R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, Introduction to ash memory, Proceedings of the IEEE, p.489502, 2003.

W. Georey, M. J. Burr, M. Breitwisch, D. Franceschini, K. Garetto et al., Phase change memory technology, Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures, vol.28, issue.2, p.223, 2010.

T. Hagiwara, Y. Yatsuda, R. Kondo, S. Minami, T. Aoto et al., A 16 kbit electrically erasable PROM using n-channel si-gate MNOS technology. Solid-State Circuits, IEEE Journal, issue.3, p.15346353, 1980.

W. Johnson, G. Perlegos, A. Renninger, G. Kuhn, and T. Ranganath, A 16Kb electrically erasable nonvolatile memory, 1980 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, p.152153, 1980.
DOI : 10.1109/ISSCC.1980.1156030

F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, and S. Tanaka, A new ash E2PROM cell using triple polysilicon technology, Electron Devices Meeting, p.464467, 1984.

S. Lai, Tunnel oxide and ETOXTM ash scaling limitation, Nonvolatile Memory Technology Conference, p.67, 1998.
DOI : 10.1109/nvmt.1998.723204

G. Molas, D. Deleruyelle, B. De-salvo, G. Ghibaudo, M. Gelygely et al., Degradation of oating-gate memory reliability by few electron phenomena. Electron Devices, IEEE Transactions on, issue.10, pp.532610-2619, 2006.

K. M. Kim, B. Choi, and . Hwang, Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin lms, Applied Physics Letters, issue.24, p.90242906, 2007.

W. J. Tsai, N. K. Zous, C. J. Liu, C. C. Liu, C. H. Chen et al., Data retention behavior of a SONOS type two-bit storage ash memory cell, Electron Devices Meeting IEDM Technical Digest. International, pp.32-38, 2001.

S. Lombardo and C. Gerardi, Highly manufacturable/low aspect ratio si nano oating gate FinFET memories : high speed performances and improved reliability. Non- Volatile Semiconductor Memory Workshop, pp.22-4445, 2007.

S. Jung, J. Jang, W. Cho, H. Cho, J. Jeong et al., Three dimensionally stacked NAND ash memory technology using stacking single crystal si layers on ILD and TANOS structure for beyond 30nm node, Electron Devices Meeting IEDM '06. International, p.14, 2006.

M. She, Semiconductor ash memory scaling, 2003.

P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, Failure mechanisms of ash cell in program/erase cycling, Electron Devices Meeting, 1994. IEDM '94. Technical Digest., International, p.291294, 1994.

. Shenoy, Overview of candidate device technologies for storage-class memory, IBM Journal of Research and Development, 2008.

Y. Shimojo, A. Konno, J. Nishimura, T. Okada, Y. Yamada et al., High-density and high-speed 128Mb chain FeRAM— with SDRAM-compatible DDR2 interface, VLSI Technology, p.218219, 2009.

B. Jae, R. William, H. L. Cook, H. Ludwig, and C. Jae, Piezoelectric ceramics

J. Junquera and P. Ghosez, Critical thickness for ferroelectricity in perovskite ultrathin lms, Nature, issue.6931, p.422506509, 2003.

J. M. Daughton, Magnetic tunneling applied to memory (invited), Journal of Applied Physics, vol.81, issue.8, p.3758, 1997.
DOI : 10.1063/1.365499

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA452615

G. Zhou, A. J. Bernardus, and . Jacobs, High Performance Media for Phase Change Optical Recording, Japanese Journal of Applied Physics, vol.38, issue.Part 1, No. 3B, p.38
DOI : 10.1143/JJAP.38.1625

S. Natarajan, S. Chung, L. Paris, and A. Keshavarzi, Searching for the dream embedded memory. Solid-State Circuits Magazine, IEEE, vol.1, issue.3, p.3444, 2009.

X. Wang, Y. Chen, H. Li, D. Dimitrov, and H. Liu, Spin torque random access memory down to 22 nm technology, Magnetics IEEE Transactions on, issue.11, p.4424792482, 2008.

M. Julliere, Tunneling between ferromagnetic films, Physics Letters A, vol.54, issue.3, pp.225-226, 1975.
DOI : 10.1016/0375-9601(75)90174-7

C. Chappert, A. Fert, and F. Nguyen-van-dau, The emergence of spin electronics in data storage, Nat Mater, vol.6, issue.11, p.813823, 2007.

I. Prejbeanu, R. Kerekes, H. Sousa, . Sibuet, . Redon et al., Thermally assisted MRAM, Journal of Physics: Condensed Matter, vol.19, issue.16, p.165218, 2007.
DOI : 10.1088/0953-8984/19/16/165218

Y. Huai, Spin-Transfert torque MRAM (STT-MRAM) : challenges and prospects, AAPPS Bulletin, vol.18, issue.6, p.3340, 2008.

A. Sawa, Resistive switching in transition metal oxides, Materials Today, vol.11, issue.6, p.2836, 2008.
DOI : 10.1016/S1369-7021(08)70119-6

R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges, Advanced Materials, vol.18, issue.25-26, pp.25-2626322663, 2009.
DOI : 10.1002/adma.200900375

K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide, Applied Physics Letters, vol.89, issue.10, p.89103509, 2006.
DOI : 10.1063/1.2339032

H. P. Frederikse, W. R. Thurber, and W. R. Hosler, Electronic Transport in Strontium Titanate, Physical Review, vol.134, issue.2A, p.442, 1964.
DOI : 10.1103/PhysRev.134.A442

A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui et al., Field-driven hysteretic and reversible resistive switch at the Ag???Pr0.7Ca0.3MnO3 interface, Applied Physics Letters, vol.83, issue.5, p.957, 2003.
DOI : 10.1063/1.1590741

T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe et al., Hysteretic currentvoltage characteristics and resistance switching at an epitaxial oxide schottky junction SrRuO3
DOI : 10.1063/1.1845598

J. G. Simmons and R. R. Verderber, New conduction and reversible memory phenomena in thin insulating lms, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol.301, p.77102, 1464.

M. J. Rozenberg, I. H. Inoue, and M. J. Sánchez, Nonvolatile Memory with Multilevel Switching: A Basic Model, Physical Review Letters, vol.92, issue.17, p.92178302, 2004.
DOI : 10.1103/PhysRevLett.92.178302

R. Fors, S. I. Khartsev, and A. M. Grishin, Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition, Physical Review B, vol.71, issue.4, p.45305, 2005.
DOI : 10.1103/PhysRevB.71.045305

H. Sim, H. Choi, D. Lee, M. Chang, D. Choi et al., Excellent resistance switching characteristics of Pt/SrTiO3 schottky junction for multi-bit nonvolatile memory application, Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, p.758761, 2005.

