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Abstract

The face is one of the best biometrics for person identification and verification related
applications, because it is natural, non-intrusive, and socially well accepted. Unfor-
tunately, all human faces are similar to each other and hence offer low distinctiveness
as compared with other biometrics, e.g., fingerprints and irises. Furthermore, when
employing facial texture images, intra-class variations due to factors as diverse as
illumination and pose changes are usually greater than inter-class ones, making 2D
face recognition far from reliable in the real condition. Recently, 3D face data have
been extensively investigated by the research community to deal with the unsolved
issues in 2D face recognition, i.e., illumination and pose changes.

This Ph.D thesis is dedicated to robust face recognition based on three dimen-
sional data, including only 3D shape based face recognition, textured 3D face recog-
nition as well as asymmetric 3D-2D face recognition.

In only 3D shape-based face recognition, since 3D face data, such as facial point-
clouds and facial scans, are theoretically insensitive to lighting variations and gener-
ally allow easy pose correction using an ICP-based registration step, the key problem
mainly lies in how to represent 3D facial surfaces accurately and achieve matching
that is robust to facial expression changes. In this thesis, we design an effective and
efficient approach in only 3D shape based face recognition. For facial description, we
propose a novel geometric representation based on extended Local Binary Pattern
(eLBP) depth maps, and it can comprehensively describe local geometry changes of
3D facial surfaces; while a SIFT-based local matching process further improved by
facial component and configuration constraints is proposed to associate keypoints
between corresponding facial representations of different facial scans belonging to
the same subject. Evaluated on the FRGC v2.0 and Gavab databases, the proposed
approach proves its effectiveness. Furthermore, due to the use of local matching, it
does not require registration for nearly frontal facial scans and only needs a coarse
alignment for the ones with severe pose variations, in contrast to most of the related
tasks that are based on a time-consuming fine registration step.

Considering that most of the current 3D imaging systems deliver 3D face models
along with their aligned texture counterpart, a major trend in the literature is to
adopt both the 3D shape and 2D texture based modalities, arguing that the joint
use of both clues can generally provides more accurate and robust performance than
utilizing only either of the single modality. Two important factors in this issue are
facial representation on both types of data as well as result fusion. In this thesis,
we propose a biological vision-based facial representation, named Oriented Gradient
Maps (OGMs), which can be applied to both facial range and texture images. The
OGMs simulate the response of complex neurons to gradient information within a
given neighborhood and have properties of being highly distinctive and robust to
affine illumination and geometric transformations. The previously proposed match-
ing process is then adopted to calculate similarity measurements between probe and
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gallery faces. Because the biological vision-based facial representation produces an
OGM for each quantized orientation of facial range and texture images, we finally
use a score level fusion strategy that optimizes weights by a genetic algorithm in a
learning process. The experimental results achieved on the FRGC v2.0 and 3DTEC
datasets display the effectiveness of the proposed biological vision-based facial de-
scription and the optimized weighted sum fusion.

Indeed, (textured) 3D face recognition techniques also have their own downsides,
and are currently limited by their high expense in data acquisition and computation.
In this thesis, we present a novel framework, asymmetric 3D-2D face recognition,
enrolling in textured 3D face models while performing identification only using 2D
facial texture images. The motivation is to limit the use of 3D data where they really
help to improve face recognition accuracy. The proposed method consists of a new
preprocessing pipeline to enhance robustness to illumination and pose changes, an
OGM-based facial representation to describe both local shape and texton variations
of range and texture faces, as well as a twofold classification step which combines the
matching between two facial texture images and the one between a facial range and
texture image. The experiments carried out on the FRGC v2.0 database illustrate
that the proposed method outperforms 2D intensity image based ones, and achieves
comparable results as 3D data based ones do. Furthermore, it avoids the cost and
inconvenience of facial data acquisition and computation in 3D based approaches.

Keywords: 2D, 3D and multi-modal face recognition, asymmetric face recogni-
tion, facial representation.
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Résumé

La reconnaissance faciale est I’'une des meilleures modalités biométriques pour des
applications liées a l'identification ou ’authentification de personnes. En effet, c’est
la modalité utilisée par les humains; elle est non intrusive, et socialement bien accep-
tée. Malheureusement, les visages humains sont semblables et offrent par conséquent
une faible distinctivité par rapport a d’autres modalités biométriques, comme par
exemple, les empreintes digitales et I'iris. Par ailleurs, lorsqu’il s’agit d’images de
texture de visages, les variations intra-classe, dues & des facteurs aussi divers que
les changements des conditions d’éclairage mais aussi de pose, sont généralement
supérieures aux variations inter-classe, ce qui rend la reconnaissance faciale 2D peu
fiable dans des conditions réelles. Récemment, les représentations 3D de visages
ont été largement étudiées par la communauté scientifique pour palier les problémes
non résolus dans la reconnaissance faciale 2D, qui sont notamment causés par les
changements d’illumination et de pose.

Cette thése est consacrée a la reconnaissance faciale robuste utilisant les données
faciales 3D, incluant la reconnaissance de visage 3D, la reconnaissance de visage 3D
texturé ainsi que la reconnaissance faciale asymétrique 3D-2D.

La reconnaissance faciale 3D, utilisant I'information géométrique 3D représentée
sous forme de nuage de points 3D ou d’image de profondeur, est théoriquement non
affectée par les changements dans les conditions d’illumination et peut facilement
corriger, par I’application d’une approche de recalage rigide comme ICP, les change-
ments de pose. Le principal défi réside dans la représentation, avec précision, de la
surface faciale 3D, mais aussi dans le recalage robuste aux changements d’expression
faciale. Dans cette thése, nous concevons une approche efficace et performante pour
la reconnaissance de visage 3D. Concernant la description du visage, nous proposons
une représentation géométrique basée sur les cartes extended Local Binary Pattern
(eLBP), qui décrivent de maniére précise les variations de la géométrie locale de la
surface faciale 3D; tandis qu'une étape combinant 'appariement local, basé SIFT,
aux informations compositionnelles du visage et aux contraintes de configuration
permet d’apparier des points caractéristiques, d’un méme individu, entre les dif-
férentes représentations de son visage. Evaluée sur les bases de données FRGC v2.0
et Gavab DB, 'approche proposée prouve son efficacité. Par ailleurs, contrairement
& la plupart des approches nécessitant une étape d’alignement précise et couteuse,
notre approche, en raison de l'utilisation de 'appariement local, ne nécessite pas
d’enrélement dans des conditions de pose frontale précise et se contente seulement
d’un alignement grossier.

Considérant que la plupart des systémes actuels d’imagerie 3D permettent la
capture simultanée de modéles 3D du visage ainsi que de leur texture, une tendance
majeure dans la littérature scientifique est d’adopter & la fois la modalité 3D et
celle de texture 2D. On fait valoir que l'utilisation conjointe de ces deux types
d’informations aboutit généralement a des résultats plus précis et plus robustes
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que ceux obtenus par l'un des deux séparément. Néanmoins, les deux facteurs
clés de la réussite sont la représentation bimodale du visage ainsi que la fusion
des résultats obtenus selon chaque modalité. Dans cette thése, nous proposons
une représentation bio-inspirée du visage, appelée Cartes de Gradients Orientés
(Oriented Gradient Maps: OGMs), qui peut étre appliqué a la fois a la modalité
3D et a celle de texture 2D. Les OGMs simulent la réponse des neurones complexes,
a l'information de gradient dans un voisinage donné et ont la propriété d’étre trés
distinctifs et robustes aux transformations affines d’illumination et géométriques.
Le processus d’appariement proposé précédemment est alors adopté pour calculer
les mesures de similarité entre le visage probe et les visages de galerie. Etant donné
que la représentation bio-inspirée du visage produit une carte OGM pour chaque
orientation quantifiée de I'image de profondeur du visage et aussi celle texture, nous
avons finalement utilisé une stratégie de fusion des scores, basée sur ’algorithme
génétique, qui optimise les poids associés & travers un processus d’apprentissage.
Les résultats expérimentaux obtenus sur les ensembles de données FRGC v2.0 et
3DTEC illustrent 'efficacité de la description bio-inspirée et de la fusion basée sur
la somme pondérée optimisée.

Finalement, les techniques de reconnaissance de visage 3D ou visage 3D texturé
ont aussi leurs propres inconvénients, et sont actuellement limitées par leur coft
élevé d’acquisition de données et de calcul. Aussi, dans cette thése, nous présen-
tons un nouveau framework, asymétrique, de reconnaissance faciale 3D-2D. Dans
celui-ci I'enrélement se fait avec la modalité 3D texture alors que la reconnaissance
nécessite uniquement les images de texture 2D du visage. La motivation est de lim-
iter I'utilisation des données 3D 14 ot elles permettent d’améliorer la précision de
la reconnaissance faciale. La méthode proposée consiste en un nouveau pipeline de
prétraitement, afin d’améliorer la robustesse aux changements d’illumination et de
pose, une représentation de visage basée sur OGM permettant de décrire & la fois les
variations locales de forme 3D et de texton des images de profondeur, et de texture
faciales, ainsi que d’une double étape de classification qui combine 'appariement
entre deux images de texture, et celui entre une image de profondeur et une image
de texture. Les expérimentations menées sur la base de données FRGC v2.0 mon-
trent que la méthode proposée surclasse celles utilisant seules la texture, et obtient
des résultats comparables & ceux obtenus par les approches basées 3D. Par ailleurs,
il permet d’éviter, entre autres inconvénients, le cotit d’acquisition et de traitement
des données 3D.

Keywords: reconnaissance de visage en 2D, 3D et multi-modale, reconnaissance
faciale asymétrique, représentation faciale.
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CHAPTER 1

Introduction

1.1 Face Recognition

In our daily life, many practical applications such as withdrawing money from cash
dispensers, security checking at train stations or airports, logging in computer sys-
tems etc., require people to provide their passwords or documents (ID cards or pass-
ports), for identification. Unfortunately, common passwords are usually difficult to
remember; and documents can be easily stolen or counterfeited, which causes plenty
of inconvenience and potential safety hazards. Compared with the traditional pass-
word or document based identification approaches, biometrics, which determines or
verifies the identity of an individual based on his or her physiological specificities
(e.g. the fingerprint, iris, face, retina, palm print, hand vein, voice, ear, etc.) and
biological behaviours (e.g. signature and gait), also offers good uniqueness and per-
manence for recognition, and meanwhile it reduces the risk of being lost or faked as
well.

Fingerprint or iris recognition techniques grow mature gradually, and can achieve
reliable performance. However, they demand much explicit cooperation from users.
Specifically, fingerprint requires that the subject cooperate in making physical con-
tact with the sensor surface, while iris imaging currently requires that the subject
cooperate to careful position their eye relative to the sensor. Both facts raise prob-
lems of how to keep the surface clean and germ-free in a high-throughput applica-
tion [Bowyer et al. 2006]. There hence is significant application driven demand for
improved performance in face recognition, since the face is natural, non-intrusive,
and socially well accepted. Hietmeyer [Hietmeyer 2000 analyzed and compared six
biometric attributes containing the face, finger, hand, voice, eye, as well as signa-
ture, and concluded that facial feature scored the highest compatibility in a Machine
Readable Travel Documents (MRTD) system based on a few evaluation factors, such
as enrollment, renewal, machine requirements, and public perception, as shown in
Fig. 1.1.

Face recognition is a primary activity in everyday life, and almost all human
beings distinguish from each other through it. In the past decades, machine-based
face recognition has received substantial attention in the community of biometrics,
pattern recognition and computer vision. This common interest among researchers
working in different fields is motivated not only by the fundamental and challenging
problems in this domain, but by its numerous potential and practical applications
as well. During the development process of face recognition, various databases (e.g.
FERET |Phillips et al. 2000] and FRGC [Phillips et al. 2005]) have been released
for special research goals and several milestone algorithms have been proposed, like
Principal Component Analysis (PCA) [Turk & Pentland 1991], Linear Discriminant
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Face Finger Hand Voice Eye Signature

Figure 1.1: A scenario of using biometric MRTD systems for passport control (left),
and a comparison of diverse biometric features based on MRTD compatibility (the
left picture from [Li & Jain 2005] and the right one from [Hietmeyer 2000].

Analysis (LDA) [Belhumeur et al. 1997], Elastic Bunch Graph Matching (EBGM)
[Wiskott et al. 1997|, Local Binary Patterns (LBP) [Ahonen et al. 2006], etc. Their
applied ranges have been extended in security, forensic, commercial and entertain-
ment fields, including mugshot identification (e.g. issuing driver licenses, face sketch
recognition), access control, video surveillance, human computer interface design as
well as content-based image and video dataset management. Many commercial face
recognition are already available and competent to meet special requirements and
contribute to our society.

The general term "face recognition" refers to two main scenarios, i.e. (i) verifi-
cation or authentication; (ii) recognition or identification. In either scenario, facial
images with known subjects are initially enrolled into the system. This set of per-
sons is named as "gallery", and later facial images of these or other persons are used
as "probe" or "query" to match against images in the gallery based on their specific
similarity measurements. The verification scenario is an one-to-one matching prob-
lem, and it compares a probe face against the one in the gallery set whose identity
is being claimed. The claimed identity is taken to be authenticated if the match
quality exceeds some threshold. The identification scenario involves closed-set recog-
nition problem as well as open-set recognition problem. Closed-set recognition is a
one-to-many matching problem, and it compares a probe face with all the gallery
ones to determine its identity. The identification of the probe facial image is as-
signed by locating the facial image in the gallery with which it has the extreme
similarity (highest or lowest value). While open-set recognition is more challenging,
since it embeds the verification and identification scenario into the same framework
which determines whether the encountered person is known or not and finds out the
identity if the person is known. In order to compare with the state of the art, this
thesis only discusses verification and closed set face identification. The Cumulative
Match Characteristic (CMC) curve and Receiver Operating Characteristic (ROC)
curve can be both used to evaluate the performance of face recognition. The former
one is designed for identification experiments, and it summarizes the percentage of
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Figure 1.2: The left image: the three DOF of a human head can be described by the
egocentric rotation angles pitch, roll, and yaw [Murphy-Chutorian & Trivedi 2009];
the right one: some face examples under pose variations [Beymer 1994].

a set of probes that is considered to be correctly matched as a function of the match
rank that is counted as a right match; the rank-one recognition rate is the most
commonly stated single number from the CMC curve. The latter one is schemed
for verification experiments, and it depicts the True Acceptance Rate (TAR, the
percentage of a set probe faces that is correctly accepted) as a trade-off against the
False Acceptance Rate (FAR, the percentage that is falsely accepted). The verifi-
cation rate (TAR) at a certain value of FAR (usually pre-defined at 0.1% in face
recognition) is most commonly stated single number from the ROC curve. The
academic results can be presented in the context of either recognition or verifica-
tion, the core representation and matching issues are essentially the same. Actually,
the raw matching similarities of the CMC curve for a recognition experiment can be
readily tabulated in a different manner to generate the ROC curve fort a verification
experiment |[Bowyer et al. 2006].

1.2 Challenges in 2D Face Recognition

The face possesses obvious advantages over other biometrics, however, it has its
own problems as well. All human faces are similar and thereby offer low distinctive-
ness as compared with other biometrics, e.g., fingerprint and iris [Jain et al. 2004].
Moreover, when utilizing 2D facial images, intra-class variations, due to factors as
diverse as illumination and pose changes are often greater than inter-class ones.
Although a great deal of efforts has been devoted to 2D intensity based face recog-
nition, successful experimental results reported so far still require controlled situa-
tions, making 2D face recognition challenging and far from reliable in real conditions
[Zhao et al. 2003].

Generally, a 2D face recognition system is expected to be robust to the variations
of illumination, pose, facial expression, age as well as occlusion.

Pose wvariations occur in a full 3D orientation and position, while incorporating
additional Degrees of Freedom (DOF) including the movement of facial muscles and
jaw. Pose variations convey rich and interpersonal information, unfortunately, to
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Figure 1.3: Facial appearances of one subject under different lighting conditions,
and the face data are taken from CAS-PEAL dataset [Gao et al. 2008].

face recognition, different head poses result in distinct changes in facial appearances,
which degrades system performance dramatically. Even though several facial fea-
tures are claimed to be roll-invariant, they fail when pitch or yaw appears. See Fig.
1.2 for an illustration of three DOF and some face examples under pose variations.

Nlumination variations have enormously complex influences on the image of a
face appearance, because varying illumination directions leads to shifts in the loca-
tion and shape of shadows, changes in highlights, and reversal of contrast gradients.
Figure 1.3 shows an example of one face illuminated by different lighting condi-
tions. To deal with illumination variations, thermal infrared [Socolinsky et al. 2003]
[Yamaguchi et al. 1998] and near infrared (NIR) image [Li et al. 2007] based face
recognition have been investigated, but the thermal image depends on the tempera-
ture of the subject reflected by his or her metabolic state, and it can be regarded as
a new unstable factor; while the near infrared image needs to be captured under an
active NIR source with an constrained intensity, which indicates that this problem
has not been fundamentally solved yet.

Figure 1.4: Facial appearances of one subject with different expressions (The image
is collected from Internet).
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Figure 1.5: Face aging of Albert Einstein [Fu et al. 2010].

Facial expression variations are mainly caused by the movement of facial muscles
in response to a person’s internal emotional state, intentions, or social communica-
tions. Facial expression contains much important information, and facial expression
recognition has thus been an active research topic, in which exaggerated expressions
are generally easy to recognize accurately. In contrast to this, because severe move-
ments of facial muscles influence the face appearance, facial expression is a negative
factor to face recognition as well. Some facial images with various expressions are
listed in Fig. 1.4.

Face aging is generally a slow and irreversible process. During the early growth
and development of the face, from birth to adulthood, the greatest change is the
craniofacial growth (shape change). During adult aging, from adulthood to old age,
the most perceptible change becomes skin aging (texture change) [Fu et al. 2010].
Although this factor only slightly impacts the facial appearance in a short period,
the long term influence still makes face recognition problematic. For example, we
can easily figure out the aging process on the faces of Albert Einstein, as shown in
Fig. 1.5.

Occlusions bring another challenge into this domain, because only partial faces
are available as the input for recognition. System accuracies are likely to deteriorate
when the percentage of occluded facial part become larger. Common occlusions can
be caused by beard, hair, hands, glasses, hats, scarfs, or even cosmetic. Figure 1.6
displays two occlusions due to sunglasses and scarf respectively.

Figure 1.6: Occlusion examples.



Chapter 1. Introduction

1.3 Face Recognition based on 3D Data

The majority of face recognition research has focused on 2D facial images which are
photometric appearances in typical photographs. However, several previous studies
motivated possible advantages in 3D face recognition over 2D face recognition. For
example, Medioni and Waupotitsch stated in [Medioni & Waupotitsch 2003] - "be-
cause we are working in 3D, we overcome limitations due to viewpoint and lighting
variations"; Hesher et al. argued - "Range images have the advantage of capturing
shape variation irrespective of illumination variabilities" [Hesher et al. 2003]; Gor-
don claimed - "Depth and curvature features have several advantages over traditional
intensity-based features. Specifically, curvature descriptors: (1) have the potential
for higher accuracy in representing surface-based events, (2) are better suited to
describe properties of the face in the area such as the cheeks, forehead, and chin,
and (3) are viewpoint invariant" [Gordon 1992]; etc. All theses works illustrate the
general conclusion that using 3D data is a promising solution to deal with some key
challenges in 2D face recognition, and the reasons are as follows:

(a) 3D face data conveys the exact shape information of facial surfaces defined
(and can supposedly be acquired) independent of illumination, which is unlike pho-
tometric appearances;

(b) 3D face data allows more convenient pose correction than 2D face data;

(c) 3D face data tends to change less with variations in cosmetic use, skin col-
oration, similar surface reflectance factors than 2D face appearance [Faltemier 2007].

Nevertheless, the further development in 3D face recognition is being impeded
by two main factors, i.e. data acquisition and facial expression variations.
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Figure 1.7: Production appearance of Minolta VIVID 910 and its working principle.

Currently, the sensing technologies of 3D imaging systems fall into three basic
categories: active, passive, and hybrid |[Bowyer et al. 2006]. The active type consists
of a camera and a light projector with a pre-defined geometric relationship. A light
pattern is projected onto the scene, detected in an image acquired by the camera,
and the 3D location of points can then be computed. The sensors of VIVID 910
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Figure 1.8: Different formats of a 3D face model, and from left to right is texture
map, range image, shaded model, wireframe and point-cloud respectively.

serial production of Minolta used in [Lu & Jain 2005a, Chang et al. 2003a] would
be a straightforward illustration of this type. The passive type used two cameras
with a known geometric relationship to image the subject, corresponding points are
found in the two images, and the 3D location of the points can be calculated. The
Geometrix system [Medioni & Waupotitsch 2003] is a representative of this method.
The hybrid type combines the way of the active and passive one. In this technique,
a pattern is projected onto the scene and then imaged by a stereo camera rig. The
projected pattern simplifies the selection of corresponding points, and can improve
their density in the multiple images. The 3Q "Qlonerator" system made by 3DMD
exploited this type of sensor. In general, the active sensor can provide a high depth
accuracy, but it is limited by the acquisition time; while the passive sensor works at
a high speed, but it lacks the ability of producing dense and accurate sampling of
3D points in regions where there is not much texture. The hybrid sensor combines
the advantages of the active and passive ones, and is thus considered to be the most
promising way. Figure 1.7 depicts the production appearance of Minolta VIVID 910
and its working principle.

In 2006, Bowyer et al. [Bowyer ef al. 2006] concluded that an ideal 3D sensor
for face recognition applications would combine at least the following properties: (i)
image acquisition time similar to that of a typical 2D camera,(ii) a large depth of
field; e.g, a meter or more in which there is essentially no loss in accuracy of depth
resolution, (iii) robust operation under a range of "normal" lighting conditions, (iv)
no eye safety issues arising from projected light, (v) dense sampling of depth values;
perhaps 1000 x 1000, and (vi) depth resolution of better than 1 mm. Although the
3D imaging techniques have been greatly improved since then, evaluated by these
criteria, existing 3D sensors are still only competent to support advanced research
in this area, but cannot meet the requirements of practical application yet.

The 3D face shape is usually sensed in combination with a 2D intensity image,
and 3D face can be represented as texture map (the 2D intensity image overlays
on a 3D shape); range image (depth image), shaded model, wireframe and point-
clound. Figure 1.8 shows an example of different formats of a 3D face model. Except
texture map, all the other formats convey the exact shape information of 3D facial

surfaces, which can drastically deform under facial expressions in a complex way,

7
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since they are driven by highly complex muscle mechanism, leading to deterioration
in accuracy of 3D face recognition. Our previous studies [Ben Soltana et al. 2010,
Huang et al. 2011b| show that facial expression even has a greater effect on 3D face
recognition compared with the 2D based one. Nevertheless, expression deformations
and the 3D shape of a face are more accurately captured in 3D scans, as a result, this
challenge probably can be better addressed in the 3D domain than in 2D domain.

To handle facial expression changes in 3D face recognition, significant effort has
been made in the last few years. We can roughly classify them into four streams.
The first stream focuses on the feature points or regions within facial areas where
the shape changes the least with varying facial expression, and these areas are thus
named as "(relatively) rigid ones". For example, the nose region is often emphasized,
since it varies relatively little with expressions, while the mouth region is usually
ignored, because its shape changes greatly with facial expression. However, up till
now, there has been no study to show a large subset of the face that is perfectly
shape invariant across all facial expression variations. The second stream concen-
trates on the improvement of the gallery set by enrolling different, expressive 3D face
models, aiming to reduce the dissimilarity between a probe and its enrolled sam-
ples. The problem of this approach is that the probe may still present an expression
which is different from those contained in its face models in the gallery set, and the
requirements of a great diversity of enrolled samples is unrealistic as well. The third
stream relies on a generic model of 3D facial expressions, which can be applied to
any 3D face models. The similarity between a probe and gallery face can be com-
puted according to their parameters controlled by the pre-defined model. However,
the same expression probably results in diverse facial shapes of different persons
or even the same person at different times and cultural contexts, which indicates
there likely is no general model to predict how facial expressions transfer into each
other. The last stream tends to search for the facial features that are invariant or at
least robust to facial expression changes, but really effective descriptors are seldom
discovered. Moreover, this trend always leads to more sophisticated systems with
the training process to learn the distribution of facial expression variations and/or
the information fusion of different face modalities, i.e. 2D intensity and 3D shape.
All the facts demonstrate that more effort should be put into this issue.

Considering both the challenges in the respect of data acquisition and facial
expression, it is still premature to conclude that 3D face recognition has solved the
key problems in 2D face recognition.

1.4 Landscape of 3D Face Recognition

Human faces are 3D objects containing shape (3D surface) and texture (2D inten-
sity) information, and current 3D imaging system generally deliver 3D face models
along with their aligned texture counterparts, as a result, to some extent, 2D inten-
sity image based face recognition can be regarded as a part of 3D face recognition.
According to which modality is adopted in the gallery and probe set, 3D face recog-
nition can be carried out in several scenarios: solely 3D shape based face recognition,
textured 3D (multi-modal 2D+3D) face recognition, and asymmetric (3D vs. 2D or

8
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Figure 1.9: 3D face recognition scenarios.

vice versa) face recognition. Figure 1.9 shows an illustration of different scenarios
in 3D face recognition.

In only 3D shape based face recognition, face samples in the gallery and probe
sets are range images, wireframes or point-clouds all of which only convey geometry
information, and such a recognition scenario is thus theoretically invariant to illu-
mination changes and allows easy pose correction. The core problem lies in how to
represent facial surfaces accurately and achieve robust matching to facial expression
variations.

In textured 3D face recognition, gallery and probe face models consist of both
2D intensity and 3D shape information, and this scenario computes the similarity
measurement between 2D textures as well as the one between 3D surfaces, and both
scores are then combined for final decision. Since it makes use of both clues and
is thus expected to achieve more accurate and robust performance than only using
either of the single modality. Textured 3D face recognition generally involves two
critical issues, i.e., how to describe faces in both modalities and how to fuse their
accuracies.

Recently, Asymmetric face recognition appeared as a novel topic in face recog-
nition domain. The word "asymmetric" means that different types of face data are
employed in the gallery and probe set respectively. For instance, 3D face models
are used for enrollment, and only 2D intensity face images are taken as probes; oth-
erwise, visa versa. Essentially, this scenario mainly concerns the matching between
heterogenous face data, i.e. 3D shape vs. 2D intensity or textured 3D shape vs. 2D
intensity. Indeed, when the face data in the gallery and probe set are asymmetric,
we can reconstruct 3D face shapes using mutiple 2D intensity face images or pro-
duce 2D intensity face images by rendering 3D face shapes to achieve homologous
matching, but both solutions fall into the above two scenarios again; therefore, we
will not detailedly discussed them in this thesis.

1.5 3D Face Databases

Many 3D face datasets have been collected and released so far for public research ac-
tivities, for example, FRGC v2.0 [Phillips et al. 2005], BU-3DFE [Yin et al. 2006b],

9
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Table 1.1: A comprehensive introduction of public datasets.

Dataset ‘ Device Sub. Num. Num./Sub. Tex. Changes
XM2VTS - 295 1 Yes -
3D RMA - 120 3 No E,P, O
MPI Cyberware 200 7 - -
York - 350 15 Yes E,P, R
Norte Dame | Minolta Vivid 910 277 Total: 953  Yes E, T
GavabDB Minolta Vivid 700 61 9 No P, E
BU-3DFE 3DMD 100 4 No E
Bosohorus - 105 Total: 4666 Yes E, P, O
FRGC v2.0 | Minolta Vivid 910 466 Total: 4007 Yes E, O, 1
FRAV3D Minolta Vivid 700 106 16 Yes , P
3DTEC Minolta Vivid 910 214 2 Yes E, Twins
USF 3D Cyberware 3030 PS 100 1 Yes -
BJUT-3D | Cyberware 3030 PS 100 - Yes E

Variation labels: (P)Pose; (E)Expression; (O)Occlusion; (I)Illumination; (T)Time.

XM2VTS [Messer et al. 2003], 3D _RMA [Beumier & Acheroy 2001|, Notre Dame,
GavabDB [Moreno & Sanchez 2004], 3DTEC, USF 3D [Blanz & Vetter 1999], York
[Heseltine 2005], FRAV3D [Conde et al. 2007], Bosphorus [Savran et al. 2008], MPI
[Troje & Bulthoff 1996], etc. Please see Table 1.1 for a comprehensive introduction
of public 3D face databases.

From Table 1.1, we can see that each 3D face dataset was designed for one or
more specific research challenges in this domain, including:

e Models of a great number and demographic variety of subjects: FRGC v2.0;

e Models of a given person at repeated intervals of time: FRGC v2.0;

e Models with substantial variations of facial expressions: BU-3DFE, Bospho-
rus, FRGCv2.0, GavabDB, York, etc;

e Models of twins variations: 3DTEC.

In this thesis, three datasets are used for experimental evaluations and analysis
on our proposed approaches,; i.e. FRGC v2.0, GavabDB and 3DTEC.

1.5.1 The FRGC dataset

The FRGC database provides a number of experiments; however, since this thesis
concentrates on face recognition based on 3D data, we mainly used the protocol of
Experiment 3, that is, matching 3D faces (shape and texture) to 3D faces (shape
and texture). The face data for Experiment 3 consist of 4950 3D face models along
with their aligned texture counterparts acquired with the Minolta Vivid scanner 910
during 2003-2004 academic year. The spatial resolution of the scanner is 480x640,
but the resolution of faces changes because they were scanned at different distances
from the scanner. The data consists of frontal viewpoints of subjects mostly captured
from the shoulder level up. Among all these subjects, 57% are male and 43% are
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Figure 1.10: Samples of textured 3D face models in the FRGC dataset.

female, with the following age distribution: 65% 18-22 years old, 18% 23-27 years
old and 17% 28 years old or over. Some of the subjects have facial hair, but none of
them is wearing glasses. There are minor pose variations, and major illumination as
well as facial expression variations. More detailed statics on the database are given
by Phillips et al. [Phillips et al. 2005].

The 3D faces (shapes) are available in the form of four matrices, each of size
480x640. The first matrix is a binary mask indicating the valid pixels (or points) in
the remaining three matrices that respectively contain the x, y, and z-coordinates
of the pixels. The 2D faces (texture maps) are 480x640 color images having a one-
to-one correspondence to their respective 3D face. The texture maps are correctly
registered to the 3D faces in most cases, however, to a few examples, the registration
between texture and shape of the same face model is incorrect. In this dataset, the
original 3D face models contain noises, spikes, and holes.

All the face data are divided into three sets (based on acquisition time), namely,
Spring2003, Fall2003, and Spring2004. The first subset, Spring2003, made up of 943
3D face models with a neutral expression is also called FRGC v1.0, and the other
two compose FRGC v2.0 which contains 4007 3D face models of 466 subjects. The
FRGC explicitly specifies that FRGC v1.0 be utilized for training while FRGC v2.0
be used for validation. Figure 1.10 lists some samples of textured 3D face models
in the FRGC dataset.

1.5.2 The GavabDB dataset

To the best of our knowledge, GavabDB is the most noise-prone dataset currently
available to the public. This database consists of 549 3D facial range scans of 61
different subjects captured by a Minolta Vivid 700 scanner. Texture information of
each vertex was eliminated to reduce the size of all these face models. The subjects,
of whom 45 are male and 16 are female, are all Caucasian, and most of them are aged
between 18 and 40. Each subject was scanned 9 times for different poses and facial
expressions. The scans with pose variations contain one facial scan while looking
up (+35 degree), one while looking down (-35 degree), one for the right profile (490
degree), one for the left profile (-90 degree), as well as one with a random pose and
an arbitrary facial expression. The facial scans without pose changes include four
different nearly frontal facial scans: two of them are with a neutral expression, one
with a smile, and one with an accentuated laugh. Some examples of one subject in
the GavabDB database are shown in fig. 1.11.
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Accentuated laugh Random gesture  Looking down Looking up Right Profile Left profile

Figure 1.11: Samples of 3D face models in the GavabDB dataset [Drira et al. 2010].

1.5.3 The 3DTEC dataset

The Twins Days 2010 dataset was acquired at the Twins Days Festival in Twinsburg,
Ohio, USA. It contains 266 subjects and each of them has two 3D facial scans
taken using a range scanner: one with a neutral expression and another with a
smiling expression. There are 106 sets of identical twins, one set of triplets, and the
remainder are non-twins. Three pairs of twins come in for two recording sessions and
everyone else only has a single session. Phillips et al. [Phillips et al. 2011] provides
more details about the dataset.

The 3BDTEC dataset is a subset of the Twins Days dataset, which consists of 3D
face scans of 107 pairs of twins (two of the triplets were included as the 107th set of
twins), and where only the first session for each person was used. To our knowledge,
this is the only dataset of 3D face scans in existence that has more than a single
pair of twins. The facial scans were taken with a Minolta VIVID 910 3D scanner in
a controlled light setting, with the subjects posing in front of a black background.
For each pair of twins, their neutral and smile images were taken in a 5 to 10 minute
window of time. The 3DTEC only uses one session for each subject. Please see fig.
1.12 for an illustration of two identical twins.

Figure 1.12: The images of two twins taken in a session: the top row shows the first
twin and the bottom row, the second; the texture images are brightened to increase
visibility in this figure.
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1.6 Thesis Contributions

This Ph.D. thesis involves three main contributions in three scenarios respectively,
i.e. only 3D shape based face recognition, textured 3D face recognition, as well as
asymmetric 3D-2D face recognition.

In only 3D shape-based face recognition, we present an effective and efficient ap-
proach using Multi-Scale extended Local Binary Pattern Depth Maps (MS-eLBP-
DMs) along with a SIFT-based hybrid matching step. The MS-eLBP-DMs com-
prehensively describe local shape changes of 3D facial surfaces; while the matching
process further robustly associates keypoints between corresponding facial represen-
tations of different facial scans belonging to the same subject. Evaluated on the
FRGC v2.0 dataset, it achieves a 97.6% rank-one recognition rate and a 98.4% ver-
ification rate with a FAR at 0.001 using the neutral vs. all protocol, and displays
its insensitiveness to several key factors, such as facial expression variations, noisy
data, data missing, and data decimation. Moreover, since the proposed approach
possesses certain tolerance to moderate pose changes due to the utilization of local
matching, it does not require the generally costly registration step in data prepro-
cessing for nearly frontal faces as the ones in FRGC. When dealing with the face
models with severe pose variations, e.g. the left and right profiles, in the GavabDB
dataset, it only needs a coarse alignment to compute rotation and translation pa-
rameters. Both the facts are in contrast to most of the related tasks that are based
on time-consuming fine registration.

