Skip to Main content Skip to Navigation
Theses

Approximation de problèmes fonctionnels : pseudospectre d'un opérateur différentiel et équations intégrales faiblement singulières

Abstract : Using functional and numerical methods, we localize the spectrum of a differential operator and we build approximate solutions for classes of Fredholm equations of the second kind, two of which have a weakly singular kernel. In the first chapter, we study the pseudospectral stability of a convection-diffusion nonselfadjoint operator defined on an open unbounded set. From the result of pseudospectral stability, we localize the spectrum of the operator. In the second chapter, we regularize the kernel of an integral operator using a convolution product, then we approach the new kernel by its truncated Fourier series. We obtain an integral operator of finite rank, which allows us to compute an approximate solution numerically
Document type :
Theses
Complete list of metadatas

Cited literature [32 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00693249
Contributor : Abes Star :  Contact
Submitted on : Wednesday, May 2, 2012 - 11:48:16 AM
Last modification on : Thursday, November 21, 2019 - 1:42:13 AM
Long-term archiving on: : Friday, August 3, 2012 - 2:41:00 AM

File

these.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00693249, version 1

Collections

Citation

Hamza Guebbai. Approximation de problèmes fonctionnels : pseudospectre d'un opérateur différentiel et équations intégrales faiblement singulières. Mathématiques générales [math.GM]. Université Jean Monnet - Saint-Etienne, 2011. Français. ⟨NNT : 2011STET4006⟩. ⟨tel-00693249⟩

Share

Metrics

Record views

560

Files downloads

666