S. Sinon and . La, derniire composante est non vide alors rechercher l'objet construire dans cette composante

S. L. Sinon, ensemble des objets construits n'est pas rduit un objet alors supprimer le dernier objet construit et mettre jour tout l'environnement puis retourner l

. Comment-choisir-l-'objet-construire, Nous choisissons un objet posssdant le plus petit degrr de libertt Bien que cela paraisse naturel, puisqu'il s'agit de construire le plus d'objets avec le moins de parammtres possibles, nous ne savons pas si une telle construction est toujours possible. En revanche, nous sommes en mesure de construire des exemples pour lesquels la construction d

A. P. Bibliographie, D. Aubry, M. M. Lazard, and . Maza, On the theories of triangular sets, J. of Symb. Comp, vol.28, issue.1&2, p.1055124, 1999.

A. , P. Aubry, M. Moreno-maza, and S. Bougnoux, Triangular sets for solving polynomial systems: a comparative implementation of four methods Imposing euclidean constraints during self-calibration processes, ECCV98 Workshop SMILE, p.1255154, 1998.

M. Barnabei, A. Brini, and G. Rota, On the exterior calculus of invariant theory, Journal of Algebra, vol.96, issue.1, p.1200160, 1985.
DOI : 10.1016/0021-8693(85)90043-2

B. L. Buss, M. Elkadi, and B. Mourrain, Generalized Resultants over Unirational Algebraic Varieties, Journal of Symbolic Computation, vol.29, issue.4-5, p.5155526, 2000.
DOI : 10.1006/jsco.1999.0304

C. Lemarrchal, J. F. Bonnans, J. C. Gilbert, and C. Sagastizzbal, Optimisation nummrique, 1997.

D. Bondyfalat, B. Mourrain, and V. Y. Pan, Controlled iterative methods for solving polynomial systems, Proceedings of the 1998 international symposium on Symbolic and algebraic computation , ISSAC '98, p.2522259, 1998.
DOI : 10.1145/281508.281629

D. Bondyfalat, B. Mourrain, and V. Y. Pan, Solution of a polynomial system of equations via the eigenvector computation, Lin. Alg. Appl, 1999.

]. A. Boi98, . Boisseau, and . Cachan, Calcul des llments propres Bou98] S. Bougnoux. From projective to euclidean space under any practical situation , a criticism of self-calibration, Proceedings of the 6th International Conference on Computer Vision, p.7900796, 1998.

B. , S. Bougnoux, and L. Robert, Totalcalib: a fast and reliable system for oo-line calibration of images sequences, Proceedings of the International Conference on Computer Vision and Pattern Recognition

]. B. Buc85 and . Buchberger, Grrbner bases: An algebraic method in ideal theory BIBLIOGRAPHIE Car96] J.P. Cardinal. On two iterative methods for approximating the roots of a polynomial, Multidimensional System Theory Proc. AMS- SIAM Summer Seminar on Math. of Numerical Analysis Chou and X.-S. Gao. Ritt-Wu's decomposition algorithm and geometry theorem proving Proc. CADE-10, pp.1844232-1655188, 1985.

C. , R. M. Corless, P. M. Gianni, and B. M. Trager, A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots

C. Chou, X. Gao, and J. Zhang, Machine proofs in geometry : automated production of readable proofs for geometry problems, 1994.
DOI : 10.1142/2196

C. Chou, X. Gao, and J. Zhang, Automated production of traditional proofs in solid geometry, Journal of Automated Reasoning, vol.2, issue.2, pp.2577-291, 1995.
DOI : 10.1007/BF00881858

C. Chou, Mechanical geometry theorem proving. Reidel, 1988.
DOI : 10.1007/978-94-009-4037-6

]. P. Cia82 and . Ciarlet, Introduction l'analyse nummrique matricielle et l'optimisation . Collection Mathhmatiques Appliquues pour la maatrise, 1982.

D. Cox, J. Little, and D. Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics, 1992.

D. Cox, J. Little, D. O-'shea, . P. Cm96-]-j, B. Cardinal et al., Using Algebraic Geometry Algebraic approach of residues and applications, Proc. AMS-SIAM Summer Seminar on Math. of Numerical Analysis, p.1899210, 1995.

H. Crapo and J. Richter-gebert, Automatic Proving of Geometric Theorems, Discrete and Computational Geometry, pp.1677-196, 1995.
DOI : 10.1007/978-94-015-8402-9_8

]. A. Cru90 and . Crumeyrolle, Orthogonal and Simplectic Cliiord Algebra. Kluwer Academic Plublishers, 1990.

