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Résumé :

Cette thèse a pour objet l’étude de nouvelles méthodes de traitement d’image appliquées
à l’analyse d’images numériques du fond d’œil de patients diabétiques. En partic-
ulier, nous nous sommes concentrés sur le développement algorithmique supportant
un système de dépistage automatique de la rétinopathie diabétique. Les techniques
présentées dans ce document peuvent être classées en trois catégories: (1) l’évaluation
et l’amélioration de la qualité d’image, (2) la segmentation des lésions, et (3) le diag-
nostic. Pour la première catégorie, nous présentons un algorithme rapide permettant
l’estimation numérique de la qualité d’une seule image à partir de caractéristiques ex-
traites de la vascularisation et de la couleur du fond d’œil. De plus, nous démon-
trons qu’il est possible d’augmenter la qualité des images et de supprimer les artefacts
de réflexion en fusionnant les informations extraites de plusieurs images d’un même
fond d’œil (images capturées en changeant le point d’attention regardé par le patient).
Pour la deuxième catégorie, deux familles de lésion sont ciblées: les exsudats et les mi-
croanévrysmes. Deux nouveaux algorithmes pour l’analyse des images du fond d’œil
sont proposés et comparés avec les techniques existantes afin de démontrer leur ef-
ficacité. Dans le cas des microanévrismes, une nouvelle méthode basée sur la trans-
formée de Radon a été développée. Dans la dernière catégorie, nous présentons un
algorithme permettant de diagnostiquer la rétinopathie diabétique et les œdèmes mac-
ulaires en analysant les lésions détectées par segmentation d’image; à partir d’une seule
image, notre algorithme permet de diagnostiquer une rétinopathie diabétique et/ou un
œdème maculaire en ∼ 22 secondes sur une machine à 1,6 GHz avec 4 Go de RAM; de
plus, nous montrons les premiers résultats de notre algorithme de détection d’œdème
maculaire basé sur des images du fond d’œil multiples, qui peut éventuellement per-
mettre d’identifier le gonflement de la macula même si aucune lésion n’est visible.

Mots clés : analyse du fond d’œil, rétinopathie diabétique, œdème maculaire

Abstract :

In this Ph.D. thesis, we study new methods to analyse digital fundus images of di-
abetic patients. In particular, we concentrate on the development of the algorithmic
components of an automatic screening system for diabetic retinopathy. The techniques
developed can be categorized in: quality assessment and improvement, lesion segmen-
tation and diagnosis. For the first category, we present a fast algorithm to numerically
estimate the quality of a single image by employing vasculature and colour-based fea-
tures; additionally, we show how it is possible to increase the image quality and re-
move reflection artefacts by merging information gathered in multiple fundus images
(which are captured by changing the stare point of the patient). For the second cate-
gory, two families of lesion are targeted: exudate and microaneurysms; two new algo-
rithms which work on single fundus images are proposed and compared with existing
techniques in order to prove their efficacy; in the microaneurysms case, a new Radon
transform-based operator was developed. In the last diagnosis category, we have de-
veloped an algorithm that diagnoses diabetic retinopathy and diabetic macular edema
based on the lesions segmented; starting from a single unseen image, our algorithm
can generate a diabetic retinopathy and macular edema diagnosis in ∼22 seconds on a



iv

1.6 GHz machine with 4 GB of RAM; additionally, we show the first results of a macu-
lar edema detection algorithm based on multiple fundus images, which can potentially
identify the swelling of the macula even when no lesions are visible.

Keywords : fundus image analysis, diabetic retinopathy, macular edema
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Chapter1
Introduction

Diabetes is a widespread disease in the industrialized and developing world. Centers

for Disease Control and Prevention (2011) estimate that by 2030,439 million people will

have some form of diabetes world wide. This disease has many adverse effects on the

eyes, nervous system, heart, kidneys and other organs, but the most likely to be affected

first is the retina, hence the patient’ sight. In the United States, diabetes is the leading

cause of new cases of blindness among adults aged between 20 and 74 years old. Be-

tween 2005 and 2008, 4.2 million (28.5%) people with diabetes aged 40 years or older

had diabetic retinopathy, and of these, 655000 (4.4% of those with diabetes) had ad-

vanced diabetic retinopathy that could lead to severe vision loss. These preoccupying

figures also lead to increased costs for the community. In United states, it is estimated

that the average medical costs of people with diabetes is 2.3 times higher than the ex-

penditure for a patient without diabetes. This is likely to be due to the late diagnosis of

diabetes-related conditions, either because of the lack of a specialized centre in an area

nearby the patient or because of the specialized visit costs (Centers for Disease Control

and Prevention, 2011).

The aim of this thesis is to harness and expand the capabilities of digital fundus cam-

eras in order to create an inexpensive and high-throughput automated system to screen

diabetic related retina disease (e.g. diabetic retinopathy and diabetic macular edema).

A system able to correctly referring patients to an expert if a retina condition is detected

would be of great help for diabetic patients, who can be screened remotely and inex-

pensively and ophthalmologists that would not otherwise be able to meet the health

demands of an increasing diabetic population. The state of the art image processing,

pattern recognition and machine learning algorithms have been researched and a series

of new techniques have been developed and tested to reach this goal.

1



2 Chapter 1 Introduction

1.1 Aims and Objectives

The aim of this work is to develop a set of tools for the retina screening of diabetic

patients uniquely with colour fundus images. During these years of research, four

fixed objectives were given:

• Objective 1: develop an automated algorithm to assess the quality of fundus

images.

• Objective 2: develop an algorithm to segment exudates in the context of other

state of the art techniques.

• Objective 3: develop an algorithm to detect microaneurysms in the context of

other state of the art techniques.

• Objective 4: evaluate the algorithms in the context of diabetic retinopathy screen-

ing.

In addition to the previous objectives, the research of other techniques in the context

of diabetic retinopathy screening was encouraged. Therefore, after meeting the initial

objectives two other routes were followed. A complete algorithm to detect diabetic

retinopathy and diabetic macular edema (a dangerous retinopathy complication) from

the lesions segmented was developed. Techniques to extend the functionality of stan-

dard fundus cameras with multiple images were investigated and two methods were

developed: one to detect the swelling of the macula and one to increase the quality of

fundus images after their acquisition.

1.2 Thesis Overview

This thesis is divided in 8 chapters. An outline of each one follows:

• Chapter 2 introduces the basic biological informations required to fully compre-

hend the medical terms and techniques used throughout the thesis; it introduces

the existing systems used to image the retina; it also presents the common image

analysis techniques employed for the analysis of the eye fundus and the existing

automated diagnosis approaches.

• Chapter 3 presents an algorithm to automatically evaluate the quality of a fundus

image.
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• Chapter 4 describes a rule-based method to segment exudates that does not re-

quire training on a labelled dataset. The HEI-MED dataset is introduced and em-

ployed to test the algorithm developed by comparing it to two other rule-based

exudate segmentation algorithms.

• Chapter 5 describes a microaneurysms localization method based on novel appli-

cation of the Radon transform. The algorithm is tested on a public dataset which

allows the comparison with techniques developed by other researchers.

• Chapter 6 leverages the output of the lesion segmentation techniques to gener-

ate two diagnosis, one for diabetic retinopathy and another for diabetic macular

edema. The algorithms are trained and tested on different public datasets one of

which comprises of 1200 images and it provides a good estimation of the effective

performance in a real world screening environment.

• Chapter 7 introduces a new technique to detect the swelling of the macula by

employing multiple fundus images. The technique is validated with a ray-traced

model of the retina/eye/camera and with patient data.

• Chapter 8 presents a retina image enhancer algorithm based on a novel way to

use fundus cameras. Multiple images captured at different angles are employed

to remove artefacts and other unwanted exposure problems.





Chapter2
Background and Significance

"Les grandes personnes ne comprennent jamais rien toutes seules, et c’est fatigant, pour les enfants, de

toujours et toujours leur donner des explications."

- Le Petit Prince, Antoine de Saint Exupéry

This chapter introduces the medical aspects and state of the art image analysis tech-

niques required to fully comprehend the significance of fundus image analysis in dia-

betic patients. First, a general overview of the eye and the retina is given. Then, the

morphology of different retina abnormalities is described. Particular attention is given

to the lesions directly related to retinal diseases typical of diabetic patients. Also, a de-

scription of various types of retinopathy and related diseases are given. An overview

of the public fundus image databases available at the time of writing follows. Of equal

importance, the techniques used to evaluate, compare and contrast the results of the

algorithms are described. Afterwards, a summary of the existing state of the art al-

gorithms for the analysis of the morphology of the retina is given for the following

aspects: normalization, vessel segmentation, optic disc / fovea localization and quality

assessment. Additionally, comparisons of existing microaneurysms and exudates seg-

mentation techniques are presented. Finally, two aspects of retina screening in diabetic

patients are described: the various manual protocols available and current completely

automated techniques for retina screening.

5
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FIGURE 2.1: Global eye’s anatomy.

2.1 the Eye and Retina

2.1.1 Eye’s Anatomy

Vision is arguably the most used of the five senses in the human body. We rely on

our eyes to provide most of the information we perceive about the world, so much so,

that a significant portion of the brain is devoted entirely to visual processing. The eye

is often compared to a camera because of the way it processes light into information

understandable by the brain. Both have lenses to focus the incoming light. A camera

uses the film to create a picture, whereas the eye uses a specialised layer of cells, called

the retina, to produce an image. However the similarity stops here. The eye’s ability

of focus on a wide range of objects having different sizes, luminosity and contrast at a

high speed are more powerful than those of current cameras.

Figure 2.1 shows a schematic view of the anatomy of eye. Light reaches the eye by first

passing through the cornea which filters it, and begins focusing the image. The anterior

chamber contains a viscous substance called aqueous humour, that keeps the front of

the eye firm and slightly curved. Light travels through the pupil, which compensates

for changing light conditions by contracting or relaxing. The muscles responsible for

these movements are in the iris. Subsequently, the lens squeezes or stretches to focus

the rays of light on the retina. The interior surface of the eye, opposite the lens, is called

the fundus (Cassin and Solomon, 1990).
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The retina is a multi-layered sensory tissue that lies on the back of the eye. It con-

tains millions of photoreceptors that capture light rays and convert them into electrical

impulses. These impulses travel along the optic nerve to the brain where they are con-

verted into images. There are two types of photoreceptors in the retina: rods and cones,

named after their shape. Rod cells are very sensitive to changes in contrast even at low

light levels, hence able to detect movement, but they are imprecise and insensitive to

colour. They are generally located in the periphery of the retina and used for scotopic

vision (night vision). Cones, on the other hand, are high precision cells capable of de-

tecting colours. They are mainly concentrated in the macula, the area responsible for

photopic vision (day vision). The very central portion of the macula is called the fovea,

which is where the human eye is able to best distinguish visual details. Whereas loss

of peripheral vision may go unnoticed for some time, damage to the macula will result

in loss of central vision, which has serious effects as illustrated in figure 2.8 (Wyszecki

and Stiles, 1982). All the photoreceptors are connected to the brain through a dense

network of roughly 1.2 million of nerves (Jonas et al., 1992). All nerves leave the eye in

a unique bundle in the optic nerve. In the retina there is a blind spot which is a result

of the absence of retina photoreceptors where the optic nerve leaves the eye.

Many retinal blood vessels supply the nutrients (oxygen and other components) to the

inner and outer layer of the retina. The inner layer accounts for a smaller portion of the

vessels (∼35%), which are visible from the vitreous humour in common fundus images.

The vessels in the outer layer are the source of∼65% of nutrients for the retina, and they

are rarely visible in fundus images since they are situated in the choroid (situated at the

back of the retina). Fig. 2.2 shows the retina layers pictured in a lithograph plate from

Gray’s anatomy book, originally published in 1918. Currently, retina and choroid are

divided into the following layers (Abramoff et al., 2010a):

1. Internal limiting membrane or membrana limitans interna.

2. Nerve fibre layer contains the axons of the ganglion cells, that transmit the signals

to the visual cortex of the brain. This layer is much thicker in younger retinas and

it slowly thins the more it ages. As the blood vessels in the inner layer, this fibre

is not present over the fovea in order to permit all the photons to reach the rods

without obstacles.

3. Ganglion cell layer contains the body of the ganglion cells.

4. Inner plexiform layer contains the axons of the bipolar cells and the amacrine

cells.

5. Inner nuclear layer contains the cell bodies of the bipolar and horizontal cells.
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FIGURE 2.2: Retina Layers as depicted in Gray’s anatomy book (Williams et al., 1989).

6. Outer plexiform layer contains the inner segments of the photoreceptor cells and

the dendrites of the horizontal cells.

7. Outer nuclear layer contains the body of photoreceptor cells.

8. External limiting membrane or membrana limitans externa.

9. Pigment epithelium. It is the last layer of the retina. It is the one that gives a

different colour (pigment) to each human retina.

10. Bruch’s membrane. First layer of the choroid.

11. Capillary choroid contains all the blood vessels that provide the primary source

of retina nutrients.

12. Choroid plexus. Last layer of the choroid.

The ganglion cells are a type of neuron that receive the signal from the photorecep-

tors through bipolar cells and amacrine cells (two intermediate neurons). The horizontal

cells are interconnecting neurons that combine the signals received from photoreceptors

(Masland, 2001).

2.1.2 Retina Imaging Techniques

Ophthalmologists conventionally imaged the eye using ophthalmoscopes which al-

lowed for the determination of the health of the retina and vitreous humour. There

are two types of ophthalmoscopes: direct and indirect. The former is an instrument
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FIGURE 2.3: Examples of retina fundus images acquired with different cameras at
45◦. (a) healthy patient; (b) retina showing signs of diabetic retinopathy (see Sec-
tion 2.1.4.1); (c) retina showing signs of age related macular degeneration (see Section

2.1.4.3).

about the size of a small flashlight with several lenses that can magnify up to about 15

times, the latter is mounted on a headband and it provides a wider view of the fundus

of the eye (Chernecky and Berger, 2004).

Relatively recently, fundus cameras were successfully introduced as an imaging tech-

nique (Hutchinson et al., 2000; Lin et al., 2002). A fundus camera provides an upright,

magnified view of the fundus of the interior surface of the eye: the retina, optic disc,

macula, and posterior pole (i.e. the fundus). A typical camera views 30 to 50 degrees of

retinal area, with a magnification of 2.5x, and allows some modification of this relation-

ship through zoom or auxiliary lenses from 15 degrees which provides 5x magnification

to 140 degrees with a wide angle lens which minimises the image by half (Saine, 2006).

Fig. 2.3 shows some examples of retina fundus images.

Currently, the preferred way to detect diseases like diabetic retinopathy is fundus cam-

era imaging as illustrated by Luzio et al. (2004). Additionally, when digital photogra-

phy is employed, the image may be enhanced, stored and retrieved more easily than

film, and images may be transferred electronically to other sites for a trained optical

technician or retinal specialist to diagnose diseases with the patient at a remote loca-

tion. This is the modality used to acquire and analyse the vast majority of the images

presented in this thesis.

Apart from colour digital fundus cameras, Abramoff et al. (2010a) add the following

imaging modalities to a broader category of fundus imaging:

• Stereo fundus photography: at the same time two or more view angles of the

fundus are acquired by this instrument. This allows the perception of the depth

by the ophthalmologist.

• Hyperspectral imaging: it is a fundus camera that does not employ the visible

light only, but can select specific wavelength bands. This allows particular appli-

cations such as oximetry, the quantification of oxygen levels in the bloodstream.
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FIGURE 2.4: Example of a OCT slice acquired with a Heidelberg Spectralis (on the
right). On the left the corresponding fundus image in the infrared. The green arrow

shows the origin of the slice.

• Fluorescein angiography (FA): is a fundus image of the photons emitted by a

contrast agent injected in the patient’s blood stream. Fluoroscein or indocyanine

green fluorophore are the agents typically used.

• Scanning laser ophthalmoscope (SLO): An instrument that uses low powered

lasers to image the retina or choroid. It uses a very narrow moving beam of light

which can bypass most ocular media opacities (i.e. corneal scars, cataracts, vit-

reous hemorrhage) to reach the surface of the retina and record its surface detail.

With SLO, the optics of the eye serves as the objective lens. Confocal SLO is SLO

equipped with a confocal aperture. Adaptive optics SLO optically corrects the laser

reflections by modelling the aberrations in its wavefront.

The other imaging technique that is becoming increasingly important is Optical coher-

ence tomography (OCT). OCT is a non-destructive imaging technique that uses inter-

ferometry techniques to measure the time of flight of the light backscattering through

the retina. By rapidly scanning the eye, it can acquire an in vivo representation of the

anatomic layers within the retina. Because of that it can be used to diagnose diseases

such as DME, AMD and Glaucoma with generally a greater precision than with a sim-

ple fundus image (Walsh et al., 2010). Fig. 2.4 shows an example of a “retina slice” that

can be acquired with these instruments.

However, DR cannot be directly diagnosed because the vessels and many other key

features of the retina are invisible in this modality (even if it is possible to algorithmi-

cally infer the location of the vasculature by employing the visible shadows as shown

by Niemeijer et al. (2008)). Other drawbacks of this modality are: the steeper learn-

ing curve to use the instrument than a colour fundus camera, the greater acquisition

time required to acquire a field of view (FOV) comparable to a fundus camera and the

substantially higher cost.
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2.1.3 Retina Lesions and Abnormalities

2.1.3.1 Microaneurysms

(a) (b) (c)

FIGURE 2.5: (a) Detail showing microaneurysms; (b) Fundus image; (c) Detail showing
exudates.

Microaneurysms (MAs) are dilated, aneurismal retina vessels that appear as small red

dots in colour retina fundus images. These lesions can leak fluid and blood into the

retina, leading to vision threatening exudates, macular edema and hemorrhages. These

MAs are the primary target lesions for laser treatment of diabetic retinopathy or macu-

lar edema. Fig. 2.5(a) shows an example of such lesions.

2.1.3.2 Hemorrhages

(a)

(b)

(c)

(d)

FIGURE 2.6: (a) Detail showing large superficial hemorrhages; (b) Fundus image; (c)
Detail showing a dot hemorrhage; (d) Detail showing a blot hemorrhage.
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Retinal hemorrhages (HMA) are loss of blood from the vasculature. They appear as red

structures of variable shape in the fundus. Their shape can be correlated with the depth

in the retina. Hemorrhages close to the ganglionic layer have a flame shape and tend

to disappear within a short period of time. Blot and dot hemorrhages have a round

shape (similar to large MAs) and are located in the retina’s inner nuclear and outer

plexiform layers. Their configuration is due to intraretinal compression, restricting the

hemorrhages within a specific location (Niki et al., 1984). They are more serious because

connected with diabetic retinopathy. Fig. 2.6 shows some examples of such lesions.

When hemorrhages occur in the vitreous humour, they are called vitreous hemorrhages

(VHs) or preretinal hemorrhages (PRHs) if they occur exactly between vitreous humour

and retina. VHs and PRHs often happen because of neovascularization, see Section

2.1.3.6.

2.1.3.3 Hard Exudates

Hard exudates (HE or Intra-retinal lipid exudates) are yellow deposits of lipid and pro-

tein within the sensory retina. Fig. 2.5(c) shows some of them. They are often due the

leakage of lipid and proteins from MAs which have walls thinner than normal capillar-

ies due to the increased pressure. As such, exudates are the hallmarks for the diagnosis

of macular edema from single fundus images because indicate increased vessel perme-

ability and presence of fluid (see Section 2.1.4.2).

(a) (b) (c)

FIGURE 2.7: (a) Detail showing a cotton wool spot; (b) Detail of various drusen; (c)
Detail some tortuous vessels.

2.1.3.4 Cotton Wool Spots

Cotton wool spots (CWS or soft exudates) are micro infarctions due to the lack of blood

supply to the nerve fibre layer. They appear as yellowish/white structures with blurred

edges. Cotton wool spots by themselves do not cause visual difficulties, but they

are highly correlated with conditions that affect the retina circulation such as diabetic

retinopathy. Fig. 2.7(a) shows an example of such lesions.
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2.1.3.5 Drusen

Drusen are yellow deposits of extracellular material below the retina in the Bruch’s

membrane. They are a sign of macular degeneration (see Section 2.1.4.3). Since they

are below the retina, they are sometimes not obvious in a fundus image, especially

when only few of them are present. Fig. 2.7(b) shows an example.

2.1.3.6 Vascular Abnormalities

Hypertensions can also lead to other types of abnormalities in the retina vasculature.

These abnormalities can be classified in various groups as reported by Grisan (2005).

When the blood pressure increases, vessels may increase in length and thicken their

walls resulting in some vessel tortuosity as shown in Fig. 2.7(c). Another effect is the

arteriolar narrowing which is probably the earliest effect. Whenever veins have a diam-

eter that do not decrease monotonically with distance from the macula, venous bead-

ing (VB) occurs. Gregson et al. (1995) note that beaded veins exhibit periodic changes

in diameter along their lengths, somewhat like sausage links. Bifurcation and crossing

abnormalities are other changes of the vascular path due to the abnormal pressure dif-

ference between veins and arteries. Other small abnormalities in the retina are called

intraretinal microvascular abnormalities (IRMA).

Neovascularization is another vascular abnormality due to the lack of oxigen to an area

of the retina. When this happens a signal protein called vascular endothelial growth factor

(VEGF) is released and new vessels rapidly grow. These vessels are weaker than normal

and are much more likely to create hemorraghes or to leak liquid or proteins. Often

these vessels grow from the retina into the vitreous humour and upon their rupture,

they can generate VHs and PRHs. Neovascularization can stem from the disc (NVD),

the iris (NVI or rubeosis irides) or elsewhere (NVE).

2.1.4 Retinal and Related Diabetic Diseases

Diabetes mellitus (DM) is a chronic, systemic, life-threatening disease characterised by

disordered metabolism and abnormally high blood sugar (hyperglycaemia) resulting

from low levels of the hormone insulin with or without abnormal resistance to insulin’s

effects (Tierney et al., 2002). DM has many complications that can affect the eyes and

nervous system, as well as the heart, kidneys and other organs. Diabetes is the leading

cause of new cases of blindness among adults aged between 20 and 74 years. The

Centers for Disease Control and Prevention estimates that 25.8 million people currently
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FIGURE 2.8: Loss of central vision due to diabetic retinopathy. On the left the vision of
a healthy patient. On the right the vision of a patient with the retina damaged in the

macula region. Image courtesy of the National Eye Institute.

have DM in the United States alone. The World Diabetes Foundation estimates that

over 439 million people will have diabetes worldwide by 2030 (Centers for Disease

Control and Prevention, 2011). Diabetic retinopathy and diabetic macular edema are

the two retina diseases directly caused by diabetes.

2.1.4.1 Diabetic Retinopathy

Diabetic retinopathy (DR) is a vascular complication of DM which causes damages to

the retina which leads to serious vision loss if not treated promptly. People with dia-

betes are 25 times more likely to develop blindness than individuals without diabetes.

For any type of diabetes, the prevalence of diabetic retinopathy in people more than 40

years of age was reported to be 40.3% (Baker et al., 2008). MAs are a common and often

early manifestation of DR. As such, the MA detector is an attractive candidate for an

automatic screening system able to detect early findings of DR.

DR is generally graded in four subsequent stages (Joussen et al., 2007, chap. 19):

• Mild Nonproliferative Retinopathy (Mild NPDR): At this earliest stage, only

microaneurysms occur and possibly hemorrhage or hard exudates.

• Moderate Nonproliferative Retinopathy (Moderate NPDR): As the disease pro-

gresses, some blood vessels that nourish the retina are blocked and consequently

cotton wool spots start to appear. Also, initial vascular abnormalities such as

tortuous vessels or IRMAs can be found.

• Severe Nonproliferative Retinopathy (Severe NPDR): Many more blood vessels

are blocked, depriving several areas of the retina with their blood supply. These

areas of the retina send signals by the means of VEGF proteins and neovascular-

ization starts.
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• Proliferative Retinopathy (PDR): At this advanced stage, the neovascularization

start to reach the vitreous humour, the clear, vitreous gel that fills the inside of the

eye. By themselves, these blood vessels do not cause symptoms or vision loss.

However, they have thin, fragile walls. If they leak blood, vision loss and even

blindness can result. Depending on the severity of the leakage, ophthalmologists

grade the disease on a scale from 1 to 4. Neovascularization can remain relatively

stable or it can grow rapidly, progression can be noted ophthalmoscopically over

a period of weeks.