I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo et al., Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses, Electron Devices Meeting IEDM Technical Digest. IEEE International, p.587590, 2004.

B. I. Moon and . Ryu, Electrical observations of lamentary conductions for the resistive memory switching in NiO lms, Applied Physics Letters, vol.88, issue.20, p.202102, 2006.

Y. Hirose, films, Journal of Applied Physics, vol.47, issue.6, p.2767, 1976.
DOI : 10.1063/1.322942

M. N. Kozicki and W. C. West, US patent no, pp.761-115, 1998.

M. N. Kozicki, M. Park, and M. Mitkova, Nanoscale Memory Elements Based on Solid-State Electrolytes, IEEE Transactions On Nanotechnology, vol.4, issue.3, p.331338, 2005.
DOI : 10.1109/TNANO.2005.846936

G. Ufert and . Muller, Conductive bridging RAM (CBRAM) : an emerging nonvolatile memory technology scalable to sub 20nm, Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, p.754757, 2005.

R. Stanford and . Ovshinsky, Reversible electrical switching phenomena in disordered structures, Physical Review Letters, vol.21, issue.20, p.1450, 1968.

S. Lai, Current status of the phase change memory and its future, IEEE International Electron Devices Meeting 2003, 2003.
DOI : 10.1109/IEDM.2003.1269271

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens et al., Scaling analysis of phase-change memory technology, IEEE International Electron Devices Meeting 2003, pp.29-35, 2003.
DOI : 10.1109/IEDM.2003.1269376

Y. C. Chen, C. T. Rettner, S. Raoux, G. W. Burr, S. H. Chen et al., Ultra-Thin Phase-Change Bridge Memory Device Using GeSb, 2006 International Electron Devices Meeting, p.14, 2006.
DOI : 10.1109/IEDM.2006.346910

D. H. Im, J. I. Lee, S. L. Cho, H. G. An, D. H. Kim et al., A unied 7.5nm dash-type conned cell for high performance PRAM device, Electron Devices Meeting, p.14, 2008.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. Chen et al., Phase-change random access memory: A scalable technology, IBM Journal of Research and Development, 2008.
DOI : 10.1147/rd.524.0465

J. D. Maimon, K. K. Hunt, L. Burcin, and J. Rodgers, Chalcogenide memory arrays: characterization and radiation effects, IEEE Transactions on Nuclear Science, vol.50, issue.6, p.18781884, 2003.
DOI : 10.1109/TNS.2003.821377

R. Stanford, M. Ovshinsky, K. A. Chen, R. W. Rubin, and . Barton, Electrical control device and process (ovitron) Compound materials for reversible, phase-change optical data storage, Applied Physics Letters, issue.9, p.49502, 1959.

N. Yamada, M. Takao, and M. Takenaga, Te-Ge-Sn-Au phase change recording lm for optical disks, 1986.

E. Ohno, N. Yamada, T. Kurumizawa, K. Kimura, and M. Takao, TeGeSnAu Alloys for Phase Change Type Optical Disk Memories, Japanese Journal of Applied Physics, vol.28, issue.Part 1, No. 7, p.12351240, 1989.
DOI : 10.1143/JJAP.28.1235

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin lms for an optical disk memory, Journal of Applied Physics, vol.69, issue.5, p.28492856, 1991.

R. Kojima, S. Okabayashi, T. Kashihara, K. Horai, T. Matsunaga et al., Nitrogen doping eect on phase change optical disks, Japanese Journal of Applied Physics, p.37

R. Kojima and N. Yamada, Acceleration of Crystallization Speed by Sn Addition to Ge???Sb???Te Phase-Change Recording Material, Japanese Journal of Applied Physics, vol.40, issue.Part 1, No. 10, p.4059305937, 2001.
DOI : 10.1143/JJAP.40.5930

K. Yusu, T. Nakai, S. Ashida, N. Ohmachi, N. Morishita et al., High speed crystallization characteristics of Ge-Sb-Te-Bi materials used for next generation rewritable DVD with blue laser and NA = 0.65, 2005.

N. Yamada, R. Kojima, and T. Nishihara, Akio Tsuchino, Yuko Tomekawa, and Hideo Kusada. 100 GB rewritable triple-layer optical disk having Ge-Sb-Te lms, 2009.

T. Kato, H. Hirata, T. Komaki, H. Inoue, H. Shingai et al., The Phase Change Optical Disc with the Data Recording Rate of 140 Mbps, Japanese Journal of Applied Physics, vol.41, issue.Part 1, No. 3B, p.4116641667, 2002.
DOI : 10.1143/JJAP.41.1664

H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi et al., Completely Erasable Phase Change Optical Disc II: Application of Ag-In-Sb-Te Mixed-Phase System for Rewritable Compact Disc Compatible with CD-Velocity and Double CD-Velocity, Japanese Journal of Applied Physics, vol.32, issue.Part 1, No. 11B, p.3252415247, 1993.
DOI : 10.1143/JJAP.32.5241

S. Lai and T. Lowrey, OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), pp.36-41, 2001.
DOI : 10.1109/IEDM.2001.979636

M. Gill, T. Lowrey, and J. Park, Ovonic unied memory -a high-performance nonvolatile memory technology for stand-alone memory and embedded applications

F. Bedeschi, R. Bez, C. Bono, E. Bonizzoni, E. C. Buda et al., 4-Mb MOSFET-selected microtrench phase-change memory experimental chip. Solid-State Circuits, IEEE Journal, issue.7, p.4015571565, 2005.

J. Lee, C. Choi, . Lee, D. Kang, and . Kim, GeSbTe deposition for the PRAM application, Applied Surface Science, vol.253, issue.8, p.39693976, 2007.
DOI : 10.1016/j.apsusc.2006.08.044

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani et al., A Multi-Level-Cell Bipolar-Selected Phase-Change Memory, 2008 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, p.428625, 2008.
DOI : 10.1109/ISSCC.2008.4523240/mm1

G. Servalli, A 45nm generation Phase Change Memory technology, 2009 IEEE International Electron Devices Meeting (IEDM), p.14, 2009.
DOI : 10.1109/IEDM.2009.5424409

I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, and M. Wuttig, Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements, Journal of Applied Physics, vol.87, issue.9, p.4130, 2000.
DOI : 10.1063/1.373041

D. Ielmini, D. Mantegazza, A. L. Lacaita, A. Pirovano, and F. Pellizzer, Switching and programming dynamics in phase-change memory cells, Solid-State Electronics, vol.49, issue.11, p.4918261832, 2005.
DOI : 10.1016/j.sse.2005.10.013

G. Vincent, Etude des phénomènes électrothermiques liés à l'amorphisation et à la cristallisation d'un matériau à changement de phase pour application aux mémoires non volatiles, 2005.

