G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: basic principles and new materials developments, 2001.
DOI : 10.1007/978-3-662-04569-5

S. D. Mahanti and T. P. Hogan, Chemistry, physics, and materials science of thermoelectric materials: beyond bismuth telluride, 2003.

D. M. Rowe, CRC Handbook of thermoelectrics, 1995.
DOI : 10.1201/9781420049718

D. M. Rowe, Thermoelectrics Handbook: macro to nano, CRC, 2006.
DOI : 10.1201/9781420038903

L. E. Bell and . Cooling, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems, Science, vol.321, issue.5895, pp.1457-1461, 2008.
DOI : 10.1126/science.1158899

T. Kajikawa, Thermoelectric Power Generation System Recovering Industrial Waste Heat », in Thermoelectrics handbook: macro to nano, pp.50-51, 2006.

M. Kishi, « Micro thermoelectric modules and their application to wristwatchesas an energy source, 18th International Conference on Thermoelectrics, pp.301-307, 1999.

S. Priya and D. J. Inman, Energy Harvesting Technologies, 2008.
DOI : 10.1007/978-0-387-76464-1

G. L. Bennett, . Space-nuclear, and . Power, Opening the Final Frontier, 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), pp.26-29, 2006.

J. W. Fairbanks, Overview of High Efficiency Thermoelectrics and Potential Applications », presented at the High Efficiency Thermoelectrics Workshop, 2004.

M. Quiret, Quand la chaleur se mue en électricité, p.14, 2006.

F. J. Disalvo, Thermoelectric Cooling and Power Generation, Thermoelectric Cooling and Power Generation, pp.703-706, 1999.
DOI : 10.1126/science.285.5428.703

L. Bell and . Cooling, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems, Science, vol.321, issue.5895, pp.1457-1461, 2008.
DOI : 10.1126/science.1158899

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.472.3085

T. M. Tritt, Thermoelectric Phenomena, Materials, and Applications, Thermoelectric phenomena, materials, and applications, pp.433-448, 2011.
DOI : 10.1146/annurev-matsci-062910-100453

V. A. Semenyuk, Thermoelectric cooling of electro-optic components », in Thermoelectrics Handbook: macro to nano, pp.58-59, 2006.

T. M. Tritt, Thermal conductivity: theory, properties, and applications, 2004.
DOI : 10.1007/b136496

H. J. Goldsmid, Recent Studies of Bismuth Telluride and Its Alloys, Journal of Applied Physics, vol.32, issue.10, p.2198, 1961.
DOI : 10.1063/1.1777042

J. P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and E. S. Scherrer, Thermal properties of high quality single crystals of bismuth telluride???Part I: Experimental characterization, Journal of Physics and Chemistry of Solids, vol.49, issue.10, pp.1237-1247, 1988.
DOI : 10.1016/0022-3697(88)90182-5

J. P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and E. S. Scherrer, Thermal properties of high quality single crystals of bismuth telluride???Part II: Mixed-scattering model, Journal of Physics and Chemistry of Solids, vol.49, issue.10, pp.1249-1257, 1988.
DOI : 10.1016/0022-3697(88)90183-7

H. J. Goldsmid, Introduction to Thermoelectricity, 2009.

G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Complex thermoelectric materials, pp.105-114, 2008.
DOI : 10.1038/nmat2090

C. B. Vining and «. , 5: Fifteen years of progress and things to come, presented at the 5th European Conference on Thermoelectrics, ECT2007, Odessa House of Scientists, 2007.

M. S. Dresselhaus, New Directions for Low-Dimensional Thermoelectric Materials, Advanced Materials, vol.92, issue.8, pp.1043-1053, 2007.
DOI : 10.1002/adma.200600527

T. C. Harman, M. P. Walsh, B. E. Laforge, and G. W. Turner, Nanostructured thermoelectric materials, Nanostructured thermoelectric materials, pp.19-22, 2005.
DOI : 10.1007/s11664-005-0083-8

A. Shakouri, Recent Developments in Semiconductor Thermoelectric Physics and Materials, Semiconductor Thermoelectric Physics and Materials, pp.399-431, 2011.
DOI : 10.1146/annurev-matsci-062910-100445

J. R. Szczech, J. M. Higgins, and E. S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials, p.4037, 2011.
DOI : 10.1039/C0JM02755C

F. J. Disalvo, Thermoelectric Cooling and Power Generation, Thermoelectric Cooling and Power Generation, pp.703-706, 1999.
DOI : 10.1126/science.285.5428.703

V. K. Zaitsev, thermoelectrics, Highly effective Mg 2 Si 1-x Sn x thermoelectrics, p.45207, 2006.
DOI : 10.1103/PhysRevB.74.045207

