S. Sam, X. Xiao, L. Besacier, E. Castelli, H. Li et al., Speech Modulation Features for Robust Nonnative Speech Accent Detection, Annexe D : Publications personnelles Conférences internationales Proc. Interspeech, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00959151

S. Sam, L. Besacier, E. Castelli, B. Ma, C. Leung et al., Autonomous acoustic model adaptation for multilingual meeting transcription involving high-and low-resourced languages, Proc. SLTU, pp.116-121, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00959190

S. Sam, E. Castelli, and L. Besacier, Unsupervised acoustic model adaptation for multi-origin non native, Proc. Interspeech, pp.254-257, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00959191

S. Seng, S. Sam, L. Besacier, B. Bigi, and E. Castelli, First Broadcast News Transcription System for Khmer Language, Proc. LREC, pp.2658-2661, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01392538

S. Seng, S. Sam, V. Le, L. Besacier, and B. Bigi, Which units for acoustic and language modelling for khmer automatic speech recognition?, Proc. SLTU, pp.33-38, 2008.

G. Caelen-haumont, B. P. Hai, D. D. Trang, J. Salmon, S. Sam et al., Démonstration du logiciel d'analyse de la parole Praat- MOMEL-MELISM, présentation et écoute du corpus mo piu Adaptation autonome de modèles acoustiques pour la transcription automatique de réunions multilingues, Conférences francophones [Caelen-Haumont Proc. CERLICO Proc. JEP(Journées d'Études sur la Parole), 2010.

S. Sam, Vers des modèles autonomes pour la reconnaissance automatique de la parole multilingue, RJCP (Rencontre des Jeunes Chercheurs en Parole), 2009.

A. Adami and H. Hermansky, Segmentation of speech for speaker and language recognition, Eurospeech, pp.841-844, 2003.

M. Adda-decker, F. Antoine, P. De-mareuil, I. Vasilescu, L. Lamel et al., Phonetic knowledge, phonotactics and perceptual validation for automatic language identification Effective speaker adaptations for speaker verification The Unicode standard, version 4 Language Accent Classification in American English, Proc. ICPhS, pp.747-750, 1996.

B. Atal, M. Schroeder, and J. Baker, Predictive coding of speech signals and subjective error criteria, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.27, issue.3, pp.247-254, 1975.
DOI : 10.1109/TASSP.1979.1163237

C. Barras, E. Geoffrois, Z. Wu, and M. Liberman, Transcriber: Development and use of a tool for assisting speech corpora production, Speech Communication, vol.33, issue.1-2, pp.5-22, 2001.
DOI : 10.1016/S0167-6393(00)00067-4

L. Baum, T. Petrie, G. Soules, and N. Weiss, A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The annals of mathematical statistics, pp.164-171, 1970.

V. P. Berment, . Ujf, F. Grenoble, J. Billa, M. Noamany et al., Méthodes pour informatiser les langues et les groupes de langues «peu dotées», Thèse de Doctorat Audio indexing of Arabic broadcast news, Acoustics, Speech, and Signal Processing, IEEE International Conference, pp.5-8, 2002.

M. Bisani, H. Ney, and P. Boersma, Multigram-based grapheme-to-phoneme conversion for LVCSR, Eurospeech Praat, a system for doing phonetics by computer, pp.933-936, 2001.

C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, vol.2, issue.2, pp.121-167, 1998.
DOI : 10.1023/A:1009715923555

G. Caelen-haumont, Mo Piu minority language: data base, first steps and first experiments, Proc. SLTU, pp.42-50, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01223564

. Ccc, CCC resources : Online Chinese Corpus Consrtium Retrieved from http, Proc. CERLICO, 2003.

P. Dai, U. Iurgel, G. Rigoll, A. Dempster, N. Laird et al., A novel feature combination approach for spoken document classification with support vector machines Maximum likelihood from incomplete data via the EM algorithm, Proc. Multimedia Information Retrieval Workshop, pp.1-5, 1977.

R. Duda, P. Hart, and D. Stork, Pattern classification, 2000.

J. Wiley-interscience-]-flege, Second language speech learning: Theory, findings, and problems Speech perception and linguistic experience: Issues in cross-language research, pp.233-277, 1995.

