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Résumé

Le concept de réversibilité est ancien, mais il soulève de nos jours beaucoup

d’intérêt. Il est en effet exploité dans de nombreux domaines tels que la

conception de circuits, le débogage et le test de programmes, la simula-

tion et l’informatique quantique. L’idée d’un modèle de programmation

réversible peut se montrer particulièrement intéressante pour la construction

de systèmes sûrs de fonctionnement, ne serait-ce que parce que plusieurs

techniques connues pour la construction de tels systèmes exploitent une

forme ou une autre de retour en arrière ou de reprise. Nous poursuivons

dans cette thèse l’étude entreprise avec CCS réversible par Vincent Danos et

Jean Krivine, en définissant un pi-calcul d’ordre supérieur réversible (ρπ).

Nous prouvons que le modèle obtenu est causalement cohérent, et que l’on

peut encoder fidèlement ρπ dans une variante du π-calcul d’ordre supérieur.

Nous définissons également une primitive de reprise à grain fin qui permet de

contrôler le retour en arrière dans une exécution concurrente. Nous spécifions

formellement la sémantique de cette primitive, et nous montrons qu’elle

possède de bonnes propriétés, y compris en présence d’opérations de reprise

concurrentes. Enfin nous définissons un algorithme concurrent implantant

cette primitive de reprise et tous montrons que cet algorithme respecte la

sémantique définie.

Mots clés: théorie de la concurrence, calcul de processus, réversibilité,

programmation réversible, expressivité de la réversibilité.



Abstract

Reversible computing has a long history. Nowadays, reversible computing is

attracting increasing interest because of its potential applications in diverse

fields, including hardware design, biological modelling, program debugging

and testing and quantum computing. Of particular interest is the application

of reversible computation notions to the study of programming abstractions

for dependable systems, because several techniques used to build dependable

systems rely on some forms of undo or rollback. We continue, in this

thesis, the study undertaken on reversible CCS by Vincent Danos and Jean

Krivine, by defining a reversible higher-order π-calculus (ρπ). We prove that

reversibility in our calculus is causally consistent and that one can encode

faithfully ρπ into a variant of HOπ. Moreover we design a fine-grained

rollback primitive able to control the rollback of a concurrent execution. We

give a formal specification of this primitive and show that it enjoys good

properties, even in presence of concurrent conflicting rollbacks. We then

devise a concurrent algorithm implementing such a primitive and show that

the algorithm respects the defined semantics.

Keywords: concurrency theory, process calculi, reversibility, reversible

computing, expressiveness of reversibility.
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Special thanks goes to Jorge A. Pérez P. who had the patience to read

and correct my document. Debating with him about Higher-Order π-calculus

is always intriguing. Moreover, I thank him for his friendship and his

academic-brotherhood.

I am also thankful to my Italian Inria colleagues and friends: Simone

Gasparini, Alessio Pace, Valerio Schiavoni, Daniele Perito and Cinzia Di

Giusto. Without them working at Inria would have been more boring.

I would like also to thank my friends in Grenoble who made my stay in

France more bearable: Davide Benato and Salvatore Carvelli.

Many thanks go also to Alessandro Mommo, Kreshnik Vukatana, Vi-

valanaikabahu Somanaikabahu, Luigi Angelé, Livio Nassisi, Marco Romano
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Chapter 1

Introduction

This thesis studies the formal foundations of a reversible, concurrent compu-

tational model. The model is given as a process calculus, and so it captures

reversible, concurrent computation by means of a few essential constructs. It

can be thus seen as a core language (see [85]) on top of which we can build

and study new programming abstractions and their properties. One such

abstraction is the communication of messages with complex structure; this is

captured in our calculus by allowing the exchange of processes in communi-

cations: we thus obtain a higher-order, reversible process calculus. In the

rest of this chapter, we comment further on the challenges intrinsic to our

approach, and justify further our interest in reversibility and in higher-order

concurrency.

Roughly speaking, reversible refers to the possibility of undoing any

distributed program computation, possibly step-by-step, and to revert it to a

state consistent with the past execution. Usually, in a reversible computing

model we can distinguish two kinds of evolutions: forward (noted as ։) and

backward (noted as  ). Forward executions are the usual ones, that can be

executed by every non reversible computational model, while the backward

ones are proper to a reversible model. Hence, we can say that a reversible

model provides automatically a backward step of execution for each forward

step that is executed in it. This implies that the model automatically keeps

information about forward steps and exploits this information in order to

reverse them. Let us suppose that a program executed on a reversible model,

moves forward from the state M to the state N , that is M ։ N . Then

reversibility means that there exists a backward computation such that from

the state N the program can get back to the state M , that is N  M . More

in general this property is valid for any state reached with an unbounded
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number of execution steps. If from M after a certain number of execution

steps we reach a state Nn, and we write M ։∗ Nn (where ։∗ indicates

several applications of ։), then we also have that Nn  
∗ M . As one may

note, a fully reversible computational model is by nature diverging: every

single step can be done and undone potentially an unbounded number of

times. Taking the above example, by reiterating the execution M ։ N  M

indefinitely we obtain a diverging computation.

1.1 Why Reversibility?

The notion of reversible computation has already a long history [12] which

started by studies on the thermodynamic cost of irreversible actions. It

was noted that since usual computation is irreversible then information loss

causes dissipation heat. Therefore it was pointed out that it could be possible

to execute reversible computations in a heat dissipation free way. This was

the motivation idea that gave rise to several reversible computation models

such as reversible Turing machines and conservative logic [44]. Nowadays,

reversible computing is attracting increasing interest because of its potential

applications in diverse fields, including hardware design since reversible

computations can be performed in a heat dissipation free way; biological

modelling since several biological reactions are by nature reversible; program

debugging and testing allowing during debugging time to bring the program

state back to a certain execution point in which certain conditions are met;

and quantum computing. A detailed survey about the history of reversible

computing and the different guises it has nowadays can be found in Chapter 2.

Of particular interest is the application of reversible computation notions

to the study of programming abstractions for dependable systems. Dependable

systems are supposed to satisfy a set of distinct properties, such as: safety,

security and availability, just to indicate a few of them. Several techniques

used to build dependable systems such as transactions [48], system-recovery

schemes [37] and checkpoint-rollback protocols [55], rely on some forms of

undo or rollback facility. The ability to undo any single action provides us

with an ideal setting to study, revisit, or imagine alternatives to standard

techniques for building dependable systems and to debug them. Indeed

distributed reversible actions can be seen as defeasible partial agreements:

the building blocks for different transactional models and recovery techniques.

The work of Danos and Krivine, on reversible CCS (RCCS) [29,30], provides

a good example: they show how notions of reversible and irreversible actions

in a process calculus can model a primitive form of transaction, an abstrac-

tion that has been found useful, in different guises, in reliable concurrent
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and distributed programming, including database [48] and workflow [92]

management systems.

1.2 Reversibility in Concurrent Systems

Since process calculi are not confluent and processes are non-deterministic,

reversing a computation history means undoing the history not in a determin-

istic way, but in a causally consistent fashion, where states that are reached

during a backward computation are states that could have been reached

during the computation history by just performing independent (concurrent)

actions in a different order. This is due to the fact that the model does

not keep track of the order1 in which concurrent independent actions are

executed (scheduled).

In this way, when undoing a computation history we may choose to

start with not the last executed action, but with some action that has been

executed before it and that is totally independent from the last one. Therefore

it can be undone without respecting the temporal order in which actions

have been executed during the forward execution. To better understand this

crucial, but simple, concept about reversibility, let us consider the following

example:

M
a

}}}}

b

!! !!
M1

b !! !!

M2

a}}}}
N

where from the state M we have two possible executions (paths) to reach

the state N . Either we can execute the computation ab (by choosing the left

path) or the computation ba (by choosing the right path). Note that the two

actions, a and b, are concurrent and independent, since from M both can be

executed. That is we can execute either M ։M1 ։ N or M ։M2 ։ N .

Let us suppose that the computation leading to N has been ab. Now from

N , it is possible to get back to M by choosing to undo the action a before

the action b, reaching so the state M2 that is a state that we could have

reached during the forward computation by just swapping the execution of

concurrent actions, in this case executing b before a. Said otherwise, we can

1Let us note that in a distributed execution there may not exist a global order among
actions.
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obtain the following execution M ։M1 ։ N  M2  M .

1.3 Why Higher-Order?

The spread of the Internet and intra-nets has made distributed systems a

central area for the development of modern software. Today distributed

systems are everywhere: from the world wide web, to the network of digital

equipments in a modern car, to our smart-phones and tablets, making even

ourselves part of a distributed environment. Moreover with the increasing of

bandwidth, messages exchanged in a distributed system are more and more

complex in structure, and sometimes they have an autonomous nature. This

can be seen in a number of applications of these days [79]:

Plug-ins. Modern browsers, and more generally modern applications, allow

the user to download extensions in the form of self-contained programs

with the purpose of extending, modifying or removing at run-time

functionalities.

Service Oriented Computing. Services are pieces of software proving

basic functionalities, which can be accessed, manipulated and composed

into complex architectures in order to perform non-trivial tasks.

From the examples above it is clear that code mobility is an increasingly

crucial aspect of modern applications. Hence, programming abstractions

should account for forms of code mobility in order to be able to support such

applications.

In order to use reversibility as an underlying theory for reliable dis-

tributed systems, we present a reversible variant of Higher-Order π-calculus

(HOπ) [86]. We chose HOπ as our substrate because we find it a convenient

starting point for studying distributed programming models with inherently

higher-order features such as dynamic code update, which we aim to combine

with abstractions for system recovery and fault tolerance. An alternative

would have been using the standard (first-order) π-calculus, and then en-

coding higher-order communication following the well-known representation

of higher-order into first-order. In fact, in [86], Sangiorgi provided a fully

abstract encoding of HOπ into π, showing that channel mobility is enough

to encode code mobility. Distinction between the two calculi comes when

considering explicit notions of localities, useful to model distributed systems.

Indeed, as hinted in [89], Sangiorgi’s encoding is no longer satisfactory once

location-aware primitives (such as locations) are considered. The moral is

that while translations such as Sangiorgi’s one are satisfactory in the case of
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basic higher-order languages, this is not necessarily the case for higher-order

process calculi with specialized constructs [79]. Even if improvements have

been made, it would be nice to reverse normal π-calculus and see whether by

using the same idea of Sangiorgi’s encoding we can obtain a fully abstract

encoding of reversible Higher-Order π into reversible π. For all these reasons,

we decided to start directly from HOπ building our reversible theory on it.

As we will see in the rest of the document the method we will use to reverse

HOπ is general enough that it can be applied also to normal π.

1.4 Contributions of the Thesis

The work presented in this thesis addresses three problems: reversing Higher-

Order π-calculus [58], controlling reversibility in Higher-Order π-calculus [57]

and stating the expressive power of reversibility (partially present in [58]).

Let us discuss in detail these contributions.

Reversing Higher-Order π. Reversible CCS [29] is an extension of CCS

labelled transition systems (or LTS) (without recursion) in order to support

reversibility. In RCCS, each process is monitored by a memory, that serves as

stack of past actions. Memories are considered as unique process identifiers,

and in order to preserve this uniqueness along a parallel composition, a struc-

tural law, storing the exact position of each process in a parallel composition,

permits to obtain unique memories though a parallel composition. But this

rule conflicts with the standard parallel operator properties (commutativity

and associativity). A general method for reversing process calculi has been

proposed by Phillips and Ulidowski in [82]. The main idea of this approach

is the use of communication keys to uniquely identify communications, and

to make static each operator (this will be made clear in Section 2.1.2). Un-

fortunately, this general method is only given for calculi whose operational

semantics can be defined using SOS rules conforming to the path format,

which is not the case for HOπ [77]. In other words, this approach does not

apply to calculi using binders or higher-order constructs.

Following the main ideas of these two works, we devise a simple syntax

and reduction semantics for a reversible HOπ calculus (for HOπ see [87]),

with a novel way of defining reversible reductions by just using simple unique

identifiers and memories. This semantics preserves the associativity and

commutativity of the parallel operator. Reversible Higher-Order π (also

known as ρπ) is the first, to the authors’ knowledge, reversible higher order

calculus, and we prove that reversibility in ρπ is causally consistent, and that

ρπ is a conservative extension of HOπ.
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Controlling Reversibility in Higher-Order π. Rollback recovery has

been one of the most widely used means for system recovery in the occurrence

of errors. The basic idea behind it is to model the system execution as a

succession of system states and, when an error occurs while the system is

reaching some state, to roll the system back to a previously reached state and

resume execution from that state [90]. Transactions and rollback recovery

schemas imply a way to bring the execution back to a certain specified

previous state. Also reversible debuggers provide primitives to restore the

execution of a debugged program through a specific command. For example

in [15] the primitive bstep n allows to restore the program execution of n

steps before the current one. In order to use reversibility as an underlying

theory to various techniques for dependability and debugging in distributed

systems, we need to control it.

To control reversibility two questions should be answered: when backward

reductions should be enabled, and how far back they apply. The notion of

memory introduced in ρπ is in some way a checkpoint, uniquely identified

by its tag. We then exploit this intuition to introduce an explicit form

of backward reduction. Specifically, backward reduction is not allowed by

default as in ρπ, but has to be triggered by an instruction of the form

roll k, whose intent is that the current computation be rolled-back to a

state just prior to the creation of the memory bearing the tag k. The

definition of a proper semantics for such a primitive is a surprisingly delicate

matter because of the potential interferences between concurrent rollbacks.

We define in this thesis a high-level operational semantics (and calculus,

that we call roll-π) which we prove sound and complete with respect to ρπ

backward reductions. We also define a lower-level distributed semantics using

asynchronous notifications and local checks, closer to an actual distributed

implementation of the rollback primitive, and we prove it to be fully abstract

with respect to the high-level semantics. To the authors’ knowledge, this is

the first2 work dealing with controlling reversibility of a reversible calculus.

Expressiveness of Reversibility. We show how it is possible to encode

ρπ into a variant of HOπ that we call HOπ+. This variant allows the use of

join patterns [42,43], sub-addressing and abstractions. All these constructs

are well known and well understood in terms of expressive power with respect

to HOπ (see [72, 88] for functions in π and [43] for join patterns in π).

Surprisingly there is no need to use a powerful construct such as passivation

(see [64, 91]) in order to mimic the reversible facility of ρπ. We state the

2In some sense the work done in [30] can be considered as controlling reversibility.
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faithfulness of our encoding with a finer result than the one presented in [57].

Our new result consists in a weak backward and forward barbed bisimulation

(see Section 3.4) between a ρπ configuration and its encoding. Such a

result, the first in its genre to the authors’ knowledge, allows us to encode

reversibility in an already existing calculus, without using a specific ad-hoc

primitive. Indeed, following the kernel language idea [85] (in which all the

primitives of a programming language can be built on the top of a restricted

set of fundamental primitives, the so called kernel language), if we were

to devise a reversible programming language we could choose not to add

reversibility as a kernel primitive. It is worth to note that the ρπ encoding,

along with the results, presented in [57] is different from the one of this thesis.

For a better explanation see the introductory part of the Chapter 5. Finally,

with a simple modification of the ρπ encoding, we are also able to encode

roll-π into HOπ+.

1.5 Outline

The thesis is structured in the following way:

Chapter 2: Reversibility. This chapter provides a deep and wide survey

about the state of art of reversibility (and more in general about

reversible computing) and abstractions for dependable systems based

on system recovery techniques.

Chapter 3: The ρπ calculus. This chapter introduces ρπ, the reversible

Higher-Order π-calculus. We first introduce it informally, by showing

the main ideas behind our reversing technique, and after that we present

it formally. Once the calculus is formally introduced, we show that

reversibility in ρπ is causally consistent. Naturally we show that ρπ is

a conservative extension of HOπ.

Chapter 4: The roll-π calculus. In this chapter the roll-π calculus is in-

troduced. It consists just in a extension of ρπ with a primitive able

to control its reversible facility. As usual we informally introduce this

calculus (called roll-π) and we discuss about the problems that such

a primitive can cause in presence of concurrent interfering rollbacks.

We then provide a high-level semantics for roll-π and show that it is

sound and complete with respect to ρπ. Finally we give a low-level

implementation of such primitive, close to a distributed algorithm, and

we show that the implementation respects the original semantics by

means of a full abstraction result.
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Chapter 5: Encodings. In this chapter a variant of HOπ is introduced,

called HOπ+, and then we show that it is possible to encode ρπ into

HOπ+. We defend the faithfulness of our encoding by proving that a

ρπ configuration and its translation behave the same. Finally, we will

show how it is possible to encode roll-π into HOπ+, by just slightly

modifying the previous encoding.

Chapter 6: Conclusion and Perspectives. We draw conclusions from

our work and discuss perspectives of future work.

Chapters origin. Most of the material present in this thesis has been pre-

viously presented in international conferences and appear in their respective

proceedings. Even if many improvements have been made to the original

papers, we think that the basic idea behind the published results remains

the same.

• ρπ and its theory presented into Chapter 3 has been published in the

paper [58].

• roll-π and its theory presented into Chapter 4 is based on results first

published in the paper [57].

• a preliminary version of the ρπ encoding and its faithfulness property

presented in Chapter 5 has been first published in the paper [58]. The

encoding of roll-π is original to this dissertation.
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Chapter 2

Reversibility

Thinking about reversibility intuitively leads to thinking also about undoing.

As hinted by Bennett [12], any forward computation (or execution) can

be transformed into a reversible one by just keeping an history of all the

information overwritten and hence lost (for example a variable update) by the

forward computation, and then use this information to reverse (or undo) the

forward computation. Moreover reversibility is also related to bidirectionality,

which implies a rich literature (see [28]). For the purpose and scope of

this document we will just focus on two broad classes of work: reversible

computing, where the main focuses are to provide a reversible computing

model and to see what is the expressive power or the computational cost of

reversibility; and dependable systems abstractions where dependable systems

are obtained by means of some forms of reversibility.

We may classify our work done in Chapter 3 and Chapter 5 (ρπ) as be-

longing to the area of reversible computing, and the work done on controlling

reversibility (see Chapter 4) as belonging to the area of abstractions for

dependable systems. In this way of thinking, in Section 2.1 we will review

all the works dealing with finding reversible models and with the expressive

power of reversibility. When possible we will compare the reviewed work with

respect to ours. On the other hand, in Section 2.2 a considerable variety of

works dealing with abstractions for dependable systems will be reviewed and

compared with our primitive for controlling reversibility. A few works that

we will take into account can be catalogued in both sections, for example

the work of Leeman [63] which defines a general way to keep track of past

actions in a programming language and provides two interpretations of the

undo operation. We classify these works, in both sections, by answering the

question of what the various authors try to achieve with reversibility.
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2.1 Reversible Computing

The first questions raised about reversible computing were about the dissipa-

tion of heat (and then loss of energy) that irreversible actions imply. Once

that it has been pointed out that reversible actions could be performed in a

dissipation-free way, then the following question was to understand if it was

possible to simulate reversible actions by irreversible ones, and try to find

computational models able to compute reversible computations. These histor-

ical questions are discussed in Section 2.1.1. In Section 2.1.2 all the reviewed

works try to understand what kind of primitives or techniques are necessary

in order to reverse both sequential and concurrent programming languages.

Section 2.1.3 introduces various works trying to formalize non-standard com-

putational models whose major characteristic is to be inherently reversible.

Starting from a reversible model, they try to model it and to understand

what are the interesting and useful primitives that can be extrapolated from

such models and brought into normal programming languages (somehow the

work done in this section is the inverse of Section 2.1.2). Finally Section 2.1.4

considers the question about the link between reversibility and causality.

2.1.1 History

Reversible computing in a broad sense has a long history, which started by

studies on the thermodynamic cost of irreversible actions. Indeed Szilard [93]

(back in 1925) was already arguing about the thermodynamic cost of infor-

mation destruction. In 1961, Landauer [56] has demonstrated that it is only

the logically irreversible operations in a physical computer that necessarily

dissipate energy by generating a corresponding amount of entropy for every

bit of information that is irreversibly deleted. Hence, logically reversible

operations can in principle be performed in a dissipation-free way. Moreover

he assumed that at least some logically irreversible operations were necessary

to non-trivial computations. In the 70’s Bennett started wondering about

irreversible actions and he noted that the execution of a reversible program

can be distinguished in two halves: the second half was necessary to undo the

work done by the first one. The first half would generate the desired answer

along with extra information needed by the second half to reverse the compu-

tation done by the first one. He then realized [12] that any computation could

be made reversible by just accumulating a history of all information that

normally would be thrown away and then disposing of this history in order

to reverse the process that created it. He then formalized a reversible Turing

machine. In order to relate his results with thermodynamics and heat dissi-
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pation he then started looking for some actual hardware, or some physically

reasonable theoretical model able to perform this reversible computation.

By seeing an analogy between DNA and RNA and the tapes of a Turing

machine he came to hypothesize that an enzymatic Turing machine could be

implemented. Like Bennett, also Fredkin has studied a computational model

able to perform reversible computations, but instead of looking to biology

he focused on logic circuits (gates). Indeed he came out with his Fredkin

gate (and conservative logic [44]): a reversible three inputs three outputs

logic function able to simulate all the other logic operations including AND,

OR and NOT. In the meanwhile Toffoli [94] proved that reversible cellular

automata are computationally universal. Moreover in [44] the billiard-ball

model of computation is given. This model, based on physical effects such as

elastic collisions involving balls and fixed reflectors, takes advantage from

the fact that a collision between two balls diverts each one from the path it

would have followed if the other was absent. Thus a collision can be thought

of a two inputs four outputs logic function whose outputs, for input A and

B, are respectively1:

A ∧B ¬A ∧B A ∧ ¬B A ∧B

and it is easy to see that from the outputs we can derive again the inputs,

that is we can obtain A from (A ∧ B) ∨ (A ∧ ¬B) and B from (A ∧ B) ∨

(¬A ∧ B). Intuitively, it is shown that by giving the container a suitable

shape (which corresponds to the computer’s hardware), and the balls suitable

initial conditions (which correspond to the software-program and input

data), one can carry out any specified computation. Moreover with the

addition of mirrors to redirect balls, such collisions can simulate any ordinary

logic function. This is the first example of a ballistic reversible computer.

Margolus [69] showed how to turn Fredkin’s model into a simple reversible

2D cellular automaton able to perform any arbitrary sequence of Boolean

operations. Finally, Benioff [11] and later Feynman [40] showed that it is

possible to devise models of reversible computers in quantum mechanics.

When the reversible Turing machine came out, questions about the

complexity of simulating irreversible computations by reversible ones were

raised ( [21,97]). In [21] a general upper bound, on the trade-off between space

and time, to simulate irreversible computations by means of reversible ones

is given. Moreover for the first time a lower bound on the extra storage space

required by reversible computation is given. Lately in [8] it was shown that

reversible Turing machines can compute exactly all the injective, computable

1where ∧ and ¬ are respectively the boolean conjunction and negation.
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functions.

2.1.2 Programming Languages

A framework for adding a general undo capability to a programming language,

is presented in [63]. The author gives a rich survey on the state of art, till the

80’s, about the undo operation and all its manifestations in different fields:

such as text editors, programming languages, function inversion, backtracking

and physics. The paper identifies two interpretations of the undo operation

and motivates them by examples. Such interpretations are: undob and undof.

Let us introduce them by examples showing the basic ideas behind them.

Consider that we are editing an empty file by issuing the following four

command lines: insert w, insert x, insert y and finally insert z. Then, the

history of the effects on the file is the following sequence:

〈Ω, w, wx,wxy,wxyz〉 (2.1)

where Ω represents the empty file, and wxyz represents the state of the

file containing four lines and four characters. Now, let us introduce a time

parameter t such that each unit of time consists to one edit command. So, if

we apply the function undob(1) to 2.1 we obtain the following history:

〈Ω, w, wx,wxy〉 (2.2)

if we continue by applying undob(3) to 2.2 we will obtain Ω. That is undob(t)

destroys the last t actions in the file history. On the other hand, by allowing

the undo operation to move forward in the history a second interpretation is

possible. For example, if we apply undof(1) to 2.1 we obtain the following

history:

〈Ω, w, wx,wxy,wxyz, wxy〉 (2.3)

and by applying undof(3) to 2.3 we obtain the following history:

〈Ω, w, wx,wxy,wxyz, wxy,wx〉 (2.4)

So the undof(t) function moves forward by just copying the state of t states

before. The main differences between the two operations are: (i) undob

destroys history while undof just moves forward preserving all the previous

states; (ii) undob moves the computation history to a point we already have

seen before while undof always creates a new history which never existed in

the past. To bring these intuitions into programming languages, a notion
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of undo-list is introduced. An undo-list is composed by triplets of the form

〈a, v, t〉 where a is a variable name, v its value and t the instant in which the

value has been assigned to the variable. Hence, the undo-list gives a means for

restoring previous values to variables. A computational history is then made

of states, each one represented by an undo-list. Two primitives mimicking

the semantics of undob and undof are given along with two primitives for

undo-list manipulation: one able to increase the instant t of current state

variables and the second one able to copy the value of an undo-list into

another. The undob interpretation is similar to our rollback primitive given

in roll-π (see Chapter 4). Indeed our primitive allows a configuration to

get back in history, to a previous state. The slight difference between them

is that undob(t) allows us to get back to t previous states, meanwhile our

primitive roll k allows us to get back to the state just before the creation

of the event k. With a slight modification of our semantics, we can easily

implement the primitive roll t that allows us to undo all the communications

related to the t-th memory, back in history, which caused the roll t operation.

Said otherwise, if we think of the computational history in our model as a

tree, then the primitive roll t will rise up the tree of t levels and will cut all the

child processes of the reached node. Naturally in a concurrent (distributed)

setting it is impossible to state what are the last t steps of the execution. On

the other hand, the undof(t) is in contrast with our model, since we require

backward steps to be causally consistent. Hence creating a new state which

never could have existed before, as undof does, will break this property.

An example of how high-level functional programs can be mapped com-

positionally into a certain kind of reversible automaton is given in [4]. Their

approach can be seen as a simple compositional compilation from higher-

level functional programs into a reversible model of computation. In [32] a

compositional translation of the λ-calculus into a form of reversible abstract

machine is given. The IAM , or interaction abstract machine (a reversible

linear head reduction machine) is then introduced and it is shown that the

KAM (Krivine abstract machine) and the PAM (pointer abstract machine)

of the λ-calculus can be seen as two instances of the IAM .

An innovative way to tackle the problem of compiling a normal function

into a reversible computational model, is the one of designing a natively

reversible programming language. In this way, when a function f is written

into this reversible language, its inverse f−1 is given for free: it is just

sufficient to execute backward the function f . For example, by just writing

the Fourier transformation and by changing the direction of execution one

can compute its inverse. In [98, 99] a reversible sequential programming

language is presented. Usually variable updates are irreversible since they
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imply information loss. The idea behind this language is to use reversible

updates. In order to do so, the language deals only with integers and all

the arithmetic operations are defined as 1st argument injective. A partial

function � : (A × B) → C is injective in its first argument iff ∀a, a′ ∈ A

∀b ∈ B, we have:

a� b = a′ � b =⇒ a = a′

Moreover for any operator � injective in its first argument there exists an

operator � : (C ×B) → A such that ∀a ∈ A, ∀b ∈ B:

((a� b)� b) = a

We can now define a reversible update. Given a partial function f : D → B

and operator � : (A × B) → C injective in its first argument, a partial

function g : (A ×D) → (C ×D) is a reversible update with respect to its

first argument if it is functionally equivalent to:

g(x, y) = (x� f(y), y)

In this way there is always an inverse for a reversible update:

g−1(x, y) = (x� f(y), y)

To prove the strength of this new programming language, an implementation

of a reversible Turing machine is given. Moreover in [100] a self-interpreter

of the language is given and in [9] an abstract reversible machine and its

assembly are given. Naturally to be fully reversible a hard assumption

is made: the language does not allow I/O operations. This mechanism of

making updates reversible is similar to the one used in ρπ in the way of saving

information. Indeed, in ρπ communications are made reversible by means of

memories. Memories store the pair 〈input process, output process〉 that give

rise to a communication. Moreover, a reversible update can be easily encoded

in ρπ by means of communication: it is sufficient to consider a variable as

a message on a particular channel containing its actual value. Then, an

assignment will just consume (read) the old value from this particular channel

and emit, on it, a message containing the new value. Since communications

are reversible, then also the encoded update will be reversible. A drawback

of this programming language is that, even if it is a full-fledged programming

language, it is devised to work only in a sequential setting, meanwhile ρπ is

thought to deal with concurrent (possibly distributed) programs.

Notions of reversible computation appear also in works on reversible
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debuggers [6,15,39] and on computer simulation tools [24]. In [39] a reversible

debugger is presented. Its main novelty is that it allows to reverse the state

of a (single-thread) program to a point in which a certain condition is

satisfied. Usually conditions are tests on variable values. If the variable

during the program execution changes its value monotonically then it is

possible to uniquely identify the closest checkpoint before this condition

is satisfied. In order to allow reversibility, the proposed system uses an

automatic checkpointing algorithm that mimics virtual memory algorithms

for paging. A checkpoint contains information about the memory state

and values of the processor registers (e.g. program counter, stack pointer).

When the computation has to be reversed till a point in which a condition

is satisfied, the closest checkpoint to reach this state is restored and then

the instructions are re-executed (interpreted) forward until the condition is

met. Naturally reversing I/O operations is crucial and the system allows

programmers to create ad-hoc routines to reverse this kind of operations.

A different approach is used in [15] where it is given a reversible debugger

able to reverse the computation of n steps without using checkpointing

mechanisms. Actually this approach cannot be properly considered as a

form of reversible computation, since instead of undoing the last n execution

steps, the program is re-executed till a point equivalent to going back of n

steps. To do so, special counters in charge of counting the number of the

steps are added at runtime. In order to exactly re-execute the program and

then its I/O operations, all the calls to I/O system primitives are stored.

For example if the program reads from the console an input, then this input

is saved and when the debugger re-executes the program the same input is

used. Our rollback primitive (see Chapter 4) is more related to the work

presented in [39] even if it is more precise since it allows to pinpoint the

state in which the program has to get back, without the need to re-execute

anything. Our approach can easily mimic the reversing facilities of [15] by

just undoing the last n steps that caused the rollback operation (see the above

discussion on undob). But this will require a modification to the semantics

of our primitive. Works on reversible debuggers deal just with a sequential

setting, and little is said about how to reverse a concurrent multi-processes

program. Our calculus natively supports concurrent programs and indeed

our rollback primitive allows to reverse a concurrent (possibly distributed)

program.

So far all the presented works deal with sequential settings. The first

reversible calculus was introduced in [29] (RCCS). It is a fully reversible

variant of CCS [70] (without recursion), where each process is endowed with

a memory. For example the monitored process m ⊲ P represents a RCCS

19



process P monitored by the memory m. Every action performed by a process

is then stored in its memory, that serves as stack of past actions. During

a synchronization, between two processes, every process memory stores the

memory of the counterpart process. In this way both memories are bound

and a process cannot undo a synchronization unless its counter part is willing

too. To better understand how past actions are saved into memories and

how they are used to reverse a process, let us see what the main rules of

RCCS are:

(act) m ⊲ α.P +Q
m:α
−−→ 〈∗, α,Q〉 ·m ⊲ P

(act*) 〈∗, α,Q〉 ·m ⊲ P
m:α∗−−−→ α.P +Q

From the above two rules (one the inverse of the other) it is simple to grasp

the idea behind RCCS. When a process is able to perform an action (prefix)

then this action along with the process context is put on the top of the

memory. A process is then able to undo its last action by popping out

from the memory the needed information. The asterisk “∗” stored in the

memory is a place-holder that possibly will be substituted by the memory

belonging to another process with whom the current process is performing a

synchronization. This approach, even if simple and immediate, fails when

applied to higher-order calculi since the stored information is just enough to

reverse prefix operators, and not, let us say, binders that imply a substitution

if executed. In ρπ we borrow the idea of using memories but instead of using

a stack structure we use a flat one, as we will see in Chapter 3. Moreover we

store the entire process before each action, in order to fully restore it back.

A more general approach on how to reverse process calculi defined in

a particular kind of GSOS format is given in [82], where as example the

CCSk calculus is presented. With this technique the structure of a process is

never destroyed (during the execution) and the progress is noted by marking,

with a special identifier, the actions that have been performed. In order to

tag the communicating processes, a unique identifier is generated on-the-fly

during the communication. The operators of a language like CCS can be

divided into the static operators, where the operator remains present after a

transition, and the dynamic operators, where the operator is destroyed by

the transition. Dynamic operators are more forgetful than static operators.

An example of dynamic operator for CCS is the choice “+” operator, while a

static one is the parallel “|” operator. Let us recall their (left) rules:

P
α
−→ P ′

P +Q
α
−→ P ′

P
α
−→ P ′

P | Q
α
−→ P ′ | Q
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We can note that after the transition the part “+ Q” of the process is

forgotten, while “| Q” not. Since the structure of the process has not to be

destroyed, rules to transform dynamic operators into static ones are given.

To prove the power of this set of rules, a reversible CCS (called CCSk) is

obtained by applying them on CCS. Each time two processes synchronize a

new communication key is created, for example:

a.P | a.Q→ a[m].P | a[m].Q

As one can see from the above example, the two prefixes a and a are not

destroyed (or forgotten) as in CCS: the execution passes just after them. Each

time a synchronization happens, a new communication key is generated (m

in the example) and the two prefixes participating to the action are marked

with it. The resulting process acts like P | Q (if doing forward executions)

but also keeps information about the previous synchronization, in order to

reverse it. This approach even if powerful, relies on global predicates in

order to generate new keys and to state which part of a process is allowed

to execute, that is which part of a process represents the exact present and

which one just represents the past of the current process. Moreover these

general rules are not enough to revert calculi with binders and higher-order

aspects. From this approach we will just borrow the idea of using unique

identifiers to identify communications.

2.1.3 Models of Biochemical process

Foundational studies of reversible and concurrent computations have been

largely inspired by areas such as chemical and biological systems, where

operations are reversible and only an injection of energy and/or a change of

entropy can move computational system in a desired direction.

In [31] a reversible variant of CCS to model biological systems is given.

Two properties of the language are provided: soundness (reversing computa-

tions do not give access to formerly unreachable states) and expressiveness

(the memorizing schema does not induce fake causal dependencies on back-

ward sequences of actions). The language is then adapted (by adding multi-

actions) to model complex biological situations such as the transcription of

a protein when controlled by a competition between different reactants.

In a massive concurrent system (see [22]), unlike concurrent systems,

different processes of the same kind are indistinguishable. Their actions can

cause effects, but not to the point of being able to identify the precise molecule

that caused an effect. So, standard notions of causality and independence of
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events need to be adapted. A subset of the DSD language2 (see [81]), called

reversible structures, able to model such massive concurrent systems is given

in [23]. In this setting processes are called gates, and are expressed as a

sequence of inputs followed by a sequence of outputs. Moreover, the special

symbol “ˆ” acts like a program counter : it indicates the next gate action.

Said otherwise, the cursor ˆ divides a gate into two parts: past actions and

future actions. Each time a gate performs a forward (backward) action its

cursor ˆ is moved forward (backward) of one position. For example the gate:

ˆa.b.w : c

represents a gate able to read a signal on a, then a signal on b and then it

is able to emit the signal w : c. Since ˆ points to the beginning of the gate,

this implies that the above gate has no history. Identifiers are used to label

signals, but they are not unique. When a gate reads a signal, it stores in its

structure the identifier of the signal, for example the gate:

u : a.v : b.ˆw : c

represents a gate that has consumed two signals, u : a and v : b, and is able

to emit the signal w : c. A signal can be released from a gate by just moving

on the cursor ˆ and by releasing the labelled output in parallel with the gate.

Following the example before we have:

u : a.v : b.ˆw : c→ u : a.v : b.w : cˆ | w : c

where we can note how the signal w : c is emitted by the gate, and how

the gate keeps track of this release by simply moving forward the cursor.

Naturally this execution can be reverted by getting back the signal and

moving back the cursor. That is:

u : a.v : b.w : cˆ | w : c→ u : a.v : b.ˆw : c

Since signal identifiers are not unique3, while reversing a signal emission, it

may happen that a gate captures back a signal of the same kind of the one

it emitted, but not the one it originally generated. This is possible since two

signal on the same channel with the same identifier are indistinguishable. A

gate of the form:

ˆb.c

2A language for designing DNA circuits.
3This is a property of massive concurrent systems.
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represents a gate able to consume a signal on b and then on c. When a signal

is consumed, its identifier is stored into the consuming gate and the cursor

moves on one step. Following the example before we have:

ˆb.c | u : b→ u : b.ˆc

This execution can be easily reverted by just releasing the signal with its

own identifier and moving back the cursor. That is:

u : b.ˆc→ ˆb.c | u : b

In order to relate reversible structures with other existing reversible

calculi, multiplicities are dropped down with a syntactic characterization

called coherent structures. In this way, it is proved that coherent reversible

structures can implement the asynchronous version of RCCS. Differences

between coherent reversible structures and non-coherent ones, are highlighted

by a reachability result.

The idea of using a special character to indicate what is the current state

of a process and what is its history is simple and intuitive. It somehow

recalls the technique used by Phillips and Ulidowski in [82] where the cursor

ˆ is substituted by communication keys since they need to keep causal

information about communications. Moreover this technique, even if simple

and immediate, fails when applied to higher-order calculi since the stored

information is just enough to reverse a signal emission or a signal reading.

The relevant aspect of this work it that by compiling the asynchronous variant

of RCCS into reversible structures, it is possible to bring RCCS into a real

reversible computational model (such as DNA circuits) and then to execute

it. It would be nice to see whether ρπ can be compiled into DNA circuits

or some other reversible computational model, or like [31] see whether ρπ is

able to model some biochemical reactions or it requires to be extended with

ad-hoc primitives.
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2.1.4 Causality

The notion of reversibility is strictly related to that of causality. Indeed in

order to reverse a system, some causality information should be exploited

to state for example which events have been caused by another one. Causal

consistency is an expected property of a concurrent reversible system. It

implies that states reached during backward computations are states that

could have been reached during the forward computation by just swapping

the order of execution of concurrent independent actions. For example, if we

take the following CCS process:

a | b

a possible execution can be ab, that is the process performs the action a and

then continues by doing the b. Since the two actions are concurrent (and

independent), by undoing the above computation we may choose to undo the

action a and we reach a state in which just the action b is done, that is we

reach a state that we could have reached in the forward computation by just

executing b before a. As we will see in Chapter 4, the way in which process

identifiers in ρπ are created induces a partial causal order on them. It is

possible then to state if a process caused another one. This partial order will

be exploited in order to capture all the processes that have been caused by a

particular communication. Therefore, reversing a communication is simple:

it is sufficient to eliminate all the processes caused by it and to restore back

all the processes not directly related (caused) to the communication we want

to reverse. This aspect will be made clearer later on in this document.

There is a rich literature about causality in concurrent systems, in par-

ticular about process calculi (see [16,25,27,96]). For example, in π-calculus

two kinds of causal dependencies are distinguished (see [16,36]). The first

ones are generated by the nesting of prefixes and are called structural (or

subject) dependencies. For example, if we take the following π process (and

execution):

a.b | b.c | a | c→ b | b.c | c→ c | c→ 0

we note that the synchronization on channel b (second step) causally depends

on the first step since the process b is guarded by a. Also synchronization on

c (third step) depends on the second step and then transitively on the first

one. The other kind of dependencies called link (or object) dependencies are

generated from the binding mechanisms on names. For example if we take

the π process:

νx. (y〈x〉 | x)
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in a labelled semantics we have that x is causally dependent on the scope

extrusion of x that is performed by the output y, that is x is causally

dependent on y. Let us note that the first kind of dependencies are present

in CCS-like calculi, meanwhile the second ones in calculi allowing channel

mobility. The way in which causality is captured in ρπ with tags is similar

to the one proposed by Boreale and Sangiorgi (see [16]), where each time a

synchronization is done causal information belonging to the two synchronizing

processes are exchanged. But this will require further investigation to see

whether the causal structure captured by ρπ is similar or related to the one

that emerges from Boreale and Sangiorgi’s work. Moreover, our encoding of

ρπ into a variant of HOπ (given in Chapter 5) is consistent with, though not

reducible to, Boreale and Sangiorgi’s encoding of π-calculus with causality

into π-calculus itself.

Lately Nestmann et al. [80] raised an interesting question about causality

in encoding synchrony via asynchrony. Indeed they argue that a good

encoding notion (see [47]) should also reflect causality notions. That is,

causal dependencies between actions should be preserved by the encoding.

This is in line with our work on the encoding of ρπ into HOπ+, even if we

base our notion of good encoding on a behavioral equivalence.

2.2 Dependable System Abstractions

A failure of a system occurs when its behavior differs from the one that has

been specified. The part of the system state leading to the failure is called

the error. An error is always caused by a fault. The fault is the original cause

of an error. Hence faults are the cause of errors that may lead to failures [95].

Fault tolerance is a means for achieving dependability despite the likeli-

hood that a system still contains faults and aiming to provide the required

service in spite of them [7]. The ability to undo any single action provides

us with an ideal setting to study, revisit, or imagine alternatives to standard

techniques for building dependable systems and to debug them. Indeed dis-

tributed reversible actions can be seen as defeasible partial agreements: the

building blocks for different transactional models and recovery techniques.

Two techniques are used to achieve fault tolerance: fault masking, aimed

at removing errors from the system state before failures happen; and fault

treatment (or handling) which is devoted to prevent faults from being acti-

vated again. In this section we will discuss the second kind of techniques.

Moreover, recovery from errors in fault-tolerant systems can be characterised

into two techniques: backward error recovery and forward error recovery.

Backward error recovery implies somehow the ability of the system to get back
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to a state before the error happened, and both transactions (see Section 2.2.1)

and checkpoint-recovery techniques (see Section 2.2.3) can be classified as

backward recovery technique. Our primitive for controlling reversibility can

be seen as a primitive that can be useful for supporting backward recovery

schemas. On the other hand, forward error recovery involves correcting the

error without resorting to reversing previous operations, since in a distributed

setting reverting a global state may be unaffordable in terms of resources

spent and complexity of the algorithm. In this way exception handling

(e.g. [53]) can be classified as a forward recovery technique. Depending on

how compensations (see Section 2.2.2) are programmed, they can be consid-

ered as forward or backward recovery techniques. Indeed a compensation

can be as simple as undoing an original action and then it can be seen as a

backward recovery technique or it can be a more complex program.