In textured 3D face recognition, we propose a biological vision-based facial rep-
resentation, named Oriented Gradient Maps (OGMs), which can be applied to both
facial range and texture images. The OGMs simulate the response of complex neu-
rons to gradient information within a given neighborhood and own properties of
being highly distinctive and robust to affine lighting and geometric transformations.
The previously proposed matching process is then adopted to calculate similarity
measurements between probe and gallery faces. Because the biological vision-based
facial representation produces an OGM for each quantized orientation of facial range
and texture images, we finally introduced a score level fusion strategy that optimizes
weights by a genetic algorithm in a learning step. The experimental results achieved
on the FRGC v2.0 and 3DTEC databases clearly illustrate the effectiveness of the
proposed biological vision-based facial description and the optimized weighted sum
fusion.

Considering the face recognition approaches based on 3D data also have their
own disadvantages, and are currently limited by their high cost of data acquisition
and computation, in this thesis, we design a novel framework, namely asymmetric
3D-2D face recognition, enrolling in textured 3D face model while performing iden-
tification using only 2D facial images. The motivation is to limit the use of 3D data
where it really helps to improve face recognition accuracy. The proposed method
consists of a new preprocessing pipeline to enhance robustness to illumination and
pose changes, an OGM-based facial representation to describe both local shape and
texture variations, and a twofold classification step which combines the matching
between two facial texture images and the one between a facial range and texture
image. The experiments carried out on the FRGC v2.0 database demonstrate that
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the proposed approach outperforms 2D facial image based methods, and achieves
comparable results as 3D data based ones do. Furthermore, it avoids the cost and
inconvenience of facial data acquisition and computation of 3D based approaches.

1.7 Thesis Organization

The remainder of this thesis is organized as follows.

e In Chapter 2, we review the development of face recognition algorithms from
2D domain to 3D domain.

e In Chapter 3, we introduce the proposed face recognition approach using
solely 3D shape, including the multi-scale eLBP based geometric facial representa-
tion, SIFT based hybrid matching process, and experimental results on the FRGC
v2.0 and GavabDB databases.

e In Chapter 4, we present the biological vision based facial description, namely
Oriented Gradient Maps (OGMs), the fusion strategy using genetic algorithm, their
application to textured 3D face recognition, as well as the evaluation on the FRGC
v2.0 and 3DTEC databases.

e In Chapter 5, we describe the novel framework of asymmetric 3D-2D face
recognition involving a new preprocessing pipeline, an OGM-based facial represen-
tation applied to both facial texture and range images, and a twofold classification
step. Meanwhile, according to the performance comparison with traditional 2D and
3D based methods on the FRGC v2.0 database, we analyze its effectiveness and
advantages.

e In Chapter 6, we summarize our contributions and propose future directions.

14



CHAPTER 2

Literature Review: From 2D to 3D

During last few decades, face recognition has been one of the most active topics in
biometrics, pattern recognition and computer vision communities, and a great deal of
progress has been made to improve its performance. The past years have witnessed
the research attention on face recognition from 2D intensity images to (textured)
3D shape models. In this chapter, we first review several milestone algorithms in 2D
domain, then introduce the recent development of face recognition using 3D data.

2.1 Intensity Image based 2D Face Recognition

Up to now, many techniques have been proposed for face identification or verification
tasks using 2D intensity facial images. They can be generally divided into two main
categories: i.e. holistic and local feature based [Zhao et al. 2003, Zou et al. 2007a].
The holistic approaches make use of the entire face region as the input data of the
face recognition system, which are further projected and compared in a relatively
low dimensional subspace in order to avoid the curse of dimensionality, including
Principal Component Analysis (PCA) [Turk & Pentland 1991], Linear Discriminant
Analysis (LDA) [Belhumeur et al. 1997], Independent Component Analysis (ICA)
[Bartlett et al. 2002|, etc. While the local based ones proceed first to locate a num-
ber of features or components from a facial image, and then classify them by combin-
ing and measuring with corresponding local statistics, such as Elastic Bunch Graph
Matching (EBGM) |Wiskott et al. 1997], Scale-Invariant Feature Transform (SIFT)
[Bicego et al. 2006], and Local Binary Patterns (LBP) [Ahonen et al. 2006]. There
also exist some methods that do not belong to either of the two classes, like Active
Appearance Model (AAM) |Edwards et al. 1998]. In the subsequent subsections, we
introduce the representatives of each category in detail.

2.1.1 Holistic Approaches

Face recognition using holistic methods operates directly on the whole 2D facial
images. These facial images can be represented as vectors, i.e., as points in a high
dimensional vector space. Specifically, a 2D facial image with a resolution of p x
g can be mapped to a vector x € RP*? by a lexicographic ordering of the pixel
elements, e.g., by concatenating each row or column of the given image. Despite this
high-dimensional embedding, the natural constraints of the physical world (and the
imaging process) dictate that the data will in fact lie in a lower-dimensional manifold.
The primary goal of subspace analysis is to identify, represent and parameterize this
manifold in accordance with some optimality criteria [Moghaddam 1999].



Chapter 2. Literature Review: From 2D to 3D

Let X = (21,22, ..., %, ...,y ) represent a n X N data matrix, where each z; is a
face vector of dimension n, concatenated from a p x ¢ facial image; thus n = p x q.
Here n is the total number of pixels in the facial image and N is the number of face
samples in the training set. The mean vector of the training images yu = % Zf\il x;
is subtracted from each facial image vector for normalization.

The facial images with the resolution of p x ¢, each pixel of which has 256 gray
scale, construct a face space, and in this space, each image represented as a vector
corresponds to a point. The facial images only reside a very small portion out of total
256P*4 possible instances in this space. The manifold or the distribution of all faces
accounts for changes in the facial appearance. To analyze this face manifold, three
classical holistic approaches, PCA, LDA, and ICA can be applied. Each method
has its own representations (basis vectors) of a high dimensional face space based
on different statistical viewpoint. By projecting facial images to the basis vectors,
their corresponding coefficients are regarded as the feature of each facial image.
The similarity measurement between the test facial image and training prototype is
computed (e.g. Euclidean distance or the cosine of the angle) in the feature space,
and a larger cosine value of the angle or a smaller Euclidean distance between their
coefficient vectors indicates a better matching.

All the three representations can be considered as a linear transformation from
the original image vector to a projection feature vector, as defined in eq. 2.1.

Yy =wTx (2.1)

where Y is a d X N feature vector matrix, d is the dimension of the feature space,
and W is the transformation matrix. It should be noted that d < n.

(1) PCA

Principal Component Analysis (PCA) searches for Y, which is best accounts for
the distribution of facial images, and Y defines the subspace of these facial images
as the face space [Turk & Pentland 1991|. All faces in the training set are projected
into this subspace to find a set of weights which describes the contribution of each
vector in the face space. To identify a facial image, one needs to project the test
image into the face space to achieve the corresponding set of weights. By comparing
the weights of the test image with the ones of the faces in the training set, the face
in the test image can be identified.

The main process of PCA algorithm is based on Karhunen-Loeve transforma-
tion [Kirby & Sirovich 1990]. If facial image elements are considered to be random
variables, the image can be seen as a sample of a stochastic procedure. The PCA
basis vectors are defined as the eigenvectors of the n x n total scatter matrix St.

Sr= (wi— p)(zi—p)" (2.2)

The transformation matrix Wpc 4 is composed of the eigenvectors corresponding
to the d largest eigenvalues. The eigenvectors are also known as eigenfaces. In order
to better demonstrate eigenfaces, we derive the ones corresponding to the 12 largest
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Figure 2.1: Face samples from the ATT (ORL) face dataset.

eigenvalues from ATT face database [Samaria & Harter 1994| (formerly the ORL
database) consisting of 40 different subjects, each of which has 10 2D facial images.
Some face samples in ATT face database are shown in Fig. 2.1; and the mean face
of this dataset is given in Fig. 2.2. The achieved eigenfaces corresponding to the 12
largest eigenvalues are depicted in Fig. 2.3.

Figure 2.2: The mean face derived from the ATT (ORL) face dataset.

After applying the projection, the input facial image represented as an n dimen-
sional vector is reduced to a feature vector in a d dimensional subspace. For most
applications, the eigenvectors corresponding to very small eigenvalues are regarded
as noise, and hence not taken into account during the recognition step. Figure 2.4
illustrates the eigenfaces corresponding to the smallest 12 eigenvalues.

PCA is the most descriptive representation in terms of the least square recon-
struction error. Moreover it operates efficiently and is easy to implement. Therefore,
PCA is usually used as the baseline algorithms for face recognition. However, it is
not the most discriminative in this domain.

(2) ICA

Independent Component Analysis (ICA) [Hyvarinen & Oja 2000] is quite similar
to PCA, and their only difference lies in that the distribution of the components
are designed to be non-Gaussian. In general, minimizing non-Gaussianity promotes
statistical independence [Hyvarinen & Oja 2000].

Bartlett et al. |Bartlett et al. 2002] show that first- and second- order statistics
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Figure 2.3: Eigenfaces (eigenvectors) of the 12 largest eigenvalues are shown as p X ¢
resolution, where p x ¢ = n, derived from the ATT (ORL) face dataset.

Figure 2.4: Eigenfaces (eigenvectors) of the 12 smallest eigenvalues are shown as
resolution p x g, where p X ¢ = n, derived from the ATT (ORL) face dataset.

hold information only about the amplitude spectrum of an image while discard the
phase spectrum, however, some experiments then brought out that the human ca-
pability in recognizing objects is mainly driven by the phase spectrum. This is also
the reason that they investigated ICA as a more powerful algorithm for face recogni-
tion. Since ICA separates the high-order moments of the input image in addition to
the second-order moments utilized by PCA| it can be regarded as a generalization
of PCA. Furthermore, ICA allows a better characterization of data in an n dimen-
sional space and the basis vectors found by ICA are not necessarily orthogonals so
that they also reduce the reconstruction error. Nevertheless, ICA has no general
closed-form solution, and needs iterative methods to obtain its representation.

Bartlett et al. provided two architectures based on ICA, statistically independent
basis images and a factorial code representation, for the face recognition tasks. Both
the architectures display similar accuracies. The basis vectors based on fast fixed-
point algorithm |Hyvarinen 1999 for ICA factorial code representation are shown
in Fig. 2.5.

(3) LDA

PCA and ICA are unsupervised approaches since they construct the face space
without using the face class information. Unlike them, Linear Discriminant Analysis
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Figure 2.5: ICA basis vectors shown as resolution px g, where pxq = n, derived from
the ATT (ORL) face dataset based on the second architecture [Bartlett et al. 2002].

(LDA) aims to find an "optimal" way to represent the face vector space to maxi-
mize the discrimination between different subjects. Exploring class information can
improve the performance of identification tasks [Belhumeur et al. 1997].

LDA seeks a transformation Wy p4 defined as in eq. 2.3:

T
Wipa = arg max W SpW

B 2.3
w WTSWW ( )

where Sp and Sy are the between-class and within-class scatter matrix, and for-
mally defined as in eq. 2.4 and eq. 2.5 respectively.

Sp = Nilwi— p)(zi —p)" (2.4)
=1

Sw=3 Do o (e )k — )" (2.5)

In the above equations, N; is the number of training samples in class ¢; ¢ is the
total number of different classes; u; is the mean vector of the samples belonging to
class i; and X, represents the set of samples in class i. The LDA basis vectors are
demonstrated in Fig. 2.6

Unfortunately, LDA is affected by "small sample size problem", especially com-
mon in face recognition, arising from the small number of available training samples
compared to the dimensionality of the sample space. An effective solution is tak-
ing PCA as the preliminary step to reduce the dimensionality of the sample space
and then applying LDA to the achieved space for real classification. The Fisher-
face algorithm [Belhumeur ef al. 1997] is a right example, derived from the Fisher
Linear Discriminant (FLD), which employs specific category information. By defin-
ing different classes with various statistics, the facial images in the training set are
first divided into the corresponding classes. Then, techniques similar to the one
applied in PCA approach are used. The Fisherface algorithm generally results in a
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Figure 2.6: First 12 LDA basis vectors shown as resolution p x ¢, where p X ¢ = n,
derived from the ATT (ORL) face dataset.

higher accuracy rate for face recognition than PCA does. In contrast, arguing that
combining PCA and LDA as the way of Fisherface, discriminant information is also
discarded together with redundant one, Chen et al. [Chen et al. 2000], Yu and Yang
[Yu & Yang 2001] suggest that in some cases LDA should be applied directly to the
input space.

Many efforts have been made to ameliorate linear subspace analysis technique
since PCA, ICA and LDA were proposed for face recognition. For example, Pentland
et al. [Pentland et al. 1994] modified PCA to modular eigenfaces to deal with pose
variations; Probabilistic subspaces [Moghaddam 2002| was introduced to derive a
more meaningful similarity measurement under the probabilistic framework; Lu et
al. [Lu et al. 2003] presented an hybrid between the D-LDA (Direct LDA) and the
F-LDA (Fractional LDA), an LDA variant, in which weighted functions are used to
avoid the misclassification caused by output classes that are too close; Vasilescu and
Terzopoulos [Vasilescu & Terzopoulos 2002] proposed an approach based on multi-
linear tensor decomposition of image ensembles, namely TensorFace, to resolve the
confusion of multiple factors constrained in the same face recognition system, such as
illumination and pose; instead of representing the facial image as a vector, Yang et al.
[Yang et al. 2004a] considered an image as a 2D matrix and developed a two dimen-
sional PCA algorithm for face recognition; similarly, Kong et al. [Kong et al. 2005]
generalized the conventional LDA into 2D Fisher discriminant analysis and applied
it to face recognition; etc.

Although linear subspace analysis approaches, e.g. PCA, ICA, and LDA, have
significantly advanced the development of face recognition, due to high non-linearity
of the face manifolds [Li & Jain 2005], linear subspace analysis is an approximation
of this non-manifold, and does not possess the modeling capacity which is power-
ful enough to preserve the variations of the face manifold and distinguish between
individuals to achieve robust face recognition results. Recent studies in non-linear
manifold analysis provide more flexibility and modeling power to analyze face man-
ifold. Its main idea is that a pattern in the original input space is first mapped
into a potentially much higher dimensional feature vector in the feature space; then
perform dimensionality reduction techniques to learn the non-linear manifold, and
the resulting projection coefficients are used as features for face classification. How-
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ever, it is difficult to do so directly because it is computationally very intensive to
compute the dot products in a high-dimensional feature space. Fortunately, kernel
techniques can be introduced to avoid this difficulty. The algorithm can be actually
implemented in the input space by virtue of kernel tricks satisfying the Mercer’s
condition [Vapnik 1995]

K(zi, ;) = U(wi) - ¥(x5) (2.6)

where the kernel function K(x;,2;) in the input space corresponds to inner-product
in the higher dimensional feature space. Common kernels include: polynomial (ho-
mogeneous), polynomial (inhomogeneous), Gaussian Radial Basis Function (RBF),
hyperbolic tangent, etc. Therefore, the explicit mapping process is not required at
all. For example, Yang [Yang 2002b] investigated KPCA (Kernel Principal Compo-
nent Analysis) for face recognition. Unlike the traditional PCA and LDA, KPCA
achieved a higher dimensionality than the input image, and provided better perfor-
mance than Eigenface and Fisherface did. Liu et al. |Liu ef al. 2002| proposed an
face recognition approach using polynomial kernel based Fisher Discriminant Anal-
ysis (FDA, Fisherface), and claimed that it outperformed PCA and LDA. But in
these kernel based methods, suitable kernels and their corresponding parameters
can only be determined empirically. There also exist another two popular methods
for non-linear manifold learning, i.e. ISOMAP [Tenenbaum et al. 2000] and Locally
Linear Embedding (LLE) [Roweis & Saul 2000], which have been further applied to
face recognition since they were originally proposed. Yang [Yang 2002a] introduced
LDA to recognize faces using geodesic distance, which is the basis of the ISOMAP.
He et al. [He et al. 2005] presented laplacianfaces based on the Locality Preserving
Projections (LPP) for face subspace description. These manifold learning algorithms
are quite interesting, but need to further prove their performance for robust face
recognition systems.

On the other hand, the downside of the non-linear approaches is that their gen-
eralization capability is influenced by the sample size in real conditions, i.e., small
number of face images available for training compared to the large variations of
facial appearance in testing, leading to overfitting [Raudys & Jain 1991]. A possi-
ble solution is to use face synthesis methods to generate additional samples from
available ones for training, proving helpful to enhance the accuracies of face recog-
nition systems [Lu et al. 2004c, Vetter & Poggio 1997, Zhao & Chellappa 2000]. In
addition, the techniques such as classifier combination [Lu & Jain 2003| and data
re-sampling [Lu & Jain 2003] can also be employed for improved results.

2.1.2 Local Feature based Approaches

Face recognition using local feature based approaches usually consists of three major
steps: i.e. alignment and partitioning, feature extraction, as well as classification
and combination, as illustrated in Fig. 2.7.

As in the holistic methods, the preliminary step of most local feature based ones
is to align the face images, while in contrast to the holistic ones, the aligned faces are
then partitioned into local blocks for feature extraction. An common and efficient
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Figure 2.7: The framework of local feature based methods [Zou et al. 2007a].

way is to align facial images into the same coordinate system by a similarity trans-
form (translation, rotation and scaling) based on a few fiducial landmark points,
facial components (eyes, nose, and mouth) or even the entire face region provided
by some detection techniques, e.g. AdaBoost [Viola & Jones 2004], and the face is
further divided into local regions. Classification is finally carried out on the faces by
comparing and combining each similarity of their local region in the given feature
space. In this subsection, we discuss three typical local feature based approaches,
namely, Gabor wavelets, LBP and SIFT.

(1) Gabor wavelets

Gabor wavelets were applied to image analysis due to their biological relevance
and computational properties [Daugman 1985, Daugman 1988, Marcelja 1980]. The
Gabor wavelets, whose kernels are similar to the 2D receptive field profiles of the
mammalian cortical simple cells, exhibit desirable characteristics of spatial locality
and orientation selectivity, and are optimally localized in the space and frequency
domains as well

The Gabor wavelets (kernels, filters) can be defined as follows [Daugman 1980,
Lades et al. 1993, Marcelja 1980]:

2
_ Rl

Yy (2) = exp | — Il 1217 exp (ik,,,2) — exp(—(ﬁ) (2.7)
o o? 202 o 2

where p and v denotes the orientation and scale of the Gabor kernels, z = (z,y)
respectively; || - || is the norm operator; and the wave vector k,, is defined as:

Ky = ke (2.8)

where ky, = knax/f" and ¢, = m11/8. kmas is the maximum frequency, and f is the
spacing factor between kernels in the frequency domain |Lades et al. 1993].

The Gabor kernels in eq. 2.7 are all self-similar because they can be generated
from one filter, the mother wavelet, by scaling and rotation through the wave vector
k.. Each kernel is a product of a Gaussian envelope and a complex plane wave,
while the first term in the square brackets in eq. 2.7 determines the oscillatory part
of the kernel and the second term compensates for the DC value. The effect of the
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Figure 2.8: Gabor wavelets: (a) The real part of Gabor kernels at five scales and
eight orientations with the following parameters: o = 27, kpax = 7/2, and f = V2
(b) The magnitude of Gabor kernels at five different scales. The kernels exhibit
desirable characteristics of spatial frequency, spatial locality, and orientation selec-
tivity [Liu & Wechsler 2002].

DC term becomes negligible when the parameter o, which determines the ratio of
the Gaussian window width to wavelength, has sufficiently large values.

In most cases, one would make use of the Gabor wavelets of five different scales,
v € {0,...,4} and eight orientations, u € {0,...,7} [Burr et al. 1989, Field 1987,
Jones & Palmer 1987|. Figure 2.8 shows the real part of the Gabor kernels at five
scales and eight orientations and their magnitude, with the following parameters:
0 = 27, kmax = /2, and f = v/2. The kernels exhibit desirable characteristics of
spatial frequency, spatial locality, and orientation selectivity.

The Gabor wavelet representation of an image is the convolution of the image
with a family of Gabor Kernels as defined by eq. 2.7. Let I(x,y) be the gray level
distribution of an image, the convolution of image I and a Gabor kernel v, (2) is
defined as follow:

OIMV (Z) =1 (Z) * wu,u (Z) (2.9)

where * is the convolution operator, and O, (2) is the convolution result corre-
sponding to the Gabor Kernel at different orientations and scales. As a result, the
set S ={0uu (2) : p€{0,....,7},v € {0,...,4}} forms the Gabor wavelet represen-
tation of the image I(z).
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According to the convolution theorem, each O, (2) can be derived from eq. 2.9
via the Fast Fourier Transform (FFT)

S{Ouw (2)} = S (2)1S{Yu (2)} (2.10)

and

O (2) = STHS{I (2)}S{thpw (2)}} (2.11)

where & and 3! denote the Fourier and inverse Fourier transform, respectively.

Figure 2.9 gives an example of the Gabor wavelet representation (the real part
and the magnitude) of a sample image. These achieved representation results display
scale, locality, and orientation properties corresponding to those displayed by the
Gabor wavelets in Fig. 2.8. To encompass different spatial frequencies (scales),
spatial localities, and orientation selectivities, all these representation results are
concatenated to derive an augmented feature vector x.

Since Gabor filters detect amplitude-invariant spatial frequencies of pixel gray
values, they are known to be robust to illumination variations, which is an important
contribution to 2D face recognition. On the other hand, for each pixel of a facial
image, Gabor filters tend to generate a feature vector with dozens of dimensionality,
and the final vector by concatenating the ones of each pixel will thus be classified
in a rather high-dimensional feature space, leading to another difficulty in this do-
main. Therefore, many studies have discussed how to balance its performance and
computational cost in the last decade.

Wiskott et al. [Wiskott et al. 1997| obtained good performance with the Elastic
Bunch Graph Matching (EBGM) method in the FERET test |Phillips et al. 2000].
The elastic bunch graph is a graph-based face model with a set of jets (represented
by Gabor wavelet components) attached to each node of the graph. The algorithm
recognizes new faces by first locating a set of facial features (graph nodes) to build a
graph, whose jets and topography are then used to compute the similarity. Because
only the Gabor representations of a certain number of jets rather than each pixel are
required to describe the variations of facial appearance, EBGM avoids the problem
caused by high-dimensional space. Liu and Wechsler proposed to first downsam-
ple each O, (2) by a pre-defined factor to reduce the space dimension and then
apply Enhanced Fisher linear discriminant model (EFM) [Liu & Wechsler 2000] to
the augmented feature vector. Using the eigenface selectivity constraint of the EFM
method, the dimensionality of the resulting vector space was further reduced to
derive low-dimensional features with enhanced discriminative power for classifica-
tion. To deal with the same issue that Gabor features adopted by most systems
are redundant and too high dimensional, Yang et al. [Yang et al. 2004b] investi-
gated AdaBoost to choose Gabor features, and the selected features proved not only
low-dimensional but also discriminant.

(2) Local Binary Patterns (LBP)

As a non-parametric algorithm, LBP summarizes local structures of images effi-
ciently by comparing each pixel with its neighbors. The most important properties
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Figure 2.9: Gabor wavelet representation: (a) The real part of the representation;

(b) The magnitude of the representation [Liu & Wechsler 2002].

of LBP are its tolerance to monotonic illumination changes and its computational
simplicity. LBP was originally proposed for texture analysis [Ojala et al. 1996], and
has proved a simple yet powerful approach to describe local structures. It has been
extensively exploited in many applications, for instance, face image analysis, im-
age and video retrieval, environment modeling, visual inspection, motion analysis,

biomedical and aerial image analysis, remote sensing, so forth.

The original LBP operator labels the pixels of an image with decimal numbers,
called Local Binary Patterns or LBP codes, which encode the local structure around
each pixel. It proceeds thus, as illustrated in Fig.2.10: each pixel is compared with
its eight neighbors in a 3x3 patch; the resulting strictly negative values are encoded
with 0 and the others with 1; a binary number is obtained by concatenating all
these binary codes in a clockwise direction starting from the top-left one and its
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Figure 2.10: An example of the basic LBP operator [Ahonen et al. 2004].

corresponding decimal value is used for labeling.

One limitation of the basic LBP operator is that its small 3x 3 neighborhood can-
not capture the dominant features with large scale structures. The original LBP op-
erator was later generalized to deal with different neighborhoods [Ojala et al. 2002].
A local neighborhood is defined as a set of sampling points evenly spaced on a circle
which is centered at the pixel to be labeled, and the sampling points that do not fall
within the pixels are interpolated using bilinear interpolation, thereby allowing for
any radius and any number of sampling points in the neighborhood. Fig.2.11 shows
some examples of the extended LBP operator, where the notation (P, R) denotes a
neighborhood of P sampling points on a circle of radius of R.
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Figure 2.11: Some examples of the extended LBP operator [Ahonen et al. 2006]:
the circular (8,1), (16,2), and (24, 3) neighborhoods.

Formally, given a pixel at (x., y.), the resulting LBP can be expressed in decimal
form as:

v
L

LBPp p(zc,yc) = ) s(ip —ic)2” (2.12)

=3
I
o

where i, and ip are respectively gray-level values of the central pixel and P sur-
rounding pixels in the circle neighborhood with a radius R, and function s(z) is
defined as:

s(z) = { (1) z; iig (2.13)

By the definition above, the basic LBP operator is invariant to monotonic gray-
scale transformations preserving pixel intensity order in the local neighborhoods.
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The histogram of LBP labels calculated over a region can be exploited as a texture
descriptor.

The operator LBPp gy produces 27 different output values, corresponding to 27
different binary patterns formed by P pixels in the neighborhood. If the image is
rotated, these surrounding pixels in each neighborhood will move correspondingly
along the perimeter of the circle, resulting in a different LBP value, except patterns
with only 1s and 0s. In order to remove rotation effect, a rotation-invariant LBP is
proposed in [Ojala et al. 2002]:

LB Z}’ém = min{ ROR(LBPpp),i)li =0, 1, ..., P — 1} (2.14)

where ROR(x, 1) performs a circular bit-wise right shift on the P-bit number z ¢
times. The LBP(T ]’;7 R) operator quantifies occurrence statistics of individual rotation
invariant patterns corresponding to certain micro-features in the image; hence, the
patterns can be considered as a feature detector [Ojala et al. 2002]. However, in
[Pietikainen ef al. 2000], it was shown that such a rotation-invariant LBP operator
does not necessarily provide discriminative information, since the occurrence fre-
quencies of the individual patterns incorporated in LBP(%R) vary greatly and the
crude quantization of the angular spaces at 45° intervals.

It has been shown that certain patterns contain more information than others
[Ojala et al. 2002]. It is possible to use only a subset of 2P binary patterns to de-
scribe the texture of images. Ojala et al. named these patterns uniform patterns,
denoted LBP(I{D?R). A local binary pattern is called uniform if it contains at most two
bitwise transitions from 0 to 1 or vice versa when the corresponding bit string is con-
sidered circular. For instance, 00000000 (0 transitions) and 01110000 (2 transitions)
are both uniform whereas 11001001 (4 transitions) and 01010011 (6 transitions) are
not. It is observed that the uniform patterns account for around 90% of all the pat-
terns in a (8, 1) neighborhood and around 70% in a (16, 2) neighborhood in texture
images [Ojala et al. 2002|. A similar experiment was conducted on the FERET face
image database, and it was found that 90.6% of the patterns in a (8, 1) neighbor-
hood and 85.2% in a (8,2) neighborhood are uniform [Ahonen et al. 2004]. More
recently, Shan and Gritti [Shan & Gritti 2008] verified validity of uniform patterns
for representing faces from the viewpoint of machine learning. Specifically, they
applied AdaBoost to select the discriminative patterns for facial expression recogni-
tion, and their experiments demonstrated that, using LBP(g ) operator, 91.1% of
these selected patterns are uniform. Accumulating the non-uniform patterns into a
single bin yields an LBP operator with less than 2P labels. For example, the number
of labels with the neighborhood of 8 pixels is 256 for the standard LBP but only 59
for LBPY2.

Ahonen et al. [Ahonen et al. 2004] introduced LBP for face recognition in 2004,
and unlike its application to texture classification, in order to make use of the spa-
tial information of facial physical components, they proposed to first divide face
images into several local regions from which local LBP histograms can be extracted,
and then to concatenate them into a single, spatially enhanced feature histogram
(as illustrated in Fig.2.12). The resulting histogram encodes both the local texture
and global shape information and hence describes a face comprehensively. Since
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Figure 2.12: LBP based facial description [Shan et al. 2009].

then, LBP and its variants have been extensively studied and exploited in 2D face
recognition. Zhang et al. [Zhang et al. 2005] combined Gabor and LBP in a serial
strategy which consists in first applying Gabor filters and then LBP to the raw im-
age. The Multiple Gabor feature maps (GFM) were computed by convolving input
images with multi-scale and multi-orientation Gabor filters. Fach GFM was divided
into small non-overlapped regions from which LBP histograms were extracted and
finally concatenated into a single facial feature histogram. They reported the best
result on the FERET dataset at that moment. Tan and Triggs [Tan & Triggs 2007]
modified LBP to a version with 3-value codes, called Local Ternary Patterns (LTP),
by replacing zero with a user-specified threshold to measure the difference between
the central pixel and its neighbors, claiming it is more resistant to noise and thus
can improve performance of face recognition under difficult lighting conditions. In
order to capture not only micro-structures but also macro-structures to enhance the
discriminative power of LBP, Liao et al. [Liao et al. 2007] proposed Multi-Block
LBP (MB-LBP) which, instead of comparing pixels, compares average intensities of
neighboring sub-regions, and a similar scheme was introduced in [Wolf et al. 2008]:
Three-Patch LBP (TP-LBP) and Four-Patch LBP (FP-LBP) were proposed to com-
pare distances between the whole blocks (patches) concerned for face recognition in
wild. More development details of LBP on face recognition is in [Huang et al. 2011c|.

(3) Scale-Invariant Feature Transform (SIFT)

SIFT features have many important properties, such as invariant to image scaling
and rotation, (partial) occlusion and to a certain extent also to changes in illumi-
nation and 3D camera viewpoint, which make them suitable for matching different
images of an object or a scene. According to [Lowe 2004], the basics of the SIFT al-
gorithm consists of four computational stages: (i) scale-space extrema detection, (ii)
removal of unreliable keypoints, (iii) orientation assignment, (iv) keypoint descriptor
calculation, and (v) matching.

In the first stage, interest points (or called keypoints), are detected in the scale
space searching for image locations that represent the maxima or minima of the
difference-of-Gaussian function. The scale space of an image is defined as a func-
tion L(z,y,0), that is produced from the convolution of a variable-scale Gaussian,
G(z,y,0), with the input image, I(x,y):
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Figure 2.13: Maxima and minima of the difference-of-Gaussian images are detected
by comparing a pixel (marked with "X’) to its 26 neighbors in 3x3 regions at the
current and adjacent scales (marked with circles) [Lowe 2004].

L(z,y,0) = G(x,y,0) * [(2,y) (2.15)
with
G(z,y,0) = ! e~ (@ +y?)/20° (2.16)
2mo?

where o denotes the standard deviation of the Gaussian G(z,y,0).
The difference-of-Gaussian function D(z,y, o) can be computed from the differ-
ence of Gaussians of two scales that are separated by a factor k:

D(z,y,0) = (G(z,y, ko) — G(z,y,0)) * [(x,y) = L(x,y, ko) — L(z,y,0) (2.17)

Local maxima and minima of D(xz,y, o) are computed based on the comparison
of the sample point and its eight neighbors in the current image as well as the nine
neighbors in the scale above and below (See Fig.2.13 for an illustration). If the pixel
represents a local maximum or minimum, it is selected as a candidate keypoint.

The final qualified keypoints are selected based on measurements of their sta-
bility. During the second stage low contrast points (sensitive to noise) and poorly
localized points along edges (unstable) are discarded. Two criteria are utilized for
the detection of unreliable keypoints. One criterion evaluates the value of |D(z, y, 0)|
at each candidate keypoint. If the value is below some threshold, which means that
the structure has low contrast, the keypoint is removed. Another criterion evalu-
ates the ratio of principal curvatures of each candidate keypoint to find out poorly
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Figure 2.14: A keypoint descriptor is created by first computing the gradient mag-
nitude and orientation at each image sample point in a region around the keypoint
location, as shown on the left. These are weighted by a Gaussian window, indi-
cated by the overlaid circle. These samples are then accumulated into orientation
histograms summarizing the contents over 4x4 subregions, as shown on the right,
with the length of each arrow corresponding to the sum of the gradient magnitudes
near that direction within the region. This figure shows a 2x2 descriptor array
computed from an 8x8 set of samples, whereas the experiments in this paper use
4x4 descriptors computed from a 16x16 sample array.|Lowe 2004].

defined peaks in the Difference-of-Gaussian function. For keypoints with high edge
responses, the principal curvature across the edge will be much larger than the prin-
cipal curvature along it. As a result, to remove unstable edge keypoints based on
the second criterion, the ratio of principal curvatures of each candidate keypoint is
checked. If the ratio is below some threshold, the keypoint is kept, otherwise it is
removed.

The third stage assigns an orientation to each keypoint by building a histogram
of gradient orientations 0(x,y) weighted by the gradient magnitudes m(z,y) from
the neighborhood of keypoint:

m(z,y) = /(L(z + 1,y) — Lz — Ly))? + (L(z,y + 1) — L(z,y —1))? (2.18)

O(z,y) = tanh(L(z,y+ 1) — L(z,y — 1))/ (L(z + 1,y) — L(z — 1,y))  (2.19)

where L is a Gaussian smoothed image with a closest scale to that of a keypoint. By
assigning a consistent orientation to each keypoint, the keypoint descriptor can be
represented relative to this orientation and, therefore, invariance to image rotation
is achieved.

In the fourth step, the keypoint descriptor is created by primarily computing
the gradient magnitude and orientation at each image point of the 16 x16 keypoint
neighborhood (left side of Fig.2.14). This neighborhood is weighted by a Gaussian

30



Chapter 2. Literature Review: From 2D to 3D

Figure 2.15: An example of SIFT matching on 2D facial images.

window and then accumulated into orientation histograms summarizing the contents
over subregions of the neighborhood of size 4x4 (see the right side of Fig.2.14), with
the length of each arrow in Fig. 2.14 (right) corresponding to the sum of the gradi-
ent magnitudes near that direction within the region |[Lowe 2004|. Each histogram
contains 8 bins, therefore each keypoint descriptor features 4x4x8=128 elements.
The coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation to achieve orientation invariance and the descriptor is
normalized to enhance invariance to changes in illumination.

The previously retained descriptors are matched in the last step. When applying
the SIFT algorithm to object recognition, each keypoint descriptor extracted from
the query (or test) image is matched independently to the set of descriptors extracted
from every image in the training set. The best match for each descriptor is found by
identifying its nearest neighbor (closest descriptor) in the set of keypoint descriptors
from the training image. Generally, many features from a test image do not have
any correct match in the training database, because they are either not detected
in the training image or they arose from background clutter. To discard keypoints
whose descriptors do not have any good match to a training image, a subsequent
threshold is used, which rejects matches that are too ambiguous. If the distance
ratio between the closest neighbor and the second-closest neighbor is below some
threshold, the match is kept; otherwise the match is rejected. The object in the
database with the largest number of matching points is considered as the matched
object.