J. Flege, E. Frieda, and T. Nozawa, Amount of native-language (L1) use affects the pronunciation of an L2, Journal of Phonetics, vol.25, issue.2, pp.169-186, 1997.
DOI : 10.1006/jpho.1996.0040

J. Flege, I. M. Mackay, and P. Woodland, Perceiving vowels in a second language Mean and variance adaptation within the MLLR framework, Studies in Second Language Acquisition. [Gales, 1996] Gales, pp.1-34, 1996.

J. Gauvain and C. Lee, Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains, IEEE Transactions on Speech and Audio Processing, vol.2, issue.2, pp.291-298, 1994.
DOI : 10.1109/89.279278

J. Gauvain and L. Lamel, Large-vocabulary continuous speech recognition: advances and applications, Proceedings of the IEEE, pp.1181-1200, 2000.
DOI : 10.1109/5.880079

J. Gauvain, L. Lamel, and G. Adda, The LIMSI Broadcast News transcription system, Speech Communication, vol.37, issue.1-2, pp.89-108, 2002.
DOI : 10.1016/S0167-6393(01)00061-9

URL : https://hal.archives-ouvertes.fr/hal-01434493

R. Gonzalez and R. D. Woods, Digital image processing The future of English? A guide to forecasting the popularity of the English language in the 21 st century, 1997.

C. Grover, D. Jamieson, and M. Dobrovolsky, Intonation in English, French and German: perception and production, Language and Speech, vol.30, issue.3, pp.277-295, 1987.

J. H. Hansen and L. M. Arslan, Foreign accent classification using source generator based prosodic features, 1995 International Conference on Acoustics, Speech, and Signal Processing, pp.836-839, 1995.
DOI : 10.1109/ICASSP.1995.479824

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.1329

J. Haton, J. Pierrel, G. Pérennou, J. Caelen, J. Gauvain et al., Reconnaissance automatique de la parole: Dunod, 239 p., ISBN : 2040188274. [Hazen Automatic language identification using a segment-based approach, Proc. Eurospeech, pp.1307-1310, 1991.

H. Hermansky and L. Cox-jr, Perceptual Linear Predictive (PLP) analysis-resynthesis technique, Applications of Signal Processing to Audio and Acoustics. Final Program and Paper Summaries, pp.37-038, 1991.

J. Hieronymus, X. Huang, A. Acero, and H. Hon, ASCII Phonetic Symbols for the World's Languages: Worldbet Spoken language processing: A guide to theory, algorithm, and system development Handbook of the International Phonetic Association: a guide to the use of the International Phonetic Alphabet: Cambridge, Journal of the Internation Phonetic Association, vol.23, issue.214, 1993.

P. Jain, H. Hermansky, and F. Jelinek, Improved mean and variance normalization for robust speech recognition Continous speech recognition by statistical methods, Proc. ICASSP Proceedings of the IEEE, pp.4015-4015, 1976.

N. Kanedera, T. Arai, H. Hermansky, and M. Pavel, On the relative importance of various components of the modulation spectrum for automatic speech recognition, Speech Communication, vol.28, issue.1, pp.43-55, 1999.
DOI : 10.1016/S0167-6393(99)00002-3

K. Kim, N. Relkin, K. Lee, and J. Hirsch, Distinct cortical areas associated with native and second languages, American Journal of Ophthalmology, vol.124, issue.6, pp.171-174, 1997.
DOI : 10.1016/S0002-9394(14)71720-9

K. Kirchhoff, S. Parandekar, J. Bilmes, R. Kneser, H. Ney et al., Joint acoustic-modulation frequency for speaker recognition Mixed-memory Markov models for automatic language identification Improved backing-off for m-gram language modeling A new view of language acquisition, Proc. ICASSP Proc. ICASSP Proc. ICASSP Proceedings of the National Academy of Sciences of the United States of America, pp.14-19, 1995.

L. Lamel, J. Gauvain, M. Eskenazi, G. Lazzari, and V. R. Steinbiss, BREF, a large vocabulary spoken corpus for French Human Language Technologies for Europe Réalisation d'un système de communication multimédia SIAM pour espaces perceptifs (convergence entre appareils communicants, sécurité, Proc. Eurospeech, pp.24-26, 1991.