2.1.4.2 Diabetic Macular Edema

Diabetic macular edema (DME) is a complication of DR and is the most common cause

of vision loss and blindness (Singer et al., 1992). DME is defined as swelling of the

retina in diabetic patients due to leakage of fluid within the central macula from mi-

croaneurysms that form as the result of chronic damage due to elevated blood sugar

levels. The presence of clinically significant DME is an important indication for the

initiation of laser treatment. One particular characteristic of DME is thickening of the

retina, which cannot be directly quantified from a single 2-D image because of the lack

of depth information. Instead, ophthalmologists can infer the presence of the fluid that

causes the retina thickening from photos, by the presence of accompanying lipid de-

posits called exudates. They appear as bright structures with well defined edges and

variable shapes.

According to the Early Treatment Diabetic Retinopathy Study Research Group (ETDRS),

the patient’s retina should be immediately treated when DME is graded as clinically

significant. This happens if any of the following points is satisfied (Joussen et al., 2007,

chap. 19.3):

• There is a significant retinal thickening within 500 µm distance from the centre of

the macula.

• There is exudation within 500 µm distance from the centre of the macula with

retinal thickening in the bordering retina.

• There is a retinal thickened area by the size of at least one papilla diameter within

the distance of one papilla diameter from the centre of the macula. The papilla

roughly corresponds to the visible area covered by the ON in an image of the

retina fundus.
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2.1.4.3 Age-related Macular Degeneration

Another retinal disease that has similar effect to diabetic retinopathy but other causes

is age-related macular degeneration (AMD). AMD refers to a degenerative condition

affecting the macular or central area of the retina. The main characteristic of early AMD

is the presence of soft drusen. While their presence does not necessarily indicate that

a person has macular degeneration, there has been a strong correlation between the

two and the presence of drusen substantially raises a person’s risk to develop macular

degeneration. Late AMD includes 2 distinct forms, dry AMD or wet. “Dry” AMD does

not involve any leakage of blood or serum. Loss of vision may still occur. Patients with

this “dry” form may have good central vision but substantial functional limitations

including: fluctuating vision, difficulty reading because of their limited area of central

vision and limited vision at night or under conditions of reduced illumination. In the

“wet” type of macular degeneration, abnormal blood vessels grow under the retina and

macula. In this case the patient will lose at least part of their central vision (Parmet,

2001).

2.1.4.4 Glaucoma

Glaucoma is not a retinopathy but a neuropathy. Nevertheless, it affects the retina by

damaging ganglion cells and their axons. The disease is characterised by an increased

pressure on the ON which slowly affects it, resulting in a peripheral visual field loss.

Because of the peripheral damages, it is often unnoticed and it has become the second1

leading cause of blindness in the world (Resnikoff et al., 2004).

Glaucoma can be diagnosed by analysing the 3-D shape of the optic nerve head. The

ratio between the total diameter of the ON (ON cup) and the diameter of the area oc-

cupied by the optic nerve fibres is defined as cup-to-disc ratio, and it is an important

indicator to evaluate the presence of the disease. In their thorough review, Abramoff

et al. (2010a) present various methods to accomplish this task with fundus and OCT

images.

1Note that the leading cause is cataract, which affect the cornea and is not a retina disease.
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2.2 Retina Morphology Analysis in Fundus Images

2.2.1 Public Databases and Algorithms Evaluation

The design, implementation and testing of algorithms able to analyse the retina mor-

phology or to diagnose a retina condition requires annotated data. In the medical imag-

ing field, there are some publicly available annotated datasets of retinal images which

have different goals, characteristics, and levels of completeness. Their aims include

vessel segmentation, DR diagnosis and microaneurysm localization. However, the im-

ages by themselves are not enough to make a dataset particularly useful for algorithms

development. The key aspect is the ground truth (GT) data which provides the gold

standard against which the algorithms can be trained and tested. Whenever a single

common dataset (with a common GT) has been employed by different research groups

the advantages and disadvantages of different proposed methods were easily measur-

able and comparable as shown in Niemeijer et al. (2010). Table 2.1 shows a comparison

of the retina datasets most commonly used based on their GT and number of images.

Dataset Ves. ON MA HE OL DR ME n◦ exp. n◦ imgs.

STARE (Hoover et al., 2003)∗ X 81
DRIVE (Niemeijer et al., 2004) X 1 40
ARIA (ARIA, 2006)† X X 212
DIARETDB1 (Kauppi et al., 2007) X X X 4 89
MESSIDOR (Messidor, 2010) X X 1 1200
ROC (Niemeijer et al., 2010) X 4 100
HEI-MED (Giancardo et al., 2011c) X X X X X 1 169
∗ The GT of the STARE database is available upon request.
† The GT of the ARIA database is not available for all the images. The n◦ exp. varies between images.
Ves.: vessel segmentation GT; ON: optical nerve location GT; MA: microaneurysm segmentation GT;
HE: hard exudates segmentation; OL: segmentation of other lesions GT; n◦ exp.: number of experts that
generated the GT (if there are multiple experts for a dataset but the GT for each image comes from a
single expert, this number is still 1); n◦ imgs.: number of images in the dataset.

TABLE 2.1: Public Fundus Images Datasets

Depending on the type of algorithm tested different evaluation strategies need to be

adopted. A diagnostic system that outputs a binary healthy/unhealthy decision about

an image can be evaluated against a GT (or gold standard) with sensitivity and specificity.

The sensitivity is a ratio measured as the number of images classified as positive2 that

effectively were positives (true positives (TP)), divided by the “real” positives (i.e. false

negatives (FN) plus TP). The specificity is a ratio measured as the number of images

classified as negative that effectively were negative (true negative (TN)), divided by

the “real” negatives (i.e. false positives (FP) plus TN). Both measures range between 0

and 1. This type of clear cut decisions are also defined as categorical. Another metric to

2Throughout this thesis we consider “positives” the samples that show a disease.
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evaluate the categorical concordance between an algorithm and a gold standard is the

Kappa value (k), which is widely used in the literature. The equation for k is:

Pr(a) =
(TP + TN)

n◦examples
(2.1a)

Pr(e) =
TP + FN

n◦examples
× TP + FP

n◦examples
+

FP + TN
n◦examples

× FN + TN
n◦examples

(2.1b)

k =
Pr(a)− Pr(e)

1− Pr(e)
(2.1c)

Gwet (2002) underlines some pitfalls in k by showing its sensitivity to trait prevalence

in the subject population and proposes AC1 as alternative:

P+ =
(TP× 2 + FN + FP)

2× n◦examples
(2.2a)

Pr(eAC1) = 2× P+ × (1− P+) (2.2b)

AC1 =
Pr(a)− Pr(eAC1)

1− Pr(eAC1)
(2.2c)

Whenever the system tested still takes a binary decision but outputs a probability value

rather than a categorical one, it can be better evaluated through a receiver operating

characteristic (ROC) curve (Fawcett, 2004), a graphical curve which represents the sen-

sitivity (on the vertical axis) and the complement to 1 of the specificity on the horizontal

axis. Note that the ROC curve is not a single point (i.e. a single sensitivity/specificity

pair), because the probability is thresholded at various points. A very compact repre-

sentation of the ROC curve analysis is given by the area under the ROC curve (AUC),

which is a single number between 0 and 1, where 1 denotes perfect performances and

0.5 a completely aleatory set of decisions. The AUC is also defined as “the probability

that a classifier will rank a randomly chosen positive instance higher than a randomly

chosen negative one” (Fawcett, 2006).

In some occasions the use of the TN is either not possible or not suggested. This is the

case for the evaluation of lesion segmentation algorithms where the negative samples

(that can be represented by pixels or other image areas) represent the vast majority of

the image area. Hence, it is either not possible or misleading to calculate the specificity.

A suited substitute is the positive predictive value (PPV), which is computed as TP
TP+FP .

The free-response receiver operating characteristic (FROC) analysis (Metz, 1986) is the

equivalent to the ROC curve with the PPV instead of 1-specificity. Some authors (such

as Niemeijer et al. (2010)), plot directly the number of FP instead of the PPV. In this

thesis both approaches are used.
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Algorithm performance can also be measured with accuracy, a metric commonly em-

ployed in the field of science, engineering, industry and statistics especially for mea-

surement systems. It evaluates the degree of closeness of measurements of a quantity

to its actual (true) value (JCGM, 2004). The accuracy is computed as TP+TN
n◦examples .

2.2.2 Fundus Image Normalization

The first preprocessing step in many image processing applications is image normal-

ization, and retina analysis is no exception. Some authors such as Sopharak et al. (2008)

employ standard local or global histogram equalization techniques as described by

Gonzales and Woods (2002). However, the majority takes approaches especially tai-

lored for retina images which are also referred as background subtraction technique.

One of commonest is the one described by Spencer et al. (1996). They estimate the retina

“background” with a large median filter on the green channel of the image, then they

subtract the estimated background from the original image. Cree et al. (2005) refined

the method by employing a target image to reduce the inter-patient colour variability.

They assume that a background-less fundus image has colours normally distributed.

Hence, two scalar values the mean (µ) and standard deviation (σ) across the entire

image are sufficient to characterise it, and by taking a reference image and calculating

these two parameters, it is possible to equalise the colours of the new image to the

reference one in a more effective way than by simple histogram equalisation.

One shortcoming of the previous methods is the fact that the median filter background

estimation might be biased by large foreground structures. Instead, Foracchia et al.

(2005) identify the pixels belonging to the background by evaluating the mean and

standard deviations on a local window. Once the pixels belonging to the background

are identified, they are bilinearly interpolated to generate the complete background,

which is then used to obtain the normalized image. Feng et al. (2007) adopt an approach

based on the Contourlet, a multi-scale image analysis technique that has its roots in the

Wavelets theory.

In Chapter 4 the fundus image normalization technique introduced in Giancardo et al.

(2011d), is presented.

2.2.3 Vasculature Segmentation

The ability to discern vessels from other structures is a preprocessing step of great im-

portance in many retinal imaging applications. The segmentation of the vasculature is
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a key pre-processing step for various quality assessment, ON localization and microa-

neurysms detection algorithms. Additionally, the analysis of the vasculature width is

an important clinical index in itself. Tramontan et al. (2011) describe a semi-automated

system that measures the arteries to veins ratio (AVR) which seems to be a very early

indication of the likelihood of developing retinopathy. Also, the tortuosity of the ves-

sels is correlated with the abnormal blood pressure which appears to be an early index

of various other retinopathies (Stanton et al., 1995; Grisan et al., 2008).

In Table 2.2, the performance of some of the leading algorithms on two public datasets

are presented. The results are based on their respective publications. They have been

divided in two classes: supervised and unsupervised. In the former, a classifier which

requires a sound training set is generally required; in the latter, the algorithms are built

with a series of image processing operators (rules), which might still require a training

set for optimization of the parameters.

DRIVE STARE
Type Method Accuracy AUC Accuracy AUC

su
pe

rv
is

ed

Staal et al. (2004) 0.9441 0.9520 - -
Niemeijer et al. (2004) 0.9417 0.9294 - -
Soares et al. (2006) 0.9466 0.9614 0.9480 0.9671
Ricci and Perfetti (2007) 0.9595 0.9633 0.9646 0.9680
Marin et al. (2011) 0.9452 0.9588 0.9526 0.9769

ru
le

-b
as

ed

Chaudhuri et al. (1989) 0.8773 0.7878 - -
Hoover et al. (2000) - - 0.9275 0.7590
Jiang and Mojon (2003) 0.8911 0.9327 0.9009 0.9298
Mendonca and Campilho (2006) 0.9463 - 0.9479 -
Martinez-Perez et al. (2007) 0.9344 - 0.9410 -
Cinsdikici and Aydin (2009) 0.9293 0.9407 - -
Zana and Klein (2001) 0.9377 0.8984 - -

TABLE 2.2: Published vessel segmentation scores on public datasets

2.2.4 Optic Disc - Fovea localization

Together with the vasculature, the optic disc and fovea are the other two anatomic

landmarks in the retina. In the context of abnormal retina detection the location and

structure of the ON is important for at least two aspects: it is a confounding factor in

the context of bright lesions segmentation (therefore it needs to be detected) and its

morphology can be directly used for the detection of glaucoma (see Section 2.1.4.4).

On the other hand, the location of the fovea can be used to judge the severity of an

abnormality detected on the retina. As described in Section 2.4.1, lesions which are

closer to the fovea (where our central vision resides) are more dangerous in terms of

vision loss and potential vision loss.
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The majority of algorithm employs the vascular directionality for ON localization (Forac-

chia et al., 2004; Tobin et al., 2007; Niemeijer et al., 2007a; Fleming et al., 2007; Niemeijer

et al., 2009b; Hoover and Goldbaum, 2003). This is possible because all the vessels “en-

ter” the retina from the ON. All the authors cited indicate a method for the localization

of the fovea together with the ON.

Aquino et al. (2010) do not employ the vasculature, they propose a voting scheme based

on three “simple” ON localization methods. These methods are based on local window

pixel statics and are called: Maximum Difference, Maximum Variance and Low-Pass

Filter Method. Although they do not present a technique for the localization of the

macula, their method includes the segmentation of the ON boundary.

Karnowski et al. (2009) have also presented a hybrid ON localization technique based

on vascular directionality and pure pixel classification using PCA and LDA. They found

empirically that when the two approaches output a similar result it is extremely likely

that the location of the ON is correct.

2.2.5 Quality Assessment

The computerized evaluation of image quality is a problem not only in the field of med-

ical imaging but in many other image processing systems, such as image acquisition,

compression, restoration and enhancement. However in fundus images the notion of

quality is not in the image per se, but rather in the ability of an expert (human or auto-

matic) to correctly diagnose the patient condition from the image. The fundus quality

assessment methods can be grouped in three different categories depending on the

technique used: histogram based methods, retina morphology methods and “bag-of-

words” methods.

In histogram based methods, the histogram of certain features is calculated on a set

of good quality images. Then the similarity with the reference histogram is used to

evaluate the quality. Lee and Wang (1999) were the first authors that have explicitly

addressed the problem of automatic detection of fundus image quality. Their approach

starts from a pure signal processing perspective by employing the global histogram of

the image intensities approximated by a Gaussian distribution. Lalonde et al. (2001)

extended the approach of Lee and Wang using two different sets of features: the dis-

tribution of the edge magnitudes in the image and the local distribution of the pixel

intensity. Rather than strictly correlating image quality with noise, their concept of

quality depends on the experts’ ability to perform a correct diagnosis.
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Retina morphology methods employ features that are unique to fundus images to eval-

uate their quality. Usher et al. (2003) employ a vessel segmentation algorithm to es-

timate the image blurring. The area of the detected vessels is measured and directly

correlated with image quality by the means of a hard threshold. Fleming et al. (2006a)

presented a method that separately evaluates image clarity and field definition, which

are finally combined to generate a global quality value. The image clarity was assessed

taking into consideration the vessel area in the macula region, the field definition the

relative position of fovea, ON and the length of the main vessel arcades.

In “bag-of-words” the authors borrow a method typically used for document classi-

fication. They employ a pattern recognition classifier (such as Support Vector Ma-

chine, Naive Bayes, etc.) to classify the occurrence of some common “words”. These

words are automatically generated from the raw features in test set with a unsuper-

vised clustering algorithm (such as k-means). During the classification phase, the new

raw features are associated to the known words based on their distance. Niemeijer et al.

(2006) employed this approach with two sets of raw features to represent image quality:

colour and second order image structure invariants (ISI). Colour is measured through

the normalised histograms of the RGB planes, with 5 bins per plane. ISI are proposed

by ter Haar Romeny (2003) who employed filterbanks to generate features invariant

to rotation, position or scale. Recently, Paulus et al. (2010) employed a different set of

features: the pixel grey levels and the Haralick texture metrics.

Chapter 3 describes the method proposed by Giancardo et al. (2010b).

2.3 Automatic Lesion Analysis

2.3.1 Microaneurysms Segmentation

In the early literature (Baudoin et al., 1984; Spencer et al., 1996; Frame et al., 1998),

algorithms were developed to detect MAs (and other small round hemorrhages) in flu-

orescein angiograms (FAs). They employed a series of morphological operations which

remove the vasculature, leaving the other small structures representing the MAs. These

approaches perform well on FAs, where an intravenous contrast agent is injected into

the subject; therefore the contrast between vessels/lesions and background is much

greater than that of colour fundus images making the development of the algorithm

straightforward. Consequently, the performance of these algorithms are not satisfac-

tory on colour fundus images. In addition, the injection of the FA contrast agent is not

a risk-free process and requires more highly trained personnel to be delivered than a
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simple fundus photograph, hence it is not an optimal approach for broad-based DR

screening (Lipson and Yannuzzi, 1989).

Niemeijer et al. (2010) announced the Retinal Online Challenge (ROC). The aim was to

focus the efforts of the research community towards the creation of algorithms for the

detection of MAs on colour fundus images, by evaluating their performance on a com-

mon dataset. Two sets of 50 images captured by different cameras that imaged the same

area of the retina (45 degrees) were released to the research community together with

a common evaluation modality. This allowed a fair comparison between algorithms

developed by different groups. So far, 10 groups have participated in the challenge as

shown in Table 2.3.

Group Global Score Sensitivity at 0.5 FPs

DRSCREEN (Antal et al., 2010) 0.434 0.380
ISMV II (Chapter 5) 0.375 0.366
Niemeijer et al. (2005) 0.395 0.336
LaTIM (Quellec et al., 2008) 0.381 0.318
OKmedical (Zhang et al., 2009) 0.357 0.315
OKmedical II 0.369 0.297
Lazar and Hajdu (2011) 0.355 0.274
Fujita Lab (Mizutani et al., 2009) 0.310 0.259
GIB Valladolid (Sanchez et al., 2009b) 0.322 0.254
ISMV (Giancardo et al., 2010a) 0.256 0.204
IRIA-Group 0.264 0.192
Waikato RIG 0.206 0.184

the table shows the ROC results as of March 2011, sorted by the third column. The details of the
algorithms without an explicit reference can be found in the technical reports of the ROC website

http://roc.healthcare.uiowa.edu/.

TABLE 2.3: Retinopathy Online Challenge Comparison

Typical approaches can be divided in three parts: an initial candidates detection, the

removal of candidates that lie on the vessel segmented and a final classification of true

positive and false positives by a pattern classification strategy. Sanchez et al. (2009b)

and the Waikato detector start with a background subtraction with a large median filter,

then two different adaptive thresholding approaches select the candidates. The candi-

dates which intersect the automatically segmented vasculature are removed and finally

a set of features is calculated and employed to train the classifiers. Zhang et al. (2009)

perform similar steps by exploiting the responses from Gaussian filterbanks trained for

the different purposes. Quellec et al. (2008) adopt a template matching approach on

sub-bands of the wavelet space of the image, where the sub-bands are chosen during

the training phase with a genetic algorithm strategy. Again, the candidates intersect-

ing the automatically segmented vasculature are removed to obtain the final detection.

Mizutani et al. (2009) detect the initial candidates and remove the ones lying the vascu-

lature with two modified double ring filters. A set of 12 features is extracted for each

http://roc.healthcare.uiowa.edu/
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candidate and a classifier is trained in order to obtain the final output. Lazar and Ha-

jdu (2011); Giancardo et al. (2010a) are the only techniques that are entirely rule-based,

i.e. they do not explicitly require a training phase on labelled images. The former is

based on a cross-section rotating model, and the latter on an operator based on the local

Radon transform. Two of the top performing techniques (Antal et al., 2010; Niemeijer

et al., 2005) are based on a mixture of multiple microaneurysm detection algorithms

that are statistically combined together. In Chapter 5, we present our technique that

rank among the firsts even if its computational and training complexity is minimal.

2.3.2 Exudates Segmentation

The approaches to exudate segmentation presented in the literature can be roughly di-

vided into four different categories. Thresholding methods base the exudate identification

on a global or adaptive grey level analysis (Phillips et al., 1993; Sanchez et al., 2009a).

Region growing methods segment the images using the spatial contiguity of grey levels;

a standard region growing approach is used by Sinthanayothin et al. (2002), which is

computationally expensive. Li and Chutatape (2004) reduce the computational issues

by employing edge detection to limit the size of regions. Morphology methods employ

greyscale morphological operators to identify all structures with predictable shapes

(such as vessels). These structures are removed from the image so that exudates can

be identified (Walter et al., 2002; Sopharak et al., 2008). Classification methods build a

feature vector for each pixel or pixel cluster, which are then classified by employing a

machine learning approach into exudates or not exudates (Gardner et al., 1996; Osareh

et al., 2003; Garcia et al., 2009) or additional types of bright lesions (Niemeijer et al.,

2007b; Fleming et al., 2010) (such as drusen and cotton wool spots), all of which require

good ground-truth datasets.

Table 2.4 compares various exudate segmentations techniques by showing the results

reported by the respective authors. Unfortunately, all of them seem to employ differ-

ent datasets and different evaluation methods. This makes a direct comparison almost

impossible, as is underlined by many of the authors themselves. In a recent work (Gi-

ancardo et al., 2011c), we contribute to a solution to this problem by making available

a heterogeneous, ground-truthed dataset to the research community: the HEI-MED

dataset. A comparison of some exudate segmentation techniques is presented in Chap-

ter 4.
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ev
al

ua
ti

on Requires

Manual Images Processing

Authors Sens. Spec. PPV Segmentation Tested Time

ar
ea

Gardner et al. (1996) 0.93 0.93 n/a Yes 301 < 1 min.

evaluation on a 20x20 grid; partially tested on the training set.

Li and Chutatape (2004) 1.00 0.71 n/a No 35 n/a

evaluation on 10 areas.

Sinthanayothin et al. (2002) 0.88 0.99 n/a No 35 n/a

evaluation on a 10x10 grid.

Phillips et al. (1993) 0.87 n/a n/a No 14 3 min.

evaluation is pixel/area based on 1 area manually selected

pi
xe

l

Niemeijer et al. (2007b) 0.95 0.86 n/a Yes 300 n/a

bright lesions are classified per type.

Osareh et al. (2003) 0.93 0.94 n/a Yes 67 11 min.

Sopharak et al. (2008) 0.80 0.99 n/a No 60 3 min.

Walter et al. (2002) 0.92 n/a 0.92 No 30 n/a

le
si

on

Sanchez et al. (2009a) 0.90 n/a 0.96 No 106 n/a

Garcia et al. (2009) 0.87 n/a 0.83 Yes 67 n/a

Giancardo et al. (2011d) 0.82 n/a 0.5 No 169 1.9 sec.

TABLE 2.4: Published Results on Exudate Segmentations

2.4 Screening Diabetic Patients

2.4.1 Screening Protocols

In order to monitor with fundus images diabetic retinopathy for research or clinical

purposes, a standard acquisition protocol and grading scale need to be defined. Ac-

cording to Joussen et al. (2007, chap. 19.01), ETDRS supplies an acquisition protocol/-

grading scale that have the best validation to date (Early Treatment Diabetic Retinopa-

thy Study Research Group, 1991). The grading scale divides DR in 13 levels, on the basis

of the relative risk of retinopathy progression and visual loss. It spans between absence

of retinopathy to sever vitreous hemorrhage. The grading is based on the classification

of the lesion severity in certain areas of the retina. A set of standard photographs are

used in order to help the objective judgement of the lesion severity.

The standard acquisition protocol requires stereoscopic fundus images at 30◦ (captured

on film), which are graded using a stereo viewer on a retroilluminated white glass plate.

For each retina seven different images are captured with the configuration shown in

Fig. 2.9, which is referred as seven fields configuration.

ETDRS grades DR and DME separately. Table 2.5 shows the ETDRS grading for DR.

The grading for DME is considerably simpler, it comprises of three levels: DME absent,
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(1)

(5)

(7)

(6)

(2)

(3)

(4)

FIGURE 2.9: Example of registered fundus images acquired with the seven fields
ETDRS specifications.

DME present or clinically significant DME (CSME). The ETDRS defines DME as the

“thickening and/or hard exudate within 1 disk diameter of the centre of the macula”.

The properties for the CSME classification were described in Section 2.1.4.2.

In order to accommodate larger epidemiological studies with reading centres having a

limited experience with fundus photography, the EURODIAB system was introduced

(Aldington et al., 1995). The protocols involve two (monocular) fundus images per

eye at 45◦: one image centred on the macula and one centred on the optic disk. The

DR grading has 6 levels only (from 0 to 5) and is based on the experience acquired by

ETDRS. Table 2.5 also shows the direct correlation between ETDRS and EURODIAB

grading.

Wilkinson et al. (2003) proposed a scale developed by a consensus panel of experts to

provide a scale that can be used in a practical clinical settings. The International Clinical

Diabetic Retinopathy and Diabetic Macular Edema Disease Severity Scale classifies DR in five

stages and DME in four stages as shown in Table 2.6.