2.2.1 Transactions

In the classical transactional model [13,78] transactions are seen as sequences

of read and write operations that map consistent database states to consistent

states when executed in isolation. A concurrent execution of a set of transac-

tions is represented as an interleaved sequence of read and write operations,

and it is said to be serializable if it is equivalent to a serial (non-concurrent)

execution. A transaction is a sequence of actions that have to be executed

atomically: either it successfully completes (commits) and all its effect are

visible to the other transactions; otherwise it fails and its effects are not

visible.

Transactions, originally introduced in the field of DBMS (Data-Base

Management Systems) models, provide good concurrency abstraction models

in programming languages, since they ensure nice properties, such as atomicity

and isolation, difficult to obtain if manually programmed. Indeed, if a

developer were to ensure such properties, he would have to design the program

relying on low level concurrent programming primitives (e.g. critical sections,

semaphores, monitors), which is typically a difficult task, and even more,

hard to debug. In this section we will review works dealing with transactional

programming languages guaranteeing atomicity, consistency, isolation and

durability (or ACID) properties. Works modelling non-classical notions of

transactions (such as long-running transactions, open-nested transactions)

will be reviewed in Section 2.2.2.

In [50] primitives to build composable transaction abstractions in ML

are given. Transactions are factored into four separable features: persistence,

undoability, locking and threads and then each composition of these properties
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gives rise to different transactional models. Following the idea of adding

transactions to Objective Caml, the language AtomCaml [84] has been

proposed. The language is endowed with the new function atom(f), of type

(unit → ′a) → ′a, whose purpose is to execute atomically the function f .

The basic idea behind this function (and primitive) is that it tries to execute

sequentially (hence not interleaved) the entire function block, if during the

execution the thread executing it has been pre-empted by the scheduler then

the function rolls-back and re-executes again. This implies that the function

is executing in a mono-processor setting, where true concurrency does not

exist. Moreover there are a few limitations about the side effects that the

atomic block can have: input operations are not allowed (since there is no

way to reverse them); output operations are always buffered and flushed

only if the block successfully completes, and exceptions that escape from the

atomic block boundaries force the atomic block to complete. Changes made

by an atomic block to mutable variables are logged, that is variables are like

stacks of values, and in case of failure these changes are reverted. Other

works have explored transactional facilities on real distributed programming

languages (see [38,65,66]).

Different works have approached the design of transactional languages

from a semantic point of view, showing good properties. Transactional

Featherweight Java [54] is an object calculus with support for nested and

multi-threaded transactions. As usual a transaction is delimited by a special

block, in this case the onacid statement. Each time an onacid is executed a

new transition (identified by a label) is created, and all the threads executing

in it are bound with the transaction label. Each thread is executed into a

transactional environments that keeps track of all the read and write opera-

tions that the thread performs on objects. Then by varying the semantics of

operations on transactional environment two kinds of semantics are given:

versioning semantics and strict two phase locking semantics. The first one

mimics the STM (we will discuss about STM later on) logging mechanism,

since when a thread enters a new transaction, an empty log corresponding

to the transaction is created. This log keeps track of all the objects that are

modified within a transaction, for a write operation for example the old value

is written in the log. A transaction successfully commits if its log is consistent

with the father’s one, otherwise it fails. A log is consistent with the father

ones, if all the values of the objects read by the child thread have remained

unchanged until the committing time. In the strict two phase locking seman-

tics there is no more need of a log mechanism, since before modifying an

object, a transaction has to require a lock on it. All the collected locks will

be released when the transaction commits. Nested transactions inherit father
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locks. By using the lock mechanism, there is no way for a transaction to fail.

In [30] the authors show how it is possible to obtain a general notion

of transactions by simply introducing irreversible actions into RCCS [29].

Irreversible actions may be seen as commits, indeed if two communicating

processes synchronize on an irreversible action, this means that they will not

get back to a state prior to the irreversible action. In RCCS an irreversible

action is a normal action underlined, whose execution causes the freezing of

its memory, according to the following rule:

(act) m ⊲ α.P +Q
m:α
−−→ 〈◦〉 ·m ⊲ P

While executing an irreversible action no useful information about the previ-

ous state is stored in the memory. Indeed on the top of the memory is put

the symbol 〈◦〉 that will act as a dam: it is impossible to get back to a state

previous of its creation. This operation has side effects on all the processes

that communicated with the process who performed an irreversible action,

since it is no longer possible to undo previous synchronizations. Encoding

a transaction via irreversible actions is simple: a trace of reversible actions

ending with an irreversible action in which all the actions have caused the

last one, can be considered as executed atomically. That is, if it commits

then the irreversible action is executed and since all the previous actions

caused it, this implies they that cannot be reverted. If the irreversible action

is not executed, then there is a way to undo all the executed actions. Natu-

rally in this way it is only possible to program flat transactions, but these

transactions are enough to program classical concurrency problems such as

dining philosophers and leader election.

Distributed reversible actions can be seen as defeasible partial agreements:

the building blocks for different transactional models and recovery techniques.

The work of Danos and Krivine on reversible CCS (RCCS) [30] provides a

good example: they show how notions of reversible and irreversible actions in

a process calculus can model a primitive form of transaction, an abstraction

that has been found useful, in different guises, in reliable concurrent and

distributed programming. Their result is general enough, that it could be

applied to ρπ, in order to obtain a general form of transaction in it. Moreover

we could see whether all the primitives presented in the above works could

be implemented intro ρπ, using them as a test-bed for ρπ.

An elegant way to implement atomic transactions, as a concurrency

abstraction model, in programming language is the use of STM [52]: software

transactional memory. Different works [2, 3, 75] have explored the semantics
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of various STM schemas starting from strong atomicity : where a transaction

is executed sequentially (and then perfectly isolated), to weak atomicity

schemas where interleaving between non-conflicting transactions is allowed.

STM schemas imply the existence of a global store (sometimes also referred

as global heap).

In strong atomicity schemas there is no need to log all the modifications

done to the store by the transaction, since it is executed sequentially and it

always commits. In weak cases, each new transaction is endowed with an

empty log, on which are stored all the old values of (global store) variables

modified by the transaction. A transaction rollback can be done in two

different ways: either atomically, that is all the values of the log are reflected

at once into the global store, or into multiple steps (and this really mimics

undoing all the actions done by the transaction step by step). From the

point of view of process calculi and behavioural theory, an STM model

for the asynchronous CCS [71] is introduced in [5]. The key idea of the

calculus, called atCCS, is that a transaction is seen as a sequence of read and

write operations (parallelism is not allowed into a transaction) and all these

operations are written into the transaction log. When a transaction finishes

it can be committed or aborted depending on the global environment. If

there are enough messages corresponding to the transaction read operations,

then at once these message are removed and all the transaction output are

released. If it is not the case, the transaction is re-executed with a new

empty log. The authors show that this model is powerful enough to express

(encode) several concurrency problems and operators, such as: the leader

election algorithm, the guarded choice operator and join patterns. Moreover

a weak equivalence on atomic expressions (transaction) is given and it is

proved to be a congruence.

Although our reversible model adopts a message-passing programming

style4 to facilitate faults isolation, the transactional models for STM proposed

in these various works can provide useful benchmarks for it. Indeed by using

the same arguments of reversible updates done in Section 2.1.2, we could see

if the different schemas for STM works be implemented in ρπ.

2.2.2 Compensations

Our reversible model assumes that every single distributed action can be

undone at any time. This property is quite strict when dealing with real

distributed systems. Indeed, in a distributed system, composed by several

parties, it is unthinkable to enforce for example atomicity by using global

4There is no use of shared variables and global store.

29



locks. Long-running transactions [45,46], also knows as web-transactions [67],

are transactions in which isolation and atomicity requirements are relaxed. In

long-running transactions, instead of assuming perfect rollback upon a failure,

they provide support for explicit programming of compensation activities.

Although a compensation can be as simple as undoing an original action,

and this is perfectly matched by our work, it should not be considered as

the simply undoing of the original action. Indeed there are actions that by

nature cannot be undone (namely irreversible actions), for example if we think

about printing a file, it is impossible to undo this operation once it has been

executed. Several works have tackled the issue of formalizing long-running

transactions into well established process calculi such as Join-calculus [42]

and π-calculus. All these works recognize that a long running transaction

is composed by three elements: a transactional scope (sometimes with a

specific name) executing the transaction, the transaction body representing

the process that the transaction should execute if everything goes fine, and

the transaction compensation, representing a blocked process that will be

executed just in case of failure. All the works we are going to present differ

from different aspects such as the way a failure is launched, the way a

compensation is composed, or the way nesting is expressed.

cJoin [18,19] extends Join-calculus with primitives to program dynamic

nested communications. Negotiations (transactions) are processes that exe-

cute in a controlled environment until completion, when they commit and

make their results observable to the rest of the system. Additionally, they

can be explicitly aborted, in which case, suitable compensation programs

can be activated to resume a locally consistent state. A process P is bound

with its compensation Q. When multiple processes join a transaction, the

transactional scope gets enlarged in order to embrace them. Moreover, when

a process joins a transaction its compensation is stored in parallel with the

transaction one. In this way, as the transactional scope enlarges its compen-

sation changes. If a transaction aborts then its compensation is executed,

otherwise if it commits then its compensation is discarded.

πt-calculus [14] is an extension of asynchronous π-calculus with long

running transactions. A long running transaction is a process of the form:

t(P, F,B,C)

where P represents the body to be executed in a transactional way; F and B

are the failure manager and the failure bag to be executed if a failure occurs;

and C is the compensation, to be executed in case a father transaction fails.

The bag B is used to store all the compensations of all the child transactions
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that have committed while the father transaction is still executing. In this

way, if the father transaction fails, its failure manager is launched after the

compensations of all its committed children, using the following rule5:

t(abort, F,B,C) → B;F

There is no way for a transaction to abort enclosing or sibling transactions,

it can just abort itself. The authors show that πt-calculus can be encoded

into π-calculus, and they prove its correctness by means of weak barbed

bisimulation.

An interesting work considering timing issue in long running transactions

has been carried out in [61], where webπ is introduced. webπ is an extension

of π-calculus with the concept of long running transaction with time. A

transaction has the form:

〈P ; Q〉nx

where P represents the ongoing transaction x, that is the normal execution

of the transaction, Q represents the compensation of the transaction x, and n

represents the time in which the transaction has to execute. Such transaction

can fail because of different events: it may receive a failure signal x that

may rise from the inner process P or from the enclosing environment; or it

may fail because the time elapsed. If a transition fails, its compensation is

enabled. A committed transaction has the following form:

〈0 ; Q〉nx

and it is structurally equivalent to 0, that is a committed transaction cannot

fail and cannot be compensated. Nested transactions are flattened via

structural equivalence. Notwithstanding this flattening, parent transactions

may still affect children transactions by means of transactional names. But

since a committed transaction cannot be compensated, this means that this

model can only express open nested transactions [76] and for example nested

failure model cannot be easily encoded. Moreover a transaction compensation

is static: the execution cannot change or modify it. In [62] the expressive

power of webπ is shown by an encoding of the scope construct of BPEL [1].

Timing issues could be also considered in roll-π, where if a transaction runs

out of time it will be automatically rolled-back. Moreover, time could also

elapse while doing backward computation.

Expressiveness of long running transactions and of the way of compos-

ing compensations is thoroughly investigated in [60]. In this framework a

5Where “;” is the sequencing operator.
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transaction has the following form:

t[P,Q]

where (as usual) t is the transaction name, P is the body of the transaction

and Q is its compensation. As in webπ a transaction fails upon receiving

the signal t. This message can be generated internally, by the transaction

itself, or by the enclosing environment. The authors distinguish three ways

of constructing compensations: (i) static recovery, (ii) parallel recovery and

(iii) dynamic recovery. In (i) compensations are static, that is the evolution

of a transaction body cannot modify its compensation, meanwhile in (ii) and

(iii) the body of a transaction can modify its compensation by means of a

primitive that mimics a lambda abstraction to which the compensation is

passed. Let us see an example of how such primitive works:

t[inst⌊λX.R⌋.P,Q] → t[P,R{Q/X}]

depending on the form of R both parallel and dynamic recovery can be

expressed. For example, if R = X | Q1 then the resulting transaction would

be Q | Q1 (representing a parallel compensation); if R = a.(X | Q1) then

the resulting compensation would be a.(Q | Q1). In order to respond to

a fail with the most recent (and suited) compensation, priority is given to

the installation primitive. Hence, if a transaction receives a fail this fail

has effect only if the transaction body does not contain updates. Naturally

when a transaction fails, it disappears and its compensation is released. It is

shown that there exists an encoding of parallel recoveries into static ones,

but there does not exist an encoding of dynamic updates into static ones.

Said otherwise, dynamic recovery is strictly more expressive.

Various models of composing compensations in different calculi (in terms

of expressiveness) are studied in [20]. In this framework actions are atomic:

either they commit or they abort. There is no way to observe an intermediate

state of an action. Each action is bound with its compensation, and this

binding is expressed in the following way:

A÷B

Actions are grouped into sagas of the form {P} where P is a composition of

actions. The simplest calculus expressed by this framework is the sequential

saga, where actions can be just composed into sequences. As a saga evolves
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by executing its inner actions, its compensation is composed. For example:

{A1 ÷B1;A2 ÷B2;A3 ÷B3 , 0}

after executing actions A1, A2 (they successfully committed) we obtain the

following saga:

{A3 ÷B3 , B2;B1}

where the compensation of the entire saga in case of A3 fails is: the compen-

sation of A2 followed by the compensation of A1. Let us note that if A3 fails

its compensation B3 is not executed since B3 serves to compensate A3 only if

it successfully commits. This is why actions are considered atomic, and then

it is no possible to observe intermediate states of them. Compensations are

executed in the reverse order in which actions have been executed. So, a saga

involving A1, . . . An activities is guaranteed to execute the entire sequence

A1; . . . ;An (where to the action Ai corresponds the compensation Bi) or

the compensated sequence A1; . . . Aj ;Bj ; . . . ;B1 for some j < n. If a com-

pensation fails, then the entire saga aborts, leaving the entire system in an

undefined state. This implies that compensations cannot be sagas themselves,

or that a compensation cannot have its own compensation. Different and

more complex models of composing activities (e.g. parallel execution, nested

sagas, programmable compensations) are explored, and each time the way

compensations are composed and executed is formalized. Naturally, if we are

able to write compensations that are the exact complement of the actions,

that is Ai ÷ A−1
i ,then it is possible to write sagas whose compensations will

imply the perfect rollback of each executed action, as in roll-π. Indeed, such

kind of sagas can be easily encoded in roll-π: it is just sufficient that each

compensation is a rollback operation aiming at reversing the corresponding

action (communication). Moreover if all the actions are correlated, that is

all the actions depend on the first one, then all the compensations will result

in a rollback aiming at reversing the action A1.

The need to distinguish generic faults from compensating requests in a

distributed system led to the development of an extension of JOLIE [49,59,74]:

a programming language for service oriented applications with primitives for

dealing with fault management. A transactional scope has the form:

scopeq(P,H)

where q is the name of the scope, P is the body and H is a mapping from

scopes and faults to error handlers. When a scope successfully terminates,

its handlers are automatically installed to the enclosing scope. In this way
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an action (scope) can always be compensated. There is a distinction between

faults (generated by the primitive throw(f)) and a request of compensating a

scope (generated by the primitive comp(q)). A fault f is propagated till there

is a scope able to handle it (in a mechanism similar to Java when exceptions

are raised), that is the scope defines H(f). During its propagation the fault

kills all the scopes unable to handle it. In this way it is given the possibility

to deal with several kind of faults. A request of compensation never kills

a scope. A primitive for installing handlers is given (allowing so dynamic

compensations) and it has the priority on fault handling. This mechanism

(along with handlers installation) is similar to the one used in [60]. It would

be nice to extend roll-π with mechanisms of dynamic compensations, such as

the one proposed in [60] and JOLIE. In this way it would be possible, while

undoing the computational history, to compensate irreversible actions or it

would be possible to write compensations such as roll k;P whose semantics

is: get the system back to the event k and then proceed with the execution

of P .

A different formal approach to compensation composition is given in [34,

35] where the TransCCS calculus is introduced. TransCCS is an extension

of CCS6 with support for communicating transactions. Communicating

transactions is a transactional model in which the isolation requirement is

dropped. Such kind of transactions can be used to model automatic error

recovery in distributed systems. In TransCCS a transaction takes the form:

JP ⊲k QK

where P is the body, Q is the compensation and k is the name of a transaction.

Aborting and committing are expressed by the following rules:

Jco k | P ⊲k QK→ P JP ⊲k QK→ Q

where we can see that commit is explicitly expressed by the process co k,

meanwhile a transaction can abort at any time. If a process gets into a

transaction, then it is put in parallel with the transaction body and a copy

of it is stored in the compensation part, according to the following rule:

JP ⊲k QK | R→ JP | R ⊲k Q | RK

in this way if the transition k fails, all the processes that communicated

with it are restored along with the original compensation. The way in which

6CCS with recursion.
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processes get into a transaction and how something is stored in parallel with

the transaction compensation, is similar to the enlarging scope mechanism

of cJoin (as discussed above). The only restriction on this rule is that an

absorbed process cannot contain the transaction name, that is a transaction

cannot be directly committed by an external process. Naturally this rule

should be used just to absorb processes able to communicate with the

transaction body. The way of keeping a copy of the processes before a

communication resembles the memory trick used in our ρπ (see Chapter 3),

and indeed it assures perfect rollback if correctly programmed. But unlike

ρπ where the memory mechanism permits to store processes related to a

single communication, allowing so to roll-back just all the processes causally

dependent by a particular communication, in TransCCS this is hard to

program. An elegant way to encode perfect rollback in TransCCS is to

exploit the recursion operator as in the following example:

µX.JP ⊲k XK

in this way if after several interactions the transaction k fails, then its

compensation will be composed by the transaction itself in parallel with all

the processes that communicated with it, said otherwise on failure the system

will roll-back exactly to a previous state. This model, even if simple and

endowed with a good behavioural theory, has a few drawbacks: a transaction

may capture processes that do not communicate with it, and then the only

way to release them for the transaction is to (spontaneously) fail. Moreover

failure is spontaneous, and it adds non determinism to the calculus.

2.2.3 Checkpointing and Rollback

The notion of memory introduced in ρπ is in some way a checkpoint, uniquely

identified by its tag. By exploiting these checkpoints, our rollback primitive

is able to roll-back the entire system to an exact state indicated by the

programmer. This is somehow akin to a checkpointing and roll-back schema.

In distributed systems, checkpointing and roll-back (also known as checkpoint-

recovery) is a technique of backward recovery (see [7]) for creating fault

tolerant systems. The key concepts of this technique are: (i) periodic saves of

system global state; (ii) in event of a fault, the state is restored via a rollback.

This particular technique gives to a system (or to an application) the ability

to save its state and tolerate faults by simply restoring an earlier state. In

fact, when a checkpoint is executed, a snapshot of the entire system is taken

and normally it is saved into some non-volatile medium. If a fault is detected,

the recovery mechanism restores the system to the last checkpointed state.
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There is an abundant literature (see [7, 37] for a quick review) on protocols

and techniques on how to build a global (distributed) checkpoint, on what

kind of information should represent the global state, and so on. We will

address this topic by a programming language point of view, and then not

considering libraries, middleware and operating system services.

Transient faults are unusual conditions that can be remedied by just

re-executing the code which raised it. These faults are usually generated by

temporally unavailable resources. For example, if a server is rebooting due to

an internal error, then all the client requests issued during the rebooting time

should be re-executed. In [101] a concurrent ML language, called stabilizers,

for transient concurrent fault recovery in concurrent program is presented.

The language introduces three new primitives: stable, stabilize and cut,

able to deal with program global checkpoints. Primitive stable allows

a thread to create a new stable section, that is a new global checkpoint.

Primitive stabilize, issued by a single thread, allows the entire program

to roll-back to the previous global checkpoint and finally primitive cut

discards the current global checkpoint. This ensures that subsequent calls to

stabilize will never cause the program to get back to a state that existed

logically before the cut. Even if the semantics is proved to be safe, that is

stabilization actions can never manufacture new states, the semantics cannot

avoid the domino effect, that is a stabilize operation may unduly revert the

program to a state beyond the target checkpoint. Thanks to the fine-grained

causality tracking implied by our reversible substrate, our roll-π calculus

does not suffer from uncontrolled cascading rollbacks (domino effect) which

may arise with [101]. Nonetheless it is hard to make a comparison between

our roll-π and the stabilizer programming language. Indeed, it would be

necessary at least to introduce functions in our calculus, or to introduce our

checkpointing mechanism in a functional concurrent language.

Bringing checkpoint-recovery technique in the actor model has been

tackled by Transactor [41]: a fault tolerant programming model for composing

loosely-coupled distributed components. It extends the actor model with

constructs which distributed processes can use to to build globally consistent

checkpoints. Basically a transactor can decide to commit its current state to

a stable one. When a transactor becomes stable, further communications

cannot change its state. It can be seen as a promise, to all the other

transactors who communicated with it, that its state will not change. When

an unstable transactor decides to roll-back, or it is asked to do so, it will cause

the rollback of all the transactor whose state depended on the state of the

unstable transactor. Interestingly the semantics also consider message loss.

The language is proved to be sound, that is a trace containing node failures
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is equivalent to a normal one not containing failures, but possibly message

losses. Moreover, checkpointing is possible just under certain conditions,

and not in general cases. Indeed, not all the transactor programs can reach

global checkpoints. A trivial program with a transactor that sends messages

introducing dependencies, but never stabilizes or tries to checkpoint, will

eliminate the ability of its dependent parties to reach checkpoints. Hence the

authors introduces the Universal Checkpoint Protocol (UPC) that assumes

a set of preconditions that will entail global checkpointing for a set T of

transactors. Preconditions require that: (i) transactors in set T know their

acquaintances indicated by the set ACQ and that this set is saved in their

states; (ii) transactors in T eventually stabilize and start the UCP protocol,

and moreover all the transactors need to be able to answer to ping messages;

(iii) once one transactor in T stabilizes the others cannot rollback; (iv) during

the UCP there cannot be failures. Finally, when a transactor in T stabilizes

it:

1. Pings every transactor in ACQ.

2. Checks if it is dependent:

• if not it pings every transactor in ACQ, checkpoints and ends the

protocol;

• if so, it pings every transactor in ACQ, checkpoints and waits for

the incoming pings.

3. On reception of a ping message, goes back to 2.

Thanks to the fine-grained causality tracking implied by our reversible

substrate, roll-π in contrast to transactor, provides a built-in guarantee

that, in failure-free computations, rollback is always possible and reaches a

consistent state (soundness of backward reduction). Hence we do not need

to resort to preconditions or complex algorithms such as UPC to reach a

consistent states.

From a formal point of view, various abstractions for fault-tolerant systems

have been studied in [26]. In this work, a variant of π calculus is given, where

processes can be aggregated in conclaves (groups). A conclave have the form:

c{P1 | . . . | Pn}

and each conclave is endowed with a log of the form

c{{L}}
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where L is a collection of logical propositions. Conclaves have flat structures,

that is there is no support for nesting, hence this model fails in modelling

nested transactions. Processes can query logs (also those belonging to other

conclaves) and can await the verification of certain conditions. But a process

can just modify the log of its own conclave. Conclaves and logs are given

as building blocks for fault tolerant distributed systems. If a process in a

conclave fails, then the entire conclave fails and failure is propagated through

causally dependent conclaves. Causal dependencies among conclaves are

stored into logs. By varying log entries and rules for adding information to

logs different transactional models can be easily encoded. For example a

compensation for an aborting conclave can be easily written as a process that

awaits for the abort state of a particular log, and then continues with the

process in charge compensating the conclave. Nonetheless, this framework

does not provides automatic supports for undoing the effects of conclaves

that abort, while our roll-π directly provides a primitive to undo all the

effects of a communication.
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Chapter 3

The ρπ calculus

In this chapter, we continue the study undertaken by Danos and Krivine, on

RCCS, by tackling the following question: how can we introduce reversible

actions in a higher-order concurrent calculus, specifically, the asynchronous

Higher-Order π-calculus (HOπ)? This question finds its motivation in the

pursuit of a suitable programming model for the construction of reliable

and adaptive systems, and hence in the need to study the combination

of reliable programming abstractions with modular dynamicity constructs

enabling dynamic software update and on-line reconfiguration. As answer to

this question, we define a reversible variant of the Higher-Order π-calculus

(HOπ) [87]. A general method for reversing process calculi has been proposed

by Phillips and Ulidowski in [82]. Unfortunately, it is only given for calculi

whose operational semantics can be defined using SOS rules conforming to

the path format, which is not the case for HOπ [77]. We therefore adopt

an approach inspired by that of Danos and Krivine, but with significant

differences. In particular, in their RCCS approach, the usual congruence laws

associated with the parallel operator do not hold. Our first contribution is

thus a simple syntax and reduction semantics for a reversible HOπ calculus

called ρπ, with a novel way to define reversible actions while preserving

the usual structural congruence laws of HOπ, notably the associativity and

commutativity of the parallel operator.

The rest of the chapter is organized as follows: we first start with an

informal discussion presenting the issues about reversing a calculus and

making a comparison with the reversible CSS (RCCS); then we present the

syntax and semantics of ρπ (for reversible Higher-Order π) and its properties.
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3.1 Informal Presentation

Building a reversible variant of a process calculus involves devising appro-

priate syntactic representations for computation histories. In general, since

process calculi are not confluent and processes are non-deterministic, revers-

ing a (forward) computation history means undoing the history not in a

deterministic way, but in a causally consistent fashion, where states that

are reached during a backward computation are states that could have been

reached during the computation history by just performing independent

actions in a different order. In RCCS, Danos and Krivine achieve this with

CCS without recursion by attaching a memory m to each process P , in

the monitored process construct m : P . A memory in RCCS is a stack of

information needed for processes to backtrack. Thus, if two processes P1 and

P2 can synchronize on a channel a to evolve into P ′
1 and P ′

2, respectively,

then the parallel composition of monitored processes m1 : (P1 + Q1) and

m2 : (P2 +Q2) can evolve, according to RCCS semantics, as follows:

m1 : (P1+Q1) | m2 : (P2+Q2) → 〈m2, a,Q1〉 ·m1 : P
′
1 | 〈m1, a,Q2〉 ·m2 : P

′
2

The memory 〈m2, a,Q1〉 ·m1 represents the fact that the process tagged by

this memory has performed a synchronization on channel a, interacting with

the process with tag m2, and discarding the alternative process Q1.

Additionally, Danos and Krivine rely on the following structural congru-

ence rule:

m : (P | Q) ≡ 〈1〉 ·m : P | 〈2〉 ·m : Q

This rule ensures that each primitive thread, i.e. some process of the form

R1+R2, gets its own unique identity. Since this rule stores the exact position

of a process in a parallel composition, it is not compatible with the usual

structural congruence rules for the parallel operator, namely associativity,

commutativity, and 0 as neutral element. Indeed RCCS is not equipped

with the standard equivalence rules for the parallel operator, otherwise

one could have that structurally equivalent processes may reduce to not

structurally equivalent ones. For example, if we take the RCCS process

R = m : (a.P | a.Q), by using standard equivalence for the parallel, one may

write S = m : (a.P | a.Q | 0) with R ≡ S. Now, if we consider the execution

of R and S we get:

R ≡〈1〉 ·m : a.P | 〈2〉 ·m : a.Q→ 〈m2, a, 0〉 ·m1 : P | 〈m1, a, 0〉 ·m2 : Q = R1

S ≡〈1〉 ·m : a.P | 〈2〉 · 〈1〉 ·m : a.Q | 〈2〉 · 〈2〉 ·m : 0 →

〈m2,1, a, 0〉 ·m1 : P | 〈m1, a, 0〉 · 〈2〉 · 〈1〉 ·m : Q | 〈2〉 · 〈2〉 ·m : 0 = S1
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with mi = 〈i〉 ·m, mi,j = 〈i〉 · 〈j〉 ·m and i, j ∈ {1, 2}. But, as one can see,

we have that R ≡ S, R→ R1 , S → S1 but R1 6≡ S1.

Danos and Krivine suggest that it could be possible to work up to tree

isomorphisms on memories, but this would indeed lead to a more complex

syntax, as well as additional difficulties (see Remark 3.4 below).

We adopt for ρπ a different approach: instead of associating each thread

with a stack that records, essentially, past actions and positions in parallel

branches, we rely on simple thread tags, which act as unique identifiers but

have little structure, and on new process terms, which we call memories,

which are dedicated to undoing a single (forward) computation step. Note

that in RCCS memories of monitored processes are used also as identifiers

since they are unique among them.

To ease the understanding of our approach we will first (informally)

introduce HOπ and then we will show how to hone the HOπ reduction rule in

order to reverse it. The Higher-Order π-calculus is a variant of the π-calculus

where the data exchanged by processes are processes themselves. The syntax

of HOπ is depicted in Figure 3.1 (page 44) by just considering the productions

of processes P . A communication in HOπ is given by the following rule:

a〈P 〉 | a(X) ⊲ Q→ Q{P /X}

where a message a〈P 〉 on channel a is read by a receiver process (or trigger)

a(X) ⊲ Q. The result of the message receipt consists in the launch of an

instance Q{P /X} of the body of the trigger Q, with the formal parameter X

instantiated by the received value, i.e. process P . After the communication

has been performed, from process Q{P /X} there is no information about the

pair of processes (input, output) that generated it and hence it is impossible

to reverse this communication. In order to reverse a communication, we need

to add information about the previous configuration. We then modify the

above rule, by labelling each process with an identifier (tag), and by storing

the pair of processes that give rise to a communication into a memory process.

Hence, a forward computation step in ρπ (noted with arrow ։) takes the

following form:

(κ1 : a〈P 〉) | (κ2 : a(X) ⊲ Q) ։ νk. k : Q{P /X} | [M ; k]

with M = (κ1 : a〈P 〉) | (κ2 : a(X) ⊲ Q). Each thread (message and trigger)

participating in the above computation step is uniquely identified by a tag:

κ1 identifies the message a〈P 〉, and κ2 identifies the trigger a(X) ⊲ Q. The

result of the message receipt consists in a classical part and two side effects.
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The classical part is similar to the HOπ, where the continuation of the trigger

is instantiated with the received parameter. The two side effects are: (i) the

tagging of the newly created process Q{P /X} by a fresh name k (operator ν

is the standard restriction operator of the π-calculus), and (ii) the creation

of a memory process [M ; k]. M is simply the configuration on the left hand

side of the reduction. Note that by using the restriction operator, we enforce

the property that processes are uniquely identified.

In this setting, a backward computation step takes the form of an in-

teraction between a memory and a process tagged with the appropriate

name: when a memory [M ; k] is put in presence of a process tagged with k,

a backward reduction (noted with the arrow  ) can take place. It kills the

process tagged with k and reinstates the configuration M :

(k : P ) | [M ; k]  M

We thus have:

M ։ νk. k : Q{P /X} | [M ; k]  νk.M

Since k is fresh, νk.M is actually (structurally) equivalent to M . We thus

have a perfect reversal of a forward computation: M ։ M .

To ensure that unique identifiers are generated (and preserved) through

a parallel composition we adopt a different technique from the one of [29]:

we flatten the structure of a parallel composition into a composition of

primitive threads, that is a composition of messages and triggers, and we

create a sequence of new names. Then to each primitive thread is given a new

structured identifier containing information about the generated sequence

and the initial identifier of the parallel composition. For example:

k1 : (a〈0〉 | b〈0〉 | a(X) ⊲ Q) ≡

νh̃. (〈h1, h̃〉 · k : a〈0〉) | (〈h2, h̃〉 · k : b〈0〉) | (〈h3, h̃〉 · k : a(X) ⊲ Q)

with h̃ = {h1, h2, h3}. An identifier of the form 〈hi, h̃〉 · k essentially tells us

that the sequence h̃ has been generated by a parallel process identified by

k, containing |h̃| primitive threads. With this simple trick associativity and

transitivity of the parallel operator are preserved.

Remark 3.1 Following Danos and Krivine [30], one could consider also

taking into account irreversible actions. We do not do so in this document,

though, because we focus on reversibility, and because adding irreversible

actions to ρπ would be conceptually straightforward.
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3.2 Syntax and Semantics

Names, keys, and variables. We assume the existence of the following

denumerable infinite mutually disjoint sets: the set N of names, the set K

of keys, and the set V of process variables. The set I = N ∪ K is called

the set of identifiers. We denote by N the set of natural integers. We let

(together with their decorated variants): a, b, c range over N ; h, k, l range

over K; u, v, w range over I; X,Y, Z range over V. We denote by ũ a finite

set of identifiers {u1, . . . , un}.

Syntax. The syntax of the ρπ calculus is given in Figure 3.1 (in writing

ρπ terms, we freely add balanced parenthesis around terms to disambiguate

them). Processes of the ρπ calculus, given by the P,Q productions in

Figure 3.1, are the standard processes of the asynchronous Higher-Order

π-calculus. A receiver process (or trigger) in ρπ takes the form a(X) ⊲ P .

Messages have no continuation, since ρπ is an asynchronous calculus. P | Q

is the parallel composition of P and Q, while νa. P binds name a inside

process P .

Processes in ρπ cannot directly execute, only configurations can. Configu-

rations in ρπ are given by theM,N productions in Figure 3.1. A configuration

is built up from threads and memories.

A thread κ : P is just a tagged process P , where the tag κ is either a

single key k or a pair of the form 〈h, h̃〉 · k, where h̃ is a set of keys and h ∈ h̃.

A tag serves as an identifier for a process. As we will see below, together

with memories tags help to capture the flow of causality in a computation.

A memory is a process of the form [µ; k], which keeps track of the fact

that a configuration µ was reached during execution, that triggered the

launch of a thread tagged with the fresh tag k. In a memory [µ; k], we

call µ the configuration part of the memory, and k the tag of the memory.

Memories are generated by computation steps and are used to reverse them.

The configuration part µ = (κ1 : a〈P 〉) | (κ2 : a(X) ⊲ Q) of the memory

records the message a〈P 〉 and the trigger involved in the message receipt

a(X) ⊲ Q, together with their respective thread tags κ1, κ2.

We note P the set of ρπ processes, and C the set of ρπ configurations.

We call agent an element of the set A = P ∪ C. We let (together with their

decorated variants) P,Q,R range over P ; L,M,N range over C; and A,B,C

range over A. We call primitive thread process a process that is either a

message a〈P 〉 or a trigger a(X) ⊲ P . We let τ and its decorated variants

range over primitive thread processes.

Remark 3.2 There is no construct for recursive definitions or replicated
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P,Q ::= processes

0 null process

| X process variable

| νa. P restriction

| (P | Q) parallel

| a〈P 〉 message

| a(X) ⊲ P trigger

M,N ::= configurations

0 null configuration

| νu.M restriction

| (M | N) parallel

| κ : P thread

| [µ; k] memory

κ ::= k | 〈h, h̃〉 · k tags

µ ::= ((κ1 : a〈P 〉) | (κ2 : a(X) ⊲ Q)) configuration part

u ∈ I

a ∈ N

X ∈ V

h, k ∈ K

κ ∈ T

Figure 3.1: Syntax of ρπ.
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processes in ρπ. This is because a replicated process can be easily defined1 in

ρπ: let B = (a(X) ⊲ a〈X〉 | X), then BangP = νa. a〈P | B〉 | B provides any

number of copies of P .

Free names and free variables. Notions of free identifiers and free

(process) variables in ρπ are classical. It suffices to note that constructs

with binders are of the forms: νa. P which binds the name a with scope

P ; νu.M , which binds the identifier u with scope M ; and a(X) ⊲ P , which

binds the variable X with scope P . We denote by fn(P ), fn(M) and

fn(κ) the set of free names, free identifiers, and free keys, respectively,

of process P , of configuration M , and of tag κ. Note in particular that

fn(κ : P ) = fn(κ)∪fn(P ), fn(k) = {k} and fn(〈h, h̃〉 ·k = {h}∪ h̃∪{k}. We

say that a process P or a configuration M is closed if it has no free (process)

variable. We denote by Pcl the set of closed processes, Ccl the set of closed

configurations, and Acl the set of closed agents.

Remark 3.3 In the remainder of this chapter, we adopt Barendregt’s Vari-

able Convention: If terms t1, . . . , tn occur in a certain context (e.g. definition,

proof), then in these terms all bound identifiers and variables are chosen to

be different from the free ones.

Consistent configurations. Not all configurations allowed by the syntax

in Figure 3.1 are meaningful. In a memory [µ; k], tags occurring in the

configuration part µ must be different from the tag k. This is because the

key k is freshly generated when a computation step (a message receipt) takes

place, and it is used to identify the newly created thread. Tags appearing

in the configuration part identify threads (message and trigger) which have

participated in the computation step. In a configuration M , we require all

the threads to be uniquely identified by their tag, and we require consistency

between threads and memories: if M contains a memory [N ; k] (i.e. [N ; k]

occurs as a sub-term of M), we require M to also contain a thread tagged

with k: components of this thread, i.e. threads whose tags have k as a suffix,

can occur either directly in parallel with [N ; k] or in the configuration part

of another memory contained in M (because they may have interacted with

other threads). We call consistent a configuration that obeys these syntactic

constraints. We defer the formal definition of consistent configurations to

Section 3.2.1.

1This is a basic property of all higher-order calculi with name creation.
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(E.ParC) A | B ≡ B | A (E.ParA) A | (B | C) ≡ (A | B) | C

(E.NilM) A | 0 ≡ A (E.NewN) νu.0 ≡ 0

(E.NewC) νu. νv.A ≡ νv. νu.A (E.NewP) (νu.A) | B ≡ νu. (A | B)

(E.α) A =α B =⇒ A ≡ B (E.TagN) κ : νa. P ≡ νa. κ : P

(E.TagP) k :
n
∏

i=1

τi ≡ νh̃.
n
∏

i=1

(〈hi, h̃〉 · k : τi) h̃ = {h1, . . . , hn} n ≥ 2

Figure 3.2: Structural congruence for ρπ.

3.2.1 Operational semantics

The operational semantics of the ρπ calculus is defined via a reduction relation

→, which is a binary relation over closed configurations → ⊂ Ccl×Ccl, and a

structural congruence relation ≡, which is a binary relation over processes and

configurations ≡ ⊂ P2∪C2. We define evaluation contexts as “configurations

with a hole ·” given by the following grammar:

E ::= · | (M | E) | νu.E

General contexts C are just processes or configurations with a hole. A

congruence on processes and configurations is an equivalence relation R that

is closed for general contexts: P RQ =⇒ C[P ]RC[Q] and M RN =⇒

C[M ]RC[N ].

The relation ≡ is defined as the smallest congruence on processes and

configurations that satisfies the rules in Figure 3.2. We note t =α t
′ when

terms t, t′ are equal modulo α-conversion. If ũ = {u1, . . . , un}, then νũ. A

stands for νu1. . . . νun. A. We note
∏n

i=1Ai for A1 | . . . | An (there is no

need to indicate how the latter expression is parenthesized because the

parallel operator is associative by rule E.ParA). In rule E.TagP, processes

τi are primitive thread processes. Recall the use of the variable convention

in these rules: for instance, in the rule (νu.A) | B ≡ νu. (A | B) the

variable convention makes implicit the condition u 6∈ fn(B). The structural

congruence rules are the usual rules for the π-calculus (E.ParC to E.α)

without the rule dealing with replication, and with the addition of two new

rules dealing with tags: E.TagN and E.TagP. Rule E.TagN is a scope

extrusion rule to push restrictions to the top level. Rule E.TagP allows to
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generate unique tags for each primitive thread process in a configuration,

by spreading the information of a tag among all the primitive processes in

parallel. For example, the process k : (a〈P 〉 | b〈Q〉 | (a(X)⊲R)) is structurally

equivalent to:

νh̃. (〈h1, h̃〉 · k : a〈P 〉) | (〈h2, h̃〉 · k : b〈Q〉) | (〈h3, h̃〉 · k : a(X) ⊲ R)

with h̃ = {h1, h2, h3}.

An easy induction on the structure of terms provides us with a kind of

normal form for configurations (by convention
∏

i∈I Ai = 0 if I = ∅):

Lemma 3.1 (Thread normal form) For any configuration M , we have

M ≡ νũ.
∏

i∈I

(κi : ρi) |
∏

j∈J

[Mj : kj ]

with ρi = 0, ρi = ai〈Pi〉, or ρi = ai(Xi) ⊲ Pi.

We say that a binary relation R on closed configurations is evaluation-

closed if it satisfies the inference rules:

(R.Ctx)
M R N

E[M ] R E[N ]

(R.Eqv)
M ≡M ′ M ′ R N ′ N ′ ≡ N

M R N

The reduction relation → is defined as the union of two relations, the forward

reduction relation ։ and the backward reduction relation  : → =։ ∪ .

Relations ։ and  are defined to be the smallest evaluation-closed binary

relations on closed configurations satisfying the rules in Figure 3.3 (note

again the use of the variable convention: in rule R.Fw the key k is fresh).

We note ⇒ the reflexive and transitive closure of →.

(R.Fw)
µ = (κ1 : a〈P 〉) | (κ2 : a(X) ⊲ Q)

(κ1 : a〈P 〉) | (κ2 : a(X) ⊲ Q)։ νk. (k : Q{P /X}) | [µ; k]

(R.Bw) (k : P ) | [M ; k] M

Figure 3.3: Reduction rules for ρπ.