B. C. Sales, D. Mandrus, and R. K. Williams, Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials, Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials, pp.1325-1328, 1996.
DOI : 10.1126/science.272.5266.1325

G. S. Nolas, G. A. Slack, D. T. Morelli, T. M. Tritt, and A. C. Ehrlich, The effect of rare-earth filling on the lattice thermal conductivity of skutterudites, Journal of Applied Physics, vol.79, issue.8, p.4002, 1996.
DOI : 10.1063/1.361828

G. S. Nolas, D. T. Morelli, T. M. Tritt, and . Skutterudites, SKUTTERUDITES: A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications, Annual Review of Materials Science, vol.29, issue.1, pp.89-116, 1999.
DOI : 10.1146/annurev.matsci.29.1.89

G. Nolas and G. Slack, Thermoelectric Clathrates, Thermoelectric Clathrates, p.136, 2001.
DOI : 10.1511/2001.18.729

W. Zhao, P. Wei, Q. Zhang, C. Dong, and L. Liu, Enhanced Thermoelectric Performance in Barium and Indium Double-Filled Skutterudite Bulk Materials via Orbital Hybridization Induced by Indium Filler, Journal of the American Chemical Society, vol.131, issue.10, pp.3713-3720, 2009.
DOI : 10.1021/ja8089334

A. Saramat, Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30, Journal of Applied Physics, vol.99, issue.2, p.23708, 2006.
DOI : 10.1063/1.2163979

B. C. Sales, Critical Overview of Recent Approaches to Improved Thermoelectric Materials, Critical Overview of Recent Approaches to Improved Thermoelectric Materials, pp.291-296, 2007.
DOI : 10.1038/nmat1821

J. P. Heremans, Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science, vol.321, issue.5888, pp.554-557, 2008.
DOI : 10.1126/science.1159725

L. Chen, Z. Xiong, and E. S. Bai, Recent Progress of Thermoelectric Nano-composites, Journal of Inorganic Materials, vol.25, issue.6, pp.561-568, 2010.
DOI : 10.3724/SP.J.1077.2010.00561

L. D. Hicks and M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Physical Review B, vol.47, issue.19, p.12727, 1993.
DOI : 10.1103/PhysRevB.47.12727

L. D. Hicks and M. S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Physical Review B, vol.47, issue.24, p.16631, 1993.
DOI : 10.1103/PhysRevB.47.16631

L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Physical Review B, vol.53, issue.16, p.10493, 1996.
DOI : 10.1103/PhysRevB.53.R10493

A. V. Dmitriev and I. P. Zvyagin, Current trends in the physics of thermoelectric materials, Physics-Uspekhi, vol.53, issue.8, pp.789-803, 2010.
DOI : 10.3367/UFNe.0180.201008b.0821

L. D. Hicks and T. C. Harman, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Proceedings of 15th International Conference on Thermoelectrics, pp.450-453, 1996.
DOI : 10.1103/PhysRevB.53.R10493

T. C. Harman, D. L. Spears, M. P. Walsh, and . Pbte, PbTe/Te superlattice structures with enhanced thermoelectric figures of merit, Journal of Electronic Materials, vol.1, issue.1, pp.1-5, 1999.
DOI : 10.1007/s11664-999-0198-4

R. Venkatasubramanian, E. Siivola, and B. O-'quinn, Superlattice Thin-Film Thermoelectric Material and Device Technologies, Thermoelectrics Handbook: macro to nano, pp.49-50, 2006.
DOI : 10.1201/9781420038903.ch49

D. G. Cahill, Nanoscale thermal transport, Nanoscale thermal transport, p.793, 2003.
DOI : 10.1063/1.1524305

R. Venkatasubramanian, Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures, Physical Review B, vol.61, issue.4, p.3091, 2000.
DOI : 10.1103/PhysRevB.61.3091

T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. Laforge, Quantum Dot Superlattice Thermoelectric Materials and Devices, Quantum Dot Superlattice Thermoelectric Materials and Devices, pp.2229-2232, 2002.
DOI : 10.1126/science.1072886

Y. Noda, H. Kon, Y. Furukawa, I. A. Nishida, and E. K. Masumoto, Temperature Dependence of Thermoelectric Properties of Mg<SUB>2</SUB>Si<SUB>0.6</SUB>Ge<SUB>0.4</SUB>, Temperature Dependence of Thermoelectric Properties of Mg2Si0.6Ge0.4, pp.851-855, 1992.
DOI : 10.2320/matertrans1989.33.851

M. I. Fedorov, V. K. Zaitsev, F. Y. Solomkin, and M. V. Vedernikov, Thermoelectric elements based on compounds of silicon and transition metals, Technical Physics Letters, vol.23, issue.8, pp.602-603, 1997.
DOI : 10.1134/1.1261766

G. H. Grosch and K. Range, Studies on AB2-type intermetallic compounds, I. Mg2Ge and Mg2Sn: single-crystal structure refinement and ab initio calculations, Journal of Alloys and Compounds, vol.235, issue.2, pp.250-255, 1996.
DOI : 10.1016/0925-8388(95)02058-6

W. Liu, X. Tang, and E. J. Sharp, « Low-temperature solid state reaction synthesis and thermoelectric properties of high-performance and low-cost Sb-doped Mg 2 Si .6 Sn 0, Journal of Physics D: Applied Physics, vol.4, issue.8, p.85406, 2010.