Several tasks adapted SIFT to face recognition. Bicego et al. [Bicego et al. 2006]
first investigated the performance of SIFT in face authentication, and designed a
regular grid based matching step that was claimed to be more suitable to this topic.
The proposed matching process takes into account the spatial information of the key-
points detected in the face area, emphasizing the importance of matches from corre-
sponding local patches, and hence greatly eliminated wrong matches between spa-
tially inconsistent SIFT descriptors. Luo et al. [Luo et al. 2007] further enhanced
the SIFT-based face recognition system by assigning weights to different facial sub-
regions using a K-means clustering method, highlighting the matches from the areas
that are more critical to improve accuracies. Krizaj et al. [Krizaj et al. 2010] argued
that even though SIFT is regarded as one of the state-of-the-art approaches to object
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recognition, it has some deficiencies when applied to the problem of face recognition.
Compared to general objects, there are less structures with high contrast or high-
edge responses in facial images. Because keypoints along edges and low-contrast
keypoints are removed by the original SIFT algorithm, interest points representing
distinctive facial features can also be removed. Therefore, it is of paramount impor-
tance to properly adjust the thresholds governing the process of unstable keypoint
removal, when applying the SIFT technique for the task of face recognition. They
suggested to extract the SIF'T descriptors at fixed predefined image locations learned
during the training stage, and by fixing the keypoints to pre-defined spatial locations,
they cancelled the need for threshold optimization and face image partitioning. In
addition, they claimed their approach gained greater illumination invariance than
other SIFT adaptations. See Fig.2.15 for an example of SIF'T matching on 2D facial
images.

2.1.3 Other Methods

Besides the two streams of face recognition mentioned above, another one, namely
statistical model based methods, has been also widely explored. A statistical model
is a formalization of relationships between variables in the form of mathematical
equations, and it describes how one or more random variables are related to one
or more random variables. The model is regarded to be statistical as the variables
are not deterministically but stochastically related. To formulate face analysis with
statistical model, we wish to build models of facial appearance and its variations
and learn the ways in which the shape and texture of the human face vary across a
range of images. Examples of the statistical model based approaches include Active
Appearance Model (AAM) |Edwards et al. 1998|, Gaussian Mixture Model (GMM)
[Cardinaux et al. 2003, Lucey & Chen 2004], 1D Hidden Markov Model (HMM)
[Samaria & Harter 1994], pseudo-2D HMM [Nefian & Hayes IIT 1999], etc. In this
sub-section, as a typical representative of statistical model based techniques, AAM
is introduced in detail not only due to its successful application in face recognition,
but because of its fundamental contributions in facial image analysis as well.

Active Appearance Model (AAM)

An Active Appearance Model (AAM) is an integrated statistical model combin-
ing a model of shape variations with a model of appearance variations in a shape-
normalized frame. It generally contains two steps: AAM building and AAM fitting.
AAM can be used in many applications such as hand tracking, face recognition, fa-
cial expression analysis, etc. In this thesis, we take face as an example to illustrate
the working process of AAM.

The AAM is constructed based on a training set of labeled images, where land-
mark points are marked on each example face at pre-defined key positions to outline
the mean features (shown in Fig.2.16). To ensure the precise location of landmarks,
manual labeling is required in the current model building scheme.

The shape of a face is represented by a vector consisting of the positions of the
landmarks, S = (21, Y1, 2, Y2, .., Tn, Yn)_ , where (z;,y;) denotes the coordinates of
the j** landmark points in the 2D facial image. All the shape vectors of the faces
in the training set are normalized to a common coordinate system. PCA is applied

32



Chapter 2. Literature Review: From 2D to 3D

Figure 2.16: A labeled training facial image gives a shape free patch and a set of
points [Cootes et al. 2001].

to this set of shape vectors to construct the face shape model as:

S =S+ PsBg (2.20)

where S is a shape vector; S is the mean shape; Pg is a set of orthogonal modes of
shape variation; and Bg is a set of parameters of the shape model.

To construct the appearance model, example faces in the training set are warped
to make the manually labeled control points match the mean shape. The warped
region of the face image covered by the mean shape is sampled to extract the gray
level intensity (texture) information. Similar to the way to build the shape model, a
vector representation is generated, G = (I, Is, ..., I,)T, where I; denotes the inten-
sity of the sampled pixel in the warped image. PCA is also exploited to construct a
linear model:

G =G+ PsBg (2.21)

where G is a texture vector; G is the mean texture; Py is a set of orthogonal modes
of gray-level variation; and B¢ is a set of parameters of the gray-level model.

Thus, the shape and texture information of any training face can be summarized
by the parameter vectors Bg and B¢, denoted as follows:

() () e

where Wy is a diagonal matrix of weights for each shape parameter, as a normal-
ization factor, allowing for the difference in units between the shape and gray scale
models. PCA is applied to vectors B, giving a further model:

B=QC (2.23)

where @) is the eigenvector matrix, and C' is a vector of appearance parameters
controlling both the shape and gray levels of the model. By the nature of its con-
struction, C' has a zero mean across the training set. Figure 2.17 shows the first
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Figure 2.17: Four modes of combined shape and texture model (parameters varied
by £20 from the mean) [Li & Jain 2005].

four modes of a combined-appearance model built from 400 facial images of 100
individuals, and the model represents about 20,000 pixels. The modes combine the
variation due to lighting, viewpoint, identity, and expression.

Given a test image and the face model generated in the previous step, the metric
utilized to measure the match quality between the model and the image is A = ]5]]2,
where 07 is the vector of intensity differences between the give facial image and the
synthesized image generated by the model tuned by the model parameters, called
the residual. The AAM fitting process seeks the optimal set of model parameters
that best describes the given image. Cootes et al. [Cootes et al. 1998] observed that
displacing each model parameter from the correct value induces a particular pattern
in the residual. In the training phase, AAM learns a linear model which captures
the relationship between parameter displacements and the corresponding residual.
During the fitting process, it measures the residual and uses this model to correct
the values of current parameters, leading to a better fitting result. After that many
attempts were made to improve the performance of AAM [Matthews & Baker 2004]
or overcome its limitation, i.e. sensitive to occlusions [Gross et al. 2006]. See Fig.
2.18 for an iterative AAM fitting process.

Given a facial image, its corresponding model parameter, C, can be estimated,
which best match it with the model (those that synthesize a face as similar as pos-
sible to the target face). If the model is sufficiently complex, the parameters should
summarize almost all the needed important information to describe the face and
can thus be used for face interpretation. In particular, it is possible to adopt the
parameters for face verification or identification. By comparing the vectors repre-
senting two images, ¢; and ¢y, we can measure how similar they are. Experiments
[Kang et al. 2002] suggest that an effective measure of difference is the normalized
dot product as defined in eq. 2.24. The value of zero indicates a perfect match.
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After 3 it.s

Figure 2.18: An example of AAM fitting iterations [Li & Jain 2005].

This method outperforms other simple metrics such as Euclidean distance or the
dot product without normalization [Kang et al. 2002|. Meanwhile, LDA can also be
exploited to construct the discriminant subspace using the model parameter for face
recognition.

C1 2

d=1- 1.2
lex|  |eal

(2.24)

2.1.4 Discussion

In this section, several representative algorithms belonging two main categories, i.e.
holistic techniques as well as local feature based ones in intensity image based face
recognition have been reviewed. Comparing these two categories, holistic methods
tend to be less sensitive to noise, however, the local feature based approaches have
shown their promising performance in recent years. It has been proved by Heisele
et al. |Heisele et al. 2003] that the component-based face recognition approaches
(local feature-based) perform better than global ones (holistic). The main reason
is that holistic approaches always require facial images to be accurately normalized
with regard to the factors of pose, illumination condition and scale. In addition,
global features are also more sensitive to facial expression variations and occlusions.
According to its theoretical nature, AAM can also be deemed as a special example
of holistic techniques, and it thus possesses both their advantages and drawbacks
in face recognition. Because local feature-based techniques extract features from
local points or patches, there generally remain some invariant features even in the
presence of facial expression variations or occlusions, and recognition can still be
done by matching these invariant features. Therefore, local feature-based methods
are potentially more robust than the holistic ones to facial expression changes and
occlusions. Moreover, unlike the holistic approaches, they require fewer samples
for enrollment, and can even achieve an excellent accuracy only with a single facial
image registered in the gallery set [Tan et al. 2006]. There also exist several tasks,
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combining holistic techniques with local feature-based ones and aiming to fuse their
advantages, but at the same time they inherits their downsides from both types of
categories as well.

One would further raise the question which is the best local descriptor for face
recognition among LBP, SIFT and Gabor filters. Luo et al. [Luo et al. 2007] showed
that SIFT is not as robust as LBP to illumination effects on the FERET dataset.
Zou et al. [Zou et al. 2007a] compared Gabor wavelets and LBP using the same
database, and concluded that Gabor wavelets are more insensitive to illumination
changes because they detect amplitude-invariant spatial frequencies of gray values
of image pixels, while LBP is greatly affected by non-monotonic gray value transfor-
mations. Ruiz-del-Solar et al. |del Solar et al. 2009] evaluated these three methods
extensively not only on controlled datasets, e.g. FERET and FRGC, but also on
the UCH FaceHRI database designed for Human-Robot Interaction and the LEW
dataset captured in unconstrained environments. Concerning robustness to illu-
mination variations, their study illustrated that Gabor wavelets achieve the best
performance on the FERET database, LBP is not far behind; while SIFT is the
last, thus supporting the previous conclusions. On the UCH FaceHRI database, the
LBP approach gains the best results in all the specially-designed experiments with
indoor and outdoor lighting, expression, scaling, and rotation, followed by Gabor
wavelets and SIFT. On the LFW dataset, LBP and Gabor wavelets obtain a slightly
better result than each other with aligned face and non-aligned face respectively,
both of which surpassed that of SIFT. On the other hand, in their investigation
on computation cost, LBP operates much faster than Gabor wavelet and SIFT.
Based on the above facts, it is difficult to draw a general conclusion to rank them,
since their performance is decided by a number of complicated factors. Which one
should be selected for recognizing faces depends on the requirements of applications.
Finally, their possible combinations probably contribute more to this community.

2.2 Geometric Information based 3D Face Recognition

Recently, adopting 3D face data has emerged as a major alternative to deal with
the unsolved issues in 2D face recognition, i.e. lighting and pose variations, and
various approaches have been investigated within this field. Table 2.1 lists a com-
prehensive overview of only 3D shape based face recognition methods investigated
in the past twenty years. As demonstrated in Table 2.1, the early stage of devel-
opment in 3D face recognition started from 1989 and last until 2000. During that
period, there were only a few scientists and researchers who was dedicating in this
domain, leading to very limited amount of academic studies which used simple tech-
niques on small databases. The traditional algorithms originally proposed for 2D
face recognition (e.g. PCA, HMM [Achermann et al. 1997|, and Hausdorff Distance
[Achermann & Bunke 2000]) were explored, and 3D points, profiles or local areas
were also attempted for face matching. Meanwhile, we can notice that some features
such as Extended Gaussian Image (EGI), curvature, and point signature, specific in
3D face recognition, came into use. Since 2003, scientific interest has been increased
significantly, and the number of related papers in this topic remains over 10 every
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year till 2010. Especially in 2005, due to the workshop on FRGC in conjunction with
CVPR, this number reaches about 30. The databases exploited for technique evalu-
ation have been greatly enlarged as well. After 2003, more and more research organi-
zations begin to devote into this topic, and active ones include the biometrics group
at MSU (USA) [Lu et al. 2004a, Lu et al. 2004b, Lu & Jain 2005a, Lu & Jain 2006,
Lu & Jain 2008|; Bronstein brothers at Technion (Israel) [Bronstein et al. 2004b,
Bronstein et al. 2005, Bronstein et al. 2007]; Gang Pan together with co-workers at
Zhejiang University (China) [Pan et al. 2003c, Pan et al. 2003a, Pan et al. 2003b,
Pan et al. 2005, Wang et al. 2007b]; the NLPR at CAS-IA (China) [Xu et al. 2004,
Zhong et al. 2007, Huang et al. 2007, Zhong et al. 2008]; the CVRL at UND (USA)
[Bowyer ef al. 2006, Chang et al. 2005a, Chang et al. 2006, Faltemier et al. 2008a,
Faltemier et al. 2008b]; Ajmal Mian’s team at UWA (Australia) [Mian et al. 2005,
Mian et al. 2006a, Mian ef al. 2007, Mian et al. 2008]; and the CBL at UH (USA)
|Passalis et al. 2005, Passalis et al. 2007, Kakadiaris et al. 2007]; etc. More classic
algorithms renowned in 2D face recognition have been investigated for direct use to
recognize 3D faces, such as LDA [Gokberk et al. 2005], LBP [Li et al. 2005b] and
Gabor filters [Xu et al. 2009], and besides them, many methods have been designed
diversely to employ 3D face data. The taxonomy (holistic and local feature based)
previously exploited in 2D intensity image based face recognition can be expanded
to classify the techniques of 3D geometric information based recognition. Holistic
matching directly operates on 3D face data (range images, meshes or point-clouds)
to compute similarity scores, including Iterative Closest Point (ICP) based matching
[Lu et al. 2006], Hausdorff distance [Achermann & Bunke 2000] and so forth. While
local feature-based matching compares the local descriptive points, curves, or regions
of 3D facial scans in a certain feature space (coordinates, areas, distances, curva-
tures, shape index, as well as some more complex ones) and then combines them for
decision. This category has been widely explored in several tasks in the literature,
for instance, the point signature approach [Chua et al. 2000], 3D coordinate based
descriptive pose invariant features [Mian et al. 2008], the region ensemble method
[Faltemier et al. 2008a/, iso-geodesic strips [Berretti et al. 2010], etc. In this section,
we chronologically retrospect the techniques used in 3D face recognition, and then
discuss them according to the aforementioned taxonomy.

Table 2.1: A comprehensive overview of face recognition algo-
rithms solely using 3D shape information (Note: the dataset
column uses the format A:B, where A denotes the number
of individuals and B denotes the total number of 3D models.
The sign * means 3D model sequence).

Reference Dataset Key Feature Matching
[Cartoux et al. 1989] 5:18 Profile Minimum Dist.
[Lee & Milios 1990] 6:6 EGI Correlation
[Gordon 1991] 8:24 Depth & Curvature NN
[Gordon 1992] 8:24 Depth & Curvature NN

[G. G. Gordon 1992] 8:24 Depth & Curvature NN
[Nagamine et al. 1992] 16:160 Multiple profile NN
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[Tanaka & Tkeda 1996] 37:37 EGI Corr.
[Achermann et al. 1997] 24:240 Range Image PCA & HMM
[Tanaka et al. 1998] 37:37 EGI Correlation
[Achermann & Bunke 2000] 24:240 Point Coordinate Hausdorff Dist.
[Chua et al. 2000] 6:24 Rigid region Point Signature
[Beumier & Acheroy 2000] 30:180 Curvature of Profile Minimum Dist.
[Hesher et al. 2003] 37:222 Range Image PCA
[Lee et al. 2003] 35:70  Re-sampled Local Area NN
[Medioni & Waupotitsch 2003] 100:700 Point Coordinate ICP
[Moreno et al. 2003] 60:420  Region Shape Fea. Set NN
[Pan et al. 2003c] 30:360 Point Coordinate Hausdorff Dist.
[Pan et al. 2003a] 30:180 Profile Hausdorff Dist.
[Pan et al. 2003b] 30:180 Profile & Depth Map Weighted Hausdorff
[Wu et al. 2003] 30:180 Profile Partial Hausdorff
[Bronstein et al. 2004b] 7- Point Coordinate Geodesic Dist.
[Lee & Shim 2004] 42:84 Curvature Weighted Hausdorff
[Lu et al. 2004a] 10:73 Point Coordinate ICP
[Lu et al. 2004b] 18:131 Point Coordinate ICp
[Russ et al. 2004] 200:468 Range Image Hausdorff Dist.
[Xu et al. 2004] 120:720 Gaussian-Hermite Minimum Dis.
[Wu et al. 2004] 6:31 Local Shape Map Correlation
[Heseltine et al. 2004b)] 100:330  Curva. & Grad. Map PCA
[Heseltine et al. 2004al] 280:1770  Curva. & Grad. Map LDA
[Irfanoglu et al. 2004] 30:90 Coordinate with TPS Point Set Dist.
[Bronstein et al. 2005] 30:220 Geodesic Distance Minimum Dist.
[Chang et al. 2005a] 466:4007 Multi-Region ICP
[Chang et al. 2005b] 355:3205 Local Region ICP
[Gokberk et al. 2005] 106:579  Multiple Shape Feature Multi-Classifier
[Lee et al. 2005] 100:200  Curve, Dis., Angle etc DP & SVM
[Lu & Jain 2005a] 100:296  Coordinate with TPS ICP
[Pan et al. 2005] 276:943  Conformal Depth Map PCA
[Passalis et al. 2005] 466:4007 AFM & Wavelet Coe. Minimum Dis.
[Russ et al. 2005] 200:398 Range Image Hausdorff Dist.
[Abate et al. 2005] 133:- Normal Map Difference Hist.
[Koudelka et al. 2005] 276:943 Curve and Region Hausdorff Dist.
[Li et al. 2005a] 80:160 Profile and Contour Mahalanobis Dist.
[Mian et al. 2005] 277:519 Dis & Angle Tensor Correlation
[Moreno et al. 2005] 60:420 Geometric Attribute PCA & SVM
[Samir et al. 2005] 12:144 MS. Reeb Graph Graph Matching
[Uchida et al. 2005] 18:72 Point Coordinate ICcp
[Sun & Yin 2005] 25:72  GA Selected Curvature Correlation
[Abate et al. 2006b] 120:1200 Normal & Fourier Coe. Minimum Dist.
[Ben Amor et al. 2006a] 50:450 Rigid Region Region ICP
[Ben Amor et al. 2006b] 50:450 Point Coordinate ICpP
[Antini et al. 2006] 61:427 Wrinkle Curve Graph Matching
[Chang et al. 2006] 449:4000 Nose Point Coordinate ICp
[Feng et al. 20006] 35:175 Curve Jensen-Shannon Diverge.
[Levine & Rajwade 2006] 277:953 Point Coordinate SVM-ICP
[Lin et al. 2006] 276:943 Curve NN
[Lu & Jain 2006] 50:150  Deformation Synthesis ICp
[Samir et al. 2006] 162:740 Level Curve Union Differential Geodesic
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Table 2.1

[Wang et al. 2006] 40:360 Point Coordinate
[Zhang et al. 2006] 166:382 Profile Curvature
[Huang et al. 2006] 466:4007  Multi. Feature Fusion
[Cook et al. 2006a] 466:4007 Log-Gabor
[Bronstein et al. 2007] 4:104 Geodesic Distance

[Cook et al. 2007] 466:4007 Weighted Range Patch

[Gupta et al. 2007a] 466:4007 Geodesic Dist.
[Gupta et al. 2007b] 12:360 Complex Wavelet
[Hwang et al. 2007] 97:970 Range Image

[Passalis et al. 2007]
[Kakadiaris et al. 2007]

466:4007 Wavelet on Depth Map
466:4007 Geometry & Normal Map

[Li & Zhang 2007] 90:480 Geometric Attribute
[Wang et al. 2007h] 353:1891 Deformable Model
[Wang et al. 2007a] 10:100 Conformal Map
[Wei et al. 2007] 100:600%  GA selected Curvature
[Zhong et al. 2007] 466:4007  Learned Gabor Filter
[Zou et al. 2007D)] 113:650 Warping Coe.
[Mahoor & Abdel-Mottaleb 2007] 61:183 Rigid Line

[Lin et al. 2007] 466:4007 Patch based Curve
[Faltemier et al. 2007] 888:13450  Multiple Enrollment
[Huang et al. 2007] 466:4007 Depth Difference

[McCool et al. 2008]
[Guan & Zhang 2008]
[Berretti et al. 2008]
[Alyuz et al. 2008]

557:4950 2D-DCT of Depth Block
61:427 Angle & Region Map
61:427 Iso-Geodesic Stripes
47:1507 Curvature & Depth Map

[Faltemier et al. 2008a] 466:4007 Region Ensemble
[Amberg et al. 2008] 277:953 3D Morphable Model
[Castellani et al. 2008] 80:240 Depth Local Region
[Jahanbin et al. 2008] 119:1196 Iso-Dep. & Geo. Curve

[Wang et al. 2008] 466:4007 Local Shape Difference

[Zhong et al. 2008] 434:1357  Local Log-Gabor Hist.
[Lu & Jain 2008] 100:977  Deformation Synthesis
[Llonch et al. 2008] 277:953 Spherical Coe.
[Queirolo et al. 2008] 466:4007 Multi-Region
[Faltemier et al. 2008b] 888:13450  Multiple Enrollment
[Mayo & Zhang 2009] 61:549  Multi-View Depth Map

[Daniyal et al. 2009] 100:2500  Inter-Landmark Dist.
[Li et al. 2009] 120:600 Geometric Attribute
[Al-Osaimi et al. 2009] 466:4007 Expression Deformation

Iso-Geodesic Dist.
Point Coordinate
Rigid Line

[Smeets et al. 2009] 100:900
[Ouji et al. 2009] 50:300
[Mahoor & Abdel-Mottaleb 2009] 466:4007

[Drira et al. 2010] 61:549 Elastic Radial Curve
[Llonch et al. 2010] 277:953 Spherical Coe.
[Queirolo et al. 2010] 466:4007 Multi-Region
[Berretti et al. 2010] 466:4007  Iso-Geodesic Stripes
[Wang et al. 2010] 466:4007 Local Shape Difference
[Maes et al. 2010] 105:4666 Mesh-SIFT
[McCool et al. 2010] 557:4950 2D-DCT of Depth Block
[Alyuz et al. 2010] 466:4007 Multi-Region Curvature

Partial ICP
Minimum Dist.
Minimum Dist.

Mahalinobis Cosine Dist.
Spherical Embedding
PCA
LDA
Stru. Similarity Metric
PCA
Minimum Distance
CW-SSIM
NN
ICP
Correlation
Correlation
NN
Mahalanobis Dist.
Hausdorff Dist.
Weighted LDA
ICP
Hist. Proportion
GMM
NN
Graph Matching
AFM-based Region ICP
ICP
Non-rigid ICP Fitting
HMM
NN & SVM
Boosting
NN
ICP
PCA & LDA
SA-based SIM
ICP
SIFT Matching Voting
LDA
Sparse Representation
PCA
Mahalanobis Dist.
Geodesic ICP
Hausdorff Dist. & ICP
Geodesic Deformation
LDA
SA-based SIM
Graph Matching
Boosting
Minimum Matched Points

HMM
LDA
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2.2.1 Holistic Matching

Similar to the 2D intensity image based holistic approaches which exploit the entire
2D facial image as system input, 3D geometric information based holistic matching
works directly on the whole range image, mesh or point-cloud of the face to calculate
similarity measurement.

(1) Subspace (PCA and LDA)

The subspace based methods are generally applied to facial range images. See the
last section for more of technical details. Achermann et al. [Achermann et al. 1997|
apply the eigenface approach to 3D face recognition. They present the results for a
dataset of 24 subjects each of which has 10 images, and report 100% recognition rate.
Later, Hesher et al. [Hesher et al. 2003] explore PCA using different numbers of
eigenvectors and image sizes. The image data used has 6 different facial expressions
for each of 37 persons. The performance results from using multiple facial images
per person in the gallery set, which effectively gives the probe image more chances
to make a correct match, and is known to raise the recognition accuracy relative to
having a single gallery sample per person. Heseltine et al. [Heseltine et al. 2004b]
evaluate the eigenface approach with different distances as similarity measurement
for face verification on a larger database containing 330 facial range images from
100 individuals and conclude that the lowest Equal Error Rate (EER) of 17.8%
is achieved by Mahalanobis distance, better than Euclidean and Cosine distances.
They [Heseltine et al. 2004a] further enlarge the test set to 1470 range images of 230
individuals and exploit LDA in the same framework, claiming that LDA performs
better than PCA, and with Cosine distance, LDA obtains the lowest EER of 15.3%.

(2) Iterative Closest Point (ICP)

The ICP [Besl & McKay 1992] algorithm iteratively attempts to align two 3D
surfaces represented as point-clouds or meshes. To accomplish this task, ICP first
finds the closest point in the reference surface for each of the n points in the probe
one. When implemented with a k-d tree [Bentley 1975] data structure, nearest
neighbor searches can each be completed in O(log(n)) time. Beginning with a
starting estimate, the algorithm calculates a sequence of rigid transformations T;
until there is no additional improvement in mean square distance between the two
shapes. Specifically, given two point-clouds or meshes, the reference surface M 2
{ml}f\;"{ with N,, points and the query surface P = {pi}?ﬁ’l with N, points, the
transformation of the query shape to the reference one is assumed to be linear with
a rotation matrix R and translation vector t. The goal of the ICP algorithm is to
find the transformation parameters, for which the error between the transformed
query shape points and the closest points of the reference shape achieves minimal.
This characteristic is described by eq. 2.25

Np
Ritje{1,2,...Nm} ; | B2 il (2.25)
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Figure 2.19: An ICP based coarse to fine registration process of 3D facial surfaces
[Lu et al. 2006].

If the initial position is not good enough, ICP probably finds a local minima
that corresponds to an improper registration. For this reason, the probe and gallery
centroids of 3D facial surfaces are frequently aligned before ICP is performed to
ensure an accurate final registration estimate.

ICP is widely utilized for face registration and matching in 3D face recognition.
Medioni and Waupotitsch [Medioni & Waupotitsch 2003] perform 3D face recogni-
tion by using ICP to match facial surfaces. Whereas most of the works covered here
use 3D shapes acquired through an active (structured-light) sensor, this work uses
3D shapes acquired by a passive stereo sensor. The database contains 100 subjects,
each of which possesses 7 images sampling different poses. An EER of "better than
2%" is reported. Lu et al. [Lu et al. 2004b| present the results of face recognition
based on an ICP-based approach. This approach assumes that the gallery face is a
more complete 3D facial surface and the probe face is a frontal view that is likely
a subset of the gallery face. In the experiments with models from 18 persons and
multiple probe ones per person, incorporating some variation in pose and expression,
a recognition rate of 97% is achieved. Wang et al. [Wang et al. 2006] modify ICP
as Partial ICP, which selects a part of nearest point pairs to calculate dissimilarity
measure during registration of facial surfaces, to reduce the negative effects caused
by facial expression changes. The experiments on a dataset of 360 face models from
40 individuals show that the modified Partial ICP surpasses the original ICP. Be-
sides used to compute similarity measurements, in most of the recent works, ICP is
extensively introduced as a key step in preprocessing to correct 3D pose variations
as in [Kakadiaris et al. 2007], [Li et al. 2009], etc. Figure 2.19 depicts an ICP based
coarse to fine alignment process of 3D facial surfaces.

(3) Hausdorff Distance

The Hausdorff distance is a measure for the similarity of two sets of points
[Huttenlocher et al. 1993]. Tt is very general and may be applied to a wide variety
of problems.
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The (undirected) Hausdorff distance between two sets of points, A and B, is
defined as

H(A, B) = max(h(A, B), h(B, A)) (2.26)

where h(A, B) denotes the directed Hausdorff distance,

h(A, B) = maxmin ||a — b|| (2.27)
a€A beB
and ||z|| is a norm. Usually, the well known Euclidean distance is utilized here.
The partial Hausdorfl distance is defined as

Hrr (A, B) = max(hr(A, B), hi(B, A)) (2.28)

where the directed partial Hausdorff distance is

hi(A, B) = Lyeamin o — b (2:29)

We notice that h(A, B) is small, if every point in A is near some point in B.
The same holds true for h(B, A). Moreover, H(A, B) = H(B, A) is small, if both
h(A, B) and h(B, A) are small. In the partial Hausdorff distance, only the L and K
best ranked points in sets A and B are taken into regard, respectively. Thus, it is
possible to ignore outliers and handle cases where only part of the data fits a given
model, or part of a model fits a given set of data points.

The Hausdorff distance was originally used for sets of points in the 2D plane
[Huttenlocher et al. 1993]. However, eq. 2.26 to 2.29 can be applied to points in 3D
space as well, and it is necessary to preregister the two sets under comparison, i.e.,
to find a translation and rotation that optimally aligns the two data sets.

Achermann and Bunke [Achermann & Bunke 2000] make use of an extension of
Hausdorff distance based matching for 3D face recognition. They report on exper-
iments using 240 range images, 10 images of each of 24 persons, and achieve 100%
recognition for some instances of the algorithm. Pan et al. [Pan et al. 2003¢| com-
pare a Hausdorff distance approach and a PCA-based one in 3D face recognition. In
experiments with images from the 3D _RMA database they report an EER in the
range of 3% to 5% for the Hausdorff distance approach lower than that in the range
of 5% to 7% for the PCA-based approach. Lee and Shim [Lee & Shim 2004| propose
a "depth-weighted Hausdorff distance" to calculate the similarity score which is then
fused with surface curvature information (the minimum, maximum, and Gaussian
curvature) for 3D face recognition. They present the results of experiments with a
dataset representing 42 persons, with two images for each person. A rank-one recog-
nition rate is up to 98% for the best combination method investigated, whereas the
plain Hausdorff distance achieves less than 90%. Russ et al. [Russ et al. 2004] also
explore the Hausdorff matching on facial range images. In a verification experiment,
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Figure 2.20: The deformation synthesis and transfer based 3D face recognition
|[Lu & Jain 2008].

200 persons are enrolled in the gallery, and the same 200 persons plus another 68
imposters are represented as probes. A probability of correct verification as high as
98% (of the 200) is achieved at a false alarm rate of 0 (of the 68). In a recognition
experiment, 30 persons are enrolled as gallery samples and the same 30 persons
imaged at a later time are used in the probe set. A 50% probability of recognition is
achieved. The recognition experiment uses a subset of the available data "because
of the computational cost of the current algorithm" [Russ et al. 2004].

(4) Deformable Model

Human faces are non-rigid, and facial expression variations can dramatically de-
form facial surfaces, which is quite challenging to holistic face matching mentioned
above, i.e. Subspace, ICP as well as Hausdorfl. Deformable model is proposed to be
incorporated in holistic matching, aiming to better describe the non-rigid transfor-
mations of faces. Based on a training step using representative facial samples, the
deformable model can be used for:

e learning the deformation quantity between various facial expressions and thus
indicating whether it belongs to intra-class variations;

e learning the transformations between different facial expressions to enlarge
the gallery set with more expressive face models or to convert an expressive probe
face to a neutral one for recognition.

Lu and Jain [Lu & Jain 2005a] extend their previous work using an ICP based
recognition approach [Lu et al. 2004b] to deal explicitly with variation in facial ex-
pression. The problem is solved as a rigid transformation of probe to gallery, done
with ICP, along with a non-rigid deformation, done using Thin-Plate Spline (TPS)
techniques. The proposed approach is evaluated using a 100-person dataset, with
neutral-expression and smiling probes, matched to neutral-expression gallery im-
ages. The gallery entries are whole-head data structures, whereas all the probes are
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frontal views. Most errors after the rigid transformation result from smiling probes,
and these errors are reduced substantially after the non-rigid deformation stage.
For the total 196 probes (98 neutral and 98 smiling), the rank-one recognition rate
reaches 89%. Lu and Jain [Lu & Jain 2006, Lu & Jain 2008| also propose another
3D face recognition method which is robust to facial expression variations. Based
on the information learned using the control group, to each subject, the approach
can generate different expressive face models from the neutral one in the gallery set.
A user-specific 3D deformable model is then built for each subject in the gallery
with respect to the control group by combining the templates with synthesized de-
formations. By fitting this generative deformable model to a test facial scan, face
recognition can be achieved. Figure 2.20 gives an illustration of the entire frame-
work. A small control group consisting of 10 subjects, each with seven expressions
(neutral, happy, angry, smile, surprise, deflated, and inflated), is collected from the
MSU dataset. While the test set contains 877 scans of 100 individuals selected from
FRGC v2.0, and the experimental results show that the proposed approach is able
to handle expressions changes to some extent. Wei et al. [Wei et al. 2007] investi-
gate to adopt 3D model sequences for identification. They conduct a fine adaptation
procedure [Yin et al. 2006a] in order to deform the tracking model into a non-rigid
facial surface area, which is realized using the energy minimization method based
on the dissimilarity (error function) between the tracking model and the face scan.
As a result, the 3D motion trajectories are estimated by vectors from the tracked
points of the current frame to the corresponding points of the first frame with a
neutral expression. The mean of the features of all deformed frames within one
sequence is used as final representation for classification. This method is evaluated
on 600 3D model sequences of 100 persons, the achieved accuracy is 90.7%. Wang et
al. [Wang et al. 2007b| introduce a guidance-based constraint deformation model to
cope with the shape distortion by expression. The basic idea is that, the face model
with non-neutral expression is deformed toward its neutral one under certain con-
straint so that the distortion is reduced while inter-class discriminative information
is preserved. This model exploits the neutral 3D face shape to guide the deformation,
meanwhile brings in a rigid constraint on it. Both the steps are smoothly unified
in the Poisson equation framework. The experimental results, calculated from an
expressive subset of FRGC v2.0, demonstrate that this method outperforms ICP,
and an EER of 6.2% is reported. Zou et al. [Zou et al. 2007b] employ a number
of selected range images as example faces, and another range image is chosen as a
"generic face". The generic face is then warped to match each of the example faces
in the least mean square sense. Each warp is specified by a vector of displacement
values. For feature extraction, when a target face image comes in, the generic face
is warped to match it. The geometric transformation used in the warping is a linear
combination of the example face warping vectors. The coefficients in the linear com-
bination are adjusted to minimize the root mean square error, which are further used
as facial features and fed to a Mahalanobis distance based classifier. The authors
claim that this method is insensitive to holes, facial expression, and hair. Amberg
et al. [Amberg el al. 2008] describe an expression-invariant method for face recog-
nition by fitting an identity/expression separated 3D Morphable Model (3DMM)
[Blanz & Vetter 1999] to probe facial surface. The fitting is performed with a ro-
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Figure 2.21: Examples of landmark fitting results on faces with different expressions
[Daniyal et al. 2009)].

bust non-rigid ICP algorithm [Amberg et al. 2007]. The experiments carried out on
the Gavab and UND datasets illustrate that the proposed expression based 3DMM
helps improve the ICP based face recognition approach in terms of the accuracy. Al-
Osaimi et al. [Al-Osaimi et al. 2009] learn the patterns of expression deformations
from training data in PCA eigenvectors, and these patterns are then used to morph
out the expression deformations. PCA is performed in such a way it models only
the facial expressions leaving out the interpersonal disparities. Similarity measures
are extracted by matching the morphed 3D faces. The approach is applied on the
FRGC v2.0 dataset and achieves the verification rates of 98.35% and 97.73% at
0.001 FAR for scans under neutral and non-neutral expressions, respectively.

