. Du-vecteur-d, ´ etatàetatà l'instant t, on estime la valeur déphaséè a t ? ? M du vecteur instantané de rotation de la Lune avec la méthode exposée au paragraphe 6

. Folkner, alors que ce n'est pas aussi flagrant avec la réduction DE421a A ce stade, on a donc mis enévidenceenévidence des différences de modèle de réduction LLR, entre celui implémenté dans INPOP et ceux utilisés au JPL il est mentionné que des ajustements de l'orientation de la Terre sont effectués : deux angles de rotationàrotationà J2000 (. . . ) sont ajustés pour orienter l'´ equateur de la Terre dans l'espace par rapportàrapportà son orbite, les vitesses de précession et d'obliquité ainsi que quelques coefficients des nutations sontégalementsontégalement ajustés. Or l'orientation de la Terre intervientàintervientà deuxétapesdeuxétapes de la construction d'une solution planétaire : ? dans le calcul des interactions duesàduesà la forme de la Terre, 2008.

. De-la-terre-est-soit-ajustée-sur-un-modèle, REN2000-P03) dans la partie dynamique, soit calculée selon les spécifications de l'IERS dans la partie réduction (voir les Convention IERS Dans ce dernier cas, la matrice de passage entre l'ITRF et l'ICRF est construitèconstruitè a partir d'un modèle de précession-nutation (UAI2000), puis corrigée en fonction des observations précises (principalement VLBI) de l'orientation de la Terre (EOP de la série C04) Or ces corrections sont liées au modèle de précession-nutation et les appliqueràappliquerà un modèle modifié semble inapproprié, car les changements engendrés risqueraient d'? etre en contradiction avec les observations VLBI. D'autre part, le but d'INPOP est aussi de d'offrir une base pour l'exploitation d'autres types d'observations (astéro¨astéro¨?des, planètes extrasolaires, pulsars La solution doit doncêtredoncêtre exprimée dans un repère bien défini. Or si les matrices de passage entre les différents repères sont modifiées, on n'est plus assuré d'? etre dans l'ICRF. Il sera cependant intéressant, 2003.

. Enfin, le code source du programme de réduction a ´ eté créécrééà partir de zéro. Si on ne peut pas exclure toute erreur de codage

. Chapront, 1) avec ceux de d'IN- POP08. On remarque que lesécartlesécart-types obtenus avec INPOP (sur les mêmes intervalles) sont généralement légèrement inférieursinférieursà ceux de S2000, sauf pour : ? les données Mc Donald/MLRS1 entre 1980 et 1986. Cependant, si on ne tient pas compte pour INPOP de la très mauvaise période, Le tableau 13.21 compare les résidus, 1984.

E. Y. Bibliographie-aleshkina, from analysis of LLR data, Astronomy and Astrophysics, vol.394, issue.2, p.717, 2002.
DOI : 10.1051/0004-6361:20021149

J. Ashenberg, Mutual gravitational potential and torque of solid bodies via inertia integrals, Celestial Mechanics and Dynamical Astronomy, p.149, 2007.

B. M. Barker and R. F. Connell, Derivation of the Equations of Motion of a Gyroscope from the Quantum Theory of Gravitation, Physical Review D, vol.2, issue.8, p.1428, 1970.
DOI : 10.1103/PhysRevD.2.1428

E. Bois and D. Vokrouhlicky, Relativistic spin effects in the Earth-Moon system, A&A, vol.300, p.559, 1995.

E. Bois, I. Wytrzyszczak, and A. Journet, Planetary and figure-figure effects on the moon's rotational motion, Celestial Mechanics and Dynamical Astronomy, p.185, 1992.

G. Boué and J. Laskar, Precession of a planet with a satellite, Icarus, vol.185, issue.2, p.312, 2006.
DOI : 10.1016/j.icarus.2006.07.019

G. Boué and J. Laskar, Spin axis evolution of two interacting bodies, Icarus, vol.201, issue.2, p.750, 2009.
DOI : 10.1016/j.icarus.2009.02.001

P. Bretagnon, Theory for the motion of all the planets -The VSOP82 solution, A&A, vol.114, p.278, 1982.

P. Bretagnon and G. Francou, Planetary theories in rectangular and spherical variables - VSOP 87 solutions, A&A, vol.202, p.309, 1988.

P. Bretagnon, G. Francou, P. Rocher, and J. L. Simon, SMART97 : a new solution for the rotation of the rigid Earth, A&A, vol.329, p.329, 1998.