Williams et al. (2004) conducted a review to further simplify the acquisition protocol

by employing a single fundus image. The authors concluded that although it cannot

be a substitute for a comprehensive ophthalmic examination, “there is level I evidence

that it can serve as a screening tool for diabetic retinopathy to identify patients with
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ETDRS ETDRS ETDRS definition EURODIAB
level severity level

10 No Diabetic retinopathy absent 0
retinopathy

20 Very mild Microaneurysms only 1
NPDR

35 Mild Hard exudates, cotton-wool spots, 1
NPDR and/or mild retinal hemorrhages

43 Moderate 43A: retinal hemorrhages moderate 2
NPDR (> photograph 1a) in four quadrants

or severe ( photograph 2A) in one quadrant
43B: mild IRMA (< photograph 8A) in one to three quadrants

47 Moderate 47A: both level 43 characteristics 2
NPDR 47B: mild IRMA in four quadrants

47C: severe retinal hemorrhage in two to three quadrants
47D: venous beading in one quadrant

53A-D Severe 53A: ≥ 2 level 47 characteristics 3
NPDR 53B: severe retinal hemorrhages in four quadrants

53C: moderate to severe IRMA in at least one quadrant
53D: venous beading in at least 2 quadrants

53E Very severe ≥ 2 level 53A-D characteristics 3
NPDR

61 Mild PDR NVE < 0.5 disk area in one or more quadrants 5
65 Moderate 65A: NVE ≥ 0.5 disk area in one or more quadrants 5

PDR 65B: NVD < photograph 10A (< 0.25 - 0.33 disk area)
71,75 High-risk NVD ≥ photograph 10A, or NVD < photograph10A or 5

PDR NVE ≥ disk area plus VH or PRH, or VH or PRH
obscuring ≥ 1 disk area

81,85 Advanced Fundus partially obscured by VH and either new vessels 5
PDR ungradable or retina detached at the centre of the macula
(none) EURODIAB only level: photocoagulated 4

TABLE 2.5: Comparison of ETDRS levels with EURODIAB levels for Diabetic
Retinopathy. The reference images can be found in (ETDRS, 1991). The acronym defi-

nitions are in Section 2.1.3

retinopathy for referral for ophthalmic evaluation and management”. This study opens

the doors for a much simplified protocol for manual and automatic screening systems.

Understandably, many other screening protocols that employ fundus images exist. An

example is the Atherosclerosis Risk in Communities (ARIC) developed to investigate fac-

tors associated with both atherosclerosis and incidence of clinical cardiovascular dis-

ease through the retina (Wong et al., 2001).

2.4.2 Automatic Screening Systems

The ability to detect lesions (or other abnormalities) automatically in fundus images

naturally leads to the creation of systems which can generate a diagnosis without hu-

man intervention. The diagnosis can be used either as a suggestion for the human

reader (Computer Assisted Diagnosis or CAD) or as screening system. The latter is
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Diabetic
Retinopathy Severity level Findings

No apparent retinopathy No abnormalities
Mild non-proliferative DR Microaneurysms only
Moderate non-proliferative DR More than just microaneurysms but less than severe

non-proliferative diabetic retinopathy
Severe non-proliferative DR Any of the following: more than 20 HMA in each of

4 quadrants; definite VB in 2+ quadrants; prominent
IRMA in 1+ quadrant and no signs of proliferative DR

Proliferative DR One or more of the following: neovascularization,
vitreous/preretinal HMA

Diabetic
Macular
Edema Severity level Findings

No apparent DME No apparent retinal thickening or hard exudates
in posterior pole

Mild DME some retinal thickening or hard exudates but distant
from the centre of the macula

Moderate DME retinal thickening or hard exudates approaching
(without involving) the centre of the macula

Severe DME retinal thickening or hard exudates involving
the centre of the macula

TABLE 2.6: International Clinical Diabetic Retinopathy and Diabetic Macular Edema
Disease Severity Scale (Wilkinson et al., 2003). The acronym definitions are in Section

2.1.3

the application that would bring the greatest benefits for patients with diabetes or pre-

diabetes, especially if implemented as an easy to operate, low-cost system capillary

installed in pharmacies and shopping malls. In fact, in the United States alone there

are currently 7 million diabetic patients that remain undiagnosed, and this number is

destined to rise given the increasing incidence of diabetes (Centers for Disease Con-

trol and Prevention, 2011). The recommended level of screening3 is not currently being

achieved because many patients do not have access to specialized ophthalmologic cen-

tres because of their location, insufficient local specialists for screening, or healthcare

costs.

The first large study to test the feasibility of such system is the EyeCheck project (Abramoff

and Suttorp-Schulten, 2005). The authors acquired two fundus images from each of the

17877 patients with diabetes who had not been previously diagnosed with DR. All im-

ages were classified by a retina expert with a simplified grading scale than the ones

presented in Section 2.4.1. Each image is graded as having no DR or more than mini-

mal DR, in order to classify the patients that need referral to an ophthalmologist or not.

As suggested by Williams et al. (2004) only a single field fundus image is employed for

each eye, which greatly simplify the acquisition process.

3The recommended levels of screening for a diabetic patient (without conclamated diabetic retinopa-
thy) is generally considered to be once per year (Melville et al., 2000). However, there are some studies
that challenges this time frame (Vijan et al., 2000).
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Abramoff et al. (2010b) obtained an AUC of 0.839 for the original algorithm developed

in Eyecheck project, an AUC of 0.821 for another algorithm developed in the ROC

challenge and an AUC of 0.86 when the two techniques were combined. These results

are obtained by uniquely employing dark lesions (MA and HE) detectors. Instead,

Niemeijer et al. (2009a) obtained an AUC of 0.881 by fusing together dark and bright

lesion detectors with other miscellaneous features. In this case the tests were run on a

subset containing data from 15000 patients instead of 17877.

It should be highlighted that the results evaluation are based on ground truth (GT) data

generated by experts that is not perfect by any means, either because of human er-

ror or the sub-optimality of the imaging process. Based on intra-readers agreement

calculation performed on the diagnosis generated by three experts on a set of 500 ex-

ams, Abramoff et al. (2010b) calculates that an AUC of 0.86 is the theoretical expected

maximum, as greater values would not indicate true performance increase. However,

this calculation is applicable only on these particular exams, where there was an av-

erage agreement of k = 0.44 between the three experts. Philip et al. (2007) report an

inter-reader agreement of k = 0.91 for the screening outcome on a set of 14406 images

captured from 6722 patients. Without having access to the original data it is impossible

to calculate the theoretical maximum AUC, however it would be higher than the one

presented by Abramoff et al. (2010b). In their study Philip et al. (2007), do not evalu-

ate their results by the means of a ROC curve, but rather single specificity/sensitivity

pairs. In a patient based evaluation, they obtain a sensitivity/specificity of 0.905/0.674;

in a image based evaluation, they report a score of 0.862/0.768.

Since 2005, the Hamilton Eye Institute (University of Tennessee) in collaboration with

the Oak Ridge National Laboratory and the University of Burgundy has been designing

and developing a HIPAA-compliant, teleophthalmology network for the screening of

diabetic retinopathy and related conditions in under served regions of the Mid-South

of the United States of America. As of 2011, five clinics are provided with Zeiss Visu-

cam PRO fundus cameras appropriately modified to automatically send pictures and

patients’ metadata to our central server for a diagnosis. The current telemedicine net-

work is described by Li et al. (2011). The work flow of this system is currently semi-

automated, with the prospect of moving to a fully automated screening system upon

the acceptance of ophthalmologists, patients and Federal Drug Administration (FDA)

approval. Also, it is running some of the algorithms presented in this thesis in a real

world setting which has been of great help during the development.





Chapter3
Quality Assessment

"Very often do the captains of such ships take those absent-minded young philosophers to task,

upbraiding them with not feeling sufficient "interest" in the voyage; half-hinting that they are so

hopelessly lost to all honorable ambition, as that in their secret souls they would rather not see whales

than otherwise. But all in vain; those young Platonists have a notion that their vision is imperfect; they

are short-sighted; what use, then, to strain the visual nerve? They have left their opera-glasses at home."

- The Mast-Head, Moby Dick: or the Whale, Herman Melville

In a real world screening environment, there are many unpredicted aspects that can re-

sult in an ungradable image. For this reason an algorithm able to automatically judge

the quality of the fundus image captured is a necessary preprocessing step for a correct

diagnosis. Some methods that address this problem can be found in the literature but

they have some drawbacks like accuracy or speed. In this chapter a method for au-

tomatically judging the image quality with a score from 0 to 1 is presented. To do so

various descriptors are used, among them a new set of features independent of field of

view or resolution to indirectly describe the morphology of the patient’s vessels. A C++

implementation of the complete algorithm is developed and tests suggest that the im-

age quality can be estimated in ∼2 seconds on a 3.4 GHz Intel Pentium 4 machine with

2 GB of RAM. Part of this work has been published in Giancardo et al. (2008, 2010b).

31
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3.1 Introduction

Various systems for automatic or semi-automatic detection of retinopathy with fun-

dus images have been developed. The results obtained are promising but the initial

image quality is a limiting factor (Patton et al., 2006); this is especially true if the ma-

chine operator is not a trained photographer. Algorithms to correct the illumination

or increase the vessel contrast exist (see Section 2.2.2), however they cannot restore an

image beyond a certain level of quality degradation. On the other hand, a fast and ac-

curate quality assessment algorithm would automatically warn the operator to re-take

the fundus image, eliminating or reducing the need for correction algorithms. In addi-

tion, a quality metric permits the automatic submission of the best images, if many are

available.

The measurement of a precise image quality index is not a straightforward task, mainly

because quality is a subjective concept which varies even between experts, especially

for images that are in the middle of the quality scale. In addition, image quality is

dependent upon the type of diagnosis being made. For example, an image with dark

regions might be considered of good quality for detecting glaucoma but of bad quality

for detecting diabetic retinopathy. For this reason, we decided to define quality as

the “characteristics of an image that allow the retinopathy diagnosis by a human or software

expert”.

Fig. 3.1 shows some examples of macula centred fundus images whose quality is very

likely to be judged as poor by many ophthalmologists. The reasons for this vary. They

can be related to the camera settings like exposure or focal plane error ( Fig. 3.1(a,e,f)

), the camera condition like a dirty or shuttered lens ( Fig. 3.1(d,h) ), the movements of

the patient which might blur the image ( Fig. 3.1(c) ) or if the patient is not in the field

of view of the camera ( Fig. 3.1(g) ). We define an outlier as any image that is not a

retina image which could be submitted to the screening system by mistake.

Existing algorithms to estimate the image quality are based on the length of visible ves-

sels in the macula region (Fleming et al., 2006a), or edges and luminosity with respect

to a reference image (Lee and Wang, 1999; Lalonde et al., 2001). Another method uses

an unsupervised classifier that employs multi-scale filterbanks responses (Niemeijer

et al., 2006). The shortcomings of these methods are either the fact that they do not take

into account the natural variance encountered in retinal images or that they require a

considerable time to produce a result. See Section 2.2.5 for more details.

Additionally, none of the algorithms in the literature that we surveyed generate a “qual-

ity measure”. Authors tend to split the quality levels into distinct classes and to clas-

sify images in particular ones. This approach is not really flexible and is error prone.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 3.1: Examples of Poor Quality Fundus Images. (a) Underexposed; (b) eyelid
artefacts; (c) blurred; (d) dirty lens; (e) overexposed; (f) out of focal plane; (g) no patient

(outlier); (h) camera objective covered (outlier).

In fact human experts are likely to disagree if many categories of image quality are

used. Therefore, a “quality measure” between 0 and 1 seems the most indicated for

this classification problem.

Processing speed is another aspect to be taken into consideration. While algorithms to

assess the disease state of the retina do not need to be particularly fast (within reason),

the time response of the quality evaluation method is key towards the development

of an automatic retinopathy screening system which allows real-time interactions with

the photographer.

This chapter is structured as follows. Section 3.2 describes the proposed quality assess-

ment technique based on the ELVD features. Section 3.3 describes the tests and results

obtained. Section 3.4 concludes the chapter.

3.2 Methodology

The QA proposed aims to be: accurate in its QA of patients of different ethnicities, robust

enough to be able to deal with the vast majority of the images that a fundus camera can

produce (outliers included), independent of the camera used, computationally inexpensive

so that it can produce a QA in a reasonable time and, finally it should produce a quality

index from 0 to 1 which can be used as input for further processing.

Our approach is based on the hypothesis that a vessel segmentation algorithm’s ability

to detect the eye vasculature correctly is partly correlated to the overall quality of an
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(a) (b) (c) (d)

FIGURE 3.2: Comparison of the vessel segmentation by our implementation of Zana
and Klein (2001) in a good and a poor quality fundus image. (a) Fundus image: good
quality; (b) vessel segmentation of (a); (c) fundus image: bad quality; (d) vessel seg-

mentation of (c).

image. Fig. 3.2 shows the output of the vessel segmentation algorithm in images with

different quality. It is immediately evident that the low vessel density in the bottom

part of the right image is due to an uneven illumination and possibly to some blurring.

However, a global measure of the vessel area (or vessel density) is not enough to dis-

criminate good from bad quality images. One reason is that a considerable quantity of

vessels area is taken by the two arcades which are likely to be detected even in a poor

quality image as in Usher et al. (2003). Another problem is that the illumination or blur-

ring might be uneven, making only part of the vessels undetectable. The visible part

can be enough to trick the QA. Finally, this type of measure does not take into account

outliers or artefacts caused by smudges on the lens.

The algorithm presented is divided in three stages: Preprocessing, Features Extraction

and Classification. An in depth illustration of the full technique follows in the next

sections.

3.2.1 Preprocessing

3.2.1.1 FOV Mask Segmentation

In each digital fundus image acquired by modern fundus cameras there is a dark area

surrounding the effective FOV showing the retina fundus defined as the FOV mask.

Depending on the settings, each fundus camera has a FOV mask of different shape

and size, so identifying which pixels actually belong to the retina is a necessary step.

Some fundus cameras provide the FOV mask information. However, having the ability

to automatically detect the FOV mask has some benefits. It improves the compatibil-

ity across fundus cameras because it does not need to be interfaced with any sort of

proprietary format to access the FOV mask information. Also, if the QA is performed

remotely, it reduces the quantity of information to be transmitted over the network.
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Finally, some image archives use a variety of fundus cameras and the FOV mask is not

known for each image.

The FOV mask segmentation is based on region growing (Gonzales and Woods, 2002).

It starts by extracting the green channel of the RGB fundus image, which contains the

most contrast between the physiological features in the retina (Teng et al., 2002), hence

this channel best describes the boundary between background and foreground. It is

also the channel that is typically used for vessel segmentation. Then, the image is scaled

down to a height of 120 pixel (maintaining the aspect ratio), an empirically derived

resolution which keeps the computational complexity as low as possible. Four seeds

are placed on the four corners of the image with an offset equals to 4% of the width or

height.

o f f setw = round(imageWidth× 0.04)

o f f seth = round(imageHeight× 0.04)

seedtl = [o f f setw; o f f seth]

seedtr = [imageWidth− o f f setw; o f f seth]

seedbl = [o f f setw; imageHeight− o f f seth]

seedbr = [imageWidth− o f f setw; imageHeight− o f f seth]

(3.1)

where seedxy is the location of a seed. The reason for the offsets is to avoid regions

getting “trapped” by watermarks, ids, dates or other labels that generally appear on

one of the corners of the image.

The region growing algorithm is started from the 4 seeds with the following criteria:

1. The absolute grey-level difference between any pixel to be connected and the

mean value of the entire region must be lower than 10. This number is based

on the results of various experiments.

2. To be included in one of the regions, the pixel must be 4-connected to at least one

pixel in that region.

3. When no pixel satisfies the second criterion, the region growing process is stopped.

When four regions are segmented, the FOV mask is filled with negative pixels when

it belongs to a region and positive otherwise. The process is completed scaling back

the image to its original size. Even if this final step leads to a slight quality loss, the

advantages in terms of computational time are worth the small imperfections at the

edges of the FOV mask.
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(a) (b) (c) (d)

FIGURE 3.3: (a) Original image with the 4 seeds (in red) placed. (b) Mask segmenta-
tion results. (c) Points used for VFOV detection. (d) VFOV detected.

3.2.1.2 “Virtual” FOV Identification

During the acquisition of a macula centred image, the patient is asked to look at a fixed

point visible at the back of the camera lens. In this way the macula is located at the

centre of the image Field of View (FOV). Even if the area viewed by different cameras is

standardized, various vendors crop some part of the fundus images that do not contain

useful information for diagnosis purposes.

In order to develop an algorithm that runs independently from the lost information,

the “Virtual” FOV (VFOV) is extracted. The VFOV consists of an ellipse that represents

the contour of the fundus image as if it was not cropped. This measure allows a sim-

plification of the algorithm at further stages and it is the key component that makes the

method independent of the camera FOV and resolution.

The classical technique to fit a geometric primitive such as an ellipse to a set of points

is the use of iterative methods like the Hough transform (Leavers, 1992) or RANSAC

(Rosin, 1993). Iterative methods, however, require an unpredictable amount of com-

putational time because the size of the image mask could vary. Instead, we employ

the non-iterative least squares based algorithm presented by Halir and Flusser (2000)

which is extremely computationally efficient and predictable.

The points to be fitted by the ellipse are calculated using simple morphological opera-

tions on the mask. The complete procedure follows.

α = erode(maskImage)

γ = maskImage− α

f itEllipse(γ)

(3.2)

The erosion is computed with a square structuring element of 5 pixels. The binary

nature of the image in this step (Fig. 3.3.b) makes the erosion very computationally

efficient.
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3.2.1.3 Vessel Segmentation

The technique chosen to segment veins and arteries visible in fundus images is based

on the mathematical morphology method introduced by Zana and Klein (2001). This

algorithm proved to be effective in the telemedicine automatic retinopathy screening

system currently developed in our group (see Section 2.4.2). Having multiple modules

that share the same vessel segmentation algorithm is a benefit for the system as a whole

to prevent redundant processing.

As shown in Section 2.2.3, the Zana & Klein algorithm are an example of a rule-based

vascular segmentation method, and thus allows the usage of the algorithm without a

training phase with manually labelled vessels. Our implementation is fast and efficient

(<2 seconds as shown in Table 3.4) and it has been shown to work well even in infant

fundus images where the choroidal vasculature poses a problem to many techniques

(Heneghan et al., 2002).

This algorithm makes extensive use of morphological operations, the following acronyms

are used:

erosion: εB(S)

dilation: δB(S)

opening: γB(S) = δB(εB(S))

closing: φB(S) = εB(δB(S))

geodesic reconstruction (or opening): γrec
Smarker

(Smask)

geodesic closing: φrec
Smarker

(Smask) = Nmax − γrec
Nmax−Smarker

(Nmax − Smask)

where B is the structuring element and S is the image to which it is applied, Smarker is

the marker, Smask is the mask and Smax is the maximum possible value of the pixel. A

presentation of these morphological operators can be found in Vincent (1993).

(a) (b) (c) (d) (e)

FIGURE 3.4: Vessel segmentation summary. (a) Initial image (green channel). (b) Im-
age after Eq. 3.4. (c) Image after Gaussian and Laplacian filter. (d) Image after Eq. 3.7.
(e) Final segmentation after binarisation and removal of small connected components.
All images, apart from the first one, have been inverted to improve the visualisation.
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The vessel segmentation starts by using the inverted green channel image already ex-

tracted by the mask segmentation. In fact, the blue channel appears to be very weak

without much contrast with the vessels. On the other hand, the red band is usually too

saturated since vessels and other retinal features reflect most of their signal in the red

wavelength.

The initial noise is removed while preserving most of the capillaries on the original

image S0 as follows:

Sop = γrec
S0
(Maxi=1...12{γLi(S0)}) (3.3)

where Li is a linear structuring element 13 pixels long and 1 wide for a fundus image.

For each i, the element is rotated of 15◦. The authors specify that the original method is

not robust for changes of scale. However, since we have an estimation of the VFOV, we

are in a position to dynamically adapt the size of the structuring elements depending

on the length of the axes in the VFOV.

Vessels can be considered as linear bright shapes identifiable as follows:

Ssum =
12

∑
i=1

(Sop − γLi(S0)) (3.4)

The previous operation (a sum of top hats) improves the contrast of the vessels but at

the same time various unwanted structures will be highlighted as well. The authors

evaluate the vessel curvature with a Gaussian filter (width=7px; σ = 7/4) and a Lapla-

cian (size=3x3) obtaining the image Slap. Then, by iterating the following operation the

final result is obtained and the remaining noise patterns eliminated:

S1 = γrec
Sl ap(Maxi=1...12{γLi(Slap)}) (3.5)

S2 = φrec
S1
(Mini=1...12{φLi(S1)}) (3.6)

Sres = (Maxi=1...12{γ2
Li
(S2)} ≥ 1) (3.7)

As the last step of our implementation, we binarize the image and remove all the con-

nected components that have an area smaller than 250 pixels. Once again this value is

scaled depending on the VFOV detected. Fig. 3.4 shows a visual summary of the whole

algorithm.
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(a) (b)

(e) (f)

(c) (d)

(g) (h)

FIGURE 3.5: Elliptical local vessel density examples. Even and odd columns respec-
tively contain left and right retina images. In top row good quality images are shown,
in the bottom row bad quality ones. The 4 images on the left use ELVD with θ = 8 and
r = 3; the 4 images on the right are the same ones but the parameters for ELVD are

θ = 12 and r = 1.

3.2.2 Feature Extraction

3.2.2.1 Elliptical Local Vessel Density (ELVD)

By employing all information gathered in the preprocessing phase, we are able to ex-

tract a local measure of the vessel density which is camera independent and scale in-

variant. Other authors either measure a similar feature globally like Usher et al. (2003),

or they use a computationally expensive method like Fleming et al. (2006a) whose ap-

proach requires a vessel segmentation, a template cross correlation and two different

Hough transforms. Instead, we employ an “adaptable” polar coordinate system (θ, r)

with the origin coincident with the origin of the VFOV. It is adaptable in the sense that

its radius is not constant but it changes according to the shape of the ellipse. This al-

lows the algorithm to deal with changes of scale not proportional between height and

width.

The Elliptical Local Vessel Density (ELVD) is calculated by measuring the vessel area

under each local window, then normalized with zero mean and unit variance1. The

local windows are obtained sampling r and θ. Different values of r and θ will tolerate

or emphasize different problems with the image quality. In Fig. 3.5 for example, the 4

images on the left (θ = 8 and r = 3) have 8 windows each on the centre of VFOV where

the macula is located. In this fashion, ELVD features can detect a misaligned fundus

image. On the other hand, the ELVD in the 4 images on the right (θ = 12 and r = 1)
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(a) (b)

FIGURE 3.6: Pigmentation difference between Caucasian (a) and African American (b)
retinas.

will be more robust to macula misalignment, but more sensitive to vessel detection on

both vascular arcades.

The idea behind ELVD is to create local windows that are roughly placed in consistent

positions throughout different images. In the even or odd columns of Fig. 3.5, note

that vessels close to the ON are in the same or nearby local windows, even if images

have different FOVs. The power of this new style of windowing is its capability of

capturing morphological information about fundus images without directly computing

the position of ON, macula or arcade vessels, since these operations are computational

expensive and prone to errors if the image has a very poor quality.

3.2.2.2 Luminosity/Colour Information

The analysis of the global colour information of the fundus image can contain useful

information for the quality of the image. The method of Lee and Wang (1999) employed

the histogram of the grey-level obtained from the RGB image as the only means to de-

scribe the image quality. The much more refined method of Niemeijer et al. (2006) uses

5 bins of each channel of the RGB histogram as additional features as input to the clas-

sifier. The authors presented results demonstrating that this piece of RGB information

improved their classification respect to pure ISI features, even if ISI is representative of

most of the retinal structures.

Inspired by Niemeijer et al. (2006), colour information to represent aspects of quality

that cannot be entirely measured with ELVD are used, such as over/underexposed

images in which the vasculature is visible or outliers with many features that are recog-

nised as vessels.
1The zero mean and unit variance is calculated for each feature across all the training images.
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All RGB channels are evaluated by computing the histogram for each plane. The his-

togram is normalised by the size of the mask in order to make this measure scale inde-

pendent. It is noted that people from different ethnic origin have a different pigmen-

tation on the retina; this aspect is particularly noticeable in the blue and red channel.

For example while Caucasians have a fundus with a very strong red component people

of African descent have a darker pigmentation with a much stronger blue component

(see figure 3.6). In our case this is not an issue because we ensure we have adequate

examples of different ethnic groups in our training library.

Also, the HSV colour space is employed as a feature. Only the saturation channel is

used which seems to play an important role in the detection of the over/under expo-

sition of the images. The reason is the channel relative independence from pigment

and luminosity. Once again, the global histogram is extracted and normalised with the

image mask.