The rule for forward reduction (R.Fw) is the standard communication
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rule of the Higher-Order π-calculus with two side effects: (i) the creation of

a new memory to record the configuration that gave rise to it, namely the

parallel composition of a message and a trigger, properly tagged (tags κ1 and

κ2 in the rule); (ii) the tagging of the continuation of the message receipt

(with the fresh key k, enforcing so the fact that tags are unique). The rule

for backward reduction (R.Bw) is straightforward: in presence of the thread

tagged with key k, memory [M ; k] reinstates the configuration M that gave

rise to the tagged thread. With the reduction rules and the structural laws

in place, we can see how the structural rule E.TagP is used by the reduction.

In particular the rule, if it is used from left to right after a forward step,

lets the continuation of a trigger (if it is a parallel composition) continue

executing in the forward direction. On the other side, when used from right to

left, E.TagP gathers back all the primitive processes belonging to the same

parallel composition identified by a particular tag. An example of execution

will make it clear. Let M = (k1 : a〈P 〉) | (k2 : a(X) ⊲ b〈X〉 | b(X) ⊲ 0), we

have that:

M ։ νk. k : (b〈P 〉 | b(X) ⊲ 0) | [M ; k] (1)

≡ νk, h1, h2. (〈h1, h̃〉 · k : b〈P 〉) | (〈h2, h̃〉 · k : b(X) ⊲ 0) | [M ; k] (2)

։ νk, h1, h2, k3. (k3 : 0) | [M ; k] | [M1; k3] (3)

 νk, h1, h2. (〈h1, h̃〉 · k : b〈P 〉) | (〈h2, h̃〉 · k : b(X) ⊲ 0) | [M ; k] (4)

≡ νk. k : (b〈P 〉 | b(X) ⊲ 0) | [M ; k] (5)

with h̃ = {h1, h2}, M1 = (〈h1, h̃〉 · k : b〈P 〉) | (〈h2, h̃〉 · k : b(X) ⊲ 0). We can

note in (2) the use of the rule E.TagP from left to right, in order to allow

the two primitive processes to execute (3). On the other side, we use the rule

in the opposite way in (5) in order to build back the parallel composition

that generated the two single primitive processes.

Remark 3.4 One could have thought of mimicking the structural congru-

ence rule dealing with parallel composition in [29] (RCCS), using a monoid

structure for tags:

(E.TagP•) κ : (P | Q) ≡ νh1, h2. (h1 · κ : P ) | (h2 · κ : Q)

Unfortunately using E.TagP• instead of E.tagP would introduce some

undesired non-determinism, which would later complicate our definitions

(in relation to causality) and proofs. For instance, let M = k : a〈Q〉 | (h :

a(X)⊲X). We have: M →M ′ = νl. (l : Q) | [M ; l] Now, assuming E.tagP•,

48



we would have

M ≡(k : (a〈Q〉 | 0)) | (h : a(X) ⊲ X) ≡ νh1, h2. ((h1 · k : a〈Q〉) | (h2 · k : 0)) |

(h : a(X) ⊲ X)

Let M1 = (h1 · k : a〈Q〉) | (h : a(X) ⊲ X). We would then have: M → M ′′,

where M ′′ = νh1, h2, l. (l : Q) | [M1; l] | (h2 · k : 0). Clearly M ′ 6≡ M ′′,

which means that a seemingly deterministic configuration, M , would have

in fact two (actually, an infinity) of derivations towards non structurally

equivalent configurations. By insisting on tagging only primitive thread

processes, E.TagP avoids this unfortunate situation.

We can characterize this by proving a kind of determinacy lemma for

ρπ, which fails if we replace rule E.TagP with rule E.TagP•. Extend the

grammar of ρπ with marked primitive thread processes of the form τ•. This

extended calculus has exactly the same structural congruence and reduction

rules than ρπ, but with possibly marked primitive thread processes. Now call

primed a closed configuration M with exactly two marked processes of the

form a〈P 〉• and (a(X) ⊲ Q)•. Anticipating the definition of the reduction

relation → below, we have:

Lemma 3.2 (Determinacy) Let M be a primed configuration such that

M ≡ M1 = E1[κ1 : a〈P 〉• | κ2 : (a(X) ⊲ Q)•] and M ≡ M2 = E2[κ
′
1 :

a〈P 〉• | κ′2 : (a(X) ⊲ Q)•]. Assume M1 → M ′
1 and M2 → M ′

2 are derived

by applying R.Fw with configurations κ1 : a〈P 〉• | κ2 : (a(X) ⊲ Q)•, and

κ′1 : a〈P 〉• | κ′2 : (a(X)⊲Q)• respectively, followed by R.Ctx. Then M ′
1 ≡M ′

2.

Proof. By induction on the form of E1, and case analysis on the form of κ1
and κ2. �

We can now formally define the notion of consistent configuration.

Definition 3.1 (Consistent configuration)

A configuration M ≡ νũ.
∏

i∈I(κi : ρi) |
∏

j∈J [Mj ; kj ], with ρi = 0 or ρi a

primitive thread process,Mj = δj : Rj | γj : Tj, Rj = aj〈Pj〉, Tj = aj(Xj)⊲Qj,

is said to be consistent if the following conditions are met:

1. For all j ∈ J , kj 6= δj, kj 6= γj and δj 6= γj

2. For all i1, i2 ∈ I, i1 6= i2 =⇒ κi1 6= κi2

3. For all i ∈ I, j ∈ J , κi 6= δj and κi 6= γj

4. For all j1, j2 ∈ J , j1 6= j2 =⇒ {δj1 , γj1} ∩ {δj2 , γj2} = ∅
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5. For all j1, j2 ∈ J , j1 6= j2 =⇒ kj1 6= kj2

6. For all j ∈ J , there exist E ⊆ I, D ⊆ J \ {j}, G ⊆ J \ {j}, such that:

νũ. kj : Qj{
Pj/Xj

} ≡ νũ.
∏

e∈E

κe : ρe |
∏

d∈D

δd : Rd |
∏

g∈G

γg : Tg

Roughly, consistent configurations enjoy two properties: (i) uniqueness

of keys and (ii) that for each memory [M ; k] there are processes in the

configuration corresponding to the continuation of M . In more detail, con-

dition 1 ensures that the thread tag of a memory never occurs in its own

configuration part. Condition 2 ensures that different threads are tagged

by different keys. Conditions 3 and 4 are similar, but they concern threads

inside memories too. Condition 5 states that all thread tags of memories are

distinct. Condition 6 is the most tricky one. It requires that for each memory

[κj1 : aj〈Pj〉 | κj2 : aj(Xj) ⊲ Qj ; kj ] there are threads in the configuration

whose composition gives the continuation νũ. kj : Qj{
Pj/Xj

}. Note that

because of the use of ≡ there are only two possibilities: either there is a

unique thread corresponding to the continuation tagged with kj , or there are

many of them, all tagged with complex keys having kj as a suffix, generated

by one application of rule E.TagP. These threads may be at top level or

inside the configuration parts of other memories (as participants to other

communications).

Consistency is a global property, so the composition of consistent config-

uration may lead to a non consistent configuration. To better understand

consistency let us consider a few examples:

k1 : a〈0〉 | [(k1 : a〈0〉) | (k2 : a(X) ⊲ P ); k] (1)

k : a〈0〉 | [(k1 : a〈0〉) | (k2 : a(X) ⊲ P ); k] (2)

k : a〈0〉 | [(k1 : a〈0〉) | (k2 : a(X) ⊲ a〈X〉); k] (3)

νh̃. (〈h1, h̃〉 · k : a〈0〉) | (k : b〈0〉) (4)

configuration (1) is not consistent since it violates condition 3 on key k1 and

condition 6 on the memory. Configuration (2) is not consistent because it

violates condition 6 (we assume P 6= a〈0〉). Configuration (3) is consistent

since all the keys are unique and k : a〈X〉{0/X} ≡ k : a〈0〉. Configuration (4)

is also consistent, even if this may appear weird because of the key 〈h1, h̃〉 · k.

This is possible since we do not impose a well-formed condition on keys that

are not generated by a memory (that is keys that are not memory thread

tags). For this kind of keys we just require uniqueness, so we have that
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〈h1, h̃〉 · k 6= k, and the configuration is consistent. To avoid this kind of

badly formed keys, when needed, we will consider configurations generated

by an initial configuration. We will postpone this discussion to Chapter 5.

Consistent configurations are preserved by reduction:

Lemma 3.3 Let M be a consistent configuration. If M → N then N is a

consistent configuration.

We need a few auxiliary lemmas to prove this result. The lemma below

gives a syntactic characterization of forward reductions.

Lemma 3.4 Let M , N be configurations. Then M ։ N iff M ≡ M ′ and

N ′ ≡ N with:

M ′ = νũ. κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q |
∏

i∈I

κi : ρi |
∏

j∈J

[µj ; kj ]

N ′ = νũ, k. k : Q{P /X} | [κ1 : a〈P 〉 | κ2 : a(X)⊲Q; k] |
∏

i∈I

κi : ρi |
∏

j∈J

[µj ; kj ]

Proof: Let us start with the if direction. The proof is by induction on the

derivation of the reduction ։. We have a case analysis on the last applied

rule:

R.Fw: By hypothesis M = κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q and M ։ νk. k : Q{P /

X} | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k] = N . The thesis follows immediatly

by choosing M ′ =M and N ′ = N .

R.Eqv: The thesis follows by transitivity of structural equivalence.

R.Ctx: The case of the empty context is banally verified by inductive

hypothesis. If the context is a restriction then we have that νu.M ։

νu.N with M ։ N as hypothesis. By inductive hypothesis M ≡M ′

and N ′ ≡ N , with:

M ′ = νũ. κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q |
∏

i∈I

κi : ρi |
∏

j∈J

[µj ; kj ]

N ′ = νũ, k. k : Q{P /X} | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k] |
∏

i∈I

κi : ρi |

∏

j∈J

[µj ; kj ]
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Then

νu.M ≡ νu, ũ. κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q |
∏

i∈I

κi : ρi |
∏

j∈J

[µj ; kj ]

νu.N ′ = νu, ũ, k. k : Q{P /X} | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k] |
∏

i∈I

κi : ρi |
∏

j∈J

[µj ; kj ]

with νu.N ′ ≡ νu.N , as desired.

For (left) parallel context we have thatM1 |M ։M1 | N withM ։ N

as hypothesis. By inductive hypothesis M ≡M ′ with:

M ′ = νũ. κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q |
∏

i∈I

κi : ρi |
∏

j∈J

[µj ; kj ]

N ′ = νũ, k. k : Q{P /X} | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k] |
∏

i∈I

κi : ρi |
∏

j∈J

[µj ; kj ]

with N ′ ≡ N . Also, from Lemma 3.1 M1 ≡ νṽ.
∏

i∈I′(κi : ρi) |
∏

j∈J ′ [Mj : kj ]. Then

M1 |M ≡ νũ, ṽ. κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q |
∏

i∈I∪I′

κi : ρi |
∏

j∈J∪J ′

[µj ; kj ]

N ′′ = νũ, ṽ, k. k : Q{P /X} | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k] |
∏

i∈I∪I′

κi : ρi |
∏

j∈J∪J ′

[µj ; kj ]

with N ′′ ≡ M1 | N as desired. The case of right parallel context is

similar.

For the other direction, note that the desired reduction can be derived by

applying rule R.Fw followed by R.Ctx to derive

νũ. κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q |
∏

i∈I

κi : ρi |
∏

j∈J

[µj ; kj ]։

νũ, k. k : Q{P /X} | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k] |
∏

i∈I

κi : ρi |
∏

j∈J

[µj ; kj ]

The thesis then follows by applying rule R.Eqv. �

The following lemma is similar to Lemma 3.4, but it considers backward

reductions.
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Lemma 3.5 Let M , N be configurations. Then M  N iff M ≡M ′ with

M ′ = νũ, k. k : R | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k] |
∏

i∈I κi : ρi |
∏

j∈J mj and

νũ. κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q |
∏

i∈I κi : ρi |
∏

j∈J [µj ; kj ] = N ′ and N ≡ N .

Proof: The proof is similar to the proof of Lemma 3.4 �

We can finally prove Lemma 3.3.

Proof of Lemma 3.3: By case analysis on the derivation of M → N .

Let us consider the case M ։ N , by Lemma 3.4 we have M ≡M ′ with

M ′ = νũ. κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q |
∏

i∈I κi : ρi |
∏

j∈J [µj ; kj ] and νũ, k. k :

Q{P /X} | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k] |
∏

i∈I κi : ρi |
∏

j∈J [µj ; kj ] = N ′

and N ′ ≡ N . By hypothesis M is a consistent configuration so also M ′

is a consistent configuration (since the consistency is itself defined using

≡ it is banally preserved by ≡). Now we have to prove that N ′ is a valid

configuration. The first five properties of validity check uniqueness of keys.

The first property holds since, for memories already in M ′ it is part of

the hypothesis, while for the new memory [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k]

k is fresh and κ1 and κ2 are different by hypothesis (condition 2). The

second condition is satisfied since the new tag k is fresh and applying axiom

E.TagP also generates fresh distinct tags. Let us consider the third condition.

For the new tag k it is verified since k is fresh and does not occur in

κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q. For the new memory the condition is satisfied with

respect to old thread processes thanks to the hypothesis (condition 2). The

fourth condition is verified by hypothesis for threads inside old memories

and thanks to second and third conditions for the new memory. The fifth

condition is verified by hypothesis for the old keys, and since the key is freshly

generated for the new one. The last condition holds for the new memory

[κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k], since we have that:

νũ, k. k : Q{P /X} ≡ νũ, k. k : Q{P /X}

and by hypothesis it holds for other memories. Let us note that the condi-

tion on memories that generated the two threads, identified by κ1 and κ2,

participating to the last communication still holds, since the two threads are

just moved from an active context to a memory.

The case M  N is similar to the previous one, using Lemma 3.5 instead

of Lemma 3.4. �

Remark 3.5 The presented semantics and machinery for reversing HOπ

can be easily adapted to define reversibility in first order π-calculus. In
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general, the combination of memories and identifiers should be enough to

define reversibility in calculi with implicit substitutions. Indeed, the need

for memories stems from the fact that substitution is not a bijective, hence

irreversible, function: the only way to reverse a substitution is to record the

exact form of the process before applying it.

3.3 Basic properties of reduction in ρπ

In this section we show two main properties of ρπ: (i) that ρπ is a conservative

extension of HOπ and (ii) that each ρπ reduction can be reversed.

We first recall HOπ syntax and semantics. The syntax of HOπ processes

coincides with the syntax of ρπ processes in Figure 3.1 (but HOπ has no

concept of configuration). HOπ structural congruence, denoted ≡π, is the

least congruence generated by rules in Figure 3.2 but E.TagN and E.TagP

(restricted to processes). HOπ reduction relation →π is the least evaluation-

closed binary relation on closed processes defined by the rule:

(HO.Red) a〈P 〉 | a(X) ⊲ Q→π Q{P /X}

In order to show (i) we define the erasing function γ : C → P, which

maps a ρπ configuration on its underlying HOπ process.

Definition 3.2 (Erasing function) The erasing function γ : C → P is

defined inductively by the following clauses:

γ(0) = 0 γ(νa.M) = νa. γ(M) γ(νk.M) = γ(M)

γ(M | N) = γ(M) | γ(N) γ(κ : P ) = P γ([M ; k]) = 0

Let us note that γ directly deletes the creation of new keys (νk) since this

kind of names has no meaning into HOπ. Moreover it deletes all the extra

machinery (tags and memories) used to reverse HOπ.

Lemma 3.7 below shows that ρπ forward computations are indeed deco-

rations on HOπ reductions. We first prove an auxiliary result relating ρπ

and HOπ structural congruences.

Lemma 3.6 For all closed configuration M,N if M ≡ N then γ(M) ≡π

γ(N).

Proof: It is enough to prove that the thesis holds for each axiom (since γ is

defined by structural induction). We have a case for each axiom. For the

rules E.ParC, E.ParA, E.NilM, E.NewN, E.NewC, E.NewP and E.α
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there is a corresponding rule in HOπ. Rules E.TagN and E.TagP instead

reduce to the identity. �

Lemma 3.7 For all configurations M,N , if M ։ N then γ(M) →π γ(N)

Proof: By induction on the derivation M ։ N .

R.Fw: M = κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q ։ νk. k : Q{P /X} | [a〈P 〉 | κ2 :

a(X) ⊲ Q; k] = N . By definition γ(M) = a〈P 〉 | a(X) ⊲ Q →π Q{P /

X} = γ(N).

R.Eqv: M ։ N with hypothesis M ≡ M ′, M ′ ։ N ′ and N ′ ≡ N . By

using the inductive hypothesis we have that M ′ ։ N ′ implies that

γ(M ′) →π γ(N
′) and since structural equivalence is preserved by γ (by

Lemma 3.6) we can conclude.

R.Ctx: The empty context case is simply verified by directly applying the

inductive hypothesis. For the restriction context we have νu.M ։

νu.N having as hypothesis M ։ N . Now we can distinguish two cases:

either u = a (u is a name) or u = k (u is a key). If u = a is a name

then by definition γ(νa.M) = νa. γ(M) →π νa. γ(N) = γ(νa.N) using

as hypothesis γ(M) →π γ(N) (obtained by applying the inductive

hypothesis). If u = k then γ(νk.M) = γ(M) and γ(νk.N) = γ(N)

and we are done by applying the inductive hypothesis. In the case

of parallel (right) context we have M | M1 ։ N | M1 having as

hypothesis M ։ N . By definitionγ(M | M1) = γ(M) | γ(M1) and

by applying the inductive hypothesis (γ(M) →π γ(N)) we have that

γ(M) | γ(M1) →π γ(N) | γ(M1) = γ(N |M1), as desired.

�

We will now prove the inverse of Lemma 3.7. However γ is not injective,

thus it has no inverse. We will show in Lemma 3.10 that for each HOπ process

R, each transition R→π S and each configuration M such that γ(M) = R

we have a forward reduction in ρπ corresponding to R →π S. We start with

a few auxiliary results. The first one characterizes the configurations M such

that γ(M) = P for some HOπ process P .

Lemma 3.8 Let P be a HOπ process. If γ(M) = P and P ≡π P
′ with P ′ =

νã.
∏

i∈I ρi and ã ⊆ fn(
∏

i∈I ρi) then M ≡ νã, ã′, k̃.
∏

i∈I κi : ρi |
∏

j∈J mj

with ã′ ∩ fn(
∏

i∈I κi : ρi) = ∅.
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Proof: By Lemma 3.1M ≡ νũ.
∏

i′∈I′(κ
′
i : ρ

′
i) |

∏

j′∈J ′ mj′ ≡ νb̃, h̃.
∏

i′∈I′(κ
′
i :

ρ′i) |
∏

j′∈J ′ mj′ = M ′ in which we differentiate names from keys. By

definition γ(M ′) = νb̃.
∏

i′∈I′ ρi′ but since M ≡ M ′ by Lemma 3.6 we

also have γ(M) ≡π γ(M ′) and since γ(M) = P ≡π P ′ we have P ′ ≡π

γ(M ′). Thus we have to prove that if νb̃.
∏

i′∈I′ ρi′ ≡π νã.
∏

i∈I ρi then

νb̃, h̃.
∏

i′∈I′(κ
′
i : ρ

′
i) |

∏

j′∈J ′ mj′ ≡ νã, ã′, k̃.
∏

i∈I κi : ρi |
∏

j∈J mj . We can

set b̃ = b̃1, b̃2 where b̃1 ⊆ fn(
∏

i′∈I′ ρi′) and b̃2 ∩ fn(
∏

i′∈I′ ρi′) = ∅. We have

νb̃1.
∏

i′∈I′ ρi′ ≡π νã.
∏

i∈I ρi which is derived using only α-conversion and

axioms E.ParC, E.ParA and E.NilM. Using the same axioms we can derive

also νb̃, h̃.
∏

i′∈I′(κ
′
i : ρ

′
i) |

∏

j′∈J ′ mj′ ≡ νb̃2, ã, h̃.
∏

i∈I(κi : ρi) |
∏

j′∈J ′ m′
j′

(memories may be affected by α-conversion). The thesis follows by choosing

ã′ = b̃2, h̃ = k̃ and
∏

j′∈J ′ m′
j′ =

∏

j∈J mj . �

The next lemma is the inverse of Lemma 3.6.

Lemma 3.9 If P ≡π P
′ then for each M such that γ(M) = P there is N

such that N ≡M and γ(N) = P ′.

Proof: Since both ≡π and ≡ are equivalence relations, it is enough to show

the thesis for derivations of length one. We prove this by structural induction

on M .

M = 0: also γ(M) = 0. Thus the only axioms that can be applied are E.NilM

leading to 0 | 0 and E.NewN leading to νa. 0. The corresponding axioms

can be applied to M producing the same terms, which are preserved

by γ.

M = νu.M1: here we have to distinguish two cases: either u is a key k or

u is a name a. In the first case we have that γ(νk.M1) = γ(M1) = P .

We can now apply the inductive hypothesis on P ≡π P
′ and we know

that there exists an N1 such that γ(N1) = P ′ and M1 ≡ N1, so we

also have that νk.M1 ≡ νk.N1 as desired. In the second case we have

P = γ(νa.M1) = νa. γ(M1) = νa. P1. If axioms are applied inside

P1 then the thesis follows by inductive hypothesis. The only axioms

that can be applied to the whole term are E.NilM, E.NewN, E.NewC,

E.NewP and E.α. We will describe in detail the cases for E.NewC and

E.NewP, the others are similar.

For E.NewC to apply we need P1 = νb. P2 thus γ(M1) = νb. P2. We will

prove the thesis by structural induction on M1. The only possibilities

are: M1 = νb.M2, M1 = νk.M2 and M1 = κ : R with R = νb.R′. In

the first case the thesis follows by using axiom E.NewC on names a
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and b. In the second case the thesis follows by applying axiom E.NewC

to name b and k and then by applying inductive hypothesis on M2. For

the third case the thesis follows by applying axiom E.TagN to prove

that M ≡ κ : νa, b. R′ and thus M ≡ κ : νb, a.R′ as desired.

For E.NewP to apply we need P1 = P2 | P3. As before we prove

the thesis by structural induction on M1. The only possibilities are

M1 = νk.M2, M1 = M2 | M3 and M1 = κ : R with R = R1 | R2. In

the first case the thesis follows by applying axiom E.NewC on names a

and k and then by applying inductive hypothesis on M2. The second

case follows by applying axiom E.NewP. Note that if name a occurs

in a memory inside M3 we can use associativity and commutativity of

parallel composition to move it inside M2 and in all the other cases

γ does not remove names. In the third case the thesis follows by

applying axiom E.TagN to prove that M ≡ κ : νa.R1 | R2 and thus

M ≡ κ : (νa.R1) | R2. Note that the side condition is satisfied since γ

is the identity on processes (not configurations).

M =M1 |M2: we have γ(M) = γ(M1) | γ(M2). If axioms are applied inside

γ(M1) or inside γ(M2) then the thesis follows by inductive hypothesis.

The only axioms that can be applied to the whole parallel composition

are: E.ParC, E.ParA, E.NilN and E.α. We will describe in details the

cases for E.ParC and E.ParA.

For E.ParC we can apply the same axiom to M and we are done.

For E.ParA to be applicable from left to right (the other direction

is symmetric) we need γ(M2) = R1 | R2 thus M2 = M ′
2 | M ′′

2 with

γ(M ′
2) = R1 and γ(M ′′

2 ) = R2. Thus we can apply the same axiom also

to M1 | (M
′
2 |M

′′
2 ) and we are done.

M = κ : P : we have γ(M) = P . The only possibility is that axioms are

applied inside P thus the thesis follows from the definition of γ.

M = [µ; k]: we have γ(M) = 0, thus the case is similar to the one for M = 0.

�

We can finally prove the inverse of Lemma 3.7.

Lemma 3.10 For all closed HOπ terms R,S if R→π S then for all closed

configurations M such that γ(M) = R there is N such that M ։ N and

γ(N) = S.
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Proof: By induction on the derivation of the reduction →π.

Com: R = a〈P 〉 | a(X) ⊲ Q→π Q{P /X} = S. Since γ(M) = R by Lemma

3.8 we have that M ≡ νã′, k̃. κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q | M1 with

ã′ ∩ fn(
∏

i∈I κi : ρi) = ∅ and M1 composed only by memories. We have

thatM ։ νã′, k̃, h. h : Q{P /X} | [κ1 : a〈P 〉 | κ2 : a(X)⊲Q;h] |M1 = N .

Also, γ(N) = νã′. Q{P /X} ≡π Q{P /X} = S as required.

Eqv: we have that R →π S with hypothesis R ≡π R
′, R′ →π S

′ and S′ ≡π S.

Taken M such that γ(M) = R from Lemma 3.9 there is M ′ ≡M such

that γ(M ′) = R′. Then by inductive hypothesis there is M ′′ such that

M ′ ։M ′′ and γ(M ′′) = S′. By applying again Lemma 3.9 we know

that there is M ′′′ such that M ′′′ ≡ M ′′ and γ(M ′′′) = S. The thesis

follows by applying rule R.Eqv.

Ctx: we have C[R] →π C[S] with hypothesis R →π S. Take M such that

γ(M) = C[R]. Then there are C
′ and M ′ such that M = C

′[M ′] and

γ(M ′) = R. Thus the thesis follows by inductive hypothesis using rule

R.Ctx.

�

Remark 3.6 A canonical way of lifting a closed HOπ process P to a closed

consistent configuration in ρπ is by defining δ(P ) = νk. k : P . As corollary

of Lemma 3.7 we have:

Corollary 3.1 For each closed HOπ process P , if δ(P ) ։ N then P →π

γ(N).

The Loop Lemma below shows that forward and backward reductions in

ρπ are really the inverse of each other.

Lemma 3.11 (Loop Lemma) For all closed consistent configurationsM,N

if M ։ N then N  M , and if M  N then N ։M .

Proof: Let us start with the first implication. From Lemma 3.4 we have

M ≡M ′ with M ′ = νũ. κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q |
∏

i∈I κi : ρi |
∏

j∈J [µj ; kj ]

and νũ, k. k : Q{P /X} | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k] |
∏

i∈I κi : ρi |
∏

j∈J [µj ; kj ] = N ′ with N ′ ≡ N . Then by applying Lemma 3.5 we have

N  M , as desired.
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For the other direction from Lemma 3.5 we have M ≡ M ′ with M ′ =

νũ, k. k : R | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k] |
∏

i∈I κi : ρi |
∏

j∈J [µj , kj ]

and νũ. κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q |
∏

i∈I κi : ρi |
∏

j∈J [µj , kj ] ≡ N . Since

M is a consistent configuration and consistency is preserved by structural

congruence also M ′ is a consistent configuration. Now from consistency

properties we know that k : R is the only thread process tagged by k and

that νũ, k. k : R ≡ νũ, k. k : Q{P /X}. Then the result follows from Lemma

3.4. �

An easy induction on the length n of the sequence of reductions M ⇒ N

shows that:

Corollary 3.2 For all closed consistent configurations M,N if M ⇒ N

then N ⇒M .

3.4 Contextual equivalence in ρπ

We can classically complement the operational semantics of the ρπ calculus

with the definition of a contextual equivalence between configurations, which

takes the form of a barbed congruence. We first define observables in

configurations. We say that name a is observable in configuration M , noted

M ↓a, if M ≡ νũ. (κ : a〈P 〉) | N , with a 6∈ ũ. Note that keys are not

observable: this is because they are just an internal device used to support

reversibility. We writeMR ↓a, where R is a binary relation on configurations,

if there exists N such that MRN and N ↓a. The following definitions are

classical:

Definition 3.3 (Barbed bisimulation and congruence) A relation R ⊆

Ccl ×Ccl on closed configurations is a strong (resp. weak) barbed simulation

if whenever M RN

• M ↓a implies N ↓a (resp. N ⇒↓a)

• M →M ′ implies N → N ′, with M ′RN ′ (resp. N ⇒ N ′ with M ′RN ′)

A relation R ⊆ Ccl × Ccl is a strong (resp. weak) barbed bisimulation if R

and R−1 are strong (resp. weak) barbed simulations. We call strong (resp.

weak) barbed bisimilarity and note
·
∼ (resp.

·
≈) the largest strong (resp.

weak) barbed bisimulation. The largest congruence included in
·
∼ (resp.

·
≈)

is called strong (resp. weak) barbed congruence and is noted
·
∼c (resp.

·
≈c).
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A direct consequence of the Loop Lemma is that each closed consistent

configuration M is weakly barbed congruent to any of its descendants or

predecessors.

Lemma 3.12 For all closed consistent configurations M,N , if M ⇒ N ,

then M
·
≈c N .

Proof: We show that the relation

R = {(C[M ],C[N ]) |M ⇒ N,C is a configuration context}

is a weak barbed bisimulation. Since R is symmetric by the corollary of the

Loop Lemma (Corollary 3.2), we only need to show that it is a weak barbed

simulation. Consider a pair (C[M ],C[N ]) ∈ R. We have M ⇒ N , and hence

by the Loop Lemma corollary N ⇒M . Noting that a configuration context

C is an execution context, i.e. if M → N then C[M ] → C[N ], then we also

have C[N ] ⇒ C[M ]. We now check easily the two barbed simulation clauses:

• if C[M ] ↓a, then C[N ] ⇒ C[M ] ↓a, and hence C[N ] ⇒↓a as required.

• if C[M ] →M ′, then C[N ] ⇒ C[M ] →M ′, and hence C[N ] ⇒M ′, as

required.

Since R is a congruence by construction the thesis follows. �

Lemma 3.12 shows that barbed bisimilarity is not very discriminative

among configurations: M
·
≈ N if and only if M and N have the same observ-

ables (or N is derived by M). Moreover, we also have that a configuration

M is weak barbed bisimilar to a dummy configuration that shows directly

all the possible barbs of M .

Example 3.1 Let M and N be defined as follows:

M = (k1 : a〈0〉) | (k2 : a(X) ⊲ b〈X〉)

M1 = νk. (k : b〈0〉) | [(k1 : a〈0〉) | (k2 : a(X) ⊲ b〈X〉); k]

N = (k1 : a〈0〉) | (k2 : b〈0〉)

Then we have that M
·
≈ N . Let us check it. For barbs, we have that M ↓a

and N ↓a and vice versa. For the extra barb on b shown by N we have that

M → M1 ↓b, and barbs are matched. For the reductions, we can note that

all the executions of M and M1 are always matched by a zero execution of

N and we are done.
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Back and Forth Bisimulations. Other authors already studied the no-

tion of back and forth bisimulations (see [33, 51, 82, 83]) but just considered

strong versions in the context of forward calculi. That is, they exploit back-

ward steps as an auxiliary mechanism to better understand purely forward

computations. Indeed, this kind of relations can distinguish true concurrency

aspects better than normal strong bisimulation. For example, the two (CCS)

processes:

P = a | b Q = a.b+ b.a

are strongly bisimilar, but using a notion of back and forth bisimulation

differ, since if P does a and b, then it can undo a, and this computation

cannot be matched by Q, because after mimicking the reduction ab it cannot

undo a, since b causally depends on a.

Finding a good notion of behavioral equivalence in a reversible calculus

is not an easy task. Indeed such an equivalence should be neither trivial nor

too strong. An immediate adaptation of the strong barbed congruence leads

to a too discriminative relation, while a reversible variant of weak barbed

congruence leads to a coarse relation. As shown by the discussion before,

adapting the canonical notions [87,89] of barbed congruence in a reversible

setting does not work well, especially for the weak one. Moreover, as shown

by Example 3.1, the real problem in the weak equivalence comes from the

fact that a process is weakly barbed bisimilar to a dummy one showing all

its barbs. So, one may think to consider variants of weak equivalence where

forward steps (and barbs) are matched just by forward ones, and backward

ones by backward steps (and barbs). In this way, there are several relations

that one can define, depending on a specific case. We left to further studies

the finding of a good behavioral equivalence for reversible calculi, and in this

thesis we will just focus on a particular relation that takes also into account

possible administrative steps produced by our encoding.

To prove the faithfulness of our encoding (see Section 5.3) with respect to

ρπ, we define an ad-hoc notion of behavioral equivalence introducing a new

kind of reductions →֒, namely administrative reductions. This is necessary

since the encoding introduces reductions that cannot be considered either

forward or backward, so the equivalence we are looking for has to work up-to

administrative reductions. But this does not imply that this relation is the

good candidate to become a canonical one on reversible calculi. Indeed if

it is used to relate processes of calculi where →֒ is the empty relation, then

this relation becomes stronger than normal strong barbed bisimulation (as

we will discuss later on).
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We then define a notion of backward and forward simulation. We note

։∗ and  ∗ the reflexive and transitive closure of ։ and  , respectively.

Moreover we note →֒ as the reduction relation composed by administrative

steps, and →֒∗ its reflexive and transitive closure. Let us note that in

ρπ relation →֒ is left empty. We now characterize a new form of barbed

bisimulation taking into account also administrative steps.

Definition 3.4 (Backward-and-forward barbed bisimulation and congruence)

A relation R ⊆ Ccl × Ccl on closed configurations is a strong (resp. weak)

backward-and-forward barbed simulation (or bf barbed simulation for brevity)

if whenever M RN

• M ↓a implies N ↓a (resp. N →֒∗↓a)

• M ։M ′ implies N ։ N ′, with M ′RN ′ (resp. N →֒∗։→֒∗ N ′ with

M ′RN ′)

• M  M ′ implies N  N ′, with M ′RN ′ (resp. N →֒∗ →֒∗ N ′ with

M ′RN ′)

• M →֒ M ′ implies N →֒ N ′, with M ′RN ′ (resp. N →֒∗ N ′ with

M ′RN ′)

A relation R ⊆ Ccl × Ccl is a strong (resp. weak) barbed bisimulation if

R and R−1 are strong (resp. weak) barbed simulations. We call strong (resp.

weak) back-and-forth barbed bisimilarity and note
◦
∼ (resp.

◦
≈) the largest

strong (resp. weak) barbed bisimulation. The largest congruence included in
◦
∼ (resp.

◦
≈) is called strong (resp. weak) barbed congruence and is noted

◦
∼c (resp.

◦
≈c).

Weak bf barbed bisimulation is just weak with respect to administrative

reductions →֒. If it is used to equate ρπ processes, we have that the strong

version and the weak one coincide, that is
◦
≈ =

◦
∼. Hence, in ρπ, weak

bf barbed bisimulation becomes a stronger relation than (normal) strong

barbed bisimulation, since it distinguishes the direction of reductions and a

forward (backward) step is matched by just one forward (backward) step.

For example:

A = νk1, k2. (k1 : a〈0〉) | (k2 : a(X) ⊲ a〈0〉 | b〈P 〉 | P )

P = b(Y ) ⊲ a(X) ⊲ Y | b〈Y 〉 | a〈0〉

B = νk1, k2. (k1 : a〈0〉) | (k2 : a(X) ⊲ a〈0〉 | b〈0〉)
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We have A
·
∼ B but A 6

◦
∼ B. Moreover, if we takeM and N of the Example 3.1

we have that M 6
◦
≈ N while M

·
≈ N .

From the definitions, it is clear that
◦
∼⊆

·
∼,

◦
≈⊆

·
≈,

◦
∼c⊆

·
∼c, and

◦
≈c⊆

·
≈c.

All these inclusions are strict, however. For instance, consider the following

configurations:

M = νk1, k2, k3. (k1 : a〈0〉) | (k2 : a(X) ⊲ b〈0〉) | (k3 : a(X) ⊲ c〈0〉)

N = νk1, k2, k3, k4. (k4 : b〈0〉) | (k3 : a(X) ⊲ c〈0〉) |

[(k1 : a〈0〉) | (k2 : a(X) ⊲ b〈0〉); k4]

M ′ = νk1, k2, k3, k5. (k5 : c〈0〉) | (k2 : a(X) ⊲ b〈0〉) |

[(k1 : a〈0〉) | (k3 : a(X) ⊲ c〈0〉); k5]

We have M ։ N , M
·
≈c N , but M 6

◦
≈ N and hence M 6

◦
≈c N . To prove this,

assume that there exists a weak bf barbed bisimulation R between M and

N , i.e. such that (M,N) ∈ R. We have M ։M ′, and we have no N ′ such

that N ։ N ′, hence we must have (M ′, N) ∈ R. Now, M ′ ↓c but we do

not have N ↓c, nor N →֒∗↓c since we only have N  M , and M 6↓c, which

contradicts (M ′, N) ∈ R.

3.5 Causality

We now proceed to the analysis of causality in ρπ, showing that reversibility

in ρπ is causally consistent, that is during backward steps we may end up in

a state that we could have reached during the forward computation by just

swapping the execution order of concurrent actions. We mostly adapt for

the exposition the terminology and arguments of RCCS (see [29]).

We call transition a triplet of the form M
m։−−→M ′, or M

m −−→M ′, where

M,M ′ are closed consistent configurations, M →M ′, and m is the memory

involved in the reduction M → M ′. We indicate M as the source of the

transition and M ′ as the target of the transition. We say that a memory

m is involved in a reduction M ։ M ′ if M ≡ E[κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q],

M ′ ≡ E[νk. (k : Q{P /X}) | m], and m = [κ1 : a〈P 〉 | κ2 : a(X) ⊲Q; k]. In this

case, the transition involving m is noted M
m։−−→M ′. Likewise, we say that a

memory m = [N ; k] is involved in a reductionM  M ′ ifM ≡ E[(k : Q) | m],

M ′ ≡ E[N ]. In this case, the transition involving m is noted M
m −−→M ′. In

a transition M
η
−→ N , we say that M is the source of the transition, N is its

target, and η is its label (of the form m։ or m , where m is some memory –

we let η and its decorated variants range over transition labels). If η = m։,

we set η• = m and vice versa.
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Definition 3.5 (Name-preserving transitions) We say a transition t :

M
η
−→M ′ is name-preserving if M and M ′ are in thread normal form and if

one of the following assumptions holds:

1. M = νũ.
∏

i∈I(κi : ρi) |
∏

j∈J [Mj : kj ], M
′ = νũ.

∏

i∈I′(κi : ρi) |
∏

j∈J ′ [Mj : kj ], with J
′ = J ∪ {j′}, I ′ ⊂ I and η = m։ with m =

[Mj′ ; kj′ ];

2. M = νũ.
∏

i∈I(κi : ρi) |
∏

j∈J [Mj : kj ], M
′ = νũ.

∏

i∈I′(κi : ρi) |
∏

j∈J ′ [Mj : kj ], with J = J ′ ∪ {j′}, I ⊂ I ′ and η = m with m =

[Mj′ ; kj′ ].

Intuitively, a name-preserving transition keeps track of its restricted

names: all the names used in the transition (and especially the tag of

memory m) are preserved by the transition, said otherwise names of tags are

never α-converted.

Remark 3.7 In the rest of this section we only consider name-preserving

transitions and “transition” used in a definition, lemma or theorem, stands

for “name-preserving transition”. Note that working with name-preserving

transitions only is licit because of the determinacy lemma (Lemma 3.2).

Two transitions are said to be coinitial if they have the same source,

cofinal if they have the same target, and composable if the target of one is

the source of the other. A sequence of pairwise composable transitions is

called a trace. We let t and its decorated variants range over transitions, σ

and its decorated variants range over traces. Notions of target, source and

composability extend naturally to traces. We denote with ǫM the empty

trace with source M , σ1;σ2 the composition of two composable traces σ1 and

σ2. We now define the stamp of a memory m, a notion that will be useful to

know when two transitions are concurrent.

Definition 3.6 (Memory Stamp) The stamp λ(m) of a memory m =

[κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k] is defined as:

λ(m) = {κ1, κ2, k}

we set λ(m։) = λ(m ) = λ(m).

Definition 3.7 (Concurrent transitions) Two coinitial transitions t1 =

M
η1
−→M1 and t2 =M

η2
−→M2 are said to be concurrent if λ(η1)∩ λ(η2) = ∅.
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M
[µ1,k5]

}}}}

[µ2,k6]

!! !!
M1 M2

Figure 3.4: Example concurrent transitions.

M
[µ1,k5]

}}}}

[µ2,k6]

!! !!
M1

[µ2,k6] !! !!

M2

[µ1,k5]}}}}
N

Figure 3.5: Example of Square Lemma.

An example of concurrent transitions is given in Figure 3.4 where:

M = µ1 | µ2 M1 = νk5. k5 : 0 | [µ1; k5] | µ2

M2 = νk6. k6 : 0 | [µ2; k6] | µ1 µ1 = (k1 : a〈0〉) | (k2 : a(X) ⊲ 0)

µ2 = (k3 : b〈0〉) | (k4 : b(X) ⊲ 0) η1 = [µ1; k5]

η2 = [µ2; k6]

We have that the transitions t1 : M
η1։
−−→ M1 and t2 : M

η2։
−−→ M2 are

concurrent since λ(η1) = {k1, k2, k5}, λ(η2) = {k3, k4, k6} and {k1, k2, k5} ∩

{k3, k4, k6} = ∅.

Remark 3.8 Note that the stamp of a memory [µ; k] includes its tag k. This

is necessary to take into account possible conflicts between a forward action

and a backward action. Here is an example: the configuration

M = νl, k, h. (k : a〈P 〉) | [N ; k] | (h : a(X) ⊲ Q)

has two possible transitions t = M
m −−→ νl, k, h.N | (h : a(X) ⊲ Q), where

m = [N ; k], and t′ = M
m′

։−−→ νl, k, h. [N ; k] | m′ | l : Q{P /X}, where

m′ = [(k : a〈P 〉) | (h : a(X) ⊲ Q); l]. The two transitions t and t′ are in

conflict over the use of the resource k : a〈P 〉.

The Loop Lemma ensures that each transition t =M
η
−→ N has a reverse

one t• = N
η•
−→M .
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The following lemma (Square Lemma) is a crucial lemma for our proof

strategy. It states that in the presence of two concurrent transitions, the order

in which they are executed does not matter. In this way, when dealing with a

sequence of transitions we can change the order (execution) of two concurrent

transitions, obtaining the same result in terms of reached configurations. The

above definition of concurrent transitions makes sense:

Lemma 3.13 (Square Lemma) If t1 = M
η1
−→ M1 and t2 = M

η2
−→ M2

are two coinitial concurrent transitions, then there exist two cofinal transitions

t2/t1 =M1
η2
−→ N and t1/t2 =M2

η1
−→ N .

