B. Nayroles, G. Touzot, and P. Villon, La méthode des éléments diffus, Compte rendu à l'Académie des Sciences, 313, Série II, pp.133-138, 1991.

B. Nayroles and G. Touzot, Pc Villon, L'Approximation Diffuse, Compte rendu à l'Académie des Sciences, 313, Série II, pp.293-296, 1991.

P. Lancaster and K. Slakauskas, Surfaces generated by moving least squares methods, Mathematics of Computation, vol.37, issue.155, pp.144-158, 1981.
DOI : 10.1090/S0025-5718-1981-0616367-1

J. M. Babuska and . Melenk, The Partition of Unity Finte Element Method, 1995.

C. and A. Duarte, HP-Clouds-A Meshless Method to Solve Boundary- Value Problem, Texas Institute for Computationnal and Applied Mathematies, pp.95-100, 1995.

C. , A. Duarte, and J. T. Oden, An H-p Adaptive Method Using Clouds, Texas Institute for Computationnal and Applied Mathematics, pp.96-101, 1996.

C. , A. Duarte, and J. T. Oden, A review of Some Meshless Method to Solve Partial Differential Equations, Texas Institute for Computationnal and Applied Mathematics, pp.96-102, 1996.

W. K. Liu, S. Li, and T. Belytschko, Moving least-square reproducing kernel methods (I) Methodology and convergence, Computer Methods in Applied Mechanics and Engineering, vol.143, issue.1-2, 1996.
DOI : 10.1016/S0045-7825(96)01132-2

R. Taylor, O. Zienkiewicz, E. Onate, and S. Idelsohn, Moving Least square Methods Approximation for Solution of Differential Equations, Publication CIMNE, Internationnal Center of Numerical Methods in Engineering, vol.074, 1995.

T. Belytschko, Y. Krongauz, D. Organ, M. Flemming, and P. , Meshless Methods : An Overview and Recent Developments, Rapport technique main, 1996.

Y. Maréchal, G. Meunier, J. Coulomb, and H. Magnin, A general purpose tool for restoring inter-element continuity, IEEE Transactions on Magnetics, vol.28, issue.2, pp.1728-1731, 1992.
DOI : 10.1109/20.124037

Y. Maréchal, G. Meunier, J. Coulomb, and G. Touzot, Use of the diffuse approximation method for electromagnetic field computation, IEEE Transactions on Magnetics, vol.30, issue.5, p.2, 1993.
DOI : 10.1109/20.312707

Y. Maréchal, G. Meunier, J. Coulomb, and G. Touzot, Use of the diffuse approximation method for electromagnetic field computation, IEEE Transactions on Magnetics, vol.30, issue.5
DOI : 10.1109/20.312707

Y. Maréchal, H. Luong, and G. Meunier, Robust Generation of Complex Set of Boundary Conditions for Modelling 3D Electromagnetic Field, IEEE Trans. Mag, vol.30, pp.5-1997

M. Lvlarih, Mise en oeuvre de l'approximation diffuse et des éléments diffus pour la résolution des problèmes mécaniques, Thèse de Doctorat, 1994.

V. Cingoski, N. Miyamoto, and H. Yamashita, Element-free Galerkin Method fot Electromagnetic Field Computation, IEEE Trans, 1997.
DOI : 10.1109/20.717759

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.7.3032

F. Gunther and W. Liu, Implementation of Boundary Conditions for Meshless Methods, http :j j www.ticam.utexas.edu jusersj armandoj resume, Amélioration de la formulation en potentiel scalaire magnétique et généralisation au couplage entre équations de champ et de circuit électrique Thèse de Doctorat, 1997.

F. Rapetti, F. Bouillault, L. Santandrea, A. Buffa, Y. Maday et al., Calculation of eddy currents with edge elements on non-metching grids in moving structures, IEEE Trans. Mag, vol.1, pp.366-367, 1999.

A. Buffa, F. Rapetti, and Y. Maday, Calculation of eddy currents in moving structures by a sliding mesh-finite elements method, IEEE Trans. Mag, vol.1, pp.368-369, 1999.

G. L. Miller, D. Talmor, S. Teng, N. Walkington, H. L. Wang-]-g et al., Control volume meshes using sphere packing, 5th International Meshing Roundtable Proceedings of the Eighth Annual ACl'vl- SIAl'v1 Symposium on Discrete Algorithms, pp.3-199, 1996.
DOI : 10.1007/BFb0018533

T. Yokoyama, V. Cingoski, K. Kaneda, and H. Yamashita, 3-D automatic mesh generation for FEA using dynamic bubble system, Présenté à la conférence Compumag, 1999.
DOI : 10.1109/20.767204

M. Desbrun and M. Gascuel, Smoothed Particles : A new paradigm for animatinh highly deformable body, http:j jwww-imagis.imag.frj Mathieu .Desbrunjsmoothed.html [40] P. Alotto and Al, A Multiquadratic-based Aigorithm for the Acceleration of Simulate d Annealing Optimization Procedures, IEEE Trans Mag Vol, vol.32, pp.1198-1201, 1996.

A. Abakar, J. Coulomb, and Y. , Radial Basis function network for acceleration of genetic algorithm optimization procedures, Proc. 9TH IGTE Symp. on Numerical Field Calculation in El. Eng, 1998.

B. Branstatter, W. Ring, C. Magele, and K. Richter, Shape Design with Great Geometrical Deformations Using Continuous ly M oving Finite Element Node, IEEE Trans Mag Vol, vol.34, p.5, 1998.

L. Saludjian, J. Coulomb, and A. Izabelle, Algorithme génétique et développement de Taylor de la solut ion éléments finis pour l'optimisation d'un dispositif électromagnétique, J. Phys. France, vol.7, pp.1-20, 1997.

Y. Maréchal and C. Hérault, Méthode de Galerkin pour la simulation en électromagnétisme, Revue Internationale de Génie Électrique, pp.99-140, 1998.

F. Zgainski, Y. Maréchal, J. Coulomb, M. Vanti, and A. Raizer, An a priori indicator of finite element quality based on the condition number of the stiffness matrix, IEEE Transactions on Magnetics, vol.33, issue.2, 1997.
DOI : 10.1109/20.582611

J. Simkin and C. Trowbridge, On the use of the total scalar potential on the numerical solution of fields problems in electromagnetics, International Journal for Numerical Methods in Engineering, vol.275, issue.3, pp.43-436, 1979.
DOI : 10.1002/nme.1620140308

C. Hérault and Y. , Boundary and interface conditions in meshless methods, IEEE Trans. Mag, 1999.

C. Hérault and Y. , Galerkin Meshless Methods : Implementation Methodologies, présentée à la conférence CEFC, 1998.

C. Hérault, M. C. Costa, and Y. , A Meshless Approximation for the Acceleration of stochastic algorithm in optimization procedure, présentée à la conférence COMPUMAG, 1999.

C. Hérault, Y. E. Maréchalm, and F. , Génération des noeuds pour les méthodes sans maillage, soumis à la conférence NUMELEC 2000 FIGURES 6.13 Lignes de champs pour w.t == 60 et w.t == 90 pour la pompe à induction