2.2.2 Local Feature based Matching

The techniques of local feature based matching concentrate on local descriptive
points, curves, or regions of 3D facial scans and compare them in a certain feature
space (e.g. original coordinates, areas, distances, angles, curvatures, and even more
complex ones) for final decision. This approach has been extensively investigated in
3D face recognition, since it generally achieves better results than holistic matching
does. In this subsection, according to the utilized feature, we categorize local feature
based matching into five classes: i.e. point based, curve based, region based, general
descriptor based as well as multiple shape feature fusion based.

(1) Point based Methods

Point based local matching extracts distinctive information from a set of original
points for matching, such as the original coordinate, the distance of an edge between
two points, the area of a region composed of several points, the angle between two
edges, or more complicated descriptors.

Wu et al. [Wu et al. 2004] propose Local Shape Map (LSM) to describe a point
on the facial surface, and it is represented as a 2D histogram constructed from map-
ping 3D coordinates of surface’s points within a sphere centralized at this point into
a 2D space. The correlation coefficient is utilized as similarity metric to compare the
LSM of every two points, and all the results are then incorporated into an ad-hoc
voting method for classification. This method does not require to register two facial
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surfaces. With a database of 31 facial range images from 6 subjects, the EER of
2.98% is obtained, and it also proves that LSM outperforms spin image in 3D face
recognition tasks. Mian et al. [Mian et al. 2005] define the vertex pair according to
a distance and angle constraint, and each valid pair is used to construct a third order
tensor, which records the surface area of the face crossing each bin of the given cubic
grid. The gallery is built by representing each facial image with multiple tensors,
while in recognition, tensors are computed from the probe and then utilized to cast
votes to the tensors in the gallery set. A similarity measurement is further calcu-
lated between each probe tensor and with only those gallery tensors which receive
votes above a certain threshold. The top 10 faces with the highest similarities are
registered to the probe face by aligning their matching pair of tensors, and this reg-
istration is refined with ICP to finally compute the similarity measurement. They
report a rank one recognition rate of 86.4% on the UND dataset comprising 953
probe and gallery faces of 277 subjects. Gupta et al. |[Gupta et al. 2007a] manually
labeled 25 anthropometric fiducial points and calculate the Euclidean as well as
geodesic distance as facial features, which are then fed into LDA for final decision.
The experiments are carried out on a dataset made up of 1128 range images from 105
subjects, showing that geodesic based result (1.3% EER) is better than Euclidean
based one (1.6% EER). The accuracies using arbitrary regularly spaced facial points
illustrate that incorporating domain specific knowledge about the structural diver-
sity of human faces significantly improves the performance of 3D face recognition.
Castellani et al. [Castellani et al. 2008| introduce a generative learning method by
adapting HMM to work on 3D meshes. The geometry of local area around face fidu-
cial points is modeled by training HMMSs providing a robust pose invariant point
signature. Such description allows the matching by comparing the signature of cor-
responding points in a maximum-likelihood principle. The matching information of
corresponding points are finally imported in a voting method to give the classifica-
tion result. According to the preliminary performance on a small subset of FRGC
v2.0, the authors claim that the proposed approach is robust to facial expression
variations and works faster than the current ICP based 3D face recognition systems
by maintaining a satisfactory recognition rate. Daniyal et al. [Daniyal el al. 2009]
train a Point Distribution Model (PDM) using manual landmarks on 100 sample
models, and automatically locate corresponding points on testing facial surfaces.
All the Euclidean distances between every two points are exploited as features and
classified by LDA for 3D recognition. The proposed approach is evaluated on the
BU-3DFE database and achieves 96.5% recognition rate. Figure 2.21 gives an ex-
ample of automatic landmarking results. Mayo et al. [Mayo & Zhang 2009| rotate
each 3D point-cloud to represent a face around the x, y or z axes, iteratively and
to project the 3D points onto multiple facial range images at each step of the ro-
tation. Labelled keypoints are then extracted from the resulting collection of range
images to describe the original facial scan and its projections in the face database.
Unknown test faces are recognized by performing the same multiview keypoint ex-
traction technique as well as weighted keypoint matching algorithm. Evaluated on
the entire GavabDB database, the approach achieves up to 95% recognition rate for
faces with a neutral expression only, and over 90% accuracy when expressions and
random gestures appear. Maes et al. [Maes et al. 2010] extend the SIFT algorithm
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(a) (b)

Figure 2.22: (a) Level curves of depth function for several levels; (b) Angle functions,
observed (marked) and fitted (solid) for a level curve, and the corresponding curves
on the facial range image [Samir et al. 2006].

to 3D mesh, namely mesh-SIFT. Unlike the gradient information extracted by the
original SIFT operator, mesh-SIFT encodes the local histogram of shape index val-
ues. Tested on the whole Bosphorus dataset, it achieves a rank-one recognition rate
of 93.7%.

(2) Curve based Methods

Curve based local matching compares corresponding curves from different 3D
facial surfaces or computes similarity measurements using more robust features ex-
tracted from them.

Cartoux et al. [Cartoux et al. 1989] solve the problem of 3D face recognition by
segmenting a facial range image based on principal curvature and finding a plane of
bilateral symmetry through the face, which is used to correct pose variations. They
consider approaches of matching the profile from the symmetry plane as well as of
matching the facial surface, and report 100% recognition rate for either on a quite
small dataset. Nagamine et al. [Nagamine et al. 1992] approach 3D face recognition
by locating five feature points and using them to standardize face pose, matching is
then operated based on various curves or profiles along the face data. Experiments
are performed for 16 persons, with 10 images per person. The best recognition rates
are achieved using vertical profile curves that pass through the central portion of
the face. Wu et al. [Wu et al. 2003] introduce the method [Pan et al. 2003b] to ex-
tract the symmetry profile using along with two horizontal ones across forehead and
nose respectively. The partial Hausdorff distance is employed to align and compare
profiles. For each individual, a statistical model of facial surface is built to repre-
sent the distinct discriminative capability of the different parts in the facial surface,
which is then incorporated into a weighted distance function to measure similarity of
surfaces. An EER in the range of 1% to 5% is reported on the 3D RMA database.
Li et al. [Li et al. 2005a] recognize 3D face models based on the characterization of
their contours and profiles. Experiments show that the central vertical profile and
the contour are both very useful features for face recognition. When combined, bet-
ter recognition rates can be obtained than just using any of them alone, meanwhile
the performance of this method is better than that of PCA using a database of 80
subjects. Antini et al. [Antini et al. 2006] encode basic traits of a face by extracting
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curves of salient ridges and ravines from the surface of a dense mesh. A compact
graph representation is then constructed by these curves through an original model-
ing technique capable to quantitatively measure spatial relationships between curves
in a 3D space for face matching. Experimental results on the Gavab database show
that the proposed solution attains high recognition accuracy (91%) on neutral probes
relative to the ones with expression and pose changes. Feng et al. [Feng et al. 2006]
extract affine integral invariant from a set of manual landmark based facial curve,
and a small subset is chosen for pose robust facial representation. The recognition
procedure is based on the Discriminant Analysis and Jensen-Shannon Divergence
analysis. Substantiating examples are provided with an achieved classification ac-
curacy of 92.57% on a database of 175 facial range images from 35 individuals.
Similarly, Lin et al. [Lin et al. 2006] exploit summation invariant generated from a
number of curves for 3D face recognition, and report a verification rate of 97.2%
with a 0.1% FAR on the FRGC v1.0 database. Samir et al. [Samir et al. 2006]
represent facial surfaces by unions of level curves, called facial curves of the depth
function (Fig. 2.22), which are further employed to compare shapes of surfaces us-
ing a differential geometric approach that computes geodesic lengths between closed
curves on a shape manifold. With multiple gallery faces, a nearest-neighbor classifier
achieves accuracies of 92% and 90.4% on the FSU and UND datasets respectively.
Zhang et al. |Zhang et al. 2006] make use of 3D face models and their mirrors to
extract central symmetry profiles, and based on the curvature values of the profiles,
three essential points are located on each facial surface. These three essential points
uniquely determine a Face Intrinsic Coordinate System (FICS), which is utilized
to align different faces. The symmetry profile, together with two transverse pro-
files, composes a compact representation for face matching. The proposed method
is tested on 382 face surfaces, coming from 166 individuals, and the EER values of
face authentication for neutral and expressive scans are 0.8% and 10.8% respectively.
Mahoor et al. [Mahoor & Abdel-Mottaleb 2007] introduce the principal curvature,
kmax, to represent the face image as a 3D binary image called ridge image. The ridge
image shows the locations of the ridge lines around the important facial regions on
the face (i.e. the eyes, the nose, and the mouth). Hausdorff distance is then used to
match the ridge image of a given probe to the created ridge images of the subjects in
the gallery. Experiments on the Gavab dataset consisting of 61 subjects resulted in
93.5% ranked one recognition rate for a neutral expression and 82.0% for the faces
with a smile expression. Berretti et al. [Berretti et al. 2008, Berretti ef al. 2010]
capture face shape information by iso-geodesic stripes. This information is encoded
in an attributed relational graph. The similarity between two faces are computed by
matching their graphs. The experiments on the Gavab dataset illustrate that this
approach performs better than ICP [Berretti et al. 2008], and comprehensive results
on the SHREC and FRGC 2.0 datasets are further given in [Berretti et al. 2010].
Jahanbin et al. [Jahanbin et al. 2008] describe 3D facial surfaces by iso-depth and
iso-geodesic curves. The former is produced by intersecting a facial surface with
parallel planes perpendicular to the direction of gaze, at different depths from the
nose tip. The latter is defined to be the locus of all points on the facial surface with
the same geodesic distance from a given facial landmark. Once the facial curves
are extracted, their characteristics are encoded by several features like simple shape

48



Chapter 2. Literature Review: From 2D to 3D

(a) Radial curves matching

Nose tip

Upper lip

Lower lip

Face with opened mouth

Face with closed mouth

(b) Geodesic between curves

Figure 2.23: Matching and geodesic deforming radial curves |Drira ef al. 2010].

descriptors (convexity, ratio of principal axes, compactness, circular variance and
elliptic variance) or polar Euclidean distances from the origin. The final step is to
verify or disapprove requests from users claiming the identity of registered individu-
als (gallery members) by comparing their features using Euclidean distance classifier
or SVM. The experiments on a dataset containing 1196 models of 119 subjects prove
that the performance of iso-geodesic is much better than that of iso-depth. Drira et
al. |Drira et al. 2010] explore elastic radial curves to model 3D facial deformations
caused by facial expression variations. They describe 3D facial surfaces by indexed
collections of radial curves on them, emanating from the nose tips, and compare the
facial shapes by measuring their corresponding curves. Geodesic distances between
corresponding elastic curves are adopted as similarity measurements to compare fa-
cial surfaces. This technique achieves a more than 90% overall recognition rate on
the complete Gavab dataset. Figure 2.23 demonstrates the matching and geodesic
deforming process of radial curves.

(3) Region based Methods

The entire facial surface can be segmented into relative rigid and non-rigid parts.
Region based local matching directly discards non-rigid facial areas or reduce their
deformation effects by assigning lower weights. The selected facial regions are then
compared in a certain feature space for face recognition.

Lee and Milios [Lee & Milios 1990] claim that convex facial regions are asserted
to change shape less than other regions in response to variations in facial expres-
sion. This gives some ability to cope with changes in facial expression. As a result,
they segment convex regions in a range image based on the sign of the mean and
Gaussian curvatures, and create an extended Gaussian image (EGI) for each convex
region describing the shape by the distribution of surface normal over the facial sur-
face. A match between a region in a probe image and in a gallery image is done by
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correlating EGIs. Tanaka et al. |Tanaka et al. 1998] also perform curvature-based
segmentation to distinguish convex and concave parts and represent the face using
their EGI. Recognition is performed using a spherical correlation of the EGIs. Ex-
periments are evaluated with a set of 37 images, and 100% recognition is reported.
Chua et al. [Chua et al. 2000] propose point signatures to describe facial surfaces.
To deal with facial expression variations, only the approximately rigid portion of the
whole face from just below the nose up through the forehead is used in matching.
Point signatures are applied to locate reference points in order to standardize the
pose. Experiments are done using multiple facial images with different expressions
from 6 subjects, and 100% recognition is achieved. Lee et al. [Lee et al. 2003| per-
form a set of contour lines to divide facial range image into several areas, which are
further re-sampled and stored in consecutive location in feature vector. Euclidean
distance is applied for classification, reporting 94% correct recognition at rank-five
on 70 images from 35 individuals. Moreno et al. [Moreno et al. 2003| segment facial
regions based on Gaussian curvature where they then create a facial feature vector
including the information of angle, distance, area, and curvature. They obtain a
recognition rate of 78% on a subset composed of frontal face meshes of the Gavab
database. Chang et al. [Chang et al. 2005b, Chang et al. 2005a, Chang et al. 2006]
present a type of classifier ensemble approach in which multiple overlapping sub-
regions around the nose are independently matched using ICP, and the results of
the multiple 3D matches are finally combined. The experimental evaluation uses
essentially the FRGC v2.0 dataset, representing over 4000 images from over 400
persons. In a experiment in which one neutral-expression model is enrolled for each
person, and all subsequent are as probes, performance of 92% rank-one recognition
is reported. Ben Amor et al. [Ben Amor et al. 2006a| split the whole face into dif-
ferent regions according to their robustness to facial expression changes. Then, they
apply ICP to calculate recognition score by a region-based similarity metric which
takes into account labels of regions. The experiments prove that this scheme im-
proves the accuracy when recognizing expressive facial surfaces. [Cook et al. 2007]
assign learned weights to different patches of facial range images, and exploit PCA
to compute similarity measurement between corresponding patches for fusion. They
conclude that this strategy alleviates the performance issue related to facial expres-
sions. Zhong et al. [Zhong et al. 2007] propose novel learned visual codebook (LVC)
for 3D face recognition. They firstly extract intrinsic discriminative information em-
bedded in 3D faces by Gabor filters, and the generated Gabor maps are divided into
a certain number of blocks. K-means clustering is then adopted to learn the centers
from the filter response vectors, and LVC is built by these learned centers. The
mapping vector between each 3D probe face and LVC constructed by concatenat-
ing the corresponding histograms between each local patch and its corresponding
sub-codebook is finally fed into a nearest neighbor (NN) classifier. This approach
achieves the EER of 7.5% and 4.9% on the CASIA and FRGC v2.0 datasets re-
spectively. Faltemier et al. [Faltemier et al. 2008a] introduce a 3D face recognition
system based on the score level fusion of results from a committee of 28 small regions
that have been independently matched by ICP. It achieves a rank one recognition
of 97.2% and verification rates (Roc IIT) of 93.2% at a 0.1% false accept rate on
the FRGC v2.0 dataset. Queirolo et al. [Queirolo et al. 2010] utilize Simulated An-
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Figure 2.24: Landmark based facial segmentation [Alyuz et al. 2010].

nealing (SA)-based Surface Interpenetration Measure (SIM) to compute similarity
measurements between corresponding pre-defined facial surface regions(circular and
elliptical areas around the nose, forehead, and the entire face region), and combine
them for final decision. Comprehensive experiments are performed on the FRGC
v2.0 database, a verification rate (Roc III) of 96.5% percent at the FAR of 0.1% as
well as a rank-one accuracy of 98.4% are reported. Alyuz et al. [Alyuz et al. 2010]
cut the facial surface into different regions according to automatic landmarked points
(see Fig. 2.24), then from each region, curvature based features are extracted and
classified by LDA. It achieves a rank-one recognition rate of 97.5% and a verification
rate (Roc III) of 86.1 with a 0.1% FAR in the FRGC v2.0 database. Moreover, a
recognition accuracy of 98.2% is reported on the Bosphorus dataset. McCool et al.
[McCool et al. 2008| introduce an approach to 3D face verification which divides the
3D face into separate parts. This method, termed 3D free-parts, considers each part
of the face independently and consequently the spatial relationship is discarded for
the purpose of obtaining many observations from each face. The distribution of 2D-
DCT features of different blocks are modeled robustly using GMM. This approach
demonstrates a significant improvement over the eigenfaces approach, lowering the
false rejection rate (FRR) from 9.83% to 4.48% at a false acceptance rate of 0.1%,
in tests conducted on 3D face data from FRGC. McCool et al. [McCool et al. 2010]
further investigate HMM to replace GMM, and under the same framework, the EER
is reduced from 0.88% for the GMM technique to 0.36% for the best HMM approach.

(4) General Descriptor based Methods

To represent each vertex of a facial 3D point-cloud (mesh) or each pixel of a fa-
cial range image, general descriptor based methods locally extract shape attributes
within its neighborhood. The entire face can be described by a feature vector com-
bining the information of all vertices or pixels, and finally fed into classifiers.

Gupta et al. [Gupta et al. 2007b| propose to use complex wavelet structural sim-
ilarity metric (CW-SSIM) extracted from facial range images for 3D face recognition.
CWSSIM is computationally efficient and is robust to small geometrical distortions.

ol



Chapter 2. Literature Review: From 2D to 3D

Compared with Mean Squared Error (MSE) and Hausdorff distance, CW-SSIM
provides better performance on a dataset that contains 360 3D face models of 12
subjects. Huang et al. [Huang et al. 2007| present a 3D face recognition method
based on statistics of range image differences. Depth differences are computed from
a neighbor district instead of direct subtraction to avoid the impact of non-precise
registration, and the histogram proportion of depth differences is used to discrimi-
nate intra and inter personal differences for 3D face recognition. An EER of 12.4%
is achieved in the experiment of ROC III on the FRGC v2.0 database. Wang et al.
[Wang et al. 2008, Wang et al. 2010] employ Signed Shape Difference Map (SSDM)
computed between two aligned 3D faces as a mediate representation for facial sur-
face comparison. Based on the SSDMs; three kinds of features (Haar, MB-LBP and
Gabor) are used to encode both the local similarity and the change characteristics
between facial shapes. The most discriminative local features are selected optimally
by boosting and trained as weak classifiers for assembling three collective strong
classifiers. The reported rank-one recognition rate and verification rate (Roc III) at
0.1% FAR are both up to 98.0%.

(5) Multiple Shape Feature Fusion based Methods

All these local features mentioned above can be combined to improve the per-
formance of 3D face recognition, and thus form the last category, namely multiple
shape feature fusion based methods.

Gordon [Gordon 1992] begins with a curvature-based face segmentation. Then a
set of features are extracted that describe both curvature and metric size properties
of the face. Each face therefore becomes a point in a feature space, and Nearest
Neighbor based matching is done. Experiments are carried out on a test set of three
views of each of 8 faces and recognition rates as high as 100% are reported. Pan et
al. [Pan et al. 2003b| present an approach for 3D face verification from range data.
The method consists of profile and surface matching. The profile is extracted on the
basis of symmetry of human face, and a global profile matching method based on
k-th Hausdorff distance is used to align and compare profiles. For each individual,
a statistical model of facial surface is built to represent the distinct discriminative
capability of the different parts in the facial surface. Then the model is incorporated
into a weighted distance function to measure similarity of surfaces. Finally two ex-
perts are combined to give a decision. An EER of 4.44% is obtained on the 3D RMA
database. A more comprehensive version can be found in [Pan & Wu 2005]. Xu et
al. [Xu et al. 2004] develop a technique for 3D face recognition. The original 3D
point-cloud is converted to a regular mesh. The nose region is found and used as an
anchor to locate other local regions. Gaussian-Hermite (G-H) moments computed
from the detected local regions along with holistic depth values are utilized as feature
vectors. PCA is then applied for dimensionality reduction and Nearest Neighbor is
finally employed for classification. The results achieved on the manual (30 subjects)
and automatic (120 subjects) subsets of 3D _RMA are 96% and 72% respectively,
but it should be noted that for each subject, 5 models are enrolled in the gallery.
Gokberk et al. [Gokberk et al. 2005] compare five approaches to 3D face recogni-
tion. They compare methods based on EGI, ICP matching, range profile, PCA, and
LDA. Using the dataset including 571 images from 106 people, they find that ICP
and LDA offer the best results, although performance is relatively similar among
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all approaches but PCA. They also explore methods of fusing the results of the five
approaches and are able to achieve 99% rank-one recognition with a combination of
recognizers. At that time, this work is relatively novel in comparing the performance
of different 3D face recognition algorithms, and in documenting a performance in-
crease by combining results of multiple algorithms. [Koudelka et al. 2005] introduce
both radial symmetry and shape to extract five features on 3D facial range images.
These facial features determine a very small subset of discriminating points which
serve as the input to a prescreening method based on a Hausdorff fraction. Verified
using the FRGC v1.0 dataset, and results show 97% of the extracted facial features
are within 10 mm or less of manually marked ground truth, and the prescreener has
a rank 6 recognition rate of 100%. Lee et al. |Lee et al. 2005] manually landmarked
eight points, based on which two sets of facial features i.e., seven curves as well as
some distance and angle values, are extracted. Dynamic programming is applied to
classify the generated curves and obtains a recognition rate of 95% on a 5-individual
test set; while SVM is used to classify the distance and angle values and achieves the
accuracy of 96% on a 100-individual dataset. Based on pre-located eight landmarks,
Moreno et al. [Moreno et al. 2005] calculate thirty local geometrical features con-
taining distance, angles, area, curvatures, etc to model 3D facial surfaces. PCA and
SVM are emplyed for classification, and on the Gavab dataset, they obtain results
of 82.0% and 90.16% respectively when the faces are frontal views with a neutral
expression, both of which are decreased to 76.2% and 77.9% under gesture and light
face rotation. Li and Zhang [Li & Zhang 2007]| explore the use of multiple intrinsic
geometric attributes, including angles, geodesic distances, and curvatures, for 3D
face recognition, where each face is represented by a triangle mesh, preprocessed to
possess a uniform connectivity. They then train different weights to be applied to
each individual attribute, as well as the weights used to combine the attributes, in
order to adapt to expression variations. Using the eigenface approach based on the
learned weights and a nearest neighbor classifier, the results on the Gavab database
and the FRGC 3D database show that the fusion improves the performance. Li
et al. [Li et al. 2009] further investigate Sparse Representation Classifier (SRC) for
3D face recognition using a similar feature set of geometric attribute features, and
achieves more than 90% recognition rate on frontal samples using a dataset com-
posed of 120 persons selected from the Gavab and FRGC v2.0 dataset. However,
the comparison with the state of the art is not fair since they enroll five models of
each person in the gallery set. Guan and Zhang [Guan & Zhang 2008] combine Fa-
cial Structural Angle (FSA) and Local Region Map (LRM) for 3D face recognition,
claiming that this strategy is robust to facial expressions.

2.2.3 Other Matching Methods

In addition to holistic and local feature based 3D face matching techniques, there
also exist some approaches aiming to find a point to point relationship between two
3D facial surfaces in a special mapping space and thus achieve their comparison for
3D face recognition. Considering this commonality, we categorize them as surface
parameterization methods. Recently, following the research development in the re-
spect of texture mapping, morphing, re-meshing, mesh compression etc, 3D surface
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parameterization methods have been gradually driving to maturity stage. A param-
eterization of a surface can be deemed as a one-to-one mapping from the surface
to a suitable domain. In general, the domain of parameters itself will be a surface
and so constructing a parameterization means mapping one surface into another.
This parameterization can be summarized as an optimization problem under some
constraints, e.g. isometric, conformal, equiareal. Using surface parameterazition,
3D facial surfaces that are represented as meshes can be mapped onto a regular 2D
image so that more sophisticated signal processing approaches can be applied or to
an expression invariant standard surface for 3D face matching.

Abate et al. [Abate et al. 2005] map 3D meshes to a 2D plane so that they can
compare any two faces represented as 3D polygonal surfaces through their corre-
sponding normal maps, a bi-dimensional array which stores local curvature (mesh
normals) as RGB components of pixels in a color image. The histogram of a differ-
ence map resulting from the comparison of normal maps, weighted by an expression
mask, is utilized as facial feature for recognition.

Considering the influences caused by facial expression changes, Bronstein et al.
[Bronstein et al. 2005] use isometric mapping to convert expressive facial surfaces
to a defined standard model, namely canonical form. It is expected that face mod-
els with various expressions of the same subject should generally possess the same
canonical form. Based on this idea, they carry out experiment on a test set contain-
ing 220 face models from 30 subjects, and report 100% recognition rate. Moreover,
they also claim that this method can distinguish identical twins.

Pan et al. [Pan et al. 2005] explore a Mapped Depth Image based 3D face recog-
nition method. Using the nose tip as the center point and an axis of symmetry for
alignment, the face data are mapped onto a circular range image. The PCA based
approach is finally introduced for classification. The performance is reported as 95%
rank-one recognition rate and 2.8% EER in a verification scenario on the FRGC v1.0
dataset.

Passalis et al. |Passalis ef al. 2005| firstly fit a pre-defined manually annotated
deformable model to a given 3D facial surface so that it can be parameterized to a 2D
plane to generate a color image, whose three channels contain the point coordinates
of all the vertices. Wavelet transform is then applied to the achieved color image of
certain individual, and corresponding coefficients are adopted as feature vector for Ly
distance based classification. Tested on the FRGC v2.0 database, the experiments
show that this method performs much better than FRGC based line (PCA), and it
is also insensitive to expression and gender variations.

Abate et al. [Abate et al. 2006b] project the vertices of 3D facial surfaces to
a 3D sphere, and thus obtain their spherical coordinates. The angles between two
normal vectors of adjacent basic facets are calculated and represented in a 2D image,
to achieve the property of rotation invariant out of plane. While 2D Fourier based
descriptor is used to extract the in-plane rotation invariant feature from the pro-
duced 2D image for classification. About 96% accuracy at the first rank is reported
using a test set consisting of 120 individuals, each of which has 9 model.

Based on |Passalis et al. 2005], Kakadiaris et al. [Kakadiaris et al. 2007] further
develop a more comprehensive 3D face recognition system, in which two types of
wavelet transform are applied not only to geometry images, but also to normal maps.
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Figure 2.25: Dynamic human faces with expression variations and their conformal
maps [Zeng et al. 2010].

By combination the similarity measurements of separate matching step, they report
a 97.0% rank-one recognition rate and a 97.0% verification rate at 0.1% FAR on the
FRGC v2.0 dataset.

Llonch et al. [Llonch ef al. 2008] address such a problem of 3D face recognition
using spherical sparse representations as well. After alignment, 3D facial surfaces
are represented as signals on the 2D sphere, in order to take benefit of the geom-
etry information. Simultaneous sparse approximations implement a dimensionality
reduction process by subspace projection. Each face is typically described by a few
spherical basis functions that are able to capture the salient facial characteristics.
The dimensionality reduction step preserves the discriminant facial information and
eventually permits an effective matching in the reduced space, where it can further
be associated with LDA to improve recognition performance. They evaluate the
algorithm on the FRGC v.1.0 database, and it outperforms applying PCA or LDA
based approaches on depth facial images.

Wang et al. [Wang et al. 2007a] claim that conformal map is insensitive to fa-
cial expression variations and occlusions, therefore, they introduce conformal map
to transform 3D facial surfaces to 2D images, whose pixel intensities are mean cur-
vatures of vertices. Correlation is exploited to match faces, and it achieves a 97.3%
recognition rate on 100 3D face models from a 10-person dataset. Several conformal
maps are depicted in Fig. 2.25.

2.2.4 Discussion

After the development in the past two decades, current objective of 3D face recog-
nition techniques is to meet the requirements of application in real condition, i.e. to
provide high and robust accuracies (with one face model per subject for enrollment)
while to operate efficiently.

As a typical topic in the pattern recognition community, a 3D face recognition
system contains the step of feature extraction and classification. Based on the tax-
onomy in 3D face recognition discussed above, we can come into a conclusion, which
is similar in the domain of 2D intensity image based face recognition, that local fea-
ture based matching generally outperforms holistic matching, especially to deal with
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the problem caused by the variations in facial expression and pose. At this moment,
many milestone 3D face recognition approaches based on holistic matching are usu-
ally seen as the baseline for performance comparison, such as PCA, ICP, Hausdorff
distance and so on. Since facial expression variation is the main factor which largely
degrades the accuracy of 3D system, in order to improve the performance of local fea-
ture based matching, a commonly adopted solution is to combine multiple features
to represent local shapes of surfaces more comprehensively [Kakadiaris et al. 2007,
Wang et al. 2010] or fuse similarity measurements computed from different regions
[Faltemier el al. 2008a, Alyuz et al. 2010, Queirolo et al. 2010|. In addition, a train-
ing set to learn the distribution of expression changes is also useful to further enhance
the results [Al-Osaimi ef al. 2009, Wang et al. 2010].

Meanwhile, the preprocessing step plays an important role in face recognition.
Since 3D data convey more useful information than 2D data, preprocessing using
3D data is more convenient and accurate. Generally, in 3D face analysis, the pre-
processing step involves two main parts, i.e. fiducial landmark detection and facial
surface registration. A few key fiducial landmark points are critical to estimate the
initial positions of facial surfaces or locate more complex facial features (e.g. curves
and regions etc.), particularly in the early studies. Curvature analysis is a dominant
manner for this issue, and at present, considerable progress has been made to ame-
liorate landmarking techniques. Many tasks conclude that the detection accuracy of
major points, including nose tip, nose corners, inner eye corners, on nearly frontal 3D
facial surfaces is almost 100% within an affordable error range [Colbry et al. 2005,
Szeptycki et al. 2009, Zhao et al. 2009, Alyuz et al. 2010], which is sufficient to sup-
port the latter steps. However, to precisely detect more landmarking points on the
faces under large pose variations still remains a problem. Based on the generated
landmarking points, ICP based surface alignment along with a coarse to fine strat-
egy, is usually required in the literature to correct 3D facial pose changes, but it
is the most time-consuming process in 3D face recognition. Therefore, as a part of
3D face recognition system, the performance and computational expense in prepro-
cessing should be optimized as well. On the other hand, the 3D face recognition
algorithms depending on less preprocessing work should be explored.

2.3 Summary

In the first half of this chapter, we have elaborately discussed several techniques
which are regarded as milestones in 2D intensity image based face recognition, while
in the latter half, we have extensively reviewed the development process formed by
representative approaches in 3D model based face recognition.

In the 2D modality, almost all recent methods claim to be able to provide satis-
factory recognition rates, but only when evaluated on standard databases. Actually,
some fundamental challenges, i.e. illumination and pose variations, have not been
solved completely. The 3D modality has the potential to boost recognition perfor-
mance of 2D face recognition with respect to these challenges, and many techniques
have already proved their competency in certain validation circumstances, however,
several other difficult problems still require to be properly addressed, e.g. the pre-
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cision and speed of data acquisition, the accuracy of landmarking on partial faces
(right and left face profiles), the slowness of surface registration. Moreover, the 3D
modality tends to be more insensitive to facial expression variations compared with
the 2D based one.

As a result, besides investigating better solutions to improve the performance
in each modality separately, we can also consider to make use of merits offered by
both modalities so that the robustness of face recognition systems can be step up.
A major trend is to achieve multi-modality face recognition (discussed in chapter 4)
which combines 2D modality with 3D ones, since recent works confirm that fusing
2D and 3D approaches leads to results that overcome both 2D and 3D, in terms of
recognition rate. Nevertheless, this category of systems inherits common problems
of 3D processing, especially, concerning the acquisition process. Meanwhile, a smart
and flexible integration between the two modalities should be explored as well aiming
to reduce the expenditure in 3D data acquisition and computation, such as 3D aided
2D face recognition using 3D information to normalize pose and lighting changes in
facial texture images based on which identification is performed, or asymmetric 3D-
2D face recognition (described in chapter 5) exploiting (textured) 3D face models for
enrollment while 2D facial images for test and computing similarity scores between
two different types of data.

Additionally, even though many datasets have been released for research activ-
ities, each of which is designed and expected to give one or more difficulties, they
cannot yet well simulate a more complex condition in the real world. More challeng-
ing factors including large population, diverse ethnicities, rich age distribution, low
quality data, natural occlusions, make-up usage, etc. are attracting much greater
scientific attention.
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CHAPTER 3

3D Shape based Face Recognition

3.1 Introduction

As we discussed in the previous chapters, with the rapid development in 3D imaging
systems, 2.5D and 3D facial scans have emerged as a major solution to deal with
these unsolved issues in 2D intensity image based face recognition, i.e. illumina-
tion and pose changes [Bowyer et al. 2006, Scheenstra et al. 2005]. Meanwhile, even
though 3D facial scans capture exact shape information of facial surfaces and 3D
face recognition methods are thereby theoretically reputed to be robust to variations
of illumination, they are likely to be more sensitive to facial expression variations.
Besides, they generally require an accurate registration step before shape-based 3D
matching.

Generally, similar as 2D intensity image based face recognition, how to describe
facial surfaces is a core topic in the 3D domain as well. "Good" geometric features
of 3D facial shapes should have the following properties [Hadid et al. 2004]: first,
they can tolerate within-class variations while discriminating different classes well;
second, they can easily be extracted from raw facial data to allow for fast processing;
finally, they should lie in a space with moderate dimensionality in order to avoid
unaffordable computational expense in the matching step. As a result, existing 3D
face recognition techniques can be roughly classified according to the features they
use: (1) Original feature-based techniques make use of the entire face region as input
to compute similarity. Several works have explored PCA directly on facial range im-
ages [Achermann et al. 1997, Bronstein et al. 2003, Hesher et al. 2003]; while some
have applied the ICP (Iterative Closest Point) algorithm [Besl & McKay 1992] or
its modified version on facial point-clouds to match surfaces |[Chang et al. 2005b,
Lu & Jain 2006, Lu et al. 2006]. The Hausdorff distance has also been explored for
matching facial surfaces [Lee & Shim 2004, Russ et al. 2005]. (2) Region or point
feature based methods detect representative facial points or areas to construct cor-
responding feature spaces. The eye and nose areas are used in [Gordon 1992]; seg-
mented facial regions and lines are utilized in [Moreno et al. 2003|; anthropometric
facial fiducial keypoints are investigated in [Gupta et al. 2007al. (3) Curve feature
based approaches extract discriminative curves for facial surface representation. In
[Nagamine et al. 1992|, three facial curves were found to intersect the facial surface
using horizontal, vertical planes and a cylinder; the central profile with maximal pro-
trusion as well as two parallel profiles were searched in [Beumier & Acheroy 2000];
an union of the level curves of a depth function was proposed to describe 3D facial
surfaces [Samir et al. 2006]; (4) Shape feature based algorithms focus on the geomet-
ric attributes of local surfaces, such as curvatures [Gordon 1992|, point signature
[Chua et al. 2000], Extended Gaussian Image (EGI) [Tanaka et al. 1998], Signed
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Shape Difference Map (SSDM) [Wang et al. 2010] etc.

3D face recognition techniques can also be categorized according to the nature
of their matching strategies, i.e. holistic or local face matching, even though this is
highly dependent on the facial features used. We have extended this taxonomy to
3D face recognition in the second chapter. The holistic stream contains ICP-based
matching [Lu et al. 2006], isometry invariant description |Bronstein et al. 2005] etc.
This matching scheme is based on holistic facial features and hence generally requires
an accurate normalization step with respect to pose and scale changes. Furthermore,
it has proved sensitive to expression variations and partial occlusions. The local
feature-based one utilizes local features of 3D facial scans and has been explored in
several works in the literature, including point signature [Chua et al. 2000], Region-
ICP [Ouji et al. 2009] and so on. Local feature-based matching has the potential
advantage of being robust to facial expression, pose and lighting changes and even to
partial occlusions. The downside of this scheme is the difficulty extracting sufficient
informative feature points from similar or smooth 3D facial surfaces.