Proof: By case analysis on the form of transitions t1 and t2. We have that

from M there are two possible concurrent transitions t1 and t2. We proceed

by case analysis on the possible combinations of →.

• M
m1։−−−→ N1 andM

m2։−−−→ N2. By Lemma 3.4 ifM ։ N1 thenM ≡M ′

with:

M ′ = νũ. (κ1 : a〈P 〉) | (κ2 : a(X) ⊲ Q) |
∏

i∈I

κi : ρi |
∏

j∈J

[µj ; kj ]

N ′ = νũ, k. (k : Q{P /X}) | m1 |
∏

i∈I

κi : ρi |
∏

j∈J

[µj ; kj ]

and m1 = [κ1 : a〈P 〉 | a(X) ⊲ Q; k], N ′ ≡ N1. For the same reason if

M ։ N2 then M ≡M ′′ with:

M ′′ = νũ. (κ′1 : a
′〈P ′〉) | (κ′2 : a

′(X) ⊲ Q′) |
∏

i∈I′

κi : ρi |
∏

j∈J

[µj ; kj ]

N ′ = νũ, k′. k′ : Q′{P
′

/X} | m2 |
∏

i∈I′

κi : ρi |
∏

j∈J

[µj ; kj ]

and with m2 = [κ′1 : a′〈P ′〉 | a′(X) ⊲ Q′; k′], N ′′ ≡ N2. Since the two

transitions are concurrent (by hypothesis) we have that {κ1, κ2, k} ∩

{κ′1, κ
′
2, k

′} = ∅. Thus, we have:

M ≡ νũ. (κ1 : a〈P 〉) | (κ2 : a(X) ⊲ Q) | (κ′1 : a
′〈P ′〉) | (κ′2 : a

′(X) ⊲ Q′) |
∏

i∈I′′

κi : ρi |
∏

j∈J

mj

N1 ≡ νũ, k. (κ′1 : a
′〈P ′〉) | (κ′2 : a

′(X) ⊲ Q′) |
∏

i∈I′′

κi : ρi |
∏

j∈J

mj | m1
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with m1 = [κ1 : a〈P 〉 | a(X) ⊲ Q; k] and

N2 ≡ νũ, k′. (κ1 : a〈P 〉) | (κ2 : a(X) ⊲ Q) |
∏

i∈I′′

κi : ρi | (
∏

j∈J

mj) | m2

We have that N2
m1։−−−→ νũ, k′, k.

∏

i∈I′′ κi : ρi | (
∏

j∈J mj) | m2 | m1

and N1
m2։−−−→ νũ, k′, k.

∏

i∈I′′ κi : ρi | (
∏

j∈J mj) | m2 | m1, as desired.

• M
m1 −−−→ N1 and M

m2։−−−→ N2. Since M
m1 −−−→ N1 by Lemma 3.5

M ≡M ′ with:

M ′ = νũ, k. k : R | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k] |
∏

i∈I′

κi : ρi |
∏

j∈J ′

mj

N1 ≡ νũ. κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q |
∏

i∈I

κi : ρi |
∏

j∈J

mj

and since M
m2։−−−→ N2 then by Lemma 3.4 M ≡M ′′ with:

M ′′ = νũ. κ′1 : a
′〈P ′〉 | κ′2 : a

′(X) ⊲ Q′ |
∏

i∈I

κi : ρi |
∏

j∈J ′

mj

N ′′ = νũ, k′. k′ : Q′{P
′

/X} | [κ′1 : a〈P
′〉 | κ′2 : a(X) ⊲ Q′; k′] |

∏

i∈I

κi : ρi |
∏

j∈J ′

[µj ; kj ]

and N ′′ ≡ N2. By hypothesis the two transitions are concurrent so

{κ1, κ2, k} ∩ {κ′1, κ
′
2, k

′} = ∅. Thus, we have that

M ≡ νũ, k′. k : R | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k] | (κ′1 : a
′〈P ′〉) |

(κ′2 : a
′(X) ⊲ Q′) |

∏

i∈I′′

κi : ρi |
∏

j∈J ′′

mj

N1 ≡ νũ. κ′1 : a
′〈P 〉 | κ′2 : a

′(X) ⊲ Q′ | κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q |
∏

i∈I′′

κi : ρi |
∏

j∈J ′′

mj

N2 ≡ νũ, k′, k. [κ′1 : a
′〈P 〉 | κ′2 : a

′(X) ⊲ Q′; k′] | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k] |

k′ : Q′{P
′

/X} | k : R |
∏

i∈I′′

κi : ρi |
∏

j∈J ′′

mj
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We have that:

N2
m1 −−−→ νũ, k′. (κ1 : a〈P 〉) | (κ2 : a(X) ⊲ Q) | [κ′1 : a

′〈P ′〉 | κ′2 : a
′(X) ⊲ Q′; k′] |

k′ : Q′{P
′

/X} |
∏

i∈I′′

κi : ρi |
∏

j∈J ′′

mj

N1
m2։−−−→ νũ, k′. (κ1 : a〈P 〉) | (κ2 : a(X) ⊲ Q) | [κ′1 : a〈P

′〉 | κ′2 : a(X) ⊲ Q′; k′] |

k′ : Q′{P
′

/X} |
∏

i∈I′′

κi : ρi |
∏

j∈J ′′

mj

as desired.

• M
m1։−−−→ N1 and M

m2 −−−→ N2, similar to the case above.

• M
m1 −−−→ N1 and M

m2 −−−→ N2, similar to the first case.

�

Continuing the example of Figure 3.4, Figure 3.5 shows graphically how

the Square Lemma works.

We are now in a position to show that reversibility in ρπ is causally

consistent. We define first the notion of causal equivalence between traces,

noted ≍.

Definition 3.8 (causal equivalence) We define ≍ as the least equivalence

relation between traces closed under composition that obeys the following rules

(where t is forward):

t1; t2/t1 ≍ t2; t1/t2 t; t• ≍ ǫsource(t) t•; t ≍ ǫtarget(t)

The relation ≍ states that if we have two concurrent transitions, then the two

traces obtained by swapping the order of their execution are the same, and

that executing a reduction followed by its complementary one is equivalent

to doing nothing, that is the empty trace.

The proof of causal consistency proceeds along the exact same lines as

in [29], with simpler arguments because of the simpler form of our memory

stamps. We denote as σ• the trace tn•; . . . ; t1• if σ = t1; . . . ; tn.

The following Lemma says that each generic trace σ is causally equivalent

to a trace made of a sequence of backward transitions followed by a sequence

of forward transitions.

Lemma 3.14 (Rearranging lemma) Let σ be a trace. There exist for-

ward traces σ′ and σ′′ such that σ ≍ σ′•;σ
′′.

68



Proof: The proof is by lexicographic induction on the length of σ and on

the distance between the beginning of σ and the earliest pair of transitions

in σ of the form t; t′• (where t and t′ are forward). If there is no such pair we

are done. If there is one, we have two possibilities: either λ(m) ∩ λ(m′) = ∅

or λ(m) ∩ λ(m′) 6= ∅ with m being the memory associated to t and m′ the

one associated to t′•. In the first case, it means that the two transitions are

concurrent and so we can swap them by using Lemma 3.13, resulting in a

later earliest contradicting pair, and by induction the result follows since

swapping transitions keeps the total length constant. In the second case we

have that {δ1, γ1, k1} ∩ {δ2, γ2, k2} 6= ∅. Thanks to consistency property on

configurations the only possibilities are (1) the two memories coincide, or

(2) k1 = δ2 or k1 = γ2 or (3) k2 = δ1 or k2 = γ1. In the first case we have

t = t′, and we can apply the Loop lemma removing t; t•. Hence the total

length of σ decreases and again by induction the result follows. In the second

case t has created a memory of the form [δ1 : a〈P 〉 | γ1 : a(X) ⊲ Q; k1] and

a process k1 : R. Thus from condition 3 (of consistent configuration) this

case never happens. In the last case transition t′• deletes a memory of the

form [δ2 : a〈P 〉 | γ2 : a(X) ⊲ Q; k2], but this requires having a process k2 : R.

Again from condition 3 this case never happens. �

The next Lemma states that if there are two traces σ1, σ2 that start from

the same configuration and end up in the same configuration, with σ2 made

of forward computations, then there exists a trace σ′1 causally equivalent to

σ1 made of forward computations. In other words, since σ2 is a forward trace

and σ1, σ2 are cofinal and coinitial, then all the backward reductions done in

the trace σ1 are useless and can be eliminated.

Lemma 3.15 (Shortening lemma) Let σ1, σ2 be coinitial and cofinal traces,

with σ2 forward. Then, there exists a forward trace σ′1 of length at most that

of σ1 such that σ′1 ≍ σ1.

Proof: We prove this lemma by induction on the length of σ1. If σ1 is a

forward trace we are already done.

Otherwise by Lemma 3.14 we can write σ1 as σ•;σ
′ (with σ and σ′

forward). Let t•; t
′ be the only two successive transitions in σ1 with opposite

direction, with m1 belonging to t•. Since m1 is removed by t• then m1 has

to be put back by another forward transition otherwise this difference will

stay visible since σ2 is a forward trace. Let t1 be the earliest such transition

in σ1, since it is able to put back m1 it has to be the exact opposite of t•,

so t1 = t. Now we can swap t1 with all the transitions between t1 and t•,

in order to obtain a trace in which t1 and t• are adjacent. To do so we use
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the square lemma (Lemma 3.13), since all the transitions in between will are

concurrent. Assume in fact that there is a transition involving memory m2

which is not concurrent to t1, with λ(m1) = {δ1, γ1, k1}, λ(m2) = {δ2, γ2, k2}

and {δ1, γ1, k1} ∩ {δ2, γ2, k2} 6= ∅. Thanks to consistency conditions the only

possibilities are (1) k1 = δ2 or k1 = γ2 or (2) k2 = δ1 or k2 = γ1. The

first case can never happen since k1 is fresh (generated by the forward rule)

and thus cannot coincide with γ2 or δ2. Similarly the second case can never

happen since k2 is fresh and thus cannot occur in m1. When t• and t are

adjacent we can remove both of them using ≍. The resulting trace is shorter,

thus the thesis follows by inductive hypothesis. �

M
[µ1,k6]

}}}}

[µ2;k7]

"" ""

M

[µ2;k7]
����

M1

[µ2;k7] !! !!

M2

[µ1;k6]}}}}

N1

[µ3;k8]
����

M3

[µ3;k8]
����

N

M4

[µ1,k6]
��
N

Figure 3.6: Causally equivalent traces.

Figure 3.6 depicts how a trace can be shortened by using the Shortening

Lemma. We have that the two traces from M to N that can be derived from

the left part of the Figure 3.6, can be shortened in the trace that can be

derived from the right part of the figure, hence the left traces are causally

equivalent to the right trace. Configurations used by Figure 3.6 are:

M = (k1 : a〈0〉) | (k2 : a(X)⊲0) | (k3 : b〈0〉) | (k4 : b(X)⊲c〈0〉) | (k5 : c(Z)⊲0)

M1 = νk6. k6 : 0 | [µ1; k6] | µ2 | (k5 : c(Z) ⊲ 0)

M2 = νk7. k7 : c〈0〉 | [µ2; k7] | µ1 | (k5 : c(Z) ⊲ 0)

M3 = νk6, k7. k6 : 0 | k7 : c〈0〉 | [µ2; k7] | [µ1; k6] | (k5 : c(Z) ⊲ 0)

M4 = νk6, k7, k8. k6 : 0 | [µ2; k7] | [µ1; k6] | k8 : 0 | [µ3; k8]
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N = νk7, k8. k7 : c〈0〉 | [µ2; k7] | µ1 | k8 : 0 | [µ3; k8]

µ1 = (k1 : a〈0〉) | (k2 : a(X) ⊲ 0) µ2 = (k3 : b〈0〉) | (k4 : b(X) ⊲ c〈0〉)

µ3 = (k7 : c〈0〉) | (k5 : c(X) ⊲ 0)

We can now state our main Theorem, showing that reductions in ρπ are

causally consistent.

Theorem 3.1 (Causal consistency) Let σ1 and σ2 be coinitial traces,

then σ1 ≍ σ2 if and only if σ1 and σ2 are cofinal.

Proof: By construction of ≍, if σ1 ≍ σ2 then σ1 and σ2 must be coinitial

and cofinal, so this direction of the theorem is verified. Now we have to

consider that σ1 and σ2 being coinitial and cofinal implies that σ1 ≍ σ2. By

Lemma 3.14 we know that the two traces can be written as composition of a

backward trace and a forward one. Be t1 and t2 the first two transitions on

which the two traces disagree. The proof is by lexicographic induction on

the sum of the lengths of σ1 and σ2 and on the distance between the end of

σ1 and the earliest pair of transitions in σ1 and σ2 which are not equal. If all

the transitions are equal then we are done. Otherwise we have to consider

three cases depending on the direction of the two transitions.

• If t1 is forward and t2 is backward, we have that σ1 = σ•; t1;σ
′ and

σ2 = σ•; t2;σ
′′. Moreover we know that t1;σ

′ is a forward trace, so we

can apply the Lemma 3.15 on the traces t1;σ
′ and t2;σ

′′ (since σ1 and

σ2 are coinitial and cofinal by hypothesis, we also have t1;σ
′ and t2;σ

′′

coinitial and cofinal) and we obtain that t2;σ
′′ has a shorter equivalent

forward trace and so also σ2 has a shorter equivalent forward trace and

we can conclude by induction.

• Consider the case both t1 and t2 are forward. By assumption the two

transitions are different. If they are not concurrent then they should

conflict on a thread process κ : P , that they both consume and store in

different memories. Since the two traces are cofinal there should be t′2
in σ2 creating the same memory as t1. However no other process κ : P

is ever created in σ2 thus this is not possible. So we can assume that

t1 and t2 are concurrent. Again let t′2 be the transition in σ2 creating

the same memory of t1. We have to prove that t′2 is concurrent to all

the previous transitions. This holds since no previous transition can

remove one of the processes needed for triggering t′2 and since forward

transitions can never conflict on k. Thus we can repetitively apply the
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Square lemma to derive a trace equivalent to σ2 where t2 and t′2 are

consecutive. We can apply a similar transformation to σ1. Now we can

apply the Square lemma to t1 and t2 to have two traces of the same

length as before but where the first pair of different transitions is closer

to the end. The thesis follows by inductive hypothesis.

• If both t1 and t2 are backward, then they cannot remove the same

memory. Let m1 be the memory removed by t1. Since the two traces

are cofinal, either there is another transition in σ1 putting back the

memory or there is a transition t′1 in σ2 removing the same memory. In

the first case, t1 is concurrent to all the backward transitions following

it, but the ones that consume processes generated by it. All the

transitions of this kind have to be undone by corresponding forward

transitions (since they are not possible in σ2). Consider the last such

transition: we can use the Square lemma to make it the last backward

transition. The forward transition undoing it should be concurrent to

all the previous forward transitions (the reason is the same as in the

previous case). Thus we can use the Square lemma to make it the first

forward transition. Finally we can apply the Loop lemma to remove

the two transitions, thus shortening the trace. The thesis follows by

inductive hypothesis.

�
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Chapter 4

The roll-π calculus

We present in this chapter the study of a fine-grained rollback control

primitive, where potentially every single step in a concurrent execution can

be undone. Specifically, we introduce a rollback construct for an asynchronous

Higher-Order π-calculus (HOπ [86]), exploiting the reversible machinery of

ρπ, the reversible Higher-Order π-calculus (see Chapter 3). Controlling

reversibility may seem just a straightforward exercise, since we build this

primitive on the top of a reversible calculus [58]. Surprisingly, finding a

suitable definition for a fine-grained rollback construct in HOπ is more

difficult than one may think. There are two main difficulties. The first one is

in actually pinning down the intended effect of a rollback operation, especially

in presence of concurrent rollbacks. The second one is in finding a suitably

distributed semantics for rollback, dealing only with local information and

not relying on complex atomic operations involving potentially an unbounded

number of processes.

We show in this chapter how to deal with these difficulties by making

the following contributions: (i) we define a high-level operational semantics

for a rollback construct in an asynchronous Higher-Order π-calculus, which

we prove maximally permissive, in the sense that it makes reachable all past

states in a given computation; (ii) we present a low-level semantics for the

proposed rollback construct which can be understood as a fully distributed

variant of our high-level semantics, and we prove it to be fully abstract with

respect to the high-level one. To prove this, we will refine the high level

semantics through several semantics, each time trying to use fewer global

checks and atomic steps on whole configurations than before. When we

introduce a new refinement semantics, we prove that the refining one is

equivalent (in terms of weak barbed congruence) to the refined one.

The rest of the chapter is structured as follows: first we informally
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introduce our rollback primitive and we argue about problems that concurrent

rollbacks can cause, then we introduce our calculus, called roll-π and its high

level semantics. We prove that the calculus provides a controlled version

of ρπ backward reductions. Then we introduce what we call intermediate

semantics: several refinements of the high level semantics toward a lower level

one. Eventually a low level semantics, close to an actual implementation, of

roll-π is given.

4.1 Informal Presentation

4.1.1 Reversibility in roll-π

The notion of memory introduced in ρπ is in some way a checkpoint, uniquely

identified by its tag. In roll-π, we exploit this intuition to introduce an explicit

form of backward reduction. Specifically, backward reduction is not allowed

by default as in ρπ, but has to be triggered by an instruction of the form

roll k, whose intent is that the current computation be rolled-back to a state

just prior to the creation of the memory bearing the tag k. To be able to

form an instruction of the form roll k, one needs a way to pass the knowledge

of a memory tag to a process. This is achieved in roll-π by adding a bound

variable to each trigger process, which now takes the form a(X) ⊲γ P , where

γ is the tag variable bound by the trigger construct and whose scope is P . A

forward reduction step in roll-π therefore is:

(κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q) ։ νk. k : Q{P,k/X,γ} | [M ; k] (4.1)

where the only difference with ρπ forward rule (Figure 3.3 in Section 3.2.1)

lies in the fact that the newly created tag k is passed as an argument to the

trigger body Q. In this way, all the free occurrences of the process roll γ in

Q, after the communication, will point to the memory bearing the tag k. We

write a(X) ⊲ P in place of a(X) ⊲γ P if the tag variable γ does not appear

free in P .

Given a ρπ configurationM , the set of memories present inM provides us

with an ordering :> between tags in M that reflects their causal dependency:

if memory [κ1 : P1 | κ2 : P2; k] occurs in M , then κi > k. Also, k > 〈hi, h̃〉 · k

(where 〈hi, h̃〉 · k has been derived using the structural law E.TagP of

Figure 3.2), and we define the relation :> as the reflexive and transitive

closure of the > relation. We say that tag κ has κ′ as a causal antecedent if

κ′ :> κ.
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4.1.2 Naive Interpretation

Given the above intent for the rollback primitive roll, how does one define

its operational semantics? As hinted at in the introduction, this is actually

a subtler affair than one may expect. A big difference with ρπ, where

communication steps are undone one by one, is that the k in roll k may

refer to a communication step far in the past. So the idea behind a process

roll k, referring to a memory [M ; k], is to restore the configuration that

generated the memory and delete all its effects on the global configuration.

Said otherwise, to restore the content of the memory we need to annul all

its forward history, that is all the communications that have been generated

because of it. Let us suppose having the following predicates. N ◮ k states

that all the active threads and memories in N bear tags κ that have k as

causal antecedent, i.e., k :> κ. The predicate complete(Mc) states that

configuration Mc gathers all the threads (inside or outside memories) whose

tags have as a causal antecedent the tag of a memory in Mc itself, i.e., if

a memory in Mc is of the form [M ′; k′] (the communication M ′ created a

process tagged with k′), then a process or a memory containing a process

tagged with k′ has to be in Mc (Mc contains every related process). Consider

now the following attempt at a rule for roll:

(Naive)
N ◮ k complete(N | [M ; k] | (κ : roll k))

N | [M ; k] | (κ : roll k) M | N k

The premises of rule Naive thus asserts that the configuration Mc = N |

[M ; k] | κ : roll k, on the left hand side of the reduction in the conclusion

of the rule, gathers all (and only) the threads and memories which have

originated from the process tagged by k, itself created by the interaction of

the message and trigger recorded in M . Being complete, Mc is thus ready to

be rolled-back and replaced by the configuration M which is at its origin,

since there exist no other processes outside Mc caused by k. Rolling-back

Mc has another effect, noted as N k in the right hand side of the conclusion,

which is to release from memories those messages or triggers which do not

have k as a causal antecedent, but which participated in communications

with causal descendants of k.

For instance, the configuration M0 = M1 | (κ2 : c(Y ) ⊲δ Y ), where

M1 = (κ0 : a〈P 〉) | (κ1 : a(X) ⊲γ c〈roll γ〉), has the following forward
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κ0 : a〈P 〉

))

κ1 : a(X) ⊲γ c〈roll γ〉

ss

κ2 : c(Z) ⊲δ Z

||

[M1; k]

��
k : c〈roll k〉

++
[M2; l]

��
l : roll k

Figure 4.1: Example of causal dependence graph.

reductions (where M2 = (k : c〈roll k〉) | (κ2 : c(Y ) ⊲δ Y )):

M0 ։ νk. [M1; k] | (k : c〈roll k〉) | (κ2 : c(Y ) ⊲δ Y )

։ νk, l. [M1; k] | [M2; l] | (l : roll k) =M3

The causal dependence graph on tags of M3 is depicted in Figure 4.1, where

arrows may be read as has caused. As one can see, to undo the communication

that caused k, that is M1, we have to undo the communication M2 and its

effect tagged by l. Applying rule Naive (and structural congruence, defined

later) on M3 we get:

M3  M1 | [M2; l] k =M1 | (κ2 : c(Y ) ⊲δ Y ) =M0

where the process (κ2 : c(Y ) ⊲δ Y ) is released from memory [M2; l] because it

does not depend on k, as show by Figure 4.1.

4.1.3 Concurrent Rolls

Rule Naive looks reasonable enough, but difficulties arise when concurrent

rollbacks are taken into account. Consider the following configuration:

M = (k1 : τ1) | (k2 : a〈0〉) | (k3 : τ3) | (k4 : b〈0〉)

where1 τ1 = a(X)⊲γ d〈0〉 | (c(Y )⊲roll γ) and τ3 = b(Z)⊲δ c〈0〉 | (d(U)⊲roll δ).

Reductions of M are depicted in Figure 4.2. Forward reductions are

labelled by the name of the channel used for communication, while backward

reductions are labelled by the executed roll instruction. Processes and short-

1We assume parallel composition has precedence over trigger.
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Figure 4.2: Concurrent rollback anomaly.

cuts of Figure 4.2 are detailed below:

M1 = νl2, h3, h4. σ1 | [σ2; l2] | (κ3 : c〈0〉) | (κ4 : τ4)

M2 = νl1, h1, h2. [σ1; l1] | (κ1 : d〈0〉) | (κ2 : τ2) | σ2

M ′ = νl1, l2, h̃. [σ1; l1] | [σ2; l2] | (κ1 : d〈0〉) | σ3 | σ4

M3 = νl1, l2, l3, h̃. [σ1; l1] | [σ2; l2] | [σ3; l3] | (l3 : roll l1) | σ4

M4 = νl1, l2, l4, h̃. [σ1; l1] | [σ2; l2] | [σ4; l4] | (l4 : roll l2) | σ3

M ′′ = νl̃, h̃. [σ1; l1] | [σ2; l2] | [σ3; l3] | [σ4; l4] | (l3 : roll l1) | (l4 : roll l2)

with:

σ1 = (k2 : a〈0〉) | (k1 : τ1) σ2 = (k4 : b〈0〉) | (k3 : τ3) τ2 = c(Y ) ⊲ roll l1

σ3 = (κ3 : c〈0〉) | (κ2 : τ2) σ4 = (κ1 : d〈0〉) | (κ4 : τ4) τ4 = d(U) ⊲ roll l2

κ1 = 〈h1, {h1, h2}〉 · l1 κ2 = 〈h2, {h1, h2}〉 · l1 l̃ = {l1, . . . , l4}

κ3 = 〈h3, {h3, h4}〉 · l2 κ4 = 〈h4, {h3, h4}〉 · l2 h̃ = {h1, . . . , h4}

In M ′′ there are two enabled roll instructions aiming to two different and

unrelated memories. Ideally one may think that from M ′′ it is possible to

get back to M . The anomaly here is that the execution of one roll disables

the other one, as one can see in the Figure 4.2 from M ′′ we can get back

either to M1 or to M2, but there is no way, from M1 or M2 to get back to

the initial configuration M . On the other hand, if we were in ρπ from M1

and M2 it is possible to get back to M . Thus rule Naive is not unsound,

but incomplete or insufficiently permissive, at least with respect to what is

possible in ρπ. If we were to undo actions in M ′′ step by step, using ρπ’s
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backward reductions, we could definitely reach all of M , M1, and M2. Note

that this issue is not due to the higher-order aspect of the calculus, we would

have the same problem also in a reversible first order π-calculus.

The main motivation to have a complete rule comes from the fact that,

in an abstract semantics, one wants to be as liberal as possible, and not

unduly restrict implementations. If we were to pick the Naive rule as

our semantics for rollback, then a correct implementation would have to

enforce the same restrictions with respect to states reachable from backward

reductions, restrictions which, in the case of rule Naive, are both complex

to characterize (in terms of conflicting rollbacks) and quite artificial since

they do not correspond to any clear execution policy. In the next section,

we present a maximally permissive semantics for rollback, using ρπ as our

benchmark for completeness.

4.2 Syntax and Semantics

Names, keys, and variables. We assume the existence of the following

denumerable infinite mutually disjoint sets: the set N of names, the set K of

keys, the set VK of tag variables, and the set VP of process variables. The

set I = N ∪ K is called the set of identifiers. We denote by N the set of

natural integers. We let (together with their decorated variants): a, b, c range

over N ; h, k, l range over K; u, v, w range over I; δ, γ range over VK; X, Y, Z

range over VP . We denote by ũ a finite set of identifiers {u1, . . . , un}.

Syntax. The syntax of the roll-π calculus is given in Figure 4.3 (we often add

balanced parenthesis around roll-π terms to disambiguate them). Processes,

given by the P,Q productions in Figure 4.3, are the standard processes of

the asynchronous Higher-Order π-calculus, except for the presence of the roll

primitive and the extra bound tag variable in triggers. A trigger in roll-π

takes the form a(X) ⊲γ P , which allows the receipt of a message of the form

a〈Q〉 on channel a, and the capture of the tag of the receipt event with tag

variable γ.

Processes in roll-π cannot directly execute, only configurations can. Con-

figurations in roll-π are given by the M,N productions in Figure 4.3. A

configuration is built up from tagged processes and memories.

In a tagged process κ : P the tag κ is either a single key k or a pair of

the form 〈h, h̃〉 · k, where h̃ is a set of keys with h ∈ h̃. A tag serves as an

identifier for a process. A marked memory is a configuration of the form

[µ; k]•, which just serves to indicate that a rollback operation targeting this

memory has been initiated.
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P,Q ::= processes

0 null process

| X process variable

| νa. P restriction

| (P | Q) parallel

| a〈P 〉 message

| a(X) ⊲γ P trigger

| roll k active roll

| roll γ roll

M,N ::= configurations

0 null configuration

| νu.M restriction

| (M | N) parallel

| κ : P thread

| [µ; k] memory

| [µ; k]• marked memory

κ ::= k | 〈h, h̃〉 · k tags

µ ::= ((κ1 : a〈P 〉) | (κ2 : a(X) ⊲ Q)) configuration part

u ∈ I

a ∈ N

X ∈ VP

h, k ∈ K

κ ∈ T

γ ∈ VK

Figure 4.3: Syntax of roll-π.
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We denote by P the set of roll-π processes, and C the set of roll-π

configurations. We call agent an element of the set A = P ∪ C. We let

(together with their decorated variants) P,Q,R range over P ; L,M,N range

over C; and A,B,C range over A. We call thread, a process that is either a

message a〈P 〉, a trigger a(X) ⊲γ P , or a rollback instruction roll k. We let τ

and its decorated variants range over threads. An immediate difference with

respect to ρπ is that now threads comprise also roll instructions.

Free identifiers and free variables. Notions of free identifiers and free

variables in roll-π are usual. Constructs with binders are of the following

forms: νa. P binds the name a with scope P ; νu.M binds the identifier u with

scope M ; and a(X) ⊲γ P binds the process variable X and the tag variable γ

with scope P . We note fn(P ), fn(M), and fn(κ) the set of free names, free

identifiers, and free keys, respectively, of process P , of configuration M , and

of tag κ. Note in particular that fn(κ : P ) = fn(κ)∪ fn(P ), fn(roll k) = {k},

fn(k) = {k} and fn(〈h, h̃〉 · k) = h̃ ∪ {k}. We say that a process P or a

configuration M is closed if it has no free (process or tag) variable. We

note Pcl, Ccl and Acl the sets of closed processes, configurations, and agents,

respectively.

Initial and consistent configurations. Not all configurations allowed

by the syntax in Figure 4.3 are meaningful. For instance, in a memory [µ; k],

tags occurring in the configuration part µ must be different from the key k; if

a tagged process κ1 : roll k occurs in a configuration M , we expect a memory

[µ; k] to occur in M as well. In the rest of the chapter, we only will be

considering well-formed, or consistent, closed configurations. A configuration

is consistent if it can be derived using the rules of the calculus from an initial

configuration. A configuration is initial if it does not contain memories, all

the tags are distinct and simple (i.e., of the form k), and the argument of

each roll is bound by a trigger.

The definition of consistent configuration is similar to the Definition 3.1

where we take into account also roll processes as threads, and we modify the

condition (6). We defer the formal definition of consistent configuration to

the next section.

Remark 4.1 We have no construct for replicated processes or guarded choice in

roll-π: as in HOπ, these can easily be encoded.

Remark 4.2 In the remainder of the chapter, we adopt Barendregt’s Variable

Convention: if terms t1, . . . , tn occur in a certain context (e.g., definition, proof),
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(E.ParC) A | B ≡ B | A (E.ParA) A | (B | C) ≡ (A | B) | C

(E.ParN) A | 0 ≡ A (E.NewN) νu.0 ≡ 0

(E.NewC) νu. νv.A ≡ νv. νu.A (E.NewP) (νu.A) | B ≡ νu. (A | B)

(E.α) A =α B =⇒ A ≡ B (E.TagN) κ : νa. P ≡ νa. κ : P

(E.TagP) k :
n
∏

i=1

τi ≡ νh̃.
n
∏

i=1

(〈hi, h̃〉 · k : τi) h̃ = {h1, . . . , hn} n ≥ 2

Figure 4.4: Structural congruence for roll-π

then in these terms all bound identifiers and variables are chosen to be different

from the free ones.

4.2.1 Operational semantics

The operational semantics of the roll-π calculus is defined via a reduction

relation →, which is a binary relation over closed configurations (→ ⊂

Ccl × Ccl), and a structural congruence relation ≡, which is a binary relation

over processes and configurations (≡ ⊂ P2 ∪ C2). We define evaluation

contexts as “configurations with a hole ·”, given by the following grammar:

E ::= · | (M | E) | νu.E

General contexts C are just processes or configurations with a hole ·. A

congruence on processes or configurations is an equivalence relation R that

is closed for general contexts: P RQ =⇒ C[P ]RC[Q] or M RN =⇒

C[M ]RC[N ].

The relation ≡ is defined as the smallest congruence on processes and

configurations that satisfies the rules in Figure 4.4. We note t =α t
′ when

terms t, t′ are equal modulo α-conversion. If ũ = {u1, . . . , un}, then νũ. A

stands for νu1. . . . νun. A. We note
∏n

i=1Ai for A1 | . . . | An (there is no need

to indicate how the latter expression is parenthesized because the parallel

operator is associative by rule E.ParA). In rule E.TagP, processes τi are

threads. Recall the use of the variable convention in these rules: for instance,

in the rule (νu.A) | B ≡ νu. (A | B) the variable convention makes implicit

the condition u 6∈ fn(B). The structural congruence rules are the usual rules

for the π-calculus (E.ParC to E.α) without the rule dealing with replication,
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and with the addition of two new rules dealing with tags: E.TagN and

E.TagP. Rule E.TagN is a scope extrusion rule to push restrictions to the

top level. Rule E.TagP allows to generate unique tags for each thread in

a configuration. An easy induction on the structure of terms provides us

with a kind of normal form for configurations (by convention
∏

i∈I Ai = 0 if

I = ∅, and [µ; k]◦ stands for [µ; k] or [µ; k]•):

Lemma 4.1 (Thread normal form) For any configuration M , we have

M ≡ νũ.
∏

i∈I

(κi : ρi) |
∏

j∈J

[µj ; kj ]
◦

with ρi = 0, ρi = roll ki, ρi = ai〈Pi〉, or ρi = ai(Xi) ⊲γi Pi.

We can now formally define the notion of consistent configuration.

Definition 4.1 (Consistent Configuration) A configuration M ≡ νũ.
∏

i∈I(κi : ρi) |
∏

j∈J [Mj ; kj ]
◦, with ρi = 0 or ρi a primitive thread process,

Mj = δj : Rj | γj : Tj, Rj = aj〈Pj〉, Tj = aj(Xj) ⊲γi Qj, is said to be

consistent if the following conditions are met:

• it satisfies conditions (1),(2),(3),(4),(5) of Definition 3.1;

• condition (6) of Definition 3.1 is substituted with : For all j ∈ J , there

exist E ⊆ I, D ⊆ J \ {j}, G ⊆ J \ {j}, such that:

νũ. kj : Qj{
Pj ,kj/Xj ,γj} ≡ νũ.

∏

e∈E

κe : ρe |
∏

d∈D

δd : Rd |
∏

g∈G

γg : Tg

We say that a binary relation R on closed configurations is evaluation-

closed if it satisfies the inference rules:

(R.Ctx)
M R N

E[M ] R E[N ]

(R.Eqv)
M ≡M ′ M ′ R N ′ N ′ ≡ N

M R N

The reduction relation → is defined as the union of two relations, the

forward reduction relation ։ and the backward reduction relation  : → =

։ ∪ . Relations ։ and  are defined to be the smallest evaluation-closed

binary relations on closed configurations satisfying the rules in Figure 4.5.
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In the rest of the chapter when needed, we will refer to this semantics as HL

(for High-Level) semantics.

(H.Com)
µ = (κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q)

(κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q)։ νk. (k : Q{P,k/X,γ}) | [µ; k]

(H.Start) (κ1 : roll k) | [µ; k] (κ1 : roll k) | [µ; k]
•

(H.Roll)
N ◮ k complete(N | [µ; k])

N | [µ; k]•  µ | N k

Figure 4.5: Reduction rules for roll-π.

The rule for forward reduction H.Com is the standard communication

rule of the Higher-Order π-calculus with three side effects: (i) the creation

of a new memory to record the configuration that gave rise to it (note again

the use of the variable convention: the key k is fresh); (ii) the tagging of the

continuation of the message receipt with the fresh key k; (iii) the passing of

the newly created tag k as a parameter to the newly launched instance of

the trigger’s body Q.

Backward reduction is subject to the rules H.Roll and H.Start. Rule

H.Roll is similar to rule Naive defined in the previous section, except that

it relies on the presence of a marked memory [µ; k]• instead of that of the

process κ : roll k to roll-back a given configuration. Rule H.Start just marks

a memory to enable rollback. By breaking down the atomicity of rule Naive

into a two step execution (H.Start followed by H.Roll) we have a way

around to solve the anomaly depicted in Figure 4.2, as will be shown later.

Causal Dependence

The way in which new keys are created in the rule H.Com provides us a

notion of ordering on keys, that is we may state that in the forward rule keys

κ1 and κ2 come before the new key k, or more precisely they cause the tag

k. The definition of rule H.Roll exploits several predicates and relations

which we define below.

Definition 4.2 (Causal dependence) Let M be a configuration and let

TM be the set of tags occurring in M . The binary relation >M on TM is

defined as the smallest relation satisfying the following clauses:

• k >M 〈hi, h̃〉 · k;
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• κ′ >M k if κ′ occurs in µ for some memory [µ; k]◦ that occurs in M .

The causal dependence relation :>M is the reflexive and transitive closure of

>M .

The relation >, on keys, states that a key k causes all its descendants

generated by an application of the structural law E.TagP and that a key κ

in the configuration part of a memory causes the memory tag. For example,

let µ = (κ1 : a〈0〉) | (κ2 : a(X) ⊲ b〈0〉 | c〈0〉), we have that µ։M , with:

M = νh1, h2, k. [µ1; k] | (〈h1, {h1, h2}〉 · k : a〈0〉) | (〈h2, {h1, h2}〉 · k : b〈0〉)

Then k >M 〈h1, {h1, h2}〉 · k and k >M 〈h2, {h1, h2}〉 · k and both κ1 and κ2
cause k, that is κ1 >M k and κ2 >M k.

Relation κ :>M κ1 reads “κ is a causal antecedent of κ1 according to

M”. When configuration M is clear from the context, we write κ :> κ1 for

κ :>M κ1. Let us note that the relation :> is a partial order relation since

reflexivity (κ :> κ), antisymmetry (κ :> κ1 and κ1 :> κ implies κ = κ1)

and transitivity hold. Exploiting the :> relation, we can easily state when

a configuration M depends on a particular key κ, that is when all the tags

contained in a configuration have as causal antecedent a particular key κ.

Definition 4.3 (κ dependence) Let M ≡ νũ.
∏

i∈I κi : ρi |
∏

j∈J [µj ;κj ]
◦.

Configuration M is κ-dependent, written M ◮ κ, if ∀l ∈ I ∪ J, κ :>M κl.

We now define the projection operation on configurations M κ, that cap-

tures the parallel composition of all tagged processes, occurring in memories

in M , that do not depend on κ. This filtering operator is used to delete

the global effects of a memory forward history, since it allows to put back

in the environment processes not related with the ongoing rollback, that

participated to communications with processes caused by the memory aimed

by the ongoing rollback.

Definition 4.4 (Projection) Let M ≡ νũ.
∏

i∈I(κi : ρi) |
∏

j∈J [µj ;κj ]
◦,

with µj = κ′j : Rj | κ
′′
j : Tj. Then:

M κ = νũ. (
∏

j′∈J ′

κ′j′ : Rj′) | (
∏

j′′∈J ′′

κ′′j′′ : Tj′′)

where J ′ = {j ∈ J | κ 6:> κ′j} and J ′′ = {j ∈ J | κ 6:> κ′′j }.

Finally we define the notion of complete configuration, used in the premise

of rule H.Roll.
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Definition 4.5 (Complete configuration) A configuration M contains

a tagged process κ : P , written κ : P ∈ M , if M ≡ νũ. (κ : P ) | N or

M ≡ νũ. [κ : P | κ1 : Q; k]◦ | N .

A configuration M is complete, noted complete(M), if for each memory

[µ; k]◦ that occurs in M , one of the following holds:

1. There exists a process P such that k : P ∈M .

2. There is h̃ such that for each hi ∈ h̃ there exists a process Pi such that

〈hi, h̃〉 · k : Pi ∈M .

A configuration M is complete if all the continuations of all the memories

are contained in M itself. In this way, if M ◮ k and complete(M | [µ; k])

(premises of rule H.Roll) hold, we are sure that M contains all the forward

history (or execution) of the memory [µ; k], and then we can restore µ by

deleting its effects on M (conclusion of the of rule H.Roll).

We now consider again the example of concurrent interfering rolls used

in Section 4.1 to show how the new semantics can cope with the problem

depicted in Figure 4.2. Consider the following configuration:

M = (k1 : τ1) | (k2 : a〈0〉) | (k3 : τ3) | (k4 : b〈0〉)

where τ1 = a(X) ⊲γ d〈0〉 | (c(Y ) ⊲ roll γ) and τ3 = b(Z) ⊲δ c〈0〉 | (d(U) ⊲ roll δ).

Then a possible execution could be

M ։

(1) νl̃, h̃. [σ1; l1] | [σ2; l2] | [σ3; l3] | [σ4; l4] | (l3 : roll l1) | (l4 : roll l2) 

(2) νl̃, h̃. [σ1; l1]
• | [σ2; l2] | [σ3; l3] | [σ4; l4] | (l3 : roll l1) | (l4 : roll l2) 

(3) νl̃, h̃. [σ1; l1]
• | [σ2; l2]

• | [σ3; l3] | [σ4; l4] | (l3 : roll l1) | (l4 : roll l2) 

(4) νl2, h1, h2. σ1 | [σ2; l2]
• | (κ3 : c〈0〉) | (κ4 : τ4) 

(5) σ1 | σ2 =M

with

σ1 = (k2 : a〈0〉) | (k1 : τ1) σ2 = (k4 : b〈0〉) | (k3 : τ3) τ2 = c(Y ) ⊲ roll l1

σ3 = (κ3 : c〈0〉) | (κ2 : τ2) σ4 = (κ1 : d〈0〉) | (κ4 : τ4) τ4 = d(U) ⊲ roll l2

κ1 = 〈h1, {h1, h2}〉 · l1 κ2 = 〈h2, {h1, h2}〉 · l1 l̃ = {l1 . . . l4}

κ3 = 〈h3, {h3, h4}〉 · l2 κ4 = 〈h4, {h3, h4}〉 · l2 h̃ = {h1 . . . h4}

As one can see, after that all the forward communications are done (1) by

executing the two rule H.Start on the two enabled rolls, we can mark the
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two memories aimed by them. In this way, we can remember that there was

a roll process targeting a particular memory. Once the two memories are

marked (3), then we can apply twice the rule H.Roll and we can get back

to the initial configuration M . So by using a marked memory as requirement

for the rollback and not requiring the syntactical presence of the roll process

that marked it, we can cope with the problem raised by the Naive rule. We

break the atomicity of the Naive rule by allowing possible communications

between the execution H.Start and the execution of H.Roll.

4.3 Soundness and completeness of backward re-

duction in roll-π

We present in this section a Loop Theorem, that establishes the soundness

of backward reduction in roll-π, and we prove the completeness (or maximal

permissiveness) of backward reduction in roll-π.