P. Bretagnon, P. Rocher, and J. L. Simon, Theory of the rotation of the rigid Earth, A&A, pp.319-305, 1997.

N. Capitaine, B. Guinot, and D. D. Mccarthy, Definition of the Celestial Ephemeris Origin and of UT1 in the International Celestial Reference Frame, A&A, vol.355, p.398, 2000.

N. Capitaine, P. T. Wallace, and J. Chapront, Expressions for IAU 2000 precession quantities, Astronomy and Astrophysics, vol.412, issue.2, p.567, 2003.
DOI : 10.1051/0004-6361:20031539

N. Capitaine, P. T. Wallace, and J. Chapront, Improvement of the IAU??2000 precession model, Improvement of the IAU 2000 precession model, p.355, 2005.
DOI : 10.1051/0004-6361:20041908

J. Chapront, M. Chapront-touzé, and G. Francou, -systèmes de référence spatio-temporels. J2000, a fundamental epoch for origins of reference systems and astronomical models, pp.96-101, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00204858

J. Chapront, M. Chapront-touzé, and G. Francou, A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements, Astronomy & Astrophysics, vol.387, issue.2, p.700, 2002.
DOI : 10.1051/0004-6361:20020420

M. Chapront-touzé and J. Chapront, The lunar ephemeris ELP, A&A, vol.124, p.50, 1983.

M. Chapront-touze and J. Chapront, ELP 2000-85 -A semi-analytical lunar ephemeris adequate for historical times, A&A, vol.190, p.342, 1988.

M. Chapront-touzé, J. Chapront, and G. Francou, in Journées 1999 -systèmes de référence spatio-temporels / IX. Lohrmann-Kolloquium. Motion of celestial bodies, astrometry and astronomical reference frames, pp.217-220, 2000.

C. M. Cox and B. F. Chao, Detection of a Large-Scale Mass Redistribution in the Terrestrial System Since 1998, Science, vol.297, issue.5582, p.831, 1998.
DOI : 10.1126/science.1072188

R. S. Davis, Equation for the determination of the density of moist air, Metrologia, p.67, 1981.

W. De-sitter, On Einstein's theory of gravitation and its astronomical consequences, p.155, 1916.

D. H. Eckhardt, Theory of the libration of the moon, Moon and Planets, 1981.

B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial Mathematics), 1987.
DOI : 10.1137/1.9781611970319

F. B. Estabrook, Post-Newtonian n-BODY Equations of the Brans-Dicke Theory, The Astrophysical Journal, vol.158, p.81, 1969.
DOI : 10.1086/150172

L. Fairhead and P. Bretagnon, An analytical formula for the time transformation TB-TT, A&A, vol.229, p.240, 1990.

A. Fienga, J. Laskar, T. Morley, H. Manche, P. Kuchynka et al., INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions, Astronomy and Astrophysics, vol.507, issue.3, p.1675, 2009.
DOI : 10.1051/0004-6361/200911755

URL : https://hal.archives-ouvertes.fr/hal-00472471

A. Fienga, H. Manche, J. Laskar, and M. Gastineau, INPOP06: a new numerical planetary ephemeris, Astronomy and Astrophysics, vol.477, issue.1, pp.477-315, 2008.
DOI : 10.1051/0004-6361:20066607

URL : https://hal.archives-ouvertes.fr/hal-00204867

W. M. Folkner, E. M. Standish, J. G. Williams, D. H. Boggs, J. G. Williams et al., Planetary and lunar ephemeris DE418, Tech. rep The planetary and lunar ephemeris DE421, 2007.

P. Giacomo, Equation for the Determination of the Density of Moist Air, Metrologia, p.33, 1981.

E. Hairer, S. P. Norsett, and G. Wanner, Solving ordinary differential equations I : nonstiff problems, 1987.
DOI : 10.1007/978-3-662-12607-3

A. W. Irwin and T. Fukushima, A numerical time ephemeris of the Earth, A&A, vol.348, p.642, 1999.

P. Johnston and K. Lambeck, Postglacial rebound and sea level contributions to changes in the geoid and the Earth's rotation axis, Geophysical Journal International, vol.136, issue.3, p.537, 1999.
DOI : 10.1046/j.1365-246x.1999.00738.x

S. A. Klioner, Relativistic scaling of astronomical quantities and the system of astronomical units, Astronomy and Astrophysics, vol.478, issue.3, pp.478-951, 2008.
DOI : 10.1051/0004-6361:20077786

A. S. Konopliv, S. W. Asmar, W. M. Folner, O. Karatekin, D. C. Nunes et al., A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris, Phobos and Deimos masses, and Mars ephemeris, p.23, 2006.
DOI : 10.1016/j.icarus.2005.12.025

G. A. Krasinsky, G. A. Krasinsky, E. V. Pitjeva, M. L. Sveshnikov, and L. I. Chuniaeva, Selenodynamical parameters from analysis of LLR observations of Institute of Applied Astronomy -Russian Academy of Sciences The motion of major planets from observations 1769-1988 and some astronomical constants, Tech. rep, vol.55, issue.1, 1970.