3.2.2.3 Other Features

In addition to ELVD and colour information two other sets of features are considered

as candidates to represent quality:

• Vessel Luminosity: Wang et al. (2001) noted that the grey level value correspond-

ing to the vessels can be used as a good approximation of the background lumi-

nosity. They proposed an algorithm that exploits these information to normalise

the luminosity of the fundus images. If the vessel luminosity with the same ellip-

tical windows used for the ELVD, we can measure the luminosity spread in the

image. This can be particularly useful because poor quality images have often an

uneven illumination.

• Local Binary Patterns (LBP): Texture descriptors are numerical measures of tex-

ture patterns in an image. LBP are capable of describing a texture in a com-

pact manner independently from rotation and luminosity (Ojala and Pietikainen,

1996). The LBP processing creates binary codes depending on the relation be-

tween grey levels in a local neighbourhood. In the QA context this type of de-

scriptor can be useful to check if the particular patterns found in a good quality

retina are present in the image. This is accomplished by generating an histogram

of the LBP structures found.
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3.2.3 Classification

The majority of the authors who developed a QA metric for retinal images approached

the classification in a similar way (Lee and Wang, 1999; Lalonde et al., 2001; Usher et al.,

2003). The training phase consists of creating models of good and poor quality images

(in some cases more intermediate models are employed) by calculating the mean of the

features of the training sets. For each new retinal image, the feature vector is computed

and compared to the two models. Then, it is classified based on the shortest distance2to

one of the models. This type of approach works reasonably well if the image to be

classified is similar enough to one of the models. Also, it simplifies the calculation of

a QA metric between 0 and 1 because distances can be easily normalised. However,

this approach has a major drawback: the lack of generalisation on images with a large

distance from the both models. This problem limits the method applicability in a real

world environment.

Niemeijer et al. (2006) are the only authors to our knowledge that approach the QA as a

classic pattern classification problem. During the training phase they do not try to build

a model or to make any assumption about the distribution of the data. Instead, they

label each samples in one of the two classes and train one of the following classifiers:

Support Vector Machines (SVM), Quadratic Discriminant Classifier (QDC), Linear Dis-

criminant Classifier (LDC) and k-Nearest Neighbour Classifier (KNNC). Finally, they

selected the classifier with the best performance (in their case a SVM with radial basis

kernel) by testing it with a separate dataset.

Our classification technique is similar to the one of Niemeijer et al., but with two major

differences. The first one is that our feature vector is more computationally efficient and

it does not need pre-clustering. The second difference is the fact that the classifier needs

to output a posterior probability rather than a clear cut classification of a particular

class. This probability will allow the correct classification of fair quality images even if

the training is performed on two classes only.

3.3 Tests and Results

In this section, a summary of the most significant experiments performed during the

development of the ELVD quality estimator are presented. The first section contains an

overview of the datasets used. We then show the tests used for an initial evaluation of

the QA proposed, the comparison with existing techniques and the choice of the classi-

fier. Then, an analysis on possible optimizations of the feature set is performed. Finally

2Distances calculations vary; some use Euclidean distance, others are based on correlation measures.
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the final QA system is tested on all the datasets and its computational performance is

evaluated.

3.3.1 Material

Few small datasets are employed in the following tests. The list follows:

• “Image Set 1”: it is composed of 75 images extracted from the Abramoff dataset

and labelled as good, fair and poor quality. These images were compiled at the

Oak Ridge National Laboratory for the analysis of various aspects of the auto-

matic diagnosis of diabetic retinopathy.

• “Image Set 2”: this set is composed of 42 images extracted from the Abramoff

dataset labelled as good and poor quality. They are good representatives of vari-

ous aspects of the quality aspects of fundus images. These images were extracted

by an expert of the field (Dr. E. Chaum) in order to facilitate the development of

the QA system.

• “Outliers”: it is composed of 24 miscellaneous images containing various types

of image outliers, all captured with a fundus camera.

3.3.2 Classifier Selection

In order to select the most appropriate classifier, a series of comparative tests is run

on the “Image Set 1” and “Outliers” dataset. The results are compared with our im-

plementation of the QA by Niemeijer et al. (2006). The feature vector used by our

classifiers is composed of ELVD with 3 slices and 8 wedges (ELVD 3x8) and the RGB

colour histogram with 5 bins per channel.

The testing method used a randomised 2-fold validation, which works as follows. The

samples are split in two sets A and B. In the first phase A is used for training and B

for testing, then roles are inverted and B is used for training and A for testing. The

performance of a classifier are evaluated using the AUC assuming as positive sample a

good quality image (TPR/FPR) and vice versa (TNR/FNR).

In the two columns on left, table 3.1 shows the Good/Poor classification results for the

“Image Set 1” dataset. All the classifiers using our feature vector have perfect or near-

perfect performance in the selection between good and poor class, which is not the case

for the Niemeijer et al. method (note that only the good and poor classes are used).
2For privacy reasons the ethnicity of the subjects in the Abramoff dataset was not known.
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Image Set 1 Image Set 1 + Outliers dataset

Classifier TPR/FPR TNR/FNR TPR/FPR TNR/FNR

Nearest Neighbour 1 1 1 1
KNN (K=5) 1 1 0.99 0.98
SVM (Linear) 1 1 0.92 0.79
SVM (Radial) 1 1 1 1
ISC by Niemeijer et al. 1 0.88 1 0.88

TABLE 3.1: Good/Poor classifier test on “Image Set 1” and “Outliers” dataset. For the
first four classifiers the feature vector used is ELVD 3x8 + RGB histogram with 5 bins.

FIGURE 3.7: Classifier scores test on “Image Set 1” dataset. For the first four classifiers
the feature vector used is ELVD 3x8 + RGB histogram with 5 bins.

In the two columns on the right, all the Outliers dataset were added as test samples. An

outlier image can have an enormous variability, therefore we feel that the training on

this type of images might bias the classifier. Ideally, a classifier should be able to classify

them as poor even if they are not fundus images as such. In this test, the classifiers

performed differently, with the best results are given by Nearest Neighbour classifier

and SVM with a radial kernel.

Recall that the aim of this system is to generate a quality score from 0 to 1 to judge

the image quality. In order to analyse this aspect, means and standard deviations of

the scores obtained are displayed in Fig. 3.7. The classifiers are again trained on Good

and Poor class (with 2-fold validation) but the Fair class is added to the testing samples

without any explicit training on it, which allows a test of the generalisation of the sys-

tem. In this test, the classifier with the poorest average AUC (SVM with a linear kernel)

is also the one that achieves the best class separation, with an average score separation

between Good and Poor classes of more than 0.8. The Fair class in this test has a mean

score located at the middle of the scale.
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This apparent contradiction makes the selection of the classifier difficult. Therefore an-

other series of tests was run on the more challenging “Image Set 2” dataset. In this

case a leave-one-out strategy is used, i.e. the classifier is trained multiple times remov-

ing a different sample from the training set and using it as test target each time. This

technique allows us to run complete tests using a relative small dataset.

Table 3.2 shows the results obtained employing the same classifiers and feature vector

as before. While no classifier obtained ideal performance, the SVM with a linear kernel

seems to have a good compromise between AUC and score separation. The small AUC

advantages of KNN and Nearest Neighbour do not justify the computational perfor-

mance issues that these type of classifiers have when many training samples in a high

dimensional space are used, and also these classifiers have relatively low score differ-

ence between Good and Poor class.

AUC AUC Average Good/Poor
Classifier TPR/FPR TNR/FNR score difference

Nearest Neighbour 0.97 0.97 0.51
KNN (K=5) 0.97 0.97 0.51
SVM (Linear) 0.97 0.94 0.76
SVM (Radial) 0.94 0.91 0.54

TABLE 3.2: Good/Poor classifier test on “Image Set 2” dataset. The feature vector used
is ELVD 3x8 + RGB histogram with 5 bins (the error bars show the average standard

deviation).

3.3.3 Features Selection

The Linear SVM classifier gives good score separation but was not as effective on the

identification of outliers. One solution to this problem is the selection of new feature

capable of linearising the space. However, the selection of adequate features allowing

the SVM hyperplane to split the good quality samples from all the rest is not a straight-

forward task. Testing all the possible combination of the feature sets mentioned is im-

practical. Each feature set has many parameters: ELVD 36 (3 sets of radial section and

12 sets of wedges), Vessel Luminosity 36 (same as previously), RGB histogram 80 (all

the channel combinations which can be normalised or not and 5 sets of histogram bins),

HSV histogram 80 (same as previously) and LBP 4 (2 sets of radii length and 2 sets of

LBP codes), for a total of 33 177 600 possible combinations.

Therefore a naive approach to feature selection was adopted. Firstly it is assumed that

all feature sets represent independent aspects of the fundus image quality. While this

assumption is rather far-fetched, it does allow us to run only 324 tests to check all the

possible permutation in each feature set, and also gives a feeling for what features are
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worth testing. Table 3.3 shows which are the parameters that achieved the best results

for each feature set on the “Image Set 2” dataset. This dataset was chosen since we feel

that it is the most authoritative representation of good and poor quality image in most

of the different aspects.

Average Good/Poor
Feature Set Parameters Avg AUC score difference

ELVD 16 rad. sec. & 6 wedges 0.98 0.74
RGB Hist 4 bins per ch. & mask norm. 0.81 0.51
HSV Hist 5 bins of Sat. & mask norm. 0.85 0.59
Vessel Luminosity 16 rad. sec. & 6 wedges 0.98 0.74
LBP 8 px radius & 8 codes 0.85 0.59

TABLE 3.3: Best results of each independent feature set on the “Image Set 2” dataset.
The test is a leave-one-out with a SVM Linear classifier.

If feature sets were actually independent, the ideal feature vector would be composed

by all of them with the parameters shown in Table 3.3. However, because there is almost

certainly some degree of correlation, various parameters of the feature sets are selected

based on their relative AUC and Good/Poor score difference and they are combined

together for a total of 16 800 tests.

Optimal results (Avg AUC of 1) and excellent good/poor score separability (0.91) are

obtained on “Image Set 2” with a relatively simple feature vector composed of:

• ELVD with 6 wedges and a single radial section

• The mask normalised histogram of the saturation with 2 bins

As it was suspected, the parameters that lead to the best results in this test are not the

combination of the parameters found in each independent feature set test (table 3.3).

However, they reduce the parameters search space and obtain excellent results with a

relative simple combination.

3.3.4 Computational Performance

The performance of the C++ implementation of the ELVD QA is evaluated with a stan-

dard benchmarking technique. The complete ELVD QA system is run on 25 images

randomly chosen from the “Image Set 2” dataset, during each iteration the time re-

quired to run the total system and each separate algorithm is recorded and averaged.

All the images are scaled to the common resolution of 756x576 in order to have fairly
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Stage Time (in milliseconds)

Mask Detection 116
VFOV 16
Vessel Segmentation 1920
ELVD 15
Saturation Histogram 25
Classification +
Memory Allocation 38

Total 2130

TABLE 3.4: Relative performance of the different components in the ELVD QA C++
implementation.

consistent measurements. All the test were run on a 3.4 GHz Intel Pentium 4 machine

with 2 GB of RAM.

The total time required to obtain a quality score for a single image is 2130 milliseconds.

Table 3.4 shows how each system component contributes to the global computational

time. The vessels segmentation is by far the main contributor having more than 10

times the computational cost of all the other algorithms summed together. The mask

detection and the classification, two possibly expensive operations, are actually quite

efficient considering the needs of this system.

For comparison, a global benchmark was run on our implementation of the Niemei-

jer et al. QA classification (Niemeijer et al., 2006). The result obtained is well over

30 seconds, a time one order of magnitude greater than our approach. This is due to

the many filterbanks that must be executed to calculate the raw features and the near-

est neighbour operations to obtain the “words”. However, the comparison between the

two techniques should be taken with a bit of perspective because of the different imple-

mentation platforms. In fact the Niemeijer et al. algorithm is implemented in Matlab,

a slower language than C++ because of its interpreted language nature. Nevertheless,

we should point out that in our tests Matlab uses fast native code thanks to the Intel IPP

libraries (Intel, 2007) for all the filtering operations, and these are very computationally

efficient regardless of programming language choice.

3.4 Discussion

The new approach described in this chapter was partially inspired by the following

techniques: colour was used as features as in the “Histogram Based” technique, the
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vessels were segmented as a preprocessing step like in the “Retina Morphology” tech-

niques and the QA was computed by a classifier similar to the one used in the “Bag-

of-Words” techniques. Nevertheless, new features were developed and used such as

ELVD, VFOV and the use of the HSV colour space. This made possible the creation of

a method capable of classifying the quality of an image with a score from 0 to 1 in a pe-

riod of time much shorter than “Retina Morphology” and “Bag-of-Words” techniques.

Features, classifier types and other parameters were selected based on the results of

empirical tests. Four different types of datasets were used. Although none are very

large (none contained more than 100 images) they were fairly good representative of

the variation of fundus images in terms of quality, camera used and patient’s ethnicity.

In the literature, the method which seemed to perform best and which had the best

generalisation was the one of Niemeijer et al. It was implemented and compared to

our algorithm. Our results are in favour of the method presented in this chapter in

terms of classification performance and speed. However, while our method has a clear

advantage in terms of speed (it runs one order of magnitude faster because of the lower

computational complexity), the comparison in terms of classification should be taken

with care. In fact, Niemeijer et al. employed a dataset larger than ours to train the

system.

However, there were some indirect confirmation of the good performance of the algo-

rithm (which is currently used as help to provide healthcare). First, a strong correla-

tion between a ON localization algorithm performance and QA score was shown by

Karnowski et al. (2009). Also, we noted a measurable and increasing trend in the image

quality in the clinics that are acquiring fundus images for the telemedicine network

described by Li et al. (2011) as shown in Table 3.5.

Month Images with QA > 0.4 n◦ of images

January 39.53% 86
February 89.80% 49
March 85.29% 34
April 82.65% 219
May 98.39% 124
June 98.65% 148
July 98.65% 74

TABLE 3.5: Quality assessment trend in a remote clinic

Every time operators were acquiring an image, they were shown the QA score. If the

score was below 0.4 they were asked to re-acquire the image, if the second image had

again a QA below 0.4 they could chose if submit the image anyway or acquire yet

another image. This process seems to have progressively trained the photographers in

capturing good quality images. Unfortunately, we did not have a “control group” to
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evaluate the relative gain due to the use of QA as feedback to photographers. However,

we can assume that in a clinical settings the skills of photographers will increase in a

way or in another and the QA qualitatively correlates with this assumption.





Chapter4
Exudate Segmentation

"Amor y deseo son dos cosas diferentes;

que no todo lo que se ama se desea, ni todo lo que se desea se ama."

"¡Amor, ayuda al deseo, puesto que me pusiste en el!"

- El ingenioso hidalgo Don Quijote de la Mancha, Miguel de Cervantes

Diabetic macular edema (DME) is a common vision threatening complication of dia-

betic retinopathy which can be assessed by detecting exudates (a type of bright lesion)

in fundus images. In this chapter, two new methods for the detection of exudates are

presented which do not use a supervised learning step; therefore, they do not require

labelled lesion training sets which might be time consuming to create, difficult to obtain

and prone to human error. The HEI-MED dataset is introduced which will be used for

various experiments throughout the rest of this thesis. We evaluate our algorithm with

this dataset and compare our results with two recent exudate segmentation algorithms

from the literature. In the tests performed, our algorithms perform better or compara-

ble with an order of magnitude reduction in computational time. Part of this work has

been published in Giancardo et al. (2011d,c).

51
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4.1 Introduction

In this chapter, two variations of a new exudate segmentation method that falls into

the category of thresholding methods which do not require supervised learning are pre-

sented (see Section 2.3.2). By avoiding a supervised learning step, we prevent common

issues with human segmentation inconsistencies. In addition, many supervised learn-

ing methods require large amounts of data which can be very difficult to obtain in this

application domain. We introduce a new method to normalize the fundus image and

directly compare our method with an implementation of a morphology based tech-

nique Sopharak et al. (2008) and another thresholding based technique Sanchez et al.

(2009a). In Section 4.2 we introduce the new public dataset used for testing the algo-

rithm; Section 4.3 illustrates two methods published by two other groups which have

been implemented and tested on the HEI-MED dataset; Section 4.4 presents the details

of two variations of two automatic exudate segmentation methods; Section 4.5 presents

the results by comparing them to other two published techniques; finally, Section 4.6

concludes the chapter with a discussion.

4.2 Materials: HEI-MED dataset

The exudates segmentation algorithms have been designed and tested with images

from the telemedicine network introduced in Section 2.4.2 and described in details by Li

et al. (2011). In January 2010, the central server stored 1907 images of which 75% were

healthy and the remaining 25% had some form of retinal condition which required

referral to an ophthalmologist. The images were acquired from 910 patients in 971

sessions. This wealth of images are of particular interest for research purposes because

it provides an appropriate testbed for lesion segmentation and diagnosis stratification

algorithms required for a fully automated eye screening system. We believe that the

creation of a dataset based on this pool of data, obtained under true clinical conditions

with a broad-based screening protocol, has several advantages over existing datasets

as described below.

• Diverse Ethnicity: The clinics employing the telemedicine network are mainly

located in the Mid-South of the USA, where the ethnic groups are heterogeneous

and where retinal pigmentation covers the spectrum generally found in diverse

populations. It is important to emphasize this aspect because the appearance of

the retinal fundus varies greatly depending on the pigmentation of the retinal

pigment epithelium, which is correlated to the ethnic group and eye colour. De-

pending on this pigmentation, lesions or other type of structures are more or less
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(a) (b) (c) (d)

FIGURE 4.1: Examples of fundus images in the HEI-MED dataset. (a) African Amer-
ican patients showing clear exudates; (b) Hispanic patient without signs of DME; (c)
African American patient that shows choroidal vessels under the pigment epithelium

layer and some small exudates; (d) Caucasian patient without signs of DME.

apparent which makes the development of lesion segmentation and diagnosis al-

gorithms that work on a broad spectrum of patients more challenging as shown

in Fig. 4.1.

• Image Consistency: All the images are captured with the Zeiss Visucam PRO

fundus camera, at a resolution of 2196×1958 pixels and with a 45◦ Field of View

(FOV)1.

• Quality Assessment: The image capturing process is vetted by the automatic

quality assessment algorithm described in Chapter 3. Every time an image is

captured the algorithm is run and the result is shown to camera operators, giving

them the chance of taking a new image if required. Thus each image in the dataset

has an ELVD quality value stored for comparison.

• Metadata: In all the images, additional information is supplied. In addition to the

ethnicity and quality metric, age of the patient at image capture, patient gender,

type of diabetes, the machine segmented vasculature (employing the method of

Zana and Klein (2001)) and a manually generated location of the Optic Nerve

(ON).

From the pool of images collected on the server, 169 images representative of vari-

ous degree of DR/DME were randomly selected. We have verified that all images

are of sufficient quality, no patient is duplicated, and a reasonable mixture of eth-

nicity and disease stratification is represented. Table 4.1 shows the distributions of

the ethnicity, DME diagnosis, ELVD quality, diabetes type and patients’ age in the

dataset. This dataset is publicly available to the research community on the website:

http://vibot.u-bourgogne.fr/luca/heimed.php.
1Some clinics in the network use a 30◦ FOV. However, the images used to create the HEI-MED dataset

do not contain any image of this type.

http://vibot.u-bourgogne.fr/luca/heimed.php
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Although our algorithm does not use machine learning methods to classify lesions into

true positives and false positives, each image of the dataset was manually segmented

by E. Chaum, a practising retina specialist. This allowed the evaluation of all the al-

gorithms against the labelled lesions. He identified all the exudation areas and other

bright lesions such as cotton wool spots, drusen or clearly visible fluid occurring in

fundus images. The manual segmentation and grading of each image was performed

on a 17 inch tablet device that can be operated with a stylus, in order to increase the

labelling precision and throughput. The software used to perform the task was inter-

nally developed with the look and feel of ordinary bitmap painting software. It allows

segmentation of the different lesions, revision of already processed images by viewing

or amending the existing segmentation, and zooming views. The zooming capability

can be somewhat problematic, for while it allows the user to define the contour of the

lesion very precisely, it might greatly burden the grader when many very small lesions

are clustered together. Therefore, it was agreed to segment clusters of small lesions as

a single one if the lesions are not discernible at the first zoom level (a complete view of

the image at a resolution of 1280×1024 pixels).

Ethnicity
African American 104 (62%)
Caucasian 42 (25%)
Hispanic 19 (11%)
Unknown 4 (2%)
DME Diagnosis
Negative 115 (68%)
Positive 54 (32%)
ELVD Quality Metric
Poor (ELVD < 0.5) 14 (8%)
Good (0.5 ≤ ELVD < 0.8) 31 (18%)
Excellent (ELVD ≥ 0.8) 124 (74%)
Diabetes Type
Type I 160 (95%)
Type II 6 (3.5%)
Unknown 3 (1.5%)
Patients’ Age
age < 26 5 (3%)
26 ≤ age < 43 20 (12%)
43 ≤ age < 61 105 (62%)
age ≥ 61 39 (23%)

TABLE 4.1: HEI-MED Dataset Distribution

Using the ground truth labels established by a single ophthalmologist is suboptimal,

but in practice was required. The GT coming from different experts permits to average

out the human error and to generate a stronger dataset. However, the process of man-

ual lesion segmentation is particularly time consuming and, in our experience, quite

difficult to be obtained by busy ophthalmologists. Therefore, we settled for the lesion
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labelling coming from a single expert. In any case, the exudates segmentation algo-

rithms developed and tested, do not require a training phase on the lesions, so they

are not susceptible to errors and outliers that might be present in the lesion GT. During

the testing phase, all the algorithms are tested on the same lesion GT, therefore all the

possible errors should not favour any particular technique.

4.3 Exudate Detection Methods for Comparison

In this section the two methods (Sopharak et al., 2008; Sanchez et al., 2009a), which have

been implemented and tested on the HEI-MED dataset, are presented. These methods

have been selected because they are the two most recent “rule-based” exudate segmen-

tation algorithms presented in peer reviewed journal papers. For rule-based, we intend

algorithm that are not explicitly trained on a dataset with a pattern recognition tech-

nique, but that requires a limited number of parameters independent of the dataset.

4.3.1 Sopharak et al.

4.3.1.1 Preprocessing

The original image is converted to hue, saturation and intensity (HSI) colour compo-

nents. The intensity component I is the only one employed for further processing. After

removing salt and pepper noise with a small median filter, the contrast of the image is

enhanced with an operation defined as contrast-limited adaptive histogram equalisa-

tion (CLAHE). Essentially, CLAHE involves a local histogram equalisation on sliding

windows that are then combined using bilinear interpolation.

Both ON and vasculature are removed using a series of greyscale morphological oper-

ations (Vincent, 1993). In particular, high contrast vessels are eliminated with a closing

operation which employs a circular structuring element with a fixed size.

4.3.1.2 Exudate Detection

The sudden variation of the image intensity is captured by calculating the local stan-

dard deviation on a sliding window whereby obtaining I2. I2 is converted to the binary

image I3 using the Otsu algorithm (Otsu, 1979). In order to cluster together neigh-

bouring pixels which might belong to the same lesion, I3 is dilated with a binary mor-

phological operation with a circular structuring element. The resulting image is then
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flood-filled obtaining I4. The ON area is removed from I4 and all the resulting positive

pixels Pxles appear as an approximation of the lesion candidates.

A soft estimation of the lesion is obtained through morphological reconstruction (Vin-

cent, 1993). The reconstruction is performed using I4 as a mask image and I as marker

image (the locations of Pxles are blanked in I). The result of the reconstruction is sub-

tracted from I obtaining the final segmentation result Ires. The thresholds used to eval-

uate Ires are th f in ∈ {0 : 0.05 : 1}.

4.3.2 Sanchez et al.

4.3.2.1 Preprocessing

Sanchez et al. start the preprocessing of fundus images by extracting the green channel

of RGB colour space; in their tests this plane shows the best separability between exu-

dates and non-exudates by the means of the analysis of within-class and between class

scatter matrices. In order to reduce the intra and inter image variability, they followed

the method proposed by Foracchia et al. (2005). This method identifies the pixels be-

longing to the background by evaluating the mean and standard deviations on a local

window; once the pixels belonging to the background are identified, they are bilinearly

interpolated to generate the complete background, which is then used to obtain the

normalized image Ienh. Fig. 4.2 shows some steps of the process.

The authors notice that the histogram of Ienh has a fairly constant unimodal shape

across different images where the tail after the peak corresponds to vessel reflections,

optic disk and bright lesions. They model the histogram as a mixture of three Gaus-

sians representing respectively: background elements, foreground elements (such as

vessels, optic disk and lesion) and outliers. The expectation maximization (EM) algo-

rithm (Duda et al., 2001) is used to iteratively estimate these components.