In this chapter, we propose a novel method for 3D face recognition making use
of a geometric facial description along with a local feature matching scheme. Our
main contributions can be summarized as follows.

(1) Since all facial surfaces are generally smooth and similar, in order to achieve
accurate representation and enhance their distinctiveness, a shape based geometric
facial description, consisting of a set of Multi-Scale extended Local Binary Pattern
Depth Faces (MS-eL.LBP-DFs), is presented.

Because of its superior performance and computational simplicity, LBP is one
of the most popular and successful local descriptors for 2D intensity image based
face analysis. See |Huang et al. 2011d] for a review on its application to facial image
analysis. In the literature, LBP has been also investigated for 3D face recognition
[Li et al. 2005b, Huang et al. 2006]. However, LBP is not so discriminative for this
purpose since it cannot distinguish similar local shapes well due to its thresholding
strategy. To address such a problem, two solutions are considered. First, extended
LBP (eLBP), generalized from our previous work on 3DLBP [Huang et al. 2006] and
capable of handling different numbers of sampling points and various scales, is used.
It not only extracts the relative gray value differences from the central pixel and
its neighbors provided by LBP, but also focuses on their absolute differences that
prove very critical to describe range faces as well. Secondly, a multi-scale strategy is
introduced to represent local surfaces to different extents which are then combined
for a comprehensive description. In addition, previous works simply repeated the
method of 2D facial analysis that divides the face into a number of sub-regions,
from which LBP based histograms are extracted; then concatenates all these local
histograms into a global one to form a final facial feature. Unlike these works, we
apply eLBP directly to the whole range facial area to generate Multi-Scale extended
LBP Depth Faces (MS-eLBP-DFs) which retain all 2D spatial information on range
faces. Finally, this method inherits the computational simplicity property from LBP
and achieves fast processing.

(2) A local feature matching scheme is designed to measure similarities between
gallery and probe facial scans once represented in terms of the proposed geometric
facial description, i.e. MS-eLBP-DFs.
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The recognition process works in a local manner by performing a feature-based
matching using SIFT based features, which is further strengthened by facial compo-
nent and configuration constraints. Since the proposed matching scheme possesses
a certain tolerance to moderate pose changes, it enables the entire system to match
nearly frontal 3D face models without generally costly registration.

(3) Most of the state of the art have proven their effectiveness over renowned
databases like FRGC, but less effort has been made to analyze the robustness to
quality degradations. In this chapter, we evaluate the performance of the proposed
method with regard to data degradations such as Gaussian noise, decimation, and
random holes etc. that are generated on a subset of FRGC.

The proposed method is evaluated on two public databases, namely FRGC v2.0
|[Phillips et al. 2005] as well as Gavab DB |[Moreno & Sanchez 2004]. Experimented
on the FRGC v2.0 dataset for both tasks of 3D face recognition and verification,
the proposed approach achieves a rank-one recognition rate of 97.6% and a 98.4%
verification rate with an FAR of 0.1% respectively. Thanks to the local matching
scheme, a generally costly face alignment step is not needed, because all 3D face
models in the FRGC v2.0 dataset are nearly frontal, which is in contrast to most
techniques so far in the literature. When it handles severe pose changes including
left or right facial profiles leading to self-occlusions, coarse alignment based on a few
landmark points is sufficient as a preprocessing step of this approach. This fact is
demonstrated by the experiments on the Gavab database. Furthermore, additional
results illustrate that the system is also robust to facial expression variations and
data degradations such as Gaussian noise, decimation, random holes etc.

The remainder of this chapter is organized as follows. The proposed geometric
facial description, MS-eLBP-DFs, is shown in section 3.2, and section 4.4 presents
the local feature based matching step. Experimental results of both face recogni-
tion and verification tasks are described and analyzed in section 3.4. Section 4.7
concludes this chapter.

3.2 MS-eLBP based Facial Representation

Due to its ability to describe micro patterns and its computational simplicity, the
Local Binary Patterns (LBP) technique has been widely explored in 2D face analy-
sis [Ahonen et al. 2004, Yan et al. 2007, Chan et al. 2007, Shan & Gritti 2008], and
recent investigation for 3D facial description [Li et al. 2005b, Huang et al. 2006].
However, using LBP directly on range faces does not allow accurate representation
of local shape changes. In this section, we firstly analyze the descriptive ability of
LBP for local facial surface representation. Then, we present extended LBP (eLBP)
and the multi-scale scheme to generate a novel 3D geometric facial description, called
MS-eLBP Depth Faces (MS-ELBP-DFs) that comprehensively encode local shape
variations of range faces.

3.2.1 LBP and Its Descriptive Power for Local Shape Variations

In the second chapter, we have introduced the LBP methodology in detail. For the
purpose of completeness, we briefly recall its basic conception.
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The original LBP operator labels each pixel of a given 2D image by thresholding
in a 3x3 neighborhood. If the values of the neighboring pixels are no lower than
that of the central pixel, their corresponding binary bits are assigned to 1; otherwise
they are assigned to 0. A binary number is hence constructed by concatenating all
the eight binary bits in a clockwise direction starting from the top-left position, and
the resulting decimal value (LBP code) is used for labeling the central pixel.

... OOO ... OO'. ...
® 0606 006 600 6000
©e® OO0 OL® Og® OO

Spot Spot/Flat Line end Edge Corner

Figure 3.1: An example of texture patterns which can be encoded by LBP (white
circles represent ones and black circles zeros).

According to the definition of LBP, the LBP code is invariant to monotonic gray-
scale transformations, preserving their pixel orders in local neighborhoods. When
LBP operates on the images formed by light reflection, it can be used as a texture
descriptor. Each of the 256 (28) LBP codes can be considered as a micro-texton.
Local primitives codified by the bins of LBP using uniform pattern include different
types of curved edges, spots, flat areas etc. Fig. 3.1 shows some examples. Similarly,
as LBP works on range images which are based on depth information, it can also
describe local shape structures, such as flat, concave, convex etc., as shown in Fig.
3.2.

Convex Concave Saddle

Figure 3.2: Examples of local shape patterns encoded by the original LBP operator
(white circles represent ones and black circles zeros).
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Figure 3.3: A confusion case of LBP as it describes similar but different local geo-
metric shapes.

Unfortunately, the direct application of LBP to depict the shapes of 3D surfaces
also leads to unexpected confusion when distinguishing similar yet different local
shapes. Fig. 3.3 illustrates two similar shapes with different Shape Index (SI) values
|[Koenderink & Doorn 1992| while indeed sharing the same LBP code: shape (A) is
a spherical cap; shape (B) is a dome. This lack of descriptive power is problematic
when one needs to derive a facial description to enhance distinctiveness for the task
of face recognition.

To address such a problem, we propose to adopt two complementary solutions.
The first solution aims to improve the discriminative ability of LBP with the eLBP
coding method, and the other one focuses on providing a more comprehensive geo-
metric description of a given neighborhood by applying a multi-scale strategy. Each
solution is discussed in the following two subsections respectively.

3.2.2 Extended Local Binary Patterns

The fact that LBP is not competent to distinguish between similar local shapes is
due to its operation mode. It only encodes relative differences between a central pixel
and its neighboring ones. In this section, we introduce eLBP to better describe local
surface properties. Instead of the original LBP operator, eLBP not only extracts the
relative gray value difference between the central pixel and its neighbors provided
by LBP, but also focuses on their absolute differences which are also important to
describe local shapes. eLBP is a generalized version of our previous work on 3SDLBP
[Huang et al. 2006] originally proposed for histogram-based 3D face recognition.
Specifically, the eLBP operator consists of several binary codes in multiple layers
that encode the exact gray value differences (GD) between the central pixel and its
neighboring ones. The first layer of eLBP is actually the original LBP code encoding
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Layer: 11 L2 L3 L4

e 1 1|o]o]f1
Vi
7/
,/ 5 1 1 0 1
/
7 3 0 011]1
51911 1]5]-3
Threshold e — - 2 1 0 1 0
4 |14|6|—>| 0] 4|2 » —_
| -1 0OjJoflo]1
71213 3121
2 0 0 1 0
3 1 0ol11]1
0 1 0lo0]oO

Decimal: 211 64 54 234

Figure 3.4: An example of the eLBP operator.

the GD sign. The following layers of eLBP then encode the absolute value of GD.
Basically, each absolute GD value is first encoded in its binary representation and
then all the binary values at a given layer result in an additional local binary pattern.
The example of Fig. 2.10 can be expressed by eLBP as shown in Fig. 3.4. The first
layer of eLBP code is simply the original LBP code that encodes the sign of GD, thus
yielding a decimal number of 211 from its binary form (11010011)3. The absolute
values of GD, i.e. 1,5, 3, 2, 1, 2, 3, 0, are preliminarily expressed as their binary
numbers: (001)2, (101)2, (011)2, (010)g, ..., etc. Using the same weighting strategy
of LBP on all the binary bits, we generate the eLBP code of its corresponding layer,
e.g., Lo is composed of (01000000)2 and its decimal value is 64; L3 is composed of
(00110110)2 and its decimal value is 54; finally L4 is composed of (11101010)5 and
its decimal value is 234. As a result, as describing similar local shapes, although the
first layer LBP is not discriminative enough, the information given by the additional
layers can be used to distinguish them.

Theoretically, within one image, the maximum value of GDs is up to 255 (be-
tween 0 and 255), which means that 8 additional binary units are required to code
GDs (28 —1 = 255), and thus 7 additional layers should be produced. Nevertheless,
we do not need so many layers in eLBP. Range faces are indeed very smooth; the
GDs in a local surface generally do not vary dramatically. Some preliminary statis-
tical work reveals that more than 85% GDs are smaller than 7 between points within
eight pixels. Therefore, the number of added binary units, k, is determined by GD.
Meanwhile k can also be exploited to control the trade-off between the description
expressiveness of local shapes and the computational simplicity of eLBP. All the
GDs which are larger than 2¥ — 1 can be assigned to 2¥ — 1 to decrease the com-
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putational cost. In this study, three additional layers are extracted and analyzed to
illustrate their contributions to the final accuracy.

3.2.3 Multi-Scale Strategy

As we know, the original LBP operator was extended later with different sizes of local
neighborhood to deal with various scales |Ojala et al. 2002]. The local neighborhood
of the LBP operator is defined as a set of sampling points evenly spaced on a circle
centered on the pixel to be labeled. These sampling points which do not fall exactly
on the pixels are expressed using bilinear interpolation, thus allowing any radius
value and any number of points in the neighborhood. The notation (P, R) denotes
the neighborhood possessing P sampling points on a circle of radius R. By adopting
the same protocol, the eLBP operator can also handle different sampling points and
scales.

Several LBP histogram-based tasks changed the neighborhood of the LBP op-
erator in order to improve their performance. By varying the value of radius R, the
LBP codes of different resolutions are obtained. The multi-scale scheme was orig-
inally used for texture classification [Ojala et al. 2002], and it was also introduced
to 2D face recognition [Yan et al. 2007, Chan ef al. 2007]. In [Shan & Gritti 2008],
Shan and Gritti studied MS-LBP for facial expression recognition by firstly extract-
ing MS-LBP histogram-based facial features and then using AdaBoost to learn the
most discriminative bins. They pointed out that the boosted classifiers of MS-LBP
consistently outperform those based on single-scale LBP, and the selected LBP bins
distribute at all the scales. MS-LBP can hence be deemed as an efficient approach
for facial representation. When considering it in 3D face analysis, this multi-scale
technique can be applied to enhance the descriptive power of LBP.

3.2.4 Multi-Scale Extended LBP Depth Faces (MS-eLBP-DFs)

LBP facial representation can be achieved in two ways: one is by LBP histogram,
while the other is by LBP face. The general idea of the former one is that one human
face can be regarded as a composition of micro-patterns described by LBP. The
images are divided into a certain number of local areas, from which LBP histograms
are extracted. These histograms are concatenated and thus contain both local and
global information of the faces. The latter manner is to generate LBP based maps,
which regards the decimal number of the LBP code as the pixel values of an LBP
map, and thus produces the corresponding LBP face. Due to its own strategy, an
LBP histogram loses some 2D spatial information for representing faces. In this
study, the second, eLBP face, is investigated.

Given a facial range image, we generate a set of MS-eLBP-DFs for facial repre-
sentation. These MS-eLBP-DFs can be achieved by varying the neighborhood size
of the eLBP operator, or by first down-sampling range faces and then adopting an
eLBP operator with a fixed radius. Some face samples are illustrated in Fig. 3.5.
In that figure, the number of sampling points is 8, and the radius value varies from
1 pixel to 8 pixels. As we can see, the original range face is very smooth, whilst the
resulting MS-eLBP-DFs contain many more details of local shape variations.
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Figure 3.5: MS-eLBP-DFs of a facial range image with different radii from 1 to 8
(from left to right).

Range Face ELBP-DF L1 ELBP-DFL2 ELBP-DF L3 ELBP-DF L4

Figure 3.6: The SIFT-based keypoints detected from an original facial range image
and its four associated eLBP-DFs.

3.3 Local Feature Matching

Once the proposed MS-eLBP-DFs have been produced, the widely-used SIFT fea-
tures [Lowe 2004] are extracted from them. Then, a local matching process further
improved by the facial component and configuration constraints is carried out to
calculate a similarity score between two 3D facial scans.

3.3.1 Local Feature Extraction

The SIFT operator (more technique details are presented in the second chapter)
works on each MS-eLBP-DF separately. Because MS-eLBP-DFs highlight the local
shape characteristics of smooth facial range images, many more SIFT-based key-
points can be detected for the following matching step than in the original range
faces. Some statistical work was done along with the experiments on the FRGC
database. The average number of descriptors extracted from each of MS-eLBP-DFs
is 553, while that of each original facial range image is limited to 41, and the de-
tected keypoints are usually located on the edge of the face. Figure 3.6 shows the
SIFT-based keypoints extracted from one range face image and its four associated
eLBP-DFs respectively.

66



Chapter 3. 3D Shape based Face Recognition

3.3.2 Local Matching Strategy

Given local facial features extracted from each MS-eLBP-DF pair of the gallery and
the probe face scan respectively, two facial keypoint sets can be matched. Matching
one keypoint to another is accepted only if the matching distance is less than a pre-
defined threshold, ¢ times the distance to the second closest match. In this research,
t is empirically set at 0.6 as in [Lowe 2004]. Here, Np;pp) denotes the number of
matched keypoints in the iy, layer of an eLBP-DF pair, generated by eLBP from
range face images with a parameter setting of (P, R).

3.3.3 Facial Constraints

Unlike the samples used in object detection, all human faces have the same phys-
ical components and share a similar configuration. The local matching strategy is
thus can be enhanced by holistically constraining the matched local features of the
keypoints with respect to the facial components and configuration, .

(1) Facial Component Constraint: we propose to divide the entire facial range
image into sub-regions, each of which contains roughly one component of nearly
frontal faces, to restrict the matched keypoints of gallery and probe face scans only
to those with similar physical meaning. That means the matched keypoints from the
same facial part should be more important. Instead of the costly clustering process in
[Luo et al. 2007] to automatically construct sub-regions based on keypoint locations
from training samples, we simply use our common sense of facial component position,
and divide the face area into 3 x 3 rectangle blocks of the same size. The similarity
of the facial component constraint is defined from this facial composition scheme. A
MS-eLBP-DF, I, is represented as (m1, ma,...,mg); k is 9 in our case and m; is the
number of detected SIFT keypoints that fall within the ¢;;, component. The local
SIFT-based descriptors in all the k components can be denoted by:

T=(fl s J fa oo J32 s iy oons e ) (3.1)

where fij means the jy, descriptor in the iy, facial component. Then the similarity
between a gallery face I, and a probe face I, is computed by:

b [ >

IFRGAR (32)

k
1
C(Ip, 1) = EZ max( H

where x € [1,...,my]; © € [1,...,mg]. () denotes the inner product of two vectors,
and ||-]| denotes the norm of one vector. A bigger C value indicates the most similar
attributes of the two faces represented by MS-eLBP-DFs. We thus obtain similarity
values, Cr;p gy for each MS-eL.BP-DF.

(2) Facial Configuration Constraint: the former constraint on facial component
emphasizes the importance of the matching score between local features of the same
facial component-based area in the gallery and probe set, and we further improve
the constraint by facial configuration.
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All the facial range images are normalized to a certain size to build a public 2D
coordinate system. For each 3D facial scan, the MS-eLBP-DFs are extracted from
the range image, and there is a pixel-to-pixel correspondence between these images.
Therefore, all the keypoints of the proposed facial surface representations share the
same XY-plane with the range face image, and the pixel values of the corresponding
facial range image can be regarded as the Z-axis values of these keypoints. Hence,
each keypoint has its position in 3D space. After local feature-based matching, a
3D graph is formed for each MS-eLBP-DF of a probe Fj,, by simply linking every
two keypoints which have a matching relationship with keypoints detected on the
corresponding MS-eLBP-DF of a gallery face F,;. The matched keypoints of F; also
construct a corresponding graph of Fj,. Intuitively, if faces F,; and F), are from the
same subject, their corresponding graphs should have similar shapes and locations
in 3D space.

One similarity measure between the two graphs is

1 &
de = n Z |dpi - dgi‘ (3.3)
€ =1

where dp; and dg; are the lengths of corresponding edges in the probe and gallery
graphs respectively. The value n. is the total number of edges. If the number of
matched keypoints is n,, ne will thus be expressed as n, * (n, —1)/2. Equation 3.3
is an efficient way to measure the spatial error between the matched keypoint pairs
of probe and gallery features.

Another similarity between two graphs is calculated as the mean Euclidean dis-
tance d, between corresponding nodes:

1 &
dp = — Z ‘npi - ngi‘ (3.4)
[t

where n,; and ng; are the coordinates of corresponding keypoints in a gallery and
its probe graph respectively. n, is the number of matched keypoints.
The final similarity measurement of the facial configuration constraint is:

D = we xde +wy, xdy, (3.5)

where w, and w,, are the corresponding weights of d. and d,,, designated according
to the scheme adopted in similarity fusion, and a smaller D value indicates the most
similar attribute of two facial range images represented by the MS-eLBP-DFs. As in
the facial component constraint, here, Dr;p r) denotes the similarity score of each
MS-eLBP-DF.

3.3.4 Similarity Fusion

In summary, the matching process of gallery and probe facial range images contains
three types of similarity scores: the number of matched keypoint pairs N, similarity
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C' of the facial component constraint and similarity D of the facial configuration
constraint. Except for D, all the other similarity measures have a positive polarity
(a bigger value means a better matching relationship). A range face of the probe set
is matched with every face in the gallery, resulting in three vectors Sy, S¢ and Sp.
The ny, element of each score vector corresponds to the similarity score between
the probe and the ny, gallery face. Each vector is normalized to the interval of [0,
1] using the min-max rule. Elements of Sp are subtracted from 1 to reverse its
polarity. The final similarity of the probe face with the faces in the gallery set is
then calculated using a basic weighted sum rule:

S =wn xSy +we *Sc+wp * (1 —Sp) (3.6)

Their corresponding weights: wy, we, and wp are calculated dynamically during
the online step using the scheme in [Mian et al. 2008|:

mean(S;) — ming (S;)

wg, =

K3

mean(S;) — ming(S;) (3.7)
where i corresponds to the three similarities: N, C, and D, and operators miny(Si)
and ming(Si) produce the first and second minimum value of the vector S;. The
gallery face image which has the maximum value in the vector S is declared as the
identity of the probe face image when the decision is to be made on each MS-eLLBP-
DF independently.

3.4 Experimental Results

In order to demonstrate the effectiveness of the proposed method, we used two public
databases for experiments, i.e. FRGC v2.0 |Phillips et al. 2005] as well as Gavab
[Moreno & Sanchez 2004]. The first is for evaluating performance with large number
of subjects and complicated conditions; the second is to analyze the accuracy on 3D
face samples with extreme pose changes (left and right profiles).

3.4.1 Experiment Design

Most of the experiments were evaluated on the FRGC v2.0, one of the most compre-
hensive and popular datasets, containing 4007 3D face scans of 466 subjects. One
facial range image was extracted from each 3D face model. A preprocessing step was
applied to remove spikes with a median filter and fill holes using cubic interpola-
tion. Thanks to the relative tolerance to moderate pose changes of hybrid matching,
we did not perform any registration on these 3D face models, in contrast to most
works such as [Kakadiaris et al. 2007, Mian et al. 2007, Faltemier et al. 2008a] etc.
The facial range images were cropped by using a basic bounding box based on the
mask provided by a 3D scanner indicating whether the point is valid or not in that
position. Cropped faces have pose, expression changes, as well as partial occlusions
caused by hair. All faces are normalized to facial range images with 150 x 150 pixels
for computational simplicity.
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The proposed approach was carried out on both the face recognition and verifi-
cation tasks. The first 3D facial scan with a neutral expression from each subject
makes up a gallery of 466 samples. The remaining face scans (4007-466=3541) were
treated as probes. The 3D facial scans in the probe set were divided into two subsets
according to their expression labels to evaluate its robustness to facial expression
changes. The first subset is made up of facial scans with a neutral expression; whilst
the other one with facial scans possessing only non-neutral facial expressions. Be-
sides Neutral vs. All, two additional experiments: Neutral vs. Neutral and Neutral
vs. Non-Neutral were also included to analyze its insensitiveness to facial expression
variations. In the Neutral vs. Neutral and Neutral vs. Non-Neutral experiments,
only the neutral and non-neutral subsets were used, respectively.

Furthermore, we tested the robustness of the proposed method to several degra-
dations as they commonly occur in the acquisition process including Gaussian noise
on depth information, decimation in terms of resolution, and random holes as data
missing. In these experiments, we employed 410 persons each of which has more
than one 3D model, and the other 56 with only one model per person were not con-
sidered. For each subject, the first neutral model was used to make up the gallery
set, and another model randomly picked up from each subject was taken as a probe.
To compare the performance with other approaches which require more precise pre-
processing operations, in this experiment, besides removing spikes and filling holes,
the nose tips of all the utilized faces were manually marked, and corresponding fa-
cial regions were cropped within a sphere of radius 100mm based on the nose-tip
coordinates. Then, the probe set was altered to create degraded sets, according to
the following rules (Fig. 3.7 shows examples of those degradations):

e (Gaussian noise corresponds to the injection of an error with a Gaussian distri-
bution on the Z coordinates in the depth image. This tends to emulate the behavior
of electronic noise of acquisition devices, albeit a simplistic manner. We set the Root
Mean Square (RMS) value of the error respectively to 0.2mm, 0.4mm and 0.8mm.

e Decimation aims at removing a number of vertices from the original facial
surface. Vertices are picked up randomly and removed respectively from a ratio of
x2, x4 and x8. For example, x4 means that the decimated model includes only a
quarter of the vertices in the original ones.

e Holes are generated at random locations on facial surfaces. At first, we choose
a random vertex on the surface of the face. Then, we crop the hole according to a
sphere with a radius value of 1 centimeter centered at the selected vertex. For each
level, we produce 1, 2, 3 holes on the entire face respectively.

To analyze the performance on severe pose changes and even partially occluded
3D facial scans, we also tested our approach on the Gavab database. This database
consists of Minolta Vi-700 laser facial scans of 61 different individuals. Each subject
was scanned 9 times for different poses and facial expressions.

In the experiments, a similar preprocessing pipeline was utilized as in the FRGC
v2.0 dataset to remove spikes and fill holes. Since the Gavab dataset contains many
severe pose changes, we performed a coarse alignment based on three landmarks for
all facial scans. When the two inner corners of the eyes and the nose tip of one scan
are available at the same time (all face scans excluding the extreme poses such as the
right and left profiles), we used our previous technique [Szeptycki et al. 2009] to lo-
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Figure 3.7: An example of degradations applied to one model: from left to right: the
original facial surface, Gaussian noise applied, decimation applied, holes applied.

cate the three landmark points automatically and computed rotation and translation
parameters; while for each of these left or right profiles, we manually landmarked
four points, i.e., the inner and outer corner of one eye, the nose tip, and the corner
of the nose, which are visible in that profile. After the coarse registration step, a
facial range image is extracted from each facial scan, These range images hence only
contain partial faces due to the self-occlusion caused by pose variations, and all the
facial range images are further resized to 150 x 150 pixels. The first frontal facial
scan of each subject was used as the gallery; while the others were treated as probes.
We calculated rank-one face recognition rates.

3.4.2 Identification

The four sub-tables in Table 3.1 list the results based on depth faces of each eLBP
layer with different parameters. Recall that P is the number of sampling points and
R is the radius value.

In these sub-tables, the numbers displayed in the last row labeled as the "eLBP"
performance are the fusion results according to the weighted sum rule as described in
eq. 3.6 combining the similarity measurements provided by the first three layers (L1,
Ly and L3) using the same parameter setting; similarity scores at Ly are omitted
because of their low performance. As we can see from Table 3.1, using 8 sampling
points achieves better results on Ly, and Ls for almost all the radius values (except
R = 2,3), respectively; whilst the setting with 16 sampling points results in better
performance on L3 (except R = 2) and Ly, respectively. All the eLBP accuracies at
different scales with different numbers of sampling points display recognition rates
better than 90%.

Using the weighted sum rule described in eq. 3.6, we then fused the similarity
scores of eLBP with 8 sampling points but different radius values from 2 to 8 pixels,
and compared their rank-one face recognition rates with the state of the art as shown
in Table 3.2. Except for ICP, all results are cited from the original papers.

In order to test the discriminative power of LBP and eLBP to characterize local
geometric shapes, Shape Index (SI) face maps are produced and associated with the
proposed local matching scheme for the task of 3D face recognition as well. With
a rank-one recognition rate of 91.8% as indicated in Table 3.2, ST faces outperform
any of the single scale LBP-DFs (i.e. the layer of eLBP L;). Meanwhile, most of the
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Table 3.1: Rank-one recognition rates based on depth faces of each eLBP layer with
different parameters in the FRGC v2.0 dataset.

(A) P=4 [R=2|R=3|R=4|R=5|R=6|R=T7|R=38
eLBP L, [[81.6% |84.8% [86.9% | 87.7% [ 87.6% | 86.2% | 85.9%
eLBP Ly || 75.2% | 83.3% | 85.7% | 87.1% | 87.6% | 87.3% | 87.0%
eLBP Ly || 76.9% | 74.7% | 71.6% | 68.8% | 67.4% | 63.7% | 61.9%
eLBP Ly || 4.5% | 8.0% |12.7% | 16.0% | 25.9% | 33.2% | 40.6%
eLBP 90.0% | 90.9% | 92.0% | 92.6% | 92.4% | 92.3% | 92.3%
(B) P=8 [[R=2|R=3|R=4|R=5|R=6|R=T7|R=38
eLBP L, [[86.1% [87.8% [ 88.5% | 88.3% | 87.7% [ 86.6% | 86.0%
eLBP Ly || 73.6% | 84.6% | 88.6% | 89.2% | 89.2% | 89.3% | 89.9%
eLBP L3 ||80.1% | 78.3% | 76.4% | 76.3% | 75.6% | 76.6% | 76.3%
eLBP Ly || 6.6% |11.1% | 17.8% | 29.8% | 40.3% | 50.8% | 55.6%
eLBP 91.3% | 92.5% | 93.5% | 93.4% | 93.0% | 92.7% | 92.6%
(C) P=12[|[R=2|R=3|R=4|R=5[|R=6|R=T7|R=38
eLBP L, [[85.3% [86.1% [ 86.2% | 87.2% [ 85.8% | 85.4% | 84.6%
eLBP Ly || 71.7% | 84.4% | 87.3% | 88.6% | 89.3% | 88.9% | 88.4%
eLBP L3 ||81.9% | 78.7% | 78.1% | 76.6% | 78.5% | 78.9% | 79.6%
eLBP Ly || 6.2% |12.3% | 22.1% | 35.6% | 48.7% | 57.4% | 63.2%
eLBP 90.9% | 92.1% | 92.9% | 93.3% | 92.3% | 92.3% | 91.5%
(D) P=16]|[R=2|R=3|R=4|R=5|R=6|R=7|R=38
eLBP L, [[82.1% [82.9% [85.3% | 84.2% | 84.3% | 83.5% | 82.7%
eLBP Ly || 73.7% | 86.1% | 87.9% | 88.6% | 88.2% | 87.5% | 87.7%
eLBP Lz || 81.6% |80.0% | 78.7% | 78.4% | 79.4% | 79.1% | 79.7%
eLBP Ly || 7.2% |11.8% | 27.7% | 42.3% | 52.3% | 60.0% | 66.1%
eLBP 90.6% | 91.9% | 92.4% | 92.4% | 91.8% | 91.6% | 91.6%

results based on single scale eLBP-DF surpass that of SI faces; furthermore, when
fusing the matching scores of eLBP-DF at different scales to achieve MS-eLBP-DFs,
the rank-one recognition rate is increased by more than 5 points, from 91.8% for SI
face to 97.6% for MS-eLBP-DFs. These results clearly indicate how well Multi-Scale
eLLBP describes geometric shape variations.

3.4.3 Verification

The proposed approach was evaluated for face verification as well; the verification
rate with FAR at 0.1% using the experimental protocol Neutral vs. All are given
in Table 3.3. Further experiments were carried out on ROC I, ROC II, and ROC
ITI. These three ROC curves are based on three masks provided by the FRGC v2.0
dataset. They are defined over the square similarity matrix with a dimensionality of
4007 x 4007, and they are of increasing difficulty reflecting the time elapsed between
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Table 3.2: Rank-one face recognition rate compared with the state of the art on the
FRGC v2.0 dataset.

Different Approaches H Recognition Rate
(1) ICP 72.2%
(2) SI Faces 91.8%
(3) MS-LBP-DFs 94.1%
(4) Wang et al. [Wang et al. 2007Db] 87.7%
(5) Chang et al. [Chang et al. 2005a] 91.9%
(6) Mian et al. [Mian et al. 2008] 93.5%
(7) Cook et al. [Cook et al. 2006a] 94.6%
(8) Huang et al. [Huang et al. 2010b] 96.1%
(9) Mian et al. [Mian et al. 2007] 96.2%
(10) Kakadiaris et al. [Kakadiaris et al. 2007] 97.0%
(11) Faltemier et al. [Faltemier et al. 2008a] 98.1%
(12) Wang et al. [Wang et al. 2010] 98.4%
(13) Alyuz et al. [Alyuz et al. 2010] 97.5%
(13) MS-eLBP-DFs 97.6%

probe and gallery data. Their comparisons are shown in Table 3.4.

Table 3.3: Face verification rates using the experimental protocol of Neutral vs. All
at 0.1% FAR on the FRGC v2.0 dataset.

Different Approaches H Verification Rate
SI Faces 94.4%
MS-LBP-DFs 96.1%
MS-eLBP-DFs 98.4%
Maurer et al. [Maurer et al. 2005] 92.0%
Passalis et al. [Passalis et al. 2005] 85.1%
Husken et al. [Husken et al. 2005] 89.5%
Cook et al. [Cook et al. 2006a] 95.8%
Mian et al. [Mian et al. 2008] 97.4%
Mian et al. [Mian et al. 2007] 98.5%
Wang et al. [Wang et al. 2010] 98.6%

As we can see from Table 3.4, the performance of the proposed method on ROC
I, ROC IT and ROC 111 is slightly lower but still comparable to the best of ones in the
literature. Meanwhile, it is noteworthy that the proposed approach does not require
any registration for nearly frontal face scans as those in the FRGC v2.0 dataset.
This is clearly in contrast to works [Wang et al. 2010, Kakadiaris et al. 2007]. In
|Kakadiaris et al. 2007], Kakadiaris et al. used ICP-based alignment with a coarse
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to fine strategy for preprocessing, and two kin
mid were extracted from normal and geometry
dependent registration step was used, and a larg
non-neutral facial scans was required to learn
tions. Moreover, they fused multiple informatio
facial features to make the final decision.

Table 3.4: Comparison of verification rates at

ds of features, i.e. Haar and Pyra-
maps. In [Wang et al. 2010], a self-
e training database with neutral and
inter-class and intra-class distribu-
n i.e. Haar-, Gabor- and LBP-based

0.1% FAR using ROC I, ROC TI,

ROC IIT and All VS. All protocol on the FRGC v2.0 dataset.

Different Approaches

[ROCI|ROC II|ROC III| All vs. All

Maurer et al. [Maurer et al. 2005]

Cook et al. [Cook et al. 2006a]

Husken et al. [Husken et al. 2005]
Faltemier et al. [Faltemier et al. 2008a]
Kakadiaris et al. [Kakadiaris et al. 2007]
Mian et al. [Mian et al. 2007]

Alyuz et al. [Alyuz et al. 2010]

Wang et al. [Wang et al. 2010]
MS-eLBP-DFs

NA NA 92.0% 87.0%
93.7% | 92.9% 92.0% 92.3%
NA NA 89.5% NA
NA NA 94.8% 93.2%
97.3% | 97.2% 97.0% NA
NA NA NA 86.6%
85.4% | 85.6% 85.6% NA
98.0% | 98.0% 98.0% 98.1%
95.1% | 95.1% 95.0% 94.2%

Table 3.5: Rank-one face recognition rates using the facial expression protocols on

the FRGC v2.0 dataset.

Different Approaches

H Subset 1 ‘ Subset 11 ‘ Degradation

SI Faces

MS-LBP-DFs

MS-eLBP-DFs

Huang et al. [Huang et al. 2010b]
Mian et al. only 3D [Mian et al. 2008]
Mian et al. 2D + 3D [Mian et al. 2008]

97.2% 84.1% 13.1%
97.7% 88.9% 8.8%
99.2% 95.1% 4.1%
99.1% 92.5% 6.6%
99.0% 86.7% 12.3%
99.4% 92.1% 7.3%

Subset I: Neutral vs. Neutral
Subset II: Neutral vs. Non-neutral

3.4.4 Evaluation on Facial Expression Variations

According to the same experimental protocol, we compared the performance of the

proposed approach with the one by Mian et al.
[Huang et al. 2010b] for robustness analysis on
3.5). The results of our approach are 99.2% an
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and Neutral vs. Non-Neutral experiment, respectively. The face recognition rate
on Subset I is comparable to the best ones of the state-of-the-art, while significant
progress was made on subset II, i.e. Neutral vs. Non-Neutral, displaying a 95.1%
rank-one recognition rate. The degradation as the samples with non-neutral facial
expressions are included drops by 4.1%, not only much lower than the figure of
12.3% in [Mian et al. 2008] when only 3D shape information was utilized, but also
lower than the drop of 7.3% in [Mian et al. 2008] when both shape and texture
clues were combined. Moreover, Table 3.5 also indicates that the MS-eLBP-DFs
outperform SI face in both the additional experiments on Subset I and II, and
the performance degradation of MS-ELBP-DFs is much lower than that of SI face.
These accuracies hence suggest that our approach tends to be insensitive to facial
expression changes. The achieved verification rates match those in face recognition,
as illustrated in Table 3.6.

