµ
ky

β
aeψe′(x)

Hz = −ky

β
ahψh(x) 1

jωµ
kz

β
aeψe′(x)

(3.2)
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field expressions where ψe(x) and ψh(x) are of a particular TE or TM mode.

In what follows derivative over x is denoted with prime (f ′(x) = ∂f
∂x
).

If we express the field inside the grating withM modes of each type, then

we have 2M amplitudes which describe all the fields projections of waves

propagating upwards and 2M amplitudes of the modes going downwards (in

the following expression kz is supposed to be signed):

Ex =
M∑
i=0

βh
i

ωε(x)
ahi ψ

h
i (x)

Ey =
M∑
i=0

(
kzei
βe
i
aeiψ

e
i (x) + 1

jωε(x)
ky

βh
i
ahi ψ

h
i
′
(x)
)

Ez =
M∑
i=0

(
−ky

βe
i
aeiψ

e
i (x) − 1

ωε(x)

kzhi
βh
i
ahi ψ

h
i
′
(x)
)

Hx =
M∑
i=0

− βe
i

ωµ
aeiψ

e
i (x)

Hy =
M∑
i=0

(
− 1
jωµ

ky

βe
i
aeiψ

e
i
′(x) +

kzhi
βh
i
ahi ψ

h
i (x)

)
Hz =

M∑
i=0

(
1
jωµ

kzei
βe
i
aeiψ

e
i
′(x) − ky

βh
i
ahi ψ

h
i (x)

)

(3.3)

where superscript e and h of the amplitudes, modal constants and modal

functions stands for TE and TM polarisation, kz,pi = ±
√
βpi − (ky)2 is the

projection of the modal constant on the z direction and index i stands for

the mode number.

3.4 Invariance of the polarisation

Figure 3.2: Polarisation invari-

ance

A special but very useful case for common

knowledge comes from the irradiation of

the grating with radial angle φ equals zero

(called non-conical mount). In non coni-

cal mount is the configuration where polar-

isation of the incident wave, reflected and

transmitted orders remains the same. In

that mount ky projection of the incident
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wave is 0.

If we consider an incident wave with TE polarisation, it can be seen, that

such configuration would excite only TE-modes (inside the grating region).

Modes in their turn would be re-radiated into the plane waves with the same

polarisation at both the interfaces of the grating.

The same derivation is right for the TM polarised plane wave and TM

modes.

That finding can be used later to check the validity of the derived expres-

sions.

3.5 The dispersion equation

Now we consider the system of equations (3.2) separately for each polarisa-

tion. Thus, for the case of TE polarisation, the system can be reduced to an

equation of the form:(
ψe(x)′

ωµ(x)

)′

+ ωε(x)ψe(x) = (βe)2
ψe(x)

ωµ(x)

for TM polarisation, the equation becomes:(
ψh(x)

′

ωε(x)

)′

+ ωµ(x)ψh(x) =
(
βh
)2 ψh(x)
ωε(x)

From the equations we can see that in the case of TE modes, the functions

ψe(x) and ψe′(x) are continuous, while for TM case, the ration ψh′
(x)

ωε(x)
is

continuous.

Now we construct functions that satisfy the dispersion equation for var-

ious polarisations in case of a binary grating. Within each of the parts of

the period we define our function as the sum of 2 plane waves propagating

towards each other and starting on opposite walls of the slab. In this case,
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the function will be piecewise and represented as:

ψi(x) =

{
ψ1.i(x)

ψ2.i(x)
=

{
f1 exp(jk

x
1.ix) + f2 exp(−jkx1.ix)

f3 exp(jk
x
2.ix) + f4 exp(−jkx2.ix)

, 0 ≤ x ≤ d1

d1 ≤ x ≤ d1 + d2

where kxn.i =
√
ω2µεn − βi

2. Then, from Maxwell’s equations, which require

continuity of the tangential projection of the fields, and under periodicity

conditions imposed on the function, we find that the amplitudes of modal

waves should satisfy the following criteria (for the TE mode):

ψ1.i(d1 − 0) = ψ2.i(d1 + 0)

ψ′
1.i(d1 − 0) = ψ′

2.i(d1 + 0)

ψ2.i(d− 0) = ψ1.i(d+ 0)

ψ′
2.i(d− 0) = ψ′

1.i(d+ 0)

ψi(x) = ψi(x+ d) exp(jikxd)

or, after substitution of the representation of our function for a binary grat-

ing, we obtain:

f1 exp(jk
x
1.id1) + f2 exp(−jkx1.id1) = f3 exp(jk

x
2.id1) + f4 exp(−jkx2.id1)

kx1.if1 exp(jk
x
1.id1)− kx1.if2 exp(−jkx1.id1) = kx2.if3 exp(jk

x
2.id1)− kx2.if4 exp(−jkx2.id1)

f3 exp(jk
x
2.id) + f4 exp(−jkx2.id) = f1 exp(jk

x
1.id) + f2 exp(−jkx1.id)

kx2.if3 exp(jk
x
2.id)− kx2.if4 exp(−jkx2.id) = kx1.if1 exp(jk

x
1.id)− kx1.if2 exp(−jkx1.id)

f1 exp(jk
x
1.id) + f2 exp(−jkx1.id) = [f1 exp(jk

x
1.i0) + f2 exp(−jkx1.i0)] exp(jikxd)

These 4 equations contain 5 unknowns: 4 amplitudes and one hidden pa-

rameter β2. This can also be represented in a matrix form where a linear

superposition of the rows corresponding to the β2 will be equal to zero, and

as a result the determinant of the matrix is equal zero. Rigorously speaking,

this system has an infinite number of solutions, because the rank of the ma-

trix is less than its size (or determinant is 0). Each solution of such type of

matrices is the product of a constant by an eigenvector of the matrix. This

system can be solved in an analytic way by substituting the expression for

one of the unknown amplitudes with another. Parameter β2 is hidden in the
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expressions for kx1.i and kx2.i. The equation system written for the TE case

can be reduced to

cos(k1d1) cos(k2d2)−
1

2

(
k1
k2

+
k2
k1

)
sin(k1d1) sin(k2d2) = cos(ikxd) (3.4)

Writing down conditions for the TM mode we will get

f1 exp(jk
x
1.id1) + f2 exp(−jkx1.id1) = f3 exp(jk

x
2.id1) + f4 exp(−jkx2.id1)

1
ε1
(kx1.if1 exp(jk

x
1.id1)− kx1.if2 exp(−jkx1.id1)) = 1

ε2
(kx2.if3 exp(jk

x
2.id1)− kx2.if4 exp(−jkx2.id1))

f3 exp(jk
x
2.id) + f4 exp(−jkx2.id) = f1 exp(jk

x
1.id) + f2 exp(−jkx1.id)

1
ε1
(kx2.if3 exp(jk

x
2.id)− kx2.if4 exp(−jkx2.id)) = 1

ε2
(kx1.if1 exp(jk

x
1.id)− kx1.if2 exp(−jkx1.id))

f1 exp(jk
x
1.id) + f2 exp(−jkx1.id) = [f1 exp(jk

x
1.i0) + f2 exp(−jkx1.i0)] exp(jikxd)

leads to the dispersion equation of the form:

cos(k1d1) cos(k2d2)−
1

2

(
εg2k1
εg1k2

+
εg1k2
εg2k1

)
sin(k1d1) sin(k2d2) = cos(ikxd) (3.5)

On the right side of both equations (3.4, 3.5) is a value defined by the incident

wave projection and the grating period, the left hand side includes only

”internal” grating parameters. The left-hand side can be considered as the

dispersion function, characterised only by the grating. Graphically these

functions in the β2 axis will look like depicted in fig.3.3 for TM case: The right

side of the equation does not exceed 1 by modulus (assuming that the grating

is irradiated with a propagating wave). Thus, the solution of the dispersion

equation consists in finding the intersection points of two curves: a constant

value corresponding to the right side (irradiation condition) and a curve

corresponding to the left part of the eq.s (3.4), (3.5) (grating properties).

In the case of dielectric lossless gratings, all solutions belong to real β2

numbers (lie on the real axis). This makes it easier to find the distribution

of the propagating constants. In the case of metals, as was shown in [46]

the problem is not so simple and there are ”hidden” modes: solutions that

satisfy the dispersion equation, but lying in the complex domain of β2. All

hidden modes are coupled: they differ in the sign of the complex part of the

β2 value.
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Figure 3.3: Dispersion curve example for the TM case as a function of β2

3.6 Generalisation to the case of gratings com-

posed of more than two sections

The task of finding the propagation constants can be generalised to a larger

number of sections over the period. For any number n (number of the com-

ponents over the period) we can write 2 · n equations to the field amplitudes

and their derivatives on each pair of boundaries. So there will be 2 · n equa-

tions to determine the amplitudes and 2 · n unknown amplitudes and still
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Figure 3.4: Notation for grating composed of more then two materials

there would be one more unknowns than the equations (β2).

ψ1(d1 − 0) = ψ2(d1 + 0)

ψ′
1(d1 − 0) = ψ′

2(d1 + 0)

ψ2(d2 − 0) = ψ3(d2 + 0)

ψ′
2(d2 − 0) = ψ′

3(d2 + 0)

· · ·
ψn−1(dn−1 − 0) = ψn(dn−1 + 0)

ψ′
n−1(dn−1 − 0) = ψ′

n(dn−1 + 0)

ψn(d− 0) = ψ1(d+ 0)

ψ′
n(d− 0) = ψ′

1(d+ 0)

ψi(x) = ψi(x+ d) exp(jikxd)
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Introducing partially defined ψ(x) function:

ψ(x) =


1ψ(x)

· · ·
nψ(x)

=


fp1 exp(j

xk1x) + fn1 exp(−jxk1x)
fp2 exp(j

xk2x) + fn2 exp(−jxk2x)
· · ·

fpn exp(j
xknx) + fnn exp(−jxknx)

, 0 ≤ x ≤ d1

d1 ≤ x ≤ d2

· · ·
dn−1 ≤ x ≤ d

The dispersion equation in this case can be rewritten in a matrix form:


Θ+

1 Θ−
2 0 · · · 0 0

0 Θ+
2 Θ−

3 · · · 0 0

· · ·
0 0 0 · · · Θ+

n−1 Θ−
n

Θ−
1 0 0 · · · 0 Θ+

n


× (fp1, fn1, fp2, fn2, · · · , fpn−1, fnn−1, fpn, fnn)

T = 0

where Θ+
i is the coefficient matrix written for the right border of the slab i:

Θ+
i =

(
exp(jkidi) exp(−jkidi)

ki
1
δi
exp(jkidi) −ki 1δi exp(−jkidi)

)

Θ−
i is the coefficient matrix written for the left border of the slab i:

Θ−
i =

(
− exp(jkidi−1) − exp(−jkidi−1)

−ki 1δi exp(jkidi−1) ki
1
δi
exp(−jkidi−1)

)

and

Θ−
1 =

(
− exp(jk10) − exp(−jk10)

−k1 1
δ1
exp(jk10) k1

1
δ1
exp(−jk10)

)
× exp(jikxd)

δi is the permittivity of the i-th slab for TM modes, and permeability of the

slab for TE case. Resolving that matrix equation as a function of β2 values

would give propagation constants values, when

detM(β2) = 0

condition is satisfied.
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It does not have the same clarity and is not straight-forward to under-

stand, as in the binary grating case, but that equation possesses all the same

properties that allow to distinguish the grating properties and the condition

imposed by the incident wave.

In all the cases, the entries of the β into the equation terms are in square.

It is dictated by Mathematics thus far, that sign of the β does not influence

the resulting equations and solutions. On the other hand, we can also find

some physical interpretation. We construct a basis in which the solutions will

be distributed in both directions relative to the axis z. The field distribution

and the properties of the modes do not depend on the propagation direction.

3.7 Normalisation of modes

After deriving the propagation constants it is possible to build the distri-

bution of the modal functions along the period. One can put one of the

amplitudes equal to 1 and calculate the remaining components. That opera-

tion is equal to calculating of the matrix’s eigenvector. Such approach would

show a distribution of a mode along the period but it would not be possible to

compare them between each other because each of the eigenvector is defined

up to a constant. For comparison purposes it is necessary to normalise modes

according to the same rule. It is easy to reach that goal by introducing an or-

thogonality operator or an orthogonality criteria. For a complex differential

operator of the dispersion equation it is possible to construct a conjugate.

Development of that idea can be found in [many-many links]. We can find

in these papers that in the simple case of materials without losses, simple

complex conjugation of the dispersion function would provide the orthogonal

operator. For problems with lossy materials there should be a more strict

approach used. The orthogonal operator satisfies the following condition:

< L(ψ), L(ψ) >= 0
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where overline means conjugation, and brackets < f(x) >= 1
d

d∫
0

f(x)dx

stands for averaging over one period. From the orthogonality of the op-

erators orthogonality of the functions follow.

Thus, the conjugated operator is orthogonal to the operator of the original

problem and there is a correspondence for each function of original to the

orthogonal function

d∫
0

ψi(x)
(
ψj(x)

)∗
ωδ(x)

dx =

{
0, i 6= j

v, i = j

where δ(x) means permittivity for the TM modes and permeability in TE

case, and v is some arbitrary value. This feature can be used for the normal-

isation of the modes: calculating the integral over one period and setting it

equal to one:
d∫

0

ψi(x)ψi(x)
∗

ωδ(x)
dx = 1

Function ψ(x) is partially defined and amplitudes in each section are defined

up to some constant. Setting arbitrary amplitudes of the partially defined

function ψ we would obtain a finite number C2, not equal to zero:

d∫
0

ψi(x)ψi(x)
∗

ωδ(x)
dx = C2

from where we can find normalised modal function ψn(x) if we got the modal

function ψ(x) and corresponding to that the function value C:

ψn(x) =
ψ(x)

C

There remains an ambiguity in the phase of each mode with respect to

each other for a certain problem. Way of solving diffraction problem by

combining scattering matrix from two transition matrix avoids explicit cal-

culation of the modal amplitudes but after the problem is solved it is possible
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to calculate amplitudes and phases of each mode.