C. Chou, W. F. Schelter, and J. Yang, Characteristic Sets and Grrbner Bases in Geometry Theorem Proving, Resolution of Equations in Algebraic Structures Dan00] D. Daney. talonnage GGommtrique des Robots Parallllles, p.33392, 1989.

D. , C. D. Andrea, and A. Dickenstein, Generalized Macaulay formulas for the multivariate resultant. Preprint, 2000. Dev97] Frrddric Devernay. Vision sttrroscopique et propriitts diiirentielles des surfaces, 1997.

P. Doubilet, G. C. Rota, and J. Stein, Foundations of Combinatorics IX: Combinatorial methods in Invariant Theory, Studies in Appl. Math, vol.53, p.1855216, 1974.

D. , P. E. Debevec, C. J. Taylor, and J. Malik, Modeling and rendering architecture from photographs: a hybrid geometry-and image-based approach, siggraph, p.11120, 1996.

M. Elkadi and B. Mourrain, A new algorithm for the geometric decomposition of a variety, Proceedings of the 1999 international symposium on Symbolic and algebraic computation , ISSAC '99, 1999.
DOI : 10.1145/309831.309843

]. I. Em99b, B. Emiris, and . Mourrain, Matrices in Elimination Theory Fau93] O. Faugeras. Three-Dimensional Computer Vision: a Geometric Viewpoint Fau95] O. Faugeras. Stratiication of 3-D vision: projective, aane, and metric representations FH97] I. Fudos and C. M. Hoomann. A graph-constructive approach to solving systems of geometric constraints, J. of Symbolic Computation Journal of the Optical Society of America A ACM Transactions on Graphics, vol.28, issue.162, pp.33444655-4841799216, 1993.

F. Faugeras, T. Luong, and S. Maybank, Camera selfcalibration: theory and experiments, Proc 2nd ECCV, pp.3211334-1992
DOI : 10.1007/3-540-55426-2_37

]. O. Fm95a, B. Faugeras, and . Mourrain, On the geometry and algebra of the point and line correspondences between n images, Proceedings of Europe-China Workshop on Geometrical Modeling and Invariants for Computer Vision, p.1022109, 1995.

]. O. Fm95b, B. Faugeras, and . Mourrain, On the geometry and algebra of the point and line correspondences between N images, ICCV'95, p.9511956, 1995.

]. O. Fm95c, B. Faugeras, and . Mourrain, On the geometry and algebra of the point and line correspondences between N images, 1995.

G. , I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, 1994.

G. H. Golub and C. F. Van-loan, Matrix computations, 1996.

]. J. Bibliographie-har92 and . Harris, Algebraic Geometry, a rst course, volume 133 of Graduate Texts in Math, 1992.

]. R. Har97 and . Hartley, Kruppa's equations derived from the fundamental matrix, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, issue.2, p.1333135, 1997.

R. M. Haralick, C. Lee, K. Ottenberg, M. Nolle, H. M. Hoomann et al., Review and analysis of solutions of the three point perspective pose estimation problem Geometric constraint solving in R 2 and R 3, Computing in Euclidean Geometry, pp.3311-356, 1994.

J. , R. Joan-arinyo, and A. Soto-riera, Combining constructive and equational geometric constraint-solving techniques, ACM Transactions on Graphics, vol.18, issue.1, p.35555, 1999.
DOI : 10.1145/300776.300780

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. F. Kle74 and . Klein, Le programme d'Erlangen ; considdrations comparatives sur les recherches ggommtriques modernes, Discours de la mmthode. Gautier-Villas, 1974.

]. D. Km89b, J. L. Kapur, and . Mundy, Wu's method and its application to perspective viewing Macc. 2d3p declarative design by projective properties propagation, Geometric Reasoning KM89a EUROGRAPHICS'99, p.15536, 1999.

S. Laveau, GGommtrie d'un systtme de N cammras. Thhorie, estimation et applications, 1996.

D. Lazard, Alggbre linnaire sur kx 1 ; : : : ;x n ] et limination

I. A. Manolis, R. Lourakis, and . Deriche, Camera self-calibration using the singular value decomposition of the fundamental matrix: From point correspondences to 3D measurements, Research Report, vol.3748, 1999.

I. A. Manolis, R. Lourakis, and . Deriche, Camera self-calibration using the singular value decomposition of the fundamental matrix, Proc. of the 4th Asian Conference on Computer Vision, p.4033408, 2000.

L. Luong, R. Deriche, O. Faugeras, and T. Papadopoulo, On determining the fundamental matrix: analysis of diierent methods and experimental results, Israelian Conf. on Artiicial Intelligence and Computer Vision, 1993.