Theorem 4.1 (Loop Theorem - Soundness of backward reduction)

For any (consistent) configurations M and M ′ with no marked memories, if

M  ∗ M ′, then M ′ ։∗ M .

Proof: The computation M  ∗ M ′ is composed by applications of rules

H.Start and H.Roll. Also, if there is no H.Roll application then the

computation is empty, since M ′ does not contain marked memories by

hypothesis. We proceed by induction on the number of applications of

H.Roll. The base case (zero applications) is trivial.

For the inductive case, take the last such application, which is also

the last reduction in the computation, as M ′ has no marked memories:

M  ∗ M ′′  M ′. Let us consider the computation obtained by removing

from M  ∗ M ′′ the applications of rule H.Start that added marks removed

by M ′′  M ′ (there is at least the mark corresponding to the rollback, with

additionally other marks coming from causally dependent memories removed

as a side effect). This is of the form M  ∗ M ′′
1 with M ′′

1 with no marked

memories, and equal to M ′′ but for missing marks. By inductive hypothesis

M ′′
1 ։

∗ M . We now need to prove that M ′ ։∗ M ′′
1 to conclude. We

prove the following property: for every M i with at least one mark such that

M i  M ′, and for everyM i
1 equal toM

i except for having no marks, we have

M ′ ։∗ M i
1. We prove this property by induction on the number of memories

removed by the step M i  M ′. If only one memory is removed, then we

simply replay the communication it contained and have M ′ ։M i
1. For the

inductive case, we consider a removed memory whose only causal descendant
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is a process, i.e., M i contains a sub-process of the form [µ; k′]◦ | (k′ : P ).

Let M− be the same configuration where this process has been replaced by

µ (thus undoing the communication that created the memory). As there

are at least two memories removed in M i  M ′, and as every removed

memory is a causal descendant of Mk (the memory for which the rollback

is done), the memory [µ; k′]◦ cannot be Mk (since Mk does not only have a

process as causal descendant, but also at least one other memory). Thus we

have M−  M ′, and by induction (one fewer memory is removed), we have

M ′ ։∗ M−
1 . As M−

1 is M− with every mark removed, we have M−
1 ։M i

1

by replaying the communication µ. Thus we have M ′ ։∗ M i
1. We conclude

by applying this property to M ′′  M ′, thus we have M ′ ։∗ M ′′
1 . The thesis

follows. �

To state the completeness result for backward reduction in roll-π, we

define a family of functions φe : Croll-π → Cρπ, where e ∈ N , mapping a roll-π

configuration to a ρπ configuration. Function φe is defined by induction as

follows:

φe(νu.M) = νu. φe(M) φe(M | N) = φe(M) | φe(N)

φe(κ : P ) = κ : φe(P ) φe([µ; k]
◦) = [φe(µ); k]

φe(νa. P ) = νa. φe(P ) φe(P | Q) = φe(P ) | φe(Q)

φe(roll k) = e〈0〉 φe(roll γ) = e〈0〉

φe(a〈P 〉) = a〈φe(P )〉 φe(a(X) ⊲γ P ) = a(X) ⊲ φe(P )

φe(0) = 0 φe(X) = X

Note that roll instructions are transformed not into 0 but into a thread

e〈0〉: this is to ensure a consistent roll-π configuration is transformed into a

consistent ρπ configuration (recall that 0 is not a thread, thus it may be col-

lected by structural congruence and there would be no thread corresponding

to the roll k process).

We now state that roll-π is maximally permissive: any subset of roll

primitives in evaluation context may successfully be executed, unlike the

naive example of Section 4.1.2. Let M = νũ. [µ; k] | (k : P ) | N be a ρπ

configuration and S = {k1, . . . , kn} a set of keys. We note M  S M ′ if

M  ρπ M
′, M ′ = νũ. µ | N , and ki :> k for some ki ∈ S (here k is the key of

the memory [µ; k] consumed by the backward reduction). If M ′ 6 S , we say

that M ′ is final with respect to S. We note  ∗
S the reflexive and transitive

closure of  S . Essentially  S restricts ρπ backward reductions to processes

that have been caused by at least one of the keys present in the set S. We

assume here that reductions are name-preserving, i.e., existing keys are not
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α-converted (see Definition 3.5 in Section 3.5).

Definition 4.6 (Marks removing) Be ζ : Croll-π → Croll-π defined by in-

duction as follows:

ζ(νu.M) = νu. ζ(M) ζ(M | N) = ζ(M) | ζ(N)

ζ(κ : P ) = κ : P ζ([µ; k]◦) = [µ; k]

ζ(0) = 0

Function ζ is just used to delete marks from a configuration.

Theorem 4.2 (Completeness of backward reduction) LetM be a (con-

sistent) roll-π configuration such that M ≡ νũ.
∏n

i=1 κi : roll ki |M1, let

S = {k1, . . . , kn}, and let e ∈ N\fn(M). Then for all T ⊆ S, if φe(M) ∗
T N

and N is final with respect to T , there exists M ′ such that N = φe(M
′), and

M  ∗
roll-π M

′.

Proof: Let us consider the computation obtained in roll-π by starting from

M and first applying rule H.Start for every unmarked memory with key in

T , yielding configuration Mm, then applying rule H.Roll for every marked

memory with key in T (in an arbitrary order). Such a computation has the

form M  ∗
roll-π M

′. Hence we have the following roll-π execution:

M  H.Start M1  H.Start · · · H.Start Mm  H.Roll · · · H.Roll M
′

in this way all the memories whose key is in T are marked in Mm, and

rolled-back in M ′. We now show that this M ′ is the candidate one.

Let Mu = ζ(M), we have Mu  
∗
roll-π M

′
u, where M

′
u = ζ(M ′), by the

following reasoning: first every memory with key ki in T has a roll ki in Mu

to mark the memory using rule H.Start. Then we apply the same sequence

of reductions as from Mm to M ′ (the fact that some memories which are

not rolled-back are marked does not prevent any reduction). The resulting

configuration has no marks (as every marked memory has been rolled-back),

and only lacks some marks when compared to M ′.

By the Loop Theorem (Theorem 4.1), we have M ′
u ։

∗
roll-π Mu. Since

φe(Mu) = φe(M) and φe(M
′
u) = φe(M

′), the forward computationM ′
u ։

∗
roll-π

Mu can be translated into ρπ: φe(M
′)։∗

ρπ φe(M). From the Loop Lemma

of ρπ (Lemma 3.11 in Section 3.3), we also have φe(M) ∗
ρπ φe(M

′). Note

that all the reductions involve memories which are descendants of keys in T

and that φe(M
′) is final with respect to T .
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Let us take an arbitrary ρπ computation φe(M) ∗
T N such that N is

final with respect to T . We will show that φe(M
′) ≡ N . This will prove the

thesis.

The proof is by induction on the number of reductions in φe(M) ∗
T N .

The base case (zero reductions) is trivial, as it means that φe(M) was already

final with respect to T , thus (by consistency of M), T = ∅ and M ′ = M .

For the inductive case consider the first reduction in both φe(M) ∗
T N and

φe(M) ∗
ρπ φe(M

′) (they both have one since they are not final with respect

to T ). If the two reductions involve the same memory then they coincide,

and the thesis follows by inductive hypothesis. Otherwise, let [µ, k] be the

memory involved in the first reduction for φe(M) ∗
T N . The same memory

is involved in a reduction in φe(M)  ∗
ρπ φe(M

′) (otherwise φe(M
′) would

not be final). Note now that two enabled backward reductions can always

be swapped (by Lemma 3.13 in Section 3.5). By applying multiple times

this swapping, one can move the reduction involving [µ, k] to the beginning

of φe(M) ∗
ρπ φe(M

′) without changing the final state. Thus we are back

to the case where the initial reduction is the same and we can apply the

inductive hypothesis. �

4.4 Intermediate Semantics

We have shown that roll-π is sound (Theorem 4.1) and complete (Theorem 4.2)

with respect to backward reductions. This implies that its semantics is the

one we had in mind for controlling rollback. But as one can see from the

semantics rules in Figure 4.5 the rule H.Roll implies several global checks (κ-

dependency and completeness) on the environment. Moreover, the operation

of restoring the content of a memory by erasing its effect on the environment

is a big atomic step involving an unbounded number of processes. Hence

this semantics, even if sound and complete, is far away from an actual

implementation. Therefore, in the rest of the chapter we propose several

refinements of the roll-π semantics toward a distributed low level algorithm,

relying just on asynchronous runtime notifications and local checks.

A rollback operation (of a marked memory) can be divided into two

phases: the first one consists of collecting all processes caused by the memory

and that will be affected by the rollback, and the second phase consisting of

restoring the content of the memory and deleting all the related processes.

Moreover, we can see a memory and all the processes that it has caused

as a tree rooted in the memory itself. So the collecting phase is similar

to a top down visit on a tree where processes are leaves and memories are

nodes. While visiting the tree, processes related to the aimed memory are
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marked. This idea is behind the low level semantics that will be presented in

Section 4.5. To prove the correspondence between the low level semantics

and the high level one (Theorem 4.7) our strategy is to introduce different

semantics, each one being a refinement of the previous one, differing just by

slight changes. Proving that two almost similar semantics are equivalent and

then concatenate all these results by transitivity, is easier (even if laborious)

than trying to find a relation (bisimulation) that directly relates the high

level semantics with the low level one. We now list the different semantics,

explaining how the two phases rollback is performed in each of them.

Freezing Semantics (FR): the first phase is done as a top down visit, but

in a synchronous way: when a collected process or memory is in parallel

with a direct descendant of it, the descendant can be collected. Once

all the required processes have been collected, the deleting phase is still

atomic.

Roll Semantics (RL): the top down visit is performed by using runtime

asynchronous notifications. Once all the required processes have been

collected, the deleting phase is still atomic.

Distributed Semantics (DS): the top down visit is done by asynchronous

notifications (as in the previous semantics). The deleting phase is no

longer atomic: it is done in several steps as in ρπ, each one undoing a

single communication.

Low Level Semantics (LL): similar to the the DS one but using sim-

pler runtime roll notifications. This semantics will be presented in

Section 4.5.

The reader that is not willing to get all the technical details of the proof

of Theorem 4.7, can easily skip this section and continue directly with

Section 4.5, where the low level (LL) semantics is introduced.

Before introducing the various refinements we define a kind of behavioural

equivalence able to relate two different semantics.

4.4.1 Contextual equivalence in roll-π

The operational semantics of the roll-π calculus is completed classically by

the definition of a contextual equivalence between configurations, which

takes the form of a barbed congruence. We first define observables in

configurations. We say that name a is observable in configuration M , noted

M ↓a, if M ≡ νũ. (κ : a〈P 〉) | N , with a 6∈ ũ. Keys are not observable,
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because they are just an internal device used to support reversibility. We

note ⇒, ։∗,  ∗ the reflexive and transitive closures of →, ։, and  ,

respectively.

One of the aims of this chapter is to define a low-level semantics for roll-π,

close to a real distributed algorithm, and show that it is equivalent to the high-

level one. We use weak barbed congruence for this purpose. Thus we need a

definition of barbed congruence able to relate roll-π configurations executed

under different semantics. These semantics will also rely on different runtime

syntaxes. Thus, we define a family of relations, each labelled by the semantics

to be used on the left and right components of its elements. We also label

sets of configurations with the corresponding semantics, thus highlighting

that the corresponding runtime syntax has to be included. However, contexts

do not include runtime syntax, since we never add contexts at runtime.

Definition 4.7 (Barbed bisimulation and congruence) A relation s1Rs2

⊆ Ccl
s1×Ccl

s2 on closed consistent configurations is a strong (resp. weak) barbed

simulation if whenever M s1Rs2N

• M ↓a implies N ↓a (resp. N ⇒s2↓a)

• M →s1 M
′ implies N →s2 N

′, with M ′
s1Rs2N

′ (resp. N ⇒s2 N
′ with

M ′
s1Rs2N

′)

A relation s1Rs2 ⊆ Ccl
s1 × Ccl

s2 is a strong (resp. weak) barbed bisimulation

if s1Rs2 and (s1Rs2)
−1 are strong (resp. weak) barbed simulations. We call

strong (resp. weak) barbed bisimilarity and note s1∼s2 (resp. s1≈s2) the

largest strong (resp. weak) barbed bisimulation with respect to semantics s1

and s2.

We say that two configurations M and N are strong (resp. weak) barbed

congruent, written s1
·
∼

c

s2 (resp. s1

·
≈

c

s2), if for each roll-π context C such

that C[M ] and C[N ] are consistent, then C[M ] s1∼s2 C[N ] (resp. C[M ] s1≈s2

C[N ]).

Lemma 4.2 If M1 s1≈s2 M2 and M2 s2≈s3 M3 then M1 s1≈s3 M3.

Proof: Let R = {(M1,M3) | ∃M2 .M1 s1≈s2 M2 s2≈s3 M3}. We show that

R ⊆ s1≈s3.

Let us check barbs. By definition of s1≈s2 if M1 ↓a then M2 ⇒s2 M
′
2 ↓a.

Since M2 s2≈s3 M3 this implies that if M2 ⇒s2 M
′
2 then M3 ⇒s3 M

′
3 and

since M ′
2 ↓a then M ′

3 ⇒M ′′
3 ↓a. Hence M1 ↓a implies that M3 ⇒M ′′

3 ↓a. We

can apply the same reasoning to the opposite case.
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Let us consider reduction challenges. If M1 →s1 M
′
1 then by definition

M2 ⇒s2 M
′
2 with M ′

1 s1≈s2 M
′
2, but M2 ⇒s2 M

′
2 implies that M3 ⇒s3 M

′
3

such that M ′
2 s2≈s3 M

′
3. Hence we have that M1 →s1 M

′
1 implies that

M3 ⇒s3 M
′
3 with (M ′

1,M
′
3) ∈ R as desired. We can apply the same reasoning

to the opposite case. �

Lemma 4.3 If M1 s1

·
≈

c

s2 M2 and M2 s2

·
≈

c

s3 M3 then M1 s1

·
≈

c

s3 M3.

Proof: By definition we have that ∀C. C[M1] s1≈s2 C[M2] s2≈s3 C[M3], with

C a roll-π context. By applying Lemma 4.2 we obtain that ∀C. C[M1] s1≈s2

C[M2] s2≈s3 C[M3] implies that ∀C. C[M1] s1≈s3 C[M3], hence M1 s1

·
≈

c

s3 M3,

as desired. �

4.4.2 Freezing Semantics

The atomicity of rule H.Roll comes from the fact that at once the rule

gathers all the forward history of a particular memory [µ; k] and then restores

it by deleting its effects. Our first refinement consists in breaking down the

atomicity of this gathering action. We introduce, in the semantics, a way

of collecting k-dependant processes similar to a tree visit: starting from the

target memory of a roll (representing the root), step by step we visit the

causal tree and in the meantime we mark the visited process as being part

of a roll operation. Figure 4.6 shows the syntax of the FR (for freezing)

P,Q ::= . . .

M,N ::= 0 | νu.M | (M | N) | κ : P | ⌊κ : P⌋S | [µ; k] | [µ; k]•

Figure 4.6: Syntax of FR refinement.

refinement. The syntax is similar to that of roll-π (Figure 4.3) with the

slight difference that now a configuration M can be a frozen process of the

form ⌊κ : P⌋S . Moreover, µ configurations now can contain frozen processes.

A process of the form ⌊κ : P⌋S (with S 6= ∅) is a frozen process that is

participating to at least one roll operation. The set S of keys, keeps track

of all the rolls interested in that particular process. Frozen processes are

blocked: they cannot perform communications.

Before giving the semantics of the FR refinement, we need to define a

few operators.

Definition 4.8 (k-labelled) A memory M is k-labelled if it is of the form

[⌊κ1 : P⌋S |M ′; k2] with k ∈ S. A process ⌊κ : P⌋S is k-labelled if k ∈ S.
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Definition 4.9 ((k, k1)-labelling) A memory M is (k, k1)-labelling if:

1. k = k1 and M has the form [µ′; k]• or;

2. M has the form [µ; k1]
◦ and it is k-labelled

(F.Com)
µ = (κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q)

(κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q)։ νk. (k : Q{P,k/X,γ}) | [µ; k]

(F.Start) (κ1 : roll k) | [µ; k] FR (κ1 : roll k) | [µ; k]
•

(F.InP)
M is (k, k1)− labeling κ1 = k1 ∨ κ1 = 〈hi, h̃〉 · k1 k /∈ S

M | ⌊κ1 : P⌋S  FR M | ⌊κ1 : P⌋S∪{k}

(F.InM)
M is (k, k1)− labeling κ1 = k1 ∨ κ1 = 〈hi, h̃〉 · k1 k /∈ S

M | [⌊κ1 : P⌋S |M ; k2]
◦
 FR M | [⌊κ1 : P⌋S∪{k} |M ; k2]

◦

(F.Roll)

complete([µ; k] |
∏

i∈I

Ni) ∀i ∈ I.Ni is k-labelled

[µ; k]• |
∏

i∈I

Ni  FR µ | (
∏

i∈I

Ni) k

(E.Freeze) κ : P ≡FR ⌊κ : P⌋∅

Figure 4.7: FR semantics.

The FR semantics →FR of roll-π is defined as for the HL one (cf. Sec-

tion 4.2.1), as →FR = ։FR ∪  FR, where relations ։FR and  FR are

defined to be the smallest evaluation-closed binary relations on closed FR

configurations satisfying the rules in Figure 4.7. Let us note that ։FR

obeys to the same rule of ։HL. The notion of structural congruence used

in the definition of evaluation-closed is here the smallest congruence on FR

processes and configurations that satisfies the rules in Figure 3.2 and the

rule E.Freeze in Figure 4.7.

Let us comment on the semantics. The communication rule is the same

of HL semantics. As in roll-π a rollback begins with an application of the

rule F.Start (same as the roll-π one). Then, the process of gathering all

the forward history of a marked memory starts. A marked memory [µ; k]•

indicates that there is an ongoing roll operation aiming to restore it. Hence,

it can passes this information, via the label {k}, to all the processes directly
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caused by it, that is all the process tagged by a key κ such that k > κ

or k = κ. Said otherwise, a marked memory [µ; k]• is (k, k)-labelling (see

Definition 4.9). If we consider the causal dependency relation of a marked

memory as a tree rooted in the memory itself, with processes as leaves and

memories as nodes we can figure out how the two rules F.InP and F.InM

work. The first one models the case in which labelling information is passed

to a leaf by a father memory. Note that to use this rule for the first time,

when the process leaf is not frozen we need the additional structural law

E.Freeze. Rule F.InM passes information from father node to a child

node by labelling just the part of the configuration in the child memory that

has been directly caused by it. When all the processes caused by a marked

memory have been labelled, rule F.Roll can be applied. In the premises of

the rule, we check that the configuration N =
∏

i∈I Ni along with the marked

memory forms a complete configuration, said otherwise the configuration N

represents all the forward history of the marked memory. Then we check that

all the processes in N have been labelled with the same tag of the marked

memory. This is somehow similar to state that N ◮ k, but it is performed

locally since there is no need to use a global operator such as :>N to state

whether a process is interested by a roll k process: it is just sufficient to see

whether it is k-labelled.

To better understand how the semantics works, let us see an example.

Consider the configuration following configuration: M =M1 | (k3 : b(Z) ⊲ Z),

with M1 = (k1 : a〈0〉) | (k2 : a(X) ⊲γ b〈0〉 | roll γ). Then a possible execution

can be:

M ։

(1) νk. [M1; k] | k : (b〈0〉 | roll k) | (k3 : b(Z) ⊲ Z) ≡

(2) νk, h1, h2. [M1; k] | (κ1 : b〈0〉) | (κ2 : roll k) | (k3 : b(Z) ⊲ Z)։

(3) νk, k4, h1, h2. [M1; k] | [(κ1 : b〈0〉) | (k3 : b(Z) ⊲ Z); k4] | (k4 : 0) |

(κ2 : roll k) F.Start

(4) νk, k4, h1, h2. [M1; k]
• | [(κ1 : b〈0〉) | (k3 : b(Z) ⊲ Z); k4] | (k4 : 0) |

(κ2 : roll k) ≡

(5) νk, k4, h1, h2. [M1; k]
• | [⌊(κ1 : b〈0〉)⌋∅ | (k3 : b(Z) ⊲ Z); k4] | ⌊(k4 : 0)⌋∅ |

⌊(κ2 : roll k)⌋∅  F.InP
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(6) νk, k4, h1, h2. [M1; k]
• | [⌊(κ1 : b〈0〉)⌋∅ | (k3 : b(Z) ⊲ Z); k4] | ⌊(k4 : 0)⌋∅ |

⌊(κ2 : roll k)⌋{k}  F.InM

(7) νk, k4, h1, h2. [M1; k]
• | [⌊(κ1 : b〈0〉)⌋{k} | (k3 : b(Z) ⊲ Z); k4] | ⌊(k4 : 0)⌋∅ |

⌊(κ2 : roll k)⌋{k}  F.InP

(8) νk, k4, h1, h2. [M1; k]
• | [⌊(κ1 : b〈0〉)⌋{k} | (k3 : b(Z) ⊲ Z); k4] | ⌊(k4 : 0)⌋{k} |

⌊(κ2 : roll k)⌋{k}  F.Roll

(9) M1 | (k3 : b(Z) ⊲ Z) =M

with κ1 = 〈h1, {h1, h2}〉 · k and κ2 = 〈h2, {h1, h2}〉 · k. After the two

communications, in (4) the rule F.Start is executed, causing the marking

of the memory [M1; k]. Since the memory [M1, k]
• is (k, k)-labelling, it

labels both process ⌊(κ2 : roll k)⌋∅ by using the rule F.InP (6) and process

⌊(κ1 : b〈0〉)⌋∅ contained in a memory by using the rule F.InM (7). Then the

continuation of the memory bearing k4 is also frozen using the rule F.InP in

(8). Once that all the processes caused by k have been labelled (frozen), then

we can apply the rule F.Roll and we can get back to the initial configuration

M (9). Note the use of structural law E.Freeze in (5) to label processes.

Definition 4.10 (Freeze free configuration) A consistent configuration

M is freeze free if it does not contain any frozen process (active or in memory)

of the form ⌊κ : P⌋S with S 6= ∅.

The FR semantics allows to perform the check that all the involved pro-

cesses are k-dependent in a distributed way. The proof of the correspondence

between HL and FR semantics is based on the fact that freeze annotations

can be removed to get the corresponding HL configuration. We start by

defining the function γ(·) that removes such annotations.

Definition 4.11 The function γ(·) from FR configurations to HL configura-

tions is defined as follows:

γ(νu.M) = νu. γ(M) γ(M | N) = γ(M) | γ(N)

γ(κ : P ) = κ : P γ(0) = 0

γ([µ; k]) = [γ(µ); k] γ([µ; k]•) = [γ(µ); k]•

γ(⌊κ : P⌋S) = κ : P

Lemma 4.4 For any freeze free FR configuration M , if M ⇒FR N then

M ⇒FR γ(N) ∗
FR N .

Proof: We show that in the trace M ⇒FR N we can move all the steps

freezing processes which occur in N to the end of the trace.
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The proof is by induction on the number of such freezing steps. The base

case of zero steps is trivial. For the inductive case, consider the last of these

freezing steps. We show that we can swap the chosen step with the following

one. The thesis will follow by moving it at the end of the trace, and then

applying the inductive hypothesis on the first part of the trace, which has

one freezing step less. We have a case analysis on the rule used to derive the

step that follows the freezing one.

F.Com: if the freezing step uses rule F.InP the thesis follows from the

fact that the communication does not consume frozen processes nor

memories. If the freezing step uses rule F.InM the thesis follows from

the fact the communication does not consume memories.

F.Start: the thesis follows since the F.Start just adds a mark •, and this

cannot block any freeze.

F.InP, F.InM : let us note that we have chosen the last freezing step whose

effects are still present in N . This implies that if this step is followed

by a F.InP or a F.InM they affect different configurations, and then

the two steps can be easily swapped.

F.Roll: by hypothesis the frozen process is not removed by F.Roll since

it is still present in N . Indeed, since F.Roll considers complete

configurations, if it removes the labelling memory then it would remove

also the frozen process, contradicting the hypothesis.

Thus we have built a trace M ⇒FR N ′  ∗
FR N . N ′ is freeze free by

construction. Since it only differs from N because of freezes it coincides with

γ(N). �

The following proposition, similar to the Loop Theorem (Theorem 4.1),

shows the semantic relation between M and γ(M).

Proposition 4.1 For each consistent FR configuration M , γ(M)  ∗
FR

M ⇒FR γ(M).

Proof: Since γ( ) removes just frozen processes and not marked memories,

we have that M and γ(M) differ just by frozen processes. Hence we can

re-create the freezing and we obtain that γ(M) ∗
FR M .

We now have to show that M ⇒FR γ(M). Since M is a consistent

configuration then there exists a configuration M0 such that M0 ⇒FR M

with M0 being freeze free and not containing any mark. We can apply

Lemma 4.4 and obtain the trace M0 ⇒FR γ(M)  ∗
FR M . Now, we have
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two possible cases: either in γ(M) there exists for each marked memory

its corresponding roll or not. Since missing rolls can be only consumed

by F.Roll applications we proceed by induction on the number of these

applications. In the base case, since all the rolls are present, we have

that in the reduction M0 ⇒FR γ(M) there exists some application of the

rule F.Start otherwise M does not contain marked memories and we can

directly apply the same technique of Theorem 4.1. If there exist F.Start

applications, we can postpone all of them in order to obtain a trace of the

form M0 ⇒FR M◦  ∗
FR γ(M) ∗

FR M , where M◦ does not contain marked

memories. By executing all the ongoing rolls in M , that is by executing all

the missing freeze and applying the rule F.Roll for each marked memory,

we obtain the following trace M◦  ∗
FR γ(M)  ∗

FR M  ∗
FR M ′ with

M ′ not containing marked memories. Hence we have that, M◦  ∗
FR M ′

with both M◦ and M ′ not containing marked memories. By applying the

same technique of Theorem 4.1 we obtain that M ′ ։∗
FR M◦. Let us note

that this Theorem works on roll-π semantics, but we can use the same

arguing to have the same result in the FR semantics. Hence we have that

M  ∗
FR M ′ ։∗

FR M◦  ∗
FR γ(M), that is M ⇒FR γ(M) as desired.

In the inductive case we assume that n rolls are missing. Take the first

such roll. We thus have M0 ⇒FR M1  F.Roll M2 ⇒FR M . Since M0 is an

initial process, all the memories are deleted by this roll have been created by

communications inM0 ⇒FR M1, the memory has been marked by a F.Start

in M0 ⇒FR M1 and all the processes frozen by steps in M0 ⇒FR M1. By

removing all this steps does not forbid any other step. We proceed by case

analysis:

F.Com: if the communication involves processes deleted by the roll applica-

tion then its effect in M2 is not present. Otherwise its effect remains

in M2.

F.InP: if this rule labels a process that will be collected by the roll, then

its effect is no-more present in M2. Otherwise it is still present since

the labelled process is not collected by the roll.

F.InM: if this rule is applied on a memory that will be collected by the roll

we have two cases: either it labels a process that will be collected by

the roll or not. In the first case we have that its effect is no present in

M2 since the process is collected, in the second case since it labels the

part of the memory not related by the roll, then this process will be

still present in M2 as an active process.
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F.Start: if it marks a memory that will not be collected by the roll, then

this marked memory is still present in M2, otherwise not.

F.Roll: there is no such a step since we chose the first roll in the trace.

Thus we can build a new computation by removing all these steps and

the roll. The resulting process is again M2. Thus we have a new computation

M0 ⇒ M2 ⇒ M with one less F.Roll application. The thesis follows by

inductive hypothesis.

�

We can now prove results on the operational correspondence between the

two semantics. We start from the direction from HL to FR.

Proposition 4.2 (Operational correspondence: from HL to FR) For

all HL configurations M,N , if M →HL N then M ⇒FR N .

Proof: By induction on the derivation of →HL, with a case analysis on the

used rule. The only non trivial case concerns rule H.Roll.

We have that M =M1 | [N1; k]
•, with M a complete configuration and

M1 ◮ k. We have that M  HL N1 | N2 with N2 =M1 κ.

In order to have a corresponding reduction in the FR semantics we have

to label all the memories and processes in M1 with key k. Since M1 ◮ k

for each such process and memory M ′ we have that k :> κ′ where κ′ is the

key of M ′ (for processes) or a key inside a component of M ′ (for memories).

By definition of :>, there is a chain of keys κ1 > . . . > κn with k = κ1 and

κ′ = κn. Thanks to completeness, for all pairs (κi, κi+1) of keys (but possibly

the last) in each chain there is a memory of the form [µ, κi] and a memory

of the form [κ′i : P | M ;κi+1] with κi = κ′i or κ
′
i = 〈h̃′, h′i〉 · κ

′
i. Similarly,

the last element of a chain can have κ′i : P instead of [κ′i : P | M ;κj ]. One

can label with k all the elements by following the chains, usinng rule F.InM

for labelling memories and F.InP for labelling processes. Note that if the

initial set of keys is empty one can use structural congruence rule E.Freeze

to label the element with an empty set of keys. When labelling has been

performed it is trivial to see that applying F.Roll has the same effect of

H.Roll. Note in fact that M1 κ contains no labelled processes. �

We consider now the opposite direction, from FR to HL.

Proposition 4.3 (Operational correspondence: from FR to HL) For

all FR configurations M,N , if M →FR N then γ(M) 99KHL γ(N) (here

99KHL is the reflexive closure of →HL).
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Proof: By induction on the derivation of →FR, with a case analysis on the

used rule. The thesis follows by observing that the effect of rules F.InP,

F.InM and E.Freeze is discarded by function γ(·), while rule F.Roll

corresponds to rule H.Roll. �

We can use the two results above to ensure that HL and FR semantics

are equivalent with respect to weak barbed congruence.

Theorem 4.3 (Behavioral correspondence: HL vs FR) For each (con-

sistent) HL configuration M we have M HL

·
≈

c

FR M .

Proof: We show that the relation:

HLRFR =

{

(C[γ(M)],C[M ])
∣

∣

∣

M is a consistent FR configuration ∧

C[γ(M)],C[M ] are consistent

}

is a weak barbed bisimulation with respect to HL and FR.

Observe that C[γ(M)] = γ(C[M ]), thus it is enough to consider pairs of

consistent configurations of the form (γ(M),M).

For the condition on barbs, first observe that if M has a barb, then γ(M)

has the same barb. For the opposite direction, if γ(M) has a barb, using

Proposition 4.1 we have that M ⇒ γ(M), thus M has the same (weak) barb.

For the condition on reductions we have a case analysis according to the

type of reduction and the configuration that makes the challenge. Challenges

from FR configuration M are matched thanks to Proposition 4.3. Challenges

from HL configuration γ(M) are a bit more tricky. For backward reductions,

we can use Proposition 4.2, while for forward reductions if one of the processes

involved (message or trigger) is frozen in M (and hence cannot communicate)

then one has to apply Proposition 4.1 to have M ⇒ γ(M) and then match

the communication, otherwise if both processes are not frozen then the

communication can be directly matched. �

4.4.3 Roll Semantics

In the second refinement, we rely on asynchronous notification to freeze

threads, breaking down the synchrony required by rules F.InP and F.InM

(in Figure 4.7): instead of using the predicate (k, k1)-labelling we use runtime

roll notifications, noted as rl, to notify processes that are part of a rollback

operation. Figure 4.8 shows the syntax of the RL (for roll) refinement, where

the main change with respect to the previous one is that now configurations

include roll notifications of the form rl k, κ. A notification of the form rl k, κ

means that there is an ongoing rollback targeting the memory bearing the
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tag k, and that the thread tagged by κ should be notified of being part of

the rollback aiming to restore k.

P,Q ::= . . .

M,N ::= 0 | νu.M | (M | N) | κ : P | ⌊κ : P⌋S | [µ; k] | [µ; k]•

| rl k, κ

Figure 4.8: Syntax of RL refinement.

The RL semantics →RL of roll-π is defined as for the HL one (cf. Sec-

tion 4.2.1), as →RL = ։RL ∪  RL, where relations ։RL and  RL are

defined to be the smallest evaluation-closed binary relations on closed LL

configurations satisfying the rules in Figure 4.9. The notion of structural

congruence used in the definition of evaluation-closed is here the smallest

congruence on RL processes and configurations that satisfies the rules in

Figure 3.2 plus rules: E.Freeze (in Figure 4.7) and E.GB (in Figure 4.9).

Figure 4.9 depicts the semantics rules and additional structural law used

by the RL refinement with respect to the FR refinement. The communication

rule (not shown here) is the same as that of roll-π. A rollback operation

begins with the application of the rule R.Start. This rule has two side

effects: it marks the memory (as the previous semantics) and it generates a

runtime notification of the form rl k, k in order to freeze its descendants. Rule

Span is used to propagate the notification through the causal dependency

tree, that is if there is a notification of the form rl k, κ and the thread

tagged by κ is contained in a memory (is part of a communication) then the

process identified by κ gets frozen and a notification to freeze the memory

descendants is generated. Rule R.Branch just disseminates a notification

of the form rl k, k1 through a parallel composition. This rule is applied in

the case in which the process bearing tag k1 was a parallel composition, and

an application of the structural law E.TagP (see Figure 4.4) splits it into

several threads. Hence, a notification is created for each single thread in

which the process has been split. Therefore, rules R.Branch and R.Span

serve to disseminate notifications through the tree that the causal relation

forms. Rule R.Up adds the information about a roll process to a thread

process. Note that, as for the FR semantics, in this semantics it is important

the use of the rule E.Freeze (see Figure 4.7), since it allows to consider a

thread as a frozen process labelled by the empty set. Structural law E.GB is

used to collect rl notifications that are no more needed, that is notifications

on memories that have been already deleted. Indeed, if a memory is deleted
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(R.Start) (κ1 : roll k) | [µ; k] RL (κ1 : roll k) | [µ; k]
• | rl k, k

(R.Span)
k /∈ S

rl k, κ1 | [⌊κ1 : P⌋S |M ; k2]
◦
 RL [⌊κ1 : P⌋S∪{k} |M ; k2]

◦ | rl k, k2

(R.Branch)
M = 〈hi, h̃〉 · k1 : P ∨ M = [〈hi, h̃〉 · k1 : P | N ; k2]

rl k, k1 |M  RL

∏

hi∈h̃

rl k, 〈hi, h̃〉 · k1 |M

(R.Up)
k /∈ S

rl k, κ1 | ⌊κ1 : P⌋S  RL ⌊κ1 : P⌋S∪{k}

(R.Roll)

complete([µ; k] |
∏

i∈I

Ni) ∀i ∈ I.Ni is k-labelled

[µ; k]• |
∏

i∈I

Ni  RL µ | (
∏

i∈I

Ni) k

(E.GB) νl.
∏

i∈I

rl ki, l |
∏

j∈J

rl kj , 〈hj , h̃j〉 · l ≡RL 0

Figure 4.9: RL semantics.
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then all the rl notifications aiming to collect its descendants are meaningless

and does not have any effect on the entire configuration. Therefore, they can

be garbage collected (considered as 0).

To better understand how the semantics works, let us see an example (the

same as in Section 4.4.2). Consider the configurationM =M1 | (k3 : b(Z)⊲Z),

with M1 = (k1 : a〈0〉) | (k2 : a(X) ⊲γ b〈0〉 | roll γ). Then a possible execution

can be:

M ։

(1) νk. [M1; k] | k : (b〈0〉 | roll k) | (k3 : b(Z) ⊲ Z) ≡

(2) νk, h1, h2. [M1; k] | (κ1 : b〈0〉) | (κ2 : roll k) | (k3 : b(Z) ⊲ Z)։

(3) νk, k4, h1, h2. [M1; k] | [(κ1 : b〈0〉) | (k3 : b(Z) ⊲ Z); k4] | (k4 : 0) |

(κ2 : roll k) R.Start

(4) νk, k4, h1, h2. [M1; k]
• | rl k, k | [(κ1 : b〈0〉) | (k3 : b(Z) ⊲ Z); k4] | (k4 : 0) |

(κ2 : roll k) R.Branch

(5) νk, k4, h1, h2. [M1; k]
• | rl k, κ1 | rl k, κ2 | [(κ1 : b〈0〉) | (k3 : b(Z) ⊲ Z); k4] |

(k4 : 0) | (κ2 : roll k) ≡

(6) νk, k4, h1, h2. [M1; k]
• | rl k, κ1 | rl k, κ2 | [⌊(κ1 : b〈0〉)⌋∅ | (k3 : b(Z) ⊲ Z); k4] |

⌊(k4 : 0)⌋∅ | ⌊(κ2 : roll k)⌋∅  R.Span

(7) νk, k4, h1, h2. [M1; k]
• | rl k, κ2 | rl k, k4 | [⌊(κ1 : b〈0〉)⌋{k} | (k3 : b(Z) ⊲ Z); k4] |

⌊(k4 : 0)⌋∅ | ⌊(κ2 : roll k)⌋∅  R.Up

(8) νk, k4, h1, h2. [M1; k]
• | rl k, k4 | [⌊(κ1 : b〈0〉)⌋{k} | (k3 : b(Z) ⊲ Z); k4] |

⌊(k4 : 0)⌋∅ | ⌊(κ2 : roll k)⌋{k}  R.Up

(9) νk, k4, h1, h2. [M1; k]
• | [⌊(κ1 : b〈0〉)⌋{k} | (k3 : b(Z) ⊲ Z); k4] |

⌊(k4 : 0)⌋{k} | ⌊(κ2 : roll k)⌋{k}  R.Roll

(10) M

with κ1 = 〈h1, {h1, h2}〉 · k and κ2 = 〈h2, {h1, h2}〉 · k. Starting from M

after two communications (3), the rule R.Start is applied on the memory

[M1, k] (4) causing its marking and the generation of the runtime notification

rl k, k. Since the process bearing the tag k has been split into two primitive

threads identified by tags κ1 and κ2, then the notification rl k, k is split into

the two sub-notifications rl k, κ1 and rl k, κ2 using the rule R.Branch (5).

Process tagged by κ1 is part of a memory, then the rule R.Span is applied

(7), with the effect of freezing the process tagged by κ1, inside the memory,

and generating a notification for the descendants of the memory containing
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it, that is rl k, k4. In (8) the rule R.Up is applied on the process tagged by

κ2, while the same rule in (9) is applied on the process tagged by k3. Now,

since there are no more notifications and all the processes generated because

of k have been frozen (and labelled by k) the rule R.Roll can be applied

and the whole configuration can get back to the initial one (M). Note again

in (5) the use of structural law E.Freeze.

As already pointed out, the difference with the FR refinement is just

the use of asynchronous notifications to freeze processes, instead of using

the predicate (k, k1)-labelling. Hence, rl notifications can be seen as an

annotation in the semantics, and we define a function γr(·) removing them.

Definition 4.12 The function γr(·) from RL configurations to FR configu-

rations is defined as follows:

γr(νu.M) =νu. γr(M) γr(M | N) =γr(M) | γr(N)

γr(κ : P ) =κ : P γr(0) =0

γr([M ; k]) =[M ; k] γr([M ; k]◦) =[M ; k]◦

γr(⌊κ : P⌋S) =⌊κ : P⌋S γr(rl k, κ1) =0

The correspondence is based on the following invariant, which defines the

behavior of rl notifications.

Lemma 4.5 For each RL configuration M ≡RL νñ. [µ, k1]
◦ | N we have that

[µ, k1]
◦ is (k, k1)-labeling if and only if:

• either there is in N a process ⌊k1 : P⌋S or a memory [⌊k1 : P⌋S |

N ′; k2]
◦ with k ∈ S;

• or there is in N a configuration of the form rl k, k1;

• or there exists h̃ and 〈hi, h̃〉 · k1 is free in N and for each hi ∈ h̃:

– either there is in N a configuration ⌊〈hi, h̃〉 · k1 : P⌋S or memory

[⌊〈hi, h̃〉 · k1 : P⌋S | N ′; k3]
◦ with k ∈ S;

– or there is in N a configuration of the form rl k, 〈hi, h̃〉 · k1.

Proof: The proof is by induction on the number of reductions from the

initial configuration to M , with a case analysis on the used axiom. For the

⇒ case we have the following cases:
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Com: the only memory created by the reduction is not (k, k1)-labelling

for any (k, k1), thus memory [µ, k]◦ should be in the context (up to

structural congruence a reduction is an application of an axiom, Com

in this case, in a suitable context). By inductive hypothesis the labelled

processes or memories or the roll configurations existed before the

reduction. Since the reduction can not delete any of them (neither

remove a complex key), then the thesis holds also after the reduction.

R.Start: if the memory [µ, k1]
◦ is the one tagged by the rule, than the thesis

holds directly since the rule also creates a configuration of the form

rl k1, k1. Otherwise it holds by inductive hypothesis.

R.Span: if the memory [µ, k1]
◦ is the one appearing in the rule, then the

thesis holds trivially since there is a corresponding configuration rl κ, k1.

Otherwise if the memory [µ, k1]
◦ is in the context, then we can apply

inductive hypothesis to know that the condition was satisfied before

the reduction. If the configuration satisfying the condition was not

the existence of rl k, k1 then the condition is still satisfied for the

same reason after the reduction. Otherwise the condition becomes

satisfied since a memory [⌊κ1 : P⌋S∪{k} | N ; k2] is created with κ1 = k

or κ1 = 〈h̃, hi〉 · k1.

R.Branch: the memory [µ, κ1]
◦ is necessarily in the context or in the term

M . Since M is preserved the same reasoning can be done in the two

cases. If the reason for the condition to be satisfied is not the existence

of rl k, k1, then the thesis follows trivially by inductive hypothesis.

Otherwise it follows trivially since there is h̃ such that 〈h̃, hi〉 ·k1 occurs

in the term and for each hi ∈ h̃ there is a configuration of the form

rl k, 〈h̃, hi〉 · k1.

R.Up: the memory [µ, k1]
◦ is necessarily in the context. If the reason for

the condition to be satisfied is not the existence of rl k, k1, then the

thesis follows trivially by inductive hypothesis. Otherwise it follows

trivially since there is a process ⌊κ1 : P⌋S with k ∈ S and κ1 = k or

κ1 = 〈h̃, hi〉 · k1.