Here are examples of the several modes, distributed along the period of the

structure. The white region is with refraction index n = 1, coloured region

with n = 2.2 for the dielectric case and ε = −4.84 for the metal case. The

distributions are obtained for normal incidence of the light with wavelength

λ = 628nm, grating period Λ = 400nm and filling factor mr = 0.48.
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Figure 3.5: First three TE mode distributions along the grating in dielectric
case
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Figure 3.6: First three TM mode distributions along the grating in dielectric
case

3.8 Mode-order compliment

As the number of the mode increases we can notice that the modal field dis-

tribution becomes more and more like the diffraction order’s one. Amplitudes

of each mode decrease. This similarity will be mathematically explained in
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Figure 3.7: First three TE mode distributions along the grating in metal case
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Figure 3.8: First three TM mode distributions along the grating in metal
case

the next section. We may conclude from the pictures, that there is a corre-

spondence of the orders and modes. We may expect that energy transmitted

with a certain order would be more concentrated in the corresponding mode

and vice-verse. For low numbered modes correspondence with the orders can

be not so strong and evident, but for some particular cases such correspon-

dence can be observed. This will be also expressed in the following section

based on the overlap integrals.

Metallic grating does not completely follow such behaviour. However the

correspondence between orders and modes also can be found.

3.9 The overlap integrals

At this stage of a model construction it is possible to express any field solu-

tion within the grating by a superposition of modes where each of them is
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the Maxwell’s equations solution and orthogonal (in general sense) to oth-

ers. However, the amplitude of each mode, that would be excited by the

incident beam, is still uncertain. It is also clear, that the transmitted and

reflected energy of the propagating electromagnetic wave must be conserved

for structures without losses. Based on this simple understanding of the

field propagation, we would express the field at each of the boundaries of

the grating (boundary where the light comes from and the opposite one).

Without limiting the generality of the problem, consider the illumination of

the grating by the several beams, so that for kx projection of the beam the

following expression would be valid:

kxn = kx0 + nΛ

Each wave can have its own amplitude and polarisation. In this case, the

incident field is most conveniently described as a vector of the amplitudes

of each of the orders and the corresponding polarisations. A full field at the

boundary will be expressed as the superposition of incident waves:

Ex =
∞∑

n=−∞

ky

γn
· Aen − kzn

ωε(x)
kxn
γn

· Ahn

Ey =
∞∑

n=−∞
−kxn
γn

· Aen − kzn
ωε(x)

ky

γn
· Ahn

Ez =
∞∑

n=−∞
0 + γn

ωε(x)
· Ahn

Hx =
∞∑

n=−∞

kzn
ωµ

kxn
γn

· Aen + ky

γn
· Ahn

Hy =
∞∑

n=−∞

kzn
ωµ

ky

γn
· Aen −kxn

γn
· Ahn

Hz =
∞∑

n=−∞

γn
ωµ

· Aen +0

(3.6)

where in notation Apn, p stands for the polarisation of the amplitude, n un-

derscript stands for the order number and γn is the n − th order projection

on the grating surface plane. Full field outside the grating should be equal

to the field inside the grating. Complete expression for the fields inside the

grating are (3.3). When we equate order expressions with modal field rep-
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resentation, truncating and taking only first orders in consideration (2N + 1

orders) we would get following system (written only for x and y projections

of the field) :

N∑
n=−N

(
ky

γn
· Aen −

kzn
ωε(x)

kxn
γn

· Ahn
)
exp(jkxnx) =

M∑
i=0

βh
i

ωε(x)
ahi ψ

h
i (x)

N∑
n=−N

(
−kxn
γn

· Aen −
kzn

ωε(x)
ky

γn
· Ahn

)
exp(jkxnx) =

M∑
i=0

(
kzei
βe
i
aeiψ

e
i (x) +

1
jωε(x)

ky

βh
i
ahi ψ

h
i
′
(x)
)

N∑
n=−N

(
kzn
ωµ

kxn
γn

· Aen + ky

γn
· Ahn

)
exp(jkxnx) =

M∑
i=0

− βe
i

ωµ
aeiψ

e
i (x)

N∑
n=−N

(
kzn
ωµ

ky

γn
· Aen −

kxn
γn

· Ahn
)
exp(jkxnx) =

M∑
i=0

(
− 1
jωµ

ky

βe
i
aeiψ

e
i
′(x) +

kzhi
βh
i
ahi ψ

h
i (x)

)
(3.7)

This equation relates the amplitudes from one side of the grating (orders)

with the same number of modal amplitudes inside the grating. There are

2 options to express one set of amplitudes by another, to obtain an explicit

dependence of each of the amplitudes from one set of amplitudes by the other

side amplitudes. To obtain such an expression, we do the following: each

of the equations is multiplied successively by the conjugate to the chosen

distribution function and integrated over one period. We can multiply by

conjugate function of the Rayleigh’s orders. Rayleigh’s orders basis has an

orthogonal basis, which allows to perform such an operation with respect to

any field.

O(f(x)) =
1

d

d∫
0

f(x) · exp(−jkxnx)dx

As a result we obtain ×(2O+1) groups of 4 equations. Each group has only

a specific order number on the left side, while the right side always contains

some of the integrals of the following structure:

eAnm =
d∫
0

exp(−jkxnx)ψem(x)dx hAnm =
d∫
0

exp(−jkxnx)ψhm(x)dx

eBn
m =

d∫
0

exp(−jkxnx)
ψe
m(x)′

ωµ
dx hBn

m =
d∫
0

exp(−jkxnx)
ψh
m(x)

′

ωε(x)
dx

eCn
m =

d∫
0

exp(−jkxnx)
ψe
m(x)
ωµ

dx =
eAm

n

ωµ
hCn

m =
d∫
0

exp(−jkxnx)
ψh
m(x)
ωε(x)

dx
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These expression are overlap integrals. Their values express how mode corre-

sponds to the order, how they match each other. All the energy concentrated

in the order will be distributed into the modes. Values correspond to the en-

ergy part of the order transmitted into the mode.

Using that set of conjugate functions allows to come to express the orders

via modes. We note vector of modal amplitudes as ~M and vector of the order

amplitudes as ~O:
~O = T × ~M

T is transition matrix from the modes to the diffraction orders.

It is also possible to use set of functions orthogonal to the modal func-

tions. This way by successive multiplication with orthogonal functions and

integration over the period

P(◦) = 1

d

d∫
0

◦ ·
(
ψpm(x)

)∗
dx

we will come to the expression where left side is the sum of overlapping inte-

grals, while on the right side there will be a sum of several modal amplitudes.

Expressions for the overlap integrals are alike:

eAmn =
d∫
0

(
ψem(x)

)∗
exp(jkxnx)dx

hAmn =
d∫
0

(
ψhm(x)

)∗
exp(jkxnx)dx

eBm
n =

d∫
0

(ψe
m

′(x))
∗

ωµ
exp(jkxnx)dx

hBm
n =

d∫
0

(
ψh
m

′(x)
)∗

ωε(x)
exp(jkxnx)dx

eCm
n =

d∫
0

(ψe
m(x))

∗

ωµ
dx =

eAm
n

ωµ
hCm

n =
d∫
0

(ψh
m(x))

∗

ωε(x)
exp(jkxnx)dx

(3.8)

Using these expression would allow to write the matrix equation in the al-

ternative form:
~M = T × ~O

T matrix gives correspondence of the orders amplitude to the modal ampli-

tudes.
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3.10 The conical mount configuration

The resolution of the dispersion equation gives the propagation constants

of modes satisfying the periodicity condition imposed by the incident wave

projection perpendicular to the grating lines. The modal basis is independent

of the wave vector projection along the grating line.

In case of the geometry provided in the beginning of this chapter, ky does

not influence the modal basis. For any value of ky the constructed basis would

satisfy the equation system. The modes field distribution would remain the

same for any projection; propagation constants are also the same, but the

distribution between z and y differ (y-projection is always equal to ky). For

projections will be valid:

β2
i = ky2 + kzi

2

where kzi depends on the βi and k
y is the same for all the modes.

Additionally useful for building future bases in two-dimensional gratings

is the fact that from a mathematical point of view there never was a constraint

to the projection along the grating lines ky. From a physical and practical

point of view,it is impossible to radiate the grating so that the component of

the incident wave is evanescent. But strict treatment of the problem does not

impose any restriction on the projections of the wave vector. There is only a

limitation to the vector sum of the components whereas the distribution of

parts between components can be arbitrary.

This fact allows to use true-modal method as a basis for the two-dimensional

true-modal method.

3.11 Transition matrix

Expressions obtained in the section 3.9 contain mathematical sums of the

amplitudes. We can re-express them, so that the left side would contain only

one amplitude. In case of expressing order amplitudes, that is quite trivial,
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because

1

d

d∫
0

exp(jkxi x) exp(−jkxj x)dx = δij

Expanding the equation system by separating waves going upwards and

downwards we may write for a certain order number o (3.7):

ky

γn
×M+e

n − kzn
ωεb

kxn
γn

×M+h
n + ky

γn
×M−e

n + kzn
ωεb

kxn
γn

×M−h
n =

M∑
i=0

(
βhi a

+h
i + βhi a

−h
i

)
hCo

i

−kxn
γn

×M+e
n − kzn

ωεb

ky

γn
×M+h

n − kxn
γn

×M−e
n + kzn

ωεb

ky

γn
×M−h

n =
M∑
i=0

kzei
βe
i

(
a+ei − a−ei

)
eAoi − j k

y

βh
i

(
a+hi + a−hi

)
hBo

i

kzn
ωµ

kxn
γn
M+e

n + ky

γn
×M+h

n − kzn
ωµ

kxn
γn
M−e

n + ky

γn
×M−h

n =
M∑
i=0

− βe
i

ωµ

(
a+ei + a−ei

)
eAoi

kzn
ωµ

ky

γn
×M+e

n −kxn
γn

×M+h
n − kzn

ωµ
ky

γn
×M−e

n − kxn
γn

×M−h
n =

M∑
i=0

ky

βe
i

(
a+ei + a−ei

)
eBo

i +
kzhi
βh
i

(
a+hi − a−hi

)
hAoi

(3.9)

Here εb denotes the permittivity of the semi-infinite media at the boundary

for which the equation is written. After some arithmetic (supposing that

γn 6= 0 for each order number) we would arrive at the equation for each order

number n:

M+e
n = 1

2γn

M∑
i=0 (

−kxn
kzei
βe
i

eAni +
ωµ
kzn

(
−kxn

βe
i

ωµ
eAni + ky k

y

βe
i

eBn
i

))
a+ei

+
(
kxn

kzei
βe
i

eAni +
ωµ
kzn

(
−kxn

βe
i

ωµ
eAni + ky k

y

βe
i

eBn
i

))
a−ei

+ky
(
βhi

hCn
i + jkxn

1
βh
i

hBn
i + ωµ

kzn

kzhi
βh
i

hAni

)
a+hi

+ky
(
βhi

hCn
i + jkxn

1
βh
i

hBn
i − ωµ

kzn

kzhi
βh
i

hAni

)
a−hi
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M+h
n = 1

2γn

M∑
i=0

ky
(
− βe

i

ωµ
eAni −

kzei
βe
i

ωεb
kzn

eAni − j k
x
n

βe
i

eBn
i

)
a+ei

+ky
(
− βe

i

ωµ
eAni +

kzei
βe
i

ωεb
kzn

eAni − j k
x
n

βe
i

eBn
i

)
a−ei

−
(
ωεb
kzn

(
βhi k

x
n
hCn

i − jky k
y

βh
i

hBn
i

)
+

kzhi
βh
i
kxn

hAni

)
a+hi

−
(
ωεb
kzn

(
βhi k

x
n
hCn

i − jky k
y

βh
i

hBn
i

)
− kzhi

βh
i
kxn

hAni

)
a−hi

M−e
n = 1

2γn

M∑
i=0 (

−kxn
kzei
βe
i

eAni −
ωµ
kzn

(
−kxn

βe
i

ωµ
eAni + ky k

y

βe
i

eBn
i

))
a+ei

+
(
kxn

kzei
βe
i

eAni −
ωµ
kzn

(
−kxn

βe
i

ωµ
eAni + ky k

y

βe
i

eBn
i

))
a−ei

+ky
(
βhi

hCn
i + jkxn

1
βh
i

hBn
i − ωµ

kzn

kzhi
βh
i

hAni

)
a+hi

+ky
(
βhi

hCn
i + jkxn

1
βh
i

hBn
i + ωµ

kzn

kzhi
βh
i

hAni

)
a−hi

M−h
n = 1

2γn

M∑
i=0

ky
(
− βe

i

ωµ
eAni +

kzei
βe
i

ωεb
kzn

eAni − j k
x
n

βe
i

eBn
i

)
a+ei

+ky
(
− βe

i

ωµ
eAni −

kzei
βe
i

ωεb
kzn

eAni − j k
x
n

βe
i

eBn
i

)
a−ei

+
(
−kzhi

βh
i
kxn

hAni +
ωεb
kzn

(
βhi k

x
n
hCn

i − jky k
y

βh
i

hBn
i

))
a+hi

+
(
kzhi
βh
i
kxn

hAni +
ωεb
kzn

(
βhi k

x
n
hCn

i − jky k
y

βh
i

hBn
i

))
a−hi

The equations can be grouped like:
M+e

M+h

M−e

M−h

 =


C1 kyC2 C1 kyC2

kyC3 C4 kyC3 C4

D1 kyD2 D1 kyD2

kyD3 D4 kyD3 D4

×


a+e

a+h

a−e

a−h


where Ci, Ci, Di and Di are some terms expressed earlier. Matrix written

in this form shows how the polarisations are separated in case of non-conical

mount, when ky = 0. It is possible to split the matrix into two separated

matrices, each of which corresponds to particular polarisation.

Similar expression can be written for another boundary. This gives two

transition matrices, which express order amplitudes at both boundaries of
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the grating by unknown amplitudes of the modes.

We can also make similar derivation to obtain expression of the modes

with order amplitudes. For infinite number of orders and modes (without

truncation) we can write:

T =
(
T
)−1

where T and T are transition matrices introduced in the section 3.9. For

the finite matrices each of them should be calculated separately and the

expression above is not fulfilled.