Q. Zhang, J. He, T. J. Zhu, S. N. Zhang, X. B. Zhao et al., High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials, High figures of merit and natural nanostructures in Mg 2 Si 0.4 Sn 0.6 based thermoelectric materials, p.102109, 2008.
DOI : 10.1063/1.2981516

J. L. Corkill and M. L. Cohen, Structural, bonding, and electronic properties of IIA-IV antifluorite compounds, Physical Review B, vol.48, issue.23, p.17138, 1993.
DOI : 10.1103/PhysRevB.48.17138

J. Tani and H. Kido, Thermoelectric properties of Bi-doped Mg 2 Si semiconductors, Physica B: Condensed Matter, vol.364, pp.1-4, 2005.

J. Tani and H. Kido, Thermoelectric properties of Sb-doped Mg2Si semiconductors, Thermoelectric properties of Sb-doped Mg 2 Si semiconductors, pp.1202-1207, 2007.
DOI : 10.1016/j.intermet.2007.02.009

J. Tani and H. Kido, Si Semiconductors, Japanese Journal of Applied Physics, vol.46, issue.6A, pp.3309-3314, 2007.
DOI : 10.1143/JJAP.46.3309

T. Sakamoto, Thermoelectric Behavior of Sb- and Al-Doped n-Type Mg2Si Device Under Large Temperature Differences, Journal of Electronic Materials, vol.39, issue.5, pp.629-634, 2011.
DOI : 10.1007/s11664-010-1489-5

M. Akasaka, The thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method, Journal of Applied Physics, vol.104, issue.1, p.13703, 2008.
DOI : 10.1063/1.2946722

H. Ihou-mouko, C. Mercier, J. Tobola, G. Pont, and E. H. Scherrer, Thermoelectric properties and electronic structure of p-type Mg2Si and Mg2Si0.6Ge0.4 compounds doped with Ga, Thermoelectric properties and electronic structure of p-type Mg 2 Si and Mg 2 Si 0.6 Ge 0.4 compounds doped with Ga, pp.6503-6508, 2011.
DOI : 10.1016/j.jallcom.2011.03.081

J. Jung and I. Kim, Solid-State Synthesis of Te-Doped Mg2Si, Journal of Electronic Materials, vol.33, issue.5, pp.1144-1149, 2011.
DOI : 10.1007/s11664-011-1558-4

W. Fan, R. Chen, L. Wang, and P. Han, First-Principles and Experimental Studies of Y-Doped Mg2Si Prepared Using Field-Activated Pressure-Assisted Synthesis, Journal of Electronic Materials, vol.56, issue.5, pp.1209-1214, 2011.
DOI : 10.1007/s11664-011-1601-5

J. Tobola, S. Kaprzyk, and E. H. Scherrer, Mg-Vacancy-Induced Semiconducting Properties in Mg2Si1???x Sb x from Electronic Structure Calculations, Mg-Vacancy-Induced Semiconducting Properties in Mg 2 Si 1?x Sb x from Electronic Structure Calculations, pp.2064-2069, 2009.
DOI : 10.1007/s11664-009-1000-3

J. J. Martin, Thermal conductivity of Mg2Si, Mg2Ge and Mg2Sn, Thermal conductivity of Mg 2 Si, Mg 2 Ge and Mg 2 Sn, pp.1139-1148, 1972.
DOI : 10.1016/S0022-3697(72)80273-7

M. I. Fedorov, V. K. Zaitsev, and M. V. Vedernikov, Some peculiarities of development of efficient thermoelectrics based on silicon compounds, 2006 25th International Conference on Thermoelectrics, pp.111-114, 2006.
DOI : 10.1109/ICT.2006.331293

Y. Isoda, S. Tada, T. Nagai, H. Fujiu, and Y. Shinohara, Thermoelectric Properties of p-Type Mg2.00Si0.25Sn0.75 with Li and Ag Double Doping, Thermoelectric Properties of p-Type Mg 2.00 Si 0.25 Sn 0.75 with Li and Ag Double Doping, pp.1531-1535, 2010.
DOI : 10.1007/s11664-010-1280-7