A. Barnett, Current laments in semiconductors, IBM Journal of Research and Development, vol.13, pp.522528-1662895, 1969.

C. H. Sie, M. P. Dugan, and S. C. Moss, Direct observations of laments in the ovonic read-mostly memory, Journal of Non-Crystalline Solids, pp.8-10877884, 1972.

A. C. Warren, Reversible thermal breakdown as a switching mechanism in chalcogenide glasses. Electron Devices, IEEE Transactions on, vol.20, issue.2, p.123131, 1973.

D. Adler, M. S. Shur, M. Silver, and S. R. Ovshinsky, Threshold switching in chalcogenide???glass thin films, Journal of Applied Physics, vol.51, issue.6, p.3289, 1980.
DOI : 10.1063/1.328036

D. Emin, Current-driven threshold switching of a small polaron semiconductor to a metastable conductor, Physical Review B, vol.74, issue.3, p.35206, 2006.
DOI : 10.1103/PhysRevB.74.035206

D. Ielmini, Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses, Physical Review B, vol.78, issue.3, p.35308, 2008.
DOI : 10.1103/PhysRevB.78.035308

M. Avrami, Kinetics of Phase Change. I General Theory, The Journal of Chemical Physics, vol.7, issue.12, p.1103, 1939.
DOI : 10.1063/1.1750380

M. Avrami, Kinetics of Phase Change. II Transformation???Time Relations for Random Distribution of Nuclei, The Journal of Chemical Physics, vol.8, issue.2, p.212, 1940.
DOI : 10.1063/1.1750631

M. Avrami, Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III, The Journal of Chemical Physics, vol.9, issue.2, p.177, 1941.
DOI : 10.1063/1.1750872

W. A. Johnson and R. F. , Reaction kinetics in processes of nucleation and growth, AIME Transactions, vol.135, issue.416, p.43, 1939.

G. Zhou, Materials aspects in phase change optical recording, Materials Science and Engineering: A, vol.304, issue.306, pp.304-3067380, 2001.
DOI : 10.1016/S0921-5093(00)01448-9

J. H. Coombs, A. P. Jongenelis, W. Van-es-spiekman, and B. A. Jacobs, Laser???induced crystallization phenomena in GeTe???based alloys. I. Characterization of nucleation and growth, Journal of Applied Physics, vol.78, issue.8, 1995.
DOI : 10.1063/1.359779

J. H. Coombs, A. P. Jongenelis, W. Van-es-spiekman, and B. A. Jacobs, Laser???induced crystallization phenomena in GeTe???based alloys. II. Composition dependence of nucleation and growth, Journal of Applied Physics, vol.78, issue.8, 1995.
DOI : 10.1063/1.359780

S. K. Bahl, Amorphous Versus Crystalline GeTe Films. II. Optical Properties, Journal of Applied Physics, vol.40, issue.12, p.4940, 1969.
DOI : 10.1063/1.1657318

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga et al., Understanding the phase-change mechanism of rewritable optical media, Nature Materials, vol.117, issue.10, p.703708, 2004.
DOI : 10.1103/PhysRevB.58.7565

G. Lucovsky, R. M. White, J. A. Benda, and J. F. Revelli, Infrared-Reflectance Spectra of Layered Group-IV and Group-VI Transition-Metal Dichalcogenides, Physical Review B, vol.7, issue.8, p.3859, 1973.
DOI : 10.1103/PhysRevB.7.3859

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson et al., Resonant bonding in crystalline phase-change materials, Nature Materials, vol.49, issue.8, p.653658, 2008.
DOI : 10.1038/nmat2226

B. Huang and J. Robertson, Bonding origin of optical contrast in phase-change memory materials, Physical Review B, vol.81, issue.8, p.81204, 2010.
DOI : 10.1103/PhysRevB.81.081204

R. Bez, Chalcogenide PCM: a memory technology for next decade, 2009 IEEE International Electron Devices Meeting (IEDM), p.14, 2009.
DOI : 10.1109/IEDM.2009.5424415

J. A. Kalb, M. Wuttig, and F. Spaepen, Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording, Journal of Materials Research, vol.26, issue.4, pp.748-754, 2007.
DOI : 10.1016/0001-6160(83)90134-7

A. Fantini, L. Perniola, M. Armand, J. F. Nodin, V. Sousa et al., Comparative Assessment of GST and GeTe Materials for Application to Embedded Phase-Change Memory Devices, 2009 IEEE International Memory Workshop
DOI : 10.1109/IMW.2009.5090585

H. C. Martens, Thickness dependent crystallization speed in thin phase change layers used for optical recording, Journal of Applied Physics, vol.95, issue.8, p.953977, 2004.
DOI : 10.1063/1.1667606

X. S. Miao, T. C. Chong, Y. M. Huang, K. G. Lim, P. K. Tan et al., Dependence of optical constants on lm thickness of Phase-Change media, Japanese Journal of Applied Physics, issue.3B, p.3816381641, 1999.

S. Raoux, C. T. Rettner, J. L. Jordan-sweet, and V. R. Deline, Boris Philipp, and Hsiang-Lan Lung. Scaling properties of phase change nanostructures and thin lms, 2006.

. Ryu, Highly scalable on-axis conned cell structure for high density PRAM beyond 256Mb, VLSI Technology Digest of Technical Papers. 2005 Symposium on, p.9697, 2005.

M. Breitwisch, T. Nirschl, C. F. Chen, Y. Zhu, M. H. Lee et al., Novel Lithography-Independent Pore Phase Change Memory, 2007 IEEE Symposium on VLSI Technology, p.100101, 2007.
DOI : 10.1109/VLSIT.2007.4339743

H. Kim and K. Kim, A 90nm 1.8V 512Mb Diode-Switch PRAM with 266MB/s read throughput, Solid-State Circuits Conference, p.472616, 2007.

Y. H. Ha, J. H. Yi, H. Horii, J. H. Park, S. H. Joo et al., An edge contact type cell for Phase Change RAM featuring very low power consumption, 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407), p.175176, 2003.
DOI : 10.1109/VLSIT.2003.1221142

J. M. Ryoo, Y. Shin, J. H. Fai, G. H. Oh, G. T. Koh et al., Highly reliable 50nm contact cell technology for 256Mb PRAM, VLSI Technology Digest of Technical Papers. 2005 Symposium on, p.9899, 2005.

F. Pellizzer, A. Benvenuti, B. Gleixner, Y. Kim, B. Johnson et al., A 90nm Phase Change Memory Technology for Stand-Alone Non-Volatile Memory Applications, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers., p.122123, 2006.
DOI : 10.1109/VLSIT.2006.1705247

A. Ronald, S. Powell, and . Rossnagel, PVD for Microelectronics : Sputter Deposition Applied to Semiconductor Manufacturing, 1999.