3.12 The scattering matrix of one layer

Possessing two T matrices at each grating boundary allows to calculate the

scattering matrix according to the procedure, described in sec.2.2.2.

There are different definition points used in the literature for the modes.

Some paper define modal amplitudes at the z = 0 point, and place the

grating, so that bottom and top are equally distanced on h
2
from the z = 0

plane. In another papers, modes are counted starting from the boarder: mods

going upwards are defined at the bottom and downwards modes are defined

at the top of the grating. Amplitudes of the modes should be multiplied with

corresponding phases (depending on the depth and modal vector projection):

Ψm = exp(±jkzmh) where h is distance from the definition point to the border

on interest, and kzm is the modal propagation constant projection on the

z−axis.

As a result, the final scattering matrix of the one-dimensional matrix is

obtained.

3.13 The transition grating-grating matrix

Sometimes, it is necessary to calculate the scattering matrix of a complex

structure, composed of several gratings (stack of gratings). Resulting scat-

tering matrix can be obtained by multiplication of the scattering matrices of

each slice. This approach implicitly uses an order representation of the field
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Figure 3.9: Complex structure example

between the slices in the semi-infinite media of zero-depth.

We may calculate the direct transition matrix for the grating-grating

boundary. This approach decreases the number of calculation and brings

benefits to the computation time needed for complex structures, calculated

with slicing technique.

This technique uses the conjugate basis of the grating. Similar to the con-

structing of the T matrix, we apply orthogonal operator to both sides of the

equation, putting the relation between modal fields inside one grating with

the fields in another grating. Analytical expression of modal basis in both re-

gions allows to derive overlap integrals analytically and reduce computation

difficulty of the problem.

3.14 Conclusion

This chapter contains the summary on the true-modal method up to present

dates. Analytical expressions allows to use this method as a basis for the

two-dimensional method development. This method is well developed and

there can be done just a few things concerning optimisation. There is still an

open question for the fast propagation constants search. Each developer of

the True-modal method sticks into this problem. It is possible either to find

quickly part of the constants but lose accuracy or find all the propagation
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constants with significant overhead during search. That problem mainly

concern mathematical problem then physical part of the problem. True-

modal 1D method can be used as a reference method for those who develops

fast non-rigorous methods.
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Chapter 4

Development of the Fourier

modal method for

one-dimensional grating with

slanted walls

The proper field representation over a period is necessary for the constructing

of the two-dimensional modal basis. In case when the grating can not be cor-

rectly represented as a stack of lamellar gratings, the technique, described in

this chapter, can be applied to reduce computation time and remain accuracy

of the results.

4.1 Introduction

The Fourier Modal Method (FMM)[47],[3] (also known as the Rigorous Cou-

pled Wave Analysis (RCWA) as reactualised by Moharam and Gaylord [48]

has been widely used in diffraction modelling due to simplicity of its imple-

mentation. This method is well developed for 1D binary grating for both

TE and TM polarisations. Applying the FMM to gratings of arbitrary pro-

file requires a representation of the actual profile in the form of a staircase

approximation where the corrugation is represented as a stack of ultra-thin
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binary gratings of different duty cycle with vertical walls [49]. It was shown

recently [17] that such staircase approximation leads in the case of the TM

polarisation to artifacts that do not represent the reality. Nevière and Popov

compared the results obtained by their differential method modified to ac-

count for slanted boundaries at the edge of the slices [50] with those obtained

by the FMM and demonstrated a definite accuracy improvement.

We found that similar modification can be applied to the FMM as well

and that this gives rise to a notable improvement of its convergence. Section

2 gives the expression of the modified equations. The scattering S matrix is

calculated for each slice with different oblique boundaries. The S matrix of

full structure is then obtained by combining the matrices of all slices [51].

It is clear that using vertical boundaries instead of slanted when calculating

S matrices is a very rough approximation and leads to calculation errors

and poor convergence. Our technique represents all boundary conditions

correspondingly to the angles given by the grating profile. This explains why

calculation errors are smaller and the convergence is faster in our case.

It is worth to note here that there are several recent publications on the

development of the FMM in the case of binary 2D gratings with perfectly

normal walls [15, 52, 53]. But the authors of these articles do not consider re-

lief gratings with oblique walls. Their analysis is limited to normal walls only

whereas we consider the general case of arbitrarily profiled grating grooves.

We perform the comparison of different techniques in Section 3 to demon-

strate the importance of correct representation of boundary conditions in the

reciprocal space. The results are compared with those obtained by reference

methods best suitable for the considered profiles. The precision is tested in a

binary corrugation in comparison with the reference true-mode method and

demonstrated in the case of a sinusoidal profile against the C-method [1].
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Figure 4.1: Problem geometry: conical incidence on a periodically modulated
interface

4.2 FMM theoretical extension

4.2.1 Problem definition

Consider a 1D grating represented by a layer of permittivity ε(x) periodically

varying along the y axis with period d. In many practical cases function ε(x)

is discontinuous, i.e., it may comprise interfaces between different media

composing the grating. Fig.4.1 represents the simple case of a periodically

modulated interface in a region located between two semi-infinite media of

absolute permittivity ε1 and ε2 .

The surface modulation is described by periodic function f(x) = f(x+d).

The grating plane is perpendicular to the z axis. The grating lines are aligned

along the y-direction. A monochromatic plane wave is incident from the semi-

infinite medium 1 under angles Θ and φ. Its electric and magnetic fields are

proportional to factor exp(j ~k0 ·~r) with

k0x = k1 sin(Θ) cos(φ)

k0y = k1 sin(Θ) sin(φ)

k0z = k1 cos(Θ)

(4.1)
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ki = ω
√
µ0εi (4.2)

The temporal dependence factor exp(−jωt) is the same in all expressions; it

will be omitted hereunder for brevity.

4.2.2 Modal development

We look for solutions of Maxwell’s equations in the grating region

O× ~E = jωµ0
~H

O× ~H = −jω~D = −jωε~E (4.3)

applying the periodicity conditions

~E(x+ d, y, z) = ~E(x, y, z) exp(jk0xd)

~H(x+ d, y, z) = ~H(x, y, z) exp(jk0xd) (4.4)

The FMM defines its modal basis in the reciprocal Fourier space. Any so-

lution to the diffraction problem in the grating region is represented by a

superposition of modes propagating up and down along the z axis. If β is

the modal propagation constant then, in accordance with (4.4), the modal

field writes

~E(x, y, z) =
∞∑

m=−∞

~Em exp(jkmxx+ jk0y + jβz)

~H(x, y, z) =
∞∑

m=−∞

~Hm exp(jkmxx+ jk0y + jβz) (4.5)

where ~Em and ~Hm are field harmonics (depending on β and unknown at this

stage),

kmx = k0x +m
2π

d

Such field development is valid only if the grating structure possesses a trans-

lation symmetry along the z axis. In other words, it is supposed that the

grating grooves are vertical and parallel to the yOz plane. This is true in
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the case of binary (lamellar) gratings. Consequently, such binary gratings

represent the basic structure of the modal method.

4.2.3 Slicing technique

(a) 

(b) 

Figure 4.2: Approximation of the initial grating (a) by an array of lamellar
gratings (b)

If the groove profile differs from the basic binary structure, the grating is

approximated by a stack of thin lamellar gratings as sketched in fig.4.2. The

diffraction S-matrix [51] is calculated for each elementary lamellar grating.

Combining the S-matrices gives the S-matrix of the whole corrugation. This

slicing technique rests on a stair-case approximation of the actual continuous

profile; it is frequently used when the FMM is applied to gratings of arbitrary

profile. At this stage one assumes a good convergence of solutions obtained

to the exact solution in the limit of small slice thickness. The S-matrix

recombination is a standard mathematical procedure and not much can be

said at that stage. The most important issue here is calculation of the S
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matrix for each individual grating slice. This is what the present section is

devoted to.

Substituting solution (4.5) into (4.3) gives for each harmonics

k0yEmz − βEmy = ωµ0Hmx

βEmx − kmxEmz = ωµ0Hmy

kmxEmy − k0yEmx = ωµ0Hmz (4.6)

βHmy − k0yHmz = ωDmx

kmxHmz − βHmx = ωDmy

k0yHx − kmxHmy = ωDmz (4.7)

The transformation of the material relation ~D = ε~E into the reciprocal

space is a key point in the FMM. In the reciprocal space the product of

two periodical functions transforms to a convolution product:

Dm =
∑
j

[ε]mj Ej (4.8)

where [ε] is a Toeplitz matrix and its components [ε]mj are given by Fourier

coefficients εm−j in the periodic permittivity representation by the Fourier

series:

[ε]mj = [ε]m,−j =
1

d

d∫
0

ε(x) exp

[
−i2π

d
(m− j)x

]
dx

The summation in (4.8) is in principle infinite. Numerically however only a

finite number of harmonics can be considered. Such truncation is the primary

source of errors of the method. The crucial aspect here is the continuity of

the functions involved. Permittivity ε(x) is discontinuous at the boundaries.

The Fourier transformation of the product of two distributions which are

discontinuous at the very same point can not be performed according to rules.

This means that expression (4.8) can only be applied for those components

of the electric field which are continuous at the boundary. These are the

68



electric field components parallel to the boundary. It was shown in [42] how

to deal with the normal component of the electric field E⊥. The material

relation has to be rewritten in the form 1
ε
D⊥ = E⊥. The normal component

of electric displacement D⊥ is continuous at the boundary. Therefore, its

product by the discontinuous inverse permittivity can be represented in the

reciprocal space by the convolution:

∑
j

[
1

ε

]
mj

Dj⊥ = Em⊥

where
[
1
ε

]
is a Toeplitz matrix composed of corresponding coefficients:

[
1

ε

]
mj

= [ε]m,−j =
1

d

d∫
0

1

ε(x)
exp

[
−i2π

d
(m− j)x

]
dx

Finally, the normal components of electric displacement are found by matrix

inversion:

Dm⊥
∑
j

[
1

ε

]−1

mj

Ej⊥

4.2.4 Slanted walls

Figure 4.3: New coordinate

system related to the slanted

boundary

The stair-case approximation in its standard

form [48], [49] is a quite rough approxima-

tion of the actual corrugation. The field cal-

culated in each slice is likely to bear some

characteristics of the lamellar geometry, es-

pecially in the case of the TM polarisation.

A more exact field solution in each slice

would be obtained if one could impose a new

coordinate system on the field to satisfy the

boundary conditions at the slanted bound-

ary of the actual corrugation as suggested in

fig.4.3.
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To that end, we have developed a modified FMM formalism inspired

from the general approach disclosed in [50] and applied to the differential

method. While keeping the translation symmetry required by the FMM, a

new orthogonal coordinate system attached to the actual corrugation profile

is introduced as illustrated in fig. 4.3. It turns out that the FMM lends itself

quite naturally to the integration of the oblique boundary conditions as will

be seen hereunder. The y component of a vector is kept without changes but

the two other components are turned:

En = Ex cos(φ(x))− Ez sin(φ(x))

Ep = Ex sin(φ(x)) + Ez cos(φ(x)) (4.9)

As φ(x) is the angle between the normal to the grating boundary in the XOZ

plane (Fig.4.3), component En is normal and Ep is parallel to the boundary.

The electric displacement field then is written in the new coordinate system:

Dmy =
∑
j

[ε]mj Ejy

Dmp =
∑
j

[ε]mj Ejp

Dmn =
∑
j

[
1

ε

]−1

mj

Ejn (4.10)

In what follows, it is assumed that the grating’s profile function f(x) is dif-

ferentiable. It follows that the continuous functions sin(φ(x)) and cos(φ(x))

can be defined from the derivative f ′(x):

sin(φ(x)) =
1√

1 + [f ′(x)]2

cos(φ(x)) =
f ′(x)√

1 + [f ′(x)]2
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The products in relations (4.9) are transformed to convolution products:

Emn =
∑
j

([c]mjEjx − [s]mjEjz)

Emp =
∑
j

([s]mjEjx + [c]mjEjz) (4.11)

where [s] and [c] are Toeplitz matrices with coefficients

[s]mj =
1

d

d∫
0

1√
1 + [f ′(x)]2

exp

[
−i2π

d
(m− j)x

]
dx

[c]mj =
1

d

d∫
0

f ′(x)√
1 + [f ′(x)]2

exp

[
−i2π

d
(m− j)x

]
dx

The components of electric displacement are transformed similarly

Dmx =
∑
j

([c]mjDjn + [s]mjDjp)

Dmx =
∑
j

(−[s]mjDjn + [c]mjDjp) (4.12)

Substituting Eqs. (4.10), (4.11), and (4.12) into (4.6) gives new matrix rela-

tions between field components

βHmy − kyHmz =
∑
j

ω ([A]mjEjx + [B]mjEjz)

kmxHmz − βHmx =
∑
j

ω ([ε]mjEjy)

kyHmx − kmxHmy =
∑
j

ω ([C]mjEjx + [D]mjEjz) (4.13)

71



Matrices [A],[B],[C] and [D] from (4.13) are defined as

A = [c]
[
1
ε

]−1
[c] + [s][ε][s]

B = [s][ε][c]− [c]
[
1
ε

]−1
[s]

C = [c][ε][s]− [s]
[
1
ε

]−1
[c]

D = [s]
[
1
ε

]−1
[s] + [c][ε][c]

Getting rid of z-projections of electric and magnetic fields yields the follow-

ing matrix equation on unknown field amplitudes and modal propagation

constant:

[M ]


Ex

Ey

Hx

Hy

 = β


Ex

Ey

Hx

Hy

 (4.14)

with

[M ] =
−[kx][D]−1[C] 0 ky

ω
[kx][D]−1 ωµ0[I]− 1

ω
[kx][D]−1[kx]

−[ky][D]−1[C] 0 ky
2

ω
[D]−1 − ωµ0[I] −ky

ω
[D]−1[kx]

− ky
ωµ0

[kx]
1
ωµ0

[kx]
2 − ω[ε] 0 0

ω[A]− ky
2

ωµ0
[I]− ω[B][D]−1[C] ky

ωµ0
[kx] ky[B][D]−1 −[B][D]−1[kx]


(4.15)

Here [I] is a unit matrix and [kx] is the diagonal matrix with elements kmx.

