Skip to Main content Skip to Navigation
Theses

Adsorption et dynamique femtoseconde de molécules de CO adsorbées sur des nanoparticules épitaxiées : sonde optique non linéaire, effet de taille et de support

Abstract : We have studied the spectroscopy and excitation dynamics of a hybrid system consisting of molecules and nanoparticles (NPs) on insulating layer, which is also a model catalyst (Pd NPs grown on a thin layer of MgO on Ag(100)). We have highlighted the role of the shape and the NPs size as well as the thickness of the oxide layer in the interaction between NPs and CO molecules, by fundamental experiments allowing to differentiate the adsorption sites (Sum Frequency Generation (SFG)). In addition, pump-probe experiments allowed us to probe the dynamics of interaction between the photoexcited electrons bath in the NPs and the molecules. A combined study by LEED and STM allowed us to determine the growing conditions of MgO film. Subsequently palladium NPs were grown on this film with satisfying density and distribution size. The SFG spectra show a strong dependence of the vibrational frequency with the NPs size and the CO coverage. A dipole interaction model was developed showing that the CO frequency shift with the coverage and the NPs size has two causes: the dipolar interaction between molecules on the one hand, which is modeled, and on the other hand the variation of the molecule-substrate chemical bond when the adsorbate coverage varies. The model has allowed us to show that the vibrational polarizability of CO changes by 40 % in our range of NPs size. The decrease in the strength of the chemical bond results in the decrease of the frequency at zero coverage when the NPs size decreases. These variations are consistent with the literature: upon a decrease in the particle size, the electronic DOS decreases, the Pd-Pd bonds contract and the adsorption energy of CO molecules decreases. The electronic excitation of the NPs and the silver substrate manifested by the spectroscopic response and the CO photodesorption. We observed the decoupling of the electronic excitation produced in silver when the thickness of the oxide layer exceeds a few atomic planes. There is a clear size effect on the efficiency of electronic excitation of NPs on the CO molecules, which decreases as the NPs size decreases. This shows that the effect of electrons confinement in the particle rather consists in an increase in the relaxation rate of electrons to phonons, than in a more efficient excitation of the adsorbed molecules. A double-layer optical model (NP/oxide) on a silver substrate and a three-temperature model (electrons, phonons and adsorbates) have been developed to quantitatively interpret these observations. The optical model results show a very strong variation of the absorption intensity by the layer with its equivalent thickness: variation of the reflection and the effect of multiple interference are not negligible. The three temperatures model results show that the electronic temperature of a continuous layer is two times more important than in the case of finite size NPs.
Complete list of metadatas

Cited literature [102 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00692450
Contributor : Abes Star :  Contact
Submitted on : Monday, April 30, 2012 - 2:57:28 PM
Last modification on : Wednesday, September 16, 2020 - 5:22:45 PM
Long-term archiving on: : Tuesday, July 31, 2012 - 2:31:39 AM

File

VA_GHALGAOUI_AHMED_25012012.pd...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00692450, version 1

Collections

Citation

Ahmed Ghalgaoui. Adsorption et dynamique femtoseconde de molécules de CO adsorbées sur des nanoparticules épitaxiées : sonde optique non linéaire, effet de taille et de support. Autre [cond-mat.other]. Université Paris Sud - Paris XI, 2012. Français. ⟨NNT : 2012PA112014⟩. ⟨tel-00692450⟩

Share

Metrics

Record views

760

Files downloads

937