S. Privitera, E. Rimini, and R. Zonca, Amorphous-to-crystal transition of nitrogenand oxygen-doped ge2Sb2Te5 lms studied by in situ resistance measurements

T. Lee, S. Yim, D. Lee, M. Lee, D. Ahn et al., Separate domain formation in Ge2Sb2Te5SiOx mixed layer, Applied Physics Letters, issue.16, p.89163503, 2006.

L. Van-pieterson, M. H. Lankhorst, M. Van-schijndel, A. E. Kuiper, and J. H. Roosen, Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview, Journal of Applied Physics, vol.97, issue.8, p.97083520, 2005.
DOI : 10.1063/1.1868860

S. Raoux, M. Salinga, J. L. Jordan-sweet, and A. Kellock, Effect of Al and Cu doping on the crystallization properties of the phase change materials SbTe and GeSb, Journal of Applied Physics, vol.101, issue.4, p.44909, 2007.
DOI : 10.1063/1.2654556

C. Manasterski, La pulvérisation cathodique industrielle, 2005.

Y. Jiang, Pulvérisation cathodique assistée par ordinateur, 1992.

F. M. Penning, Die glimmentladung bei niedrigem druck zwischen koaxialen zylindern in einem axialen magnetfeld, Physica, vol.3, issue.9, p.873894, 1936.
DOI : 10.1016/S0031-8914(36)80313-9

F. M. Penning, Coating by cathode disintegration

V. Christophe, Dépôt à basse température de couches minces d'oxyde de silicium élaborées en plasma oxygène / organosilicié dans un réacteur hélicon, 1999.

A. Van-der-lee, Grazing incidence specular reectivity : theory, experiment, and applications, Solid State Sciences, vol.2, issue.2, p.257278, 2000.

E. Gourvest, Développement et élaboration par MOCVD de matériaux à changement de phase à base d'alliages GeTe : applications aux mémoires embarquées pour la microélectronique, 2010.

A. C. Hall, A century of ellipsometry, Surface Science, vol.16, p.113, 1969.
DOI : 10.1016/0039-6028(69)90002-8

H. E. Kissinger, Reaction kinetics in dierential thermal analysis, Analytical Chemistry, vol.29, issue.11, p.17021706, 1957.

M. J. Starink, A new method for the derivation of activation energies from experiments performed at constant heating rate, Thermochimica Acta, vol.288, issue.1-2, p.97104, 1996.
DOI : 10.1016/S0040-6031(96)03053-5

S. Loubriat, Etude des interfaces des matériaux à changement de phase intégrés dans les cellules mémoires non-volatiles PC-RAM, 2010.

. Analyses-des-structures-amorphes-et-cristallines....., 115 3.2.2 Etude de la cristallisation en conditions dynamiques, p.117

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin lms for an optical disk memory, Jounal of Applied Physics, vol.69, issue.5, p.28492856, 1991.

E. Morales-sánchez, E. F. Prokhorov, J. González-hernández, and A. Mendoza-galván, Structural, electric and kinetic parameters of ternary alloys of GeSbTe, Thin Solid Films, vol.471, issue.1-2, p.243247, 2005.
DOI : 10.1016/j.tsf.2004.06.141

I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, and M. Wuttig, Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements, Journal of Applied Physics, vol.87, issue.9, p.4130, 2000.
DOI : 10.1063/1.373041

L. E. Shelimova, O. G. Karpinskii, P. P. Konstantinov, M. A. Kretova, E. S. Avilov et al., Composition and properties of layered compounds in the GeTe- Sb2Te3 system, Inorganic Materials, vol.37, issue.4, p.342348, 2001.

A. Maurelli and F. Piazza, Embedded memories, ESSDERC 2005 tutorials. Grenoble, 2005.

E. Gourvest, Développement et élaboration par MOCVD de matériaux à changement de phase à base d'alliages GeTe : applications aux mémoires embarquées pour la microélectronique, 2010.

M. Jung, H. J. Shin, K. Kim, J. S. Noh, and J. Chung, High-resolution x-ray photoelectron spectroscopy on oxygen-free amorphous Ge2Sb2Te5, Applied Physics Letters, vol.89, issue.4, p.43503, 2006.
DOI : 10.1063/1.2236216

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, 1992.

B. Pelissier, A. Beaurain, J. P. Barnes, R. Gassilloud, F. Martin et al., Parallel angle resolved XPS investigations on 12 in. wafers for the study of w and WSix oxidation in air, Microelectronic Engineering, vol.85, issue.9, p.18821887, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00397111

I. I. Petrov, R. M. Imamov, and Z. G. Pinsker, Crystal structures of Ge2Sb2Te5 and GeSb4Te7 by electron diraction, Kristallograya, issue.417, p.13, 1968.

T. Hahn, A. J. Wilson, and U. Shmueli, International tables for crysrallography, 1984.

N. Yamada and T. Matsunaga, Structure of laser-crystallized

T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, and H. Hashimoto, Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase, Thin Solid Films, vol.370, issue.1-2, p.258261, 2000.
DOI : 10.1016/S0040-6090(99)01090-1

R. F. Pierret, Semiconductor Fundamentals : Volume I, 1988.

S. A. Baily, D. Emin, and H. Li, Hall mobility of amorphous Ge2Sb2Te5, Solid State Communications, vol.139, issue.4, p.161164, 2006.
DOI : 10.1016/j.ssc.2006.05.031

T. Matsunaga, H. Morita, R. Kojima, N. Yamada, K. Kifune et al., Structural characteristics of GeTe-rich GeTe???Sb2Te3 pseudobinary metastable crystals, Journal of Applied Physics, vol.103, issue.9, p.93511, 2008.
DOI : 10.1063/1.2901187

W. D. Song, L. P. Shi, X. S. Miao, and T. C. Chong, Phase change behaviors of sn-doped GeSbTe material, Applied Physics Letters, issue.9, p.90091904, 2007.

C. Wang, J. Zhai, S. Song, Z. Song, M. Sun et al., Investigation of GeTe/Ge2Sb2Te5 Nanocomposite Multilayer Films for Phase-Change Memory Applications, Electrochemical and Solid-State Letters, vol.14, issue.7, pp.258-260, 2011.
DOI : 10.1149/1.3578386

J. Park, M. R. Kim, W. S. Choi, H. Seo, and C. Yeon, Characterization of amorphous phases of Ge2Sb2Te5 .Phase-Change optical recording material on their crystallization behavior, Japanese Journal of Applied Physics, vol.38, issue.8, p.47754779, 1999.

B. Hyot, Etude physique et théorique des matériaux à Changement de Phase pour disques optiques, 2001.

J. Pichon, Enregistrement optique haute densité : Etude physique et physicochimique du phénomène de super résolution, 2008.