R.Roll: there are no memories in the right hand side of the axiom, thus the

(k, k1)-labelling memory [µ, k1]
◦ is necessarily in the context. Let us

consider the different possibilities the condition could have been satisfied

before the reduction. If it is because of the existence of a rl notification,

then it is still satisfied after the reduction since no such term is removed

(and complex keys are removed only if the corresponding memory is
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removed). If it is because of the existence of a process or memory

not removed by the reduction then the thesis is still satisfied after

the reduction. If it is satisfied because of memory [µ; k2]
• (the target

memory) then one of its internal processes should be labelled by k, and

thus the term µ in the result makes the condition satisfied. Assume now

that the condition was satisfied thanks to some process or memory Ni.

Let us consider the labelled process (possibly inside the memory). If the

labelling memory was k′-labelled where k′′ is the key to be rolled-back

then it disappeared and thus nothing has to be proved. Otherwise the

only possibility is that Ni was a memory with a subprocess k′-labelled

and a subprocess k-labelled (but not k′-labelled). Then the subprocess

k-labelled occurs in (
∏

i∈I Ni) κ′ , satisfying the thesis.

In the case ⇐ we prove that if M ≡RL νñ. rl k, κ1 | N with rl k, κ1
non collectable via ≡RL, then there exists in N a memory [µ, k1]

◦ that is

(k, k1)-labelling with κ1 = k1 or κ1 = 〈h̃, hi〉 · k1. As the above case we

proceed by case analysis on the applied axiom. All the cases are simple. �

We can now prove the correspondence theorem.

Theorem 4.4 (Behavioral correspondence: FR vs RL) For each (con-

sistent) FR configuration M we have M FR

·
≈

c

RL M .

Proof: We show that the relation:

FRRRL =

{

(C[γr(M)],C[M ])
∣

∣

∣

M is a consistent RL configuration ∧

C[γr(M)],C[M ] are consistent

}

is a weak barbed bisimulation with respect to FR and RL.

The proof for barbs follows trivially since rl notifications have no barb.

The proof for reductions is trivial for reductions derived using rules R.Comm,

R.Start, and R.Roll and the corresponding FR rules. Rules F.InP

and F.InM are matched respectively by rules R.Up and R.Span since

by Lemma 4.5 if there is a memory (k, k1)-labelling then there exists a

corresponding rl notification. On the other side, rules R.Span and R.Up are

matched by rules F.InP and F.InM by using again Lemma 4.5 since if there

exists a notification rl k, κ1 then there exists a memory that is (k, k1)-labelling,

with κ1 = k1 or κ1 = 〈h̃, hi〉 · k1. Rule R.Branch is matched by the identity,

since is does not affect either memories or threads and all the rl notifications

are deleted by γ( ). �
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4.4.4 Distributed Semantics

We now introduce the last refinement semantics. With the previous semantics

we have broken down the atomicity of gathering all the processes related

to a particular tag, that is the forward history of a target memory. But

restoring the content of a memory and deleting its effects is still an atomic

step involving an unbounded number of processes. With this semantics, that

we call DS (for distributed), we mimic the backward reduction of ρπ, that is

we exploit memories to get back of one step (of communication) at time. In

this way we break down the atomicity of the rule H.Roll. This time there

is no change of the syntax of RL.

(D.Stop)
S 6= ∅

[µ; k]◦ | ⌊k : P⌋S  DS µ

(E.TagPFrS)
h̃ = {h1, . . . , hn} n ≥ 2

⌊k :
n
∏

i=1

τi⌋S ≡DS νh̃.
n
∏

i=1

⌊(〈hi, h̃〉 · k : τi)⌋S

Figure 4.10: DS semantics.

The DS semantics →DS of roll-π is defined as for the HL one (cf. Sec-

tion 4.2.1), as →DS = ։DS ∪  DS , where relations ։DS and  DS are

defined to be the smallest evaluation-closed binary relations on closed LL

configurations satisfying the rules in Figure 4.9 (except for R.Roll) and

Figure 4.10. The notion of structural congruence used in the definition

of evaluation-closed is here the smallest congruence on DS processes and

configurations that satisfies the rules in Figure 3.2 plus rules: E.Freeze

(in Figure 4.7) and E.GB (in Figure 4.9) and rule in Figure 4.10. Fig-

ure 4.10 depicts the extra semantic rules and structural laws used by the

DS refinement. The main change with respect the RL semantics is that we

replace the rule R.Roll with the rule D.Stop. This rule simply restores the

content of a memory (that may contain frozen processes) if its descendant is

a frozen process. As already said, the rollback operation is divided into two

phases: (i) gathering all the processes related to a particular memory and

then (ii) deleting the effects of this memory and restoring its content. So,

once we have frozen all the processes interested by a roll operation, instead

of deleting them at once, we can undo all the memories step by step (as

in ρπ), starting from the most recent memories, that is memories whose

continuations represent leaves of the causal tree. Let us note that, in this
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semantics, labelling information are meaningless since a rollback is done by

several steps. The structural law E.TagPFrS is similar to the roll-π (and

ρπ) rule E.TagP, and it is quite important since it allows to build back a

frozen parallel composition from a parallel composition of frozen threads

belonging to the same memory. Therefore, it is always used (if necessary)

before an application of the rule D.Stop, since to be applied D.Stop it

requires that a process bearing the memory tag has to be frozen.

As in the other sections, let us consider an example to better understand

how the DS semantics works. Consider the configuration M = M1 | (k3 :

b(Z) ⊲ Z), with M1 = (k1 : a〈0〉) | (k2 : a(X) ⊲γ b〈0〉 | roll γ). Then, following

the example of execution of the previous section we have:

M ⇒

(9) νk, k4, h1, h2. [M1; k]
• | [⌊(κ1 : b〈0〉)⌋{k} | (k3 : b(Z) ⊲ Z); k4] |

⌊(k4 : 0)⌋{k} | ⌊(κ2 : roll k)⌋{k}  D.Stop

(10) νk, h1, h2. [M1; k]
• | ⌊(κ1 : b〈0〉)⌋{k} | (k3 : b(Z) ⊲ Z)

| ⌊(κ2 : roll k)⌋{k} ≡

(11) νk. [M1; k]
• | (k3 : b(Z) ⊲ Z) | ⌊k : (roll k | b〈0〉)⌋{k}  D.Stop

(12) M1 | (k3 : b(Z) ⊲ Z) =M

with κ1 = 〈h1, {h1, h2}〉·k and κ2 = 〈h2, {h1, h2}〉·k. Following the reductions

of the previous section from M we reach the configuration in (9), where all

the processes caused by k have been frozen (and labelled). Now, instead

of executing the rollback in one atomic step (as in the RL semantics) the

DS semantics undoes forward steps (memories) one by one. In (9) there

is a memory bearing k4 and there is a frozen process tagged by k4, that is

the continuation of the memory bearing the tag k4 is frozen. Hence, rule

D.Stop can be applied and the content of the memory is restored and its

continuation deleted (10). Now by applying the structural law E.TagPFrS

on the two frozen processes tagged respectively by κ1 and κ2, the process

⌊k : (roll k | b〈0〉)⌋{k} can be retrieved (11). By applying again the rule

D.Stop the configuration gets back to the initial one, as desired.

We prove now results on the operational correspondence between the two

semantics. We start from the direction from RL to DS.

Proposition 4.4 (Operational correspondence: from RL to DS) For

all RL configurations M,N , if M →RL N then M ⇒DS N .

Proof: The proof is by case analysis on the axiom used to derive the
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transition. All the cases are trivial but for rule HL-Roll. In this case the

proof is by induction on the number of components in the term. We have that

in M there exist a configuration [µ, k]• |
∏

i∈I Ni such that ∀i ∈ I.Ni ◮ k

and complete([µ, k]• |
∏

i∈I Ni). Thanks to completeness and since all the

processes are k-labelled, we know that there are chains connecting them to

the memory bearing k. We apply rule D.Stop recursively to all the leaves,

using the structural congruence E.TagPFr to join brother leaves before

rolling-back. Processes will completely disappear as required. For memories,

at least one of the two internal processes is k-labelled and thus disappears

when it interacts with the father memory. Processes which are not k-labelled

instead are preserved, as expected since they are in (
∏

i∈I Ni) κ. �

We need a lemma stating that DS reductions derived using rule D.Stop

commute with other reductions. To help the notation, we write M →֒DS N

if M  DS N and the reduction is derived using rule D.Stop. Also, →֒∗
DS is

the reflexive and transitive closure of →֒DS .

Lemma 4.6 (Stop swap) For each consistent DS configuration N , if N →֒DS

M and N →DS N
′ then there is a DS configuration M ′ such that M 99KDS

M ′ and N ′ →֒DS M
′ (here 99KDS is the reflexive closure of →DS).

Proof: The proof is by case analysis on the rule used to derive M →DS M
′.

R.Com: the premises of the two rules are necessarily disjoint, thus they

trivially commute.

R.Start: the only difficult case is when the memory in the premise of

R.Start is also the memory in the premise of D.Stop, since in all the

other cases the two reductions easily commute. By construction the

configuration κ1 : roll κ exists only if κ :> κ1. However the existence of

a configuration ⌊κ : P⌋S implies that there are no other descendants,

thus this case can never happen.

R.Span: Again the only difficult case is when the memory in rule R.Span

is also the memory in rule D.Stop. Thus we have a computation of

the form:

roll κ, κ1 | [⌊κ1 : P⌋S |M ; k2]
◦ | ⌊k2 : Q⌋S′ →

[⌊κ1 : P⌋S∪{κ} |M ; k2]
◦ | roll κ, k2 | ⌊k2 : Q⌋S′ →֒

⌊κ1 : P⌋S∪{κ} |M | roll κ, k2
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We also have a computation:

roll κ, κ1 | [⌊κ1 : P⌋S |M ; k2]
◦ | ⌊k2 : Q⌋S′ →֒

roll κ, κ1 | ⌊κ1 : P⌋S |M →

⌊κ1 : P⌋S∪{κ} |M

where the last reduction is derived using rule R.Up. Since in the result

of the computation the process on k2 has been removed, then there are

no other processes on k2 and roll κ, k2 can be garbage collected using

rule E.Gb.

R.Branch: the two rules commute easily.

R.Up: the difficult case is when the frozen process in the two rules is the

same. After R.Up, D.Stop can still be executed. After D.Stop, no

step is required, and roll κ, k1 can be garbage collected since k1 has

disappeared.

D.Stop: two stop rules necessarily act on disjoint configurations since there

are at most one memory and one process with the same key. Thus they

trivially commute.

�

We can now prove the equivalence result.

Theorem 4.5 (Behavioral correspondence: RL vs DS) For each (con-

sistent) RL configuration M we have M RL

·
≈

c

DS M .

Proof: We have to show that for each consistent RL configuration M and

each C[·] such that C[M ] is consistent, C[M ]RL≈DS C[M ]. To this end we

show that the relation:

RLRDS =











(M,N)

∣

∣

∣

∣

∣

M is a consistent RL configuration ∧

N is a consistent DS configuration ∧

N →֒∗
DS M











is a weak barbed bisimulation with respect to RL and DS.

Challenges from M (both barbs and reductions) are trivially answered

since N →֒∗
DS M . The only tricky case is when the challenge is a reduction

derived using rule R.Roll, but this can be answered thanks to Proposi-

tion 4.4.
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Let us consider challenges from N . If N has a barb then M has the

same barb since rule D.Stop never removes barbs. If N →DS N ′ then

using multiple times Lemma 4.6 one can derive N →֒∗
DS M 99KDS M

′ and

N ′ →֒∗
DS M

′. If M 99KDS M
′ does not use rule D.Stop then M 99KRL M

′

and the thesis follows. Otherwise N →֒∗
DS M

′ and the pair (M ′, N) is in the

relation as desired. �

4.5 A low level algorithm for roll-π

The semantics defined in Section 4.2.1 (see Figure 4.5) captures the behavior

of rollback, but it relies on global checks on large parts of the configuration,

for verifying that it is complete and κ-dependent. This makes it difficult to

implement directly such a semantics, even more so in a distributed setting.

We present now a low-level (written LL) semantics, where the conditions

above are verified incrementally by relying on communication of rl notifica-

tions. We show that the LL semantics captures the same intuition as the one

introduced in Section 4.2.1 by proving that, given a (consistent) configuration,

its behavior under the two semantics are weak barbed congruent according

to Definition 4.7.

To avoid confusion between the two semantics (and others semantics used

in the proof), we use a subscript LL to identify all the elements (reductions,

structural congruence, . . . ) referred to the low-level semantics presented

here, and HL (for high-level) for the semantics described in Section 4.2.1.

The LL semantics→LL of roll-π is defined as the HL one (cf. Section 4.2.1),

as →LL = ։LL ∪  LL, where relations ։LL and  LL are defined to be

the smallest evaluation-closed binary relations on closed LL configurations

satisfying the rules in Figure 4.11. The notion of structural congruence used

in the definition of evaluation-closed is here the smallest congruence on LL

processes and configurations that satisfies the rules in Figure 3.2 and in

Figure 4.12.

LL configurations differ from HL configurations in two aspects. First,

tagged processes (inside or outside memories) can be frozen, denoted ⌊κ : P⌋,

to indicate that they are participating to a rollback (rollback is no longer

atomic). Second, LL configurations include notifications of the form rl κ,

used to notify a tagged process with key κ to enter a rollback.

Let us describe the LL rules. Communication rule L.Com is as in HL.

The main idea for rollback is that when a memory pointed by a roll is

marked (rule L.Start), a notification rl k is generated. This notification

is propagated by rules L.Span and L.Branch. Rule L.Span also freezes

threads inside memories, specifying that they will be eventually removed by
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the rollback. Rule L.Branch (where the predicate “κ occurs in M” means

that either M = κ : P or M = [µ; k′]◦ with κ : P ∈ M) is used when the

target configuration has been split into multiple threads: a notification has

to be sent to each of them. Rule L.Up is similar to L.Span, but it applies

to tagged processes outside memories. It also stops the propagation of the

rl notification. The main idea is that by using rules L.Span, L.Branch,

and L.Up one is able to tag all the causal descendants of a marked memory.

Finally, rule L.Stop rolls-back a single computation step by removing a

frozen process and freeing the content of the memory created with it. In

the LL semantics a rollback request is thus executed incrementally, while

it was atomic in the HL semantics (rule H.Roll). The LL semantics also

exploits an extended structural congruence. The axiom E.Gb is used to

garbage collect rl notifications on keys that are no more used in the entire

configuration. The operator ⊂ on keys is defined as follows: k ⊂ κ if κ = k

or κ = 〈hi, h̃〉 · k. Axiom E.TagPFr is an adaptation of the axiom E.TagP

to deal with frozen processes.

(L.Com)
µ = (κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q)

(κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q)։LL νk. (k : Q{P,k/X,γ}) | [µ; k]

(L.Start) (κ1 : roll k) | [µ; k] LL (κ1 : roll k) | [µ; k]
• | rl k

(L.Span) rl κ1 | [κ1 : P |M ; k]◦  LL [⌊κ1 : P⌋ |M ; k]◦ | rl k

(L.Branch)
〈hi, h̃〉 · k occurs in M

rl k |M  LL

∏

hi∈h̃

rl 〈hi, h̃〉 · k |M

(L.Up) rl κ1 | (κ1 : P ) LL ⌊κ1 : P⌋ (L.Stop) [µ; k]◦ | ⌊k : P⌋ LL µ

Figure 4.11: Reduction rules for LL.

We now show an example to clarify the semantics. Consider the configu-

ration M =M1 | (k3 : b(Z) ⊲ Z), with M1 = (k1 : a〈0〉) | (k2 : a(X) ⊲γ b〈0〉 |
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(E.Gb) νk.
∏

i∈I

rl κi ≡LL 0 k ⊂ κi

(E.TagPFr)
h̃ = {h1, . . . , hn} n ≥ 2

⌊k :

n
∏

i=1

τi⌋ ≡LL νh̃.

n
∏

i=1

⌊〈hi, h̃〉 · k : τi⌋

Figure 4.12: Additional structural laws for LL.

roll γ). Then a possible execution can be:

M ։

(1) νk. [M1; k] | k : (b〈0〉 | roll k) | (k3 : b(Z) ⊲ Z) ≡

(2) νk, h1, h2. [M1; k] | (κ1 : b〈0〉) | (κ2 : roll k) | (k3 : b(Z) ⊲ Z)։

(3) νk, k4, h1, h2. [M1; k] | [(κ1 : b〈0〉) | (k3 : b(Z) ⊲ Z); k4] | (k4 : 0) |

(κ2 : roll k) L.Start

(4) νk, k4, h1, h2. [M1; k]
• | [(κ1 : b〈0〉) | (k3 : b(Z) ⊲ Z); k4] | (k4 : 0) |

(κ2 : roll k) | rl k  L.Branch

(5) νk, k4, h1, h2. [M1; k]
• | [(κ1 : b〈0〉) | (k3 : b(Z) ⊲ Z); k4] | (k4 : 0) |

(κ2 : roll k) | rl κ1 | rl κ2  L.Span

(6) νk, k4, h1, h2. [M1; k]
• | [⌊(κ1 : b〈0〉)⌋ | (k3 : b(Z) ⊲ Z); k4] | (k4 : 0) |

(κ2 : roll k) | rl k4 | rl κ2  L.Up

(7) νk, k4, h1, h2. [M1; k]
• | [⌊(κ1 : b〈0〉)⌋ | (k3 : b(Z) ⊲ Z); k4] | ⌊(k4 : 0)⌋ |

(κ2 : roll k) | rl κ2  L.Up

(8) νk, k4, h1, h2. [M1; k]
• | [⌊(κ1 : b〈0〉)⌋ | (k3 : b(Z) ⊲ Z); k4] | ⌊(k4 : 0)⌋ |

⌊(κ2 : roll k)⌋ L.Stop

(9) νk, k4, h1, h2. [M1; k]
• | ⌊(κ1 : b〈0〉)⌋ | (k3 : b(Z) ⊲ Z) | ⌊(κ2 : roll k)⌋ ≡

(10) νk. [M1; k]
• | (k3 : b(Z) ⊲ Z) | ⌊k : (b〈0〉 | roll k)⌋ L.Stop

(11) M1 | (k3 : b(Z) ⊲ Z)

with κ1 = 〈h1, {h1, h2}〉 · k and κ2 = 〈h2, {h1, h2}〉 · k.

One can see that the rollback operation starts with the application of

the rule L.Start (3), whose effects are (i) to mark the memory aimed by a

roll process, and (ii) to generate a notification rl k to freeze its continuation.

Since the key k has been split into κ1 and κ2, in (4) the rule L.Branch is
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applied and then the notification rl k is split into the two sub-notification

rl κ1 and rl κ2. Since in (5) the key κ1 is contained into a memory, then

the rule L.Span is applied and its effect are: freezing into the memory the

process tagged by κ1 and generating the notification rl k4 aiming to freeze

the descendants of the memory. Since there is a notification on the key k4
and a process in the environment tagged by k4 we can apply the rule L.Up

in (6) and freeze the process tagged by k4. We apply the same rule on key

κ2 in (7) and we freeze the process tagged by κ2. Since the continuation of

the memory bearing the tag k4 is frozen we can apply the rule L.Stop in (8)

and we release the content of this memory. Now by using the structural law

E.TagPFr we can built back the process k : (b〈0〉 | roll k) in (9). From (10)

we apply again the rule L.Stop and we get back to the initial configuration.

In general, a rollback of a step whose memory is tagged by k is performed by

executing a top-down visit of its causal descendants, freezing them, followed

by a bottom-up visit undoing the steps one at the time.

We now prove the correspondence between the DS semantics and the

LL one. One can easily see that the two semantics are almost equal when

transforming roll notifications of the form rl k, κ1 into rl κ1 and frozen

configurations ⌊M⌋S into ⌊M⌋ if S 6= ∅ and M if S = ∅. The only remaining

difference is that in the DS semantics roll notifications may proceed and add

new keys to set S of frozen processes, while in the LL semantics they are

blocked. However, these notifications will not have any effect on the rest of

the system, and will finally disappear when facing a process which is outside

a memory.

We can formalize this last intuition by showing that two LL processes

differing only by some redundant rl notifications are bisimilar.

Lemma 4.7 For each consistent LL configuration of the form C[rl κ |M ],

we have C[rl κ |M ] LL
·
≈

c

LL C[M ] if either M contains a notification rl κ or

⌊κ : P⌋ ∈M for some P .

Proof: By coinduction, showing that related processes evolve to relate or

identical processes. �

We can define a function γd(·) removing the redundant information.

Definition 4.13 The function γd(·) from DS configurations to LL configu-
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rations is defined as follows:

γd(νu.M) = νu. γd(M) γd(M | N) = γd(M) | γd(N)

γd(κ : P ) = κ : P γd(0) = 0

γd([M ; k]) = [M ; k] γd([M ; k]•) = [M ; k]•

γd(⌊κ : P⌋∅) = κ : P γd(⌊κ : P⌋S) = ⌊κ : P⌋ if S 6= ∅

γd(rl k, κ1) = rl κ1

We can now prove the correspondence theorem.

Theorem 4.6 (Behavioral correspondence: DS vs LL) For each (con-

sistent) DS configuration M we have M DS

·
≈

c

LL M .

Proof: We show that the relation:

DSRLL =

{

(C[M ],C[γd(M)])
∣

∣

∣

M is a consistent DS configuration ∧

C[M ],C[γd(M)] are consistent

}

is a weak barbed bisimulation with respect to DS and LL.

Barbs are trivially matched on both sides by definition of barb. Rules

D.Com, D.Start, D.Stop, D.Branch are matched respectively by L.Com,

L.Start, L.Stop, D.Branch and vice-versa. Rules D.Span and D.Up

if applied on freeze-free configurations, that is with S = ∅, are matched

respectively by rules L.Span and L.Up. Otherwise, since LL does not use

labelling information, we can compose the result by transitivity using the

Lemma 4.7 (because of redundant rl notifications) and then match those

reductions with the identity, and vice-versa. �

We can finally concatenate all the results to obtain the correspondence

between HL semantics and LL semantics.

Theorem 4.7 (Behavioral correspondence: HL vs LL) For each (con-

sistent) HL configuration M we have M HL

·
≈

c

LL M .

Proof: We have the following results: M HL

·
≈

c

FR M (Theorem 4.3),M FR

·
≈

c

RL

M (Theorem 4.4), M RL

·
≈

c

DS M (Theorem 4.5), M DS

·
≈

c

LL M (Theorem 4.6).

The thesis follows by concatenating all the results and by using Lemma 4.3.

�

This result can be easily formulated as full abstraction. In fact, the

encoding j from HL configurations to LL configurations defined by the

injection (identity) (HL configurations are a subset of LL configurations) is

fully abstract.
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Corollary 4.1 (Full abstraction) Let j be the injection from HL (consis-

tent) configurations to LL configurations and let M , N be two HL configura-

tions. Then we have j(M) LL
·
≈

c

LL j(N) iff M HL

·
≈

c

HL N .

Proof: From Theorem 4.7 we have M HL

·
≈

c

LL j(M) and N HL

·
≈

c

LL j(N).

The thesis follows by transitivity. �

The results above ensure that the loss of atomicity in rollback preserves

the reachability of configurations yet does not make undesired configurations

reachable.
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Chapter 5

Encodings

5.1 Introduction

We show in this chapter that ρπ can be encoded in a variant of HOπ, with

bi-adic channels, join patterns [42, 43], sub-addressing, abstractions and

applications which we call HOπ+. This particular variant was chosen for

convenience, because it simplifies our encoding. All HOπ+ constructs are

well understood in terms of expressive power with respect to HOπ (see [72,88]

for abstractions in π-calculus).

The encoding presented in this chapter is slightly different from the

one presented in [58], to obtain a finer result. Indeed [58] shows that a ρπ

configuration and its translation are equivalent by means of weak barbed

bisimulation. Such result, allows us to encode reversibility in an already

existing calculus, without using a specific ad-hoc primitive. Even if this result

is quite surprising, because of the coarseness of weak barbed bisimulation

(as emerged in Section 3.4), this equivalence is not a good relation on top

of which build a faithfulness theorem for an encoding. Therefore, in this

chapter we base our results on a stronger equivalence, able to distinguish

forward reductions from backward ones.

The reminder of the chapter is organized as follows: first we introduce

the syntax and the semantics of HOπ+, then we introduce our encoding and

show that a ρπ consistent configuration M and its translation in HOπ+ are

equivalent by means of weak bf barbed bisimulation. To ease the reading of

the chapter, some proofs are reported into Appendix A. Finally an encoding

of roll-π into HOπ+ is given and its correctness will be just conjectured.
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5.2 HOπ
+

The syntax of HOπ+ is given in Figure 5.1. Channels in HOπ+ carry both

an abstraction and a name (bi-adicity); a trigger can receive a message on a

given channel, or on a given channel provided the received message carries

some given name (sub-addressing). HOπ+ has abstractions over names (u)P

and over process variables (X)P , and applications (P V ), where a value V

can be a name or an abstraction. We take the set of names of HOπ+ to be

the set I ∪ {⋆} where I is the set of ρπ identifiers. Thus both ρπ names and

ρπ keys are names in HOπ+. The set of (process) variables of HOπ+ is taken

to coincide with the set V of variables of ρπ.

P,Q ::= 0 | X | νu. P | (P | Q) | u〈F, v〉 | J ⊲ P | (F V )

F ::= (u)P | (X)P

V ::= u | F

J ::= u(X, v) | u(X, \v) | J | J

u, v ∈ I

Figure 5.1: Syntax of HOπ+.

The structural congruence for HOπ+, noted ≡, obeys the same rules as

those of ρπ, except for the rules E.TagN and E.TagP, which are specific to

ρπ. Evaluation contexts in HOπ+ are given by the following grammar:

E ::= · | (P | E) | νu.E

The reduction relation for HOπ+, also noted →, is defined as the least

evaluation closed relation (same definition as for ρπ, with HOπ+ processes

instead of configurations) that satisfies the rules in Figure 5.2, where ψ is

either a name v, a process variable X or an escaped name \u. We note ⇒

the reflexive and transitive closure of →. The function match in Figure 5.2 is

the partial function which is defined in the cases given by the clauses below,

and undefined otherwise:

match(u, v) = {u/v} match(u, \u) = {u/u} match(F,X) = {F /X}

let us note that an escaped name \u will match just with u. Rule Red is

a generalization (in the sense of join patterns) of the usual communication

rule for HOπ. If there are enough messages (left-hand side of the reduction

in the conclusion) satisfying a certain input process, then the continuation
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of the input process is triggered with the necessary substitutions. Rule App

mimics the β-reduction of the λ-calculus [10].

(Red)
match(vi, ψi) = θi

n
∏

i=1

ui〈Fi, vi〉 | (
n
∏

i=1

ui(Xi, ψi) ⊲ P ) → P{F1...Fn/X1...Xn
}θ1 . . . θn

(App) ((ψ)F V ) → Fθ match(V, ψ) = θ

Figure 5.2: Reduction rules for HOπ+.

Remark 5.1 Even if the presented HOπ+ allows the use of arbitrary join

patterns, our encoding will use just binary join patterns.

Conventions. In writing HOπ+ terms, u〈v〉 abbreviates u〈(X)0, v〉, u

abbreviates u〈(X)0, ⋆〉 and u〈F 〉 abbreviates u〈F, ⋆〉. Likewise, a(u) ⊲ P

abbreviates a(X,u) ⊲ P , where X 6∈ fv(P ), a ⊲ P abbreviates a(X, ⋆) ⊲ P ,

where X 6∈ fv(P ), and a(X) ⊲ P abbreviates a(X, ⋆) ⊲ P . We adopt the usual

conventions for writing applications and abstractions: (F V1 . . . Vn) stands

for (((F V1) . . .) Vn), and (X1 . . .Xn)F stands for (X1) . . . (Xn)F . When

there is no potential ambiguity, we often write F V for (F V ). When defining

HOπ+ processes, we freely use recursive definitions for these can be encoded

using e.g. the Turing fixed point combinator Θ defined as Θ = (A A), where

A = (X F )(F (X X F )) (cf. [10] p.132).

In the rest of this chapter we note PHOπ+ the set of HOπ+ processes, Cρπ
the set of ρπ configurations and Pρπ the set of ρπ processes.

5.3 ρπ encoding

The encoding L·M : Pρπ → PHOπ+ of processes of ρπ in HOπ+ is defined

inductively in Figure 5.3. It extends to an encoding L·M : Cρπ → PHOπ+ of

configurations of ρπ in HOπ+ as given in Figure 5.4 (note that the encoding

for 0 in Figure 5.4 is the encoding for the null configuration). The two main

ideas behind the encoding are given now. First, a tagged process l : P is

interpreted as a process equipped with a special channel l (sometimes we

will refer to it as key channel) on which to report that it has successfully

rolled-back. This intuition leads to the encoding of a ρπ process as an

abstraction which takes this reporting channel l (its own key) as a parameter.
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Second, each ρπ process translation generates also the process killer, that

is a process in charge of rolling it back. Hence we have three kinds of such

processes: KillM, KillT and KillP representing respectively the killer of a

message, of a trigger and of a parallel process.

Let us now describe the encoding of configurations given in Figure 5.4.

A null configuration 0 is encoded as the null HOπ+ process 0. The parallel

and the restriction operator are mapped to the corresponding operators of

HOπ+. Depending on the kind of key, whether it is a simple name or a

complex key, there are two ways to encode a tagged process κ : P . If the key

is a simple name, then the translation is the application of the encoding of

P to the name k, that is LP Mk. If it is a complex key, for example of the

form 〈hi, h̃〉 · k, then the translation is the application of the translation of

P to the name hi, in parallel with the killer of the complex key. Since we

want to generate at once a tree of killer processes able to revert an entire

parallel composition made of n elements, with n being the size of h̃, we opt

for the first element of the sequence to generate it. Said otherwise, a killer

of a complex key is the null process if its hi element is not the first one of

the sequence h̃, otherwise it is a parallel composition of killer processes able

to roll-back all the branches in which the simple key k has been split. Hence,

the killer of the complex key, whose hi element is the first one, is in charge

of mimicking the behavior of the ρπ structural rule E.TagP (see Figure 3.2

in Section 3.2.1) used (from right to left) to build back a tagged parallel

composition from a parallel composition of (related) primitive processes. The

encoding of a memory will be explained later.

Before commenting the encoding of ρπ processes let us introduce the

Rew process, and the idea behind it, crucial for the correct functioning of

the encoding. Killer processes allow a process to roll-back but we have to

give also the possibility to undo a rollback decision. This is due to the fact

that at each moment we have to give the possibility to a process to continue

forward or backward. If we think about a parallel composition of several

processes, and one branch decides (spontaneously) to roll-back while the other

branches do not, then the rolled-back process would be stuck unless we add

the possibility to undo the rollback decision. This is actually the purpose of a

process of the form (Rew l), whose behaviour is to read an abstraction carried

in a message on the key channel l and then to re-instantiate the abstraction

with the same key. Naturally this adds divergence to the encoding, but it

is the price to pay to encode reversibility. Besides, since ρπ is by itself a

diverging calculus (a process can execute forever doing and undoing the same

communication) this issue does not really matter.

Let us now comment on the encoding of ρπ processes in Figure 5.3. As
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we already said, all the translations of ρπ processes are abstractions over

a channel, and this channel is the tag of the process (or part of it in the

case of complex key). The zero process 0 is translated as a message on the

abstracted channel along with a Rew process. Let us note that this translation

is by itself diverging1. Consider the encoding of the ρπ process l : 0

l〈Nil〉 | (Rew l) → l〈Nil〉 | l(Z) ⊲ (Z l) → (Nil l) → l〈Nil〉 | (Rew l)

One may think to remove the Rew process from the translation of 0, and

then to consider it as just a message on its abstracted channel. That is:

L0M = (l)l〈Nil〉

But in order to proving some invariants of our encoding, for symmetry with

the translations of the other primitive processes (messages and triggers), we

decided to add the Rew to the translation of the process 0.

The translation of a message k : a〈P 〉, is a process of the form2:

a〈LP M, k〉 | (KillM a k)

consisting in a message on a carrying a pair (here we can see why we use

bi-adic channels) in parallel with its killer process. The message carries

the translation of the original message content P along with the abstracted

channel. The need to add to the message content the abstracted channel

k stems from the fact that the message will be rolled-back by just its own

KillM. Indeed, the process (KillM a k) just consumes a message on the

channel a only if it carries the name k. This is why the KillM process is an

abstraction over two channels, and explains why we use sub-addressing.

The translation of a parallel composition is quite straightforward: two

new key channels are created and given to the translations of the two sub-

processes, composing it, and then a KillP process will await on these two

channels the rollback of the two sub processes, in order to notify its rollback

by building back the entire parallel process into its key channel. This is why

we use (binary) join patterns3.

The translation of a trigger l : a(X) ⊲ Q, is a process of the form:

νt. t | (a(X,h) | t ⊲f νk, c. (Y X c) | (c(Z) ⊲ (Z k)) |

1Actually all the translations of primitive processes are diverging.
2After several applications.
3The translation of triggers also uses join patterns.
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(Mem Y a X h k l)) | (KillT Y t l a)

with Y = ((X c)c〈LQM〉). A special token t is used as a lock in the translation

of the trigger process. In this way either the trigger itself or its killer can

acquire this lock and then execute by letting the other process blocked forever.

Since all the messages on channel a ∈ N are translated in bi-adic messages,

triggers are translated in order to read such messages. The continuation of

a translated trigger mimics exactly the forward rule: it creates a new key

channel k, it substitutes the variable X with the message content (that is an

abstraction) in the trigger continuation. This substitution is mimicked by the

application (Y X c). For example suppose that after a communication we

obtain the following process Q{X/P } where Q is the body of the trigger. Then

this substitution is mimicked in our encoding by the following application

(and reduction):

((X c)c〈LQM〉) LP M c→ c〈LQM{LP M/X}〉

The trigger continuation, resulting from the substitution, is then applied

to the new key channel (by the sub-process c(Z) ⊲ Z k) hence obtaining

the process corresponding to the translation of k : Q{P /X}. Eventually a

memory process Mem is created. The Mem process mimics exactly the backward

rule of ρπ: it just awaits the rollback of its continuation (a message on the

channel key channel k that the memory bears) and then it releases again

the translations of the original ρπ message and trigger who gave rise to the

communication (and to the memory).

5.4 Correctness

This section is devoted to proving that the encoding is faithful, i.e. that it

preserves the semantics of the original process. More precisely, we will prove

the following theorem.

Theorem 5.1 (Faithfulness) For any closed ρπ process P , νk. k : P
◦
≈

Lνk. k : P M.

Before proving the theorem we will give a brief outline of our proof strategy.

Proof Outline: since the relation
◦
≈ (see Definition 3.4) distinguishes three

kinds of reduction: forward, backward and administrative, we first divide

all the reductions induced by the encoding into these three kinds. Then

we give a notion of normal form on HOπ+ processes, whose intent is to
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L0M = Nil LXM = X

La〈P 〉M = (l)(Msg a LP M l) Lνa. P M = (l)νa. LP M l

LP | QM = (l)(Par LP M LQM l) if P,Q 6≡ 0 LP | 0M = LP M

La(X) ⊲ P M = (l)(Trig ((X c)c〈LP M〉) a l) L0 | P M = LP M

Nil = (l)(l〈Nil〉 | (Rew l))

Msg = (a X l)a〈X, l〉 | (KillM a l)

KillM = (a l)(a(X, \l) ⊲ l〈(h)Msg aX h〉 | Rew l)

Par = (X Y l)νh, k.X h | Y k | (KillP h k l)

KillP = (h k l)(h(W ) | k(Z) ⊲ l〈(l)ParW Z l〉 | Rew l)

Trig = (Y a l)νt. t | (a(X,h) | t ⊲f νk, c. (Y X c) | (c(Z) ⊲ (Z k)) |

(Mem Y a X h k l)) | (KillT Y t l a)

KillT = (Y t l a)(t ⊲ l〈(h)TrigY ah〉 | Rew l)

Mem = ( Y a X h k l)k(Z) ⊲b (Msg a X h) | (Trig Y a l)

Rew = (l)(l(Z) ⊲ Z l)

Figure 5.3: Encoding ρπ processes.

L0M = 0

LM | NM = LMM | LNM

Lνu.MM = νu. LMM

Lk : P M = (LP M k)

L〈hi, h̃〉 · k : P M = (LP M hi) | Kill〈hi,h̃〉·k

L[κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k]M = (Mem ((X c)c〈LQM〉) a LP M Lκ1M k Lκ2M) |

Killκ1
| Killκ2

LkM = k

L〈hi, h̃〉 · kM = hi

Kill〈h1,h̃〉·k
= νl̃. (KillP h1 l1 k) |

n−2
∏

i=2

(KillP hi li li−1) | (KillP hn−1 hn ln−2)

Killκ = 0 otherwise

Figure 5.4: Encoding ρπ configurations.
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consider processes equivalent up to applications in active contexts. Then

we characterize the garbage processes generated by the encoding with the

function addG, because of the machinery added to simulate reversibility, and

we characterize a new kind of congruence (noted ≡Ex) in order to have struc-

turally congruent translations of structurally congruent ρπ configurations.

We then show how the reduction in normal form behaves with respect to the

equivalence ≡Ex and how the equivalence and administrative steps behave

with respect to the reduction in normal form. We then show that a ρπ

reduction can be matched by the encoding, and that ≡Ex is itself a weak

backward and forward barbed bisimulation. Since encoding reductions add

garbage, we prove that this garbage (characterized by addG) does not induce

unwanted behaviors. That is, if P is a process derived from the encoding,

then P and addG(P ) are weakly bf barbed bisimilar. We then show that all

the reductions of the encoding are matched by ρπ and then compose all the

obtained results to state our faithfulness theorem.

The first step for proving the theorem is to give to the LTS of the

translation a backward and forward structure. In order to do that we have

to partition the transitions of the translation into forward, backward and

administrative. The basic idea is that administrative transitions can be

used both as forward and as backward. Remember that in HOπ+we have

two kinds of reductions: applications and communications. Applications

are always administrative. Communications are administrative, forward or

backward according to the trigger that is involved in the communication.

We extend HOπ+triggers with labels to this end. This will not change the

operational semantics of the calculus.

A labelled trigger is a trigger of the form J ⊲b P or J ⊲f P . Triggers

like the first one will be referred as backward ones while triggers like the

second one will be referred as forward ones. We now define the two reduction

relations ։ and  on HOπ+processes.

Definition 5.1 (Internal communications) Let 7→ be the reduction re-

lation involving communications due to non labelled triggers. Moreover, let

7→∗ the reflexive and transitive closure of 7→.

Definition 5.2 (Internal trigger communication) Let →c the least eval-

uation closed relation defined on the following pair: {(c(Z)⊲Z k | c〈LP M〉 , LP Mk)}.

Definition 5.3 (Forward and backward HOπ+relations) Let →f be a

reduction involving a forward trigger and →b a reduction involving a backward

trigger. Moreover let →֒ be the reduction relation on applications and on

124



communications involving non labelled triggers. We define ։=→֒∗→f →֒
∗

and  =→֒∗→b →֒
∗.

From the definitions above we have that →c⊆→֒.

One cannot simply prove that given a (consistent) configuration M , if

M →M ′ then LMM⇒ LM ′M. In fact this does not hold, since the translated

processes produce some garbage (in terms of additional processes) due to the

execution, and since structural congruent ρπ processes do not always have

structural congruent translations. Thus we need some auxiliary machinery.

First we characterize this kind of garbage and then we will give a new

notion of structural congruence on processes generated by our encoding. We

then define the function addG(P ) that allows to add garbage to an HOπ+

process P .

Definition 5.4 Let P be a HOπ+ process such that P ≡ νã. P ′. Then,

addG(P ) ≡ νã. (P ′ | νb̃.Q), where Q is a parallel composition (possibly

empty) of processes of the form:

Rew l KillM a l

νc, t. (KillT ((X)c〈LP M〉) t l a) νt. (a(X, k)|t ⊲ S)

The last two closures of the addG function characterizes the garbage processes

produced by the consumption of the token t. Both processes are blocked,

since the name t is restricted and the token t has been consumed. For

example:

Lk : a(X) ⊲ 0M = La(X) ⊲ 0Mk = ((h)Trig Y a h) k → (Trig Y a k) ⇒

νt. t | (a(X, \h)|t ⊲ Q) | (t ⊲ k〈(h)Trig Y a h〉 | (Rew k)) →

νt. (a(X, \h)|t ⊲ Q) | k〈(h)Trig Y a h〉 | (Rew k) ⇒

νt. (a(X, \h)|t ⊲ Q) | ((h)Trig Y a h) k = addG(Lk : a(X) ⊲ 0M)

with Y = (X c)c〈L0M〉 and Q = νl, c. (Y X c) | (c(Z)⊲Z l) | (Mem Y a X h l k).

With the token trick, we avoid to use primitives such as passivation (see

[64,91]), in order to kill input processes, allowing us to encode reversibility

in a simple but yet expressive calculus such as HOπ+.
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We now define a notion of normal form for processes, corresponding

to processes where all the enabled applications have been executed. In

particular, a process in normal form has no enabled applications.

Definition 5.5 (Normal form) Let nf(.) be a function from PHOπ+ to

PHOπ+ defined as follows:

nf(νu. P ) = νu. nf(P ) nf(P | Q) = nf(P ) | nf(Q)

nf(a〈P 〉) = a〈P 〉 nf(a(X) ⊲ P ) = a(X) ⊲ P

nf((X)P Q) = nf(P{Q/X}) nf((h)P l) = nf(P{l/h})

nf(0) = 0

Lemma 5.1 For each application (X)P Q generated by the encoding either

the process P is linear (variables are used once in P ) or P is in normal form.

Proof: The thesis does not hold for the encoding as presented in Figure 5.3,

but it holds for the (completely equivalent) encoding obtained by replacing

in the Trig macro (KillT Y t l a) by its normal form. One can note that in

the new encoding the substitution of Y in Trig is the only non linear one,

but its body is in normal form. �

We define a congruence on HOπ+ processes to match the effect that

ρπ structural congruence has after the translation, in order to show that

congruent ρπ processes are translated into congruent HOπ+ processes.