W. Liu, Q. Zhang, X. Tang, H. Li, and E. J. Sharp, Thermoelectric Properties of Sb-Doped Mg2Si0.3Sn0.7, Journal of Electronic Materials, vol.91, issue.5, pp.1062-1066, 2011.
DOI : 10.1007/s11664-011-1541-0

H. Gao, T. Zhu, X. Liu, L. Chen, and E. X. Zhao, Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting, Journal of Materials Chemistry, vol.110, issue.16, p.5933, 2011.
DOI : 10.1039/c1jm00025j

Q. Zhang, compounds, physica status solidi (a), vol.91, issue.7, pp.1657-1661, 2008.
DOI : 10.1002/pssa.200723497

URL : https://hal.archives-ouvertes.fr/hal-01251077

H. L. Gao, X. X. Liu, T. J. Zhu, S. H. Yang, and X. B. Zhao, Effect of Sb Doping on the Thermoelectric Properties of Mg2Si0.7Sn0.3 Solid Solutions, Effect of Sb Doping on the Thermoelectric Properties of Mg 2 Si 0.7 Sn 0.3 Solid Solutions, pp.830-834, 2011.
DOI : 10.1007/s11664-011-1584-2

J. Tani and H. Kido, Thermoelectric properties of Al-doped Mg 2 Si 1-x Sn x (x ? 0.1) », Journal of Alloys and Compounds, vol.466, pp.1-2, 2008.

M. I. Fedorov, Transport properties of Mg2 X 0.4Sn0.6 solid solutions (X = Si, Ge) with p-type conductivity, Physics of the Solid State, vol.48, issue.8, pp.1486-1490, 2006.
DOI : 10.1134/S1063783406080117

G. N. Isachenko, Kinetic properties of p-Mg2Si x Sn1 ??? x solid solutions for x < 0.4, Physics of the Solid State, vol.51, issue.9, pp.1796-1799, 2009.
DOI : 10.1134/S1063783409090066

N. G. Patel and P. G. Patel, Thermoelectric Power of Polycrystalline Sb2Te3 Films, Thermoelectric Power of Polycrystalline Sb 2 Te 3 Films, pp.407-413, 1993.
DOI : 10.1002/crat.2170280325

A. Dauscher, A. Thomy, and E. H. Scherrer, « Pulsed laser deposition of Bi 2 Te 3 thin films, Thin Solid Films, vol.280, pp.1-2, 1996.

R. Venkatasubramanian, T. Colpitts, E. Watko, and M. Lamvik, El-Masry, « MOCVD of Bi 2 Te 3 , Sb 2 Te 3 and their superlattice structures for thin-film thermoelectric applications, Journal of Crystal Growth, vol.170, pp.1-4, 1997.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and E. B. O-'quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, vol.78, issue.6856, pp.597-602, 2001.
DOI : 10.1038/35098012

M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai et al., Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride based thin films, Journal of Applied Physics, vol.104, issue.8, p.84302, 2008.
DOI : 10.1063/1.2990774

G. J. Snyder, M. Soto, R. Alley, D. Koester, and E. B. Conner, Hot spot cooling using embedded thermoelectric coolers, Twenty-Second Annual IEEE Semiconductor Thermal Measurement And Management Symposium, pp.135-143, 2006.
DOI : 10.1109/STHERM.2006.1625219

V. Semenyuk, Thermoelectric micro modules for spot cooling of high density heat sources, Proceedings ICT2001. 20 International Conference on Thermoelectrics (Cat. No.01TH8589), pp.391-396, 2001.
DOI : 10.1109/ICT.2001.979914

M. Stordeur and I. Stark, Low power thermoelectric generator-self-sufficient energy supply for micro systems, XVI ICT '97. Proceedings ICT'97. 16th International Conference on Thermoelectrics (Cat. No.97TH8291), pp.575-577, 1997.
DOI : 10.1109/ICT.1997.667595

C. Boulanger, Thermoelectric Material Electroplating: a Historical Review, Thermoelectric Material Electroplating: a Historical Review, pp.1818-1827, 2010.
DOI : 10.1007/s11664-010-1079-6

D. M. Mattox, Handbook of physical vapor deposition (PVD) processing: film formation, adhesion, surface preparation and contamination control, 1998.

L. I. Maissel and R. Glang, Handbook of Thin Film Technology, Journal of The Electrochemical Society, vol.118, issue.4, 1970.
DOI : 10.1149/1.2408101

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, Microstructural evolution during film growth, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.21, issue.5, p.117, 2003.
DOI : 10.1116/1.1601610

B. A. Movchan and A. V. Demchishin, « Study of the structure and properties of thick vacuum condensates of nicken titanium, tungsten, aluminium and zirconium dioxide, Fizika Metall, vol.28, p.83, 1969.