T. Ohta, N. Akahira, S. Ohara, and I. Satoh, High-density phasechange optical recording. Optoelectronics -Devices and Technologies, pp.361-380, 1995.

H. Kim, J. Kim, C. Park, M. Jung, I. Ro et al., Random signal characteristics of super resolution near eld structure Read-Only memory disc, Japanese Journal of Applied Physics, issue.2B, p.4513741378, 2006.

Y. Matsui, K. Kurotsuchi, O. Tonomura, T. Morikawa, M. Kinoshita et al., Ta2O5 Interfacial Layer between GST and W Plug enabling Low Power Operation of Phase Change Memories, 2006 International Electron Devices Meeting, p.14, 2006.
DOI : 10.1109/IEDM.2006.346908

M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi et al., Static tester for characterization of phase-change, dye???polymer, and magneto-optical media for optical data storage, Applied Optics, vol.38, issue.34, p.3870957104, 1999.
DOI : 10.1364/AO.38.007095

S. Raoux, H. Cheng, M. A. Caldwell, and H. P. Wong, Crystallization times of GeTe phase change materials as a function of composition, Applied Physics Letters, issue.7, p.95071910, 2009.

K. Do, D. Lee, H. Sohn, M. Cho, and D. Ko, Crystallization behaviors of laser induced Ge2Sb2Te5 in dierent amorphous states, Journal of the Electrochemical Society, vol.157, issue.3, 2010.

Y. Fukuyama, N. Yasuda, J. Kim, H. Murayama, Y. Tanaka et al., Time-Resolved Investigation of Nanosecond Crystal Growth in Rapid-Phase-Change Materials: Correlation with the Recording Speed of Digital Versatile Disc Media, Applied Physics Express, vol.1, p.45001, 2008.
DOI : 10.1143/APEX.1.045001

R. John and . Abelson, Observation of the role of subcritical nuclei in crystallization of a glassy solid, Science, vol.326, issue.5955, pp.980-984, 2009.

G. Zhou, Materials aspects in phase change optical recording, Materials Science and Engineering: A, vol.304, issue.306, pp.304-3067380, 2001.
DOI : 10.1016/S0921-5093(00)01448-9

S. R. Ovshinsky and H. Fritzsche, Amorphous semiconductors for switching, memory, and imaging applications. Electron Devices, IEEE Transactions on, vol.20, issue.2, p.91105, 1973.

M. Chen, K. A. Rubin, and R. W. Barton, Compound materials for reversible, phase???change optical data storage, Applied Physics Letters, vol.49, issue.9, p.502, 1986.
DOI : 10.1063/1.97617

A. Fantini, L. Perniola, M. Armand, J. F. Nodin, V. Sousa et al., Comparative Assessment of GST and GeTe Materials for Application to Embedded Phase-Change Memory Devices, 2009 IEEE International Memory Workshop, p.12, 2009.
DOI : 10.1109/IMW.2009.5090585

A. Schlieper, Y. Feutelais, S. G. Fries, B. Legendre, and R. Blachnik, Thermodynamic evaluation of the germanium tellurium system. Calphad, p.118, 1999.

D. Bletskan, Phase equilibrium in the systems AIV-BVI. Part.II : systems

D. Kang, D. Lee, H. Kim, S. Nam, M. Kwon et al., Analysis of the electric field induced elemental separation of Ge2Sb2Te5 by transmission electron microscopy, Applied Physics Letters, vol.95, issue.1, p.11904, 2009.
DOI : 10.1063/1.3168517

J. Goldak, Structure of Alpha GeTe, The Journal of Chemical Physics, vol.44, issue.9, p.3323, 1966.
DOI : 10.1063/1.1727231

S. B. Qadri, E. F. Skelton, and A. W. Webb, High pressure studies of Ge using synchrotron radiation, Journal of Applied Physics, vol.54, issue.6, p.3609, 1983.
DOI : 10.1063/1.332434

D. Dimitrov and H. D. Shieh, The inuence of oxygen and nitrogen doping on GeSbTe phase-change optical recording media properties, Materials Science and Engineering B, vol.107, issue.2, p.107112, 2004.

B. Qiao, J. Feng, Y. Lai, Y. Ling, Y. Lin et al., Eects of si doping on the structural and electrical properties of Ge2Sb2Te5 lms for phase change random access memory, Applied Surface Science, issue.24, p.25284048409, 2006.

S. Privitera, E. Rimini, C. Bongiorno, A. Pirovano, and R. Bez, Eects of dopants on the amorphous-to-fcc transition in Ge2Sb2Te5 thin lms. Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with, Materials and Atoms, vol.257, issue.12, p.352354, 2007.

K. Kim, S. Choi, and J. Park, Bismuth doping eect on the phase-change characteristics of nitrogen-doped GeTe lms, Thin Solid Films, vol.519, issue.2, p.686689, 2010.

S. Privitera, E. Rimini, and R. Zonca, Amorphous-to-crystal transition of nitrogenand oxygen-doped Ge2S2Te5 lms studied by in situ resistance measurements

M. Robert, S. Shelby, and . Raoux, Crystallization dynamics of nitrogen-doped Ge2Sb2Te5, Journal of Applied Physics, vol.105, issue.10, p.104902, 2009.

D. Z. Hu, X. M. Lu, J. S. Zhu, and F. Yan, Study on the crystallization by an electrical resistance measurement in Ge2Sb2Te5 and n-doped Ge2Sb2Te5 lms, Journal of Applied Physics, issue.11, p.102113507, 2007.

A. Billard and F. Perry, Pulvérisation cathodique magnétron, 2005.

T. Chattopadhyay, J. Boucherle, and H. Vonschnering, Neutron diraction study on the structural phase transition in GeTe, Journal of Physics C : Solid State Physics, vol.20, issue.10, p.14311440, 1987.

X. Biquard, M. Krbal, A. V. Kolobov, P. Fons, R. E. Simpson et al., Eect of doping on global and local order in crystalline GeTe, Applied Physics Letters, issue.23, p.98231907, 2011.

M. Jung, Y. M. Lee, H. Kim, M. G. Kim, H. J. Shin et al., Ge nitride formation in N-doped amorphous Ge2Sb2Te5, Applied Physics Letters, vol.91, issue.8, p.91083514, 2007.
DOI : 10.1063/1.2773959

K. Kim, J. Park, J. Chung, . Se-ahn, M. Song et al., Observation of molecular nitrogen in N-doped Ge2Sb2Te5, Applied Physics Letters, vol.89, issue.24, p.89243520, 2006.
DOI : 10.1063/1.2408660

T. Maeda, T. Yasuda, M. Nishizawa, N. Miyata, Y. Morita et al., Ge metal-insulator-semiconductor structures with Ge3N4 dielectrics by direct nitridation of Ge substrates, Applied Physics Letters, vol.85, issue.15, p.853181, 2004.
DOI : 10.1063/1.1805194

M. R. Tae-hee-jeong, H. Kim, and . Seo, Jeong Woo Park, and Cheong Yeon. Crystal structure and microstructure of Nitrogen-Doped Ge2Sb2Te5 thin lm, Japanese Journal of Applied Physics, vol.39, issue.5A, p.27752779, 2000.