At the final step of preprocessing, the exudate candidates are extracted by the means

of a global threshold that is dynamically selected. The two strongest components are

combined and the greylevel corresponding to the deepest concavity on right side of the

distribution is used as global threshold. Also, the ON area is detected and removed

from the exudate candidates, hence Ith−ON is obtained.

4.3.2.2 Exudate detection

The authors argue that edges of exudates are sharper than other bright lesions, such as

drusen, regions near the papillary area and other bright artefacts. Hence, they use the
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(a) (b)

(c) (d) (e)

FIGURE 4.2: Background removal by Foracchia et al. (2005). (a) Original Image; (b)
Normalized image (Ienh); (c) Local mean; (d) Local standard deviation; (e) Point used

to estimate the background.

original green plane of the image and apply the Kirsch’s edges (Kirsch, 1971) to identify

edges at 8 different directions.

Morphological reconstruction and subtraction operations are used to maintain the edges

only in the areas corresponding to the candidates of Ith−ON . The probability of being an

exudate is estimated on a lesion by lesion basis. The binary image Ith−ON is clustered

with connected component analysis, and for each blob identified the mean intensity

is calculated for the corresponding area of the edge image. The higher the value, the

higher the likelihood of being an exudate. The thresholds used to evaluate the final

output are th f in ∈ {0 : 0.05 : 1}.

4.4 Method

The two new methods we present here are identified as Kirsch-based Exudate Detection

(KED) and Stationary Waveled Exudate Detection (SWED). They are each presented in
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two parts: Preprocessing (which is shared by both techniques) and Exudate detection.

Fig. 4.5 shows an example of a fundus image, the intermediate and final steps of our

techniques.

4.4.1 Preprocessing

Our approach uses the green channel Ig of the image and the Ii channel from the HSI

colour space. We start the analysis by estimating the background with a large median

filter, whose size is 1
30 the height of the fundus image on Ii. This approach has been used

previously (Niemeijer et al., 2005; Fleming et al., 2006b) and has considerable computa-

tion performance advantages over other methods (Foracchia et al., 2005). In other me-

dian filtering normalization techniques, the background is subtracted from the original

image in order to obtain a normalized version. In our approach, we enhance the nor-

malization with morphological reconstruction (Vincent, 1993) as opposed to the more

common practise of subtracting the median filtered result, which improves the removal

of nerve fibre layer and other structures at the edges of the optic nerve (ON). This is

because the shape of the estimated background is more adapted to the original image.

The pseudocode of Algorithm 1 illustrates this step. Additionally, Fig. 4.3 compares

the background estimated with and without the morphological reconstruction step.

Algorithm 1 Background Estimation
1: function MORPHBGEST(Ig)
2: bgEst← MEDIANFILTER(Ig)
3: INITIALISE(bgMask) . set all the pixels to 0
4: for y = 0 to HEIGHT(Ig)−1 do
5: for x = 0 to WIDTH(Ig)−1 do
6: if Ig(x, y) < bgEst(x, y) then
7: bgMask(x, y)← bgEst(x, y)
8: else
9: bgMask(x, y)← Ig(x, y)

10: end if
11: end for
12: end for
13: bgEst2 ← MORPHRECONSTR(bgEst, bgMask)
14: return bgEst2
15: end function

Once the background bgEst2 is estimated, it is subtracted from the original image with

signed precision. In the resulting image, the highest peak of the histogram is always

centred on zero regardless of the ethnicity of the patient or disease stratification. The

histogram shows a clear distinction between dark structures and bright structures as

shown in Fig. 4.4. The former represents the vasculature, macula, dark lesions and

other structures and their distribution varies depending on the ethnicity or pigmenta-

tion of the patient. Bright structures are found in the positive side of the histogram and
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(a)

(b) (c)

(d) (e)

FIGURE 4.3: Background removal based on median filter. (a) original Image; (b) back-
ground estimated with median filtering only; (c) image normalized with (b); (d) back-
ground estimated with median filtering and morphological reconstruction; (e) image

normalized with (d).

include the ON, bright lesions, and other structures. The distribution is fairly constant

across different ethnicities.

Because of the characteristics of the normalized image, we can select all the exudate

candidates Icand with a hard threshold thcand. This has obvious computational advan-

tages in comparison with model fitting operations which are also more sensitive to sub-

optimal background subtraction (Sanchez et al., 2009a). In our case we use thcand = 3

simply by empirically choosing a value slightly above 0 in order to accommodate small

background estimation errors. Fig. 4.5(d) shows an example of the candidates selected.

Note that although all the lesions are identified, there are other lesion candidates cor-

responding to false positives such as nerve fibre layer reflections and other noisy back-

ground structures. In instances with large exudates or large clusters of small exudates,

the background estimated might contain part of the lesions. This seems to have only

the effect of underestimating exudates edges and not missing exudates entirely. We
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FIGURE 4.4: (a,b) The first row contains original images showing different types of
pigments and lesions; the second row shows the image histograms after the normal-
ization process; (c) The bright structures located on the positive side of the histogram;

(d) The dark structures located on the negative side of the histogram.

employed the ON location as means to remove the ON from Icand by masking out a

region slightly larger than the average ON size. The size of this region was conserva-

tively estimated to be 0.125 times the width and the height of effective retina area. The

area outside the viewing aperture (FOV mask) is identified with our fast method (∼16

milliseconds per image) described in 3.2.1.1, which permits to identify the effective area

occupied by the image, i.e. the circular area not masked out by the black FOV.

In our algorithms (and in the ones implemented for comparison), we made use of the

ON location present in the HEI-MED GT. In this way it is possible to compare the

effectiveness of the lesion algorithms by themselves and not the performance of the

different ON detectors used. In Section 6.3, an automatic ON detection technique will

be included.

4.4.2 Exudate Detection

The exudate detection is performed by assigning a score for each exudate candidate.

The exudate candidates are selected by running a 8-neighbour connected component

analysis on Icand. We have implemented two ways to assign this score, one based on

Kirsch’s Edges (Kirsch, 1971) and the other based on Stationary Wavelets. Both meth-

ods seek to take advantage of the higher inner and outer edge values of exudates in

comparison to non-exudate structures.
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(a) (b)

(e) (f) (g) (h)

(c) (d)

FIGURE 4.5: (a) Example of a fundus image of the dataset used. The square repre-
sents the area shown in (e) and (f); (b) Estimated background, bgEst2; (c) Image after
background subtraction; (d) Initial exudates candidates, Icand; (e) Image detail of Sta-
tionary Haar Wavelet Analysis; (f) Image detail of Kirsch’s Edges Image Analysis; (g)
Exudates Probability with Wavelet (Iwav) overlaid on a enhanced version of the orig-
inal image (to improve the contrast with the probabilities). White corresponds to a
probability of 1.0 of being a true exudates, black to a probability of 0; (h) Same as (g)

but showing the Exudates Probability with Kirsch’s Edges, Ikirsch.

4.4.2.1 Kirsch’s Edges (KED)

Kirsch’s edges emphasis the external edges of the lesion candidate. This edge detector

is based on the kernel k (shown below) evaluated at 8 different directions on Ig. The

kernel outputs are combined together by selecting the maximum value found on each

pixel output. The result is stored in the final Ikirsch image.

k =


5

15 − 3
15 − 3

15
5

15 0 − 3
15

5
15 − 3

15 − 3
15

 (4.1)

The average edge outputs of Ikirsch under each lesion cluster are calculated and assigned

to the lesion in its entirety. The thresholds used to evaluate the final output are th f in ∈
{0 : 0.5 : 30}.
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(a) (b)

(c)

(d) (e)

(f)

FIGURE 4.6: Haar stationary wavelet analysis of the image shown in Fig. 4.5(a). (a,b,c)
Respectively diagonal, vertical and horizontal coefficients of the 2◦ level decomposi-
tion; (d) Image reconstructed using uniquely the coefficients of (a,b,c); (e) Exudate en-
hanced image by histogram thresholding; (f) Details of (e) highlighting an area show-

ing exudation.

4.4.2.2 Stationary Wavelets (SWED)

Wavelet analysis is a powerful multi-resolution signal analysis technique that has many

applications, such as denoising or compression. In comparison to a traditional Fourier

analysis, a wavelet approach has many advantages, the most prominent being the fact

that wavelet functions are localized in space and that their scale can vary. In order to

analyse an image (or any other signal), a mother wavelet must be chosen. A mother

wavelet is essentially a basis function which obeys the different properties of wavelets

and ideally emphasizes the relevant aspects of the signal of interest. From this mother

wavelet a series of scaling and wavelet functions are derived which are able to decom-

pose the image at different scales. In 1-D, two approximation signals are generated for

each scale level: one containing the details and the other the basis. In 2-D, apart from

the basis, three different details are generated for each scale level: vertical, diagonal

and horizontal. For more information, Mallat (1999) provides an introduction on the

topic of wavelet analysis.

Quellec et al. (2008) proposed a method for the detection of retina microaneurysms

in the wavelet space. We try to capture the strong peak at the centre of exudates by

developing a method that employs a similar wavelet analysis, but that evaluates the

results in image space. A stationary Haar wavelet analysis is performed up to the

second level on Ig. The process is inverted maintaining the last vertical, diagonal and

horizontal details only (see Fig. 4.6(a-c)), as these are the wavelet coefficients that seem

to contain most of the foreground structures. By transforming back to the image space

we obtain a background-less image Iwav (see Fig. 4.6(d)). It is interesting to note that
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the distribution of Iwav has similar properties as the image obtained during the image

normalization phase (i.e. centred at 0 and with the exudates located on the positive

side of the histogram). Hence, we set to 0 all the reconstructed pixels that correspond

to the negative side of the histogram. As it can be seen in Fig. 4.6(e,f), we are able to

enhance the response of exudates particularly at their central areas. This can be better

appreciated by comparing Fig. 4.6(f) with Fig. 4.5(d) which are magnification of the

same image area. Similarly to the previous approach, we evaluate the candidate by

detecting variation in the Iwav area which corresponds to each lesion cluster of Icand as

follows.

wavScore =
max(pxwav)−min(pxwav)

max(pxwav)
(4.2)

where pxwav are the pixels of Iwav corresponding to a lesion candidate cluster. The

thresholds used to evaluate the final output are th f in ∈ {0 : 0.05 : 1}.

4.5 Results

In our results, we compare the KED and SWED technique with our implementation

of Sopharak et al. (2008) and Sanchez et al. (2009a). In all instances, we evaluate the

performance of the lesion segmentation algorithms on a lesion by lesion basis for each

image. The analysis starts from the labelled image in the dataset and each lesion is

compared to the automatic segmentation one by one. A lesion is considered a true pos-

itive (TP) if it overlaps at least in part with the ground-truth; a false negative (FN) if

no corresponding lesion is found in the automatic segmentation; a false positive (FP)

if an exudate is found in the automatic segmentation but no corresponding lesion has

been manually segmented. In the evaluation of the segmentation, we did not employ

any true negatives (TN). As such, we avoid any evaluation of specificity, which is in-

herently high in images where the lesions represent a very small percentage of the total

image area. In order to compare the methods fairly, all the images in the dataset have

been resized to the resolution used in the original papers (but maintaining the original

width/height ratio). It should be noted that in the tests of this chapter all the FP corre-

sponding to bright lesions other than exudates have not been taken into account for the

evaluation of TPs or FPs. In fact, confounding a bright lesion such as a cotton wool spot

with exudates is not really problematic since they are still a retinal abnormality. How-

ever, this was done only for the comparative evaluation of these exudate segmentation

algorithms, in the computer-aided diagnosis step presented in Chapter 6 the original

segmentation was used for a completely unbiased evaluation.
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FIGURE 4.7: FROC curves. (a) the exudate segmentation performances on all images;
(b) the performance on the images diagnosed with DME only.

Fig. 4.7(a) shows FROC analysis of the implemented algorithms on the entire dataset. It

can be noted how our two methods and the technique developed by Sanchez et al. per-

formed comparably, with our technique (with Kirsch’s edges) performing somewhat

better. Similar results are shown in Fig. 4.7(b). In this case only the 54 images with

DME are used in order to have a better evaluation of the segmentation performance.

In this case both of our methods seem to have a higher sensitivity than the other two

methods implemented.

Since exudation that is close to the fovea it is more likely to cause vision loss, we tested

the performance of the Kirsch’s edges method in this region ( Fig. 4.8(a) ). The algo-

rithm performance improves because the macular pigment in the area around fovea

tends to be darker than the rest of the image, therefore exudates have more contrast,

and there are fewer FPs due to the removed structures near the larger vessels.

We note that the true goal of automated screening is a diagnosis of the patient condi-

tion, and lesion segmentation is a step towards this goal. Consequently, the detection

of every exudate in an image with many may not be as important as finding a single

significant lesion on a image with only one of them. Therefore, we have evaluated

the algorithms on their ability to discern patients with or without DME by employing

the hard threshold of a single lesion. If one or more exudates are found, the image

is diagnosed with DME, otherwise the patient is classified as being negative. Fig. 4.9

shows the results of this experiment by the means of a standard ROC analysis on our

dataset. This is possible because we are classifying the image DME condition and not

the lesion segmentation, therefore we can employ TN. Again, our methods seem to per-

form better or comparably to the other algorithms. Although the area under the ROC
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FIGURE 4.8: Performance of our method based on Kirsch’s edges around the macula.
(a) FROC curves; (b) Areas considered.
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FIGURE 4.9: Naive DME diagnosis based on lesion segmented, i.e. an image is con-
sidered positive if it shows at least a lesion.

curve (AUC) is highest for our method with Kirsch’s edges, the technique with wavelet

shows a higher sensitivity at a higher specificity, a useful aspect for the development of

a automatic DME screening tool.

The reason for the suboptimal performance of the algorithm by Sophorak et al. is very

likely to be due to the choice of parameters. In our implementation we refrain to change

anything from the technique described in their paper, however the many parameters

do not seem to be suited to our dataset, which, assuming a correct implementation,

would explain the discrepancies between our results and the ones presented in their

original paper.

The computational performance are evaluated on a Dual Core 2.6 GHz machine with 4
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GB of RAM. All the algorithms are implemented in unoptimised Matlab code. Our

methods require 2.4 and 1.9 seconds per image for the Wavelet and Kirsch’s edges

methods, while the methods by Sanchez et al. (2009a) and Sopharak et al. (2008) re-

quire 39 and 36 seconds respectively. A large reason our approaches are more com-

putationally efficient is the high computational cost of the bilinear image interpolation

and expectation maximization step in Sanchez et al. (2009a), and the calculation of the

standard deviation for each pixel for Sopharak et al. (2008).

4.6 Discussion

We have evaluated the global segmentation performance with the real distribution of

patients in a screening setting and only the patients showing signs of exudation. The

results are particularly encouraging especially given the comparison with the other

techniques by Sopharak et al. and Sanchez et al. The method by Sanchez et al. is some-

what close to our tests, however, the image normalization procedure gives a substantial

computational advantage to our method. The median filter with morphological recon-

struction approach maintains a good contrast of the foreground structures by limiting

the effects of the noise due to nerve fibre layer reflections and other small artefacts. In

addition we have evaluated our algorithms ability in identifying patients with DME

based on the segmentation of one or more lesion in a fundus image. This is a simplis-

tic method for DME diagnosis, but does provide a baseline of the possible screening

performances that can be achieved employing the output of the segmentation as a clas-

sification feature.

Many other exudate segmentation methods have been published throughout the years

using a variety of datasets and evaluation methods. This makes a direct comparison

almost impossible as shown in Table 2.4 and as emphasized by many of the authors

themselves. We note this issue in this chapter as we found that our implementation of

two algorithms did not perform as well as in the respective datasets employed by the

original authors. This issue makes the HEI-MED dataset, which is publicly available

for algorithm evaluation purposes, a very relevant tool for future work in this area.



Chapter5
Microaneurysms Segmentation

"Che io forse abbia amato tanto la sigaretta per poter riversare su di essa la colpa della mia incapacità?

Chissà se cessando di fumare io sarei divenuto l’uomo ideale e forte che m’aspettavo? Forse fu tale

dubbio che mi legò al mio vizio perché è un modo comodo di vivere quello di credersi grande di una

grandezza latente"

- La Coscienza di Zeno, Italo Svevo

The localization of microaneurysms is a key component for the automatic detection of

DR. In this chapter, we propose a new microaneurysms segmentation technique based

on a novel application of the Radon transform, which is able to identify these lesions

without any previous knowledge of the retina morphological features and with mini-

mal image preprocessing. The algorithm has been evaluated on the Retinopathy Online

(ROC) Challenge public dataset, and its performance compares with the best current

techniques. The performance is particularly good at low false positive ratios, which

makes it an ideal candidate for diabetic retinopathy screening systems. Part of this

work has been published in Giancardo et al. (2010a, 2011b).

67
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5.1 Introduction

As illustrated in Section 2.1.4.1 microaneurysms (MAs) are a common and often early

manifestation of DR. MAs are the primary target lesions for laser treatment of DR. As

such, the MA detector is an attractive candidate for an automatic screening system able

to detect early findings of DR.

From an image processing standpoint the automatic detection of the microaneurysms

presents various challenges. First, MAs colour and size are the same as the vessels (in

fact they are small vessels themselves). Microaneurysms have a variable size and often

they are so small that can be easily confused with image noise or retina pigmentation

variation (or vice versa). In fact, even expert ophthalmologists do not always agree

whether a red lesion is a microaneurysm of some type or other structures. The only

way to be certain is through fluorescein angiography, an invasive procedure which

involves the injection of a contrast agent in the patient. Small dot hemorrhages are

types of similar looking structures that, fortunately, are a symptom of DR too, hence for

an automatic detector of MAs is not useful to distinguish between the two, especially

if the aim of the algorithm is patient screening for referral to ophthalmologists.

In Section 2.3.1, various algorithms for MAs detection were introduced. In particular,

the techniques that have participated in the ROC challenge to date were presented.

The top performing techniques (Antal et al., 2010; Niemeijer et al., 2005) are based on

a combination of multiple MAs localization algorithms that require various intermedi-

ate steps such as vessel segmentation and multiple classifiers. In their approaches, the

authors come to the conclusion that a combination of multiple MAs localization algo-

rithm showed great improvements if they use different properties of the MAs in their

detection.

We present a MAs localization algorithm based a new, novel set of Radon-space fea-

tures. The algorithm is not based on a combination of different techniques but it reaches

performances comparable to the best two algorithms (which are much more complex).

The features exploit the round Gaussian-like structures of MAs. The Radon Trans-

form is well known in the Medical Imaging field as a technique to reconstruct a two

or three dimensional object from its projections (Resnick, 1985). While its usage for

other purposes is uncommon, it is possible to find its application in image compression

(Kingston and Autrusseau, 2008) and in texture characterization (Liu et al., 2009). By

generating the features in the Radon space, it is possible to exploit its compact represen-

tation of Gaussian-like structures of variable size in a sliding window, even when noise

or vessels are present. In a previous work (Giancardo et al., 2010a), we derive an opera-

tor from these features in a rule-based fashion, however the detection performance was
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only average. In this chapter, the samples are classified through Principal Component

Analysis (PCA) and a Support Vector Machine (SVM) which increase the performance

substantially. This method is streamlined, does not require a vessel segmentation and

is easily trainable.

In Section 5.2 we present the details of the algorithm developed; Section 5.3 discusses

the characteristics of the ROC dataset and our samples selection approach; Section 5.4

presents the results; finally, Section 5.5 concludes with a discussion of the method and

results.

5.2 Methods

The algorithm was developed on 5 images selected from different datasets. One of

these images came from the ROC training set. A total of 122 window samples were

manually selected with the following distribution: 60 windows containing MAs, 38

windows containing vessels and 24 windows containing only background. This sam-

ples are referred as feasibility study data.

Our method starts with a very conservative candidates selection phase, in which we

rule out the obvious areas that cannot contain any type of dark lesion. This phase

is required only to avoid unnecessary computations. Then, we split the image into

small windows and we proceed with the creation of the Radon based features. In the

final phase, we assign a score representing the likelihood of containing a MA to each

window in the image.

5.2.1 Radon Space Characteristics

The algorithm lays its foundations on one observation: every roughly circular Gaus-

sian shape appears as a continuous chain of cliffs if observed in the Radon space. The

morphology of the ridges describes three properties of the circular Gaussian shape: its

relative location in the window, its size and intensity. The location in the window can

be deduced from the shape of the crest, which is a straight line if the Gaussian is located

at the centre of the window or another type of curve if the Gaussian is otherwise situ-

ated in the window (see Fig. 5.1). The size and intensity are given respectively by the

width and height of the cliffs. Fig 5.1 shows how this cliff-like structure is insensitive

to a conspicuous amount of noise.

There are other advantages to the analysis in Radon space. When detecting the targeted

structure in a window with other techniques based on template matching, the target
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FIGURE 5.1: Illustration of the Radon space appearance for different Gaussian struc-
tures. (a) Gaussian intensities centred in the window; (b) Gaussian intensity off-center;

(c) Gaussian intensities with considerable noise.

must be the most prominent object in the window. Hence, an algorithm based on this

type of technique needs to go through a training phase to find a window containing

the target with enough space to contain the support background, but sufficiently small

to avoid any external object. Given that MAs are often very close to vessels this might

not be possible in all instances. Similar problems occur when a template function is

dynamically adapted to the window using least mean square or other regression ap-

proaches. On the other hand, Radon-based analysis can identify a Gaussian-like object

in a window containing another structure with a higher pixel values. If the Gaussian

object is at the center of the window, it will maintain the continuous cliff-like appear-

ance, and the other object will appear as a protrusion which might be connected or

disconnected to the central structure. In the context of microaneurysms detection this

aspect is of a particular importance since many lesions of this type tend to appear close

to large vessels or capillaries.

5.2.2 Candidates Selection

The green channel Ig is extracted from the original RGB image and resized (with bi-

linear interpolation) such that the original ratio height/width remain unmodified and

the new width is 768 pixels. The black background around the FOV (FOV mask) is

detected with the method described in Section 3.2.1.1 and stored in Imask. Ig is cropped

based on the redundant rows and column of Imask in order to maximize the FOV. Then,
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FIGURE 5.2: Visualization of Radon transform analysis. Each column represents the
analysis for a single window. In the top row, the original (Ii

win) and the equalized
(Ii

winEq) windows are shown; in the second row, the normalized radon space (Ri) is

shown; in the third row, the vectors Ri
µ are displayed (at different scales); in the last

row, the vectors Ri
σ are shown.

the background is estimated similarly to the method of Cree et al. (2005). First, an ini-

tial background estimation is calculated by the means of a large median filter on Igi, the

inverted version of Ig (see Fig. 5.4.b). The dimension of the median filter is 4% the size

of Igi. The background image is subtracted from Igi obtaining an image whose distri-

bution is naively assumed to be Gaussian and normalized with µ = 0.5 and σ = 0.2.

All the pixels not laying between 0 and 1 are considered “outliers” and changed to the

nearest valid value. While the value of µ was chosen to be in the middle of the al-

lowed range, the value of σ was empirically derived from the 5 images employed in

the feasibility study, so that a high percentage of the image pixels (∼95%) would stay

in the allowed range. Inorm is the image generated by this type of normalization, which

allows to compare the pixel values across images with different pigmentation, illumi-

nation and contrast. On the top row of Fig. 5.2, details of Igi (Ii
win) are shown together

with the normalized version (Ii
winEq).

The pixels selected as candidates are those having a value greater than a hard threshold

th = 0.58 and that do not lie on Imask. th is selected to be a very conservative value such

that all the areas corresponding to the MAs of the 5 images in the feasibility study are

included.
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5.2.3 Radon-based Features

The Radon based features are calculated on Igi. This image did not undergo any type of

preprocessing apart from cropping, resizing and pixel value inversion operations. By

employing Igi directly, we avoid the small artefacts that are inherent to the background

subtraction operation, especially on images with a substantial JPG compression such

as the ones found in the ROC dataset.

The image is partitioned in 5×5 pixel windows in order to form a grid-like pattern.

Each window is deemed as valid if it contains at least one candidate pixel. Each valid

window is centered on the pixel with the highest value in its local neighbourhood, in

order to have the suspected MA in the middle of the window. The Radon transform

is calculated on a 17×17 neighbourhood (Ii
win), with scanning angles between 0◦ and

165◦ spaced of an interval of 15◦. Because of the non-isometric support (the window

is a square), at some angles the Radon projections will go through an unequal number

of pixels, which leads to an image containing coefficients biased towards certain loca-

tions. We overcome this “Radon transform bias” by normalising each projection in each

angle for the number of pixels the projection ray goes through; effectively making each

coefficient in the Radon space the mean value of the pixels crossed by each projection

rays for each angle. The normalization can be obtained efficiently by initially apply-

ing the Radon transform on an image containing only ones and having the same size

of the sliding window, then using it to scale the coefficients obtained with the Radon

transform. Fig. 5.2 shows some examples of the Radon space obtained (Ri).