J. A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, Journal of Vacuum Science and Technology, vol.11, issue.4, p.666, 1974.
DOI : 10.1116/1.1312732

J. A. Thornton, High Rate Thick Film Growth, High Rate Thick Film Growth, pp.239-260, 1977.
DOI : 10.1146/annurev.ms.07.080177.001323

R. Messier, A. P. Giri, and R. A. Roy, Revised structure zone model for thin film physical structure, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.2, issue.2, p.500, 1984.
DOI : 10.1116/1.572604

K. H. Guenther, Revisiting structure-zone models for thin-film growth, Modeling of Optical Thin Films II, pp.2-12, 1990.
DOI : 10.1117/12.22411

P. B. Barna, Adamik, « Fundamental structure forming phenomena of polycrystalline films and the structure zone models, Thin Solid Films, vol.317, pp.1-2, 1998.

E. Mirica, G. Kowach, and E. H. Du, Modified Structure Zone Model to Describe the Morphological Evolution of ZnO Thin Films Deposited by Reactive Sputtering, Crystal Growth & Design, vol.4, issue.1, pp.157-159, 2004.
DOI : 10.1021/cg025596b

S. Mahieu, P. Ghekiere, D. Depla, and R. De-gryse, Biaxial alignment in sputter deposited thin films, Biaxial alignment in sputter deposited thin films, pp.1229-1249, 2006.
DOI : 10.1016/j.tsf.2006.06.027

A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, vol.518, issue.15, pp.4087-4090, 2010.
DOI : 10.1016/j.tsf.2009.10.145

K. Seshan, Handbook of Thin-Film Deposition Processes and Techniques -Principles, Methods, Equipment and Applications, 2002.

R. Behrisch, Sputtering by particle bombardment, 1981.

K. Wasa and S. Hayakawa, Handbook of sputter deposition technology: principles, technology, and applications, 1992.

M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing
DOI : 10.1002/0471724254

R. Behrisch and K. Wittmaack, Sputtering by particle bombardment III: characteristics of sputtered particles, technical applications, 1991.
DOI : 10.1007/3-540-53428-8

K. Wasa, M. Kitabatake, and E. H. Adachi, Thin film materials technology: sputtering of compound materials, 2004.

S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood, Handbook of plasma processing technology: fundamentals, etching, deposition, and surface interactions, 1990.

J. E. Mahan, Physical vapor deposition of thin films, 2000.

R. Behrisch and W. Eckstein, Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to Mev Energies, 2007.
DOI : 10.1007/3-540-10521-2

P. Sigmund, Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets, Physical Review, vol.184, issue.2, p.383, 1969.
DOI : 10.1103/PhysRev.184.383

J. Bohdansky, J. Roth, and H. L. Bay, An analytical formula and important parameters for low-energy ion sputtering, Journal of Applied Physics, vol.51, issue.5, p.2861, 1980.
DOI : 10.1063/1.327954

J. Bohdansky, « A universal relation for the sputtering yield of monatomic solids at normal ion incidence », Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, vol.2, pp.1-3, 1984.

C. García-rosales, W. Eckstein, and E. J. Roth, Revised formulae for sputtering data, Journal of Nuclear Materials, vol.218, issue.1, pp.8-17, 1995.
DOI : 10.1016/0022-3115(94)00376-9

W. Eckstein, C. Garciá-rosales, J. Roth, and E. J. László, « Threshold energy for sputtering and its dependence on angle of incidence », Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, vol.83, pp.1-2, 1993.

W. Eckstein and R. Preuss, New fit formulae for the sputtering yield, Journal of Nuclear Materials, vol.320, issue.3, pp.209-213, 2003.
DOI : 10.1016/S0022-3115(03)00192-2

N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata et al., Energy dependence of the ion-induced sputtering yields of monatomic solids, Atomic Data and Nuclear Data Tables, pp.1-80, 1984.
DOI : 10.1016/0092-640X(84)90016-0

Y. Yamamura and H. Tawara, ENERGY DEPENDENCE OF ION-INDUCED SPUTTERING YIELDS FROM MONATOMIC SOLIDS AT NORMAL INCIDENCE, Atomic Data and Nuclear Data Tables, pp.149-253, 1996.
DOI : 10.1006/adnd.1996.0005

M. P. Seah, C. A. Clifford, F. M. Green, and I. S. Gilmore, An accurate semi-empirical equation for sputtering yields I: for argon ions, Surface and Interface Analysis, vol.87, issue.94, pp.444-458, 2005.
DOI : 10.1002/sia.2032

J. E. Mahan and A. Vantomme, Trends in sputter yield data in the film deposition regime, Physical Review B, vol.61, issue.12, p.8516, 2000.
DOI : 10.1103/PhysRevB.61.8516