I. Park, J. Jung, T. Yang, M. Soo-yeom, Y. T. Kim et al., Eect of nitrogen implantation with low dose on thermomechanical properties and microstructure of Ge2Sb2Te5 lms, Japanese Journal of Applied Physics, issue.3, p.4714911495, 2008.

C. Cabral, K. N. Chen, L. Krusin-elbaum, and V. Deline, Irreversible modication of Ge2Sb2Te5 phase change material by nanometer-thin ti adhesion layers in a device-compatible stack, Applied Physics Letters, issue.5, p.90051908, 2007.

D. Ielmini, D. Mantegazza, A. L. Lacaita, A. Pirovano, and F. Pellizzer, Switching and programming dynamics in phase-change memory cells, Solid-State Electronics, vol.49, issue.11, p.4918261832, 2005.
DOI : 10.1016/j.sse.2005.10.013

G. Vincent, Etude des phénomènes électrothermiques liés à l'amorphisation et à la cristallisation d'un matériau à changement de phase pour application aux mémoires non volatiles, 2005.

G. B. Beneventi, E. Gourvest, A. Fantini, L. Perniola, V. Sousa et al., On Carbon doping to improve GeTe-based Phase-Change Memory data retention at high temperature, 2010 IEEE International Memory Workshop, p.14, 2010.
DOI : 10.1109/IMW.2010.5488328

W. Georey, . Burr, J. Matthew, M. Breitwisch, D. Franceschini et al., Phase change memory technology, Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures Journal of Vacuum Science & Technology B, vol.28, issue.282, pp.223-262, 2010.

S. Lai and T. Lowrey, OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), pp.36-41, 2001.
DOI : 10.1109/IEDM.2001.979636

S. Lai, Current status of the phase change memory and its future, IEEE International Electron Devices Meeting 2003, 2003.
DOI : 10.1109/IEDM.2003.1269271

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig et al., Nanosecond switching in GeTe phase change memory cells, Applied Physics Letters, vol.95, issue.4, p.43108, 2009.
DOI : 10.1063/1.3191670

Y. Chen, C. Rettner, S. Raoux, G. Burr, S. Chen et al., Ultra-Thin Phase-Change Bridge Memory Device Using GeSb, 2006 International Electron Devices Meeting, p.14, 2006.
DOI : 10.1109/IEDM.2006.346910

D. H. Im, J. I. Lee, S. L. Cho, H. G. An, D. H. Kim et al., A unied 7.5nm dash-type conned cell for high performance PRAM device, Electron Devices Meeting, p.14, 2008.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. Chen et al., Phase-change random access memory: A scalable technology, IBM Journal of Research and Development, 2008.
DOI : 10.1147/rd.524.0465

T. Gotoh, K. Sugawara, and K. Tanaka, Films, Japanese Journal of Applied Physics, vol.43, issue.No. 6B, pp.818-821, 2004.
DOI : 10.1143/JJAP.43.L818

S. Raoux, C. T. Rettner, J. L. Jordan-sweet, and V. R. Deline, Boris Philipp, and Hsiang-Lan Lung. Scaling properties of phase change nanostructures and thin lms, 2006.

H. Satoh, K. Sugawara, and K. Tanaka, Nanoscale phase changes in crystalline Ge2Sb2Te5 films using scanning probe microscopes, Journal of Applied Physics, vol.99, issue.2, p.24306, 2006.
DOI : 10.1063/1.2163010

H. F. Hamann, O. Martin, Y. C. Boyle, M. Martin, H. Rooks et al., Ultra-high-density phase-change storage and memory, Nature Materials, vol.84, issue.5, p.383387, 2006.
DOI : 10.1038/nmat1627

Y. Jung, S. Lee, D. Ko, and R. Agarwal, Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching eect, Journal of the American Chemical Society, vol.128, issue.43, p.1402614027, 2006.

S. Lee, D. Ko, Y. Jung, and R. Agarwal, Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires, Applied Physics Letters, vol.89, issue.22, p.223116, 2006.
DOI : 10.1063/1.2397558

S. Meister, H. Peng, K. Mcilwrath, K. Jarausch, X. F. Zhang et al., Synthesis and Characterization of Phase-Change Nanowires, Nano Letters, vol.6, issue.7, p.15141517, 2006.
DOI : 10.1021/nl061102b

X. Sun, B. Yu, G. Ng, T. Dinh-nguyen, and M. Meyyappan, III-VI compound semiconductor indium selenide (In2Se3) nanowires: Synthesis and characterization, Applied Physics Letters, vol.89, issue.23, p.233121, 2006.
DOI : 10.1063/1.2388890

X. Sun, B. Yu, and M. Meyyappan, Synthesis and nanoscale thermal encoding of phase-change nanowires, Applied Physics Letters, vol.90, issue.18, p.90183116, 2007.
DOI : 10.1063/1.2736271

S. Hoon, K. Choi, K. Soo-seol, and . Takeuchi, Junya Fujita, and Yoshimichi Ohki. Synthesis of size-and Structure-Controlled

H. R. Yoon, W. Jo, E. H. Lee, J. H. Lee, M. Kim et al., Generation of phase-change Ge???Sb???Te nanoparticles by pulsed laser ablation, Journal of Non-Crystalline Solids, vol.351, issue.43-45, pp.43-4534303434, 2005.
DOI : 10.1016/j.jnoncrysol.2005.09.007

D. Suh, E. Lee, H. P. Kijoon, J. Kim, W. Noh et al., Nonvolatile switching characteristics of laser-ablated Ge2Sb2Te5 nanoparticles for phasechange memory applications, Applied Physics Letters, issue.2, p.90023101, 2007.

S. Raoux, Y. Zhang, D. J. Milliron, J. N. Cha, M. Caldwell et al., X-ray diraction studies of the crystallization of phase change nanoparticles produced by self-assembly-based techniques, 2007.

S. Raoux, C. T. Rettner, J. L. Jordan-sweet, A. J. Kellock, T. Topuria et al., Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials, Journal of Applied Physics, vol.102, issue.9, p.94305, 2007.
DOI : 10.1063/1.2801000

M. Zacharias and P. Streitenberger, Crystallization of amorphous superlattices in the limit of ultrathin films with oxide interfaces, Physical Review B, vol.62, issue.12, pp.8391-8396, 2000.
DOI : 10.1103/PhysRevB.62.8391

S. Loubriat, Etude des interfaces des matériaux à changement de phase intégrés dans les cellules mémoires non-volatiles PC-RAM, 2010.