Definition 5.6 Let ≡Ax be the smallest congruence on HOπ+ processes

satisfying the rules for structural congruence ≡ plus the rules below.

(Ax.C) KillP l h k ≡Ax KillP h l k

(Ax.P) l1〈LP M〉 | l2〈LQM〉 | KillP l1 l2 l ≡Ax l〈(h)Par LP M LQM h〉 |

Rew l with P,Q closed

(Ax.A) νl′. (KillP l1 l2 l
′) | (KillP l′ l3 l) ≡Ax νl

′. (KillP l1 l
′ l) | (KillP l2 l3 l

′)

(Ax.Unfold) LP Ml ≡Ax νũ. l〈LQM〉 | (Rew l) with P ≡ νũ.Q

(Ax.Adm) νc. (c〈LP M〉 | c(Z) ⊲ (Z k)) ≡Ax LP Mk

Definition 5.7 Let ≡Ex be the smallest congruence including for each axiom

L ≡Ax R in ≡Ax both L ≡Ex R and nf(L) ≡Ex nf(R).
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Axioms Ax.C and Ax.A are used to extend respectively the commutativity

and associativity of the parallel operator also to the translation.

We now characterize the effect of the substitution on the structural

congruence ≡Ex.

Lemma 5.2 For any substitution σ = {l/h} or σ = {LP M/X}, if M ≡Ex N

then Mσ ≡Ex Nσ.

Proof: The thesis is trivial for name substitutions, thus we consider just

higher-order ones. The proof is by induction on the derivation of M ≡Ex N ,

with a case analysis on the last applied axiom of ≡Ex. We will consider just

a few significant cases.

P | Q ≡Ex Q | P . We have that (P | Q)σ = Pσ | Qσ ≡Ex Qσ | Pσ, as

desired.

(νu. P ) | Q ≡Ex νu. (P | Q). We have that ((νu. P ) | Q)σ = (νu. P )σ | Qσ.

Now if u is in the domain of σ we have that (νu. P )σ | Qσ = (νu. P ) |

Q ≡Ex νu. (P | Q) = νu. (P | Q)σ. Note that since u is not free in Q

then the substitution does not affect it. If u is not in the domain of σ

then banally we have that (νu. P )σ | Qσ = (νu. Pσ) | Qσ ≡Ex νu. (Pσ |

Qσ) = (νu. (P | Q))σ, as desired. Note that by using the Barendregt’s

Variable Convention (see Remark 3.3 in Section 3.2) we assume that

free variables are different from bound ones, so there is no need to

check whether u is free in Q.

There is no need to consider the axioms in Definition 5.6 since they are all

closed under process substitutions. �

We now characterize the effect of the normal form on the structural

congruence ≡Ex.

Lemma 5.3 If M ≡Ex N then nf(M) ≡Ex nf(N).

Proof: Let us consider M and N generated by the encoding of Figure 5.3

where instead of having Trig processes, we substitute them with their normal

form. Thus we can apply Lemma 5.1. Let us consider one application of an

axiom. We have that M = C[L] and N = C[R] with L ≡Ex R an axiom. By

Lemma A.2 we have that nf(C[L]) = C
′[nf(Lσ)] with nfc(C[•], ∅) = C

′[•], σ,

and the same with nf(C[R]) = C
′[nf(Rσ)]. By Lemma 5.2 we have that if

L ≡Ex R then Lσ ≡Ex Rσ. Also, nf(Lσ) ≡Ex nf(Rσ) since ≡Ex is closed

under normal form. Finally, C′[nf(Lσ)] ≡Ex C
′[nf(Rσ)], as desired. �
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Lemma 5.4 If nf(T ) ≡Ex nf(T ′) then nf(addG(T )) ≡Ex nf(addG(T ′)).

Proof: See Appendix A.1. �

Lemma 5.5 If nf(T1) ≡Ex nf(T2) and nf(T1) → T ′
1 then nf(T2) ⇒ nf(T ′

2)

with nf(T ′
1) ≡Ex nf(T ′

2).

Proof: By case analysis on the used axiom M ≡Ex N and on the structure

of nf(T1). The proof can be found in Appendix A.1. �

We characterize now the effect of the encoding on structural congruent

processes and configurations. We exploit to this end the structural congruence

≡Ex.

Lemma 5.6 Let M , N be closed consistent configurations. Then M ≡ N

implies nf(LMM) ≡Ex nf(LNM).

Proof: By induction on the derivation of M ≡ N . The proof can be found

in Appendix A.1. �

It is easy to see that names in K are always bound.

Lemma 5.7 If Lνk. k : P M⇒ P ′ then fn(P ′) ∩ K = ∅.

Proof: By induction on the number of reduction of ⇒. Full proof can be

found in Appendix A.2. �

In order to prove operational correspondence between ρπ configurations

and their translation we will start by showing that the the encoding is

well-behaved w.r.t. substitutions.

Lemma 5.8 (Substitution) For each ρπ process P,Q: LP M{LQM/X} =

LP{Q/X}M.

Proof: By induction on the structure of P .

P = 0: we have L0M{LQM/X} = (l)(l〈Nil〉 | Rew l){LQM/X} = (l)(l〈Nil〉 |

Rew l) = L0M = L0{Q/X}M as desired.

P = X: we have LXM{LQM/X} = X{LQM/X} = LQM = LX{Q/X}M as desired.

P = Y with X 6= Y : we have LY M{LQM/X} = Y {LQM/X} = Y = LY M =

LY {Q/X}M as desired.
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P = a〈P ′〉: we have that LP M{LQM/X} = (l)(Msg a LP ′M l){LQM/X} = (l)(Msg a

LP ′M{LQM/X} l). By inductive hypothesis we have that LP ′M{LQM/

X} = LP ′{Q/X}M, and we have that (l)(Msg a LP ′M{LQM/X} l) =

(l)(Msg a LP ′{Q/X}M l) = La〈P ′{Q/X}〉M = La〈P ′〉{Q/X}M as desired.

P = a(Y ) ⊲ P ′: we have that LP M{LQM/X} = (l)(Trig ((Y c)c〈LP ′M〉) a l){LQM/

X} = (l)(Trig ((Y c)c〈LP ′M{LQM/X}〉) a l), and by using the in-

ductive hypothesis we have that (l)(Trig ((Y c)c〈LP ′M〉) a l){LQM/

X} = (l)(Trig ((Y c)c〈LP ′M{LQM/X}〉) a l) = (l)(Trig ((Y c)c〈LP ′{Q/

X}M〉) a l) = La(Y ) ⊲ P ′{Q/X}M = La(Y ) ⊲ P ′{Q/X}M as desired.

P = P1 | P2: if P1 or P2 are equivalent to 0 we can directly conclude by

applying the inductive hypothesis. In the other case we have that LP M =

(l)(Par LP1M LP2M l){
LQM/X} = (l)(Par LP1M{

LQM/X} LP2M{
LQM/X} l) and

by applying the inductive hypothesis, LP1M{
LQM/X} = LP1{

Q/X}M and

LP2M{
LQM/X} = LP2{

Q/X}M we have (l)(Par LP1M{
LQM/X} LP2M{

LQM/X} l)

= (l)(Par LP1{
Q/X}M LP2{

Q/X}M l) = L(P1 | P2){
Q/X}M as desired.

�

We now show that communications can always be postponed with respect

to the applications, this will help us to state that if a generic HOπ+ process

derived by our encoding can perform a communication then also its normal

form can do the same communication. We now define a reduction relation

on applications of particular forms, generated by our encoding, namely

applications of a channel to an abstraction over a channel and application of

a translation, generated by our encoding, to an abstraction over a process.

Definition 5.8 Let ⇁ the least evaluation closed relation defined on the fol-

lowing pairs: {〈(h)P v, P{v/h}〉 | P ∈ P}∪{(X)P LQM , P{LQM/X} | P, LQM ∈

P}. Moreover let ⇁∗ be the reflexive and transitive closure of ⇁.

From now on we will denote with →? the reflexive closure of →, where → is

the HOπ+ reduction relation. We will do similarly for other relations.

Lemma 5.9 If P →? P
′ and P ⇁? P

′′ then P ′′ →? Q and P ′ ⇁? Q.

We need an auxiliary lemma before the proof.

Lemma 5.10 If E[(ψ)F V ] → T then either:

• E[0] → E
′[0] with T = E

′[(ψ)F V ] or

129



• E[(ψ)F V ] → E[R] with (ψ)F V → R

Proof: We have that the sole possible reductions that can be performed by

a HOπ+process are applications and communications. If E[(ψ)F V ] → T

via a communication this implies that the process in the hole is not part of

the communication nor it gives raise to a communication. This is due to

the fact that the context is active, so the process in the hole cannot be the

content of a message or the continuation of an input process. So we have

that E[(ψ)F V ] → E
′[(ψ)F V ], but this also implies that E[0] → E

′[0]. The

same reasoning can be applied if the context E performs an application step

different from the one contained in the hole. If we apply the application inside

the hole we will banally have that E[(ψ)F V ] → E[R] with (ψ)F V → R and

we are done.

�

Proof of lemma 5.9: The cases in which → or ⇁ are not applied are clear

and the property trivially holds. The case in which → and ⇁ are the same

(they are applied on the same application) is trivially verified. Now let us

consider cases in which the two reductions happens and then we proceed on

case analysis on →. If the process P can perform an application this means

that we can write P as an execution context containing an application, so

P = E[(ψ)F V ]. Now by Lemma 5.10 we know that if E[(ψ)F V ] → T

than either E[0] → E
′[0] with T = E

′[(ψ)F V ] or E[(ψ)F V ] → E[R] with

(ψ)F V → R. So if P → P ′ via a communication (or an application different

from the one in the hole) we have that P ′ = E
′[(ψ)F V ] but also P ⇁ P ′′ with

P ′′ = E[R]. Now we can easily see that P ′ may perform the hole application

and then P ′ ⇁ E
′[R] and P ′′ can perform the reduction P ′′ → E

′[R] (using

as hypothesis E[0] → E
′[0]), as desired. �

Lemma 5.11 If P ⇒ P ′ and P ⇁∗ P ′′ then P ′ ⇁∗ Q and P ′′ ⇒ Q.

Proof: By simple induction on the length of ⇒ and ⇁∗ and by applying

lemma 5.9 for the base case. �

Two concurrent applications can always be swapped, according to the

following Lemma.

Lemma 5.12 If N ⇁ N1 and N ⇁ N2 then N2 ⇁ N3 and N1 ⇁ N3

Proof: If N can perform two independent applications this means that we

can writeN as a binary execution context of the form D[(ψ1)F1 V1 , (ψ2)F2 V2].
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M ≡

5.6

M ′

nf(LMM)

����

≡Ex

5.5

nf(LM ′M)

ind
����

N ′ ≡

5.6

N

Q

∗

�

P

∗

�

nf(LN ′M) ≡Ex

≡Ex 5.4

nf(LNM)

≡Ex

nf(Q) ≡Ex nf(P ) nf(addG(LN ′M))≡Ex ≡Ex nf(addG(LNM))

Figure 5.5: Confluence of encoding with respect to ≡Ex (numbers refer to
Lemmas).

Now let us suppose that N1 is the process in which the left application has

been done and N2 the process in which the right application has been per-

formed. Hence N ⇁ D[Q1 , (ψ2)F2 V2] = N1 with (ψ1)F1 V1 ⇁ Q1 and

N ⇁ D[(ψ1)F1 V1 , Q2] = N2 with (ψ2)F2 V2 ⇁ Q2. Now we see that N1 can

still perform the right application, and N2 the left one. So N1 ⇁ D[Q1 , Q2]

and N2 ⇁ D[Q1 , Q2], as desired. The other cases are similar. �

We now prove an important property of our encoding, showing the

importance of the key channels. Essentially, a translation of a ρπ process

P can always roll-back, and this is represented by a message on the process

key channel. The roll-back is not perfect in the sense that the content of the

message is not equal to the translation of the original process P . This is due

to the translation of the name creation process, since once a name is created

there is no way to reverse it. However the property that we can state is that

the process composed by the extruded names and the content of the message

is structurally equivalent to the original process P . Formally we have:

Lemma 5.13 For each closed ρπ process P , LP Mk →֒∗ νũ. k〈LQM〉 | Rew k | S

with k 6∈ ũ, S =
∏

Ri, Ri = Rew ki or Ri = νt. (a(X, h)|t⊲R) and P ≡ νũ. Q

Proof: By induction on the structure of P .

P = 0 : we have that L0Mk = (l)(l〈Nil〉 | Rew l)k ⇁ k〈Nil〉 | Rew k = k〈L0M〉 |

Rew k, as desired.
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P = a〈Q〉 : we have that

LP Mk = (h)(Msg a LQM h)k ⇁ Msg a LQM k ⇁ a〈LQM, k〉 | KillM a k ⇁

a〈LQM, k〉 | (a(X, \k) ⊲ k〈(h)Msg a X h〉 | Rew k) →֒

k〈(h)(Msg a LQM h)〉 | Rew k = k〈LP M〉 | Rew k = k〈LP M〉 | S

as desired.

P = a(X) ⊲ P ′ : be Y = (X c)c〈LP ′M〉, we have that

LP Mk = ((l)(Trig Y a l))k ⇁ Trig Y a k ⇁

νt. (t | a(X,h)|t ⊲ R | (KillT Y t k a))⇁

νt. (t | a(X,h)|t ⊲ R | t ⊲ k〈(h)Trig Y a h c〉 | Rew k) →֒

νt. a(X,h)|t ⊲ R | k〈(h)Trig Y a h〉 | Rew k ≡

(νt. a(X,h)|t ⊲ R) | k〈(h)Trig Y a h〉 | Rew k = k〈(h)Trig Y a h〉 | S

as desired.

P = X : this case is never applied since we are considering closed processes.

P = νa. P ′ : we have that Lνa. P ′Mk = ((h)νa. LP ′Mh)k ⇁ νa. LP ′Mk. Now

by inductive hypothesis we know that LP ′Mk →֒∗ νũ. k〈LQM〉 | S with

P ′ ≡ νũ.Q and since restriction is an execution context we have

νa. LP ′Mk →֒∗ νa. νũ. k〈LQM〉 | S with νa. P ′ ≡ νa. νũ. Q, as desired.

P = P1 | P2 : we have that

LP Mk = ((l)(Par LP1M LP2M l)k ⇁ Par LP1M LP2M k ⇁

νh, l. LP1Mh | LP2Ml | KillP l h k ⇁

νh, l. LP1Mh | LP2Ml | (h(W )|l(Z) ⊲ k〈(h)ParW Z h〉 | Rew k).

By inductive hypothesis we have that LP1Mh →֒∗ νũ. h〈LP ′
1M〉 | S1 with

P1 ≡ νũ. P ′
1 and LP2Ml →֒

∗ νṽ. l〈LP ′
2M〉 | S2 with P2 ≡ νṽ. P ′

2. Hence we

have

νh, l. LP1Mh | LP2Ml | h(W )|l(Z) ⊲ (k〈(h)ParW Z h〉 | Rew k) →֒∗

νh, l, ũ, ṽ. h〈LP ′
1M〉 | S1 | l〈LP

′
2M〉 | S2 | h(W )|l(Z) ⊲ k〈(h)ParW Z h〉 | Rew k →֒

νh, l, ũ, ṽ. S1 | S2 | k〈(h)Par P
′
1 P

′
2 h〉 | Rew k ≡

νh, l, ũ, ṽ. k〈(h)Par LP ′
1M LP

′
2M h〉 | S

with S = Rew k | S1 | S2 and by garbage collecting names h, l we have
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P ≡ νũ, ṽ. (P ′
1 | P

′
2) as desired.

�

The next theorem shows that the encoding of a process can mimic its

reductions.

Theorem 5.2 For each consistent configurationM , ifM → N then nf(LMM) →

P with nf(P ) ≡Ex nf(addG(LNM)).

Proof: By induction on the derivation M → N with a case analysis on the

last rule applied.

R.Fw: we have that

M = κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q։

νk. (Q{P /X} | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q ; k]) = N

Moreover we have that LMM = Lκ1 : a〈P 〉M | Lκ2 : a(X) ⊲ QM. Now

depending whether κ1, κ2 are complex or not there are different cases

to be treated. Let us suppose that κ1 = k1 and κ2 = k2 and Y =

((X c)c〈LQM〉), so

nf(LMM) = nf((l)(Msg a LP M l)k1) | nf((l)(νt. Trig Y a l)) =

νt. a〈LP M, k1〉 | nf(KillM a k1) | t |

(t|a(X,h) ⊲f νk, c. (Y X c) | c(Z) ⊲ Z k | (Mem Y a X h k k2)) |

nf(KillT Y a k1) →f

νc, k, t. nf(KillM a k1) | (Y LP M c) | (c(Z) ⊲ Z k) | (Mem Y a X k1 k k2) |

nf(KillT Y a k2)⇁

νc, k, t. nf(KillM a k1) | c〈LQM{
LP M/X}〉 | (c(Z) ⊲ Z k) |

(Mem Y a X k1 k k2) | nf(KillT Y a k2) →֒

νc, k, t. (KillM a k1) | (LQM{
LP M/X} k) | (Mem Y a X k1 k k2) |

nf(KillT Y a k2) =M ′

Now by using Lemma 5.8 we have that LQM{LP M/X} = LQ{P /X}M and

then

M ′ = νc, k, t. nf(KillM a k1) | (LQ{P /X}M k) |

(Mem Y a X k1 k k2) | nf(KillT Y a k2)
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We can conclude by noticing that

nf(M ′) = nf(KillM a k1) | nf(LNM) | νc. nf(KillT Y a k2) =

nf(addG(LNM))

as desired.

Let us consider the case in which κ1 = 〈hi, h̃〉 · k, so we have that

LMM = (l)(Msg a LP M l)hi | Kill〈hi,h̃〉·k
| (l)(νc, t. Trig Y a l c)k2

Now using the same reductions of the above case we have that

nf(LMM)։

νc, k, t. nf(KillM a k1) | nf(Kill〈hi,h̃〉·k
) | LQM{LP M/X} k |

(Mem Y a X hi k k2) | nf(KillT Y a k2) =M ′

and by using Lemma 5.8 we have that

M ′ = νc, k, t. nf(KillM a hi) | nf(Kill〈hi,h̃〉·k
) | (LQ{LP M/X}M k) |

(Mem Y a X hi k k2) | nf(KillT Y a k2)

We can conclude by noticing that nf(M ′) = nf(addG(LNM)) as desired.

The other two cases with complex keys are similar.

R.Bw we have that M = k : R | [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q ; k]  N . Let

suppose that Y = ((X c)c〈LQM〉), κ1 = 〈h′, h̃′〉 ·k1 and κ2 = 〈h′′, h̃′′〉 ·k2.

Then by definition of nf( ) we have

nf(LMM) =

nf(LRMk) | nf(Mem Y a LP M Lκ1M k Lκ2M) | nf(Killκ1
) | nf(Killκ2

) =

nf(LRM)k | (k(Z) ⊲ (Msg a LP M h′) | (Trig Y a h′′)) | Killκ1
| Killκ2

By Lemma 5.13 4 we know that nf(LRMk) →֒∗ νũ. k〈LR′M〉 | nf(S) |

Rew k with S being a parallel composition of certain garbage and

4Lemma 5.13 refers to processes not in normal form, but its extension to processes in
normal form is trivial.
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R ≡ νũ. R′. Hence

nf(LRMk) | (k(Z) ⊲ (Msg a LP M h′) | (Trig Y a h′′)) |

nf(Killκ1
) | nf(Killκ2

) →֒∗

νũ. k〈LR′M〉 | nf(S) | Rew k | (k(Z) ⊲ (Msg a LP M h′) | (Trig Y a h′′)) |

nf(Killκ1
) | nf(Killκ2

) →֒

νũ. (Msg a LP M h′) | (Trig Y a h′′) | nf(Killκ1
) | nf(Killκ2

) |

nf(S) | Rew k =M ′

We have that nf(M ′) ≡Ex nf(addG(Lκ1 : a〈P 〉 | κ2 : a(X) ⊲ QM)), as

desired.

Equiv: we have that M ։ N with hypothesis M ≡ M ′ M ′ ։ N ′ and

N ′ ≡ N . Figure 5.5 (numbers refers to the used lemmas and ind means

that inductive hypothesis are applied) shows the proof schema we use

to prove this case. By inductive hypothesis we have that LM ′M ։ P

with nf(P ) ≡Ex addG(nf(LN ′M)), and by hypothesis we have that

M ≡M ′ and N ′ ≡ N . By Lemma 5.6, we have that if M ≡M ′ then

nf(LMM) ≡Ex nf(LM ′M), and by Lemma 5.5 we have that if nf(LM ′M) ⇒

nf(P ) then nf(LMM) ⇒ nf(Q) with nf(Q) ≡Ex nf(P ). By inductive hy-

pothesis we have that nf(P ) ≡Ex addG(nf(LN ′M)) but since by hypoth-

esis we had N ′ ≡ N by Lemma 5.6 we have that nf(LN ′M) ≡Ex nf(LNM)

and by Lemma 5.4 we have that addG(nf(LN ′M)) ≡Ex addG(nf(LNM)).

So we can conclude by saying that LMM ։ Q and that nf(Q) ≡Ex

addG(nf(LNM)), as desired. The case in which a backward reduction is

applied is similar.

Ctx: by simply induction on the structure of the context, noting that the

translation of active contexts is isomorphic.

�

The following lemma is the equivalent of the Loop Lemma for the encoding.

Essentially, it states that any process P derived from the translation of a

consistent configuration M , can reverse all the administrative steps that

it has performed. Hence if P →֒∗ Q then from Q there exist an execution

that allows us to get back into a process that is somehow equivalent to P .

Naturally we have to take into account all the garbage processes (killers and

Rew processes) that administrative steps may generate. This will help us to

reason up-to administrative steps, and to consider P and Q as equivalent.
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Lemma 5.14 For any consistent configuration M , LMM ⇒ P , if P →֒∗ Q

then exists Q′ such that Q →֒∗ Q′ with nf(P ) ≡Ex nf(addG(Q′)).

Proof: See Appendix A.2. �

Definition 5.9 (Well Formed process) An HOπ+ process P is well formed

if LRMl ⇒ P .

5.4.1 Barbs

In this section we will prove some properties regarding barbs of both ρπ

configurations and their translations.

Barbs are preserved by the encoding. Formally we have:

Lemma 5.15 For each consistent configurationM , ifM ↓a then nf(LMM) ↓a

Proof: By definition M ↓a implies M ≡ νũ. (κ : a〈P 〉 | N) with a 6∈ ũ. Now

nf(Lνũ. (κ : a〈P 〉 | N)M) = νũ. nf(Lκ : a〈P 〉 | NM) = νũ. (nf(Lκ : a〈P 〉M) |

nf(LNM). Depending on the value of κ we have two cases: whether κ = k or

κ = 〈hi, h̃〉 · k.

In the first case we have that νũ. (nf(Lk : a〈P 〉M) | nf(LNM)) = νũ. (nf(

La〈P 〉Mk) | nf(LNM)) = νũ. (a〈LP M, k〉 | nf(KillM a k) | nf(LNM)) and we have

that νũ. (a〈LP M, k〉 | nf(KillM a k) | nf(LNM)) ↓a since a 6∈ ũ, as desired.

In the second case with k = 〈hi, h̃〉 ·k we have νũ. (nf(L〈hi, h̃〉 ·k : a〈P 〉M) |

nf(LNM)) = νũ. (nf(La〈P 〉Mhi) | nf(Killκ) | nf(LNM)) = νũ. (a〈LP M, hi〉 |

nf(Killκ) | nf(KillM a hi) | nf(LNM)) and we have that νũ. (a〈LP M, hi〉 |

nf(Killκ) | nf(KillM a hi) | nf(LNM)) ↓a since a 6∈ ũ, as desired. �

The function addG does not add barbs, that is:

Lemma 5.16 For any HOπ+process P , if addG(P ) ↓a then P ↓a.

Proof: By simply looking at the Definition 5.4 we can easily see that all the

garbage added by the function do not show any barb. �

We cannot state directly that all the barbs shown by LMM are matched

by M , since the encoding uses messages on names belonging to K. We then

limit the barbs of LMM to those belonging to N , as stated in the following

Lemma.

Lemma 5.17 For each consistent configuration M , if nf(LMM) ↓a with

a ∈ N then M ↓a.
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Proof: By structural induction on M . Since sub terms of well formed

configurations are not well formed in general, we have to consider in the

induction both well formed configurations and their sub-terms. If M = κ : P ,

we proceed by structural induction on P and by case analysis on κ. We will

consider just the case in which κ = k, the other case with κ = 〈hi, h̃〉 · k is

similar. If P = 0 then we have that nf(Lk : 0M) = k〈Nil〉 | Rew k, but since

k 6∈ N the process nf(Lk : 0M) does not show any relevant barb. If P = a〈Q〉

then we have that nf(Lk : a〈Q〉M) = a〈LQM, k〉 | (a(X, \k)⊲k〈(h)Msg a LQM h〉 |

Rew k), which shows a barb on a. Since also M ↓a, we are done. If

P = a(X)⊲Q,we have that nf(Lk : a(X)⊲QM) = νt. t | (a(X, h)|t⊲R) | (t⊲S)

(for some R and S). Since t is restricted then the entire process does not

show any barb, and we are done. If P = Q1 | Q2, the key κ has to be a

simple name, since we are dealing with consistent configurations. So, we

have that nf(Lk : (Q1 | Q2)M) = νh, l. nf(LQ1Mh) | nf(LQ2Ml) | (h(W )|l(Z) ⊲ S).

The process may show a barb because of either nf(LQ1Mh) or nf(LQ2Ml) (or

both). Let us suppose that it is because of nf(LQ1Mh), that is nf(LQ1Mh) ↓a.

By definition of L M we have that nf(LQ1Mh) = nf(Lh : Q1M) and hence

nf(Lh : Q1M) ↓a. Now, by applying the inductive hypothesis we have that

(h : Q1) ↓a and then also k : (Q1 | Q2) ↓a, as desired. The other cases are

similar.

IfM = 0, we have that L0M = 0 and the thesis banally follows. IfM =M1 |

M2 we have that nf(LM1 | M2M) = nf(LM1M | LM2M) = nf(LM1M) | nf(LM2M)

and we can conclude by applying the inductive hypothesis on nf(LM1M)

and nf(LM2M). If M = νu.M1 we have that nf(Lνu.M1M) = νu. Lnf(M1)M

and we can conclude by applying the inductive hypothesis on Lnf(M1)M. If

M = [κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k], then nf(LMM) = k(Z) ⊲ R (for some R),

that shows no barbs and we can conclude. �

As corollary of Lemma 5.17 we have that:

Corollary 5.1 For any configuration M such that νk. k : P ⇒ M , if

nf(LMM) ↓a then M ↓a.

Lemma 5.18 For any HOπ+ process P , if P ↓a and P ⇁ Q, then also

Q ↓a.

Proof: Directly follows by the definition of ↓a and the application ⇁. �

Barbs are preserved by administrative steps. That is:

Lemma 5.19 If M ↓a and LMM →֒∗ Q then Q →֒∗↓a.
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LMM

∗
�

� � ∗ //

5.11

Q

∗
�

nf(LMM) �
� ∗ //

5.14

Q′
� _

∗
��

nf(addG(Q′′))

≡Ex

Q′′

Figure 5.6: Correspondence schema of barbs (numbers refer to Lemmas).

Proof: By Lemma 5.15 we have that ifM ↓a then nf(LMM) ↓a. By definition

of normal form we have that LMM⇁∗ nf(LMM), and by hypothesis we have

that LMM →֒∗ Q. By using Lemma 5.11 we have that nf(M) →֒∗ Q′ and

Q ⇁∗ Q′. Moreover, by Lemma 5.14 there exists Q′′ such that Q′ →֒∗ Q′′

and nf(LMM) ≡Ex nf(addG(Q′′)). And since ≡Exdoes not remove barbs and

addG does not add barbs, we can conclude. The proof is graphically depicted

in Figure 5.6.

�

LMM

∗
�

� � ∗ //

5.11

Q ↓a

∗
�

nf(LMM) �
� ∗ // Q′ ↓a

Figure 5.7: Barbs with respect to administrative steps (numbers refer to
Lemmas).

The following lemma states that starting from a normal form, administrative

steps do not add barbs.

Lemma 5.20 For each consistent configuration M such that νk. k : P ⇒M ,

if LMM →֒∗ Q and Q ↓a, then nf(LMM) ↓a.

Proof: Let us note that LMM →֒∗ Q with Q ↓a, but also LMM⇁∗ nf(LMM).

Now, by applying Lemma 5.11 we have that Q ⇁∗ Q′ and nf(LMM) →֒∗ Q′.

Since Q ↓a, and since applications (⇁) do not remove barbs (by Lemma 5.18),

we also have that Q′ ↓a. The above reasoning is depicted in Figure 5.7.

Moreover, since νk. k : P ⇒M then fn(M) ∩K = ∅ and also fn(Q) ∩K = ∅

(by Lemma A.6). In this way we know that all the messages on channels

l ∈ K are not barbs.
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We now have to show that the barb shown by Q′ (and Q) is already present

in nf(LMM). We proceed by case analysis on the reduction →֒. Since Q′ is

generated from nf(LMM) via administrative steps, then applications of the

form (((X c)c〈LP M〉) LQM c) or communications of the form c〈LP M〉 | (c(Z)⊲Z l)

or of the form (k(Z) ⊲ (Msg a LP M l1) | (Trig ((X c)c〈LP M〉) a l2)) are never

enabled. In other words, reductions that may add (weak) barbs are never

enabled. So the only communications that can happen are those of killer

processes and Rew. Let us note that an internal communication involving a

killer does not add barbs (since fn(Q′)∩K = ∅). A communication through a

Rew processes does not add barbs. If the administrative step is an application

⇁ then let us note that all the applications involving killer, Rew and Mem

processes do not add barbs. All the other applications that may add a barb

(such as the application of a Msg process), are already present in nf(LMM) in

their applied form. �

Lemma 5.21 If LMM →֒∗↓a then M ↓a.

Proof: It directly follows by Lemma 5.20 and Corollary 5.1. �

Lemma 5.22 If P →֒∗↓a then addG(P ) →֒∗↓a

Proof: Since P →֒∗ P ′ ↓a, we can express P as E[0] and P ′ as E
′[0] with

E[0] →֒∗
E
′[0] ↓a. Let addG(P ) = E[R], we still have that E[R] →֒∗

E
′[R] ↓a,

as desired. �

5.4.2 Faithfulness

In order to prove the faithfulness of our encoding (Theorem 5.1) we will

prove that the function addG, the structural equivalence ≡ and the structural

equivalence ≡Ex are themselves weak bf barbed bisimulations.

Lemma 5.23 For any HOπ+ processes P,Q, the relation R = {(P,Q) | P ≡

Q} is a weak bf barbed bisimulation.

Proof: By induction on the application of ≡ and by case analysis on the

last applied axiom. All the cases trivially holds. �

Proposition 5.1 For any HOπ+process P ≡ νã. P ′, the relation R =

{νã. P ′, νã. (P ′ | νb̃.Q)} with Q a parallel composition of processes as in

Definition 5.4 is a weak bf barbed bisimulation.

Proof: See Appendix A.3. �
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Proposition 5.2 For any HOπ+process P,Q the relation R = {(P,Q) | P ≡Ex

Q} is a weak bf bisimulation.

Proof: See Appendix A.3. �

If a process is well formed (see Definition 5.9), then all the administrative

reductions induced by addG can be mimicked by the process itself. That is:

Lemma 5.24 Let Q be a well formed HOπ+ process. If nf(addG(Q)) →֒ Q′

then there exists Q′′ such that Q →֒∗ Q′′ with Q′ = addG(Q′′).

Proof: Let us note that since nf(addG(Q)) →֒ Q′, then the reduction is an

internal communication and not an application ⇁ (since in the normal form

does not contain applications in execution contexts). We have to distinguish

two cases: whether the transition →֒ is due to the process nf(Q) or to the

addG.

Let us consider the first case. By definition of addG we have that

addG(Q) = E[R] with Q ≡ E[0] where R is the garbage process added

by the function. The form of addG(Q) is preserved by the nf(·) function,

where all the applications are executed. Hence, nf(addG(Q)) ≡ E
′[R′] with

nf(Q) = E
′[0]. Since the transition is not due to the hole process we have

that E′[R] →֒ E
′′[R] = Q′, but also E

′[0] →֒ E
′′[0] = Q′′. Moreover we have

that Q ⇁∗
E
′[0] →֒ E

′′[0] and we are done.

In the second case, note that the only garbage processes that may interact

with the context is either a (Rew l) process or a (KillM a l) process (the

other garbage processes are inactive). If the administrative step is due to the

applied form of (Rew l) process this implies that in the context E is present

a message on the channel l, that is E[l(Z) ⊲ Z l | R1] ≡ E1[l〈S〉 | l(Z) ⊲ Z l |

R1] →֒ E1[(S l) | R1] = Q′. But since Q is a well formed and since the

process l(Z) ⊲ Z l has been added by the addG function, by Lemma A.11 we

have that also E1[l〈S〉] ≡ E1[l〈S〉 | l(Z) ⊲ Z l] →֒ E1[(S l)] = Q′′. And we can

conclude by noting that Q′ = nf(addG(Q′′)). The other case is similar using

Lemma A.12 instead of Lemma A.11. �

Lemma 5.25 Let Q be a well formed HOπ+ process. If nf(addG(Q)) →f Q
′

then there exists Q′′ such that Q ⇁∗→f Q
′′ with Q′ = addG(Q′′).

Proof: It is easy to note that the reduction →f is not induced by the

addG function, since it only adds processes able to do →֒ steps. Hence the

reduction →f is done by nf(Q) and it is sufficient to chose Q′′ such that

Q →֒∗ nf(Q) →f Q
′′ and we are done. �
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Lemma 5.26 Let Q be a well formed HOπ+ process. If nf(addG(Q)) →b Q
′

then there exists Q′′ such that Q ⇁∗→b Q
′′ with Q′ = addG(Q′′).

Proof: Similar to the one of Lemma 5.25 �

The following last lemmas show how a forward (backward) transition

done by a process generated by our encoding can be matched by a forward

(backward) transition of a ρπ configuration.

Lemma 5.27 If nf(LMM) →f P then M ։M ′ with P →֒∗ P ′ and nf(P ′) ≡

nf(addGLM ′M).

Proof: By structural induction on M . If M is a simple process such as 0,

message process or a trigger there is nothing to verify since M 6։.

In the inductive case, if M is a restriction of the form νa.M1 then by

definition of nf(·) and L·M we have that nf(LMM) = νa. nf(LM1M) and by

applying the inductive hypothesis on nf(LM1M) we have that Lnf(M1)M→f P

implies M1 ։ M ′
1 with P →֒∗ P ′ and nf(P ′) = nf(addGLM ′

1M). We can

apply the same reductions on the restriction context, and obtain that also

νa. LM1M →f νa. P and νa.M1 ։ νa.M ′
1 with νa. P →֒∗ νa. P ′ and since

nf(P ′) = nf(addG(LM ′
1M)) we also have that νa. nf(P ′) = νa. nf(addG(LM ′

1M))

that is nf(νa. P ′) = nf(addG(Lνa.M ′
1)M), as desired. The case of parallel

context M =M1 |M2 is similar to the restriction one in the case in which

the inductive hypothesis is applied onM1 orM2, that is the reduction is done

inside M1 or M2. If both M1,M2 contribute to the reduction this means that,

let us say, there is a message in M1 and a trigger in M2 able to communicate.

For the sake of brevity we consider just the case in which both message and

trigger are tagged by a simple key. Other cases are similar. So, we can write

M =M ′
1 | k1 : a〈R〉 | k2 : a(X) ⊲ Q |M ′

2. Hence, we have

LM ′
1 | k1 : a〈R〉 | k2 : a(X) ⊲ Q |M ′

2M =

LM ′
1M | La〈R〉Mk1 | La(X) ⊲ QMk2 | LM

′
2M
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Let Y = (X c)c〈LQM〉, then we have that

nf(LMM) = nf(LM ′
1M) | a〈LRM, k1〉 | nf(KillM a k1) |

νt. t(a(X, l)|t ⊲f νk, c. (Y X x) | (c(Z) ⊲ Z k) | (Mem Y a X l k k2)) |

nf(KillT Y t k2 a) | nf(LM
′
2M) →f

nf(LM ′
1M) | nf(KillM a k1) | νk, c, t. (Y LRM c) | (c(Z) ⊲ Z k) |

(Mem Y a X l k k2) | nf(KillT Y t k2 a) | nf(LM
′
2M)⇁7→

nf(LM ′
1M) | nf(KillM a k1) | νk, c, t. LQM{

LRM/X}k | (Mem Y a LRM k1 k k2) |

nf(KillT Y t k2 a) | nf(LM
′
2M)

and by using Lemma 5.8 (Substitution Lemma)

nf(LM ′
1M) | nf(KillM a k1) | νk, c, t. LQ{R/X}Mk | (Mem Y a LRM k1 k k2) |

nf(KillT Y t k2 a) | nf(LM
′
2M) = P

We have that M ։ M ′ with M ′ = M ′
1 | νk. k : Q{P /X} | M ′

2 and we

can easily see that P ⇁∗ nf(LM ′
1M) | nf(KillM a k1) | νk, c, t. LQ{R/X}Mk

| nf(Mem Y a LRM k1 k k2) | nf(KillT Y t k2 a) | LM
′
2M ≡ nf(addG(LM ′M)), as

desired.

�

Lemma 5.28 Let M be a ρπ configuration. If LMM →֒∗ Q →f Q′ then

there are M ′ and Q′′ such that M ։M ′, addG(Q′) →֒∗ Q′′ and nf(Q′′) ≡Ex

nf(addG(LM ′M)).

Proof: By hypothesis we have that LMM →֒∗ Q →f Q
′ and by definition

of normal form and Lemma 5.11 we have that LMM →֒∗ Q implies that

nf(LMM) →֒∗ Q1 with Q ⇁∗ Q1. Moreover we have that Q1 ⇁
∗ nf(Q1) and

that nf(LMM) →֒∗ nf(Q1). Since Q→f and Q ⇁∗ nf(Q1) by Lemma 5.11 we

have that also nf(Q1) →f . In order to apply Lemma 5.27 we have to show

that also nf(LMM) →f . We have that nf(LMM) →֒∗ nf(Q1) →f Q2 and we

want to show that we can re-arrange the trace nf(LMM) →֒∗ nf(Q1) →f Q2

in order to obtain a trace of the form nf(LMM) →f →֒
∗ addG(Q2). We want to

work up-to applications, using Lemma 5.12 we can write nf(LMM) →֒∗ nf(Q1)

as nf(LMM) 7→⇁∗ nf(R1) 7→⇁∗ . . . 7→⇁∗ nf(Rn) 7→⇁∗ nf(Q1) →f Q2.

We now proceed by case analysis on 7→ starting from the last one. The

case in which 7→=→c does not apply, since this kind of communication is

enabled only by a→f (see Figure 5.3) communication and this communication

is not present in the trace nf(LMM) →֒∗ nf(Q1). In the case in which 7→ is a
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communication due to a Rew process, we have that back in the trace there

exists an internal communication due to a killer that produces the message

that will be consumed by this Rew. This is due to the fact that a Rew process

consumes a message on a key channel, and this kind of message is not present

in nf(LMM). Starting from the step 7→ representing the Rew communication,

we go back and select the first (in backward order) 7→ that produces this

message. Since we choose this step to be the first one, this implies that

between the step that produces the message and the one that consumes it,

there are no steps that consume such a message. Hence we can move the

producing step forward in order to be directly followed by the consuming

one, and we can then eliminate both the steps obtaining a shorter trace. Let

us note that since garbage may be produced by internal communication due

to killer process, by eliminating the two steps we obtain a process which may

contain less garbage. If the step is due to a killer, it can be postponed after

the communication →f since it does not remove processes that contribute to

the step →f , and we obtain again a shorter trace.

Since nf(LMM) →֒∗ nf(Q1) →f Q2 implies nf(LMM) →f P →֒∗ addG(Q2)

for some P we can apply Lemma 5.27 and we have that M ։ M ′ and

P →֒∗ P ′ with nf(P ′) ≡Ex nf(addG(LM ′M)). By using Lemma 5.14 there

exists Q3 such that addG(Q2) →֒∗ Q3 with nf(P ) ≡Ex nf(addG(Q3)). Since

P →֒∗ P ′ we have that nf(P ) →֒∗ nf(P ′) and from Proposition 5.2 we have

that nf(addG(Q3)) →֒∗ Q4 ≡Ex nf(P ′). We now have addG(Q2) →֒∗ Q4 ≡Ex

nf(P ′) ≡Ex nf(addG(LM ′M)) as desired. �

Lemma 5.29 Let M be a ρπ configuration. If LMM →֒∗ Q →b Q
′ then

there exists M ′ and Q2 such that M  M ′, Q′ →֒∗ Q2 and nf(Q2) ≡Ex

nf(addG(LMM)).