W. Eckstein and R. Preuss, New fit formulae for the sputtering yield, Journal of Nuclear Materials, vol.320, issue.3, pp.209-213, 2003.
DOI : 10.1016/S0022-3115(03)00192-2

P. C. Zalm, Some useful yield estimates for ion beam sputtering and ion plating at low bombarding energies, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.2, issue.2, p.151, 1984.
DOI : 10.1116/1.582936

D. Depla and S. Mahieu, Reactive Sputter Deposition, 2008.
DOI : 10.1007/978-3-540-76664-3

R. V. Stuart and G. K. Wehner, Energy Distribution of Sputtered Cu Atoms, Journal of Applied Physics, vol.35, issue.6, p.1819, 1964.
DOI : 10.1063/1.1713748

H. Gnaser, Energy and Angular Distributions of Sputtered Species, Sputtering by Particle Bombardment, pp.231-328, 2007.
DOI : 10.1007/978-3-540-44502-9_5

M. Ohring, The materials science of thin films: deposition and structure, 2002.

A. R. González-elipe, F. Yubero, and J. A. Sanz, Low energy ion assisted film growth, 2003.
DOI : 10.1142/p282

T. Itoh, Ion beam assisted film growth, 1989.

M. Ohring, The materials science of thin films, 1992.

O. A. Popov, High density plasma sources: design, physics, and performance, 1995.

A. Lacoste, T. Lagarde, S. Chu, Y. Arnal, and E. J. Pelletier, « Multi-dipolar plasmas for uniform processing: physics, design and performance », Plasma Sources Science and Technology, pp.407-412, 2002.

S. Béchu, O. Maulat, Y. Arnal, D. Vempaire, A. Lacoste et al., « Multi-dipolar plasmas for plasma-based ion implantation and plasma-based ion implantation and deposition, Surface and Coatings Technology, vol.186, pp.1-2, 2004.

D. Vempaire, Y. Arnal, S. Béchu, O. Maulat, and E. J. Pelletier, « Sputtering assisted by microwave multi-dipolar plasmas: application to thin film deposition of magnetic materials, 14th Int. Coll. Plasma Processes, CIP 2003

D. Vempaire, . Pelletier, . Lacoste, . Béchu, . Sirou et al., Plasma-based ion implantation: a valuable technology for the elaboration of innovative materials and nanostructured thin films, Plasma Physics and Controlled Fusion, vol.47, issue.5A, pp.153-166, 2005.
DOI : 10.1088/0741-3335/47/5A/011

URL : https://hal.archives-ouvertes.fr/hal-00002030

J. Goldstein, Scanning electron microscopy and x-ray microanalysis, 2003.

R. A. Carlton, C. E. Lyman, and J. E. Roberts, Accuracy and precision of quantitative energy-dispersive x-ray spectrometry in the environmental scanning electron microscope, Scanning, vol.7, issue.2, pp.167-174, 2004.
DOI : 10.1002/sca.4950260404

B. D. Cullity and S. R. Stock, Elements of x-ray diffraction, 2001.

R. E. Dinnebier, Powder diffraction: theory and practice, Royal Society of Chemistry, 2008.

E. J. Mittemeijer and P. Scardi, Diffraction analysis of the microstructure of materials, 2004.
DOI : 10.1007/978-3-662-06723-9

T. C. Harman, Special Techniques for Measurement of Thermoelectric Properties, Special Techniques for Measurement of Thermoelectric Properties, p.1373, 1958.
DOI : 10.1063/1.1723445

F. Volklein and A. Meier, Blumers, « Measurements of the thermal conductivity of thin films, Thermoelectrics handbook: macro to nano, pp.42-43, 2006.

D. G. Cahill and R. O. , Thermal conductivity of amorphous solids above the plateau, Thermal conductivity of amorphous solids above the plateau, p.4067, 1987.
DOI : 10.1103/PhysRevB.35.4067

D. G. Cahill, Thermal conductivity of thin films: Measurements and understanding, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.7, issue.3, p.1259, 1989.
DOI : 10.1116/1.576265

D. G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3?? method, Thermal conductivity measurement from 30 to 750 K: the 3? method, p.802, 1990.
DOI : 10.1063/1.1141498

A. L. Bail, H. Duroy, and J. L. Fourquet, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction, Materials Research Bulletin, vol.23, issue.3, pp.447-452, 1988.
DOI : 10.1016/0025-5408(88)90019-0

R. Juan, « Recent advances in magnetic structure determination by neutron powder diffraction, Physica B: Condensed Matter, vol.192, pp.1-2, 1993.