G. Vincent, Etude des phénomènes électrothermiques liés à l'amorphisation et à la cristallisation d'un matériau à changement de phase pour application aux mémoires non volatiles, 2005.

J. Frensley, Reactive ion etching tool and wafer etching, Erik Johnson school of engineering, 2003.

C. D. Wilkinson and M. Rahman, Dry etching and sputtering, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.362, issue.1814, p.125138, 1814.
DOI : 10.1098/rsta.2003.1307

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.579.2664

E. Kurt, D. Petersen, and . Adler, On state of amorphous threshold switches, Journal of Applied Physics, vol.47, issue.1, p.256263, 1976.

D. Ielmini, Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses, Physical Review B, vol.78, issue.3, p.35308, 2008.
DOI : 10.1103/PhysRevB.78.035308

P. J. Walsh, R. Vogel, and E. J. Evans, Conduction and Electrical Switching in Amorphous Chalcogenide Semiconductor Films, Physical Review, vol.178, issue.3, p.1274, 1969.
DOI : 10.1103/PhysRev.178.1274

H. Fritzsche, Physics of Instabilities in Amorphous Semiconductors, IBM Journal of Research and Development, vol.13, issue.5, p.515521, 1969.
DOI : 10.1147/rd.135.0515

W. D. Buckley and S. H. Holmberg, Evidence for Critical-Field Switching in Amorphous Semiconductor Materials, Physical Review Letters, vol.32, issue.25, p.1429, 1974.
DOI : 10.1103/PhysRevLett.32.1429

G. Groeseneken, J. Colinge, H. Maes, J. Alderman, and S. Holt, Temperature dependence of threshold voltage in thin-lm SOI MOSFETs, IEEE Electron Device Letters, vol.11, issue.8, p.329331, 1990.

H. R. Martijn, . Lankhorst, W. S. Bas, R. A. Ketelaars, and . Wolters, Lowcost and nanoscale non-volatile memory concept for future silicon chips, Nat Mater, vol.4, issue.4, p.347352, 2005.

D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga et al., Threshold eld of phase change memory materials measured using phase change bridge devices, Applied Physics Letters, issue.8, p.95082101, 2009.

M. Shelby, C. Salinga, M. Michael-jeerson, I. Wuttig, P. Macronix et al., Characterization of phase change memory materials using phase change bridge devices, Journal of Applied Physics, vol.106, issue.5, p.54308, 2009.

M. H. Cohen, R. G. Neale, and A. Paskin, A model for an amorphous semiconductor memory device, Journal of Non-Crystalline Solids, vol.8, issue.10, pp.8-10885891, 1972.
DOI : 10.1016/0022-3093(72)90242-6

A. Redaelli, A. Pirovano, A. Benvenuti, and A. L. Lacaita, Threshold switching and phase transition numerical models for phase change memory simulations, Journal of Applied Physics, vol.103, issue.11, p.111101, 2008.
DOI : 10.1063/1.2931951

E. Small, S. Sadeghipour, L. Pileggi, and M. Asheghi, Thermal analyses of conned cell design for phase change random access memory (PCRAM), 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, p.10461054, 2008.

.. Applications-des-verres-de-chalcogénures, 235 5.2.1 Verres de chalcogénures pour l'amplication optique

A. R. Hilton, Optical properties of chalcogenide glasses, Journal of Non-Crystalline Solids, vol.2, p.2839, 1970.
DOI : 10.1016/0022-3093(70)90118-3

A. M. Andriesh, Properties of chalcogenide glasses for optical waveguides, Journal of Non-Crystalline Solids, vol.77, issue.78, pp.77-7812191228, 1985.
DOI : 10.1016/0022-3093(85)90878-6

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, Chalcogenide glasses with high non linear optical properties for telecommunications, Journal of Physics and Chemistry of Solids, vol.62, issue.8, p.14351440, 2001.
DOI : 10.1016/S0022-3697(01)00059-2

S. Danto, P. Houizot, C. Boussard-pledel, X. Zhang, F. Smektala et al., A family of Far-Infrared-Transmitting glasses in the GaGeTe system for space applications, Advanced Functional Materials, issue.14, p.1618471852, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00452500

P. Klocek, Handbook of infrared optical materials. M. Dekker, 1991.

C. M. Baldwin, R. M. Almeida, and J. D. Mackenzie, Halide glasses, Journal of Non-Crystalline Solids, vol.43, issue.3, p.309344, 1981.
DOI : 10.1016/0022-3093(81)90101-0

J. Zarzycki, Les verres et l'état vitreux, pp.379-387, 1982.

J. A. Bucaro and H. D. Dardy, High???temperature Brillouin scattering in fused quartz, Journal of Applied Physics, vol.45, issue.12, 1974.
DOI : 10.1063/1.1663238

S. Hocdé, Fibres optiques en verre infrarouge. Applications en chimie et biologie

E. Thomson, The mechanical, thermal and optical properties of fused silica, Journal of the Franklin Institute, vol.200, issue.3, p.313326, 1925.
DOI : 10.1016/S0016-0032(25)90770-3

X. H. Zhang, Y. Guimond, and Y. Bellec, Production of complex chalcogenide glass optics by molding for thermal imaging, Journal of Non-Crystalline Solids, vol.326, issue.327, pp.326-327519523, 2003.
DOI : 10.1016/S0022-3093(03)00464-2

D. R. Lide, CRC Handbook of Chemistry and Physics, 2002.

K. Saito and A. J. Ikushima, Absorption edge in silica glass, Physical Review B, vol.62, issue.13, p.8584, 2000.
DOI : 10.1103/PhysRevB.62.8584

X. H. Zhang, B. Bureau, P. Lucas, C. Boussard-pledel, and J. Lucas, Glasses for Seeing Beyond Visible, Chemistry - A European Journal, vol.127, issue.2, pp.432442-18067106, 2008.
DOI : 10.1002/chem.200700993

URL : https://hal.archives-ouvertes.fr/hal-00370912

J. Fick, E. J. Knystautas, A. Villeneuve, F. Schiettekatte, S. Roorda et al., High photoluminescence in erbium-doped chalcogenide thin lms, Journal of Non-Crystalline Solids, vol.272, issue.2-3, 2000.
DOI : 10.1016/s0022-3093(00)00119-8

A. J. Kenyon, Recent developments in rare-earth doped materials for optoelectronics, Progress in Quantum Electronics, vol.26, issue.4-5, p.225284, 2002.
DOI : 10.1016/S0079-6727(02)00014-9

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, ions in fluorozirconate glass, Physical Review B, vol.27, issue.11, p.6635, 1983.
DOI : 10.1103/PhysRevB.27.6635

S. Q. Gu, S. Ramachandran, E. E. Reuter, D. A. Turnbull, J. T. Verdeyen et al., luminescence in chalcogenide glasses, Applied Physics Letters, vol.66, issue.6
DOI : 10.1063/1.114094

S. Ramachandran and S. G. Bishop, Excitation of er3+ emission by host glass absorption in sputtered lms of er-doped Ge10As40Se25S25 glass, Applied Physics Letters, 1998.