G. A. Krasinsky, E. V. Pitjeva, M. V. Vasilyev, and E. I. Yagudina, Hidden Mass in the Asteroid Belt, Mass in the Asteroid Belt, p.98, 2002.
DOI : 10.1006/icar.2002.6837

P. Kuchynka, J. Laskar, A. Fienga, H. Manche, and K. Lambeck, A ring as a model of the main belt in planetary ephemerides, Astronomy and Astrophysics, vol.514, p.96, 1980.
DOI : 10.1051/0004-6361/200913346

URL : https://hal.archives-ouvertes.fr/hal-00720455

K. Lambeck, Geophysical geodesy: The study of the slow deformations of the Earth, 1988.
DOI : 10.1029/GM060p0007

J. Laskar, Accurate methods in general planetary theory, A&A, vol.144, p.133, 1985.

J. Laskar, Secular terms of classical planetary theories using the results of general theory, A&A, vol.157, p.59, 1986.

J. Laskar, A numerical experiment on the chaotic behaviour of the Solar System, Nature, vol.338, issue.6212, p.237, 1989.
DOI : 10.1038/338237a0

J. Laskar, Note on the Generalized Hansen and Laplace Coefficients, Celestial Mechanics and Dynamical Astronomy, p.351, 2005.

J. Laskar and P. Robutel, Stability of the Planetary Three-Body Problem. I. Expansion of the Planetary Hamiltonian, Celestial Mechanics and Dynamical Astronomy, p.193, 1995.

J. Laskar, P. Robutel, F. Joutel, M. Gastineau, A. C. Correia et al., A long-term numerical solution for the insolation quantities of??the??Earth, Astronomy & Astrophysics, vol.428, issue.1, p.261, 2004.
DOI : 10.1051/0004-6361:20041335

URL : https://hal.archives-ouvertes.fr/hal-00001603

J. H. Lieske, T. Lederle, W. Fricke, and B. Morando, Expressions for the precession quantities based upon the IAU, A&A, vol.58, issue.1, 1976.

A. E. Love, A treatise on the mathematical theory of elasticity, 1927.
URL : https://hal.archives-ouvertes.fr/hal-01307751

J. W. Marini and C. W. Murray, Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees (NASA-TM-X-70555, 1973.

P. M. Mathews, T. A. Herring, and B. A. Buffett, Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth's interior, Journal of Geophysical Research: Solid Earth, vol.107, issue.(B2), p.2068, 2002.
DOI : 10.1029/2000JB000042

K. Matsumoto, S. Goossens, Y. Ishihara, Q. Liu, F. Kikuchi et al., An improved lunar gravity field model from SELENE and historical tracking data: Revealing the farside gravity features, Journal of Geophysical Research, vol.60, issue.1, p.6007, 2010.
DOI : 10.1029/2009JE003499

P. Melchior, The tides of the planet earth, 1979.

F. Mignard, The evolution of the lunar orbit revisited. I, Moon and Planets, p.301, 1979.

S. L. Moshier, Comparison of a 7000-year lunar ephemeris with analytical theory, A&A, vol.262, p.613, 1992.

T. D. Moyer, J. G. Williams, S. G. Turyshev, C. Dittus, &. S. Lammerzahl et al., Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation, Tech. rep., Jet Propulsion Laboratory, [En ligne Lasers, Clocks and Drag-Free Control : Exploration of Relativistic Gravity in Space, Mathematical Formulation of the Double-Precision Orbit Determination Program, pp.457-150, 1970.

X. X. Newhall and J. G. Williams, Estimation of the Lunar Physical Librations, Celestial Mechanics and Dynamical Astronomy, p.21, 1997.

D. Pelat and E. V. Pitjeva, Bruits et signaux -Introduction aux méthodes de traitements des données, Cours de DEA, http ://media4.obspm.fr Experimental testing of relativistic effects, variability of the gravitational constant and topography of Mercury surface from radar observations, p.313, 1964.

E. V. Pitjeva, Modern Numerical Ephemerides of Planets and the Importance of Ranging Observations for Their Creation, Celestial Mechanics and Dynamical Astronomy, p.249, 2001.