L. I. Maissel and R. Glang, Handbook of Thin Film Technology, Journal of The Electrochemical Society, vol.118, issue.4, 1970.
DOI : 10.1149/1.2408101

K. Wasa and S. Hayakawa, Handbook of sputter deposition technology: principles, technology, and applications, 1992.

M. Ohring, The materials science of thin films: deposition and structure, 2002.

T. I. Dyuzheva, N. A. Bendeliani, L. N. Dzhavadov, T. N. Kolobyanina, and N. A. Nikolaev, Crystal growth of the high-pressure phase of Mg2Sn, Crystal growth of the high-pressure phase of Mg 2 Sn, pp.74-76, 1995.
DOI : 10.1016/0925-8388(94)01441-8

A. A. Nayeb-hashemi and J. B. Clark, « The Mg?Sn (Magnesium-Tin) system », Bulletin of Alloy Phase Diagrams, pp.466-476, 1984.

H. Scherrer, S. Scherrer, D. M. Bismuth-telluride, and . Rowe, Antimony Telluride, and Their Solid Solutions, CRC Handbook of thermoelectrics, 1995.

H. Y. Chen and N. Savvides, Microstructure and Thermoelectric Properties of n- and p-Type Doped Mg2Sn Compounds Prepared by the Modified Bridgman Method, Journal of Electronic Materials, vol.166, issue.7, pp.1056-1060, 2009.
DOI : 10.1007/s11664-008-0630-1

H. Y. Chen and N. Savvides, Eutectic Microstructure and Thermoelectric Properties of Mg2Sn, Eutectic Microstructure and Thermoelectric Properties of Mg 2 Sn, pp.1792-1797, 2010.
DOI : 10.1007/s11664-010-1150-3

H. Y. Chen, N. Savvides, T. Dasgupta, C. Stiewe, and E. E. Mueller, Electronic and thermal transport properties of Mg2Sn crystals containing finely dispersed eutectic structures, physica status solidi (a), vol.33, issue.11, pp.2523-2531, 2010.
DOI : 10.1002/pssa.201026119

H. Y. Chen and N. Savvides, « High quality Mg 2 Sn crystals prepared by RF induction melting, Journal of Crystal Growth, vol.312, pp.16-17, 2010.

L. D. Crossman and G. C. Danielson, -Type Magnesium Stannide, Physical Review, vol.171, issue.3, p.867, 1968.
DOI : 10.1103/PhysRev.171.867

URL : https://hal.archives-ouvertes.fr/hal-01289803

D. M. Rowe, CRC Handbook of thermoelectrics, 1995.
DOI : 10.1201/9781420049718

J. J. Martin, Thermal conductivity of Mg2Si, Mg2Ge and Mg2Sn, Thermal conductivity of Mg 2 Si, Mg 2 Ge and Mg 2 Sn, pp.1139-1148, 1972.
DOI : 10.1016/S0022-3697(72)80273-7

N. Savvides and H. Y. Chen, Thermal Conductivity and Other Transport Properties of Mg2Sn:Ag Crystals, Thermal Conductivity and Other Transport Properties of Mg 2 Sn:Ag Crystals », pp.2136-2141, 2009.
DOI : 10.1007/s11664-009-0978-x

J. Tobola, S. Kaprzyk, and E. H. Scherrer, Mg-Vacancy-Induced Semiconducting Properties in Mg2Si1???x Sb x from Electronic Structure Calculations, Mg-Vacancy-Induced Semiconducting Properties in Mg 2 Si 1?x Sb x from Electronic Structure Calculations, pp.2064-2069, 2009.
DOI : 10.1007/s11664-009-1000-3

D. R. Lide, CRC Handbook of chemistry and physics: a ready-reference book of chemical and physical data, 2004.

J. A. Thornton, J. Tabock, and D. W. Hoffman, Internal stresses in metallic films deposited by cylindrical magnetron sputtering, Thin Solid Films, vol.64, issue.1, pp.111-119, 1979.
DOI : 10.1016/0040-6090(79)90550-9

L. B. Freund and S. Suresh, Thin film materials: stress, defect formation, and surface evolution
DOI : 10.1017/CBO9780511754715

E. S. Machlin, Materials Science in Microelectronics: The relationships between thin film processing and structure, 2005.

A. J. Detor, Stress and microstructure evolution in thick sputtered films, Acta Materialia, vol.57, issue.7, pp.2055-2065, 2009.
DOI : 10.1016/j.actamat.2008.12.042

D. M. Mattox, Handbook of physical vapor deposition (PVD) processing: film formation, adhesion, surface preparation and contamination control, 1998.