Diagonalization of matrix M (4.15) gives modal propagation constants βq

together with the harmonic amplitudes of the modal fields. Note that in the

present analysis up-propagating modes and down-propagating modes have, in

general, different propagating constants. Moreover, in the conical geometry,

both polarisations TE and TM are mixed in each mode. This doubles the

final size of the matrix and, hence, the calculation time.

Under non-conical incidence,ky = 0 , and the matrix [M ] in Eq. 4.14 is

split into two matrices giving independent solutions for TE modes:[
0 −ωµ0[I]

1
ωµ0

[kx]
2 − ω[ε] 0

][
Ey

Hx

]
= β

[
Ey

Hx

]

72



and for TM modes:[
−[kx][D]−1[C] ωµ0[I]− 1

ω
[kx][D]−1[kx]

ω[A]− ω[B][D]−1[C] −[B][D]−1[kx]

][
Ey

Hx

]
= β

[
Ey

Hx

]

4.2.5 S matrix coefficients

The rest of the resolution scheme is a standard modal technique [23]. Al-

though not much new is reported at this step, we have included it to complete

the presentation of the novel FMM implementation. In the slice the electro-

magnetic solution is represented by a superposition of modal fields:
Ex

Ey

Hx

Hy

 =
∑
q

cq exp(jβqz)
∑
m


Eqmx

Eqmy

Hqmx

Hqmy

 exp(jkmxx+ jkyy)

where cq is the amplitude of the q-th order mode and Eqm is the m-th

harmonic amplitude of the electric field in its eigenvector. The homogeneous

semi-infinite media below and above the grating have permittivities εb and

εa, respectively. Without loss of generality, let us consider only the medium

above the slice (the analysis at the lower interface is quite similar). The

fields in the above medium are represented by a superposition of plane and

evanescent TE and TM waves:
Ex

Ey

Hx

Hy

 =
∑
m

exp(jkmxx+ jkyy)


Emx

Emy

Hmx

Hmy


with components
Emx

Emy

Hmx

Hmy

 =


ky
γm
a+me −

kmxkamz

ωεaγm
a+mh

kmx

γm
a+me −

kykamz

ωεaγm
a+mh

kmxkamz

ωµ0γm
a+me +

ky
γm
a+mh

kykamz

ωµ0γm
a+me − kmx

γm
a+mh

 exp(jkamzz)+


ky
γm
a−me +

kmxkamz

ωεaγm
a−mh

−kmx

γm
a−me +

kykamz

ωεaγm
a−mh

−kmxkamz

ωµ0γm
a−me +

ky
γm
a−mh

− kykamz

ωµ0γm
a−me − kmx

γm
a−mh

 exp(−jkamzz)
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Coefficients a+me and a
+
mh are transverse field amplitudes of the TE and the

TM diffraction waves, respectively (the “plus” sign corresponds to the up-

ward propagating waves), and

γm =
√
kmx

2 + ky
2

kamz =
√
ω2µ0εa − γ2m, 0 ≤ arg(kamz) ≤ π

All the tangent field components are continuous at the top interface z =

fmax. This delivers the following relations between modal amplitudes cq and

coefficients a±m :
a+me

a−me

a+mh
a−mh

 =

∑
q


ky
2γm

−kmx

2γm

ωµ0kmx

2kamzγm

ωµ0ky
2kamzγm

ky
2γm

−kmx

2γm
−ωµ0kmx

2kamzγm
− ωµ0ky

2kamzγm

− ωεakmx

2kamzγm
− ωεaky

2kamzγm

ky
2γm

−kmx

2γm
ωεakmx

2kamzγm

ωεaky
2kamzγm

ky
2γm

−kmx

2γm



Eqmx

Eqmy

Hqmx

Hqmy

 cq exp [j(βq ∓ kamz)(z − fmax)]

(4.16)

Similar consideration at the bottom interface z = fmin gives:
b+me

b−me

b+mh
b−mh



=
∑
q


ky
2γm

−kmx

2γm

ωµ0kmx

2kbmzγm

ωµ0ky
2kbmzγm

ky
2γm

−kmx

2γm
−ωµ0kmx

2kbmzγm
− ωµ0ky

2kbmzγm

− ωεbkmx

2kbmzγm
− ωεbky

2kbmzγm

ky
2γm

−kmx

2γm
ωεbkmx

2kbmzγm

ωεbky
2kbmzγm

ky
2γm

−kmx

2γm



Eqmx

Eqmy

Hqmx

Hqmy

 cq exp [j(βq ∓ kbmz)(z − fmin)
]

(4.17)
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At the next step Eqs. (4.16) and (4.17) are resorted in two systems expressing

the incoming and the outgoing wave amplitudes:
b+me

b+mh
a−me

a−mh

 =
∑
q

Qmqcq,


b−me

b−mh
a+me

a+mh

 =
∑
q

Rmqcq

where

Qmq =


ky
2γm

−kmx

2γm

ωµ0kmx

2kbmzγm

ωµ0ky
2kbmzγm

− ωεbkmx

2kbmzγm
− ωεbky

2kbmzγm

ky
2γm

−kmx

2γm
ky
2γm

−kmx

2γm
−ωµ0kmx

2kamzγm
− ωµ0ky

2kamzγm
ωεakmx

2kamzγm

ωεaky
2kamzγm

ky
2γm

−kmx

2γm



Eqmx exp

[
j(βq − kbmz)(z − fmin)

]
Eqmy exp

[
j(βq − kbmz)(z − fmin)

]
Hqmx exp [j(βq + kamz)(z − fmax)]

Hqmy exp [j(βq + kamz)(z − fmax)]



Rmq =


ky
2γm

−kmx

2γm
−ωµ0kmx

2kbmzγm
− ωµ0ky

2kbmzγm
ωεbkmx

2kbmzγm

ωεbky
2kbmzγm

ky
2γm

−kmx

2γm
ky
2γm

−kmx

2γm

ωµ0kmx

2kamzγm

ωµ0ky
2kamzγm

− ωεakmx

2kamzγm
− ωεaky

2kamzγm

ky
2γm

−kmx

2γm



Eqmx exp

[
j(βq + kbmz)(z − fmin)

]
Eqmy exp

[
j(βq + kbmz)(z − fmin)

]
Hqmx exp [j(βq − kamz)(z − fmax)]

Hqmy exp [j(βq − kamz)(z − fmax)]


The resulting S matrix of the grating slice is found as the inverse matrix

product:

S = Q−1R

4.3 Numerical examples of extended imple-

mentation of the FMM

The aim of this section is to demonstrate how different can be the results

of implementation of the FMM depending on the technique used. The tests

are performed in cases permitting an exact reference method. We analyzed

convergence and final precision of the novel technique in comparison with

previously reported versions of the FMM.
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First we test results obtained for a binary grating with vertical walls by

the true-mode method [46]. In this case φ = 0, and we compare convergence

of the Lalanne-Morris technique (LMT) [42] with that of the original FMM

[3, 48]. Such comparison is not new. Similar results can be found elsewhere

[42], [43], [54] showing the advantage of the LMT approach and the necessity

of correct distributions multiplication. We perform this benchmark to precise

typical rates of convergence for both techniques.

Next, we calculate a sinusoidal grating. Such gratings are well-known

to be exactly solved by the C-method[1] which is used as a reference. At

this step we show that simple application of the LMT technique with slicing

leads to the same rate of convergence (or even worse) as the original FMM.

We demonstrate that crucial improvement can be achieved for such profile

applying the novel technique.

4.3.1 Dielectric lamellar grating

L.Li [43] analytically proved increasing of convergence rate for the LMT

modification to the FMM [42]. But it looks impossible to find any detailed

comparison of the convergence rates for these two techniques. Therefore,

we perform such comparison of different techniques to fill this gap. We

investigated convergence of the 0-th and the +1-st transmission order field

amplitudes for the following structure: grating period d = 700 nm, filling

factor 0.56, groove depth 460 nm, grating refractive index n = 2.5 . The

substrate is made of the same material as the grating. The second medium

of the grating and the cover is air with n = 1. Normal incidence of a plane

monochromatic wave λ = 632.8 nm with magnetic field aligned along grating

lines (TM polarisation) is considered. Applying the true-mode method [46]

and taking into account 1025 modes we found reference complex amplitude

diffraction efficiency + for the 0th order transmission and + for the +1st

order transmission.

Let us consider the difference from the reference value as an error of a

tested method. Figure 4.4 presents the errors by both modifications of the

FMM versus the inverse number of diffraction orders. The number of diffrac-

76



1E-3 1E-2 1E-1

1/M

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

Figure 4.4: The errors versus the inverse number of modes for the original
FMM (the crosses) and its modification LMT (the squares) for the 0th order
(bold) and the +1st order (hollow) in transmission by the binary lamellar
grating

tion orders is equal to the number of modes M that was used in calculations.

One can conclude from Fig.4.4 that the original version of the FMM [3, 48]

and its modification LMT [42] converge finally to the same point although

the convergence of the initial version is very slow. Even for M = 1000, the

diffraction efficiencies by the original FMM are far from the reference value.

Figure 4.4 illustrates clearly that convergence is much better with the LMT.

This shows the necessity of using such improvement for calculating diffraction

efficiencies with the FMM.
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4.3.2 Sinusoidal grating

The sinusoidal grating profile is a good benchmark for slicing modelling tech-

niques for two reasons. First, the normal to the grating interface varies

strongly with the slice position which strongly affects the boundary condi-

tions. Secondly, there is an excellent reference given by the C method [1].

Applying different techniques to such structure most evidently shows dif-

ference in their behaviour. We investigated convergence of the 0-th and the

+1-st transmission order field amplitudes for the following structure: grating

period d = λ = 1000nm, full groove depth 500 nm, grating refractive index

. The substrate is made of the same material as the grating. The second

medium of the grating and the cover is air with . The incidence was from

the air side at 45 degree with magnetic field aligned along grating lines (TM

polarisation). Applying the C method delivers reference complex amplitude

diffraction efficiency for the 0th order transmission and + for the +1st order

transmission.

Contrary to the binary lamellar profile, in the calculation of sinusoidal

gratings the number of slices N is an important parameter which has an im-

pact on the convergence. Therefore, this is a two-dimensional convergence

problem, where to find the best convergence path is not an elementary issue.

We performed calculations with the novel and the standard techniques vary-

ing the number of diffraction orders M and the number of slices N taken into

account. Taking the amplitudes given by the C method as the reference we

build for each technique a surface of errors. The surfaces for LMT and the

novel technique are depicted in Fig.4.5.

It follows from Fig.4.5 that for both techniques the optimum ratio between

the number of slices N and the number of diffraction orders M is about 10 in

order to achieve the best calculation accuracy. We kept this ratio in diffrac-

tion efficiency calculations by all the three techniques: the initial FMM, the

LMT and the novel technique. The results are presented in Fig.4.6. Note

first that no improvement is achieved by applying the LTM with respect to

the original FMM. This means that the advantage of the LMT is completely

lost in the stair-case approximation of the sinusoidal profile. Quite opposite,
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a)

(b)

Figure 4.5: The error in calculation of the +1 order transmission of a sinu-
soidal grating versus number of modes M and slices N for the LMT (a) and
our modification (b) of the FMM

our novel technique is relevant in the stair-case approximation and improves

much the convergence of the FMM. The third example concerns the conical

diffraction of a TM polarised wave on the sinusoidal grating. The structure
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Figure 4.6: The errors versus the inverse number of slices for the original
FMM (the crosses), the LMT [12] (the squares), and our technique (the
triangles) for the 0th order (bold) and the +1st order (hollow) in transmission
by the sinusoidal grating. The number of slices N is maintained ten times
the number of modes M

is the same as in the previous example and the C method was used as a

reference. Since the C method implementation to conical diffraction is not

commonplace we checked also the obtained results by the Rayleigh method

[39] and found coincidence between the two methods up to computer error

(better than 1e-14). Calculated diffraction efficiency is given in Fig.4.7. As

in the previous section the results by three different FMM techniques are

compared with the reference. Figure 4.8 shows the average-square error in

six propagating diffraction orders (four orders in transmission and two orders

in reflection) versus azimuthal angle. The novel technique demonstrates two

advantages before the other versions of the FMM. First, the accuracy and

convergence of the method are improved significantly. Secondly, the energy

balance test gives a good error estimation whereas in the both other versions

of the FMM it rests always at the level of computer error.
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Figure 4.7: Power diffraction efficiency from the sinusoidal grating in conical
mount. a. TE polarised waves; b. TM polarised waves.

4.4 Conclusion

We consider this work as a next step to the improvement of the FMM. With

two grating examples we demonstrated that the certain modification of the
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Figure 4.8: Average-square amplitude error for the original FMM (crosses),
the LMT (squares), and the novel technique (filled triangles); energy balance
error y the novel technique (hollow triangles)

equation system is needed which results in a sound increase in both the ac-

curacy and the convergence of the method. One should take into account

while choosing the proposed technique that considering a slanted coordinate

system doubles the matrix size and increases correspondingly the computa-

tion time. Such deceleration however is well compensated by the substantial

improvements offered by the novel technique.

The proposed technique is absolutely compatible with other recent im-

provements of the FMM such as spatial adaptive resolution [55, 56], spurious

mode filtering[57], and 2D grating developments[15, 52, 53] . Therefore, it

can be efficiently applied together with those techniques when calculating

relief metal gratings.
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Chapter 5

Building a solution for the

two-dimensional grating

We can consider a two-dimensional grating as an extension of the one-dimensional

case. There are additional parameters to describe a grating: periodical vector

along second axis is added and permittivity distribution function ε(x, y, z)

becomes three-dimensional. Generally, the periodicity vectors of the grating

can be non-orthogonal. We will consider gratings with orthogonal periodicity

vectors but all the described steps can be adjusted to the for non-orthogonal

case. Such adjustment is not given in this part because it is worth a particular

research.