V. Le, K. Lee, H. Hon, and R. Reddy, An overview of the SPHINX speech recognition system, Thèse de doctorat, pp.35-45, 2002.
DOI : 10.1109/29.45616

C. Leggetter and P. Woodland, Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models, Computer Speech & Language, vol.9, issue.2, pp.171-185, 1995.
DOI : 10.1006/csla.1995.0010

H. Li, B. Ma, and C. Lee, A Vector Space Modeling Approach to Spoken Language Identification, IEEE Transactions on Audio, Speech and Language Processing, vol.15, issue.1, pp.271-284, 2007.
DOI : 10.1109/TASL.2006.876860

Y. Liu, P. Fung, K. Livescu, R. Lyer, M. Ostendorf et al., Analysis and modeling of non-native speech for automatic speech recognition Analyzing and predicting language model improvements Multilingual speech recognition with language identification A phonotactic-semantic paradigm for automatic spoken document classification Linear prediction of speech The DET curve in assessment of detection task performance, Proc. IEEE Workshop on Automatic Speech Recognition and Understanding Proc. 7 th International Conference on Spoken Language Processing Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pp.133-136, 1982.

S. Martin, J. Liermann, and H. Ney, Adaptive topic-dependent language modelling using word-based varigrams, Proc. European Conference on Speech Communication and Technology Proc. Eurospeech'97, pp.1895-1898, 1997.

J. Mcdonough, T. Anastasakos, G. Zavaliagkos, H. Gish, T. Nagarajan et al., Speaker-adapted training on the switchboard corpus Language identification using parallel syllable-like unit recognition, Proc. ICASSP Probabilistic SVM/GMM Classifier for Speaker-Independent Vowel Recognition in Continues Speech. ACM Computing Research Repository, pp.1059-1062, 1997.

[. Grady, W. Archibald, J. Oh, Y. Yoon, J. Kim et al., Contemporary Linguistic Analysis: An Introduction Acoustic model adaptation based on pronunciation variability analysis for non-native speech recognition, Speech Communication, vol.68849, issue.1, pp.59-70, 2000.

D. U. Pallett, D. Paul, J. Baker, M. Piat, D. Fohr et al., A look at NIST'S benchmark ASR tests: past, present, and future The design for the Wall Street Journalbased CSR corpus, Proc Foreign accent identification based on prosodic parameters, Proc. ASRU Proc. Interspeech Content-based search in multilingual audiovisual documents using the International Phonetic Alphabet. Multimedia Tools and Applications, pp.483-488, 1992.

L. Rabiner, B. Juang, and L. Rabiner, Fundamentals of speech recognition: Prentice hall Englewood Cliffs A tutorial on Hidden Markov Models and selected applications in speech recognition, Proceedings of the IEEE, pp.257-286, 1989.

B. Rochet, Perception and production of second-language speech sounds by adults. Speech perception and linguistic experience: Issues in cross-language research, pp.379-410, 1995.

S. Sam, S. Sam, L. Besacier, and E. Castelli, Vers des modèles autonomes pour la reconnaissance automatique de la parole multilingue. RJCP (Rencontre des Jeunes Chercheurs en Parole) Adaptation autonome de modèles acoustiques pour la transcription automatique de réunions multilingues, Proc. JEP (Journées d'Études sur la Parole), 2009.

S. Sam, L. Besacier, E. Castelli, B. Ma, C. Leung et al., Autonomous acoustic model adaptation for multilingual meeting transcription involving high-and low-resourced languages, Proc. SLTU, pp.116-121, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00959190

S. Sam, E. Castelli, L. Besacier, S. Sam, X. Xiao et al., Unsupervised acoustic model adaptation for multi-origin non native Makuhari, Japan Speech Modulation Features for Robust Nonnative Speech Accent Detection A comparison of publicdomain software tools for speech recognition Time warps, string edits, and macromolecules: the theory and practice of sequence comparison (second edition ed.): CSLI, 408 p Polyphone decision tree specialization for language adaptation Language-independent and languageadaptive acoustic modeling for speech recognition, Proc. Interspeech Proc. WSLP Proc. ICASSP, pp.254-257, 1999.