A. Misra, S. Fayeulle, H. Kung, T. E. Mitchell, and E. M. Nastasi, Effects of ion irradiation on the residual stresses in Cr thin films, Effects of ion irradiation on the residual stresses in Cr thin films, p.891, 1998.
DOI : 10.1063/1.122029

A. R. González-elipe, F. Yubero, and J. A. Sanz, Low energy ion assisted film growth, 2003.
DOI : 10.1142/p282

J. E. Mahan, A. Vantomme, G. Langouche, and J. P. Becker, Si thin films prepared by molecular-beam epitaxy, Physical Review B, vol.54, issue.23, p.16965, 1996.
DOI : 10.1103/PhysRevB.54.16965

R. B. Song, T. Aizawa, and J. Q. Sun, « Synthesis of Mg 2 Si 1?x Sn x solid solutions as thermoelectric materials by bulk mechanical alloying and hot pressing, Materials Science and Engineering: B, vol.136, pp.2-3, 2007.

W. Luo, M. Yang, F. Chen, Q. Shen, H. Jiang et al., « Fabrication and thermoelectric properties of Mg 2 Si 1?x Sn x (0<x<1.0) solid solutions by solid state reaction and spark plasma sintering, Materials Science and Engineering: B, vol.157, pp.1-3, 2009.

X. Zhang, Q. Lu, L. Wang, F. Zhang, and J. Zhang, Preparation of Mg2Si1???x Sn x by Induction Melting and Spark Plasma Sintering, and Thermoelectric Properties, Preparation of Mg 2 Si 1?x Sn x by Induction Melting and Spark Plasma Sintering, and Thermoelectric Properties, pp.1413-1417, 2010.
DOI : 10.1007/s11664-010-1310-5

Q. Zhang, J. He, T. J. Zhu, S. N. Zhang, X. B. Zhao et al., High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials, High figures of merit and natural nanostructures in Mg 2 Si 0.4 Sn 0.6 based thermoelectric materials, p.102109, 2008.
DOI : 10.1063/1.2981516

M. I. Fedorov, Transport properties of Mg2 X 0.4Sn0.6 solid solutions (X = Si, Ge) with p-type conductivity, Physics of the Solid State, vol.48, issue.8, pp.1486-1490, 2006.
DOI : 10.1134/S1063783406080117

H. Gao, T. Zhu, X. Liu, L. Chen, and E. X. Zhao, Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting, Journal of Materials Chemistry, vol.110, issue.16, p.5933, 2011.
DOI : 10.1039/c1jm00025j

Q. Zhang, compounds, physica status solidi (a), vol.91, issue.7, pp.1657-1661, 2008.
DOI : 10.1002/pssa.200723497

URL : https://hal.archives-ouvertes.fr/hal-01251077

Y. Isoda, S. Tada, T. Nagai, H. Fujiu, and Y. Shinohara, Thermoelectric Performance of p-Type Mg<SUB>2</SUB>Si<SUB>0.25</SUB>Sn<SUB>0.75</SUB> with Li and Ag Double Doping, Thermoelectric performance of p-type Mg 2 Si 0.25 Sn 0.75 with Li and Ag double doping, pp.868-871, 2010.
DOI : 10.2320/matertrans.MH200906

Y. Isoda, S. Tada, T. Nagai, H. Fujiu, and Y. Shinohara, Thermoelectric Properties of p-Type Mg2.00Si0.25Sn0.75 with Li and Ag Double Doping, Thermoelectric Properties of p-Type Mg 2.00 Si 0.25 Sn 0.75 with Li and Ag Double Doping, pp.1531-1535, 2010.
DOI : 10.1007/s11664-010-1280-7

J. Tobola, S. Kaprzyk, and E. H. Scherrer, Mg-Vacancy-Induced Semiconducting Properties in Mg2Si1???x Sb x from Electronic Structure Calculations, Journal of Electronic Materials, vol.74, issue.9, pp.2064-2069, 2009.
DOI : 10.1007/s11664-009-1000-3

V. K. Zaitsev, thermoelectrics, Highly effective Mg 2 Si 1?x Sn x thermoelectrics, p.45207, 2006.
DOI : 10.1103/PhysRevB.74.045207

L. I. Maissel and R. Glang, Handbook of Thin Film Technology, Journal of The Electrochemical Society, vol.118, issue.4, 1970.
DOI : 10.1149/1.2408101

P. Wissmann and H. Finzel, Electrical resistivity of thin metal films, 2007.

W. Liu, Q. Zhang, X. Tang, H. Li, and E. J. Sharp, Thermoelectric Properties of Sb-Doped Mg2Si0.3Sn0.7, Journal of Electronic Materials, vol.91, issue.5, pp.1062-1066, 2011.
DOI : 10.1007/s11664-011-1541-0

H. L. Gao, X. X. Liu, T. J. Zhu, S. X. Yang, and E. B. Zhao, Effect of Sb Doping on the Thermoelectric Properties of Mg2Si0.7Sn0.3 Solid Solutions, Effect of Sb doping on the thermoelectric properties of Mg 2 Si 0.7 Sn 0.3 solid solutions, pp.830-834, 2011.
DOI : 10.1007/s11664-011-1584-2