Table 3.6: Comparison of verification rates at 0.1% FAR using the facial expression
protocols on the FRGC v2.0 dataset.

Different Approaches H Subset 1 \ Subset 11 \ Degradation
ST Faces 98.9% 87.5% 11.4%
MS-LBP-DFs 99.1% 91.9% 7.2%
MS-eLBP-DFs 99.6% 97.2% 2.4%
Passalis et al. [Passalis et al. 2005] 94.9% 79.4% 15.5%
Mian et al. only 3D [Mian et al. 2008] 99.9% 92.7% 7.2%
Mian et al. 2D + 3D [Mian et al. 2008] || 99.9% 96.6% 3.3%

Subset I: Neutral vs. Neutral
Subset II: Neutral vs. Non-neutral

Figure 4.7 indicates the verification rates by the ROC curves in the three exper-
iments: Neutral vs. All, Neutral vs. Neutral, as well as Neutral vs. Non-neutral.

3.4.5 Evaluation on Data Degradation

As discussed in the subsection 3.4.1, we tested the robustness of the proposed method
to some types of face data degradation, i.e., Gaussian noise, decimation, and ran-
dom holes. To show the effectiveness of our approach, we compared the performance
with several other tasks, including ICP, TPS, and Elastic Radial Curve Matching
[Drira et al. 2010]. All the techniques were benchmarked on the subset of 410 sub-
jects as defined previously in subsection 3.4.1 as well as various degradations. In the
Figure 3.9 to 3.11, the proposed method is marked in red; ICP is marked in violet;
TPS is marked in green; and Elastic Radial Curve Matching is marked in blue.
Figures 3.9 to 3.11 present the comparisons of rank-one recognition rates under
Gaussian noise, decimation and missing data respectively. As we can see from these
figures, to some extent, all these methods record performance drops under degra-
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Table 3.7: Comparisons of rank-one face recognition rates on the Gavab database:
(A) without pose variations; (B) only with pose variations.

Different Approaches [ I. Neutr. [ IL. Expr. [T + II
Li et al. [Li et al. 2009] 96.67% 93.33% | 94.68%
Moreno et al. [Moreno et al. 2005] 90.16% 77.90% NA
Mahoor et al. [Mahoor & Abdel-Mottaleb 2009] || 95.00% 72.00% | 78.00%
Berretti et al. [Berretti et al. 2006] 94.00% 81.00% |84.25%
Mousavi et al. [Mousavi et al. 2008] NA NA 91.00%
Drira et al. [Drira et al. 2010] 100.00% NA 94.67%
MS-eLBP-DFs 100.00% 93.99% | 95.49%
(A)
Different Approaches H (a) ‘ (b) ‘ (c) ‘ (d) ‘ (e)
Mahoor et al. [Mahoor & Abdel-Mottaleb 2009] || 85.30% |88.60% | NA NA NA
Berretti et al. [Berretti et al. 2006] 80.00% | 79.00% | NA NA NA
Drira et al. [Drira et al. 2010] 100.00% | 98.36% | 70.49% | 86.89% | 88.94%
MS-eLBP-DFs 96.72% | 96.72% | 78.69% | 93.44% | 91.39%
(B)

Looking down
: Looking up
Right profile

. Left profile
Overall

telzsE

)

P

dations in face model quality. Specifically, they resist relatively well to decimation
and missing data, their performance drops drastically when the noise is increased
to 0.8mm. However, compared with other three methods, the proposed approach
shows a better tolerance to these data degradations.

3.4.6 Evaluation on Occlusion

To analyze its tolerance to occlusions, we also launched experiments on the Gavab
database and calculated the rank-one recognition rates. Table 3.7 shows the match-
ing accuracies for different categories of probe faces: (A) displays the results without
pose variations; while (B) lists those only with the facial scans with pose changes.
In (A), the neutral subset contains one frontal facial scan of each subject, and the
expressive subset includes a smile; accentuated laugh and random gesture (random
facial expression), three facial scans of each subject. To the best of our knowledge,
the work [Drira et al. 2010] is the only one that has carried out experiments on the
entire Gavab database before this work. Therefore, we compared our results with
theirs on the subset of four severe pose variations as well as the overall performance.
It is worth noting that the difference between their work and ours is that Drira et al.
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manually landmarked nose tips on all the face scans in the dataset for an ICP-based
fine registration, while we only manually landmarked facial scans of right and left
profiles ((c) and (d) in Table 3.7 (B)), and for all the faces, only a coarse alignment
step was utilized to rotate and translate them.

From Table 3.7 (A), we can see that for frontal neutral probes, the rank-one
recognition rate is 100% as in [Drira et al. 2010]; while regarding expressive faces,
our approach surpasses all the others. Moreover, when evaluating the robustness to
severe pose variations (Table 3.7 (B)), we achieved an overall accuracy of 91.4% on
these four subsets; whilst that reported by |Drira et al. 2010] is 88.9%.

To sum up, the experimental performance on the Gavab database further con-
firms that our approach possesses a good tolerance to large pose changes and even
partial occlusions.

3.4.7 Computation Cost

Currently, an unoptimized implementation of our approach with MATLAB (R2010a)
can perform about 330 matches between the gallery and probe faces per second using
a machine using Intel(R)Core(TM) i7 CPU (3.07 GHz) and 8 GB RAM.

3.5 Summary

We have presented an effective method for 3D face recognition using a novel geomet-
ric facial representation and a local feature matching scheme. The proposed facial
representation is based on MS-eLBP and allows for accurate and fast description
of local shape variations, thereby enhancing the distinctiveness of generally smooth
facial range images. SIFT-based local matching further improved by facial compo-
nent and configuration constraints robustly associates keypoints between two faces
of the same subject. The proposed method was evaluated in 3D face recognition
and verification, achieving a recognition rate of 97.6% and a 98.4% verification rate
with a 0.001 FAR respectively on the FRGC v2.0 database which consists of nearly
frontal facial scans with rich expression changes. Experimental results on the Gavab
database containing severe pose changes clearly illustrate that the entire system is
also robust to partially occluded faces. Moreover, generally costly registration was
not needed thanks to the relative tolerance of the proposed local matching strategy
to moderate pose variations like the ones in the FRGC v2.0 dataset. When dealing
with extreme poses, i.e. left or right profiles, a coarse alignment step based on a
few manually landmarked points was sufficient in preprocessing as indicated by the
experiments on the Gavab database. Finally, additional experiments demonstrate
that the proposed method is not sensitive to facial expression variations and has a
good tolerance to data degradations.
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Figure 3.8: The ROC curves are depicted based on the SI Faces, MS-LBP-DFs, and
MS-eLBP-DFs respectively in three experiments with neutral face models enrolled:
(A) Neutral vs. All; (B) Neutral vs. Neutral; (C) Neutral vs. Non-neutral.

78



Chapter 3. 3D Shape based Face Recognition

100

gl T e W

75 e L

ol NN

o N
~N

60 ~
55 T ]

Original N(2) N(4) N(8)

Figure 3.9: The comparison of rank-one recognition rates under Gaussian noise.
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Figure 3.10: The comparison of rank-one recognition rates under decimation.
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Figure 3.11: The comparison of rank-one recognition rates under missing data.
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CHAPTER 4

Textured 3D Face Recognition

4.1 Introduction

In the previous chapter, we introduced a 3D face recognition method in order to
cope with the problems usually encountered in 2D face recognition, caused by illumi-
nation and pose changes. However, even if it is so, the challenge of facial expression
variations is even more difficult than in 2D modality, as 3D face models provide
exact shape information of facial surfaces.

Since current 3D imaging systems generally deliver 3D face models along with
their aligned texture counterpart, a major trend in the literature of face recognition is
to adopt both the 3D shape and 2D texture based modalities, arguing that the joint
use of these two clues can generally achieves more accurate and robust performance
than using only either of the single modality. See section 4.2 for more information
about the state of the art.

A majority of techniques in the literature for face recognition do not operate
directly on original input facial images because all the human faces are similar and
undergo the variations of illumination and pose. Instead, they try to search for an
intermediate facial representation, for instance, eigenface |Turk & Pentland 1991],
fisher face [Belhumeur et al. 1997], LBP face [Ahonen ef al. 2004] etc., aiming to
highlight intra-class similarity and inter-class dissimilarity.

In this chapter, we propose a novel biological vision-based facial representation,
namely Oriented Gradient Maps (OGMSs), which is applied to both facial range and
texture images for textured 3D face recognition. These OGMs simulate the response
of complex neurons to gradient information in a neighborhood and own properties of
being highly distinctive and robust to affine lighting and geometric transformations.
Based on this intermediate facial representation, SIF'T-based local feature matching
is then used to calculate similarity scores between probe and gallery faces. Because
the facial representation generates an OGM for each of quantized orientations of
facial range as well as texture images, we further propose a score level fusion scheme
that optimizes weights by a genetic algorithm in a learning step. Evaluated on the
complete FRGC v2.0 dataset, the rank-one recognition rate using only 3D or 2D
modality is 95.5% and 95.9% respectively; while combining these two modalities,
i.e. range- and texture-based OGMs, the final accuracy is 98.0%, demonstrating
the effectiveness of the proposed biological vision-inspired facial description and the
optimized weighted sum fusion. In addition, based on the 3DTEC dataset, we also
explore the capacity of the proposed method for differential identical twins.

The remainder of this chapter is organized as: Section 4.2 depicts an extensively
review on the related works. Section 4.3 introduces the biological vision-based facial
representation that is applied on both facial range and texture images. The following
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SIFT-based local feature matching step is shown in section 4.4. Section 4.5 presents a
weighted sum rule based score fusion approach optimized by a genetic algorithm from
a learning database. Section 4.6 analyzes and discusses the experimental accuracies
achieved on the FRGC 2.0 and 3DTEC datasets. Section 4.7 concludes the paper.

4.2 Related Works

Although the first research work in the domain of 3D face recognition dates back to
before 1990, multi-modal face recognition did not appear until the beginning of this
century. Early efforts in this area investigate relatively simplistic ways to fuse the
results obtained independently from 3D and 2D face data. For example, the most
common approach is to apply an eigenface method to each of the 2D and 3D facial
images separately, and then combine two matching measurements. More recently, a
great number of studies appear to take a variety of quite different facial features as
well as fusion schemes, and several commercial companies already have the ability
to develop the software for multi-modal 2D and 3D face recognition.

Beumier and Acheroy [Beumier & Acheroy 2001| perform the multi-modal face
recognition using a weighted sum rule (score level fusion). They exploit a central
profile and a lateral profile, each in both 3D and 2D. They thus have a total of four
classifiers, and an overall decision is made using a weighted sum of the similarity
metrics. In this paper, results are reported on a subset of 3D RMA, which consists
of 27-person gallery and a 29-person probe faces. An EER of 1.4% is reported for
multi-modal recognition, lower than either 3D or 2D modality alone.

Wang et al. [Wang et al. 2002] make use of Gabor filter coefficients in 2D and
"point signatures" in 3D to achieve multi-modal face recognition. PCA is applied
to each type of feature separately for dimensionality reduction. The generated 2D
and 3D features together form a feature vector (feature level fusion). Classification
is done by SVM. Experiments are carried out with images from 50 subjects, six
images per subject, with pose and expression variations. Rank one recognition rate
exceeding 90% is presented.

Chang et al. [Chang et al. 2003b] employ an eigenface based recognition to 3D
and 2D images independently, their similarity scores are further combined with a
weighted sum rule. The experiments tested on a 116-individual dataset show that
the rank one recognition rates based on single modality are almost the same, but the
fusion accuracy is much better than both of them. Chang et al. [Chang et al. 2003a]
soon report another performance using the same method on a test set containing 676
probes from 200 individuals. The fusion result is up to 98.8% rank-one recognition
for multi-modal; 92.8% for 3D alone; 89.5% for 2D alone. They [Chang et al. 2005¢|
further design a contrast test to take two 2D facial images in the gallery set, and
calculate their similarity measurements with a given probe face respectively for a
final fusion, concluding that multi-modal face recognition outperforms that based
on multiple 2D enrollment .

Tsalakanidou et al. [Tsalakanidou et al. 2003] also explore a PCA based method
for 3D and 2D image based face recognition. Unlike other tasks, they utilize YUV
components of color images instead of gray-scale ones in 2D domain and a product
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fusion rule to replace the sum rule for the combination of two similarity measure-
ments. The recognition rate using images of 40 persons from the XM2VTS dataset
are as high as 99% for the multi-modal algorithm, which is found to be higher than
for either 3D or 2D clue alone.

Bronstein et al. [Bronstein el al. 2003] investigate an isometric transformation
to map 3D facial surfaces into 2D canonical images using MDS, trying to better
handle changes due to facial expression. Based on the correspondence between 2D
facial image pixels and 3D surface vertices, facial texture images can be projected
onto the aligned canonical surface in the canonical form space as well, and flattened
texture is thus produced. Eigen-decomposition is applied to flattened textures and
canonical images for multi-modal recognition. They show examples of correct and
incorrect recognition by different algorithms, but do not mention any overall quan-
titative results. Later, Bronstein et al. [Bronstein et al. 2004a] further enhance this
work. Using multiple 2D facial images, they firstly reconstruct 3D facial surfaces
and their albedos. With re-lighted facial texture images and generated canonical
images, multi-modal face recognition can be achieved.

Papatheodorou and Rueckert [Papatheodorou & Rueckert 2004] propose an ICP
variant based on point distances in a 4D space (z, y, z, intensity) for multi-modal
face recognition. This method integrates shape and texture information at an early
stage, rather than fuse them at score level or decision level. They compute results
from experiments with frontal neutral-expression models of 62 subjects in the gallery,
and probe sets of different pose and facial expressions. They report 98% to 100%
correct recognition in matching frontal neutral-expression probes. Recognition drops
when the expression and pose of the probe faces is varying from those of the gallery
images.

Tsalakanidou et al. [Tsalakanidou et al. 2004] present a method to multi-modal
face recognition based on an embedded hidden Markov model (EHMM) for each
modality. Meanwhile, based on 3D face models, they synthesize facial range and
texture images to enlarge the gallery set. Their experimental results prove that com-
bining multiple modalities and increasing enrolled images are both effective solutions
to improve face recognition performance. A longer version of this work appears in
[Tsalakanidou et al. 2005].

Malassiotis and Strintzis [Malassiotis & Strintzis 2004 describe a face recogni-
tion system using a combination of color and depth images. To cope with lighting
and pose variations, 3D information is used for correcting pose and recovering il-
lumination to generate the samples with upright orientation and frontal lighting.
Computed on a dataset containing 2200 faces from 20 individuals, the experimental
results show that multi-modal performance improves the accuracy of each single
modality.

Zhang et al. [Li ef al. 2005b] implement a systematic framework, which extracts
LBP based features from 2D and 3D modalities for a fusion at both feature and de-
cision levels, by exploring synergies of the two modalities at these levels. A Boosting
statistical learning procedure is used for feature selection and classifier. Experiments
are carried out on a database consisting of 252 individuals, and achieved results show
that the fusion at both levels yields significantly better performance than fusion at
the decision level. Moreover, LBP features prove more discriminative than eigenface
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based ones.

Godil et al. [Godil et al. 2005] make a comprehensive evaluation on the PCA
based method for 3D + 2D multi-modal face recognition using the CAESAR an-
thropometric database, which includes 200 persons. They compare the performance
of feature and score level fusion, and analyze the impact on results of two normal-
ization methods (Max-Min and Z-Sore) as well as four fusion schemes (Sum, Max,
Min, and Product Rule). Their best rank-one recognition rate reported in this paper
is 82%.

Colombo et al. [Colombo et al. 2005] exploit a curvature based method to detect
3D faces and locate a few initial landmarks for pose correction. A PCA based holistic
matching is then applied on both facial texture and rang images extracted from
aligned 3D face models to achieve multi-modal face recognition. They compare the
experimental results using three different fusion strategies, i.e. feature level fusion,
score level fusion as well as decision level fusion, and point out all these three fusion
accuracies are better than the ones only based on single modality. Moreover, in their
case, feature level fusion outperform the other two in the scenario of verification,
while score level fusion obtains the best result in identification.

Husken et al. [Husken et al. 2005] describe a system (from Viisage company) to
multi-modal recognition. The 3D matching follows the style of Hierarchical Graph
Matching (HGM) already implemented for 2D face recognition, which allows faster
matching in comparison to the ICP method or similar iterative techniques. Combin-
ing the results from the two clues is done at the score level, and they reported a 93%
verification at 0.01 FAR as multi-modal performance on the FRGC v2.0 database,
which is better than either of single modality based result. In addition, they also
claim that the fusion accuracy is closely related to statistical independence between
the two clues. The more independent the matching scores of the algorithms are, the
higher the benefit of the fusion, as errors in the one algorithm can be counterbal-
anced by the other one.

Maurer et al. [Maurer et al. 2005] develop the Geometrix system for textured 3D
face recognition. The 3D face matching builds on the method proposed by Medioni
and Waupotitsch [Medioni & Waupotitsch 2003], whereas the 2D matching adopts
the method of Neven Vision [Okada et al. 1998]. A weighted sum rule is then used
to fuse the two similarity measurements. The system is evaluated on the FRGC
v2.0 dataset. The facial expression changes are categorized into "neutral", "small",
as well as "large", and results are presented separately for these three categories.
Multi-modal performance for the "all versus all" matching protocol of the 4007 facial
images reaches approximately 87% verification rate at 0.01 FAR. They also conclude
that using both texture and shape information outperforms 3D alone by a noticeable
increment, and that the verification rates for 2D alone are below those for 3D alone.

Lu and Jain [Lu & Jain 2005b] extend their earlier study for 3D facial surface
matching [Lu et al. 2004a| to multi-modal 3D + 2D face recognition. In contrast to
other related tasks, two modalities are operated in a serial way instead of a parallel
one. The surface matching component is firstly carried out based on ICP with a
coarse-to-fine strategy, and the candidate list used for 2D matching is dynamically
generated based on the output of surface matching, in order to reduce the complexity
of the 2D matching stage. The 3D model in the gallery is employed to synthesize
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new 2D facial images with pose and illumination variations that are then imported
into an LDA classifier. The weighted sum rule is finally applied to combine the two
matching components. Experimental results are given on a database of 100 3D face
models with 598 2.5D test scans acquired in different pose and lighting conditions,
and with some smiling expression, illustrating the effectiveness of the fusion.

Cook et al. [Cook et al. 2005] introduce Gabor filter based features to represent
both facial texture and range images. Then, the PCA approach is applied to reduce
their dimensionality and de-correlate the data. The scores of both modalities are
finally combined for multi-modal face recognition. The UND database containing
943 individual captured from 277 subjects is taken for evaluation. The lowest EER
reported in this work is 0.66%, showing that frequency bands are more discriminative
than original face data and combining both clues achieves better results. Meanwhile,
they also analyze the performance using some facial parts as well as that based on
different components of the Gabor filters, such as real, mag, imag, phase and some
possible combinations. In the next year, Cook et al. [Cook ef al. 2006b]| strengthen
this method by bringing in a local matching strategy and SVM classifier. Tested on
the FRGC v2.0 dataset, the best verification rates (ROC IIT) at 0.1% FAR using
2D alone, 3D alone and multi-modal are 39.37%, 79.66%, and 82.72% respectively,
all of which are based on the Mahalanobis Cosine Average (MahCosAvg) distance.

Based on the PCA algorithm, Yuan et al. [Yuan et al. 2005] also project all the
2D texture images and 3D shape images into a low-dimensional subspace. In the
following step, they apply fuzzy clustering and parallel neural networks to recognize
faces. Experimental results are computed on a dataset composed of 70 persons with
different pose changes, they demonstrate that using 3D data, pose can be efficiently
corrected, however, they do not mention any performance to show the effectiveness
of the combination of both modalities as well as the accuracy difference between
commonly used nearest neighbor based classifier and the proposed neural networks.

Abate et al. [Abate et al. 2006a] address multi-modal face recognition through
3D geometry and 2D texture features by means of two different metrics: Augmented
Normal Map and PCA. Augmented Normal Map includes shape (surface normals
represented as 24 bit color pixels) and texture info (additional 8 bit for skin color)
into a 32 bit image. The method operates in a hierarchical way. It firstly performs
a fast one-to-many comparison of facial geometry exploiting normal map metric.
Then, to further improve recognition precision and reliability, best rank faces are
compared to probe by PCA resulting in a final decision. They present preliminary
experimental results on a dataset of 101 textured 3D faces.

Mian et al. [Mian et al. 2006a| combine four categories of similarity measure-
ments to recognize textured 3D faces, i.e. eye and forehead region (3D), nose re-
gion (3D), entire range face (3D), and entire texture face (2D). The former two
are computed using ICP based registration, whilst the latter two are calculated by
PCA holistic matching. Product rule is adopted for final fusion, which achieves
a 100% verification rate at 0.06% FAR on the FRGC v1.0 dataset. Mian et al.
|[Mian et al. 2007] extend this work to a more complex and robust system as shown
in Fig. 4.1. To calculate similarity scores between 3D facial surfaces, Spherical Face
Representation (SFR) is proposed, which can be imagined as the quantization of
3D facial point-cloud into spherical bins centered at the nose tip. SIFT is applied
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Figure 4.1: The block diagram of the recognition algorithm proposed by Mian et al
[Mian et al. 2007].

directly to compute the accuracy of 2D part. A weighted sum rule is then used to
fuse both measurements for a coarse classification. Possible candidates are finally
verified using the previously proposed ICP based facial rigid region (eye, forehead
and nose region) matching. Evaluated on the FRGC v2.0 dataset with the experi-
mental protocol of Neutral vs. All, they report a 97.4% rank one recognition rate
and a 99.3% verification rate at 0.1% FAR.

Mian et al. [Mian ef al. 2008] implement another feature-based multi-modal face
recognition system aiming to overcome the variations of facial expressions, illumina-
tion, pose, occlusions and make-up. For facial shape matching, they first propose a
technique which can repeatably detect keypoints at locations where shape variation
is high in 3D faces, and a unique 3D coordinate basis then can be defined locally at
each keypoint facilitating the extraction of highly descriptive pose invariant features.
A 3D feature is extracted by fitting a surface to the neighborhood of a keypoint and
sampling it on a uniform grid, and features from a probe and gallery face are finally
projected to the PCA subspace and matched. The set of matched keypoints are used
to build two graphs from which the similarity between two faces is measured. In the
2D domain, they employ the SIFT features and performed fusion at the feature and
score-level. The proposed algorithm achieved 96.1% identification rate and 98.6%
verification rate at 0.1% FAR on the complete FRGC v2.0 dataset.

Different from most existing methods of 2D + 3D multi-modal face recognition
that do fusion at the late-stage feature, score, or decision level, Kusuma and Chua
[Kusuma & Chua 2008] propose an image-level fusion method that explores to re-
duce the dependency between modalities for face recognition. Facial cues from 2D
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Figure 4.2: Overall structure of the face recognition system proposed by Gokberk
et al [Gokberk et al. 2008].

and 3D images are combined into more independent and discriminating data by
finding fusion axes that pass through the most uncorrelated information in the im-
ages. Experimental results based on a database of 1280 textured 3D facial samples
from 80 persons show that the proposed image-level fusion outperforms the feature-
and score-level fusion.

Gokberk et al. [Gokberk et al. 2008| design a comprehensive system to present
an extensive study of 3D face recognition algorithms and examine the benefits of
various score-, rank-, and decision-level fusion rules (Fig. 4.2). They discuss vari-
ous feature extraction techniques applied to both texture and shape modalities, and
compare different classifier combination methods. They also present a dynamic con-
fidence estimation algorithm to boost fusion performance. In experiments performed
on the FRGC v1.0 and v2.0 databases, they give answers to: 1) the relative impor-
tance of the face data format to the types of features extracted; 2) the impact of the
gallery size; 3) the conditions, under which subspace methods are preferable, and
the compression factor; 4) the most advantageous fusion level and fusion methods;
5) the role of confidence votes in improving fusion and the style of selecting experts
in the fusion; and 6) the consistency of the conclusions across different databases.

Xuet al. [Xu et al. 2009] research into the contributions that depth and intensity
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information makes to face recognition when facial expression and pose changes are
taken into account. In their system, local facial features described by Gabor wavelets
are extracted from corresponding depth and intensity images generated from 3D face
models after fine alignment. Then a hierarchical selecting scheme embedded in LDA
and AdaBoost is designed to select the most effective and most robust features to
further construct a strong classifier. Experiments are performed on the FRGC v2.0
database, and using the protocol of Neutral vs. All, a verification rate of 97.5% at
0.1% FAR is reported.

4.3 Biological Vision-based Facial Description

In order to improve the distinctiveness of human faces and offering certain tolerance
to lighting and pose changes, in this section, we introduce a novel biological vision-
based facial description which can be applied to both facial range and texture images.

The proposed facial representation is inspired by the study of Edelman et al.
[Edelman et al. 1997], who proposed a representation concept of complex neurons in
primary visual cortex. These complex neurons respond to a gradient at a particular
orientation and spatial frequency, but the location of gradient is allowed to shift over
a small receptive field rather than being precisely localized. Our facial representation
implements this idea into practice.

4.3.1 Description of The Complex Neuron Response

The proposed description aims at simulating the response of complex neurons, based
on a convolution of gradients in specific orientations in a pre-defined circular neigh-
borhood. The radius value can be varied experimentally for different applications.
Specifically, given an input image I, a certain number of gradient maps Ly, Lo,

., Lo, one for each quantized direction o, are first computed. They are defined as:

L= (gf)+ (1)

The "+" means that only positive values are kept to preserve the polarity of the
intensity changes, while the negative ones are set to zero.

Fach gradient map describes gradient norms of the input original image in an
orientation o at every pixel. We then simulate the response of complex neurons by
convolving its gradient maps with a Gaussian kernel G, and the standard deviation
of G is proportional to the value of radius of the given neighborhood area, R, as in
eq. 4.2.

pf =GRr* L, (42)

The purpose of the convolution with Gaussian kernels is to allow the gradients
to shift in a neighborhood without abrupt changes.
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Figure 4.3: An illustration of the oriented gradient map for each of the quantized
orientations o.

At a given pixel location (z,y), we collect all the values of the convolved gradient
maps at that location and form the vector pf(x, y), and it thus has a response value
of complex neurons for each orientation o.

o, y) = [pfa,y), -, pB(z,y)] (4.3)

This vector, p®(x, %), is further normalized to unit norm vector, which is called
response vector and denoted by BR in the following parts of this chapter.

4.3.2 Facial Description by Response Vectors

Now facial range and texture images can be represented by their perceived values
of complex neurons according to their response vectors. Specifically, given a facial
range or texture image I, we can generate a new Oriented Gradient Map (OGM)
J, using complex neurons for each orientation o defined as:

Jo(,y) = pi(z, y) (4.4)

Fig. 4.3 shows such a process. In our work, we generate 8 OGMs for 8 quantized

directions respectively. Instead of the original facial range and texture images, the
OGMs are further fed to SIFT-based local feature matching for face recognition.

4.3.3 The Properties of Distinctiveness and Invariance

The generated OGMs potentially offer high distinctiveness because they highlight
the details of local shape and texture variations. Meanwhile, they also possess the
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Figure 4.4: SIFT-based keypoint detection examples. The upper row lists an original
facial range image and its oriented gradient range maps for the first four orientations;
while the bottom one displays an original facial texture image as well as its first four
oriented gradient texture maps.

property of being robust to affine lighting and geometric transformations.

As applied to facial texture images, the OGMs offer the property of being robust
to affine illumination transformations. Indeed, an OGM, J,, is simply the normal-
ized convolved gradient map of the facial image at a given orientation o according
to eq. 4.4, while affine lighting variations usually add a constant intensity value on
images, as a result, it does not affect the computation of gradients. On the other
hand, a change of image contrast in which the intensities of all the pixels are multi-
plied by a constant will result in the multiplication of gradient calculation; however,
this contrast change will be cancelled by the normalization of the response vector.

Similarly, the OGMs of facial range images which contain 3D shape information
are also invariant to affine geometric transformation leading to certain tolerance to
pose changes.

The proposed OGMs can be made even rotation invariant if we choose to quantize
directions starting from the principal direction of all gradients in the neighborhood.
Nevertheless, we do not perform such a rotation normalization step to save compu-
tational cost, since 3D face models are generally in an upright frontal position in
user cooperative applications.

4.4 SIFT based Local Feature Matching

When the OGMs of all quantized orientations are achieved from both range and tex-
ture facial images, a local feature matching step is carried out on these widely-used
SIFT based features [Lowe 2004] extracted from OGMs for similarity score calcu-
lation, since it is well known that local feature based matching scheme is generally
more robust to occlusion and pose changes.

SIFT operates on each OGM separately. As OGMs highlight local texture and
shape changes of generally smooth facial images, many more keypoints can be de-
tected than the ones when we directly apply SIF'T on the original facial range and
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texture images. On the FRGC v2.0 database, it shows that the average number of
keypoint detected on original facial range and texture images are only 41 and 67
respectively; while using OGMs for keypoint detection, the average numbers rise up
to 116 and 304. Figure 4.4 shows an example of SIFT-based keypoint detection.

The similarity measurement based on the number of matched points between
two facial range or texture OGMs, Ng(g o) or Ny(g,), is with a positive polarity (a
bigger value means a better matching).

4.5 Optimized Weighted Score Sum Fusion

Given a textured 3D face model as a probe, the previous SIFT-based local matching
produces a similarity measure in each orientation of both facial texture and range
images in the gallery set. These similarity measurements need to be further fused to
deliver a final similarity score. In this chapter, we develop a fusion scheme by using
a weighted sum rule, as score level fusion has been extensively used in the literature
of 2D /3D face recognition and has proved its efficiency in a number of non-trivial
pattern recognition problems [Ruta & Gabrys 2005].
Formally, a weighted sum rule is defined as:

N
S=> w5 (4.5)
=1

where \S; is a similarity score; w; is its corresponding weight; and N is the number
of modalities used for generating similarity scores. A bigger weight value indicates
a higher importance; and a smaller one indicates a lower importance.

The proposed weighting strategy is learning-based, by using a genetic algorithm
[Said 2005] seeking an optimal set of weights through applications of selection, mu-
tation, and recombination of a population.

Figure 4.5 shows the process of learning optimal weighting. First, a population is
created by randomly generating individual "chromosomes". The chromosome length
is the same with the number of variables (weights) corresponding to the number of
similarity score matrices. Given N similarity measurement matrices generated by
the SIFT-based matching on different OGMs, each of chromosomes thus possesses N
gene positions representing N different weights. At each iteration, a normalization
process is first carried out to keep the sum of all the weights as one.

The chromosomes are used to encode trial solutions in a genetic algorithm. Iter-
ative selection, crossover, and mutation are then exploited to make evolution of the
population. At each generation, a new set of chromosomes is generated based on the
fittest genes of previous generation to achieve a better solution. This fitness is cal-
culated according to the produced similarity measure matrix in terms of recognition
accuracy. Stochastic Universal Sampling [Baker 1987] is applied to select chromo-
somes and to generate offspring. The operation of crossover leads to generate better
offspring by exchanging characteristics of their parents. It enables the most efficient
characteristics to be concentrated in an individual. The mutation randomly varies
the genetic representation of an individual by adding a random value and tends to
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Figure 4.5: The process of the proposed learning strategy for optimized weighting.

inhibit the possibility of converging to a local optimum, rather than the global one.
The evolution operates until a desired solution is achieved, or a pre-specified number
of iterations are finished. The final solution with a higher fitness represents the best
vector of weights.

4.6 Experimental Results

To evaluate the effectiveness of the proposed textured 3D face recognition system,
we carried out the experiments on the FRGC v2.0 [Phillips et al. 2005] and 3DTEC
datasets, and their general introductions can be found in the first chapter.

4.6.1 Experiment Design

The experiments were conducted mainly on FRGC v2.0, one of the most comprehen-
sive databases. It contains 4007 textured 3D face models of 466 different subjects.
One facial range image as well as its 2D texture counterpart were extracted from
each 3D face model. For 3D face data, a preprocessing step was introduced to re-
move spikes with a median filter and fill holes by using cubic interpolation. For 2D
facial texture images, histogram equalization was used to reduce influence caused
by non-affine lighting variations. Due to the properties of the OGMs and the use
of local feature-based matching, we did not perform any registration on 3D face
models since they are all in a nearly frontal pose. It is different from the work in
[Mian et al. 2007, Xu et al. 2009] etc. which also made use of both facial range and

92



Chapter 4. Textured 3D Face Recognition

texture data. The faces were cropped by using a basic bounding box based on the
mask provided by a 3D scanner indicating if the point is valid or not in that position.
Cropped faces thus have pose, lighting and expression changes as well as occlusions
caused by hair. The FRGC v1.0 database consisting of 943 neutral expression face
models was adopted by our adaptive fusion approach for training optimized weights
which were then used for test stage.

In the experiments, we adopted the same protocol of the state of the art for the
purpose of fair comparison. The first 3D face model with a neutral facial expression
of each subject made up a gallery set of 466 subjects. The remaining face models
(4007-466—3541) were treated as probes.

We preliminarily explore the distinctiveness of some basic features extracted from
2D facial texture images or 3D face models as well as their possible complementary
contribution in a fusion process for face recognition.

We further designed three experiments for the proposed OGM based method:
the first is to discuss the impact of the neighborhood area radius R on the final
performance; the second is to test the proposed approach both in face recognition
and verification compared with the state of the art; the last one is to evaluate the
robustness of the proposed approach to facial expression variations.

In addition, we carried out the experiments on the 3DTEC dataset to investigate
the power of the proposed method in distinguishing from twins. The 3DTEC dataset
consists of 107 pairs of identical twins, each of which owns two 3D face models with
the same format as the ones in FRGC v2.0. The same preprocessing operations are
thus adopted. We computed the performance in the scenarios of face recognition
and verification as well.

4.6.2 Basic Feature Comparison

In this experiment, we discuss the discriminative ability of several basic individual
facial features. From 2D facial texture images, original intensity-, Gabor filter- and
LBP- based features are extracted. While in 3D part, we consider geometric features
containing normal, binormal, tangent vector and curvature related features which
have the potential for a higher accuracy to describe surface based events and are well
suited to represent the properties of facial regions, such as two cheeks, forehead, and
chin. Four categories of curvature-based features are utilized. The first two types
rely on the principal directions corresponding to the maximum and minimum cur-
vatures [Tanaka et al. 1998|. The latter two are their derivatives, i.e., mean (H) and
Gaussian (K) curvatures [Maurer et al. 2005]. Furthermore, we study another type
of 3D features based on the anthropometric approach which advocates extracting
a signature from some anthropometric points considered the most relevant; these
points should be stable and discriminative. Chang et al. [Chang et al. 2006] have il-
lustrated that the face region surrounding nose was very stable. In [Arca et al. 2007],
Arca et al. used segments of 2D face around the eyes and nose to extract 3D profiles.
Inspired by these tasks and the one by Perrot |Perrot 1996] on facial anthropomet-
ric measurements, a feature vector is generated including distance representing the
edge length of every two anthropometric points; the angle formed by two edges with
one same endpoint; and the ratio between horizontal nose width and vertical nose
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Figure 4.6: The preprocessed face sample with manual landmarks.

height. It is important to note that the measurements are on an absolute scale (mm)
instead of a relative scale (pixels).