T. Schultz, K. Kirchhoff, H. Schwenk, and J. Gauvain, Globalphone: a multilingual speech and text database developed at Karlsruhe University Multilingual speech processing Connectionist language modeling for large vocabulary continuous speech recognition Continuous space language models, Proc. ICASSP, pp.345-348, 2002.

S. Seng, S. Sam, L. Besacier, B. Bigi, and E. Castelli, First Broadcast News Transcription System for Khmer Language, Proc. LREC, pp.2658-2661, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01392538

S. Seng, S. Sam, V. Le, L. Besacier, B. Bigi et al., Which units for acoustic and language modelling for khmer automatic speech recognition? Communication in the presence of noise, Proc. SLTU Proceedings of the IRE, pp.33-38, 1949.

E. Singer, P. Torres-carrasquillo, T. Gleason, W. Campbell, D. Reynolds et al., Acoustic, phonetic and discriminative approaches to automatic language recognition SRILM -an extensible language modeling toolkit, ICSLP Automatic language recognition using acoustic features A French non-native corpus for automatic speech recognition Modeling Context and Language Variation for Non-Native Speech Recognition Automatic Speech Recognition for Non-Native Speakers, Proc. Eurospeech Proc. ICASSP Proc. LREC Proc. Interspeech Thèse de doctorat, pp.1345-1348, 1991.

P. Torres-carrasquillo-torres-carrasquillo, E. Singer, M. Kohler, R. Greene, D. Reynolds et al., Approaches to language identification using Gaussian mixture models and shifted delta cepstral features, ICSLP Voice aided input for phrase selection using a low level ASR approach -Application to French and Khmer phrasebooks Recognition of non-native German speech with multilingual recognizers, Proc. SLTU Proc. Eurospeech, pp.89-92, 1999.

A. Waibel, P. Geutner, L. Tomokiyo, T. Schultz, and M. Woszczyna, Atlas of the World's Languages in Danger: BERNAN PR, 218 p., ISBN : 9789231040962 Multilinguality in speech and spoken language systems, Proceedings of the IEEE, vol.88, issue.8, pp.1181-1190, 2000.

R. Wanneroy, C. Bilinski, C. Barras, M. Adda-decker, E. Geoffrois et al., Acoustic-Phonetic Modeling of Non-Native Speech for Language Identification The Netherlands Comparison of acoustic model adaptation techniques on non-native speech Computer-coding the IPA: a proposed extension of SAMPA. draft article, Proc. MIST,Leusden Proc. ICASSP, pp.540-543, 1995.

J. Wells, SAMPA computer readable phonetic alphabet. Handbook of Standards and Resources for Spoken Language Systems, pp.684-730, 1997.

C. White, S. Khudanpur, and J. Baker, An Investigation of Acoustic Models for Multilingual Code-Switching, Proc. Interspeech, pp.2691-2694, 2008.

S. Witt, F. Wood, K. Esbensen, and P. Geladi, Use of speech recognition in computer-assisted language learning. PhD. Thesis, 139 p., University of Cambridge Principal component analysis, Chemometr. Intel. Lab. Syst, vol.2, pp.37-52, 1987.

X. Xiong, S. Young, S. Young, and S. Young, Robust speech features and acoustic models for speech recognition Acoustic modelling for large vocabulary continuous speech recognition The HTK Hidden Markov Model toolkit: design and philosophy, NATO ASI Series F Computer and Systems Sciences, vol.169, pp.18-39, 1994.

M. Zissman, Comparison of four approaches to automatic language identification of telephone speech, IEEE Transactions on Speech and Audio Processing, vol.4, issue.1, pp.31-44, 1996.
DOI : 10.1109/TSA.1996.481450

M. A. Zissman, T. P. Gleason, D. M. Rekart, B. L. Losiewicz, V. Zue et al., Automatic dialect identification of extemporaneous conversational, Latin American Spanish speech, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, pp.777-780, 1996.
DOI : 10.1109/ICASSP.1996.543236