We attempt to capture the characteristics of the Radon space that separate the MAs from

other dark structures, such as vessels or pigmentation noise, with a straightforward

analysis by using the equations

Ri
µ(x) = 1

φ ∑
φ
n=1 Ri(n, x) 0 ≤ x < ρ (5.1)

Ri
σ(x) =

√
1

φ−1 ∑
φ
n=1 [Ri(n, x)− Rµ(x)]2 0 ≤ x < ρ (5.2)

where i is the index of a window, Ri is the window in the normalized Radon space

having on the horizontal axis the different angles of projections and on the vertical one

the number of projections for each angle. φ is the number of projection angles and ρ

is the number of projection rays. Note that Ri
µ is a vector containing the mean across

the rows of Ri. In the case of a MA, it will have a strong maximum in the middle, even

if another prominent structure (such as a vessel) is at the periphery of the window

Ii
win. Since we want to use Ri

µ as features for classification purposes, we need to make

these measurements as homogeneous as possible. The fact that the Radon transform is
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FIGURE 5.3: LDA space histograms of MA samples. Above the samples containing
MAs, below the other samples. (a) full feasibility dataset; (b) feasibility dataset filtered

with the criteria described in Section 5.2.2.

calculated on a non-normalized image might create problems in this regard. Therefore

we employ the first derivative d
dx Ri

µ(x), which is able to capture the location of maxima

and minima without using absolute values (that differ depending on the background

pigment, contrast and illumination).

In some instances, there is a strong resemblance between MAs and vessel bifurcations.

By employing Ri
σ (i.e. the standard deviation across the rows of Ri) we can determine

if the central crest of Ri is constant or not. In the first case, Ri is very likely to contain

a MA, but in the second case some type of vessel bifurcation. We add Ri
σ to the feature

vector unchanged because the standard deviation is inherently independent of differ-

ent types of backgrounds. Fig. 5.2 shows the various analysis steps for different sample

classes.

Finally, the feature vector is composed as Fi = (
d

dx Ri
µ

Ri
σ
).

In order to evaluate the linear separability of the feature vector on the feasibility data,

Linear Discriminant Analysis (LDA) is used. Fig. 5.3(a) shows an histogram of the

feasibility data samples projected on a 1-dimensional LDA space. The separability is

really good especially considering that some of the samples are quite challenging and

that no samples have been discarded with the candidate selection phase. Instead, Fig.

5.3(b) shows how the separability becomes ideal when the feasibility data is filtered

with the criteria described in the candidate selection phase (Section 5.2.2).
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5.2.4 Classification

The original feature vector Fi has 37 dimensions (this number may vary depending on

the implementation of the Radon transform). The samples are normalized so that the

samples distribution has 0 mean and a standard deviation of 1 across each dimensions.

Then, all Fi are projected to an hyperplane of 10 dimensions obtaining Fi
pca through

Principal Component Analysis (PCA). During the feasibility study, we have estimated

that this dimensionality reduction maintains 95% of the original variance, hence lit-

tle information is lost during the process, making possible the reduction of the data

dimensionality. At the feasibility study stage, this was confirmed by a 10-fold classifi-

cation test: the SVM classifier obtained a score of 0.89 of the Area Under the ROC Curve

(AUC) on the original Fi and a score of 0.96 AUC after PCA dimensionality reduction.

As already mentioned, the Fi
pca is classified with a SVM. We employed a 3 degrees

radial basis kernel with ε = 0.001 and the estimation of the probability with the method

implemented in the LIBSVM library by J.C. Platt (Chang and Lin, 2001).

The calculation of the probability of being a MA is a combination of the SVM probabil-

ity output and the average grey level at the centre of the equalized window of Ii
winEq

3×3 neighbourhood. The two probabilities are combined by a multiplication as sug-

gested by the unnormalized Bayes rule.

The final step is a non maxima suppression in the matrix containing the MA proba-

bilities, so that neighbouring MAs are not considered separate detections but a single

one. This is performed with a morphological closing operation with 12×12 structuring

element, followed by a blob analysis. Fig. 5.4 shows an example of the MA detection.

5.3 Materials and Training Strategies

We evaluated the MA detection algorithm on the ROC dataset. In this dataset, four

retinal experts annotated all the small red lesions (MA and round hemorrhages) by

labelling them as MA or irrelevant lesions. The set was divided in two: training and

testing (composed of 50 images each). For the former, the global judgement of the

experts was publicly released via an XML file, which did not contain the source of

the decision but only the global labels combined together with an OR operation. This

maximized the global sensitivity at a price of a certain number of false positives. The

lesion labels on the test set were withheld in order to avoid training on the testing set.

In this case, the gold standard of the experts’ judgement was created with a voting

system for a better trade off between sensitivity and false positives.
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A novel training strategy was adopted for the classifier. First, we hand selected all the

unambiguous MAs from the ROC training set and used them as positive examples.

Then, we manually selected a handful of negative examples and trained a “baseline”

classifier. At this point, we employed an on-line training technique to update the classi-

fier with negative examples. This is possible through a GUI (that we developed) that is

able to add a negative sample, train the classifiers and show the detection in real time.

We picked an image showing a few MAs (from the training set), and we added nega-

tive samples up until we were satisfied with the detection. At this point the classifier is

trained and ready to be evaluated.

This approach has considerable advantages over a classical training procedure based

on manual labelling procedure. It allows us to add only the negative examples that are

effectively useful to the MAs classification leaving the uncertain structures out of the

training set. By minimizing the samples required, we avoid overtraining and greatly

simply the whole training process. We trained the classifier used for these tests in less

than 20 minutes by adding 80 negative samples.

In fact, one of the biggest problem for MAs detection is the selection of the samples

as positive and (especially) negative examples. MAs can be very small and easily con-

fused with image noise or pigmentation changes. Even when graders have the option

of labelling areas as “uncertain”, the problem is alleviated but far to be solved. Various

authors mentioned this problem also for the ROC dataset, that has been graded by 4

experts and has the option to label lesions as “uncertain” (Zhang et al., 2009).

Other authors are aware of this problem and indicate various solutions. Lazar and Ha-

jdu (2011) employ a pure rule based detection in order to avoiding any direct training

on the dataset. Quellec et al. (2008) employs a very computationally expensive ge-

netic algorithm to calculate the ideal parameters of a model based detection on wavelet

space. Recently Quellec et al. (2011), re-approached the MAs detection as a classifica-

tion problem but employing multiple labels instead of uniquely MAs vs not MAs.

5.4 Results

Fig. 5.5 shows the results of the comparative FROC analysis on the Retinopathy Online

Challenge data. Our technique compared very well with other submissions, particu-

larly at a low false positive (FP) rate. This can be also appreciated in Table 2.3. Rel-

atively high performance at a low FPs rate are particularly interesting for a screening

setting, where it is not important to find all the MAs, but to find enough of them to

decide that the patient needs referral.
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(b)(a)

FIGURE 5.4: (a) Example of a retina fundus image with a MA magnified; (b) Inverted
green channel of (a) with MAs automatically detected.

In the current unoptimized Matlab implementation, the whole analysis process takes

∼12 seconds per image on a 1.6 GHz machine with 4 GB of RAM. This figure can be

easily reduced because around half of the total time is spent on the window alignment

which is implemented iteratively. Also, the algorithm has the potential of greatly ben-

efit of parallelization because of independent nature of the window based analysis.

We have also evaluated the performance of the algorithm on a synthetic model of a MA

with variable dimensions, proportions and noise. The classifier is trained exactly on the

training set used to evaluate the ROC images. These tests quantify the generalization

ability of the algorithm on different MAs. The model f is based on a two dimensional

normal distribution N with a maximum height of α and with a support window of

17 × 17 pixels. The choice of the model was dictated by the general consent among

researchers that MAs mostly appear as 2-D Gaussians (Quellec et al., 2008).

N(x, µ, Σ) =
1

2π|Σ|1/2 e−
1
2 (x−µ)TΣ−1(x−µ) (5.3a)

f (x, µ, Σ, α) =
max(Nµ,Σ)

α
(5.3b)

where x is a two dimensional vector representing a coordinate in the window; µ is a

two dimensional vector containing the coordinate at the centre of the window [9 9]t;

Σ is the 2× 2 covariance matrix; max(Nµ,Σ) is the maximum value for all the x for the

given µ and Σ.

Fig. 5.6(a) shows the detection performance as a function of α with Σ =

[
2 0

0 2

]
. The

results are themselves normally distributed with a positive detection (i.e. MA prob.
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FIGURE 5.5: Comparison of the FROC curves of all the groups that participated at the
ROC. On the y-axis, the average image based sensitivity is displayed, on the x-axis,
the average number of false positives (FPs) found on each image is shown. Note that

the FPs are plotted on a logarithmic scale.

≥ 0.5) with 0.045 ≤ α ≤ 0.225. Fig. 5.6(b) shows how the algorithm can detect circular

objects with a great range of sizes. The size variation is simulated as a function of Σ

with Σ =

[
σ 0

0 σ

]
and a fixed height (α = 0.16). We obtained a positive detection for

0.3 ≤ σ ≤ 7.8. Fig. 5.6(c) shows how the classifier can detect MAs that are not perfectly

round, and when it stops doing so. We have simulated a round MA that becomes more

and more elongated, up until it reaches a “vessel-like” appearance. This is achieved by

using Σ =

[
2 0

0 σ

]
, where σ goes from 0.1 to 50.

Fig. 5.6(d,e) shows various experiments for the detection of MAs in a noisy environ-

ment. In all cases the following parameters are used: α = 0.16 and Σ =

[
2 0

0 2

]
. On the
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x-axis, the signal to noise ratio (SNR) measures the how much the original signal has

been affected by noise:

SNR =
(∑ f )2

(∑ fnoisy −∑ f )2 (5.4)

where ∑ f is the sum of all pixels of the MA model, and ∑ fnoisy is the sum of all pixels

of the model affected by noise.

5.5 Discussion

In this chapter, we presented a MA detector based on a novel Radon-based approach.

The Radon based features allow the detection of MAs directly on the original image

without vessels segmentation. Also, they are inherently able to identify MAs of differ-

ent sizes without multiscale analysis. Another advantage of the algorithm, is the ease

of training. It does not require a large dataset, once some examples of MAs are shown

to the classifier, it is simply a matter of dynamically selecting the negative examples

on one or two images to make the algorithm “converge” to the desired performance.

The technique presented has been evaluated on a publicly available dataset (where it

ranked among the firsts) and on different synthetic MA models.

The substantial differences between the Radon-based and other authors’ MA detection

approaches is particularly promising for future developments, especially if combined

with existing techniques. In fact, it has been shown that multiple detectors that measure

uncorrelated features, generally achieve higher performances when combined together.

The prime examples are the top performing algorithms in the ROC datasets by Antal

et al. (2010); Niemeijer et al. (2005), that are combination of multiple MA detection

techniques.
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FIGURE 5.6: Tests on Synthetic Microaneurysms. (a) MA detection in function of
MA height; (b) MA detection in function of size; (c) MA detection in function of not-
proportional size changes (from circular MA to elongated vessel); (d) MA detection in
function of two types of additive noise; (e) MA detection in function of pepper noise

with different heights.





Chapter6
Computer-aided Diagnosis

"Learn the changes, then forget them." - Charlie Parker

In this chapter, we present methods to automatically detect DME and DR by leveraging

the lesion segmentation techniques introduced previously. For the evaluation of the al-

gorithms three public datasets are used: the HEI-MED, MESSIDOR and DIARETDB1

dataset. Various tests are presented including cross-dataset testing (the classifier was

tested on one dataset and trained on another one). While for the DR detection we statis-

tically combine the output of the MAs segmentation, for the diagnosis of DME a novel

set of features based on colour, wavelet decomposition and automatic lesion segmen-

tation is employed. The techniques presented are quite computationally efficient, the

total time required to obtain a complete diagnosis for DR and DME starting from an

unseen image (including lesion, vessel and ON segmentation) is ∼22.3 seconds on a

2.6 GHz platform running an unoptimised Matlab implementation of the algorithms.

Part of this work has been published in Giancardo et al. (2011c).

81
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6.1 Introduction

In Section 2.4, the current state of the art automated systems for diabetic retinopathy

screening and their potential impact on diabetic patients health were presented. In

this chapter, we present our approach to the diagnosis of DR and DME. The medical

conditions are diagnosed separately with two very different techniques, which both

use a single macula centred colour fundus image captured at 45◦. Even if such image

is not suited for an in depth treatment plan by itself, according to Williams et al. (2004),

it is enough for screening purposes. This consideration greatly simplifies the imaging

process, in fact capturing different retina fields is not always a straightforward task,

especially through an undilated pupil.

In Section 2.4.1, different grading scales for DR/DME were presented. Some of them

are extremely detailed and permit to accurately monitor the progression of the disease.

In the case of screening a yes/no referral decision is sufficient, as long as the positive

decision is triggered when some form of DR is detected, even if minimal. Obviously,

some cases can be more urgent than others and for this reason we have developed also

an independent screening algorithm for DME only. DME is a complication of DR, and

if found, it requires to be treated promptly, which is not always the case for mild forms

of DR.

The method for DR diagnosis is heavily based on the output of the MAs detector pre-

sented in Chapter 5. The number of MAs detected and their probabilities are employed

to generate a feature vector which is then classified to generate the probability of hav-

ing DR. Even if other lesions typical of DR are not used for detection purposes, our

methods achieve results comparable or better than other state of the art techniques.

The method for DME diagnosis employs the exudate segmentation algorithm pre-

sented in Chapter 4. However, this is not the only feature used. We present a classifica-

tion framework that combines other types of analysis (based on colour and Wavelets)

with the exudate segmentation map at image level. This is very different than typi-

cal approaches where each lesion is separately classified as a true positive or as false

positive based on some measure. We create a fixed size feature vector regardless of the

number of lesions with the great advantage of being able to train the algorithm without

a dataset containing the ground truth at a lesion level, but only a single diagnosis per

image. This is also possible thanks to our rule-based exudate segmentation algorithm.

The development of both algorithms was conducted on the HEI-MED dataset (and

partially on the ROC dataset). None of the images present in the other two available

public datasets, MESSIDOR and DIARETDB1, are used to tune the algorithms. They
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are left entirely for testing purposes. We believe our experiments, as presented, show

that our methods generalize well to other data sets which is a common problem in

automatic retina image processing and machine learning in general.

We begin with a description of the datasets used in Section 6.2. Then, Section 6.3 sum-

marizes the method used for the localization on the ON which was introduced by Tobin

et al. (2007). Section 6.4 describes the techniques employed for the automated DME di-

agnosis. Section 6.5 presents the results for the DME diagnosis on the various datasets

and the comparison with two retina experts. Section 6.6 describes the technique used

for the automated DR diagnosis. Section 6.7 shows the results for the DR diagnosis

with the MESSIDOR and HEI-MED dataset. Finally, the chapter concludes in Section

6.8 with some discussion of the results and approaches.

6.2 Datasets

In Section 4.2 the HEI-MED dataset was introduced. Besides this, the only two pub-

licly available datasets that can be used to evaluate a DR/DME diagnosis algorithm

are MESSIDOR and DIARETDB1. While the former provides the DR/DME diagno-

sis for each image only, the latter provides a lesion map generated by four different

ophthalmologists but no explicit diagnosis. Hence, for the DIARETDB1 case, the DME

diagnosis was generated by analysing the exudation ground truth map. If three out

of four experts agreed that an exudate is present at any pixel, then the image is diag-

nosed with DME. However, it was decided not to use this dataset for DR diagnosis

tests because of certain dark artefacts on the macula that strongly resemble MAs. They

are probably due to some small round accumulation of dirt on the fundus camera lens.

They are so similar to MAs that even for a human observer the only way to be aware of

the problem is the fact that these artefacts always appear on exactly the same location.

This is a problem not so uncommon in a real clinical setting, hence in Chapter 8 a tech-

nique to remove various types of lens artefacts by multiple fundus images is presented

(which however concentrates on bright artefacts, which seem to be the most common).

Table 6.1 shows some details of the datasets.

In the datasets used in this work, all the images were captured with a 45◦ FOV us-

ing different fundus cameras (even throughout the same dataset). In the MESSIDOR

dataset, the images were obtained by a variety of research groups based in France. The

heterogeneity, the substantial number of images, the public availability and the inde-

pendence make these datasets ideal for an unbiased validation of our algorithms.
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HEI-MED Messidor DIARETDB1

DR Diagnosis
Negative 103 (61%) 546 (45%) n/a
Positive 66 (39%) 654 (55%) n/a

DME Diagnosis
Negative 115 (68%) 974 (81%) 51 (57%)
Positive 54 (32%) 226 (19%) 38 (43%)

ELVD Quality Metric
Poor (ELVD < 0.5) 14 (8%) 62 (5%) 3 (3%)
Good (0.5 ≤ ELVD < 0.8) 31 (18%) 356 (30%) 27 (30%)
Excellent (ELVD ≥ 0.8) 124 (74%) 782 (65%) 59 (67%)

Ethnicity
African American 104 (62%) n/a n/a
Caucasian 42 (25%) n/a 88 (98%)
Hispanic 19 (11%) n/a n/a
Unknown 4 (2%) n/a 1 (2%)

TABLE 6.1: Characteristics of the three datasets used in this chapter

6.3 ON Localization

The methods proposed for DR/DME diagnosis stem from the exudate and microa-

neurysms localization algorithms proposed in the previous chapters. One important

step for the exudate segmentation algorithm is the localization of the ON centre. In the

previous tests and experiments, its location has been taken from manually generated

metadata, which allowed to evaluate the pure algorithm performance without being

affected by this preprocessing step. However, for a fully automated diagnosis the ON

location must be identified algorithmically. Section 2.2.4 provided an overview of cur-

rent techniques for such task. For our purposes we have used the method introduced

by Tobin et al. (2007).

The authors pose the ON localization as a Bayesian problem, where the prior proba-

bility P(ωON)/P(ω¬ON) are respectively the 2-D likelihood maps of finding the ON at

a given pixel and the likelihood of not finding it. Since all the fundus images that we

employ are macula centred and have the same camera FOV (but different VFOVs and

resolutions because they are acquired by multiple cameras) these priors are quite com-

pact. In the final screening system all the images are vetted by a QA algorithm (like the

one presented in Chapter 3), therefore we can assume a reasonable image alignment.

The conditional densities to be combined to the priors to generate the posterior prob-

abilities are p(ν|ωON) and p(ν|ω¬ON), where ν is a 4-dimensional vector containing

vasculature derived features. The vasculature is represented as a binary map and it

is automatically generated with the rule-based method by Zana and Klein (2001). The
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binary vessel map is referred as Ib, its morphologically skeletonized version as Ibs. A

description of the features used follows:

• Retinal luminance. This feature is the only one that is not based on the vascular

structure. It is calculated with a M×N local window as the average luminance

value on the green channel of the original image, where M = N = ON diameter.

The ON diameter (ONd) is empirically estimated to be 130 pixels for an image

1024×1152. For images with a different resolution this measure is linearly scaled.

• Vessel density. The vessels tend to be denser the closer they are to the ON. This

feature is captured by counting the average number of positive pixels in Ibs with

a local window of 3 ·ONd× 0.6 ·ONd. By considering a much larger height than

width for the local window, it is possible to capture the vertical vessels that are

prominent nearby the ON.

• Vessel thickness. The average local vessel thickness is calculated by locally com-

paring Ib and Ibs. The local average in a window sized ONd × ONd is calculated

for both images, then the local Ib average is divided by the local average value of

Ibs.

• Vessel Orientation. This feature leverages the fact that the vessels close to the ON

are vertical and then tend to a more horizontal direction the more they move away

from the ON. The directionality is calculated with the steerable filter algorithm

described by Freeman and Adelson (1991). The steerable filter used employs sec-

ond derivative Gaussian combined with a Hilbert transform of this derivative.

The final location of the ON is calculated by finding the maximum in a confidence

function R, which is calculated through the likelihood ratio of posterior probabilities as

follows:

R =
P(ωON |ν)

P(ω¬ON |ν)
=

p(ν|ωON) · P(ωON)

p(ν|ω¬ON) · P(ω¬ON)
(6.1)

6.4 DME Diagnosis - Methods

The method proposed for the DME diagnosis is based on the classification of single

feature vector generated for each image. The feature vector is based on three types of

analysis: the Exudate probability map, the Colour Analysis and the Wavelet Analysis. The

rationale and approach for the feature computations is described in Section 6.4.4; which

is followed by a description of the classifier used and the automatic techniques adopted

to select the subsets of features that are employed in our experiments.
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(a) (b) (c) (d)

FIGURE 6.1: (a) Reference image Ire f ; (b) Background-less reference image I2
re f ; (c)

Image to be equalized Inew; (d) Equalized image I4
new.

6.4.1 Exudate probability map

The exudate probability map is largely based on Kirsch’s edges based detector pre-

sented in Chapter 4 which seems to show the best performance in the “naive DME

diagnosis test” shown in Fig. 4.9. Assuming that the lesion segmentation output be-

fore thresholding is IkCand (see Section 4.4.2.1), we scale it in order to create an exudate

probability map IexProb that represents P(isExudate|I) as follows.

P(isExudate|I) =


0, if px < thlow

1, if px > thhigh
px−thlow

thhigh−thlow
, otherwise

(6.2)

where px is the pixel value of IkCand; thlow and thhigh are respectively: the lower bound-

ary below which it is unlikely to identify any significant exudate, and the average upper

boundary that can be identified in images with exudates. While thhigh does not substan-

tially influence the performance of the algorithm, thlow needs to be carefully selected in

order to maintain most of the lesions without an excessive amount of false positives.

Based on the exudate segmentation experiments shown in Fig. 4.7(a), we have picked a

thlow of 4.5 that corresponds to a Sensitivity/Positive Predictive Value of 0.81/0.50 and

a thhigh of 30 which is where the FROC curve levels out. Note that the Sensitivity was

calculated as the average ratio of lesions found in an image, i.e. a Sensitivity of 0.81

means that, on average, 81% of the lesions were identified on each image.

6.4.2 Colour Analysis

In Section 2.2.2, the fundus image normalization technique by Cree et al. (2005) was

introduced. Their approach significantly reduces the inter-patient colour variability,
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hence it makes possible the usage of colour as a reliable feature for classification pur-

poses. The background is estimated by a large median filter, whose size is 1
30 the height

of the fundus image (no morphological reconstruction step is applied). The description

of the process for a single colour plane follows.

I2
re f = Ire f −medianFilter(Ire f )

µre f = mean(I2
re f )

σre f = std(I2
re f )

I2
new = Inew −medianFilter(Inew)

µnew = mean(I2
new)

σnew = std(I2
new)

I3
new = (I2

new − µnew)÷ σnew

I4
new = (I3

new × σre f ) + µre f

(6.3)

where Ire f is the reference image, Inew is the image to be equalized and I4
new is the equal-

ized image. We have applied this process to the three planes of the RGB colour space

using a single good quality reference image for all the datasets. With this equaliza-

tion we aim to increase the reliability of colour based features which normally have

a significant variability given the patient ethnicity, camera settings and image quality.

Fig. 6.1 shows an example of the equalization of an image with a given reference image.

Even if the two initial images have different ethnic backgrounds and quality levels (Fig.

6.1(c) is slightly blurred), the resulting images (Fig. 6.1(b,d)) have very similar colours,

particularly with respect to areas of exudation.

Also, other unequalized colour features are evaluated with particular attention to colour

spaces other than RGB, i.e. YCbCr and HSI.

6.4.3 Wavelet Analysis

In Chapter 4, we presented two new methods for the localization and segmentation of

exudates. While the initial exudate probability map is derived from the Kirsch’s edges

based detector, the Wavelet-based detector seemed to offer good detection abilities and

more importantly, is uncorrelated with other techniques with respect to the lesion prop-

erties detected. In fact, the former measured the contour edge strength of the lesions,

and the latter took into account the edges inside the lesions. A combination between

the two approaches seems like an obvious choice, however this integration is not done

at a lesion level but rather at a global image level in this DME detection framework.
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(b) (c)(a)

FIGURE 6.2: Inner and outer binary masks generated from the exudate probability
map. In the binary masks the black colour corresponds to a pixel which is ignored,
the yellow to a pixel which should be taken into consideration. (a) Original image; (b)

Inner binary lesion map; (c) Outer binary lesion map.

Section 6.4.4 will explain how a single feature vector that represents the exudate prob-

ability map (therefore the Kirsch’s edges based detector), the colour analysis and this

Wavelet analysis is generated for each image.

This Wavelet analysis implies a process similar to the one previously described in Sec-

tion 4.4.2.2. A stationary Wavelet analysis is performed up to the second level on Ii

(I channel of the HSI colour space of the original image) with a Haar basis. Only the

higher level details are kept and the process is inverted obtaining a regular image. Fi-

nally, we set 0 all the pixels below zero obtaining Iwav which shows a strong response

in the exudative areas.