Figure 5.1: Coordinate system

bounding

This chapter is split into two main steps

necessary to get a solution for the diffrac-

tion problem on the two-dimensional grat-

ing: the first part deals with a search for

the propagation constants and reconstruct-

ing the field distributions associated with

those constants; and the second part is dedi-

cated to a procedure of the overlap integrals

calculation taken for the different field pro-

jections, construction of the transition ma-

trices for each of the grating interfaces and the final scattering matrix con-
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struction based on the transition matrices obtained in the previous stage.

We bind an orthogonal coordinate system with the two-dimensional grat-

ing with orthogonal periodicity vectors according to the following rule: z−
axis is perpendicular to the grating surface, x−axis coincides with on of the

grating’s periodicity vectors and y−axis coincides with the second grating’s

vector, forming a right-handed coordinate system. Solutions above and un-

der the grating we represent as a superposition of the plane waves (orders).

According to the grating equation we expect a two-dimensional diffraction

picture and, for each periodicity direction, we can write an equation for a

wave vector projection onto the axes:

~An,m(x, y, z, t) = ~An,m exp(jkxnx) exp(jk
y
my) exp(jk

z
n,mz) exp(−jωt) (5.1)

A diffracted wave thus far is characterised by two indices n and m, where n

is the x−coordinate index and m is the y−coordinate index. A couple (n,m)

will be also referred to as a ”coordinate number”. Projections of the waves

on the z−direction in the semi-infinite media with permittivity ε are equal

to:

kzn,m =

√
ω2µε−

(
kxn

2 + kym
2
)

We see, that the plane wave is propagating when the following condition

is satisfied: Re(kzn,m) > 0 or ω2µε > kn
x2 + km

y2 . It is evident that the

propagation qualities of the orders depend on both the indices (or coordinate

number). ~A in equation (5.1) expresses the complete electromagnetic vector

(it can be either electrical or magnetic field as electrical and magnetic fields

can be expressed in term of each other in the isotropic media case).

To simplify Maxwell’s equations we use the same plane wave polarisation

definition as introduced in the 2.1.1 with the only change being that now

each order is characterised by its coordinate number (two indices). The TE-

polarised wave is denoted En,m and the TM-polarised wave Hn,m. Defining

plane wave vector projection on the grating surface like: γn,m =
√
kxn

2 + kym
2,

indexed by coordinate number, we may write plane waves decomposition with
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using coordinate number :

Ex =
∑
n,m

kym
γn,m

En,m − 1

ωε

kzn,mk
x
n

γn,m
Hn,m

Ey =
∑
n,m

− kxn
γn,m

En,m − 1

ωε

kymk
z
n,m

γn,m
Hn,m

Ez =
∑
n,m

0En,m −γn,m
ωε

Hn,m

Hx =
∑
n,m

1
ωµ

kxnk
z
n,m

γn,m
En,m +

kym
γn,m

Hn,m

Hy =
∑
n,m

1
ωµ

kymk
z
n,m

γn,m
En,m − kxn

γn,m
Hn,m

Hz =
∑
n,m

−γn,m

ωµ
En,m +0Hn,m (5.2)

where axes dependencies exp(jkxnx)·exp(jkymy)·exp(±jkzn,mz) are eliminated.

A plane wave decomposition allows us to use superposition of the TE- and

TM-polarised modes noted with indices (n,m) due to the orthogonality of

the plane-wave functions.

5.1 Propagation constants search procedure.

Reconstruction of the modal fields

5.1.1 Requirements for the modal functions and im-

posed conditions

The diffraction problem on a two-dimensional grating is a quite non-trivial

task. Nowadays, existing methods are capable to provide some estimation

on the diffraction efficiency in particular structures. But the accuracy of the

results obtained for the metal gratings is very poor and some more method is

necessary for this type of gratings. Even though there are methods developed

for the calculation diffraction efficiency on the two-dimensional periodical

structures, there are no publications concerning solution with the true-modal
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method.

A modal approach is based on a definition of the modal basis, on a selec-

tion of the modal functions, resolution of a general problem and subsequent

calculation of the amplitudes satisfying the particular problem. Thus far,

first aim for a resolution of the problem within modal method is to define

the mode and modal composition which will be used to describe solution.

We introduce a mode as a particular Maxwell’s equations system solution,

possessing permanent wave vector projection along the depth-coordinate

(z−axis in the geometry described above). We also refer to the combination

of the electrical and magnetic fields distribution and corresponding to the dis-

tribution propagation constant, as ”mode”. So, mode is defined propagation

constant value (modal constant) plus modal fields’ distributions correspond-

ing to mode, propagating upwards or downwards (distributions depend on a

propagation direction in general case).

5.1.2 The basic grating structure for modal method

implementation

The modal solution is depth-independent, we assume that the profile of the

grating is also depth-independent. So the permittivity distribution function

is thus function of two coordinates and remains the same for any depth:

ε(x, y, z) = ε(x, y) In case of a grating profile, where this distribution func-

tion is depth-dependent,a slicing technique should be applied reducing the

problem to several sub-problems appropriate for the modal method.

5.1.3 Problem formulation

Now we will consider criteria that are applied to a representation of the modes

and will give a clue to construct a modal basis. A grating periodicity in two

directions allows us to define the distribution of a mode over an elementary

structure cell. At the same time, from the conditions imposed by the field

behaviour of the incident wave, we get modal fields matching conditions on

the boundaries of the two neighbouring elementary cells (and displaced on an
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distances equal to the product of the integer by the period along the axis).

Figure 5.2: Incidence defini-

tion

After the bounding of the coordinate sys-

tem with the grating we can attribute coor-

dinate indices to the periods of the grating,

so that the period along the x−axis is de-

noted Λx and along the y−axis as Λy. We

illuminate the grating by a plane wave with

wavelength λ at an azimuthal angle Θ (taken

from the z−axis direction) and polar an-

gle φ taken from the x−axis (see fig.5.2).

Diffracted and reflected wave vector projec-

tions are defined by the following relations:

kxn = kx0 +
2π
Λx
n

kym = ky0 +
2π
Λy
m

kz,in,m
2

= ω2µεi − kxn
2 − kym

2

where εi is the permittivity of the semi-infinite media i, kz,in,m is the z− pro-

jection of the wave vector in the media i, (n,m) is the coordinate number

described earlier. The components of ~k0 are defined as:

kx0 =
2π

λ

√
εI sin(Θ) cos(φ)

ky0 =
2π

λ

√
εI sin(Θ) sin(φ)

The periodical conditions imposed by the incident wave lead to the equalities:

~E(x+ u · Λx, y + v · Λy) = ~E(x, y)× exp(jkx0 · Λxu) exp(jk
y
0 · Λyv)

~H(x+ u · Λx, y + v · Λy) = ~H(x, y)× exp(jkx0 · Λxu) exp(jk
y
0 · Λyv)

The same conditions should be satisfied by the modal fields distributions

propagating inside the grating region. The periodicity conditions are com-

mon for all the modes.
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5.1.4 Bloch’s modes and orthogonality

According to Bloch’s theory, if we have a problem with periodical operator,

it is possible to represent all the solutions in the form exp(j~k~r) · ~uk(~r). It

is possible to pick out the exponential term in some specific direction and

represent any problem solution as a superposition of such solutions. Bloch’s

theorem is applicable for the problems where a linear operator can be writ-

ten. From this theorem a possibility arises to construct a modal basis for

two-dimensional diffraction problem, because boundary conditions are peri-

odical in two directions (periodical condition), Maxwell’s equations is sys-

tem of linear operators on the field components and it’s possible to construct

linear operator of the problem (existence of the problem linear operator).

Furthermore, it is possible to build an orthogonal basis with the functions in

the form ψc(x, y) · exp(±βz) for each field component c. We call as a modal

representation of the diffraction problem solution a set of functions for field

components Ex, Ey, Ez, Hx, Hy, Hz in the form f(x, y) · exp(±βz), satisfy-
ing Maxwell’s equations. In one-dimensional true-modal method there is only

one function corresponding to each propagation constant. Fields’ projections

of the mode are reconstructed by linear operators of a fixed form. Functions

f(x, y) can be arbitrary in general case and differ for different propagation

constants. We will show one approach to construct such functions.

5.1.5 Product-like modal function suggestion

A form of the base function in the one-dimensional grating case is dictated by

a translation symmetry of the grating in one of the directions. The transla-

tion symmetry allows to reduce a search of a modal functional representation

to the construction of the one-dimensional function (a coordinate dependence

along the translation axis is pre-defined by incident plane wave). The one

dimensional function set, where each function satisfies Maxwell’s equations,

is limited by plane waves and their derivatives. In the two-dimensional case

of the field and its projections distribution there is much more freedom to

select an appropriate functional basis. On the other hand, this freedom does

not bring simplification to the modal basis construction because solutions
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satisfy Maxwell’s equations and are mutually orthogonal. The periodicity of

the field solutions allows to represent projection on the axis p of the modal

fields F as the sum

F p
β (x, y) =

∞∑
i=0

fβi (x) · g
β
i (y)

This is an infinite sum of the products of the single argument functions. The

g(y) and f(x) functions can have arbitrary form for different values β of

the propagation constant. Such functional behaviour allows to look for the

function in the form of a linear combination of the exponential functions.

There should be generating basis common for all the projections. We denote

propagation constant β and infinite vector (aiψi(x)ρi(y)) where each prod-

uct contain amplitude ai and axis dependencies ψi(x), ρi(y) of some form.

Introducing vector-strings
(
Lpj
)
of the linear differential operators, so that

for each projection j of the field p will be result of the operator action:

F p
β (x, y) = (Lpl (β) · · · )×

(
akψk(x)ρk(y)

...

)
=

∞∑
i=0

fβ,pi (x) · gβ,pi (y)

we reach the aim that each field projection is an infinite sum of the separating

functions and generating vector exists for each mode. Fixation of the function

form leads to the resolution of the representation uniqueness problem.

As an example of this approach we consider the most simple structure

for the modal method: a rectangular elementary cell made of a material

with permittivity ε2 with another rectangular of the material ε1 inside. The

grating periods are Λx and Λy. Sizes of the elementary cell are the same.

Internal rectangular has measurements lx and ly along the corresponding

axes. We will use the following notation mrx = lx
Λx

and mry = ly
Λy
. These

values correspond to the filling factor for the one-dimensional grating. In the

two-dimensional grating there are two variables to describe the filling along

each of the axes. But it is confusing to call these values filling factors since

actually the filling factor is a product of these values, i.e. the ratio of the

area with material ε1 to the all elementary cell area.

We place the coordinate system so that the left-bottom corner of the in-
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Figure 5.3: Elementary cell notation

ternal rectangular coincides with the zero-point and the grating periodicity

vectors coincide with the x− and y− axes. The elementary cell can this way

be divided into two sub-cells: one of them reminds one-dimensional elemen-

tary structure and another one is volume with constant permittivity. From

the one-dimensional case we know that Rayleigh’s plane wave decomposition

of the field is most suitable for regions with constant permittivity. We will

thus represent the fields inside that region as a superposition of the plane

waves. For the region with several materials we will use the true-modal field

representation. Such a field representation allows to reduce the procedure of

the function search to the calculation of the modal and order’s amplitudes.

Plane wave basis and modal basis in conical mount are complete basis. It

follows that any field inside the introduced elementary cell can be represented

in these basis and the representation will be unique and complete.

Modal field decomposition and order field decomposition allow to express

any field projection. Therefore, we transform the problem to constructing a

function to the search for the amplitudes for the already known basis.
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5.1.6 More complex profiles representation

The true modal method is appropriate for the structure consisting of alter-

nating slabs per a period. For more complicated profiles a slicing technique

should be used. Extended Fourier-modal method allows to obtain field of the

complicated problem. Choice of each method is determined by the profile and

accuracy of the field reconstruction difficulty. The true- and Fourier- modal

methods were discussed in detail in the previous chapters. Each method

can be used to obtain propagation constant values and to reconstruct fields.

These modal methods provide uniform field representation and guarantee

uniqueness of the solution.

5.1.7 Construction of the dispersion function

Figure 5.4: Top view on the grating

The periodicity condition should be

fulfilled by the complete problem

solution and by each modal func-

tion. To construct the dispersion

equation (an equation which de-

fines the modal propagation con-

stants) we follow the steps described

in the following. First step is

to select a one-dimensional periodic

structure, so that repetition of that

structure gives us original structure.

We consider a structure which re-

peats x−distribution of the two-

dimensional structure and equiva-

lent to one period along y−direction. This structure is infinite in the z− and

x− directions and finite along y−direction. This extract will be also referred

as ”elementary stripe” of the original structure. Solution will be constructed

for configuration when a structure is illuminated with waves, so that waves’

vector projection on the z−axis can be arbitrary complex value (even pure

imaginary), projection on the x−axis coincides with the kx projection of the
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original problem. The one-dimensional problem in different coordinate sys-

tem is well studied. This configuration corresponds to the conical mount

with the only prerequirement that wave vector projection along the transla-

tional axis can be imaginary (or any complex value). It was mentioned that

the true-modal solution for the one-dimensional structure is not restricted

to real components of the wave vector projection along the axis with the

translational symmetry. Therefore, the problem geometry can by resolved

with already existing method. Depending on the complexity of the extracted

structure we can use true-modal or extended Fourier-modal method to con-

struct scattering matrix of the stripe. The choice of the method to be used is

determined by the structure geometry, required precision and computational

time.

