. Avec-des-croix-rouges, Il est clair que l'on dispose d'une bonne condition de

. Les and . Qu, on peut tirer sont sensiblement les mêmes que celles de la sous-section précédente : le fait de ne pas considérer de pénalisations sur les opérateurs biharmonique et tri- FIGURE 5.25 ? Simulation sur le domaine avec interface sinusoidale

. Cas, Ce domaine est formé de deux rectangles ? 1 = [0, 10] × [7, 10] et ? 2 = [0, 10] × [0, 3] reliés l'un à l'autre par un autre domaine ? 3 = [4.9, 5.1] × [3, 7] beaucoup plus étroit. Dans cette expérience, nous considérons une vitesse constante égale à 1. Le rapport entre mailles fines et grossières étant de l'ordre de cinq, il est clair que nous n'avons pas besoin de mailler aussi

. Avec-une-telle-expérience, intérêt d'avoir une méthode permettant de considérer facilement des éléments d'ordres différents, d'un élément à l'autre, est indéniable. De plus, en ce qui concerne l'ordre temporel, on considérera le ? 2 -schéma

]. C. Bibliographie1, J. Agut, and . Diaz, High-order schemes combining the modified equation approach and discontinuous galerkin approximations for the wave equation, 2011.

M. Ainsworth, P. Monk, and W. Muniz, Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation, Journal of Scientific Computing, vol.15, issue.2, 2006.
DOI : 10.1007/s10915-005-9044-x

L. Anné, P. Joly, and Q. H. Tran, Construction and analysis of higher order finite difference schemes for the 1d wave equation, Computational Geosciences, vol.4, issue.3, pp.207-249, 2000.
DOI : 10.1023/A:1011520202197

D. N. Arnold, An Interior Penalty Finite Element Method with Discontinuous Elements, SIAM Journal on Numerical Analysis, vol.19, issue.4, pp.742-760, 1982.
DOI : 10.1137/0719052

D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems, SIAM Journal on Numerical Analysis, vol.39, issue.5, pp.1749-1779, 2002.
DOI : 10.1137/S0036142901384162

C. Baldassari, Modélisation et simulation numérique pour la migration terrestre par équation d'ondes, 2009.

C. Baldassari, H. Barucq, H. Calandra, B. Denel, and J. Diaz, High-order discontinuous galerkin method for the reverse time migration, Communications in Computational Physics, 2010.

F. Bassi and S. Rebay, A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier???Stokes Equations, Journal of Computational Physics, vol.131, issue.2, pp.267-279, 1997.
DOI : 10.1006/jcph.1996.5572

G. Benitez-alvarez, A. F. Dourado-loula, and E. G. , A discontinuous finite element formulation for Helmholtz equation, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.33-36, pp.4018-4035, 2006.
DOI : 10.1016/j.cma.2005.07.013

E. Bossy, Caractérisation ultrasonore de l'os par propagation de l'onde latérale : modèle de propagation, transfert de technologie et application à l'ostéoporose, 2003.

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 2002.

H. Brezis, Analyse fonctionnelle, théorie et applications. Dunod, 1999.

L. Cagniard, Réflexion et réfraction des ondes sismiques progressives, 1939.

P. G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, 1978.

F. Clearbout and J. , TOWARD A UNIFIED THEORY OF REFLECTOR MAPPING, GEOPHYSICS, vol.36, issue.3, pp.467-481, 1971.
DOI : 10.1190/1.1440185

G. Cohen, P. Joly, and N. Tordjman, Construction and analysis of higher order finite elements with mass lumping for the wave equation, Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, pp.152-160, 1993.

G. Cohen, X. Ferrieres, and S. Pernet, A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell???s equations in time domain, Journal of Computational Physics, vol.217, issue.2, pp.340-363, 2006.
DOI : 10.1016/j.jcp.2006.01.004

S. Cohen and P. Joly, Construction Analysis of Fourth-Order Finite Difference Schemes for the Acoustic Wave Equation in Nonhomogeneous Media, SIAM Journal on Numerical Analysis, vol.33, issue.4, pp.1266-1302, 1996.
DOI : 10.1137/S0036142993246445

S. Cohen, P. Joly, J. E. Roberts, and N. Tordjman, Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation, SIAM Journal on Numerical Analysis, vol.38, issue.6, pp.2408-2431, 2006.
DOI : 10.1137/S0036142997329554

URL : https://hal.archives-ouvertes.fr/hal-01010373

S. Cohen, P. Joly, and N. Tordjman, Higher-order finite elements with mass-lumping for the 1D wave equation, Finite Elements in Analysis and Design, vol.16, issue.3-4, pp.3-4329, 1994.
DOI : 10.1016/0168-874X(94)90075-2

M. A. Dablain, The application of high???order differencing to the scalar wave equation, GEOPHYSICS, vol.51, issue.1, pp.54-56, 1986.
DOI : 10.1190/1.1442040

J. D. De-basabe and M. K. Sen, New developments in the finite-element method for seismic modeling, The Leading Edge, vol.28, issue.5, pp.562-567, 2009.
DOI : 10.1190/1.3124931

A. T. De and . Hoop, The surface line source problem, Appl. Sci. Res., B, vol.8, pp.349-356, 1959.

J. Diaz and M. Grote, Energy Conserving Explicit Local Time Stepping for Second-Order Wave Equations, SIAM Journal on Scientific Computing, vol.31, issue.3, pp.1985-2014, 2009.
DOI : 10.1137/070709414

URL : https://hal.archives-ouvertes.fr/inria-00193160

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol.19, 1998.