6.4.4 DME Feature Vector

wavMed, wavAvg, wavStd, wavMax, cbStd, cbMax, cbMin, crMed, crAvg,
crMin, crOutMed, rOutCreeAvg, gCreeStd, gOutCreeAvg, bCreeMax,
bOutCreeAvg, wavMedW, wavAvgW, wavStdW, wavMaxW, wavOutAvgW,
sMedW, sAvgW, sStdW, sMaxW, yStdW, cbMedW, cbAvgW, cbStdW,
cbMaxW, crMedW, crAvgW, crStdW, crMaxW, rCreeMedW, rCreeAvgW,
rCreeStdW, rCreeMaxW, rOutCreeAvgW, gCreeMedW, gCreeAvgW,
gCreeStdW, gCreeMaxW, gOutCreeAvgW, bCreeAvgW, bCreeStdW,
bCreeMaxW, bOutCreeAvgW

the feature names should be interpreted as follows:
<analysis plane><In/Out mask><statistics used> [ W for Weighted]

TABLE 6.2: Feature set selected with Information Gain.

The selection of the appropriate feature vector to diagnose DME is a challenging prob-

lem. We want to characterize an image with a feature vector that has a fixed number

of dimensions derived from a variable number of lesions, which might or might not be

properly segmented. Other authors avoid this problem by providing a classification at
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lesion level, where a set of features is generated for each lesion which is then classified

as false or true positive. The diagnosis can be subsequently generated by combining the

likelihood of the lesions. This approach requires a set of training images labelled at a le-

sion level, which implies more work to the reader who has to manually draw exudates

and other lesions/pigmentation changes for each image. This might be troublesome

for a classifier susceptible to outliers or when the samples in the dataset are not enough

to average out the human error, which is inevitable since it is not a straightforward to

identify all lesions (when there are many) and precisely define their edges. Instead, we

are able to describe the lesions segmented as a whole by analysing the exudate proba-

bility map, the colour and the wavelet properties of the detected lesion set previously

described. Two approaches have been examined, in the first one, the exudate probabil-

ity map is converted to two binary masks which are overlaid on the colour and wavelet

analysis outputs; in the second one, the exudate probability map is used to weigh the

analysis outputs at a pixel level.

Fig. 6.2 shows an example of two binary masks, where one is generated by considering

all the areas that have at least some chance of being exudative (P(isExudate|I) > 0),

and the other is generated by considering the areas where P(isExudate|I) = 0. The

masks are applied to the following image planes:

• Wavelet: The Iwav plane (see Section 6.4.3).

• CreeRGB: The three RGB channels after the retinal colour normalisation described

in Section 6.4.2.

• YCbCr: The three channels of the YCbCr colour space.

• HSI: The saturation channel of the HSI colour space.

For each set of pixels extracted, the following statistics are calculated: mean, median,

standard deviation, maximum and minimum. With these five measures we attempt to

capture the correlation between the colour/wavelet analysis and the exudate probabil-

ity map. This allows us to automatically identify problematic images which might have

a high number of false positives because of consistent fibre layer reflection artefacts

(which have a diffuse whitish colour and have different density in the wavelet analysis)

or other unwanted false detections. By employing a mask where P(isExudate|I) = 0,

we analyse also the areas not explicitly identified by the exudate segmentation. This

appears to have a positive effect on the global classification, particularly on the images

with a substandard exudate segmentation due to a noisy image or overexposed image.

The statistical measures described so far do not make full use of exudate probability

map. To address this important aspect of the detection, we also use an approach where
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the same binary masks, image planes and statistical measures are employed, but each

pixel in the image planes previously described is weighted on P(isExudate|I) before

the statistics computation. This allows to include a measure of exudates segmentation

uncertainty in the computation of the feature vector.

By combining the weighted and unweighted statistical measures, we obtain a total

number of 80 features per image. The total number of features is pretty substantial with

the risk of suffering of the “curse of dimensionality” during the classification phase.

Hence, they underwent an automatic feature selection process. There are many tech-

niques available to perform feature selection. We utilize Information Gain, an approach

that seem to be relatively independent of the classifier used and that show reproducible

results. The test has been run by splitting the HEI-MED datase into three folds. The

feature selection is performed on each of the three subset. Each feature receives a final

score that is the average between the three folds. This allows to select features that

“overfit” the dataset, so that any test on the MESSIDOR or the DIARETDB1 dataset

would not have any chance of being tainted by the feature selection process.

Information theory (Yang and Pedersen, 1997) provides us a straightforward way to

apply conditional entropy to evaluate the significance of each feature (or attibute (Attr))

with information gain.

H(X) = − ∑
x∈X

p(x) log2[p(x)] (6.4a)

H(Y|X) = ∑
x∈X,y∈Y

p(x, y) log
p(x)

p(x, y)
(6.4b)

IG(Attr, Class) = H(Class)− H(Class|Attr) (6.4c)

where H(X) is the entropy, H(Y|X) is the conditional entropy, IG(Y, X) is the informa-

tion gain, p(x) is the probability of x (i.e. the frequency) and p(x, y) is the probability

of simultaneously having x and y. We have employed this technique to reduce the full

feature set (weighted and unweighted) to a number of 48 as shown in Table 6.2. This

number was chosen by selecting only the features that had an average IG > 0.

6.4.5 DME Diagnosis Classification

In order to select the most appropriate classification strategy, we have run a series of

tests with different combinations of classifiers/feature sets. The feature sets used are:

all the unweighted features, all the weighted features, the combination of the two sets
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and the features selected with Information Gain. As far as classifiers are concerned,

we decide to cover the three different classification families described by Jain et al.

(2000): probabilistic, geometric and tree-based. For the probabilistic family we tested the

Naive Bayes classifier with two ways of estimating the prior probabilities, by assuming

a Gaussian distribution of the data and by employing the Parzen Window approach.

For the geometric family, two Support Vector Machines (SVMs) were tested, one with a

linear kernel and one with the radial basis function as implemented in libSVM (Chang

and Lin, 2001). For the tree-based family, the Random Forest algorithm with 10 trees was

chosen (Breiman, 2001). In order to have a baseline, we reported the result of a nearest

neighbour classifier which is likely the simplest classification method available (Duda

et al., 2001).

The classifiers comparison tests are based on a Receiver Operating Characteristic (ROC)

analysis with a Hold-One-Out (HOO) approach uniquely on the HEI-MED dataset. In

HOO, the classifier is trained once for each image, each time holding out a different im-

age which is used for testing. We want to avoid any type of optimization on the other

two databases (Messidor and DIARETDB1) which will be used in the following section

for an unbiased ROC analysis. Table 6.3 contains all the results for the classifiers com-

parison. The best Area Under the ROC Curve (AUC) for each feature set is highlighted

in bold.
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Nearest Neighbour 0.692 0.827 0.787 0.86
Naive Bayes (Gaussian) 0.78 0.837 0.864 0.897

Naive Bayes (Parzen Win.) 0.813 0.857 0.876 0.89
SVM (linear kernel) 0.914 0.94 0.919 0.93
SVM (radial kernel) 0.923 0.878 0.904 0.908

Random Forests 0.865 0.888 0.907 0.903
The results are expressed as AUC for the HOO tests on HEI-MED.

TABLE 6.3: DME classifier/feature selection tests with HEI-MED as testing target.

6.5 DME Diagnosis - Results

We have evaluated our computer-aided diagnosis system using three datasets. The

results are presented as ROC curves where a positive image is an image showing signs

of DME, and a negative image does not present any sign of this disease (but it might
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FIGURE 6.3: ROC curves for the DME diagnosis. Cross-datasets and HOO testing are
employed on the three public datasets with a SVM (linear) classifier.

have other conditions). Based on the results of Table 6.3 we picked the SVM with a

linear kernel since it showed the best performance for three out of the four feature

set evaluated. The ROC curves are calculated by varying the threshold on the output

positive diagnosis probability generated by the SVM classifier.

Fig. 6.3 shows the curves for the classification performed employing the two feature

sets that had the best AUC in Table 6.3: the full unweighted set and the features selected

with Information Gain (InfoGain). In each of the plots, three different tests are shown.

Each test is represented by two ROC curves, one for each feature sets. The first test

is a HOO, which should generally show the best performance since it is trained with

images coming from the same dataset as the tested image. The other two are cross

validation tests: the classifier is trained on each of the other dataset and tested on the

current one. This type of test simulates very well the predicted performance of the
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system on a real environment because it is trained on datasets with a different number

of images, captured by a different camera/operator and labelled by a different expert

than the current test set.

In Fig. 6.3(a) the performance on the HEI-MED dataset are shown. While the HOO

tests reach considerable AUCs for both feature sets (0.94 and 0.93), the cross validation

tests follow not so closely behind (although they are still acceptable). This suggests that

HEI-MED dataset, albeit small, has a range of fundus appearance and conditions that

might not be so well represented in the other datasets. This hypothesis is supported

by the fact that in Fig. 6.3(b,c), the performance difference between HOO and cross

validation tests is less significant (at least for the InfoGain features).

In Fig. 6.3(b) the performance on the Messidor dataset are shown. The InfoGain fea-

tures perform consistently regardless of the type of test (AUC between 0.88 and 0.89).

This is particularly encouraging in the validation of our technique because the HEI-

MED and DIARETDB1 datasets have a significantly lower number of images than Mes-

sidor (169 and 89 vs. 1200). Interestingly, the weighted features have not performed as

well: the AUC goes from 0.9 to 0.54. The reason is probably due to a subset of features

that do not discriminate the same aspect of the disease in the different datasets. This

stress the importance of feature selection and cross validation tests.

In Fig. 6.3(c) the performance on the DIARETDB1 dataset are shown. The performance

of HOO and cross validation tests with the HEI-MED dataset are very satisfying, par-

ticularly with the InfoGain features (the AUC is 0.93 in both tests). The cross validation

with the Messidor training is not as good. This is a constant throughout all the tests

and it is probably due to some inconsistencies in the Messidor labelling which was

confirmed by the two ophthalmologists. Fortunately, the Messidor dataset has a con-

siderable amount of images, so we feel that these errors are averaged out. In addition, a

subset of Messidor images were labelled by two retina specialists, who determined the

presence or absence of exudates in order to diagnose DME on a random sample of 350

images of the MESSIDOR dataset, with 120 images exhibiting ME and 230 exhibiting

no ME. We compared the performance of the automatic system by creating the ROC

Curve and overlaid the Specificity/Sensitivity of the two retina specialists as shown

in Fig. 6.4. The reference standard is provided by the MESSIDOR dataset. Two ROC

curves are shown, both of them represents tests run on the 350 images only. One is

a HOO test on these image, the other a cross validation test trained on the HEI-MED

dataset. It can be seen that even if the experts beat the automatic system in an absolute

sense, the system manages to obtain a comparable sensitivity.

The computational performance are evaluated on a Dual Core 2.6 GHz machine with 4

GB of RAM with an unoptimised Matlab implementation. The average time to generate
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FIGURE 6.4: ROC curves for the DME diagnosis applied on the image subset diag-
nosed by the two experts. The feature set selected by Information Gain with a SVM

(linear) classifier is used in both cases.

the exudate probability map is ∼1.9 seconds. ∼4.9 seconds needs to be added for the

localization of the optic nerve. The average time to compute the other analysis types

and classify the image is on average ∼2.5 seconds. Therefore, the total time to gener-

ate a DME diagnosis from a raw image (considering the optic nerve location) is ∼9.3

seconds. This time can be reduced further by optimizing the optic nerve localization

algorithm, which does also calculate the macula location with some computationally

expensive operations (Tobin et al., 2007).

M
ES

SI
D

O
R

Ex
pe

rt
1

Ex
pe

rt
2

A
lg

or
it

hm

MESSIDOR x 0.84 0.76 0.71
Expert 1 x x 0.76 0.72
Expert 2 x x x 0.7

Algorithm x x x x

TABLE 6.4: Kappa-value Comparison.
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MESSIDOR x 0.88 0.78 0.76
Expert 1 x x 0.79 0.77
Expert 2 x x x 0.73

Algorithm x x x x

TABLE 6.5: AC1-statistics Comparison
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To further quantify these tests, we used Kappa value/AC1-statistics as statistical con-

cordance metrics (described in Section 2.2.1). In Table 6.4 and 6.5, we have compared

the diagnosis between the experts, the MESSIDOR GT and the algorithm (trained on

the HEI-MED dataset and tested on the Messidor subset). For the algorithm we have

picked 0.22 as threshold, which simultaneously maximized both statistics.

6.6 DR Diagnosis - Methods

Our approach to DR diagnosis is entirely based on the output of the MA detector de-

scribed in chapter 5. This is possible because the MAs are the very first manifestation

of DR, hence if they are successfully detected it is possible to diagnose DR even in its

mild form. The first DR classification strategy implemented is the enumeration of MAs

with an estimated probability (Pma) higher than 0.5. An image is deemed to have DR

if more than a th number of MA are identified. By varying th, it is possible to perform

a ROC analysis, which will be used as a baseline for the other tests. We note that this

simple counting strategy does not make full use of MA probabilities. This information

is pretty significant, judging the positive slope of the FROC curve obtained in the MA

detector tests (Fig. 5.5). Therefore, we added a method that utilized the probability

information by calculating the histogram of Pma for all the MAs identified in an image.

The histogram bins are used as a feature vector and then classified with a classic train-

ing/testing pattern recognition approach. The MAs considered for the histogram are

only the ones with Pma > 0.5. In Table 6.6, a variable number of histogram bins and

classifier belonging to different families are evaluated on the HEI-MED dataset. It can

be noted that many of the results are very close together, this is probably due the low

dimensionality and compactness of the samples. The classifier/feature set employed

in the testing phase have been highlighted in bold. During this phase it was noted that

a some FP MAs were identified on the ON area. Since, we have the location of the ON

already available it was decided to automatically remove the MA detected in ON area,

which is estimated as 0.125 times the width and the height of effective retina area (i.e.

VFOV). After the ON removal, the average performance improvement was estimated

at ∼0.01 of AUC.
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Nearest Neighbour 0.687 0.708 0.683 0.668
Naive Bayes (Gaussian) 0.809 0.819 0.824 0.818

Naive Bayes (Parzen Win.) 0.823 0.829 0.833 0.831
SVM (linear kernel) 0.825 0.834 0.833 0.823
SVM (radial kernel) 0.825 0.831 0.833 0.830

Random Forests 0.806 0.781 0.792 0.758
The results are expressed as AUC for the 3-fold tests on HEI-MED.

TABLE 6.6: DR classifier/feature selection tests with HEI-MED as testing target.
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FIGURE 6.5: ROC curve for the DR diagnosis by counting the number of MAs only.

6.7 DR Diagnosis - Results

Fig. 6.5 shows the baseline results obtained by counting the MAs on each image. In

both datasets the results are surprisingly good for a such simple classification tech-

nique. However, it should be remembered that the MA detector introduced is particu-

larly competitive at a low FP rate which is required for an automatic screening system

as this one.

Fig. 6.6 shows the tests performed with the best performing classifier/feature sets. In

Fig. 6.6(a), the classifiers are trained on the Messidor and tested on HEI-MED. The

best performance are obtained by the Naive Bayes classifier with Parzen window to

estimate the samples distribution and a feature vector with 3 bins. The improvements

in comparison with the baseline classification are not substantial, a 0.008 points of AUC.

Fig. 6.6(b) shows the tests on the 1200 images of the Messidor dataset (with HEI-MED

as training set). The best performing feature set/classifier are the same as the previous
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FIGURE 6.6: ROC curves for the DR diagnosis.

test. However, the improvement in comparison to the baseline is more pronounced:

0.13 AUC. This is even more significant considering the size of this dataset.

Agurto et al. (2010) are the only group that published the results of a DR screening

algorithm employing the Messidor dataset, but they only used 400 of the images in

the set (the ones labelled as Lariboisière in the original metadata). In their tests they

obtained a AUC of 0.84, which is already lower in comparison to our results on the

complete set (AUC of 0.854). For a fairer comparison, we tested our best performing

classifier/feature set on the Lariboisière subset training it on the HEI-MED dataset. The

result obtained improved even further, an AUC of 0.879 was achieved.

Being based almost entirely on the MAs segmentation, the time required by this classi-

fication technique is negligible is negligible (< 1 second) once the MAs are segmented.

6.8 Discussion

In this chapter, we have presented a new automatic system for the screening of DR and

DME using non-stereo fundus images. Apart from their use of a previously detected

lesion, the algorithms are very different between each other.

The DME screening method is based on an algorithm able to detect exudates with some

attached confidence level without the use of machine learning methods to separate false

positives from true positives, on a colour space analysis and on new methods to char-

acterize the lesions by the means of wavelet analysis. To our knowledge, our approach

for the creation of the feature vector with a inner and outer lesion maps has never been
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attempted before and proved to be quite successful. We are confident that this type of

approach can be applied to all the problem domains where a diagnosis (or other types

of classifications) needs to be performed on the basis of an uncertain lesions (or other

defects) segmentation. The DR screening method is much more compact because it

leverages the good performance of the MA detector algorithm.

We have tested our algorithms against three different datasets. For DME we have

achieved an AUC between 0.88 and 0.93. We compared this results with the perfor-

mance of two retina specialist obtaining comparable results with different test modali-

ties (ROC, K-value and AC1-statistic). A system to diagnose diabetic retinopathy that

was tested with the largest dataset (approximately 15 000 patients) is presented by

Niemeijer et al. (2009a). They report an AUC of 0.88. In another recent study, Agurto

et al. (2010) diagnose diabetic retinopathy avoiding the usage of manually segmented

lesion too, by employing AM-FM features. They have obtained an AUC of 0.84 by con-

sidering a subset of 400 images of the MESSIDOR dataset. Our DR detection technique

reaches an AUC of 0.879 employing the same 400 images.

The total time required to generate a complete screening diagnosis (from an unseen

image) is ∼22 seconds per image on a 1.6 GHz machine with 4 GB of RAM in a Matlab

implementation with each component run sequentially. By running DR and DME in

parallel it is expected to achieve ∼17 seconds of running time.

In order to effectively test the feasibility of these techniques in an environment as the

one of healthcare, tests with datasets much larger than the ones used need to be per-

formed and compared with the performance of retina experts. However, it is felt the

usage of three independent (and public) datasets made a strong point about the effec-

tiveness of the algorithms.



Chapter7
Macula Swelling Detection with Multiple
Images

"There are no wrong notes." - Thelonious Monk

In this chapter, we propose a novel technique that uses uncalibrated multiple-view

fundus images to analyse the swelling of the macula. This innovation enables the de-

tection and quantitative measurement of swollen areas by remote ophthalmologists

with inexpensive fundus cameras. This capability is not available with a single image

and prone to error with stereo fundus cameras. We also present automatic algorithms

to measure features from the reconstructed image which are useful in the automated

diagnosis of early macular edema, e.g., before the appearance of exudation. The tech-

nique presented is divided into three parts: first, a pre-processing technique simul-

taneously enhances the dark micro-structures of the macula and equalises the image;

second, all available views are registered using non-morphological sparse features; fi-

nally, a dense pyramidal optical flow is calculated for all the images and statistically

combined to build a naive-height-map of the macula. Results are presented on three

sets of synthetic images and two sets of real world images. These preliminary tests

show the ability to infer a minimum swelling of 300 microns and to correlate the recon-

struction with the swollen location. Part of this work has been published in Giancardo

et al. (2011e).

99
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7.1 Introduction

The ease of use, relatively low cost, and utility of fundus cameras in detecting various

retina diseases have made possible their widespread use in clinical practises. However,

there are many cases when the 3D structure of the retina would be useful or even es-

sential for a correct diagnosis. This is especially the case for the initial stages of Diabetic

Macular Edema (DME), a common cause of vision loss and blindness, as discussed in

Section 2.1.4.2. DME occurs in the retina of diabetic patients due to leakage of fluid

within the macula which creates diffuse swelling and cystic changes that are not imme-

diately visible with monocular fundus images. The classical way to detect this fluid is

either by waiting for its absorption which turns into exudation or by analysing the 3D

shape of the outer layer of the retina (with particular focus in the macula area).

Typically, the 3D information is obtained with stereoscopic fundus cameras or Optical

Coherence Tomography (OCT) instruments. However, stereo glasses are required to vi-

sualize the depth field in commercially available stereoscopic fundus cameras. Hence,

they do not extract numerical information that can be used as features in automatic

methods and are prone to substantial intra/inter-reader variability on the diagnosis (Li

et al., 2010). This is a serious drawback for their use in automatic diagnosis of mac-

ula swelling. The ideal solution, a OCT system in conjunction with a fundus camera,

has considerable cost disadvantages and requires additional training for the operators

who will be capturing the images. This seriously limits its practicality in a screening

environment. Thus, an algorithm able to infer the 3D shape of the retina from multiple

fundus cameras images would be extremely beneficial in terms of cost, and also can

add capabilities for automatic diagnosis of fluid leakage in the macula area which can

be invisible in standard fundus images (see Fig. 7.6a). We note that obtaining multiple

images is rather simple with modern high-quality, easy-to-use general-purpose fundus

cameras, as the image acquisition time is fast (a few seconds for each) and painless for

the patient.

In the literature there are examples of 3D retina reconstruction algorithms that concen-

trate mainly on optic nerve (ON) reconstruction for the detection of glaucoma, either

with a calibrated stereoscopic fundus camera (Corona et al., 2002; Xu and Chutatape,

2006; Nakagawa et al., 2008) or with multiple views from a standard monocular fundus

camera (Chanwimaluang et al., 2009; Liu et al., 2008), provided that the aperture of the

monocular camera is kept smaller than the eye pupil (Martinello et al., 2007). Choe et al.

(2006) present a reconstruction technique on the entire FOV of the image employing flu-

orescein images which require a special filter on the fundus camera and the injection of

a contrast agent, a technique that is too invasive for screening purposes and that cannot

be performed outside a specialised clinic due to possible unwanted secondary effects.
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FIGURE 7.1: Schematic lateral view of the virtual fundus camera.

However, to our knowledge, no research group has proposed any method to directly

identify swelling of the macula (an almost texture-less area of the retina) with fundus

images. The lack of a fixed multi-view configuration for the PoC fundus cameras and

the impracticality of a calibration procedure are a difficult but common problem in 3-D

multi-view geometry. There are various approaches that are able to successfully tackle

this problem, such as bundle adjustment/Structure from Motion (SfM) (Hartley and

Zisserman, 2003) or Simultaneous Localisation and Mapping (SLAM) (Durrant-Whyte

and Bailey, 2006). All these techniques require strong salient point correspondences to

simultaneously estimate the camera pose and the 3-D structure. This is not possible in

the macula which has little texture and where “corners” cannot be reliably tracked and

matched.

We propose a novel algorithm able to identify macular swelling through the recon-

struction of a naive-height-map of the macula area from multiple fundus images with

an unknown translation (roughly parallel to the eye), captured by an uncalibrated fun-

dus camera. In our experiments, we show how retina “blisters” can be identified even

in areas where there is no apparent texture visible using four fundus images.

In Section 7.2 we explain how the eye/camera model is built and how the real patient

images were acquired; Section 7.3 introduces the details of the algorithm; then, Section

7.4 shows the results for the model and the real images; finally, Section 7.5 discusses

the implications of this technique.
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7.2 Materials

The development and testing of our algorithms requires a gold standard for compari-

son with the reconstruction (i.e. a profile from an OCT instrument) and images of pa-

tients with blisters of different heights. The collection of this type of data is a challeng-

ing task by itself; hence to speed up the development phase and to improve the eval-

uation we have developed and tested the algorithm with a faithful ray-traced model

of the camera-eye-retina system. We have made this model and related software avail-

able online (http://vibot.u-bourgogne.fr/luca/). The optical model was ini-

tially designed in Zemax c© to create a credible representation of fundus camera/optical

eye structure and then modelled in POVray, a freely available ray-tracing tool. In our

model, we place a real image of the retina fundus at the back of the eye and extrude

it with a given height map that acts as a ground truth. Fig. 7.1 shows a lateral view

of the model. We acquired four virtual shots by laterally translating the camera at 10◦,

5◦, -5◦and -10◦(the angle is calculated between the centres of the objective lens and the

cornea). Fig. 7.2(a-d) show examples of the images obtained by translating the virtual

camera. The resolution used is 1024 x 768.

In order to acquire preliminary data on the clinical viability of the method, we asked a

camera operator to obtain four images with the only constraint being lateral translation

between the images. The operator acquired two sets of images from two patients with

associated OCT data for verification. One patient shows a blister in the OCT image

which is invisible to the fundus camera (Fig. 7.6(a)) while the other has a completely

healthy macula (Fig. 7.7(a)). The operator translated the camera a considerably smaller

amount than the translation present in the simulated images (estimated at 10%) which

reduces the baseline and makes the reconstruction more challenging, but provided an

interesting testbed for these preliminary experiments.