Since we focus on study of feature distinctiveness and the benefit of their fusion
for face recognition, we manually landmarked 15 fiducial points onto 3D face models
as accurately as possible (as shown in Fig. 4.6) to reduce the impact by erroneous
registration. Based on these landmarks, a coarse to fine alignment process is used
to correct 3D pose. The coarse step utilizes eleven facial landmarks located on the
upper part of the face model and applies SVD to recover 3D rotation and translation
in a rigid transformation. At the fine step, ICP is applied for surface matching and
to improve the estimates of translation and rotation parameters.

All extracted features are then fed into Sparse Representation Classifier (SRC)
to calculate similarity scores. Table 4.1 lists rank-one recognition rates of individual
features using SRC on the FRGC v2.0 dataset. It is worth noting that in the Gabor
filters, 5 scales and 8 orientations are exploited; while in the LBP operator, we set
the number of sampling points at 16 and the radius of neighborhood at 2.

From Table 4.1, we can see that all the individual 3D and 2D features do not
provide enough distinctiveness for representing faces, only displaying 79.72% with
the best 3D feature by tangent vectors and 77.89% with the best 2D feature by
Gabor filters. Table 4.1 also displays the performance of each feature in the case
of Neutral vs. Neutral. As we can see, all the features, either 3D or 2D, achieve
better performance than the case of Neutral vs. All. Still, none of these 3D or 2D
features reports enough distinctiveness for face recognition, and the best rank-one
recognition rate is 89.64% by tangent vectors. With an average gain of about 10
percent, the most significant improvement is achieved by 3D features, confirming
the intuition that 3D facial shape descriptors are much more sensitive to facial
expression variations than 2D features. This intuition is further confirmed by figures
which evidences performance degradation is much greater for 3D features than the
2D ones in the case of Neutral vs. Non-Neutral.

Before fusion, it is important to normalize scores achieved by different types of
features aiming at mapping scores into a common scale and range.
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Table 4.1: Rank-one recognition rates of individual features using SRC on the FRGC
v2.0 database according to three experimental protocols: (I) Neutral vs. All; (II)
Neutral vs. Neutral; and (III) Neutral vs. Non-neutral.

Different Features | 1T | II [ 1O

2D: Gabor Filters 77.89% | 84.59% | 69.40%
2D: LBP 71.82% | 78.83% | 63.06%
2D: Intensity Image 49.82% | 56.85% | 40.91%
3D: Anthropometric Measurements || 46.48% | 55.99% | 34.44%
3D: Gaussian Curvature 59.02% | 73.67% | 40.46%
3D: Mean Curvature 71.62% | 85.25% | 54.35%
3D: Maximum Curvature 67.81% | 82.57% | 49.10%
3D: Minimum Curvature 66.73% | 81.05% | 48.59%
3D: Binormal Vectors 70.63% | 84.49% | 53.07%
3D: Normal Vectors 70.01% | 83.78% | 52.56%
3D: Tangent Vectors 79.72% | 89.64% | 67.16%

Specifically, we denote the raw matching similarity score as s, from a set S of
scores produced by different features, and its corresponding normalized score as n.
Three normalization approaches are explored and compared.

Min-Max (MM) [Godil et al. 2005] [Mian et al. 2006b] [Snelick et al. 2005] maps
matching scores to the range of [0, 1]. The function maz(s) and min(s) specify the
maximum and minimum of the score range respectively:

e 5~ min({?’) (4.6)

max(s) — min(s)
Z-Score (ZS) [Godil et al. 2005] [Snelick et al. 2005] transforms all the similarity
scores to a distribution with the mean of 0 and the standard deviation of 1. The
operators mean(s) and std(s) denote the arithmetic mean and standard deviation

respectively:

5 —mean(s)
n= T td(s) (4.7)

Tanh (TH) [Godil et al. 2005] [Snelick et al. 2005] provided by so-called robust
statistical techniques, converts matching scores to the [0, 1] range:

x 0.01) + 1] (4.8)

Their combination is achieved at the score level (Sum Rule) as well as decision
level, and their results are shown in Table 4.2. This result further confirms that 3D
and 2D features are complementary modalities whose fusion can improve the final
decision.
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Table 4.2: Rank-one recognition rates of different score normalization methods with
different fusion schemes.

Fusion Scheme H Max-Min ‘ Z-Score ‘ Tanh
Decision Level Fusion 88.87%
Score Level Fusion 87.49% | 85.12% | 86.44%

4.6.3 Identification and Verification

Unlike the previous experiment, to evaluate our proposed approach, we did not use
any manual landmarks and perform registration. In this experiment, we set the ra-
dius value of OGMs at 1.0 and 1.5 for facial range and texture images respectively.
In the literature, many tasks addressed the problem of 2D or 3D face recognition
and used the FRGC v2.0 database for evaluation. Table 4.3 lists performance com-
parisons between the proposed approach and several existing features only utilizing
2D texture images for face recognition; while Table 4.4 lists a comparison between
our method and the state of the art results only using facial range images or 3D
face models for the same task.

It should be noted that as shown in Table 4.3, the results based on eigenface, LBP
histogram, and Gabor filters are directly cited from the last experiment, which were
achieved based on optimized parameters and the Sparse Representation Classifier
(SRC). When SIFT-based matching was directly applied on original texture images,
the accuracy is 79.3%, while if we exploited the proposed OGM instead, the accuracy
was improved to 95.9%, which highlights its effectiveness to describe local texture
changes. We also investigated the LBP face (8 sampling points and the same radius
value as in OGMs) in the same framework, but it only reported a recognition rate of
44.8%, and the reason probably lies in the fact that illumination changes add much
noise which degrades the performance of LBP.

On the other hand, Table 4.4 compares our approach with several existing sys-
tems for 3D face recognition. Similarly, we also operated SIFT-based matching on
raw facial range images, but it did not achieve a reasonable performance, because
the detected keypoints on original range images are too limited, and usually located
on the face border as shown in Figure 4.4. While, in this case, LBP face enhances
the distinctiveness of facial range image, and improves the accuracy to 80.1%. As
we can see in Table 4.4, the performance of the proposed approach is comparable
to those of the state of the art in 3D face recognition.

Table 4.3 and 4.4 both illustrate that the proposed OGMs enhanced local texture
and shape variations leading to satisfying recognition results.

Table 4.5 compares the proposed approach with the state of the art on both face
recognition and verification tasks by using textured 3D face models. In recognition,
the rank-one recognition rate of the proposed approach outperforms all the others,
while in the scenario of verification, the achieved verification rate at FAR = 0.1%
is only slightly weaker than that in [Mian et al. 2007]. However, in this work, we
did not perform costly 3D face registration in the preprocessing step while an ICP
based fine registration step was always required as in [Mian et al. 2007| etc.
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Table 4.3: Comparisons with the state-of-the-art using only 2D face data.

2D Approaches H Rank-One Recognition Rate
Eigenface 49.8%
LBP Histogram 71.8%
Gabor 77.9%
Original Texture + SIFT 79.3%
Texture LBP Face + SIFT 44.8%
Texture OGMs + SIFT 95.9%

Table 4.4: Comparisons with the state-of-the-art using only 3D face data.

3D Approaches H Rank-One Recognition Rate
Chang et al. [Chang et al. 2005a] 91.9%
Cook et al. [Cook et al. 2006a] 94.6%
Kakadiaris et al. [Kakadiaris et al. 2007] 97.0%
Mian et al. [Mian et al. 2007] 96.2%
Mian et al. [Mian et al. 2008] 93.5%
Huang et al. [Huang et al. 2010b] 79.3%
Alyuz et al. [Alyuz et al. 2010] 97.5%
Huang et al. [Huang et al. 2011a] 97.2%
Original Range 4 SIFT NA
Range LBP Face + SIFT 80.1%
Range OGMs + SIFT 95.9%

4.6.4 Radius Analysis of Neighborhood Area

Recall that complex neurons respond to gradient information within a given neigh-
borhood which is defined as a circular region in our implementation. In our ex-
periments, we tested different values of radius R and studied their impact on final
performance of both facial texture as well as range images. Table 4.6 and 4.7 sum-
marizes the results with different radius values applied to texture OGMs and range
OGMs respectively in eight orientations. Meanwhile, in order to illustrate the effec-
tiveness of the proposed fusion scheme, we compared its results with those calculated
using the technique as in [Mian et al. 2008]. In Table 4.6 and 4.7, "Fusion I" denotes
the results with the weighted sum rule in [Mian et al. 2008]; while "Fusion II" lists
performance using the proposed optimized weighted sum fusion strategy.

As we can see in Table 4.6 and 4.7, using the neighborhood area with a smaller
radius generally achieves a better result. For facial range images, when the radius
value was set at 1.0, the best performance was reached. On the other hand, for facial
texture images, the highest accuracy was obtained when R = 1.5. Compared with
the fusion technique marked as "Fusion 1", the proposed optimized fusion (Fusion II)
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Table 4.5: Comparison with the state-of-the-arts using textured 3D face data.

Textured 3D Systems H Rank-one RR ‘ VRQFAR—=0.1%
Maurer et al. [Maurer et al. 2005] NA 95.8%
Husken et al. [Husken et al. 2005] NA 97.3%
Mian et al. [Mian et al. 2007] 96.1% 98.6%
Mian et al. [Mian et al. 2008] 97.4% 99.3%
Gokberk et al. [Gokberk et al. 2008] 95.5% NA
Xu et al. [Xu et al. 2009] NA 97.5%
Ben Soltana et al. [Ben Soltana et al. 2010] 95.5% 97.0%
Texture OGM -+ SIFT 95.9% 97.3%
Range OGM -+ SIFT 95.5% 97.1%
Multi-Modal OGM +SIFT 98.0% 98.9%

strategy always slightly performs better. Considering that the FRGC v1.0 dataset
does not include the variations of facial expressions, which is different from the face
models in the test set, i.e. the FRGC v2.0 dataset, the weights for combination can
be further improved by using a dataset with more expressive face models.

Table 4.6: Results when using different neighborhood area radius R on texture faces.

Texture [R=10[R=15]|R=20{R=25|R=30[R=35
OGM, 78.00% | 81.42% | 82.60% | 83.23% | 83.56% | 83.20%
OGM, 83.08% | 84.69% | 86.19% | 85.31% | 84.61% | 83.51%
OGM3 85.17% | 87.18% | 87.49% | 87.97% | 87.63% | 87.09%
OGM, 86.22% | 87.49% | 88.62% | 87.77% | 87.49% | 86.33%
OGM; 80.06% | 81.90% | 83.65% | 82.43% | 82.15% | 80.66%
OGMg 80.74% | 82.97% | 84.89% | 86.02% | 85.77% | 85.03%
OGM7 84.44% | 86.02% | 85.26% | 85.63% | 84.67% | 82.01%
OGM 84.19% | 85.63% | 86.39% | 87.46% | 86.64% | 85.99%
Fusion I || 95.31% | 95.74% | 95.51% | 95.51% | 95.54% | 94.38%
Fusion IT || 95.45% | 95.85% | 95.54% | 95.71% | 95.76% | 94.78%

4.6.5 Evaluation on Facial Expression Variations

In this experiment, the probe face scans were divided into two subsets according to
their expression labels to evaluate its insensitiveness to facial expression variations
as we did in the last chapter. The first subset contains the facial scans with the neu-
tral expression; while the other with face scans possessing non-neutral expressions.
Therefore, besides the experiment of Neutral vs. All, two additional experiments of
Neutral vs. Neutral and Neutral vs. Non-Neutral were carried out as well. In the
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Table 4.7: Results when using different neighborhood area radius R on range faces.

Range [[R=10[R=15|R=20|R=25[R=30[R=35
OGM, 79.95% | 80.54% | 80.68% | 78.96% | 76.76% | 74.10%
OGM, 84.33% | 83.95% | 82.91% | 81.30% | 78.68% | 76.67%
OGM; 89.04% | 88.84% | 87.97% | 87.01% | 85.37% | 84.16%
OGM, 85.09% | 85.43% | 83.71% | 82.10% | 79.70% | 78.17%
OGM; 82.91% | 83.39% | 82.58% | 81.05% | 78.62% | 76.28%
OGMg 89.24% | 88.93% | 87.18% | 85.43% | 83.96% | 82.15%
OGM7 84.75% | 84.24% | 82.01% | 79.53% | 76.73% | 72.83%
OGMsg 88.20% | 88.68% | 86.90% | 85.65% | 84.07% | 81.73%
Fusion I | 95.14% | 94.55% | 93.67% | 92.26% | 91.10% | 90.06%
Fusion II || 95.48% | 94.94% | 94.07% | 92.54% | 91.67% | 90.43%

Table 4.8: Rank-one face recognition rates using the facial expression protocol on
the FRGC v2.0 dataset.

Different Systems H Subset I ‘ Subset 11 ‘ Degradation
Mian et al. [Mian et al. 2008] 99.4% 92.1% 7.3%
Ben Soltana et al. [Ben Soltana et al. 2010] || 98.6% 90.7% 7.9%
Texture OGM + SIFT 98.8% 92.1% 6.7%
Range OGM -+ SIFT 98.5% 91.7% 6.8%
Multi-Modal OGM +SIFT 99.6% 96.0% 3.6%

Subset I: Neutral vs. Neutral
Subset II: Neutral vs. Non-Neutral

Neutral vs. Neutral and Neutral vs. Non-Neutral experiment, only the neutral and
non-neutral probe subsets were used, respectively.

Using the same experimental protocol, we also compared the performance of the
proposed method in face recognition with the one by Mian et al. [Mian et al. 2008]
and Ben Soltana et al. [Ben Soltana et al. 2010] for robustness analysis on expres-
sion variations (see Table 4.8). The results of our approach are 99.6% and 96.0%
for Neutral vs. Neutral and Neutral vs. Non-Neutral experiment, respectively. The
recognition rate on the first subset is comparable to the state-of-the-art, while we
made great progress on the second subset, displaying a rank-one recognition rate of
96.0%. The degradation when non-neutral facial expression models were included
drops by 3.6%, which is much lower than 7.3% in [Mian et al. 2008] and 7.9% in
|Ben Soltana et al. 2010] as both shape and texture clues were combined. These
results suggest that our method tends to be insensitive to facial expression changes.
Table 4.9 lists the robustness comparison in face verification task, similar conclusions
can be drawn.
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Table 4.9: Comparison of face verification rates at 0.001 FAR using the facial ex-
pression protocol on the FRGC v2.0 dataset.

Different Systems H VR 1 ‘ VR 11 ‘ VR 111
Mian et al. [Mian et al. 2008] || 97.4% | 99.9% | 92.7%
Texture OGM + SIFT 97.3% | 99.7% | 93.7%
Range OGM + SIFT 97.1% | 99.4% | 93.5%
Multi-Modal OGM 4-SIFT 98.9% | 99.9% | 97.1%

VR I: Neutral vs. All
VR II: Neutral vs. Neutral
VR III: Neutral vs. Non-Neutral

Meanwhile, the accuracies of 2D modality are always slightly better than those
of 3D based one, suggesting that 2D modality tends to be more insensitive to facial
expression variations than its 3D counterpart.

Fig. 4.7 indicates verification rates by the ROC curves in these three experiments
in Table 4.9.

4.6.6 Evaluation on Twins

In the 3DTEC database, we arbitrarily labelled one person in each pair of twins as
Twin A and another one as Twin B, and then performed four experiments with the
different settings of gallery and probe sets as shown in Table 4.10.

Table 4.10: List of experiments performed on the 3DTEC dataset.

No. | Gallery \ Probe

Exp.1 A Smile, B Smile | A Neutral, B Neutral
Exp.IT || A Neutral, B Neutral | A Smile, B Smile

Exp.III|| A Smile, B Neutral | A Neutral, B Smile
Exp.IV || A Neutral, B Smile | A Smile, B Neutral

Experiment I has all of the facial images with a smiling expression in the gallery
and the ones with a neutral expression as the probe. Experiment II reverses these
roles. We thus assessed the ability of the proposed approach to distinguish between
twins in some gallery, when the probe and the gallery facial images have different
expressions.

Experiment III has Twin A smiling and Twin B neutral in the gallery set but
with Twin A neutral and Twin B smiling as the probe. Experiment IV reverses these
roles. This models a scenario where the system does not control for the expressions
of the subject in the gallery set and the probe has the same expression as his twin
in the gallery but not the same expression as his image in the gallery.
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Figure 4.7: ROC curves using texture OGMs, range OGMs, and Multi-Modal OGMs
respectively in the experiments with neutral faces enrolled: (a) Neutral vs. All. (b)
Neutral vs. Neutral. (¢) Neutral vs. Non-neutral.
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Table 4.11: Rank-one face recognition rates of four experiments on the 3DTEC
dataset.

Rank-one Recognition Rate [ RR I|RR II | RR III | RR IV

Texture OGM -+ SIFT 95.8% | 96.3% | 92.1% | 92.5%
Range OGM -+ SIFT 91.6% | 93.9% | 69.2% | 71.0%
Multi-Modal OGM +SIFT | 96.3% | 96.3% | 88.8% | 88.8%

Table 4.12: Face verification rates of four experiments at 0.1% FAR on the 3DTEC
dataset.

Verification Rate |[VRI[VRII|VRIII|VR IV
Texture OGM + SIFT 96.7% | 96.7% | 93.0% | 93.5%
Range OGM + SIFT 94.9% | 94.4% | 68.7% | 69.2%
Multi-Modal OGM +SIFT || 96.7% | 96.7% | 88.3% | 89.7%

Table 4.11 and Table 4.12 demonstrate the accuracies of texture OGMs, range
OGMs, as well as multi-modal OGMs in two scenarios respectively, i.e. face recogni-
tion and verification. In the first two experiments in both scenarios, all subjects are
enrolled with a 3D facial scan that has one expression, and all recognition attempts
are made with another expression. Thus, the difference in expression between gallery
and probe is the same for all subjects. As we can see, the results of recognition and
verification for twins exceed 90% for both texture and range OGMs, and texture
OGMs perform better than range OGMs. While in the more challenging two of the
four experiments, the facial expression differs between the gallery images and also
between their probe images of the twins. In these experiments, texture OGMs still
provide satisfying accuracies which are higher than 90%, but the performance of
range OGMs is dramatically degraded, proving that, 3D modality is more sensitive
to facial expression variations than 2D modality. When combining the two modal-
ities, we find that in the first two experiments of both scenarios, the multi-modal
based results are slightly improved, however, in the other two, the final performance
is not as good as that of 2D modality, since the accuracy differences between two
modality are too large, which can be regarded as a special case that combining 2D
and 3D information is not always an effective way to improve system performance.

4.6.7 Matching Examples

Figure 4.8 depicts some examples of SIFT based local face matching using texture
information. As we can see, 28 pairs of keypoints are matched between the original
facial texture images of the same person, while 1 pair of keypoint is matched between
those from different persons. When using the OGMs instead of the original texture
information, in each pair of corresponding OGMs from the same person, we can find
a certain number of matched keypoints, leading to a total number of 139 between the
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same person by summing the number achieved in each OGM pair; on the other hand,
the total number of texture OGM pairs from different persons is only 7, illustrating
that the inter-class dissimilarity is enlarged. Meanwhile, we can also see that the
matched points of each OGM pair do not have the same distribution, and they thus
contain complementary information to each other.

The matching examples using depth information are shown in Fig. 4.9. A similar
phenomenon can be found as in Fig. 4.8. Using the OGMs to replace the original
facial range images as the system input, the wrong matching relationship between
original facial range images can be corrected.

4.6.8 Computation Cost

Because more keypoints are detected from texture OGMs than from range OGMs,
the computation cost of the matching process in similarity calculation between facial
texture images is higher than that between facial range images. An unoptimized im-
plementation of the proposed approach with MATLAB (R2010a) can perform about
280 and 410 matches between texture and range face pairs per second respectively,
using a machine using Intel(R)Core(TM) i7 CPU (3.07 GHz) and 8 GB RAM.

4.7 Summary

This chapter proposed a novel biological vision-inspired facial representation, namely
Oriented Gradient Maps (OGMs), and we then applied it to both facial texture and
range images for the issue of textured 3D face recognition. As compared with other
intermediate facial description, for instance, Eigenface or Fischer face, the proposed
OGMs simulate the response of complex neurons to gradient information in different
orientations within a given neighborhood, thereby highlighting local details of facial
range and texture images and increasing their distinctiveness. When compared with
LBP faces that also encode the difference between a central pixel and its neighbors,
the OGMs are more informative as they take into account gradient information in
several directions. The OGMs are also likely less sensitive to noise than LBP faces
because gradient information is summarized within a neighborhood convolved by a
Gaussian kernel. Finally, OGMs also possess the properties of being robust to affine
illumination and geometric transformations. Additionally, the designed score level
fusion strategy further improved the final result when combining the results of OGMs
of different orientations as well as fusing the accuracies of these two modalities. The
experiments carried out on the FRGC v2.0 database showed the efficiency of the
proposed method. On the other hand, the experimental results achieved on the
3DTEC dataset illustrate that 3D modality is more sensitive than 2D based one.
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Figure 4.8: Matching examples using original facial texture images and their OGMs:
(A) matching faces of the same subject; (B) matching faces of different subjects.
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Figure 4.9: Matching examples using original facial range images and their OGMs:
(A) matching faces of the same subject; (B) matching faces of different subjects.
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CHAPTER 5

Asymmetric Face Recognition

5.1 Introduction

3D face recognition has emerged as a major alternative to handle the unsolved issues
for reliable face recognition, i.e., illumination and pose changes, and in chapter 3
and 4, we have introduced two methods for only 3D shape and textured 3D based
face recognition respectively. However, 3D methods are currently limited by their
data acquisition and computation cost.

More recently, asymmetric 3D-2D face recognition has attracted increasing inter-
ests [Riccio & Dugelay 2005, Rama et al. 2006, Yang et al. 2008, Huang et al. 2009,
Huang et al. 2010a], because it is expected to limit the use of 3D face data where
it really helps to improve face recognition performance. In contrast to these tra-
ditional 2D, 3D and multi-modal face recognition techniques that require gallery
and probe data to possess similar properties: e.g. 2D/3D, color/gray, or even to be
captured by the same type of camera sensors, the asymmetric 3D-2D face recogni-
tion approaches assume that the gallery set contains 3D face data, but the probe
set only consists of 2D facial images, which makes them more likely to be used in
real-time environment than 3D based ones. Meanwhile, several novel applications,
namely asymmetric |[Riccio & Dugelay 2005, Huang et al. 2009, Huang et al. 2010a]
or heterogeneous [Wang et al. 2009, Liao et al. 2009] facial image analysis, match
faces between different types of data, which can be related by applying techniques
[Reiter et al. 2006, Lei & Li 2009]. Therefore, it is possible to obtain the relation-
ship between 2D and 3D face data.

Up to now, few tasks in the literature have addressed such a problem on asym-
metric 3D-2D face recognition. Rama et al. [Rama et al. 2006 proposed the Partial
Principle Component Analysis (P2CA) for feature extraction and dimensionality
reduction on both the cylindrical texture representation (3D) in the gallery set and
2D images in the probe set. However, the 3D face data utilized still conveyed texture
information rather than shape clues. In [Riccio & Dugelay 2005], Riccio et al. used
pre-defined control points to compute several geometrical invariants for 2D /3D face
recognition. But it is really difficult to accurately locate these keypoints on both 2D
and 3D facial data. More recently, Yang et al. [Yang et al. 2008] proposed a patch
based Kernel CCA to learn mappings between facial range and texture images. Yet,
their results still can be improved if we can represent both texture and range faces
more comprehensively. Furthermore, all the tasks above partially relied on 2D faces;
nevertheless, none of them provided reliable performance when lighting condition or
pose status changes.

This chapter introduces an asymmetric 3D-2D face recognition approach, aiming
to achieve better performance than 2D based methods and comparable accuracies as
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3D based ones do while keeping computational cost under control. The experimental
results on the entire FRGC v2.0 database clear illustrate that the effectiveness of
the proposed method.

The contributions of this study are fivefold:

(1) A novel framework for asymmetric 3D-2D face recognition is proposed. It
uses textured 3D face models for enrollment, whilst only 2D facial images for identi-
fication. Compared with the state of the art which only exploited single type of 3D
data in the gallery set such as cylindrical texture images and facial range images,
this framework considers more clues to improve system performance;

(2) We investigate to encode local texture and shape variations into Multi-Scale
Local Binary Patterns (MS-LBP) space, where the relationship between 2D and 3D
information can be better established;

(3) A new biological vision-based facial representation, namely Oriented Gradi-
ent Maps (OGMs), is further employed to represent local texture changes of 2D faces
and local geometric variations of 3D faces simultaneously and comprehensively;

(4) An effective preprocessing pipeline is introduced to deal with illumination
and pose changes based on Logarithmic Total variation (LTV) [Chen et al. 2006] and
Active Appearance Model (AAM) [Cootes et al. 2001| respectively, which greatly
improves the robustness of the entire asymmetric face recognition system;

(5) To the best of our knowledge, almost all the methods for asymmetric 3D-2D
face recognition were evaluated either on a small private database or a subset of a
public one; therefore, it is very difficult to compare their performance and test their
robustness when a comprehensive database is utilized. All the experiments in this
chapter are carried out on the complete FRGC v2.0 dataset [Phillips et al. 2005] for
later possible comparisons.

The remainder of this chapter is organized as follows. The overall framework of
both the training and test stages in the proposed method is presented in section 5.2.
Section 5.3 introduces the preprocessing pipeline, and section 5.4 describes the MS-
LBP and the biological vision-based facial representations. Section 5.5 depicts the
asymmetric face recognition approach in detail. Experimental results are discussed
and analyzed in section 5.6. Section 5.7 concludes this chapter.

5.2 Method Overview

The training and test stage frameworks are illustrated in Figure 5.1 and Figure 5.2
respectively.

At the training stage (Fig. 5.1), textured 3D face models, each of which contains
a densely registered facial texture image and 3D facial point-cloud, are required. For
each face model, there are totally 64 manually landmarked fiducial points. In 2D
phase, AAM is constructed using illumination normalized 2D facial texture images;
while in 3D phase, all point-clouds are first registered to a selected reference 3D face
model, and then facial range images are extracted. According to these corresponding
manual landmarks, all the texture and range faces are transformed to the mean face
shape generated by AAM. The local texture changes of resulted 2D faces and local
shape variations of 3D ones are accurately represented by Oriented Gradient Maps
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(OGMs). Four PCA based subspaces are further produced from the sample sets of
facial texture images, facial range images, as well as their different OGMs. In the
end, Canonical Correlation Analysis (CCA) |[Hardoon et al. 2004] is introduced to
learn the mapping between corresponding PCA subspaces of the OGMs belonging
to 2D and 3D data respectively.

Training Set

3D Facial 2D Facial
Point-Cloud Texture Image
T T
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Texture Image
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Figure 5.1: Training stage framework.

At the test stage, the preprocessing and facial representation steps are the same
with those in training. Since one facial range image and its corresponding 2D coun-
terpart are extracted from each 3D face model, the classification step hence contains
two separate matching processes: 1) 3D-2D matching and 2) 2D-2D matching. As
shown in Fig.5.2, for 3D-2D matching, CCA is adopted to compute similarity mea-
surements between the OGM-based features of facial range images in the gallery set
and those of facial texture images in the probe set. For 2D-2D matching, the LBP
histogram based features are extracted from OGMs of facial texture images in the
gallery and probe set respectively, and then Sparse Representation Classifier (SRC)
[Wright et al. 2009] is applied to compute their similarity measures. Finally, both
scores are fused for final decision.

For comparison, we also investigate the discriminative power of Multi-Scale Local
Binary Pattern (MS-LBP) to describe both the local texture and shape information.
Similar to OGMs, in 3D-2D matching, we firstly generate the MS-LBP Face Maps
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Figure 5.2: Test stage framework.

(MS-LBP-FMs) of original facial texture and range images, and the similarity scores
are then calculated in CCA subspaces. While in 2D-2D matching, LBP histograms
are directly extracted from original 2D facial images to measure their similarities.
The similarity scores of both steps are combined to provide the final result.

Furthermore, all operations on gallery face data are off-line, including illumina-
tion normalization and AAM fitting on facial texture images; ICP-based registration
for 3D facial point-clouds; transforming both facial range and texture images to the
mean shape as pose correction; the OGMs generation of facial texture and range im-
ages; as well as LBP and PCA based feature extraction. Meanwhile, the operations
on probe faces are on-line, containing the preprocessing pipeline, OGMs production,
LBP and PCA based feature extraction, 2D-2D and 3D-2D matching score calcula-
tion as well as score combination. See Figure 5.2 for more details (on-line processes
are marked in blue).

5.3 Data Preprocessing

In the process of asymmetric 3D-2D face recognition, both the 2D and 3D face data
are utilized. In this section, we propose an effective pipeline for data preprocessing,
containing illumination normalization and pose correction. The former part is only
designed for 2D facial images, while the latter is for both 2D and 3D face data.

5.3.1 2D Preprocessing

LTV [Chen et al. 2006] is applied to normalize illumination variations since it works
on any single image without any prior information about 3D face geometry or light-
ing sources. LTV not only inherits the ability from the TV-L1 model to decompose
a facial image f into a large-scale output u and a small-scale output v, but also has
its properties of edge-preserving and multi-scale additive signal decomposition.
The LTV model is based on a general multiplicative lighting reflectance theory:
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Figure 5.3: The upper row presents original 2D facial images; the middle row shows
illumination normalized ones; and the bottom row lists the samples after pose cor-
rection.

where [ is the reflected light intensity, p is the surface albedo, and S is the lighting
amount. Using logarithm transform on eq. 5.1, the LTV model can be described as
follows:

f(,y) = log(I(2,9)) = log(p(a,y) + log(S(z, ) (52)
w* = argmin{ [ [Vul + X7 - ul,) (5.
vt =f—u* (5.4)

where [ |Vul is the total variation of u, and A is a scalar threshold on scale. In eq.
5.3, minimizing [ |Vu| would make the level sets of u have simple boundaries and
minimizing || f — u||; would ensure the approximation of uw to f. S and p can thus
be approximately estimated by solving eq. 5.5:

S~ exp(u®), p~exp(v") (5.5)

The middle row of Figure 5.3 shows several LTV based illumination normalized
samples of 2D facial images.

After the step of the LTV based illumination normalization, AAM is applied to
correct pose variations of 2D facial images. A training set is required to produce an
AAM. The AAM fitting approach referred to [Matthews & Baker 2004]; and its im-
plementation is achieved thanks to the source code provided by DTU [DTU-AAM |.
The bottom row of Fig. 5.3 lists several face samples after pose correction.
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Figure 5.4: The R-ICP based Registration (best scene in color): (a) rigid region of
textured 3D data; (b) coarse step; (c) fine step.

5.3.2 3D Preprocessing

3D facial surface registration is an important step in 3D face recognition for 3D pose
correction. Based on the AAM fitting result on its corresponding facial texture im-
age, the keypoints of each 3D facial point-cloud can be known. Then, Region based
Iterative Closet Point (R-ICP) [Ben Amor et al. 2006b] is exploited after removing
spikes and filling holes. R-ICP only works on the rigid regions around the nose and
forehead that are considered insensitive to facial expression variations. The registra-
tion adopts a coarse-to-fine scheme. The coarse step uses 11 landmarks of all the 64
keypoints and applies SVD to recover 3D rotation and translation. At the fine step,
ICP is introduced to match rigid surfaces and improve the estimate of translation
and rotation parameters (see Fig. 5.4).

5.4 Facial Description

When all face data are preprocessed, to use both the 2D and 3D data sufficiently, we
encode both of them into certain facial feature space to highlight their distinctive-
ness. In this section, we present two approaches to describe local texton variations
of 2D facial images as well as local geometry variations of 3D based ones, namely
Local Binary Patterns(LBP) and Oriented Gradient Maps (OGMs).

5.4.1 LBP Face based

The LBP methodology has been detailedly introduced in the second chapter. Recall
that there are two ways to adopt LBP for facial representation, i.e. LBP histogram
based and LBP image based. The general concept for the former one is that a facial
image can be considered as a composition of micro-patterns provided by LBP. But
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Figure 5.5: LBP faces of facial texture and range images output by the preprocessing
pipeline using different neighborhoods: the images from left to right are LBP images
generated based on the scale value from 1 to 8 pixels and 8 neighboring points.

LBP histograms calculated over the whole facial region encode only occurrences of
micro-patterns without any indication on their locations. To take into account the
facial shape information as well, the images are proposed to be divided into a certain
number of local sub-regions, from which LBP histograms are then extracted. These
LBP histograms are then concatenated into a single, spatially enhanced histogram,
containing both local texture and global shape information of the face images. The
similarity between two faces can be calculated by comparing the final LBP histogram
based features. An alternative manner is to regard the decimal values of LBP codes
as pixel values to generate another image, namely LBP image, to represent faces.

In 2D-2D face matching, we follow the way for traditional 2D face recognition
as did in [Ahonen et al. 2004], and thus LBP histogram based facial representation
is employed; while in 3D-2D face matching, LBP image based one is utilized. More-
over, to further improve the performance of 3D-2D matching, LBP is used to extract
local texture and shape information within the neighborhood with varying sizes, and
the information of different local regions is then combined to achieve a more compre-
hensive Multi-Scale LBP (MS-LBP) description. See Figure 5.5 for an illustration
of LBP faces of facial texture and range images output by the preprocessing pipeline
using different neighborhoods.

Figure 5.6: OGMs of facial texture and range images output by the preprocessing
pipeline.

5.4.2 OGM Face based

For this application, we also investigate the Oriented Gradient Maps (OGMs) based
facial representation, which has been proposed in the previous chapter for textured
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3D face recognition.

OGMs simulate the responses of complex neurons to gradient information within
a pre-defined neighborhood, and hence can represent both the local texture changes
of 2D faces and local geometric variations of 3D faces simultaneously and compre-
hensively. More technical instructions have been described in detail in section 4.3.
Fig. 5.6 shows the examples of the OGMs of facial texture and range images output
by the preprocessing pipeline.

5.5 Asymmetric Face Recognition

The proposed asymmetric face recognition makes use of two types of face data, i.e.
facial range images and their corresponding 2D facial images in the gallery set; while
only 2D facial images are taken as probes. Therefore, two independent face matching
steps are contained: 3D-2D and 2D-2D. After facial representation, each range and
texture faces are described in their LBP feature space, denoted as {Lgr,, Jry, ---s JR,, }
and {Jr,, J7,, ..., J7, }; where n is the number of different neighborhoods, or in their
OGM feature space, denoted as {Jg,, Jr,, ..., Jr,} and {Jp,, Jn,, ..., J1, }; where o
is the number of quantized orientations.