The resulting scattering matrix gives the relation between the waves,

incoming onto the elementary stripe waves and the outgoing waves. One

can construct the scattering matrix of an elementary stripe corresponding to

some kz projection (modal propagation constant value), associating incoming

and outgoing waves (fig. 5.5):

b b

b b1 1

2 2 2

1

+

+

-

-

Figure 5.5: Definition of incoming and outbound waves (orders)

92



(
b+2

b−1

)
= S

(
b−2

b+1

)

Now we return to the original problem. From the periodical conditions im-

posed by an incident wave and its wave vector projection we can conclude,

that equation: (
b+2

b−2

)
= exp(jikyΛy)

(
b+1

b−1

)
is valid for all the components. Introducing the diagonal matrix Γ with

diagonal elements equal exp(j ikyΛy) we can write previous equation with

some rearrangement of the components:(
b+2

b−1

)
=

(
Γ 0

0 Γ−1

)(
b+1

b−2

)
(5.3)

Rearranging the scattering matrix S =

(
A B

C D

)
to the form Ŝ =

(
B A

D C

)
gives

(
b+2

b−1

)
= Ŝ

(
b+1

b−2

)
(5.4)

At the same time with validity (5.3) we can subtract from (5.4) and get the

matrix equation:

(
Ŝ − Γ̂

)( b+1

b−2

)
= 0 = λm ·

(
b+1

b−2

)
(5.5)

where Γ̂ =

(
Γ 0

0 Γ−1

)
. This equation has non-trivial solution when determi-

nant of the matrix
(
Ŝ − Γ̂

)
is equal zero:

det(Ŝ − Γ̂) = 0

Taking into account that matrix (Ŝ) is reordered matrix S which is actually
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the function of propagation constant β, we introduce function d(β):

d(β) = det
(
Ŝ(β)− Γ̂

)
(5.6)

The condition d(β) = 0 is verified when

(
b+1

b−2

)
is eigenvector of the

[
Ŝ − Γ̂

]
matrix corresponding to zero eigenvalue. On the other hand, this eigenvector

satisfies the periodicity condition along the y−axis.

The constructed function d(β) is the dispersion equation of the two-

dimensional problem and resolution of this equation gives the propagation

constant values of two-dimensional grating modes. This function maps com-

plex argument to the complex result d(C) → C. It is difficult to use tra-

ditional properties of the function for analysis or to apply the functional

analysis methods to this function. This function is defined numerically and

can be analysed only on the basis of the calculated values.

The propagation constant search procedure differs completely from the

diagonalising of the matrix in the RCWA method. In the method described

above, whatever method provides scattering matrix, the dispersion function

is constructed. And propagation constants correspond to zero values (roots)

of the dispersion function.

5.1.8 Eigenvector amplitudes and field reconstruction

Having the propagation constant (β value satisfying the dispersion equation)

the problem of constructing (retrieving) vector of amplitudes is not difficult

from the mathematical point of view: this is a standard procedure of find-

ing the eigenvector of the given matrix. Depending on the used method to

construct the scattering matrix, several eigenvectors of the matrix and the

corresponding set of vector amplitudes can be found. From the entire set

of the vectors we need to allocate one eigenvalue which coincides with 0,

because look for a vector corresponding to the equation:

(
Ŝ − Γ̂

)( b+1

b−2

)
= 0 ·

(
b+1

b−2

)
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Having set of the field components amplitudes defined with a predetermined

rule, the reconstruction of the field distribution over the elementary cell is

reduced to the summation of the components, multiplied by the correspond-

ing phase factors which depend on the wave vector of each component. The

matrix eigenvectors are defined up to an arbitrary factor. This allows us

to scale the amplitude of each component to meet the criteria of a mode

normalisation. As the most convenient normalisation criterion we find the

following:

〈Pz〉 = 1

where we use ~P = [ ~E, ~H
∗
]

2
vector product of the electrical field of the con-

structed mode with magnetic field of the congruent problem formulation.

This criterion is applicable for both propagating and decaying modes. The

normalisation allows to compare the components of the fields attributed to

different propagation constants. Without the normalisation we still can com-

pare field components of the particular mode. but also between modes with

different propagation constants.

5.1.9 Realisation example and results

To verify the approach we have chosen the most simple structure satisfying

the basic requirements of the modal method applicability. The elementary

cell consists of a rectangle with sides Λx = 300nm Λy = 400nm of a material

with a reflection coefficient n2 = 1, another rectangle is located in the interior

of the cell (reflection index is n1 = 2.2 in dielectric case and ε = −5 in metal

case) with mrx = mry = 0.5 ( sides are equal to mrx · Λx and mry · Λy
respectively). Considered structure is periodic in the x− and y− directions

and infinite in the z−direction. Because we only interested in the propagation

constants values and field projections distributions with respect to the period,

the depth of the structure is not defined at this stage. We use the same

condition for our infinite-depth structure as they are the same as they are

for the finite-depth structure illuminated with plane wave with wavelength

equal λ = 632.8nm.

For the selected structure, we have free choice, relative direction along
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which the infinite elementary stripe will be taken. If such choice is arbitrary,

one expects it to be independent of the selected direction and the equal-

ity of the obtained propagation constants for both possible selections. This

property can be used to verify the validity of the applied method and such

equality proves that dispersion function is correct. As it was mentioned ear-

lier we construct elementary stripe so it repeats grating in the x−direction.

We have an infinite in the x−direction elementary stripe and we will con-

struct the scattering matrix of this stripe. The elementary stripe consists

of two sub-stripes: there is a sub-stripe with a refractive index n1 above a

one-dimensional grating, such that the period is Λx, the depth of the grating

equals mry · Λy, filling factor of the grating is mrx. The scattering matrix

for a one-dimensional grating with rectangular walls can be obtained most

conveniently with the assistance of the RCWA or True-Modal methods (both

are well-developed for one-dimensional gratings). Scattering matrix of the

stripe of a constant permittivity can be written analytically. Components of

this matrix are easy to obtain and this does not create any problem. Mul-

tiplication of two scattering matrices according to the rule of multiplication

of S matrices gives the resulting scattering matrix of an elementary stripe.

At this stage, it is necessary to take into account that the way of splitting

the elementary stripe into substripes is a free choice and it should be done in

regard of the numerical stability and the calculation error reduction. We be-

lieve that for the structure under consideration the smallest error is obtained

when we represent the elementary stripe in the form of a stripe with con-

stant permittivity of the half-height plus a stripe that represents grating and

after another half-stripe with a constant permittivity. We shifted zero point

downwards by the half-stripe depth. We have not introduced any changes

into the problem because according to the periodic conditions the periodicity

requirement remains the same. From the numerical point of view, we shifted

into the zone where the amplitudes of the evanescent plane waves (orders)

are of the processor zero and do not introduce strong perturbations of the

solution. Scattering matrix of each sub-stripe depends on the wave vector

in the z−direction and the resulting matrix depends on tested as a solution

value β. We choose the tested value based on some root-search procedure,
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build the scattering matrix S(β) of the elementary stripe, calculate value

of the function d(β) (eq.5.6) to test if chosen value of β gives zero function

value. This operation is repeated until necessary number of the propagation

values is found.

In theoretical development of the method the scattering matrix is infinite

while numerical modelling requires consideration of the matrices with the

finite size. The actual size of the matrix is limited by the time required to

complete the calculations, by the accumulation of errors arising from numer-

ous numerical operations and amount of available memory. The lower bound

of the matrix size is dictated primarily by the accuracy which is aimed to be

achieved when using the method. From the numerical application point of

view, when we construct a matrix of the elementary stripe and test values to

satisfy dispersion equation, new free to chose parameter appears: the number

of modes used while finite representation or number of variables describing

the field function. The accuracy as a function of representation number can

be observed on the fig.5.6 for the cases of metal and dielectric gratings with

the parameters provided above and for the case of the light incident at Θ = 15

and φ = 15 degrees. The values of the first propagation constants for these
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forth mode

b)

Figure 5.6: The difference between the propagation value obtain with number
of modes n = 269 and the value obtained with corresponding number of
modes for dielectric(a) and metal (b) cases.

cases are provided in table 5.1.

97



Pro. Number Value
Dielectric Metal

1 1.573839 1.57886
2 1.37209 1.429
3 0.55449 0.8083
4 0.02567 + i0.736553 i0.812
5 −0.02567 + i0.736553 i1.0441
6 0.12604 + i1.001301 i1.1612
7 −0.12604 + i1.001301 i1.7817
8 i1.27897 0.15095 + i2.2278

Table 5.1: First propagation constant values

As it was mentioned earlier, as a criterion for evaluation of the results

reliability for the two-dimensional grating the results for the rotated origi-

nal grating can serve and equality of the propagation constants obtained for

two configurations. After replacement of the coordinate system
x→ y

y → −x
and changing the angle φ → 90 − φ the modes get the same propagation

constants. The difference of the calculated propagation constants between

original and rotated problem as a function of the representation number is

shown on the fig.5.7.

We can see that in metal and dielectric cases, the values of the propaga-
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Figure 5.7: Difference between propagation constants of the original and
rotated problem as a function of the representation number. Dielectric case
(a) and metal case (b)

tion constants converge to each other and we can conclude that the method
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Peng et
al. [49]

Moharam
et al. [58]

Lalanne [59]
Li [60]

Schuster
et al [52]

True modal
method0.0 0.5 1.0

1.7790 1.8019 1.7806 1.7913 1.8003 1.7901 1.7903 1.7903
1.5270 1.5416 1.5395 1.5326 1.5235 1.5348 1.5278 1.5277
0.2691 0.2933 0.2906 0.2919 0.2927 0.2921 0.2912 0.29117
-0.2105 -0.2150 -0.2246 -0.2297 -0.2369 -0.23498 -0.2267 -0.2268
-0.8106 -0.7475 -0.74438 -0.74098 -0.7361 -0.7406 -0.7397 -0.7396
-1.3819 -
i*0.202

-1.3568 -
i*0.2219

-1.3585 -
i*0.2379

-1.3587 -
i*0.2335

-1.3581 -
i*0.2316

-1.364 -
i*0.2336

-1.3524 -
i*0.2365

-1.3522
-i*0.2368

-1.3819
+i*0.202

-1.3568
+i*0.2219

-1.3585
+i*0.2379

-1.3587
+i*0.2335

-1.3581
+i*0.2316

-1.364
+i*0.2336

-1.3524
+i*0.2365

-1.3522
+i*0.2368

Table 5.2: Comparison of the propagation constant values obtained with
different RCWA method modification and true modal method

yields reliable values of the propagation constant including the metal grating

case. It is interesting to compare the values obtained by different methods

for the same structure without making any changes or modifications to the

structure (rotation, slicing). For a considered structure RCWA is suitable

method. Propagation constant values in case of the RCWA method depend

on the total product of the two values: decomposition number along one and

perpendicular directions.

Values obtained by the RCWA in the dielectric grating case coincide up to a

good accuracy with the values obtained with the true-modal method. For the

benchmark the same structure was used, but incidence was taken at Θ = 30

and φ = 40 degrees. The obtained results are gathered in table 5.2. The

developed method shows that propagation constants differ from each other

and also differ from the true-modal method results. Thus far, true modal

method is already used as a benchmark for the existing and widely used

RCWA methods. We can also see that coupled modes are found by all the

methods and can conclude that these modes are not erroneous.

In the metallic structures case RCWA method creates spurious modes.

These modes are not solutions of the diffraction problem. They are solutions

of the reciprocal problem in Fourier space domain.
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After we get the eigenvector corresponding to the zero eigenvalue of the

[Ŝ− Γ̂] matrix, we have the vector of the amplitudes of the field functions at

the boundaries of the elementary stripe. The restoration of the field in the

region of constant permittivity is performed by multiplying on the phase co-

efficients, determined by the projection of plane waves on the coordinates. To

restore the field in the region with non-constant permittivity when the true-

modal method is used to represent the field inside that region it is necessary

to restore the modal amplitudes which correspond to the set of plane wave

amplitudes (in the region(s) of constant permittivity). It can be achieved by

multiplying the sets of amplitudes taken at the boundary by the transition

matrix of the boundary. The restoration of the fields inside the grating con-

sists of the summation of each mode contribution. We can write with the

generalisation purposes that in both regions the field will be:

Epr(x, y) =
MAX∑
i=0

Leepr (Ψ
e
i (x, y)) + Lhepr

(
Ψh
i (x, y)

)
Hpr(x, y) =

MAX∑
i=0

Lehpr (Ψ
e
i (x, y)) + Lhhpr

(
Ψh
i (x, y)

) (5.7)

where the subscript pr denotes the the projection, Lftpr is an operator which

returns field f contribution into the field t of the projection pr. Some of these

operators can be zero and the form of the operators is different for plane waves

and the modal representation of one-dimensional grating. As a result of such

recovery operation we get six field distributions: there are three projection of

two different fields. Each two-dimensional mode is characterised with a set of

vector amplitudes and propagation constant. Vector of amplitudes generates

all related field projections.

The normal incidence is most suitable to check the field restoration method.

In the case of normal incidence there is no need to take into account phase

shift with respect to the incident wave. The periodic conditions at normal

incidence are:

~F (x+ Λx, y) = exp(jikxΛx)~F (x, y) = 1 · ~F (x, y)
~F (x, y + Λy) = exp(jikyΛy)~F (x, y) = 1 · ~F (x, y)

(5.8)
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The field repeats itself over a period in both the periodicity directions and

restored field should coincide at the boundaries of the elementary cell. A

field projection distributions for different modes for the dielectric structure

defined earlier are presented in the fig.5.8-5.10.

All figures are suitable for the field distribution analysis with the help of

the visualising programs which allow to rotate the figures and see distribution

in different projections. The values along the axes are eliminated as they do

not provide any useful information. The modal fields are not normalised

and comparison of the absolute values can not be done. The teeth with the

refractive index n = 2.2 is centred with respect to each figure. The bounce

of the fields is caused by the small representation number ( 40 was used).

Figure 5.8: Three dimensional representation of the first mode fields projec-
tions in dielectric case

On the fig. 5.8 we can see that the distribution of the Ey and Hx does

not intersect the zero plane. The Ey field is always positive and Hx field is

negative everywhere. We can find similar property of the first TE-mode in

one-dimensional case. On the distributions of the Ex and Hy field we can see

strong anti-symmetrical disturbance of the field on the corners of the teeth.

Thus far, all the field is concentrated on the corners. We can also see that
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the Ex field is discontinuous along x− direction ( the intensity of the peak is

higher outside the teeth) but is continuous everywhere along y−direction.

Figure 5.9: Three dimensional representation of the 10-th mode fields pro-
jections for dielectric case

On the fig.5.9 we can see that each field projection intersects the zero

plane. We still can find symmetrical and antisymmetric fields. Despite the

previous case, some of the projections are symmetrical in one direction and

antisymmetric in another ( the field Ex, for example, is symmetrical along

x−direction and antisymmetric along y−direction, but the Ey field possesses

opposite properties). The field distributions are more difficult to analyse

then those of the first mode.