E. V. Pitjeva, High-Precision Ephemerides of Planets?EPM and Determination of Some Astronomical Constants, Solar System Research, p.176, 2005.

E. V. Pitjeva, 196 : Transits of Venus : New Views of the Solar System and Galaxy, IAU Colloq, pp.230-241, 2005.

M. G. Rochester and D. E. Smylie, On changes in the trace of the Earth's inertia tensor, Journal of Geophysical Research, vol.23, issue.32, p.4948, 1974.
DOI : 10.1029/JB079i032p04948

F. Roosbeek and V. Dehant, RDAN97 : An Analytical Development of Rigid Earth Nutation Series Using the Torque Approach, Celestial Mechanics and Dynamical Astronomy, p.215, 1998.

B. E. Schutz, The mutual potential and gravitational torques of two bodies to fourth order, Celestial Mechanics, p.173, 1981.

P. K. Seidelmann, Explanatory Supplement to the Astronomical Almanac, 1992.

J. L. Simon, P. Bretagnon, J. Chapront, M. Chapront-touze, G. Francou et al., Numerical expressions for precession formulae and mean elements for the Moon and the planets, A&A, vol.282, p.663, 1994.

M. Soffel, S. A. Klioner, G. Petit, P. Wolf, S. M. Kopeikin et al., The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement, The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework : Explanatory Supplement, p.2687, 2003.
DOI : 10.1086/378162

J. Souchay and H. Kinoshita, Corrections and new developments in rigid earth nutation theory. I. Lunisolar influence including indirect planetary effects, A&A, pp.312-1017, 1996.

J. Souchay and H. Kinoshita, Corrections and new developments in rigid-Earth nutation theory. II. Influence of second-order geopotential and direct planetary effect, A&A, pp.318-639, 1997.

J. Souchay, B. Loysel, H. Kinoshita, and M. Folgueira, Corrections and new developments in rigid earth nutation theory, Astronomy and Astrophysics Supplement Series, vol.135, issue.1, p.111, 1999.
DOI : 10.1051/aas:1999446

E. M. Standish, X. X. Newhall, J. G. Williams, W. M. Folkner, and J. G. Williams, JPL planetary DE410, Tech. rep JPL planetary and lunar ephemerides DE414/LE414, JPL planetary and lunar ephemerides DE403/LE403, 1995.
DOI : 10.1007/bf01230883

B. Tapley, J. Ries, S. Bettadpur, D. Chambers, M. Cheng et al., GGM02 ??? An improved Earth gravity field model from GRACE, Journal of Geodesy, vol.79, issue.8, p.467, 2005.
DOI : 10.1007/s00190-005-0480-z

B. D. Tapley, M. M. Watkins, J. C. Ries, G. W. Davis, R. J. Eanes et al., The Joint Gravity Model 3, Journal of Geophysical Research: Solid Earth, vol.21, issue.4, p.28029, 1996.
DOI : 10.1029/96JB01645

V. V. Vidyakin and I. G. Popova, Expansion of the force function for the mutual gravitation of two rigid bodies of arbitrary shape in a series of spherical harmonic functions, Astronomy Reports, vol.43, p.412, 1999.

J. M. Wahr, The forced nutations of an elliptical, rotating, elastic and oceanless earth, Geophysical Journal of the Royal Astronomical Society, vol.64, issue.3, pp.705-727, 1981.
DOI : 10.1111/j.1365-246X.1981.tb02691.x

P. T. Wallace, Astronomical Data Analysis Software and, Astronomical Society of the Pacific Conference Series, p.207, 1996.

J. G. Williams, Determining asteroid masses from perturbations on Mars, Icarus, vol.57, issue.1, 1984.
DOI : 10.1016/0019-1035(84)90002-2

J. G. Williams, Contributions to the Earth's obliquity rate, precession, and nutation, The Astronomical Journal, vol.108, p.711, 1994.
DOI : 10.1086/117108

J. G. Williams, J. G. Williams, D. H. Boggs, W. M. Folkner, D. H. Boggs et al., Lunar rotational dissipation in solid body and molten core, 16th International Workshop on Laser Ranging, p.27933, 2001.
DOI : 10.1029/2000JE001396

J. G. Williams and W. M. Folkner, Relativity parameters determined from lunar laser ranging, Physical Review D, vol.53, issue.12, p.6730, 1996.
DOI : 10.1103/PhysRevD.53.6730

C. Z. Zhang, Love numbers of the moon and of the terrestrial planets, Earth, Moon and Planets, vol.29, issue.3, p.193, 1992.
DOI : 10.1007/BF00116287