5.5.1 3D-2D Face Matching

In this step, we compute similarity measurements between probe facial texture im-
ages and gallery facial range images in the LBP image or OGM based feature space.

Specifically, if using LBP images, to one 2D probe facial image Pr, its similarity
with a gallery range face Gt is calculated by firstly computing the matching score
S’ij between each LBP image pair within different neighborhoods: L% and LGi7 i
= {1, 2,..., n}, independently, and then combining them with a fusion scheme.

Similarly, the matching scores SJAZ,Sy can also be calculated between each OGM
pair of certain quantized direction: Jg and Jgﬂ i — {1, 2,..., o}, respectively, which
are finally fused to give an overall result of 3D-2D face matching.

CCA [Hardoon et al. 2004] is a powerful analysis algorithm especially useful for
relating two sets of variables, by maximizing correlation in the CCA subspace. In
this chapter, it is introduced to learn the mapping between each range and texture
LBP image pair (J7; and Jg,) or OGM pair (Jr, and Jg,).

Given N pairs of sample data (z;,y;) of (X,Y), 71— 1,2, ..., N, where X € Ly or
Jr, Y € Li or Jg, with the mean value of zero. The goal of CCA is to learn a pair
of directions w, and w, to maximize correlation between z = wl X and y = wg Y.
In the context of CCA, two projections: x and y are also referred to as canonical
variants. Formally, the directions can be calculated as the maxima of the function:

Elwl XYTw,)
\/E[ngXTwm}E[w;{YYTwy]

b= (5.6)

where E[f(z,y)] denotes empirical expectation of f(z,y).
The covariance matrix of (X,Y) is
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C(X,Y)=E =E

x\/x\" Cxx Cyx \© 57)
where C'x x and Cyy are within-set covariance matrices; C'xy and Cy x are between-
sets covariance matrices.

Hence, p can be rewritten as

wl Cpyw
p= = (5.8)
\/wngwwwgnywy
Let
_ (0 Oy o Cup O
=, ) 2= (0"a,) 59)

It can be shown that the solution W = (w, wyT)T amounts to extremum points
of the Rayleigh quotient:

WTAW

= WTBW (5.10)

r
and the solution w, and w, can be obtained as solutions of the generalized eigen-
problem:

AW = BWA (5.11)

To test new pairs of variables, we project them into CCA subspace: 2’ = wl X’
and y' = wyTY'; and their similarity is calculated by eq. 5.12, and a bigger value of
the measure indicates a higher similarity.

- y/
S y) = ——— (5.12)
[l 1| 1]

5.5.2 2D-2D Face Matching

In this step, facial texture images in the probe set are matched with the ones in the
gallery set.

Considering that the similarity measurement of 3D-2D matching and the one of
2D-2D matching will be further combined for final decision, the scores of both parts
are expected to be complementary to each other. Since the similarity score achieved
in 3D-2D face matching is computed in a holistic way, in this subsection, we exploit
a feature-based approach, LBP histogram based technique, for face matching.
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For LBP based asymmetric face recognition, in this step, LBP histogram based
features are extracted from facial texture images in the gallery and probe set re-
spectively, which are further compared the similarity score of 2D-2D face matching.
For OGM based asymmetric face recognition, LBP histogram based features are
extracted from the OGMs of original texture facial images for similarity computa-
tion. The similarity score of each OGM, Siym, is calculated based on LBP features
of J:ﬁ and Jg, i = {1, 2,..., o} independently, and then all of them are combined
with a fusion scheme. Moreover, We employ Sparse Representation Classifier (SRC)
|Wright et al. 2009] instead of Chi-square distance to compare LBP histogram based
features of two faces.

Sparse representation for signal classification (SRSC) [Huang & Aviyente 2006]
was firstly proposed to incorporate reconstruction properties, discriminative power
as well as sparsity for robust classification. A general classification SRC for 2D face
recognition was presented using sparse representation calculated by L1-minimization
[Wright et al. 2009]. It usually achieves high accuracy when illumination variations
and occlusions occur.

k classes and n; feature vectors, v; ; € Ry, are used for training from the i, class,
i1 =1,2,...,k and j is the index of the training sample, j = 1,2, ...,n;. All training
data from the iz, class are placed in a matrix A; = [v;1,0i2, ..., Vin;] € Rmxn;- A
dictionary matrix A for k classes is developed by concatenating A;, and a new test
pattern y can be represented as a linear combination of all the n training samples
(n=mn; x k):

y=Ax (5.13)

where x is an unknown coefficient vector; from eq. 5.13, it is straightforward that
only entries of x that are non-zero correspond to the class of y. Equation 5.13 can be
solved according to compressed sensing as long as its solution is known sufficiently
sparse. An equivalent L1-norm minimization:

(L1) : zy = argmin ||z||;; Az =1y (5.14)

can be solved as a good approximation to eq. 5.13. With the solution x; of eq. 5.14,
we can compute the residual between a given probe face and each individual gallery
face as:

k
Ri =Y — lez}jvivj (5.15)
J=1 9

The identity of a given probe face is then determined as the one with the smallest
residual R.
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5.5.3 Score Fusion

Because the OGM based facial representation has o quantized gradient orientations,

either for 2D-2D or 3D-2D matching, the similarity measurement FS}qym or FSjlsy

combines the ones of all OGMs (Siym or Sﬁsy).

Meanwhile, in 3D-2D face matching, when applying LBP images, we calculate
similarity scores for different neighborhoods, which are further combined to generate
the MS-LBP based score FS’L%y.

The final similarity measurement of asymmetric 3D-2D face recognition, F, or
Fj, is achieved by further fusing FSfym and FS’;Sy or by fusing FSiym and Fsty.

All the fusion steps in this chapter are computed according to a simple sum rule.
Before that, all the scores are normalized to the interval of [0, 1] by using min-max
normalization and different polarities should be reversed.

5.6 Experimental Results

The experiments were evaluated on the FRGC v2.0 dataset [Phillips et al. 2005|. It
is one of the most comprehensive and popular databases, made up of 4007 textured
3D face models of 466 subjects. After the preprocessing pipeline, all the facial range
and texture images were converted to a pre-defined mean shape, which were further
cropped to 175x190 pixels as the input of the subsequent experiments.

5.6.1 Experiment Design

The first 3D face model containing one facial texture and range image with a neutral
expression from each subject formed a gallery set of 466 samples. The remaining
texture faces (4007-466=3541) were treated as probes.

We designed four special experiments: the first one is to discuss the effectiveness
of the preprocessing pipeline; the second is to test the proposed facial representation,
i.e. LBP and OGM, both in 2D-2D and 3D-2D face matching; the third one is to
analyze the impact of the neighborhood area radius R of OGMs on final performance;
and the last is to show the results of the asymmetric 3D-2D face recognition when
combining the two separate matching steps.

5.6.2 The Effectiveness of Preprocessing Pipeline

To illustrate the effectiveness of our preprocessing pipeline, we launched experiments
on cropped facial images without the preprocessing pipeline for both 2D-2D match-
ing and 3D-2D matching. Specifically, for 2D-2D matching, a holistic method, PCA,
and a feature-based one, LBP, were used for feature extraction, followed by SRC for
classification. While for 3D-2D matching, CCA was employed to classify PCA and
LBP based features. In the LBP operator, we set the number of sampling points at
8 and the distance between the central pixel and its neighbors at 2; meanwhile the
strategy of uniform pattern was adopted.

From Table 5.1, we can see that for both types of facial features, the proposed
preprocessing pipeline is effective to improve the performance in 2D-2D face match-
ing. The improvement on LBP-based histograms is not as great as that based on
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Table 5.1: Rank-one recognition rates of 2D-2D face matching on original cropped
facial images and the ones after preprocessing pipeline using PCA and LBP based
feature classified by SRC.

2D-2D Face Matching H PCA ‘ LBP Histogram

Original Faces 46.68% 75.74%
Preprocessed Faces 78.54% 79.95%

Table 5.2: Rank-one recognition rates of 3D-2D face matching on original cropped
facial images and the ones after preprocessing pipeline using PCA and LBP based
feature classified by CCA.

3D-2D Face Matching | PCA [LBP Image

Original Faces 36.18% 42.42%
Preprocessed Faces 81.70% 76.36%

PCA facial features, because local features generally require less normalization than
the holistic ones do.

As regarding the effectiveness of the preprocessing pipeline in 3D-2D matching,
the conclusion accords with that in the step of 2D-2D face matching and Table 5.2
clearly demonstrates that it largely improves the results of both types of features.

To sum up, the proposed preprocessing method is effective to improve the results
of the PCA and LBP based facial features in both 2D-2D and 3D-2D face matching.

5.6.3 The Performance of Individual Matching Steps

In this experiment, we executed both 2D-2D and 3D-2D face matching on the LBP
and OGM features of facial range and texture images to observe and compare their
performance.

Using LBP features, in the step of 2D-2D face matching, we set the number of
sampling points in the LBP operator at 8, and the radius value varied from 1 to 8
pixels. These LBP operators were directly applied to facial texture images. While in
3D-2D matching, using the same LBP operators as in 2D-2D matching, Multi-Scale
LBP images were generated from the original texture and range images respectively.

Employing OGM features, each facial range or texture image was represented by
a set of OGMs; therefore, as described in Section 5.4, both 2D-2D and 3D-2D face
matching were applied to OGMs of facial range and texture images instead of the
original ones. To calculate OGMs, we set the radius value of OGMs at 1 and the
number of orientations at 8. In its 2D-2D matching step, only the operator LBPZ;Q)
was utilized, and we did not perform MS-LBP in order to save computational cost.

Table 5.4 shows that in 2D-2D face matching, OGM based result (Sym26) which
combines the information of eight orientations is much better than the ones based on
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Table 5.3: The rank-one recognition rate of 3D-2D face matching based on different
facial features using CCA.

3D-2D Matching Accuracy

(Asy01) OGM1 + PCA 0.8772
(Asy02) OGM2 + PCA 0.8726
(Asy03) OGM3 + PCA 0.8582
(Asy04) OGM4 + PCA 0.8644
(Asy05) OGM5 + PCA 0.8630
(Asy06) OGM6 + PCA 0.8690
(Asy07) OGM7 + PCA 0.8421
(Asy08) OGMS + PCA 0.8582
(Asy09) LBPU2 Image + PCA | 0.6461
(Asyl10) LBPU2 Image + PCA | 0.7636
(Asyl1) LBPU2 Tmage + PCA | 0.8128
( )
( )
( )
( )
( )
( )
( )
( )

Asy13 LBPU2 Image + PCA | 0.8492
Asyl4 LBPU2 Image + PCA | 0.8585
Asy15 LBPU2 Image + PCA | 0.8540
Asyl6 LBPU2 Image + PCA | 0.8571
Asyl17 OGMS (Asy(]l Asy08) 0.9404
Asyl8) MS-LBP (Asy09-Asy16)| 0.8700
Asy19) Original Face + PCA 0.8170

8.1)
8,2)
8,3)
Asyl2 LBPUQ) Image + PCA | 0.8328
8,5)
8.,6)
8,7)

single LBP (Sym17-Sym24) and PCA (Sym28) features, and is even superior to that
of MS-LBP by fusing all single LBP results (Sym27). Except the neighborhood of 1
pixel (Sym17) and 8 pixels (Sym24), all the other ones based single LBP histogram
features (Sym18-Sym23) are still better than PCA features (Sym28) when working
on well normalized facial images, and certainly, the performance of MS-LBP largely
surpasses that of PCA.

As applied to each OGM, the PCA based method (Sym09-Sym16) achieves bet-
ter results than LBP does (Sym01-Sym08). However, when combining the similarity
scores of all the eight orientations of the OGMs to calculate the final accuracy, LBP
(Sym25) slightly outperforms PCA (Sym26). To both features, i.e. PCA and LBP
based ones, operating on each OGM and then fusing the similarity measurements
generates much better performance than directly applying on the preprocessed faces.

In 3D-2D matching, by encoding both the local texture and geometry variations
of textured 3D face models, both MS-LBP (Asy18) and OGM (Asy17) provide higher
accuracies than PCA (Asy19) does. The performance combining the similarities of
eight OGMs is better than the MS-LBP image-based one which fuses the scores of
eight different scales as illustrated in Table 5.3. Once again, it proves that combining
information provided by the LBP operators at various scales to achieve the MS-LBP
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facial representation is a promising way to improve the performance of the single
scale LBP.

Table 5.4: The rank-one recognition rate of 2D-2D face matching based on different
facial features using SRC.

2D-2D Matching Accuracy
(Sym01) OGM1 + LBP(U2 o) Histograms 0.8114
(Sym02) OGM2 + LBPEJZ ») Histograms 0.8082
(Sym03) OGM3 + LBP(UQ ») Histograms 0.8018
(Sym04) OGM4 + LBPEJQ ») Histograms 0.8116
(Sym05) OGM5 + LBP?Q ») Histograms 0.8068
(Sym06) OGM6 + LBPEJQ ») Histograms 0.8150
(Sym07) OGMT + LBP(U2 ») Histograms 0.8130
(Sym08) OGMS + LBP’{? ») Histograms 0.8170
(Sym09) OGM1 + PCA 0.8879
(Sym10) OGM2 + PCA 0.8924
(Sym11) OGM3 + PCA 0.8834
(Sym12) OGM4 + PCA 0.8743
(Sym13) OGM5 + PCA 0.8772
(Sym14) OGM6 + PCA (0.8848
(Sym15) OGM7 + PCA 0.8577
(Sym16) OGMS8 + PCA 0.8786
(Sym17) Original Face + LBP( 1) Histograms 0.6854
(Sym18) Original Face -+ LBP%Q) Histograms 0.7995
(Sym19) Original Face + LBP( 3) Histograms 0.8210
(Sym20) Original Face -+ LBP(8 ;) Histograms 0.8503
(Sym21) Original Face + LBP(8 5) Histograms 0.8472
(Sym22) Original Face + LBP%@ Histograms 0.8342
(Sym23) Original Face + LBP(8 7) Histograms 0.7933
(Sym24) Original Face + LBP(8 5) Histograms 0.7388
(Sym25) OGMs (Sym01-08) + LBP(8 5) Histograms| 0.9390
(Sym26) OGMs (Sym09-16) + PCA 0.9365
(Sym27) Original Face + MS-LBP (Sym17-24) 0.8918
(Sym28) Original Face + PCA 0.7854

These experiments of both matching steps clearly show that the proposed MS-
LBP and OGM based descriptions improve the distinctiveness of original facial im-
ages, and thereby lead to the great improvement on the final recognition accuracy.
When comparing OGM with MS-LBP, OGM works even better.
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5.6.4 Radius Analysis of OGM Neighborhood

In our experiments, we evaluated different values of radius R and studied its impacts
on the performance of both 2D-2D and 3D-2D face matching. In 2D-2D matching,
the PCA approach was applied to OGMs for feature extraction, and SRC was further
utilized for classification. In 3D-2D face matching, CCA was introduced to calculate
the similarity scores.

From Fig. 5.7, it is obvious that in both steps of 2D-2D and 3D-2D face match-
ing, when we increase the radius value of the OGM neighborhood, the performance
of each OGM and their fusion degrades. The best results are achieved as the radius
value is set at 1 in both the matching steps.

Table 5.5 and 5.6 list the exact accuracies of each OGM using different values of
radius in 2D-2D matching and 3D-2D matching respectively.

Table 5.5: Results when using different sizes of OGM neighborhood in 2D-2D face
matching.

2D-2D |[R=10[R=15[R=20|/R=25|R=30[R=35
OGM, [ 88.79% [ 88.76% | 87.55% | 86.28% | 85.03% | 83.93%
OGM, || 89.24% | 88.65% | 87.94% | 85.88% | 84.72% | 83.06%
OGMs3 || 88.34% | 87.21% | 86.59% | 85.43% | 84.24% | 83.00%
OGM, || 87.43% | 87.12% | 86.42% | 85.65% | 84.04% | 82.52%
OGM; || 87.72% | 87.24% | 86.47% | 85.77% | 84.50% | 83.17%
OGMg || 88.48% | 88.45% | 87.43% | 86.81% | 85.63% | 84.19%
OGM7 || 85.77% | 85.40% | 84.78% | 83.37% | 82.86% | 82.18%
OGMs || 87.86% | 87.24% | 85.99% | 85.37% | 84.72% | 82.97%
Fusion || 93.65% | 93.56% | 93.50% | 93.48% | 92.74% | 92.40%

Table 5.6: Results when using different sizes of OGM neighborhood in 3D-2D face
matching.

3D-2D |[R=10[R=15[R=20|/R=25|R=30[R=35
OGM, || 87.72% | 86.84% [ 85.00% | 83.99% | 79.07% | 75.85%
OGM, || 87.26% | 86.98% | 85.26% | 80.63% | 77.80% | 75.01%
OGMs3 || 85.82% | 84.72% | 83.87% | 81.73% | 77.89% | 74.36%
OGM, || 86.44% | 85.15% | 83.20% | 80.88% | 79.55% | 76.62%
OGM; || 86.30% | 85.26% | 84.64% | 80.68% | 78.14% | 74.61%
OGMs || 86.90% | 86.56% | 83.39% | 82.49% | 80.06% | 76.84%
OGM7 || 84.21% | 82.94% | 80.74% | 78.68% | 75.57% | 72.61%
OGMs || 85.82% | 85.40% | 84.55% | 80.68% | 79.70% | 77.69%
Fusion || 94.04% | 93.67% | 93.19% | 92.83% | 91.36% | 90.26%
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Figure 5.7: The curves of performance based on different radii of each OGM as well
as their fusion accuracy: (a) 3D-2D matching; (b) 2D-2D matching.
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Table 5.7: Final performance of asymmetric 3D-2D face recognition when combining
2D-2D and 3D-2D matching steps.

Different Fusion ‘Recognition Rate
(FO1): (Sym28) + (Asyl9) 0.8901
(F02): (Sym27) + (Asyl8) 0.9127
(F03): (Sym25) + (Asyl7) 0.9537

5.6.5 Identification of Asymmetric Face Recognition

In order to achieve the overall performance of the proposed asymmetric 3D-2D face
recognition, the similarity measurements of the two separate matching steps, i.e., 2D-
2D and 3D-2D matching, are finally fused. The accuracies of different combinations
are listed in Table 5.7: in both the steps of 2D-2D and 3D-2D face matching, (F01)
denotes that PCA based features are used; (F02) denotes MS-LBP based features
are used; (F03) denotes OGM features are used.

As we can see from Table 5.7 the best performance is achieved by fusing (Sym25)
and (Asy17). Specifically, the result of (Sym25) is based on the LBP histogram based
facial features extracted from OGMs for 2D-2D matching, and (Asy17) is computed
by CCA using the OGMs of facial range and texture images. The MS-LBP based
accuracy is in the second place. These facts clearly prove that both LBP and OGM
based facial description is effective to improve the distinctiveness of original texture
or depth faces. Furthermore, to OGMs, two different types of facial features in two
face matching steps, i.e. (1) local ones, LBP histograms in 2D-2D matching and (2)
holistic ones, PCA in 3D -2D matching are complementary to each other, and their
fusion result is better than either of them.

According to the experimental results, the proposed OGM-based method is com-
petent in representing 2D and 3D facial images, leading to satisfying performance
in both 2D-2D and 3D-2D matching. Meanwhile, the rank-one recognition rate of
the entire asymmetric face recognition system is up to 95.4% obtained on the entire
FRGC v2.0 database, which is better than those of most 2D-2D face recognition
techniques, and not far behind 3D-3D based ones (about 97%).

5.7 Summary

This chapter presented a novel scenario for face recognition, asymmetric 3D-2D face
recognition, making use of textured 3D face models for enrollment while only 2D
facial images as probes. It consists of two separate face matching steps, i.e. 2D-2D
and 3D-2D face matching, and their fusion. To describe local texton as well as shape
variations of textured 3D face models, we firstly investigated Multi-Scale LBP (MS-
LBP) based facial representation. Specifically, in 2D-2D face matching, MS-LBP
histogram based features were extracted and then fed into SRC for classification,
while in 3D-2D face matching, CCA was applied to learn the mapping between MS-
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LBP images of range and texture faces. Then, we improved its performance by a
biological vision-based facial description, namely OGMs. It simulates the response
of complex neurons to gradient information within a pre-defined neighborhood, and
thus can describe local texture changes of 2D faces and local shape variations of 3D
faces. Due to its property of being highly distinctive, OGMs improve the results of
both matching steps of asymmetric face recognition, i.e. (1) 3D-2D matching using
CCA; (2) 2D-2D matching using LBP histogram based features and SRC. Some
comparative experiments were carried out on the complete FRGC v2.0 database, and
the results clearly demonstrate that the asymmetric face recognition outperforms the
traditional 2D intensity image based techniques, while achieves comparable results
to 3D face model based ones but with computational cost under control. Moreover,
the performance also highlights the effectiveness of MS-LBP and OGM for facial
representation and their successful application to asymmetric face recognition.
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CHAPTER 6

Conclusions and Future Work

6.1 Contributions

Nowadays, 3D face models have emerged as a major alternative to solve the unsolved
issues in 2D face recognition, i.e. illumination and pose changes, because they convey
much more useful information than 2D facial images do. This Ph.D. thesis mainly
concentrates on the problem of face recognition by using three dimensional data. In
the first half, we extensively review the milestone techniques in 2D intensity image
based face recognition as well as the recent development in 3D domain. We further
dedicate to three scenarios in face recognition, including only 3D shape based face
recognition, textured 3D face recognition, and asymmetric 3D-2D face recognition.
The contributions in this research work are as follows.

6.1.1 Only Shape based 3D Face Recognition

In only 3D shape-based face recognition, we present an effective and efficient method
by using a novel geometric facial representation along with a local feature matching
scheme. The proposed facial description is based on a set of facial depth maps ex-
tracted by multi-scale extended Local Binary Patterns (eLBP) and enables accurate
and fast representation of local shape changes; it thus enhances the distinctiveness
of generally smooth and similar facial range images. The following matching step
is SIFT-based and performs in a local manner which is further improved by facial
component and configuration constraints. It hence can robustly associate keypoints
between two facial representations of the same individual. This approach displays a
rank-one recognition rate up to 97.6% and a verification rate of 98.4% at a 0.001 FAR
respectively on the FRGC v2.0 database without any registration. Furthermore, ex-
perimental results on the Gavab dataset demonstrate that the entire system is also
robust to partially occluded faces when only aided by a coarse alignment process.
Finally, additional experiments show that this approach is insensitive to facial ex-
pression variations and has a good tolerance to data degradations, such as Gaussian
noise, decimation, and random holes.

6.1.2 Textured 3D Face Recognition

In textured 3D face recognition, we propose a novel biological vision-based facial de-
scription, namely Oriented Gradient Maps (OGMs), aiming to highlight intra-class
and inter-class variations of both facial range and texture images. These generated
OGMs simulate the response of complex neurons to gradient information within a
pre-defined neighborhood and possess the properties of being highly distinctive and
robust to affine illumination and geometric transformation as well. Based on such
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an intermediate facial representation, SIF'T-based matching is further carried out to
calculate similarity scores between a given probe face and the gallery ones. Because
the facial representation generates an OGM for each quantized gradient orientation
of facial range and texture images, we then introduce a score level fusion strategy
which optimizes the weights using a genetic algorithm in a learning step. Tested on
the entire FRGC v2.0 database, the rank-one recognition rate using only 3D or 2D
modality is 95.5% and 95.9%, respectively; while fusing both modalities, i.e. range
and texture-based OGMs, the final accuracy is 98.0%, demonstrating the effective-
ness of the biological vision-based facial description and the optimized weighted sum
fusion. Moreover, the experiment on the 3DTEC database proves that 3D modality
is more sensitive to facial expression variations than 2D modality.

6.1.3 Asymmetric 3D-2D Face Recognition

In order to limit the use of 3D data where they really help to improve the accuracy
of face recognition and thereby avoid the high cost in data acquisition and compu-
tation, we design a novel scenario for face recognition, namely asymmetric 3D-2D
face recognition, making use of textured 3D face models in the gallery set while only
2D facial images as probes. According to such a protocol, this scenario consists of
two separate face matching steps, i.e. 2D-2D and 3D-2D face matching, and their
combination. To describe local texton and geometry variations of textured 3D face
models, we first investigate Multi-Scale LBP (MS-LBP) based facial representation.
Specifically, in 2D-2D matching, MS-LBP histogram based features are extracted
from original facial texture images and then fed into SRC for classification, while in
3D-2D matching, CCA is applied to learn the mapping between corresponding MS-
LBP images of range and texture faces. We then improve its performance by OGMs.
Since they simulate the response of complex neurons to gradient information within
a given neighborhood, they thus can well describe local texton changes of texture
faces and local shape variations of range faces. Due to its property of being highly
distinctive, OGMs improve the results in both matching steps of asymmetric face
recognition, i.e. (1) 3D-2D matching exploiting CCA; (2) 2D-2D matching using
LBP histogram based features and SRC. Some comparative experiments are carried
out on the complete FRGC v2.0 database, and the performance clearly demonstrates
that the proposed asymmetric face recognition outperforms the traditional 2D in-
tensity image based techniques, while achieves comparable results to 3D face model
based ones but with computational cost under control. Moreover, these experiments
also highlight the effectiveness of MS-LBP and OGM for facial representation and
their successful application to asymmetric face recognition.

6.2 Discussions on Different Scenarios

As presented in this thesis, we proposed three approaches in three scenarios of face
recognition respectively, i.e. only 3D shape based face recognition, textured 3D face
recognition, and asymmetric face recognition. They make use of different types of 3D
data either in the offline enrollment step (gallery set) or the online identification step
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Table 6.1: The comparison among the three proposed approaches in three different
face recognition scenarios respectively.

Different Scenarios H Gallery ‘ Probe ‘ Recognition Rate
Only 3D shape based Shape Shape 97.6% (Rank-one)
Textured 3D Shape and Texture | Shape and Texture | 98.0% (Rank-one)
Asymmetric 3D-2D || Shape and Texture Texture 95.4% (Rank-one)

(probe set). We compare their performance in the application of face recognition
on the FRGC v2.0 database.

From Table 6.1, we can see that textured 3D face recognition achieves the best
result because it exploits both the texture and shape clues, and according to the
experiments conducted on the FRGC v2.0 database, we can draw the conclusion that
textured 3D face recognition provides more accurate decisions. While by calculating
similarity scores using geometric information, 3D shape based face recognition takes
the second place, and the performance is only slightly inferior to that of the proposed
multi-modal face recognition system. The asymmetric 3D-2D face recognition does
not work as well as the other two, but its accuracy is not very far behind them.

When considering the efficiency of these three scenarios, although the computa-
tional cost of only shape based face recognition and textured 3D face recognition can
be largely reduced based on the parallel system design, e.g. GPU computing, they
are also limited by the high expenditure of data acquisition and even preprocessing
operations. With out a breakthrough of hardware, they cannot be implemented in
real time (response time less than 1 second) in the near further. In contrast to them,
asymmetric 3D-2D face recognition depending only on 2D facial images for online
identification probably gives an alternative solution which utilizes 3D information
but keep the cost under control.

6.3 Perspectives for Future Work

In this section, possible extensions of this thesis that we envisage are presented.

6.3.1 Advances in 3D Landmarking

Facial landmarks are points of correspondence on faces that matches between and
within populations, and they are expected to possess consistent reproducibility even
in adverse situations such as facial expression and occlusions. These facial landmarks
generally include nose tip, inner eye corners, outer eye corners, mouth corners, etc.
Locating landmarks on 3D faces is a fundamental step in 3D face analysis, especially
for 3D face recognition and 3D facial expression recognition. Most techniques of 3D
face recognition demand a certain number of landmark points to provide a good
initial condition for an ICP-like surface registration.

Even though, the methods of (textured) 3D face recognition proposed in this the-
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sis do not require any registration for nearly frontal faces, they need a coarse align-
ment when facial scans have severe pose changes, and three landmarks (nose tip and
inner eye corners) should be located before that. The method [Szeptycki et al. 2009]
is applied for this aim, and it is effective when all these landmarks are available at
the same time. To some facial scans with extreme pose variations, i.e. left and right
profiles, we still have to manually landmarked several points to roughly correct their
pose.

Current landmarking solutions are mainly based on curvature or symmetry anal-
ysis of facial surfaces, which enable at least finding out the positions of three most
stable points: nose tip and inner eye corners with an excellent precision (above 98%
accuracy within error of 10mm). However, operating on the profiles, they always
fail, because half of the facial surface is missing, its symmetry disappears, and the
ear region also brings in some points whose curvature values are similar to the target
ones. Both the reasons impede the accurate landmarking result. Therefore, a more
powerful technique should be explored to precisely landmark on facial profiles.

6.3.2 Importance Analysis of Facial Regions

It has been investigated in several tasks that different facial regions are of different
importance to the face recognition accuracy, because some of them are relative rigid
to facial expression variations while some of them are not. Base on this conclusion,
we can thereby improve the performance of the first two scenarios in 3D face recog-
nition explored in this thesis, i.e. only 3D shape based face recognition and textured
3D face recognition.

These impacts of different facial regions on face recognition results can be mea-
sured by corresponding weights learned from a special database which contains rich
facial expression variations, such as the BU-3DFE [Yin et al. 2006b] and Bosphorus
[Savran et al. 2008] datasets. For the SIFT-based local matching used in these two
applications, we can assign different weights to the matches between keypoints from
different facial regions to see whether it will lead to an improvement in performance.

6.3.3 Further Investigation in Asymmetric Face Recognition

In the framework of asymmetric face recognition, we apply AAM based pose correc-
tion to facial texture images in the probe set, which is especially critical to the step
of 3D-2D face matching. In our case, considering that the AAM model is built using
nearly frontal faces, the following AAM fitting process is only evaluated on the same
type of facial texture images with good resolutions, which is an ideal condition for
carrying out experiments.

When implement it in the real world, e.g. to identify faces captured by cameras
designed for video surveillance or internet surfing, we will definitely encounter two
main difficulties: i.e. pose (yaw and pitch) changes as well as low resolutions. For the
former one, a potential solution is to construct several individual AAMs in different
poses pre-defined to cover a comprehensive distribution of pose variations similar to
the approach in [Ramnath et al. 2008]; while to address the latter one, the quality of
2D facial images output by the previous detection step should be assessed to make
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the system more robust and flexible.
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CHAPTER 7

Publications

During my Ph.D. studying, I have published twelve publications in international
conferences and one in an international journal. Two journal papers and one French
patent are currently under review. In addition, one journal paper is being finalized.

International Conference:

1. D. Huang, M. Ardabilian, Y. Wang, L. Chen: Asymmetric 3D /2D face recog-
nition based on LBP facial representation and canonical correlation analysis,
IEEE International Conference on Image Processing (ICIP), Cairo, Egypt,
2009;

2. W. Ben Soltana, D. Huang, M. Ardabilian, L. Chen, C. Ben Amar: Com-
parison of 2D /3D features and their adaptive score level Fusion for 3D Face
Recognition, International Symposium on 3D Data Processing, Visualization,
and Transmission (3DPVT), Paris, France, 2010;

3. D. Huang, M. Ardabilian, Y. Wang, L. Chen: Automatic asymmetric 3D-
2D face recognition, International Conference on Pattern Recognition (ICPR)
Istanbul, Turkey, 2010;

4. X. Zhao, D. Huang, E. Dellandréa, L. Chen: Automatic 3D facial expression
recognition based on a bayesian belief net and a statistical facial feature model,

International Conference on Pattern Recognition (ICPR), Istanbul, Turkey,
2010;

5. D. Huang, G. Zhang, M. Ardabilian, Y. Wang, L. Chen: 3D face recognition
using distinctiveness enhanced facial representation and local feature hybrid

matching, IEEE International Conference on Biometrics: Theory, Applications
and Systems (BTAS), Washington DC, USA, 2010;

6. D. Huang, K. Ouji, M. Ardabilian, Y. Wang, L. Chen: 3D face recognition
based on local shape patterns and sparse repre-sentation classifier, Interna-
tional Conference on MultiMedia Modeling (MMM), Taipei, Taiwan, 2011;

7. D. Huang, M. Ardabilian, Y. Wang, L.. Chen: A novel geometric facial rep-
resentation based on multi-scale extended local binary patterns, IEEE Inter-
national Conference on Automatic Face and Gesture Recognition (FG), Santa
Barbara, USA, 2011;



Chapter 7. Publications

8. D. Huang, W. Ben Soltana, M. Ardabilian, Y. Wang, L. Chen: Textured 3D
face recognition using biological vision-based facial representation and opti-
mized weighted sum fusion, IEEE Conference on Computer Vision and Pat-
tern Recognition Workshop on Biometrics (CVPRW), Colorado Spring, USA,
2011;

9. W. Ben Soltana, D. Huang, M. Ardabilian, L. Chen, C. Ben Amar: A mix-
ture of gated experts optimized using simulated annealing for 3D face recog-
nition, IEEE International Conference on Image Processing (ICIP), Brussels,
Belgium, 2011;

10. H. Li, D. Huang, P. Lemaire, J.-M. Morvan, L. Chen: Expression robust 3D
face recognition via mesh-based histograms of multiple order surface differen-
tial quantities, IEEE International Conference on Image Processing (ICIP)
Brussels, Belgium, 2011.

11. H. Li, D. Huang, J.-M. Morvan, L. Chen: Learning Weighted Sparse Rep-
resentation of Encoded Facial Normal Information for Expression-Robust 3D
Face Recognition, IEEE International Joint Conference on Biometrics (IJCB),

Washington DC, USA, 2011;

12. V. Vijayan, K. Bowyer, P. Flynn, D. Huang, L. Chen, M. Hansen, S. Shah,
Omar Ocegueda, and 1. Kakadiaris: Twins 3D Face Recognition Challenge,
IEEE International Joint Conference on Biometrics (IJCB), Washington DC,
USA, 2011.

International Journal:

1. D. Huang, C. Shan, M. Ardabilian, Y. Wang, .. Chen: Local binary pat-
terns and its application to facial image analysis: a survey, IEEE Transactions
on Systems, Man, and Cybernetics, Part C (TSMC-C): Applications and Re-
views, 2011.

International Journal under Review:

1. D. Huang, M. Ardabilian, Y. Wang, L. Chen: 3D Face Recognition us-
ing eLBP-based Facial Description and Local Feature Hybrid Matching, Sub-

mitted to IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI);

2. D. Huang, M. Ardabilian, Y. Wang, L. Chen: Automatic Asymmetric 3D-2D
Face Recognition, IEEE Transactions on Information Forensics and Security
(TIFS).

International Journal to be Finalized:

1. D. Huang, M. Ardabilian, Y. Wang, L. Chen: Textured 3D Face Recognition
based on Oriented Gradient Maps and optimized weighted sum fusion.
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French Patent:

1. L. Chen and D. Huang: Oriented Gradient Maps (OGM) and SIFT-based
Matching for Biometric Applications, B20230.
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