T. Yu, A. A. Ivanova, A. V. Man-'shina, Y. S. Kurochkin, V. B. Tver-'yanovich et al., Er3+ to glass matrix energy transfer in Ga-Ge-S :Er3+ system, Journal of Non-Crystalline Solids, vol.298, issue.1, p.714, 2002.

Z. G. Ivanova, V. S. Vassilev, E. Cernoskova, and Z. Cernosek, Physicochemical, structural and uorescence properties of er-doped Ge-S-Ga glasses, Journal of Physics and Chemistry of Solids, vol.64, issue.1, p.107110, 2003.

T. Man-'shina, . Yu, A. Ivanova, Y. S. Povolotskiy, and . Tveryanovich, Upconversion luminescence eciency in er-doped chalcogenide glasses, Journal of Non-Crystalline Solids, pp.326-327311315, 2003.

D. A. Turnbull, B. G. Aitken, and S. G. Bishop, Broad-band excitation mechanism for photoluminescence in Er-doped Ge25Ga1.7As8.3S65 glasses, Journal of Non-Crystalline Solids, vol.244, issue.2-3, p.260266, 1999.
DOI : 10.1016/S0022-3093(99)00006-X

R. S. Quimby and B. G. Aitken, Multiphonon energy gap law in rare-earth doped chalcogenide glass, Journal of Non-Crystalline Solids, vol.320, issue.1-3, p.100112, 2003.
DOI : 10.1016/S0022-3093(03)00030-9

Y. Gyu-choi, K. H. Kim, B. Lee, Y. B. Shin, Y. S. Kim et al., Emission properties of the Er3+ :4I11/2>4I13/2 transition in er3+-and Er3+/Tm3+-doped Ge-Ga-As-S glasses, Journal of Non-Crystalline Solids, vol.278, pp.1-3137144, 2000.

J. Keirsse, C. Boussard-pledel, O. Loreal, O. Sire, B. Bureau et al., Chalcogenide glass bers used as biosensors, Journal of Non-Crystalline Solids, pp.326-327430433, 2003.
DOI : 10.1016/s0022-3093(03)00434-4

L. Coq, C. Boussard-pledel, G. Fonteneau, T. Pain, B. Bureau et al., Chalcogenide double index bers : fabrication, design, and application as a chemical sensor, Materials Research Bulletin, issue.13, p.3817451754, 2003.

S. Maurugeon, B. Bureau, C. Boussard-pledel, A. J. Faber, X. H. Zhang et al., Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15 µm, Journal of Non-Crystalline Solids, vol.355, pp.37-4220742078, 2009.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-plédel, K. Michel-le-pierrès et al., Infrared monitoring of underground CO2 storage using chalcogenide glass bers, Optical Materials, issue.3, p.31496500, 2009.

V. F. Kokorina, Glasses for infrared optics

T. Owen, In, Strategies for the Search for Life in the Universe, Papagiannis, M.D, 1980.

J. R. Angel, A. Y. Cheng, and N. J. Woolf, A space telescope for infrared spectroscopy of Earth-like planets, Nature, vol.247, issue.6077, p.322341343, 1986.
DOI : 10.1038/322341a0

A. Léger, M. Pirre, and F. J. Marceau, Search for primitive life on a distant planet : relevance of o2 and o3 detections, Astronomy and astrophysics, vol.277, issue.1, p.309313, 1993.

A. Leger, J. M. Mariotti, B. Mennesson, M. Ollivier, J. L. Puget et al., Could we search for primitive life on extrasolar planets in the near future ? the DARWIN project, Icarus, vol.123, issue.2, p.249255, 1996.

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau et al., Development of Far-Infrared-Transmitting te based glasses suitable for carbon dioxide detection and space optics, Advanced Materials, issue.22, p.1937963800, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00368085

B. Bureau, S. Danto, H. L. Ma, C. Boussard-pledel, X. H. Zhang et al., Tellurium based glasses: A ruthless glass to crystal competition, Solid State Sciences, vol.10, issue.4, p.427433, 2008.
DOI : 10.1016/j.solidstatesciences.2007.12.017

URL : https://hal.archives-ouvertes.fr/hal-00370915

M. Rozé, L. Calvez, Y. Ledemi, H. L. Ma, J. Lucas et al., Optical and thermo-mechanical properties of new Ge-Ga-Se-AgI glasses, Journal of optoelectronics and advanced materials, vol.10, issue.1, p.141144, 2008.

B. Frumarova, M. Frumar, and J. Malek, New halide glasses [the system CdCl2???PbCl2???KI???PbO], Materials Research Bulletin, vol.29, issue.10, p.2910351040, 1994.
DOI : 10.1016/0025-5408(94)90084-1

S. Zhang, M. Xiang-hua-zhang, L. Barillot, C. Calvez, B. Boussard et al., Purication of Te75Ga10Ge15 glass for far infrared transmitting optics for space application, Optical Materials, vol.32, issue.9, p.10551059, 2010.

. En-utilisant-la-valeur-de, équation (28) dans l'équation (25) et grâce aux valeurs du coecient directeur et de l'ordonnée à l'origine, la déformation libre de contraintes extrinsèques ? 0 peut être calculée. Grâce à l'équation (24), la distance inter-réticulaire libre de contraintes extrinsèques d 0,hkl peut être obtenue

D. R. Uhlmann, A kinetic treatment of glass formation, Journal of Non-Crystalline Solids, vol.7, issue.4, p.337348, 1972.
DOI : 10.1016/0022-3093(72)90269-4

M. Avrami, Kinetics of Phase Change. I General Theory, The Journal of Chemical Physics, vol.7, issue.12, p.1103, 1939.
DOI : 10.1063/1.1750380

W. A. Johnson and R. F. , Reaction kinetics in processes of nucleation and growth, AIME Transactions, vol.135, issue.416, p.43, 1939.

J. A. Kalbs, Crystallization kinetics in antimony ans tellurium alloys used for phasechange recording, 2006.

W. A. Shurcli, Polarized light : production and use, 1962.

R. H. Muller, Definitions and conventions in ellipsometry, Surface Science, vol.16, pp.14-33, 1969.
DOI : 10.1016/0039-6028(69)90003-X