On the fig.5.10 the field distributions are more complex then for the 10-

th mode. It is also possible to find symmetry of the field distributions ( Ex

is anti-symmetrical along x−direction and symmetrical along y−direction)

but analysis of the fields is difficult. The field distributions are similar to

the distributions of the plane waves. The same property of the distribution

function for high-number modes is observed in the one-dimensional case.

Thus far we can conclude that two-dimensional modes are valid.

Three-dimensional field distribution yields an estimated representation of
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Figure 5.10: Three dimensional representation of the 101-th mode fields pro-
jections for dielectric case

the fields along the elementary cell. It allows to see the view of the distur-

bance at the corners or to evaluate the accuracy of the field representation for

a given representation number. However, for high-order modes three dimen-

sional images projected on the plane do not give a clear picture to characterise

the field (fig.5.10). Colour coded plane projections of the field distribution

are more convenient and suitable for analysis of the modal properties.

A colour coding is the technique when amplitude at certain point of the

figure represents intensity or amplitude of the field at this point. Colour-

encoded figures of the modal fields in dielectric case are depicted on the

fig.5.11-5.13 under normal incidence.

The encoding is selected so that the black colour corresponds the the

absence of the field, the red colour corresponds to the positive values and

blue one to the negative.

The field intensity values are comparable within the group of field polar-

isations. Thus we can compare intensities of the field projections. The fields

are not comparable for different figures because they are not normalised.

The fig.5.11 does not provide more information then can be obtained
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Figure 5.11: Colour encoded field distributions of the first mode

from the fig.5.8. We can definitely see that the Ex field is concentrated on

the corners of the tooth outside of it. The sing of the fields is intentionally

retained so we can see that Hx field is blue everywhere (negative) while Ey

field is everywhere red (positive). It can be well seen that the Ey field is

discontinuous along y−direction in the region corresponding to the teeth

and continuous along x−direction everywhere and along y−direction in the

region with constant refractive index. The Ey field is more intensive then Ex

and Ez is approximately zero. The Hz field is also close to zero, but the Hx

possesses greater amplitude.

For the 10-th mode we can see from the fig.5.12 that, unlike first mode,

each field projection has comparable amplitudes. It is much easier to analyse

symmetry of the field projections then in case of three-dimensional projec-

tion (fig.5.9). All the fields projections exists inside the teeth. For the Ey

projection strong peaks on the corners can be observed.

Colour-encoded field representation simplifies significantly analysis of the

100-th mode. On the fig.5.13 we can see that the Ex projection is discontin-

uous along x−direction and boarders of the teeth can be seen. Analysis of

the symmetry is reduced to the comparison of the colours at the boarders of

104



Figure 5.12: Colour encoded field distributions of the 10-th mode

Figure 5.13: Colour encoded field distributions of the 100-th mode

each picture. For the electric field we can see that the field is concentrated

mainly between the tooth long y−direction.

From these figures, similar to the one-dimensional case, it is possible to

match between the modes and diffraction orders by comparing the parity of
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the field distribution and the number of the zero intersections along each

coordinate. We can conclude that the mode corresponds best to a certain

diffraction order and such a correspondence is observed for all modes.

Mode composition for dielectrics in the case of 2-dimensional grating re-

veals an unexpected feature: there are coupled modes. Coupled modes in

one-dimensional case were an exclusive property of a metal grating and the

explanation of this coupling can be found at [46]. After the reconstruction

of the two coupled modal fields we can not distinguish them or attribute to

some diffraction order.

Taking as a linear combination of them gives a discernible and clear pre-

sentation on the properties of the coupled modes.

In contrast to the modes of one-dimensional grating, diffraction orders for

the field components have the same wave vector projections for both polari-

sations. And, in case of normal incidence one value of the kz projection may

correspond up to the 8 combinations: twice the x−projection times twice

y−direction and times two for polarisation state. From the one-dimensional

grating research it is expected that to the number r of waves with kz value

will correspond required number of modes and equal to r. If we look at the

density of the β2 and the kz2 diffraction order projections we can conclude

that the modal propagation constants are grouped around the orders projec-

tion values with a shift towards more negative values and sometimes with

overlapping groups in close (but different) positions of the diffraction orders.

Groups corresponding to several projection numbers with the same value are

mixed and sequence matching modes and orders is not preserved. In the case

of normal incidence and the strong difference in the periods over different co-

ordinates empty area on the axis can occur. When the nearest order is far

and all the modes corresponding to the previous orders are located in the area

are still far from the region influenced by the next order. For the modelling

and selection of the mode number to be taken into consideration I suggest

on the basis of this observation to use of the number of modes which corre-

spond to such a cutoff. It allows to obtain the best match between modes

and orders and error introduces by the truncation of the matrix is minimal

for a given number of modes. Based on the density of the diffraction orders
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we can also evaluate the correctness of the found propagation constants in

terms of completeness.

The minimum divergence of the order and modal total numbers is the

criterion of the basis completeness, that all the necessary propagation vector

constants of the two-dimensional diffraction problem are found.
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5.2 Diffraction efficiency calculation based on

the obtained field distributions and prop-

agation constants

5.2.1 Steps required to build scattering matrix

Making the propagation constants and the corresponding field distributions

we match fields on the grating surfaces. Tangential components of the mag-

netic and electrical field are continuous at each side of the boundary. In the

introduced geometry that is expressed like:

Ex(x, y, t+ 0) = Ex(x, y, t− 0) Hx(x, y, t+ 0) = Hx(x, y, t− 0)

Ey(x, y, t+ 0) = Ey(x, y, t− 0) Hy(x, y, t+ 0) = Hy(x, y, t− 0)

Ex(x, y, b− 0) = Ex(x, y, b+ 0) Hx(x, y, b− 0) = Hx(x, y, b+ 0)

Ey(x, y, b− 0) = Ey(x, y, b+ 0) Hy(x, y, b− 0) = Hy(x, y, b+ 0)

where t is the coordinate of the top-surface of the two-dimensional grating,

and b is the bottom surface coordinate. Exact numbers of these values depend

on the position of the zero point on the z−axis. Independent on the definition

point equation depth = t− b is valid for these coordinates.

Expressing the fields with theirs modal or order representation and con-

sequent application of the orthogonal operator leads to the set of equations

where amplitudes at one side of the boundary are expressed as a sum of the

linear operator of the field representation from another side of the boundary.

Analytical expressions allows to reduce equation to the form when each

field amplitudes is expressed as a function of all the amplitudes from another

side. These expression can be rewritten in a matrix form, building transition

matrix.

The previously defined technique (2.2.3) to construct scattering matrix

based on the two transition matrices, written for each of the grating bound-

ary, is then used.
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5.2.2 Field expressions

The field above the grating in the region with permittivity εI consists of the

waves going down to the grating surface and going upwards. Field expression

is similar to the one for the one-dimensional case (3.6) with the only difference

that each component is now denoted with ”coordinate number” containing

two indices (n,m). We have already truncated the field decomposition so

that there are N is the maximal order projection on the x−axis and M is

the maximum for the y−axis:

Ex(x, y, z) =
N∑

n=−N

M∑
m=−M

kxn
γn,m

O+e
n,m − 1

ωεI

kzn,m

γn,m
O+h
n,m + kxn

γn,m
O−e
n,m + 1

ωεI

kzn,m

γn,m
O−h
n,m

Ey(x, y, z) =
N∑

n=−N

M∑
m=−M

− kym
γn,m

O+e
n,m − 1

ωεI

kymk
z
n,m

γn,m
O+h
n,m − kym

γn,m
O−e
n,m + 1

ωεI

kymk
z
n,m

γn,m
O−h
n,m

Hx(x, y, z) =
N∑

n=−N

M∑
m=−M

− 1
ωµ

kzn,m

γn,m
O+e
n,m + kxn

γn,m
O+h
n,m + 1

ωµ

kzn,m

γn,m
O−e
n,m + kxn

γn,m
O−h
n,m

Hy(x, y, z) =
N∑

n=−N

M∑
m=−M

− 1
ωµ

kymk
z
n,m

γn,m
O+e
n,m − kym

γn,m
O+h
n,m + 1

ωµ

kymk
z
n,m

γn,m
O−e
n,m − kym

γn,m
O−h
n,m

While superscript of the order amplitude O stands for TE-polarised order (e)

and TM-polarised (h) order; the sign of the superscript denotes propagation

direction along the z−axis. Dependence on the x− and y−axes in the form

exp(jkxnx) · exp(jkymy) is omitted due to the equality for each term while the

z−axis dependence is in the form exp(±jkzn,mz) and sign is taken the same

as one in the superscript.

Expression of the field interior of the grating region depends on the

method, selected for the propagation research procedure. For the simplicity

of this step description we will suppose that the field component are linear

operator of some form from the mode (propagation constant and correspond-
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ing amplitudes vector):

Ex(x, y, z) =
V∑
v=0

A+
v Lex (ψv(x, y) exp(jβvz)) + A−

v Lex (ψv(x, y) exp(−jβvz))

Ey(x, y, z) =
V∑
v=0

A+
v Ley (ψv(x, y) exp(jβvz)) + A−

v Ley (ψv(x, y) exp(−jβvz))

Hx(x, y, z) =
V∑
v=0

A+
v Lhx (ψv(x, y) exp(jβvz)) + A−

v Lhx (ψv(x, y) exp(−jβvz))

Hy(x, y, z) =
V∑
v=0

A+
v Lhy (ψv(x, y) exp(jβvz)) + A−

v Lhy (ψv(x, y) exp(−jβvz))

here introduced amplitudes A of the mode numbered v. Superscript of the

amplitudes denotes the direction of the mode propagation. Field operators Lpj
returns projection j of the polarisation p component of the mode. Operator

view does not depend on the modal number v but depends on the underlying

method used.

5.2.3 Orthogonal operator application

Reexpressing the field equations is done by application of the consequent

orthogonal operator to both sides of the equations and leads from the form

where at both sides of the equation we have sum to the form where only

one of the sides will have summation. An operator orthogonal to one of the

basis (modal or plane wave) can be applied. For the two-dimensional case

applying orthogonal to the plane wave decomposition operator is straight-

forward. Operator corresponding to the coordinate number n′,m′ has the

following form:

On′,m′(f(x, y)) =
1

Λx

1

Λy

Λx∫
0

Λy∫
0

f(x, y) · exp(−jkxn′x) exp(−jkym′y)dxdy

Operator defined this way also poses normalisation property:

On′,m′ (exp(jkxnx) exp(jk
y
my)) = δn=n′,m=m′
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After applying operator we get the following system for each pair (n,m):

kym
γn,m

O+e
n,m − 1

ωεI

kxnk
z
n,m

γn,m
O+h
n,m + kym

γn,m
O−e
n,m + 1

ωεI

kxnk
z
n,m

γn,m
O−h
n,m =

V∑
v=0

A+
v On,m (L+e

x (ψv(x, y))) + A−
v On,m (L−e

x (ψv(x, y))) = E1

− kxn
γn,m

O+e
n,m − 1

ωεI

kymk
z
n,m

γn,m
O+h
n,m − kxn

γn,m
O−e
n,m + 1

ωεI

kymk
z
n,m

γn,m
O−h
n,m =

V∑
v=0

A+
v On,m

(
L+e
y (ψv(x, y))

)
+ A−

v On,m

(
L−e
y (ψv(x, y))

)
= E2

+ 1
ωµ

kzn,mk
x
n

γn,m
O+e
n,m + kym

γn,m
O+h
n,m − 1

ωµ

kxnk
z
n,m

γn,m
O−e
n,m + kym

γn,m
O−h
n,m =

V∑
v=0

A+
v On,m

(
L+h
x (ψv(x, y))

)
+ A−

v On,m

(
L−h
x (ψv(x, y))

)
= E3

+ 1
ωµ

kymk
z
n,m

γn,m
O+e
n,m − kxn

γn,m
O+h
n,m − 1

ωεI

kymk
z
n,m

γn,m
O−e
n,m − kxn

γn,m
O−h
n,m =

V∑
v=0

A+
v On,m

(
L+h
y (ψv(x, y))

)
+ A−

v On,m

(
L−h
y (ψv(x, y))

)
= E4

It should be mentioned that operators Lpj and On,m do not commute and

should be applied in the correct order. The right part of each line will be

later denoted as Ei to simplify the equations. We may obtain the expression

for each plane wave amplitude after some arithmetical exercise. We arrive at

the expressions:

O+e
n,m = 1

2γn,m

(
kymE1 − kxnE2 +

ωµ
kzn,m

(kxnE3 + kymE4)
)

O+h
n,m = 1

2γn,m

(
kymE3 − kxnE4 − ωεI

kzn,m
(kxnE1 + kymE2)

)
O−e
n,m = 1

2γn,m

(
kymE1 − kxnE2 − ωµ

kzn,m
(kxnE3 + kymE4)

)
O−h
n,m = 1

2γn,m

(
kymE3 − kxnE4 +

ωεI
kzn,m

(kxnE1 + kymE2)
) (5.9)

5.2.4 Transition matrix components

All the grating specific parts are hidden in the Ei values of the (5.9). Each

value in its’ turn is a sum over modal amplitudes. The final expression of the

order amplitudes contain linear combination of left-side sums. Plane waves
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amplitudes can be re-expressed in a matrix form:
O+e

O+h

O−e

O−h

 = T2d

(
A+

A−

)

where as each amplitude a vector of amplitudes is denoted, that is A+ =(
A+

0 , A
+
1 . . . A

+
V

)T
and same for the others. Truncated double indexing of

the order amplitudes can be reordered so that uniformly coordinate number

can be obtained from the index, or index corresponding to the coordinate

number.