7.3 Method

The reconstruction algorithm is divided into three phases: pre-processing, rigid regis-

tration and naive-height-map reconstruction. First, the fundus images are enhanced to

remove background information and reflections from the nerve fibre layer (NFL). This

step also enhances the micro structures in the macula area. Second, all images are

rigidly registered by employing fiducial points independent of retina morphology. Fi-

nally, the naive-height-map is reconstructed by exploiting the statistical distribution of

a dense optical flow analysis between images.

http://vibot.u-bourgogne.fr/luca/
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 7.2: (a)-(d) images captured with the virtual fundus camera; (e)-(h) images
after the pre-processing phase.

7.3.1 Pre-processing

We start the pre-processing by extracting the green channel Ig from each image and

performing an initial estimation of the background by means of a large square median

filter, whose size is 1
30 the vertical size of the fundus image. This estimation is enhanced

with the addition of the morphological reconstruction step described in Section 4.4.1.

The estimated background is subtracted from the original image with 16-bit signed

precision to maintain negative pixel values. The image obtained shows a distinct grey

level distribution: the highest peak of the histogram is always centred on zero regard-

less of the ethnicity of the patient, disease or point of view of the camera. We are able to

obtain the texture enhanced version of the macula as shown in Fig. 7.2 by maintaining

the absolute value of the negative pixel values only. With this technique, we are able to

remove most of the illuminations changes due to the different positions of the camera.

7.3.2 Rigid Registration

The motion between fundus images is compensated through a registration technique

inspired by Cattin et al. (2006). By using Speeded Up Robust Features (SURF) (Bay

et al., 2008), a local descriptor that can quickly generate an informative 64-dimensional

vector for a given point, we selected the salient points with a SURF quality value

greater than 0.0001. Then, all salient points are matched throughout all views em-

ploying the Euclidean distance between SURF vectors. Only the points with a distance

ratio best match
second best match larger than 0.7 are kept. The RANSAC algorithm with rotational

homography is used to estimate the outliers (i.e. the points whose geometry is unfit for
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(a) (b) (c)

FIGURE 7.3: (a) initial SURF features extracted; (b) SURF features employed for the
registration; (c) four registered images superimposed over each others. The colour
of an image has been modified to show the registration junctions. The blue contour

shows the common VFOV detected.

the rotational rigid transformation) (Hartley and Zisserman, 2003). The area of interest

is calculated with a binary AND operation on all the VFOV, which are detected with

method described in Section 3.2.1.1. Fig. 7.3 shows an example of the rigid registration.

7.3.3 Naive-height-map Reconstruction

The reconstruction of the macular shape is based on the fact that most of the retinal

structures have a very small height (less than 0.8mm) in comparison to the planar size

of the retina; hence, the rigid registration allows a nearly perfect alignment of most of

the areas apart from the ones closer to the camera, i.e. blisters. We exploit this character-

istic by building n− 1 disparity maps, where n is the number of images and each map

is built using a common reference image identified as im0, i.e. im0 ↔ 〈im1 . . . imn−1〉.
Because of the lack of strong salient points in the macula, the disparity maps are ap-

proximated by computing the dense optical flow with the pyramidal Lucas-Kanade

method (Bouguet, 2000), for each pixel of the image (in the common VFOV) with a

window of 19 pixels and 3 pyramids. The magnitude of each vector is computed in

order to obtain the provisional disparity maps 〈imdmap
1 . . . imdmap

n−1 〉.

Assuming that in the areas where there is no texture the flow vector obtained will be

random while in the areas with little texture the noise will be normally distributed, we

can compute a final naive-height-map imnhm as follows:

imnhm =
1

n− 1

n−1

∑
i=1

imdmap
i (7.1)
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(a) (b)

(c) (d)

FIGURE 7.4: (a) synthetic height map used to generate the retina 3D structure (the
white spot represents the blister); (b)-(d) reconstructed naive-height-maps containing
a blisters of decreasing height, respectively 0.5mm, 0.4mm and 0.3mm. The area con-

tained by the dashed circle shows the position of the original blister.
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FIGURE 7.5: Mean value of the reconstructed naive-height-map in the area shown in
Fig. 7.4 for the different heights of the blisters generated with the virtual camera.

7.4 Results

Using the images generated with the virtual camera, it was possible to reconstruct the

exact position of the blister in the macular area as shown in Fig. 7.4. In Fig. 7.5, we show

the reconstruction ability numerically by calculating the mean of the naive-height-map
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(c)

(a) (b)

(c)

200 um

FIGURE 7.6: Patient A; (a) real fundus image of a patient with a blister invisible to a
standard fundus camera; (b) reconstructed map showing the blister, the white circle
shows the area of interest; (c) OCT image of the highlighted area with a red overlay of

the 3D reconstruction obtained.

value in the same area. In the experiment, this value linearly correlates with the height

of the blister.

Figure 7.6 and 7.7 show the algorithm’s reconstruction ability on the images acquired

by the operator as described in Section 7.2. Based on the fundus images alone, these

patients do not exhibit any abnormality. In Fig. 7.6(b) and Fig. 7.7(b) we show the

reconstructed naive-height-maps, and in Fig. 7.6(c) and Fig. 7.7(c) we show the three-

dimensional overlay of the reconstruction with the accompanying OCT. Although the

reconstruction has a lower quality than the simulated images of Fig. 7.4, the healthy

macula is clearly discernible from the swollen one. The 3D reconstruction overlay (Fig.

7.6(c)) demonstrates a strong correlation with the actual retina edema seen on OCT

imaging. The difference in average height in the macula area between the healthy and

non-healthy image is 2.13, a result that (if confirmed by further experiments) will be a

clinically significant value for the automated detection of macular swelling. We were
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(a) (b)

(c)

200 um

FIGURE 7.7: Patient B; (a) real fundus image of a patient with an healthy macula; (b)
reconstructed map, the white circle shows the area of interest; (c) OCT image of the

highlighted area with a red overlay of the 3D reconstruction obtained.

able to analyse a set of 4 images in under 5 minutes on a 2.2GHz machine with 4GB of

memory using a Matlab algorithm implementation.

In the reconstructions we notice artefacts of increasing strength starting roughly out-

side the macula area. They are due to lens distortions and miscalculation of the optical

flow; however, these are not a problem because our algorithm is focused on the mac-

ular area which can be automatically identified by other image processing algorithms

(see Section 2.2.4).

7.5 Discussion

Fundus cameras are an effective tool for diagnosis of retina diseases but cannot reli-

ably detect depth which is a key indicator of the early phases of diseases such as DME.

Multi-view image reconstruction can be used to perform 3D reconstructions, but the
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lack of strong salient feature points in the macula is a potential flaw in many existing

multi-view reconstruction approaches. In this chapter we have presented a method

which performs a straightforward statistical analysis of noisy disparity maps to gener-

ate a naive-height-map that can be used to display and potentially measure blisters in

the macular area. We have shown its feasibility on synthetic images constructed using

a computer model and have also illustrated its effectiveness on two data sets of four

fundus images and associated OCT data. The proposed algorithm is a promising ad-

dition to automated image analysis using inexpensive fundus cameras well-suited to

retina screening applications.



Chapter8
Quality Enhancement with Multiple Images

"Anche se voi vi credete assolti siete lo stesso coinvolti." - Canzone del Maggio, Fabrizio De André

In this chapter, we propose a technique that employs multiple fundus images to obtain

a single higher quality image without nerve fibre layer (NFL) or camera lens related

reflections artefacts, which also compensates for a suboptimal illumination. The re-

moval of bright artefacts, can have great benefits for the reduction of false positives in

the detection of retinal lesions by automatic systems or manual inspection. The fundus

images are acquired by changing the stare point of the patient but keeping the camera

fixed. Between each shot, the apparent shape and position of all the retinal structures

that do not exhibit isotropic reflectance (e.g. bright artefacts) change. This physical ef-

fect is exploited by the algorithm. Part of this work has been published in Giancardo

et al. (2011a).

109
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8.1 Introduction

In this chapter, the early results of a novel post-processing technique able to remove

the reflectance artefacts due to the nerve fibre layer (NFL) or dirty camera lenses are

presented. This method can also automatically identify the under/over-illuminated

areas and compensate by substituting them with the redundant information found on

the other images (if available). This is made possible by capturing redundant images

of the same subject from slightly different angles. This has the effect of changing the

characteristics of the reflectance artefacts.

While various groups have built algorithms to automatically evaluate the quality of

fundus images (see Chapter 3 and Section 2.2.5), to our knowledge, little or no work

has been published to increase the retina image quality after the acquisition. Various

techniques to equalise the image were introduced in Section 2.2.2, but no attempts have

been made in the removal of NFL artefacts or the exploitation of multiple images of the

same patient. This is partially because this type of reflectance artefacts have become

much more apparent only in the recent years, with fundus cameras that do not require

the dilation of the pupil by use of mydriatic eye drops and the increasingly young age

of the patients to be screened. In fact, non-mydriatic fundus cameras require a high

power flash, in order to allow enough light to enter the pupil which is not completely

dilated. This increases the chances of reflectance artefacts of any kind, particularly in

the areas where the NFL is thick. This undesirable effect is more evident on the young

patients because the NFL thickness (hence reflectance) decreases with ageing.

On the other hand, the image quality enhancement based on redundant images of the

same subject is not new. Many authors have developed super-resolution algorithms to

create a single high resolution image from multiple low resolution ones Farsiu et al.

(2006); Park et al. (2003). Unfortunately, these techniques are very specific in improving

the quality in a resolution sense, and while they can deal with blur and salt and pepper

noise, they do not seem to be suited for the removal of large structures such as NFL

reflections.

In Section 8.2, we start with a description of the protocol used to capture the retina

images and the visual effects achieved; Section 8.3 describes the algorithm; Section 8.4

presents the results obtained and Section 8.5 discusses them.
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(a) (b)

FIGURE 8.1: Examples of image acquisition with Fundus camera/eye top views. The
red X represents the fixation target, the dotted red line the ray of light going to the
fovea (the area that we employ when we look at an object). (a) Left shift of the fixation

point. (b) Right shift of the fixation point.

8.2 Image Acquisition

One characteristic that differentiates a NFL from the rest of the retina is its physical

reflectance properties. The NFL shows a considerable specular reflectance when in-

teracting with the camera flash wavefront, while the rest of the retina shows a largely

diffuse reflectivity behaviour. This means that the energy of two rays of light hitting

the same area of the NFL will be almost completely reflected to two different direc-

tions, whenever the angle of incidence differs. The visible effect on the image sensor is

a bright artefact that appears or disappears depending on the angle of incidence of the

light. This effect is not noticeable in the other areas of the retina which show a diffuse

reflectivity behaviour, where the light energy is largely reflected in all directions (with

reduced energy) regardless of the angle of incidence of the rays.

Changing the incidence of the light is not a trivial task for fundus imaging, as the sur-

face of the retina imaged is limited (∼7mm of diameter in our set-up) and all the light

has to go through the pupil as shown in Fig. 8.1. Fortunately, modern fundus cam-

eras have a manually changeable fixation point which allows a natural alignment of

retina whenever the patient stares at it as shown in Fig. 8.1(a-b). If we change the posi-

tion of the fixation point the angle of incidence of the wavefront coming from the flash

is changed, therefore the effect previously described can be easily achieved with any

fundus camera that allows the repositioning of the fixation target.

In our experiment we asked an inexperienced operator to randomly place the fixation

target and to capture seven images without worry about the quality. These images are

shown in Fig. 8.5, where it is possible to notice the appearance and disappearance of
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FIGURE 8.2: Histograms (in green) of two images with the estimated PDF (in black)
overlaid on top. The marks correspond to the threshold identified for the removal of

over/under exposed areas of the image.

reflectance artefacts at different locations, as noted by the manual notation on the im-

ages showing NFL and reflectance artefacts enclosed in green and yellow respectively.

We also note that the illumination condition is suboptimal in various images.

8.3 Image Processing Method

Our quality enhancer algorithm has four phases: first the images are preprocessed to

extract only the information that is likely to be artefact-free; the preprocessed images

are initially registered rigidly with a feature based method and then registration is re-

fined with a non-rigid technique that compensate the camera/eye distortions; the areas

largely over/under exposed are detected and labelled; finally, the stack of images is

statistically analysed at histogram level to extract pixels of interest and the images are

combined together. The method to pre-process the image is exactly the one presented

in Section 7.3.1, where a description can be found.

8.3.1 Rigid/Non-Rigid Registration

The non rigid registration process starts with the image alignment method (i.e. rigid

registration) described in Section 7.3.2. This registration is not able to perfectly match

the different views of the fundus because of a slight barrel distortion due to the camera

lens and the lens inside the eye. The classic solution to this distortion problem is the use

of calibration targets to estimate the lens effects, but this is not an option in this applica-

tion (because it would require placing the calibration targets inside the eye). Therefore,
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we further register the images by employing a non-rigid technique that exploits the

vessel structure itself to implicitly correct the distortion. In this second phase we lever-

aged the implementation of the non-rigid registration technique provided by the open

source package Elastix (Klein et al., 2010). We employed Mutual Information (Mattes

et al., 2003) as similarity metric and the B-splines defined the deformation allowed be-

tween the images (as suggested by Rueckert et al. (1999)) with the control points set

every 16 pixels in a grid pattern.

8.3.2 Over/Under Exposure Detection

At this stage, we detect the areas that are over or under exposed. This is required in

order to avoid the use of these pixels in the generation of the final image in the next

phase. First, the VFOV of interest is detected as described in Section 3.2.1.1 (only the

pixels inside the VFOV are taken into consideration). For such pixels, the histogram is

computed and converted to a probability density function (PDF) by applying Expec-

tation Maximisation (EM) with a Gaussian Mixture model composed of three Gaus-

sians Bishop (2007). This number of Gaussian is empirically chosen in order to roughly

model the histogram distribution without the narrow peaks. The EM process is ini-

tialised with a simple K-means clustering. Fig. 8.2 shows two examples of the PDFs

overlaid on the original histograms. The PDFs approximate the histogram in a way to

exclude the thin spikes at the beginning and at the end which are a common symptom

of over/under exposure. These areas are detected by finding the first two correspond-

ing histogram bins on the PDF whose probability are above th, starting from the left

and the right. Fig. 8.2 shows the boundary detected with an
⊗

for the under exposed

areas and a
⊕

for the over exposed areas. In our experiments th was set to 0.05 through

examination of a set of images not used for the final experiment. Binary masks Ii
m con-

taining all the areas below
⊗

and above
⊕

are generated for each RGB channel of each

image. A morphological opening and closing operations are run on all Ii
m to remove

the noise and close all the potential holes.

8.3.3 Analysis

At this point we need to combine all the registered images by keeping all the redun-

dant information and discarding all the areas with sudden changes which are likely

to contain artefacts. This does not have the risk of removing exudates because of the

different reflectivity as shown in Fig. 8.3. In order to facilitate a comparison between

the views and to improve the final result we perform a colour normalisation with the
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FIGURE 8.3: Details of four fundus images of the same retina captured from different
points of view after rigid and non-rigid registration. The NFL reflections are high-
lighted in green (in this case it might be due to a micro infarction of the NFL, i.e. a
cotton wool spot). Note how the position of the exudates remains fixed while the NFL

reflection changes its apparent location on the image.

method by Cree et al. (2005), which was described in Section 6.4.2. A detail of an im-

age after this normalisation is shown in Fig. 8.4(b). The images are combined together

by the means of a median filtering operation executed through all the images. We

stack the images one on top of the other and generate a vector for each pixel as follow

[I(x, y)0, I(x, y)1, I(x, y)2, ...I(x, y)n−1] (where n is the number of images, I(x, y)i a pixel

in the image i at the coordinates x, y) and the median of each vector is stored in the final

output. Whenever a pixel of I is labelled as being over/under exposed in Im, it is not

employed in the creation of the vector.

8.4 Results

The technique described is applied on a set of 7 fundus images (Fig. 8.5) with a reso-

lution of 1098×979. Fig. 8.4(a) shows the final output obtained. Notice how the vast

majority of reflectance artefacts have been removed without affecting the small details.

A comparison between 8.4(b) and 8.4(c) makes apparent how the NFL artefact has been
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(b)

(a)

(c)

FIGURE 8.4: (a) High quality image generated by our technique employing all the
images of Fig. 8.5. (b) Detail of one of the original image (after the colour equalisation

described in the analysis stage of Sec. 8.3). (c) Details of the high quality image.

removed without any significant sacrifice in the visibility of even the small blood ves-

sels. At the edge of the image and of the optic disc (the black area at the centre left)

some misrepresentations of the colours are visible. This is due to lack of enough areas

that do not suffer from over/under exposure for some colour channel, however this

does not have any effect in the diagnosis which is mainly concentrated in the macula

area (roughly the area highlighted in Fig. 8.4(a)).

Table 8.1 shows the ELVD quality for the initial images compared to the generated im-

age. The output of our technique has a clearly higher score even if the ELVD does not

take this type of artefacts in consideration explicitly, but it rather provides a general

image quality estimation. We are able to analyse all the images in ∼10 minutes on a

Image 1: 0.564 Image 5: 0.640
Image 2: 0.736 Image 6: 0.538
Image 3: 0.719 Image 7: 0.464
Image 4: 0.411
Output Image: 0.879

TABLE 8.1: ELVD QA before and after the automatic quality enhancement

2.2GHz machine with 4GB of memory using an unoptimised Matlab algorithm imple-

mentation.
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8.5 Discussion

We have presented the preliminary results of a novel technique that aims to remove re-

flectance artefacts and to increase the overall quality of fundus imaging by an unortho-

dox multiple imaging approach, that is immediately applicable with all the modern

digital fundus cameras. This technique could boost the results of automated diagno-

sis technique with practically no changes in the algorithms. Obviously, more tests are

required to prove the technique in a clinical setting and to quantify the advantages on

automatic lesion segmentation algorithms with particular attention to exudates, which

are lesion that most resemble NFL reflections. One drawback of eliminating the NFL is

that Cotton Wool Spots are located in this layer, hence they are removed too, however

thy are the only lesions that could be removed and they are not essential for a prompt

diagnosis of DR or DME. Also, the great majority of ideas presented in this chapter

can be easily transferred to other imaging domains where reflectance artefacts are a

problem and the object imaged can be rotated with respect to the camera.
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FIGURE 8.5: Images of the same patient acquired by changing the fixation point. In
green (or dark grey) the most obvious NFL reflectance; in yellow (or bright grey) the

other reflectance artefacts due to the dirt on the lens are highlighted.





Conclusions and Further Work

This work presented a summary of the state of the art algorithms for the automatic

analysis of fundus images, with particular attention to the aspects related to diabetic

retinopathy and retina morphology. An introduction to the required medical terms and

concepts was given, together with the common protocols to manually diagnose and

grade diabetic retinopathy with fundus images. Different retina imaging techniques

were described and a rationale for the choice fundus images was given.

An automatic quality assessment algorithm able to generate a quality score in a short

amount of time was introduced. Its performances were evaluated with a small dataset,

but more importantly in a live screening environment of a teleophtalmology network

and, according to the feedback received, it proved to be a useful addition.

Two new lesion segmentation algorithms were developed, one to target exudates, one

microaneurysms. Both of them have been been compared with similar methods and

proved to be have competitive performance. As far as the computation time is con-

cerned, they are able to estimate the lesions in a short amount of time. Additionally,

they can be trained very easily: the exudate detector due to its rule-based nature, and

the MA detector because it can be trained in a few minutes with a graphical user in-

terface. Additionally, the Radon based method to the detect microaneurysms has the

immediate potential of being applied to other medical image processing tasks, where

round structures need to be identified in a noisy environment.

The output of the microaneurysms localization algorithm was used to build a classifier

for diabetic retinopathy. Its performance has been evaluated with multiple datasets and

cross-training datasets. Only the HEI-MED dataset was used for developing purposes

all the others were only employed in the final testing phase. In addition, an automatic

diabetic macular edema detector based on exudates and other features was developed.

Its performance are comparable to the ones of retina experts with respect to sensitivity.

119



120 Chapter 8 Quality Enhancement with Multiple Images

A ray traced model of the fundus camera/eye/retina was built in order to test the

feasibility of an algorithm for the detection of edema even before the appearance of

exudates. We showed how the algorithm presented can achieve this with multiple

views of the retina. Furthermore, an algorithm capable of removing bright artefacts

after image acquisition was presented. The result was again achieved by capturing

multiple fundus images of the patient that stared at different locations.

Overall, this work has presented several advancements in retina image processing

geared toward improving the state-of-the-art in automated screening, from the acqui-

sition phase, through quality assessment/enhancements, lesion detection and disease

classification. Hence, there are various directions that can be pursued for further stud-

ies. First and foremost, a larger clinical evaluation of the complete single image screen-

ing process (from quality estimation to diagnosis) is the first step for the acceptance of

the medical community of such automatic screening system. This will allow to better

identify the system deficiencies and to propose solutions, possibly by combining ex-

isting approaches if not secreted because of commercial reasons. Next, new datasets

of multi-view retinas needs to be acquired. One will be employed to quantify the im-

provements in the automatic diagnosis when the quality enhancement algorithm is ap-

plied; the other will be used to further evaluate the swollen macula detector algorithm

and to find new image processing techniques to limit as much as possible the artefacts

at the edges of the reconstructed naive-height-maps. Also, we foresee new application

domains for the Radon-based microaneurysms detector. In fact, there are many medical

and industrial imaging problems where small round structures needs to be identified

in a noisy background. An example is the automatic localization of nodules in lungs

radiographies.



Glossary

Age-related Macular Degeneration degenerative condition affecting the macular or

central area of the retina characterized by the presence of drusen.

AMD see Age-related Macular Degeneration.

Bruch’s Membrane the innermost layer of the choroid. It provides oxygen and nour-

ishment to the outer layers of the retina.

Choroid vascular layer of the eye.

Cotton Wool Spots lesions appearing as puffy white patches on the retina. They are

caused by damage to nerve fibers.

CWS See Cotton Wool Spots.

Diabetes Mellitus chronic, systemic, life-threatening disease characterized by disor-

dered metabolism and abnormally high blood sugar (hyperglycaemia) resulting

from low levels of the hormone insulin with or without abnormal resistance to

insulin’s effects.

Diabetic Macular Edema condition that occurs when fluid and protein deposits collect

on or under the macula and causes it to thicken and swell.

Diabetic Retinopathy retinopathy (i.e. damage to the retina) caused by complications

of diabetes mellitus, which can eventually lead to blindness.

DM see Diabetes Mellitus.

DME see Diabetic Macular Edema.

DR see Diabetic Retinopathy.

Drusen tiny yellow or white accumulations of extracellular material that build up in

Bruch’s Membrane of the eye.

Field of View image area that can be acquired by a camera.

FOV see Field of View.

Fovea located in the center of the macula region of the retina it is responsible for sharp

central vision because of the largest concentration of cones.
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Fundus Camera a specialized low power microscope with an attached camera de-

signed to photograph the interior surface of the eye.

Ganglion Cell type of neuron located near the inner surface (the ganglion cell layer)

of the retina.

Glaucoma conditions that affects the retina by damaging ganglion cells and their ax-

ons.

Hard Exudates (or exudates) lipid break-down products (appearing as yellow spots in

a fundus image) that are left behind after localized edema resolves.

HE see Hard Exudates.

Hemorrhage medical term for bleeding.

HMA see Hemorrhage.

Infarction Tissue death (necrosis) that is caused by a local lack of oxygen due to ob-

struction of the tissue’s blood supply.

MA see Microaneusym.

Macula oval-shaped highly pigmented yellow spot near the center of the retina of the

eye.

Microaneurysm localized, blood-filled balloon-like bulge in the wall of a blood vessel.

Microinfarction a very small infarct due to obstruction of circulation in capillaries,

arterioles, or small arteries.

Neovascularization vascular abnormality due to the lack of oxigen to an area of the

retina.

Nerve Fibre Layer retina layer is formed by the expansion of the fibers of the optic

nerve.

NFL see Nerve Fibre Layer.

Optic Disc area representing the beginning of the optic nerve and the entry point for

the major blood vessels that supply the retina.

Optic Nerve nerve that transmits visual information from the retina to the brain.

Preretinal Hemorrhages Hemorrhage occuring between vitreous humour and retina.

PRH see Preretinal Hemorrhages.

VH see Vitreous Hemorrhage.

Vitreous Hemorrhage Hemorrhage occurring in the vitreous humour.

Vitreous Humour the clear gel that fills the space between the lens and the retina of

the eyeball.
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