S. Fauqueux, Eléments finis mixtes spectraux et couches absorbantes parfaitement adaptées pour la propagation d'ondes élastiques en régime transitoire, 2003.

X. Feng and H. Wu, $hp$-Discontinuous Galerkin methods for the Helmholtz equation with large wave number, Mathematics of Computation, vol.80, issue.276, 2009.
DOI : 10.1090/S0025-5718-2011-02475-0

E. H. Georgoulis and P. Houston, Discontinuous Galerkin methods for the biharmonic problem, IMA Journal of Numerical Analysis, vol.29, issue.3, 2008.
DOI : 10.1093/imanum/drn015

J. Gilbert and P. Joly, Higher order time stepping for second order hyperbolic problems and optimal cfl conditions. Numerical Analysis and Scientific Computing for PDE's and their Challenging Applications, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00976773

J. L. Goncalves, P. R. Devloo, and S. M. Gomes, Goal-Oriented Error Estimation for the Discontinuous Galerkin Method Applied to the Biharmonic Equation, Numerical Mathematics and Advanced Applications, vol.2, pp.369-376, 2009.
DOI : 10.1007/978-3-642-11795-4_39

M. Grote and T. Mitkova, Explicit local time-stepping methods for Maxwell???s equations, Journal of Computational and Applied Mathematics, vol.234, issue.12, pp.3283-3302, 2010.
DOI : 10.1016/j.cam.2010.04.028

M. J. Grote, A. Schneebeli, and D. Schötzau, Discontinuous Galerkin Finite Element Method for the Wave Equation, SIAM Journal on Numerical Analysis, vol.44, issue.6, pp.2408-2431, 2006.
DOI : 10.1137/05063194X

URL : https://hal.archives-ouvertes.fr/hal-01443184

M. J. Grote and D. Schötzau, Convergence analysis of a fully discrete dicontinuous galerkin method for the wave equation, 2008.

B. Gustafsson and E. Mossberg, Time Compact High Order Difference Methods for Wave Propagation, SIAM Journal on Scientific Computing, vol.26, issue.1, pp.259-271, 2004.
DOI : 10.1137/030602459

B. Gustafsson and P. Wahlund, Time compact high-order difference methods for wave propagation , 2d, Journal of Scientific Computing, vol.25, issue.12, 2005.

T. J. Hughes, The finite element method Linear static and dynamic finite element analysis, With the collaboration of Robert M, 1987.

P. Joly and J. Rodríguez, Optimized higher order time discretization of second order hyperbolic problems: Construction and numerical study, Journal of Computational and Applied Mathematics, vol.234, issue.6, pp.1953-1961, 2010.
DOI : 10.1016/j.cam.2009.08.046

URL : https://hal.archives-ouvertes.fr/hal-00976330

M. Käser and A. Iske, ADER schemes on adaptive triangular meshes for scalar conservation laws, Journal of Computational Physics, vol.205, issue.2, pp.486-508, 2005.
DOI : 10.1016/j.jcp.2004.11.015

D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophysical Journal International, vol.139, issue.3, pp.806-822, 1999.
DOI : 10.1046/j.1365-246x.1999.00967.x

D. Komatitsch and J. P. Vilotte, The spectral-element method : an efficient tool to simulate the seismic response of 2d and 3d geological structures, pp.368-392, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00669068

D. Komatitsch, J. P. Vilotte, R. Vai, J. M. Castillo-covarrubias, and F. J. Sanchez-sesma, The spectral element method for elastic wave equations: Application to 2D and 3D seismic problems, SEG Technical Program Expanded Abstracts 1998, pp.1139-1164, 1999.
DOI : 10.1190/1.1820185

URL : https://hal.archives-ouvertes.fr/hal-00669075

I. Mozolevski and E. Suli, hp-version interior penalty dgfems for the biharmonic equation, 2004.

A. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, Journal of Computational Physics, vol.54, issue.3, pp.468-488, 1984.
DOI : 10.1016/0021-9991(84)90128-1

S. Prudhomme, J. T. Pascal, . Oden, and A. Romkes, Review of a priori error estimation for discontinuous galerkin methods, 2000.

W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation, 1973.

E. Robein, Seismic imaging, a review of the techniques, their principles, merits and limitations . EAGE, Education Tour Series, 2010.

C. Schwab, p-and hp-finite element methods. theory and applications to solid and fluid mechanics, 1998.

K. Shahbazi, An explicit expression for the penalty parameter of the interior penalty method, Journal of Computational Physics, vol.205, issue.2, pp.401-407, 2005.
DOI : 10.1016/j.jcp.2004.11.017

G. R. Shubin and J. B. Bell, A Modified Equation Approach to Constructing Fourth Order Methods for Acoustic Wave Propagation, SIAM Journal on Scientific and Statistical Computing, vol.8, issue.2, pp.135-151, 1987.
DOI : 10.1137/0908026

E. Süli and I. Mozolevski, hp-version interior penalty dgfems for the biharmonic equation, Computer Methods in Applied Mechanics and Engineering, vol.196, pp.13-16, 2007.

E. Toro, M. Käser, M. Dumbser, and C. Castro, ADER Shock-Capturing Methods and Geophysical Applications, Proceedings of the 25th International Symposium on Shock Waves -ISSW25, 2005.

T. Warburton and J. S. Hesthaven, On the constants in hp-finite element trace inverse inequalities, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.25, pp.2765-2773, 2003.
DOI : 10.1016/S0045-7825(03)00294-9

R. F. Warming and B. J. Hyett, The modified equation approach to the stability and accuracy analysis of finite-difference methods, Journal of Computational Physics, vol.14, issue.2, pp.159-179, 1974.
DOI : 10.1016/0021-9991(74)90011-4