The T−matrix components corresponding to the notation above consist

of the following sub-matrices:

T =


T+e
+ T+e

−

T+h
+ T+h

−

T−e
+ T−e

−

T−e
+ T−e

−


With an index j uniformly mapped to the coordinate number (n,m) and

containing information about both n and m, the T matrix components are:[
T+e
±
]
ij
= 1

2γj

[
kym(j)Oj (L±e

x (ψi(x, y)))− kxn(j)Oj

(
L±e
y (ψi(x, y))

)
+ ωµ

kzj

(
kxn(j)Oj

(
L±h
x (ψi(x, y))

)
+ kym(j)Oj

(
L±h
y (ψi(x, y))

))]
(5.10)[

T−e
±
]
ij
= 1

2γj

[
kym(j)Oj (L±e

x (ψi(x, y)))− kxn(j)Oj

(
L±e
y (ψi(x, y))

)
− ωµ

kzj

(
kxn(j)Oj

(
L±h
x (ψi(x, y))

)
+ kym(j)Oj

(
L±h
y (ψi(x, y))

))]
(5.11)[

T+h
±
]
ij
= 1

2γj

[
kym(j)Oj

(
L±h
x (ψi(x, y))

)
− kxn(j)Oj

(
L±h
y (ψi(x, y))

)
− ωεI

kzj

(
kxn(j)Oj (L±e

x (ψi(x, y))) + kym(j)Oj

(
L±e
y (ψi(x, y))

))]
(5.12)
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[
T−h
±
]
ij
= 1

2γj

[
kym(j)Oj

(
L±h
x (ψi(x, y))

)
− kxn(j)Oj

(
L±h
y (ψi(x, y))

)
+ ωεI

kzj

(
kxn(j)Oj (L±e

x (ψi(x, y))) + kym(j)Oj

(
L±e
y (ψi(x, y))

))]
(5.13)

where sign in the under-script of the T stands for the modal amplitude di-

rection (going up is a plus and going down is a minus). j is the row of the

matrix and i is the column. Thus far matrix operation is valid.

5.2.5 Scattering matrix

The transition matrix for the second boundary of the two-dimensional grating

is constructed according to the same formulae with the only difference that

εI should be replaced with the permittivity of the semi-infinite media at

the second boundary εII . After completing of this operation we have two

matrices with height equal 2 · Nx · My (where Nx is the total number of

the x−axis order projections taken and My is the total number of the y−
projections of the orders) and width equal 2 · V where V is total number of

the modes used.

To use scattering matrix procedure described in the sec.2.2.2 we need to

get an inverse matrix. The operation of inversion is defined only for the

square matrices. From this point we come to the fact that 2Nx ·My should

be equal to V so that the procedure can be applied. We are dealing with

the modal method so the modal amplitude at an arbitrary depth inside the

grating can be calculated by multiplication by the phase term exp(jβd) where

d is counted starting from the point of modal amplitude definition.

Scattering matrix build on the transition matrices defined above will set

the correspondence between the j−th order to the k−th order. For both

values j and k inverse function to obtain coordinate number are applied

and backwards. To get some information regarding the order with the n,m

coordinate number we should find corresponding to that value number j and

k.
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Figure 5.14: Figure with layer description and comments on the amplitudes
definition

5.2.6 Circle-locked orders

If we introduce correspondence function which has inverse function we can

shift from the square-based definition of the orders (when for each projection

on the x− there is a complete set of the y−projections) to the circle-locked

definition. We will take into consideration only the orders so that the kzj

projections are not greater then some value βmax or as close as possible to

that value. That complexity brings benefits because we do not take orders

with high coordinate numbers (with the biggest kz values) when there is no

corresponding modes to them. As it was shown in the [46], accuracy does

not increase with the number of modes taken into account if there is one or

several orders without corresponding modes.

5.2.7 Example of the method application

Here we will consider already introduced structure. Layer with homogeneous

permittivity is the region between lines 4 and 5 also below line 1. Regions

between lines 1-2 and 3-4 are just boundaries with zero depth. And one-

dimensional grating is inside the region limited with lines 2 and 3 From the

previous step we a set of the propagation constants {±βi} and eigenvectors

of the dispersion matrix
{
~P i
}
corresponding to them. The vector ~P i contains

amplitudes of the orders at the boundaries of an elementary stripe. They

are at the lines 1 going upwards (b+1 ) and at line 5 going downwards (b−2 )

of the fig.5.2.7. We can obtain vector amplitudes of the b+2 and b−1 with a
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multiplication of the layer scattering matrix by eigenvector.

~P i =

(
~b+1
~b−2

)
(

~b−1
~b+2

)
= S ×

(
~b+1
~b−2

)
From the transition matrix of the layer L1 we can get the amplitudes on the

other boundary of the layer L1. We denote amplitudes going downwards as

q and upwards as p. (
~p

~q

)
= TL1 ×

(
~b+2
~b−2

)
For both of the one-dimensional grating boundaries we have transition from

the space to grating matrix. We can find thus far the modal amplitudes sets

u and v according to the (
·
~u

)
= T1

(
~p

~q

)
(
~v

·

)
= T1

(
~b+1
~b−1

)

This is the procedure used to restore field amplitudes of a particular two-

dimensional mode i. The field over the elementary layer are defined differ-

ently. As a consequence the field operators are different. Each amplitudes

set can be split into the subsets of the TE- and TM-amplitudes. From the

assumption that we used R as a representation number ( there is R com-

ponents of each polarisation in each set) we may write the field operators

necessary for the scattering matrix calculation (L±e
x , L±h

x , L±e
y , L±h

y ):

L±e
x (ψi(x, y)) =

R/2∑
r=−R/2

(
∓ βi
γr
per(y)− 1

ωε2

kyrk
x
r

γr
phr (y)∓

βi
γr
qer(y) +

1
ωε2

kxr k
y
r

γr
qhr (y)

)
fr(x), mryΛy < y ≤ Λy

R∑
r=0

ζr
ωε2
φhr (x)v

h
r (y) +

ζr
ωε2
φhr (x)u

h
r (y), 0 < y ≤ mryΛy
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L±e
y (ψi(x, y)) =

R/2∑
r=−R/2

(
− 1
ωε2
γrp

h
r (y)− 1

ωε2
γrq

h
r (y)

)
fr(x), mryΛy < y ≤ Λy

R∑
r=0

±βi
ζr
φer(x)v

e
r(y)− j kyr

ζrωε2
φhr

′
(x)vhr (y)±

βi
ζr
φer(x)u

e
r(y) + j kyr

ζrωε2
φhr

′
(x)uhr (y),

0 < y ≤ mryΛy

L±h
x (ψi(x, y)) =

R/2∑
r=−R/2

(
kyrk

x
r

ωµ0γr
per(y)∓

βi
γr
phr (y)−

kyrk
x
r

ωµ0γrγr
qer(y)∓

βi
γr
qhr (y)

)
fr(x), mryΛy < y ≤ Λy

R∑
r=0

− ζr
ωµ0

φer(x)v
e
r(y) +− ζr

ωµ0
φer(x)u

e
r(y), 0 < y ≤ mryΛy

L±h
y (ψi(x, y)) =

R/2∑
r=−R/2

(
γr
ωµ0

per(y) +
γr
ωµ0

qer(y)
)
fr(x) mryΛy < y ≤ Λy

R∑
r=0

j kyr
ζrωµ0

φer
′(x)ver(y)±

βi
ζr
φhr (x)v

h
r (y)− j kyr

ζrωµ0
φer

′(x)uer(y)±
βi
ζr
φhr (x)u

h
r (y)

0 < y ≤ mryΛy

where γr =
√
β2 + kxr

2, kyr =
√
ε2µ0ω2 − γr2, fr(x) = exp(jkxrx), pr(y) =

pr exp(jk
y
ry), qr(y) = qr exp(−jkyry), ver(y) = ver exp(jk

e
ry), u

e
r(y) = uer exp(−jkery),

vhr (y) = vhr exp(jk
h
r y), u

h
r (y) = uhr exp(−jkhr y) and kpr =

√
ζpr

2 − β2, where ζpr

is the propagation constant of the mode r with polarisation p with distribu-

tion function φpr(x). The result of the orthogonal operator to each of these

functions will be:

Oj (L(ψi(x, y))) =
1

Λx

1

Λy

Λy∫
y=0

Λx∫
x=0

exp(−jkym(j)y) exp(−jk
x
n(j)x)L(ψi(x, y))dydx

taking into account that function ψ(x, y) = g(x) · f(y) is separable along
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coordinate dependence we can separate integration over the axes:

Oj (L(ψi(x, y))) = 1
Λx

1
Λy


mryΛy∫
y=0

Λx∫
x=0

exp(−jkym(j)y) exp(−jkxn(j)x)L(ψi(x, y))dydx

+
Λy∫

y=mryΛy

Λx∫
x=0

exp(−jkym(j)y) exp(−jkxn(j)x)L(ψi(x, y))dydx

= Oi
j(L2) +Oi

j(L1)

First we will consider operator result on the homogeneous region. Field

is represented there with the plane wave superposition. Integral over the

x−axis from the sum becomes only the single term:

Oi
j(L1) =

1
Λx

1
Λy

Λy∫
y=mryΛy

Λx∫
x=0

exp(−jkym(j)y) exp(−jkxn(j)x)×

R/2∑
r=−R/2

(
C1p

e
r(y) + C2p

h
r (y) + C3q

e
r(y) + C4q

h
r (y)

)
exp(jkxrx)dydx =

δn(j)=r

(
1
Λy

Λy∫
y=mryΛy

C1p
e
r(y) + C2p

h
r (y) + C3q

e
r(y) + C4q

h
r (y)dy

)
=

δn(j)=r
(
C1I

++
i,j p

e
r + C2I

++
i,j p

h
r + C3I

+−
i,j q

e
r + C4I

+−
i,j q

h
r

)
where the following integrals are used:

I++
i,j = 1

Λy

Λy∫
y=mryΛy

exp(−jkym(j)y) exp(jk
y
i,jy)dy

I+−
i,j = 1

Λy

Λy∫
y=mryΛy

exp(−jkym(j)y) exp(−jk
y
i,jy)dy

where kyn(j) =

√
ω2 −

(
kxn(j)

2 + β2
i

)
, kyi,j is the y−projection of the order r

for which the equation m(j) = r is satisfied. Thus far notation (i, j) of

the i− mode for the j−th order is used. Coefficients Cs depend on the

field polarisation and projection, which are expressed, and represented with

combination of the wave vector projections of the order inside the grating.

The expressions for Oi
j(L1) can be found analytically reducing calculation

difficulty of the problem.

There is no trivial way to get result of the operator action for the region
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L2. We need to calculate all the integrals but taken into account for the

separable functions and linearity of the operator we can write:

Λx∫
x=0

mryΛx∫
y=0

R∑
r=0

fr(x)gr(y) =
R∑
r=0

Λx∫
x=0

fr(x)dx

mryΛx∫
y=0

gr(y)dy

We can rewrite the operator expression in the form:

Oi
j(L1) =

R∑
r=0

(
a+er Y +e

r + a−er Y −e
r

)
Xe
r +

(
a+er Y +h

r + a−er Y −h
r

)
Xh
r

where the integrals are of the following form:

Xp
r = 1

Λx

Λx∫
x=0

M1D

(
ψp1D,r(x)

)
exp(−jkxn(j))dx

Y ±p
r = 1

Λy

mryΛy∫
y=0

exp(±jkyr,py) exp(−jk
y
m(j))dy

where expression of the Xp
r are similar to 3.8 and the choice depends on the

expression (polarisation and projection of the mode), which are derived. the

following variables are used: kyr,p =
√
ζpr

2 − β2
i , ζ

p
r is the propagation value

constant numbered r of the one dimensional problem for polarisation p.

Substituting the resulting values of the O (L) into the equations (5.10-

5.13) we get transition matrices. Applying technique described in (2.2.3) we

get scattering matrix of the problem.

The modal method allows to scan over the depth of the structure because

the same transition matrices can be used and only propagating matrix inside

the grating are different. For such scanning the structure identical to the

described above is taken ( Λx = 300nm, Λy = 400nm, n2 = 1, n1 = 2.2 ,

mrx = mry = 0.5), incidence is taken at Θ = 30, φ = 40 coming from the

substrate with ns = 1.46 and covering media has nc = 1. All the figures rep-

resent the diffraction efficiencies taken from the incident from the substrate

zeroth order and going into the zeroth reflected or transmitted orders. The

polarization of the incident light for the figure 5.15 is TE, and for the 5.16
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Figure 5.15: Diffraction efficiencies of the different polarizations produced by
the TE-polarized incident wave

is TM. Both of these polarizarion produce TE and TM transmitted orders

depending on the grating depth. The dependence is shown for the depth

normalized to the wavelength.

Strange gaps on the transmission efficiencies curves can be attributed

to the exitation on the edges. They are not introduced by the numerical

instabilities and reproduced with the RCWA method.
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Figure 5.16: Diffraction efficiencies of the different polarizations produced by
the TM-polarized incident wave
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Chapter 6

Conclusion

This work can be interesting for people who starts studing of the modal

methods. Already developed one-domentional methods are described in the

first part of the work providing basis for further two-dimentional method

development.

The developed stage of the two-dimentional modal method gives new data

for analysis and already can be used for near-field investigation. As a result

of this work benchmark of already existing RCWA methods was done and the

true modal method showed itself as a good reference method to check and

estimate the accuracy of the obtained propagation constants. Method allows

to find propagation values of metal structures including metal grids with

dielectric cores. The obtained propagation constants for the metal grid case

show cut-off values depending on the cell sizes (the size of internal dielectric

core).

The scan over depth show Fabry – Pérot interferometer’s like behavior,

which was already seen in case of one-dimentional gratings.

The difficulty of the method implementation can not be avoided anyway.

But this difficulty is defined with the strick problem formulation and provides

abilities to get as accurate results as required. The complexity of the root

search procedure can be enhanced and boosted. The SIMD techniques and

parallel-programming techniques can be used to reduce computation time

during root-search procedure. These things can be interesting for those who
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developes commercial products, because true modal method allows to calcu-

late metal and dielectric structures without any significant influence on the

algorithm. No special tricks are required to shift from the dielectrical to the

metal cases.

This method promises new results and gives new approach for the metal

two dimentional structures calculation. New results for the dielectrical struc-

tures can be obtained with other methods, but true modal method allows to

compare results and to obtain results with demanded precision.
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