]. J. Lee99 and . Lee, A 2d geometric constraint solver for parametric design using graph analysis and reduction, Automated Deduction in Geometry, number 1669 in LNAI, p.2588274, 1999.

]. C. Lem89 and . Lemarrchal, MMthodes nummriques d'optimisation. INRIA, 1989. LF95] Quang-Tuan Luong and Olivier Faugeras. The fundamental matrix: theory, algorithms, and stability analysis, The International Journal of Computer Vision, vol.17, issue.1, p.43376, 1995.

]. F. Mac02 and . Macaulay, Some formulae in elimination, Proc. London Math. Soc, vol.1, issue.33, p.3327, 1902.

]. H. Mat80, M. S. Matsumura, O. D. Maybank, and . Faugeras, Commutative Algebra Mathematics Lecture Notes Series The Benjamin A theory of self-calibration of a moving camera, The International Journal of Computer Vision, vol.8, issue.2, p.1233152, 1980.

]. B. Mou91a and . Mourrain, Approche eeective de la thhorie des invariants des groupes classiques, 1991.

]. B. Mou91b and . Mourrain, GGommtrie et interprrtation ggnnrique ; un algorithme, Effective Methods in Algebraic Geometry (MEGA'90), p.3633377, 1991.

]. B. Mou99a and . Mourrain, An introduction to linear algebra methods for solving polynomial equations, HERCMA'98, p.1799200, 1999.

]. B. Mou99b and . Mourrain, A new criterion for normal form algorithms Singularities in the determination of the situation of a robot eeector from the perspective view of 3 points, Proc. AAECC MT00] B. Mourrain and Ph. Trrbuchet. Solving projective complete intersection faster. Proc. ISSAC, pp.4300443-2311238, 1993.

H. William, B. P. Press, S. A. Flannery, W. T. Teukolsky, and . Vetterling, Numerical Recipes in C, 1988.

P. Poulin, M. Ouimet, and M. Frasson, Interactively Modeling with Photogrammetry, Proceedings of Eurographics Workshop on Rendering 98, p.933104, 1998.
DOI : 10.1007/978-3-7091-6453-2_9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. J. Quan and . Richter-gebert, Contribution la reconsturction tridimensiionnelle Mechanical theorem proving in projective geometry, Saa96] Y. Saad. Iterative methods for sparse linear systems. Series in Computer Science, p.1399172, 1995.

]. P. Sam86, ]. I. Samuel-sha74, and . Shafarevitch, GGommtrie projective Basic Algebraic Geometry Geometry theorem proving in vector spaces by means of grrbner bases, pp.93-3011310, 1974.

]. B. Stu93, ]. R. Sturmfels-tap71, and . Tapia, Algorithms in Invariants Theory RISC Series on Symbolic Computation The Kantorovitch theorem for Newton's method, American Mathematic Monthly, vol.78, issue.1, p.3899392, 1971.

]. D. Wan95 and . Wang, Elimination procedures for mechanical theorem proving in geometry, Annals of Mathematics and Artiicial Intelligence, vol.13, p.1124, 1995.

]. D. Wan96 and . Wang, Geometry machines : From ai to smc, AISMC-3, p.2133239, 1996.

]. D. Wan97 and . Wang, Cliiord algebraic calculus for geometric reasoning with application to computer vision, volume 1360 of Springer's LNAI, p.1155140, 1997.

]. D. Wan98 and . Wang, Grrbner bases applied to geometric theorem proving and discovering, Grbner bases and applications, p.2811301, 1998.

]. H. Wey39 and . Weyl, The Classical Groups, their invariants and representations, 1939.

W. J. Wolfe, D. Mathis, C. W. Sklair, and M. Magee, The perspective view of three points, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.1, p.66673, 1991.
DOI : 10.1109/34.67632

W. Wu, Some recent advances in mechanical theorem proving : After 25 years, Contemporary Mathematics, p.2355242, 1984.

DOI : 10.1142/9789812791085_0012

W. Wu, Mechanical Theorem Proving in Geometries: Basic Principles (translated from Chinese by Texts and Monographie in Symbolic Computation, 1994.
DOI : 10.1007/978-3-7091-6639-0

Z. Zhang, R. Deriche, O. Faugeras, and Q. Luong, A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry, Artificial Intelligence, vol.78, issue.1-2, p.877119, 1994.
DOI : 10.1016/0004-3702(95)00022-4

URL : https://hal.archives-ouvertes.fr/inria-00074398

]. C. Zel96 and . Zeller, Calibration Projective AAne et Euclidienne en Vision par Ordinateur, 1996.