Proof: We have that Q→b Q
′ and by applying Lemma 5.11 we also have that

nf(Q) →b Q
′′. This implies that nf(Q) ≡ νũ. R | nf(LMem Y a LP M k1 k k2M) |

k〈LCM〉 with Y = (X c)c〈LQ1M〉 and that Q′ ≡ νũ. R | (Msg a LP M k1) |

(Trig Y a k2). Since administrative reductions →֒ do not remove memories,

this implies that the memory is already present in the configuration M and

in its normal form. Since LMM →֒∗ Q and LMM⇁∗ nf(LMM) by Lemma 5.11

we also have that nf(LMM) →֒∗ R with Q ⇁∗ R, hence LMM →֒∗ R, moreover

since Q→b Q
′ we also have that R→b R

′ with Q′ ⇁∗ R′. By definition of

L M and nf( ) we have that the process nf(LMM) does not contain a message

on a key channel such as k〈LCM〉 hence this particular message has been

generated by the administrative steps in the reduction nf(LMM) →֒∗ R. We

have to distinguish two cases: either all the internal communications in →֒∗

contribute to create such a message or not. In the first case this implies
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that all the internal communications are due to killer processes, and we have

that nf(LMM) ≡ νũ. nf(LNM) | nf(Mem Y a LP M k1 k k2) | nf(LCMk) for some

N , hence M ≡ νũ.N | [k1 : a〈P 〉 | k2 : a(X) ⊲ Q1; k] | k : C. Since the

administrative steps contribute just in creating the message on the channel

k by using Lemma 5.13 (where S is garbage) we have that nf(LMM) →֒∗

νũ. nf(LNM) | (k(Z) ⊲ (Msg a LP M k1) | (Trig Y a k2)) | k〈LCM〉 | S →b Q
′′

with Q′′ = νũ. nf(LNM) | (Msg a LP M k1) | (Trig Y a k2)) | S . On the other

side we have that M  νũ.N | k1 : a〈P 〉 | k2 : a(X) ⊲ Q1 =M ′ and we can

note nf(Q′′) = nf(addG(LM ′M)), as we conclude by choosing Q2 = Q′′.

In the case in which there are administrative steps that do not contribute

in creating the message on k we do a case analysis on such step. Since we

want to re-arrange the trace nf(LMM) →֒∗ R in order to have first all the

communication that contribute in creating the message on k followed by all

the other unrelated communication, that is nf(LMM) →֒∗ R1 →֒∗ R →֒ R′, we

proceed by natural induction on the length of the reduction nf(LMM) →֒∗ R

with a case analysis on the last step that does not contribute to the creation

of the message k. It can be either an internal communication due to killer

unrelated to the process with tag k, or a communication due to a Rew l.

In the first case since the kill is on another process not contributing in

creating the message on k, that is it is not the kill of the process labelled by

k or a kill of a parallel composition due to the split of the key k, it can be

postponed, that is if we have nf(LMM) →֒∗ R1 →֒ R′ →֒∗ R, since the step

R1 →֒ R′ is the last one it can be postponed at the end and we can write

nf(LMM) →֒∗ R1 →֒∗ R →֒ R′ and we can conclude by induction on a shorter

reduction.

If the step is due to a Rew process we have two cases: either it deals

with processes unrelated to the one tagged by k or not. In the first case we

proceed as the case above and we conclude by induction on shorter trace. In

the second case, since a communication due to a Rew instantiates a process,

if this process has to be killed in order to form the process in the message

k, then there has to be a killer process in order to re-kill it, otherwise this

process does not contribute to the creation of the message. Hence, we can

annul the effect of these two administrative steps by removing them from

the original trace, and we can conclude by induction on a shorter trace.

Once that we have a trace of the form nf(LMM) →֒∗ R1 →֒∗ R2 with the

first trace →֒∗ containing all the administrative step related to the creation

of the message on k, we have that nf(LMM) →֒∗ R1 →b R
′
1 →֒∗ R. As in the

first case we know that nf(LMM) →֒∗ R1 →f R
′
1 implies that LMM  LM ′M

with nf(R′
1) = nf(addG(LM ′M)). Moreover we have that R′

1 →֒∗ R and that

nf(R′
1) →֒∗ R′′ with R ⇁∗ R′′. By using Lemma 5.14 we have that there
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exist Q3 such that R′′ →֒∗ Q3 and nf(Q3) ≡Ex nf(addG(R′
1)) and since

nf(R′
1) = nf(addG(LM ′M)) we have that nf(Q3) ≡Ex nf(addG(LM ′M)), as

desired. �

We can now prove our main result.

Proof of Theorem 5.1: We prove that the following relation is a weak

backward and forward barbed bisimulation:

R = {(M,N) | νk. k : P ⇒M ∧ nf(N) ≡Ex nf(addG(Q)) ∧ LMM →֒∗ Q}

We have to check the different conditions for weak backward and forward

barbed bisimulation.

Assume M ↓a. Note that from the definition of barbs only names in

N produce barbs. From Lemma 5.19 Q →֒∗↓a. Since addG never removes

barbs then addG(Q) →֒∗↓a. Then also nf(addG(Q)) →֒∗↓a. Thanks to

Proposition 5.2 we have that nf(N) →֒∗↓a and thus also N →֒∗↓a.

Assume now N ↓a. Thanks to Lemma 5.7 a ∈ N . We have that nf(N) ↓a.

Thanks to Proposition 5.2 nf(addG(Q)) →֒∗↓a and also addG(Q) →֒∗↓a. Then

Q →֒∗↓a. Finally, thanks to Lemma 5.21 M ↓a.

Let us now consider reduction challenges. IfM →M ′ then by Theorem 5.2

we have nf(LMM) → P with nf(P ) ≡Ex nf(addG(LM ′M)). By hypothesis we

have that LMM →֒∗ Q, but also nf(LMM) →֒∗ nf(Q) and by Lemma 5.14 we

have that nf(Q) →֒∗ nf(addG(Q′)) ≡Ex nf(LMM). Since nf(LMM) → P and

nf(LMM) ≡Ex nf(addG(Q′)) by Lemma 5.5 we also have that nf(addG(Q′)) ⇒

P ′ and nf(P ) ≡Ex nf(P ′), and since nf(P ) ≡Ex nf(addGLM ′M) by transitivity

we have that nf(P ′) ≡Ex nf(addGLM ′M). We can conclude by noting that

the pair (M ′, P ′) ∈ R.

For the other direction, assume N → N ′. We have a case analysis

according to the kind of reduction. If N ⇁ N ′ then the thesis follows

trivially since nf(N) = nf(N ′).

If instead N 7→ N ′ then by Lemma 5.11 nf(N) →֒∗ N ′′ and N ′ ⇁∗ N ′′

for some N ′′. Thanks to Lemma 5.12 nf(N ′′) = nf(N ′). Thus we have

nf(N) →֒∗ nf(N ′). Thanks to Proposition 5.2 from nf(N) ≡Ex nf(addG(Q))

we have that there is R such that nf(addG(Q)) →֒∗ R and nf(N ′) ≡Ex R.

From nf(addG(Q)) →֒∗ R we have that Q →֒∗ R′ (thanks to Lemma 5.24)

with nf(R) = nf(addG(R′)). And we can conclude by using Lemma 5.3

obtaining that nf(N ′) ≡Ex nf(R), and hence nf(N ′) ≡Ex nf(addG(R′)) with

LMM →֒∗ Q →֒∗ R′ and we remain in the same relation.

Assume now N →f N ′. By Lemma 5.11 nf(N) →f N ′′ and N ′ ⇁∗

N ′′ for some N ′′. Thanks to Lemma 5.12 nf(N ′′) = nf(N ′). Thanks
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to Proposition 5.2 we have that ≡Ex is a weak barbed bf bisimulation,

and from nf(N) ≡Ex nf(addG(Q)) we have that there is R such that

nf(addG(Q)) →֒∗→f →֒
∗ R and N ′′ ≡Ex R. From Lemma 5.3 also nf(N ′′) =

nf(N ′) ≡Ex nf(R). From Lemma 5.24 and Lemma 5.25 we have that there are

R′, Q1 and Q′
1 such that Q →֒∗ Q1 →f Q

′
1 →֒∗ R′ and nf(R) = nf(addG(R′)).

By hypothesis, we have that LMM →֒∗ Q. By Lemma 5.28 we have that

LMM →֒∗ Q1 →f Q
′
1 implies that there exist M ′ and Q2 such that M ։M ′

and nf(addGLM ′M) ≡Ex nf(Q2) with addG(Q′
1) →֒∗ Q2.

We can apply Lemma 5.14 obtaining Q3 such that Q2 →֒∗ Q3 and

nf(Q3) ≡Ex nf(addG(Q′
1)) and sinceQ′

1 →֒∗ R′ we have that nf(addG(Q′
1)) →֒∗

nf(addG(R′)) ≡Ex nf(R), and since nf(N ′) ≡Ex nf(R) we also have nf(N ′) ≡Ex

nf(addG(R′)). We want to show that the pair (M ′, N ′) ∈ R. We have that

Q2 →֒∗ Q3 but also nf(Q2) →֒∗ nf(Q3) and since nf(addGLM ′M) ≡Ex nf(Q2)

and ≡Ex is a weak bf barbed bisimulation we have that there exists R2 such

that nf(addGLM ′M) →֒∗ R2 with R2 ≡Ex nf(Q3). Hence by using 5.24 we

also have that nf(LM ′M) →֒∗ R3 with R2 = addG(R3). We have nf(Q3) ≡Ex

nf(addG(Q′
1)) and nf(addG(Q′

1)) →֒∗ nf(addG(R′)) and by the fact that ≡Ex

is a weak bf barbed bisimulation then there exists R4 such that nf(Q3) →֒∗ R4

with R4 ≡Ex nf(addG(R′)), but by the same reasoning the have that

R2 →֒∗ R5 with R5 ≡Ex nf(addG(R′)). Since R2 = addG(R3) we have that

addG(R3) →֒∗ addG(R5) and by using Lemma 5.4 and Lemma 5.3 we have

that nf(R5) ≡Ex nf(addG(R′)) and nf(addG(R5)) ≡Ex nf(addG(R′)). To con-

clude we can note that LM ′M⇁∗ nf(LM ′M) →֒∗ addG(R2) →֒∗ addG(R5) with

nf(addG(R5)) ≡Ex nf(addG(R′)) ≡Ex nf(N ′). This implies that (M ′, N ′) ∈

R, as desired.

If N →b N
′ we can use the same reasoning of the →f case by using

Lemma 5.29 and Lemma 5.26 instead of Lemma 5.28 and Lemma 5.25. �
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5.5 roll-π encoding

In this section we show how the encoding of ρπ (in Figure 5.4 and Figure 5.3)

can be used, with a small change, to encode a variant of the roll-π low level

semantics of Section 4.5. Before introducing the new encoding, we need to

formalize a few functions that will be used by the encoding.

Definition 5.10 Let φ : K → K×K be a function defined as follows:

∀h, k ∈ K h 6= k =⇒ {h1, h2} ∩ {k1, k2} = ∅

where φ(h) = (h1, h2) and φ(k) = (k1, k2).

Definition 5.11 We define two projection functions π1, π2 : K → K such

that:

φ(k) = (k1, k2) ⇐⇒ π1(k) = k1 π2(k) = k2

Function φ defines an injective mapping from a single key to a pair,

and this mapping is unique that is two different keys are mapped in two

different pairs. Moreover functions π1(k), π2(k) can be seen respectively as

the projection of the first and the second element of φ(k).

Notations and conventions. Abusing the HOπ+ notation, we use the

bold name l to indicate the pair l1, l2. Hence abstractions over two channels

instead of being written as (l1 l2)P will be written as (l)P . We will use the

same trick also for applications, that is instead of having (P l1 l2), where

P is an abstraction, we sometimes will write (P l). Moreover if P is an

abstraction over two channels, sometimes we will write (P φ(k)) instead of

writing (P π1(k) π2(k)) for any k ∈ K. Other conventions and notations are

similar to the encoding of ρπ.

The encoding L·M : Proll-π → PHOπ+ of processes of roll-π in HOπ+ is

defined inductively in Figure 5.8. It extends to an encoding L·M : Croll-π →

PHOπ+ of configurations of roll-π in HOπ+ as given in Figure 5.9 (note that the

encoding for 0 in Figure 5.4 is the encoding for the null configuration). The

main idea behind this encoding is that a roll-π tag key k ∈ K is interpreted

as a pair of channels. Hence the encoding of processes is an abstraction over

these two channels. The first channel is used by a process to be notified by a

roll notification to start rolling-back, while the second channel is used by the

process to freeze itself and notify its father that it has rolled-back. Naturally,

as in the LL semantics, a process that receives a notification and is not a
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leaf (a primitive process) will propagate the notification through its children.

So this encoding mimics the two way visit of the tree that we have discussed

in Chapter 4.

Let us start commenting on the encoding of roll-π configurations. The

null configuration 0 is trivially translated into the HOπ+ process 0. Name

creation is translated into a name creation. Since we are assuming that there

exists a unique correspondence from roll-π keys to pairs of keys, then the

roll-π name creation is translated into the creation of the two corresponding

keys given by the mapping φ. The encoding of a tagged process is similar to

the one of ρπ with the slight difference that now translations are abstractions

over two keys, and these keys are given by the two projections π1 and π2.

We will discuss the encoding of memories later on, while introducing the

encoding of roll-π processes. A frozen process of the form ⌊k : P⌋ is encoded

as a message on the second key channel carrying the encoding of the process

itself, that is:

⌊k : P⌋ = k2〈LP M〉 if π2(k) = k2

As already said, this is one of the intuitions behind this encoding: the second

key channel is used to represent a frozen process. The encoding of a frozen

process tagged by a complex key 〈hi, h̃〉 · k is pretty similar, where as in the

encoding of ρπ we use the channel hi as the process key channel. That is:

⌊〈hi, h̃〉 · k : P⌋ = h′′i 〈LP M〉 if π2(hi) = h′′i

A runtime notification rl k is encoded as a signal (empty message) on the

first key channel. That is:

Lrl kM = k1 if π1(k) = k1

This is the second intuition behind this encoding: the first channel of the

mapping is used by processes to receive notifications about rollback.

Let us now comment on the encoding of processes. Since now the rollback

facility is controlled, then there is no need of Rew processes (as in the ρπ

encoding) in order to undo a rollback decision. Moreover, now a killer process

will await a signal on the first key channel (of the pair), before rolling-back a

process. A process of the form k : 0 is encoded as follows5:

Lk : 0M = k1 ⊲ k2〈Nil〉 if φ(k) = (k1, k2)

Simply the 0 process awaits the notification, on the first channel, to roll-back

5After several applications.
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and then produces a message on the second key channel containing itself.

Messages now are translated into tri-adic messages. Let us note that the

process KillM:

a(X, \l1, \l2)|l1 ⊲ l2〈(h)Msg aX h〉)

in order to rollback a particular message on a awaits also a notification on

the first key channel l1. Then the message is rolled-back into the second key

channel l2. The translation of a parallel process is quite straightforward: two

new pairs of names are created and given to the two sub-processes composing

the parallel process, and to its killer. Let us comment on the KillP process:

(l1 ⊲ (h2(W ) | k2(Z) ⊲ l2〈(l)ParW Z l〉) | h1 | k1)

We can see how the notification propagation mechanism works: the process

awaits on its first key channel l1 the notification, then it propagates this

notification to its children by means of the two messages h1 and k1, and

awaits the rollback of the children that will be notified on channels h2 and k2.

When the children have rolled-back the process rolls-back the entire parallel

composition by just recomposing itself on the channel l2.

The translation of a trigger process is similar to the ρπ encoding with the

slight difference that instead of creating a new key, we create two keys and

that the KillT process awaits the roll notification (and the lock t) in order to

roll-back the trigger process. Another difference with the ρπ encoding is that

now triggers are also binders for tag variables γ. Therefore, the translation

of a trigger l : a(X) ⊲γ Q is a process of the form:

νt. t | (a(X,h1, h2) | t ⊲f νk, c. (Y X k c) | (c(Z) ⊲ (Z k)) |

(Mem Y a X h k l)) | (KillT Y t l a)

with Y = (X γ1 γ2 c)c〈LQM〉. Let us note that now the process Y is also an

abstraction on two channels representing the γ variable of the trigger. The

translation of the trigger mimics exactly the roll-π forward rule: it creates

the new key k, it substitutes the variable X with the message content and

the new key with the γ variable. For example, let us suppose that after the

communication we obtain the following process: k : Q{P,k/X,γ}, with Q the

trigger body. This substitution is mimicked in our encoding by the following

reduction:

((X γ1 γ2 c)c〈LQM〉) LP M k1 k2 c→ c〈LQM〉{k1,k2,LP M/γ1,γ2,X}

with φ(k) = (k1, k2). The trigger continuation, resulting from the substitution,
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is then applied to the pair of keys corresponding to the new key k (by the

sub-process c(Z) ⊲ Z k1 k2) and eventually a memory process Mem is created.

Mem processes are quite different from the ρπ encoding. A Mem process of

the form:

νt. t | (k2(Z)|t ⊲b (Msg a X h) | (Trig Y a l)) |

(h1|t ⊲ (Memsx Y a X h k l) | k1) | (l1|t ⊲ Memdx Y a X h k l) | k1)

can release its content because its continuation has fully rolled-back, and this

rollback is represented by the message on the key channel k2. Otherwise, it can

propagate the rollback notification to its continuation. That is, if there exists

a notification for its internal output process (represented by a signal h1) then

the memory freezes the internal output process and produces the notification

k1 in order to roll-back its continuation. Eventually when the continuation

will be frozen, then the memory will release its content represented by a

frozen message and a trigger, as part of the process Memsx. On the other

hand, if the memory receives a notification trying to freeze its internal trigger

(signal l1) then it propagates the notification to its continuation and behaves

as the process Memdx, representing a memory whose internal trigger is frozen.

We can note that notification propagation is performed just by KillP and

Mem processes, representing nodes in the causal tree.

Since the encoding is defined inductively on the structure of processes

we have two kinds of roll process: one in which the tag variable γ is already

instantiated and the other where it is not. A process k : roll l is encoded as

follows:

(k1 ⊲ k2〈Roll〉) | l1 if φ(k) = (k1, k2) ∧ φ(l) = (l1, l2)

A roll process produces the notification to the target memory (via the signal

l1) and awaits a notification (from its father) to roll-back. So, as in the LL

semantics, a rollback operation in the encoding is also initiated by a roll

process.
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L0M = Nil LXM = X

La〈P 〉M = (l)(Msg a LP M l) Lνa. P M = (l)νa. LP M l

LP | QM = (l)(Par LP M LQM l) La(X) ⊲γ P M = (l)(Trig ((X γ1 γ2 c)c〈LP M〉) a l)

Lroll kM = (l)(Roll l k) Lroll γM = (l)(Roll l γ1 γ2)

L†M = (l)(l1 ⊲ l2〈Roll〉)

Nil = (l)l1 ⊲ l2〈Nil〉

Roll = (l k)((l1 ⊲ l2〈Roll〉) | k1)

Msg = (a X l1 l2)a〈X, l〉 | (KillM a l1 l2)

KillM = (a l1 l2)(a(X, \l1, \l2)|l1 ⊲ l2〈(h)Msg aX h〉)

Par = (X Y l1 l2)νh1, h2, k1, k2. X h | Y k | (KillP h k l)

KillP = (h k l)(l1 ⊲ (h2(W ) | k2(Z) ⊲ l2〈(l)ParW Z l〉) | h1 | k1)

Trig = (Y a l)νt. t | (a(X,h) | t ⊲f νk, c. (Y X k c) | (c(Z) ⊲ (Z k)) |

(Mem Y a X h k l)) | (KillT Y t l a)

KillT = (Y t l a)(t | l1 ⊲ l2〈(h)TrigY ah〉)

Mem = ( Y a X h k l)νt. t | (k2(Z)|t ⊲b (Msg a X h) | (Trig Y a l)) |

(h1|t ⊲ (Memsx Y a X h k l) | k1) | (l1|t ⊲ Memdx Y a X h k l) | k1)

Memsx = ( Y a X h k l)(k2(Z) ⊲ h2〈(h)(Msg a X h)〉 | (Trig Y a l))

Memdx = ( Y a X h k l)(k2(Z) ⊲ (Msg a X h) | l2〈(l)(Trig Y a l)〉)

Figure 5.8: Encoding roll-π processes.

5.5.1 Correctness

We now conjecture a faithfulness property of the encoding with respect to

roll-π.

Conjecture 5.1 For each HL consistent configuration M , M
◦
≈c LMM.

A possible proof strategy in order to prove Conjecture 5.1, is to first define

the closest semantics (called ALL for asynchronous low level) to the encoding

and then to relate it with the LL one. The ALL semantics →ALL of roll-π

is defined as for the HL one (cf. Section 3.2.1), as →ALL =։ALL ∪ ALL,

where relations ։ALL and  ALL are defined to be the smallest evaluation-

closed binary relations on closed ALL configurations satisfying the rules

in Figure 5.10. The notion of structural congruence used in the definition

of evaluation-closed is here the smallest congruence on ALL processes and

configurations that satisfies the rules in Figure 3.2 and in Figure 5.11.
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L0M = 0

LM | NM = LMM | LNM

Lνa.MM = νa. LMM

Lνk.MM = νφ(k). LMM

Lk : P M = (LP M π1(k) π2(k))

L〈hi, h̃〉 · k : P M = (LP M π1(hi) π2(hi)) | Kill〈hi,h̃〉·k

L[κ1 : a〈P 〉 | κ2 : a(X) ⊲ Q; k]M =

(Mem ((X c)c〈LQM〉) a LP M Lκ1M π1(k) π2(k) Lκ2M) | Killκ1
| Killκ2

L[⌊κ1 : a〈P 〉⌋ | κ2 : a(X) ⊲γ Q; k]M =

(Memsx ((X γ1 γ2 c)c〈LQM〉) a LP M Lκ1M π1(k) π2(k) Lκ2M) | Killκ2

L[κ1 : a〈P 〉 | ⌊κ2 : a(X) ⊲γ Q⌋; k]M =

(Memdx ((X γ1 γ2 c)c〈LQM〉) a LP M Lκ1M π1(k) π2(k) Lκ2M) | Killκ1

L⌊k : P⌋M = k2〈LP M〉 if π2(k) = k2

L⌊〈hi, h̃〉 · k : P⌋M = h′〈LP M〉 if π2(hi) = h′

Lrl kM = k1 if π1(k) = k1

Lrl 〈hi, h̃〉 · kM = h′ if π1(hi) = h′

LkM = φ(k)

L〈hi, h̃〉 · kM = φ(hi)

Kill〈h1,h̃〉·k
= νl̃. (KillP φ(h1) φ(l1) φ(k)) |

n−2
∏

i=2

(KillP φ(hi) φ(li) φ(li−1)) |

(KillP φ(hn−1) φ(hn) φ(ln−2))

Killκ = 0 otherwise

Figure 5.9: Encoding roll-π configurations.
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(A.Com)
µ = (κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q)

(κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q)։ALL νk. (k : Q{P,k/X,γ}) | [µ; k]

(A.Start) (κ1 : roll k) (κ1 : †) | rl k

(A.Span) rl κ1 | [κ1 : P | κ2 : Q; k] ALL [⌊κ1 : P⌋ | κ2 : Q; k] | rl k

(A.Branch)
〈hi, h̃〉 · k occurs in M

rl k |M  ALL

∏

hi∈h̃

rl 〈hi, h̃〉 · k |M

(A.Up) rl κ1 | (κ1 : P ) ALL ⌊κ1 : P⌋

(A.Stop) [µ; k] | ⌊k : P⌋ ALL µ

Figure 5.10: Reduction rules for ALL.

(E.Gb) νk.
∏

i∈I

rl κi ≡LL 0 k ⊂ κi

(E.TagPFr) ⌊k :
n
∏

i=1

τi⌋ ≡LL νh̃.
n
∏

i=1

⌊〈hi, h̃〉 · k : τi⌋ h̃ = {h1, . . . , hn} n ≥ 2

Figure 5.11: Additional structural laws for ALL.
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Let us comment on the semantics. Communication (forward) rule is

similar to all the given semantics. Rule A.Start generates asynchronously

a runtime roll notification. In order to avoid an unbounded number of

notifications from the same roll process, a roll process that generates a

notification becomes the dummy process †. For consistency reasons, we let

the dummy process † bearing the same tag of the roll process instead of 0.

Rule A.Span behaves as the rule L.Span (of the LL semantics) with the

slight difference that it is possible to apply the rule just on memories that

do not contain frozen processes. Rules A.Branch, A.Up and A.Stop are

equivalent to the corresponding ones of the LL semantics. Note that, since rl

notifications are generated asynchronously there is no more need of marked

memories ([µ; k]•). Structural laws are equivalent to those of LL semantics.

We now conjecture that an ALL configuration and its translation are

weak bf barbed congruent, and that the LL and ALL semantics are equivalent

by means of LL

·
≈

c

ALL (see Definition 4.7).

Conjecture 5.2 For each ALL consistent configuration M , M
◦
≈c LMM

Conjecture 5.3 For each LL consistent configuration M , M LL

·
≈

c

ALL LMM.

Assuming that the above conjectures hold, we can prove Conjecture 5.1

as follows:

Proof sketch: By Theorem 4.7 we have that M HL

·
≈

c

LL M and by Conjec-

ture 5.3 and by transitivity we have that M HL

·
≈

c

ALL M . By Conjecture 5.2

we have that M
◦
≈c LMM and by transitivity we can conclude that M

◦
≈c LMM,

as desired. �
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Chapter 6

Conclusion

6.1 Concluding Remarks

We have proposed in this thesis the Reversible Higher-Order π-calculus (ρπ),

a reversible variant of the Higher-Order π (HOπ). Following the study

undertaken by Danos and Krivine on reversible CCS [29,30], we devised a

simple syntax and reduction semantics for ρπ, with a novel way of defining

reversible reductions that preserves the associativity and commutativity of

the parallel operator. As far as we know, ρπ is the first reversible higher-order

concurrent calculus. We have proved that ρπ is a conservative extension of

HOπ, as long as forward executions are considered, and we have proved that

in the calculus the reversible actions are causally consistent.

In ρπ each process moves freely backward and forward. The notion of

memory introduced in ρπ is in some way a checkpoint, uniquely identified by

its tag. We exploited this intuition to introduce an explicit form of backward

reduction in another calculus: roll-π. In roll-π backward reduction is not

allowed by default as in ρπ, but is triggered by an instruction of the form

roll k, whose intent is that the current computation be rolled-back to a state

just prior to the creation of the memory bearing the tag k. The definition of

a proper semantics for such a primitive is a delicate matter because of the

potential interferences between concurrent rollbacks. We have defined in this

thesis a high-level operational semantics for roll-π, which we have proved

to be sound and complete with respect to ρπ backward reduction. We also

have defined a lower-level distributed implementation of such a primitive,

closer to an actual distributed algorithm, and we have proved it to be fully

abstract with respect to the high-level semantics.

The last question we have answered is whether reversibility (ρπ) can be

directly expressed in HOπ. We have shown how to encode ρπ into a variant
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of HOπ that we call HOπ+. This variant allows the use of join patterns,

sub-addressing and abstractions. All these constructs are well known and

well understood in terms of expressive power with respect to HOπ. We have

proved the faithfulness of our encoding by means of a behavioural equivalence.

Moreover, with a simple modification to the encoding, we have obtained an

encoding of roll-π into HOπ+, whose correctness is just conjectured.

6.2 Ongoing and Future work

Starting from the work presented in this thesis we see four main directions

of future research: semantics for reversible concurrent processes, program-

ming abstractions for dependable reversible systems, implementation and

expressiveness (of reversible actions) issues. Let us detail them.

Semantics. The study of behavioral equivalences for concurrent processes

typically involves the definition of contextual equivalences and their coin-

ductive characterisation, in terms of labelled transition system (LTS) and

bisimulations, that provide a mathematically appealing technique for proving

the equivalence of processes. As emerged in Section 3.4, we do not yet

understand what is a correct notion of behavioral equivalence for reversible

processes. For instance, our early attempt in [58] at defining a weak notion of

barbed congruence (a classical notion of contextual equivalence for concurrent

languages [73, 89]) for a reversible variant of the Higher-Order π-calculus

proved to be insufficiently discriminating. Besides our notion of backward

and forward barbed bisimulation used in this thesis for the faithfulness prop-

erty of our encoding, is an ad-hoc equivalence and it is not a candidate to

be the canonical one. This leads us to think that this is a non-trivial issue;

even more perplexing seems to be the definition of appropriate coinductive

characterizations for these more discriminating variants. Intriguingly, the

strong counterpart of barbed congruence appears to be less problematic, and

previously studied notions of back and forth bisimulations, e.g. [33, 51, 68]

seem to be good candidates for its coinductive characterization. Note however

that previous work on back-and-forth bisimulations focused on exploiting

backward steps as an auxiliary tool for better understanding purely forward

computations, and on the study of strong equivalences.

The notion of reversibility in concurrent systems has a tight relationship

with causality. This is very apparent from our ρπ, where the structure of

process tags and memories appears to capture causality information in a way

very much related to works that investigate a causal semantics for concurrent
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process calculi [16, 25,27,96]. A thorough analysis of this relationship must

be left for further study.

Following the work done by Phillips and Ulidowski [82], we could gen-

eralize our reversing approach by proposing a general framework to reverse

calculi with binders and higher-order aspects expressed for example in the

SOS format of [77].

Programming Abstractions. In this thesis we have assumed that all the

actions in our system can be reversible. In a real world, and in distributed

systems, it is unthinkable to consider every action reversible. There are

actions that by nature are irreversible, such as printing a file. Hence, it would

be interesting to extend ρπ with a notion of irreversible actions, that cannot

be reversed but compensated. So it could be interesting to mix reversibility

and mechanisms for dynamic compensations such as those proposed in [60,74].

In Chapter 4 we presented a low level implementation of our controlled

reversible facility. Our low-level semantics for rollback, being a first refinement

towards an implementation, is certainly related to distributed checkpoint and

rollback schemes, in particular to the causal logging schemes discussed in the

survey [37]. A thorough analysis of this relationship must be left for further

study, however, as it requires a proper modelling of site and communication

failures (where sites can be expressed by localities), as well as an explicit

model for persistent data.

The way of controlling ρπ reversibility, presented in Chapter 4, is just

one among several. Another direction will be to study other controlling

primitives, such as the one typical of reversible debuggers, allowing to go

backward n computational steps, and to compare them.

Implementation. Our ultimate goal is to provide a programming language

for building reliable distributed systems by means of backward recovery

techniques. An interesting research question is to extend a lambda calculus

for concurrent systems (such as the one presented in [17]) or a functional

programming language (such as OCaml) with reversible actions, and see

what is the actual cost in terms of memory consumption of our reversible

mechanism.

Expressiveness. Another research direction is to refine the ρπ encoding

presented in Chapter 5, in order to avoid (if possible) the generation of

garbage processes and try to limit divergence.
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Appendix A

Encoding Proofs

A.1 Normal Form Properties

We want to characterize the effect of normal form on a process inside a

context, i.e. a term C[P ]. To this end we define normal form on contexts,

which also computes the substitution applied to the hole •. Since we are

working with contexts with one hole only, we require that for all the higher-

order applications (X)P C1[•] either P is linear or P is already in normal

form. In the first case the bullet is not replicated, and single-hole contexts

are enough. In the second case, no inductive call is required.

Definition A.1 (Context normal form) We define the context normal

form function nfc(C[•]) as nfc(C[•], ∅), where the second parameter is used

for computing the substitution applied to the bullet (or to the bullets). The

result is also a pair (C′[•], σ). The function nfc(C[•], σ) is defined as follows:

nfc(P | C1[•], σ) = nf(P ) | C′[•], σ′ if nfc(C1[•], σ) = C
′[•], σ′

nfc(νa.C1[•], σ) = νa.C′[•], σ′ if nfc(C1[•], σ) = C
′[•], σ′

nfc((X)C1[•] P, σ) = C
′[•], σ′ if nfc(C1{

P /X}[•], σ · {P /X}) = C
′[•], σ′

nfc((X)P C1[•], σ) = C
′[•], σ′ if nfc(P{C1[•]/X}, σ) = C

′, σ′ and P is linear

nfc((X)P C1[•], σ) = P{C1[•]/X}, σ · {C1[•]/X} if P is in normal form

nfc((h)C1[•] l, σ) = C
′[•], σ′ if nfc(C1{

l/h}[•], σ · {l/h}) = C
′[•], σ′

nfc(a〈C1[•]〉, σ) = a〈C1[•]〉, σ

nfc(a(X) ⊲ C1[•], σ) = a(X) ⊲ C1[•], σ

nfc(•, σ) = •, σ

Lemma A.1 If nfc(C[•], ∅) = C1, σ then nfc(C[•], σ′) = C1, σ
′ · σ
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Proof: By simply looking to its definition. �

We now show that the notions of normal form for processes and for

contexts are compatible.

Lemma A.2 nf(C[P ]) = C
′[nf(Pσ)] with nfc(C[•]) = C

′[•], σ.

Proof: By structural induction on C[•]. We have the following possibilities.

• C[•] = •) we banally have that nfc(•, ∅) = •, ∅ and nf(P∅) = nf(P ).

• C[•] = νu.C1[•]) we have that nf(νu.C1[P ]) = νu. nf(C1[P ]). By induc-

tive hypothesis we have that nf(C1[P ]) = C
′
1[nf(Pσ)] with nfc(C1[•], ∅) =

C
′
1[•], σ, and since nfc(νu.C1[•], ∅) = νu. nfc(C1[•], ∅), we can con-

clude.

• C[•] = Q | C1[•]) we have that nf(Q | C1[P ]) = nf(Q) | nf(C1[P ]).

By inductive hypothesis we have that nf(C1[P ]) = C
′
1[nf(Pσ)] with

nfc(C1[P ], ∅) = C
′
1, σ, and we can conclude by noting that nfc(Q |

C1[•], ∅) = nf(Q) | nfc(C1[•], ∅).

• C[•] = a〈C1[•]〉 or C[•] = a(X) ⊲ C1[•]) Simpler than the above cases,

since there is no recursive call.

• C[•] = (X)C1[•] Q) we have to show that nf((X)C1[P ] Q) = C
′[nf(Pσ)]

with nfc((X)C1[•] Q, ∅) = C
′, σ. By definition, nfc((X)C1[•] Q, ∅) =

nfc(C1[•]{
Q/X}, {Q/X}). We have nf(C1[P ]{

Q/X}) = nf(C1{
Q/X}[P{Q/

X}]) = C
′′[nf(P{Q/X}σ′)] where nfc(C1{

Q/X} [•], ∅) = C
′′, σ′ and by

using Lemma A.1 nfc(C1{
Q/X}[•], {Q/X}) = C

′′, {Q/X} · σ′. We have

that C
′′, σ′{Q/X} = C

′, σ. So nf((X)C1[P ] Q) = C
′[nf(Pσ)] with

nfc((X)C1[•] Q, ∅) = C
′, σ, as desired.

• C[•] = nf((h)C1[•] v)) we can apply the same reasoning of the above

case.

• C[•] = nf((X)Q C1[•]) with Q linear) we have that nf((X)Q C1[P ]) =

nf(Q{C1[P ]/X}), but since Q is linear we can write Q{C1[P ]/X} = C2[P ],

hence nf((X)Q C1[P ]) = nf(Q{C1[P ]/X}) = nf(C2[P ]). By inductive

hypothesis we have that nf(C2[P ]) = C
′
2[Pσ] with nfc(C2[•], ∅) = C

′
2, σ,

as desired.

• C[•] = nf((X)Q C1[•]) with Q in normal form) we have that nf((X)Q

C1[P ]) = nf(Q{C1[P ]/X}) = Q{C1[P ]/X} and nfc((X)Q C1[P ], ∅) =

C
′
1[•], σ with nfc(Q{C1[•]/X}, ∅) = Q{C1[•]/X}, ∅ and C

′
1[•] = Q{C1[•]/
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X}, and we can conclude by stating that C
′
1[P∅] = Q{C1[P ]/X}, as

desired. Let us note that if Q is in normal form then nf(Q{P /X}) =

Q{P /X}, since the substitution will take place in non active contexts.

�

Lemma 5.4. If nf(T ) ≡Ex nf(T ′) then nf(addG(T )) ≡Ex nf(addG(T ′))

Proof: By definition of addG we have that T ≡ E[0] and T ′ ≡ E
′[0], with

addG(T ) ≡ E[P ] and addG(T ′) ≡ E
′[P ]. By using Lemma A.2 we have that

nf(E[P ]) = E1[nf(Pσ)] and nf(E′[P ]) = E2[nf(Pσ
′)]. Since all the processes

added by the function addG are closed we have that Pσ = Pσ′ = P and

nf(E[P ]) = E1[nf(P )] and nf(E′[nf(P )]) = E2[nf(P )]. By hypothesis we

have that nf(E[0]) ≡Ex nf(E′[0]), we have that E1[nf(0σ)] = E1[0] ≡Ex

E2[0] = E2[nf(0σ
′)], and we can conclude by saying that also E1[nf(P )] ≡Ex

E2[nf(P )], that is nf(addG(T )) ≡Ex nf(addG(T ′)), as desired. �

Lemma 5.5. If nf(T1) ≡Ex nf(T2) and nf(T1) → T ′
1 then nf(T2) ⇒ nf(T ′

2)

with nf(T ′
1) ≡Ex nf(T ′

2).

Proof: By case analysis on the used axiom M ≡Ex N and on the structure

of nf(T1). Since we are dealing with normal form then the only → that can

be applied are communications and hence we can express nf(T1) as an active

context E[a〈R〉 | a(X) ⊲ S]. We will just consider few interesting cases, the

remaining ones are similar.

P | Q ≡Ex Q | P . There are four places in which the axiom could be applied:

in the context, in the message content, in the trigger continuation or

in the context hole directly. Let us suppose that it is applied in the

message content, we have that nf(T1) can be written as E[a〈C[P |

Q]〉 | a(X) ⊲ S] and nf(T2) as E[a〈C[Q | P ]〉 | a(X) ⊲ S]. We have

that nf(T1) → E[S{C[P |Q]/X}] and nf(T2) → E[S{C[Q|P ]/X}], with

E[S{C[P |Q]/X}] ≡Ex E[S{C[Q|P ]/X}], and we can conclude by applying

Lemma 5.3.

(νu. P ) | Q ≡Ex νu. (P | Q). Let us consider the case in which the axiom

is applied on the message content. We have that E[a〈C[(νu. P ) |

Q]〉 | a(X) ⊲ S] → E[S{C[(νu. P )|Q]/X}] and on the other side we have

E[a〈C[νu. (P | Q)]〉 | a(X) ⊲ S] → E[S{C[νu. (P |Q)]/X}], and we can

conclude by applying Lemma 5.3.
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Ax.C. We have that nf(T1) = E[nf(KillP l h k)] = E[l(Z)|h(W )⊲ k〈(h)Par

Z W l〉]. Now if the communication is performed by the context E[•]

then the thesis banally follows. If the communication is done by the ax-

iom itself, we have that in the context there are two messages of the form

l〈P 〉 and h〈Q〉, hence E[nf(KillP l h k)] ≡ E
′[l〈P 〉 | h〈Q〉 | l(Z)|h(W )⊲

k〈(h)Par Z W l〉] → E
′[k〈(h)Par P Q l〉] and by expanding the defi-

nition of Par we have that nf(T1) → E
′[k〈(h)(νl1, l2. (P l1) | (Q l2) |

KillP l1 l2 l)〉] ≡Ex E
′[k〈(h)(νl1, l2. (Q l1) | (P l2) | KillP l2 l1 l)〉],

with nf(T2) → E
′[k〈(h)(νl1, l2. (Q l1) | (P l2) | KillP l2 l1 l)〉], as

desired.

Ax.P. We have nf(T1) = E[l1〈LP M〉 | l2〈LQM〉 | nf(KillP l1 l2 l)]. The

context can interact with the hole by reading messages on l1 or l2. By

Lemma A.13 the only processes that can read from an l channel are

those generated by Rew l or by the killer of the father of a process.

The second case will be considered later on. In the first case we have

that nf(T1) ≡ E[l1(Z) ⊲ Z l1 | l1〈LP M〉 | l2〈LQM〉 | nf(KillP l1 l2 l)]

→ E[LP Ml1 | l2〈LQM〉 | nf(KillP l1 l2 l)]. By using Lemma A.14 and the

axiom Ex.Unfold we have that LP Ml1 ≡Ex Rew l1 | l1〈LP M〉, and then

E[LP Ml1 | l2〈LQM〉 | nf(KillP l1 l2 l)] ≡Ex E[Rew l1 | l1〈LP M〉 | l2〈LQM〉 |

nf(KillP l1 l2 l)] So E[Rew l1 | l1〈LP M〉 | l2〈LQM〉 | nf(KillP l1 l2 l)] ≡Ex

nf(E[Rew l1 | l〈(h)Par LP M LQM h〉 | Rew l]), as desired.

If the hole evolves by itself we have that nf(T1) = E[l1〈LP M〉 | l2〈LQM〉 |

(l1(Z)|l2(W ) ⊲ (l)Par Z W h | Rew l)] → E[(l)Par LP M LQM h | Rew l]

and the thesis banally follows. The case in which reductions of the

right part of the axiom are considered are trivial since we have that

the left part with a communication reduces to the right one.

Ax.A. We have that nf(T1) = E[νl′. l1(Z)|l2(W )⊲l′〈(h)Par Z W h | Rew l′〉 |

l′(Z)|l3(W ) ⊲ l〈(h)Par Z W h | Rew l〉]. The only way for the hole

to perform a communication is the presence of two messages on l1,

l2 in the context. If so, we have that nf(T1) ≡ E
′[νl′. l1〈P 〉 | l2〈Q〉 |

(l1(Z)|l2(W ) ⊲ l′〈(h)Par Z W h〉 | Rew l′) | nf(KillP l′ l3 l)] →

E[l′〈(h)Par P Q h〉 | Rew l′ | nf(KillP l′ l3 l)] ≡Ex E[νl′. l1〈P 〉 | l2〈Q〉 |

(l1(Z)|l2(W ) ⊲ l′〈(h)Par Z W h〉 | Rew l′) | nf(KillP l′ l3 l)], as desired.

Ax.Unfold. Since, P ≡ νũ.Q, we have that nf(LP Ml) ≡ nf(Lνũ.QMl) =

νũ. nf(LQMl), hence nf(T1) = E[νũ. nf(LQMl)]. Now if E[νũ. nf(LQMl)] →

R then also nf(T2) = E[νũ. l〈LQM〉 | l(Z) ⊲ Z l] → E[νũ. LQMl] ⇁∗

E[νũ. nf(LQMl)] → R, as desired. If the right part of the axiom moves,

we have that a communication can be done by the context or by the
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hole itself. In the first case even the left part can mimic the step since

the context is the same. In the second case we have that the hole can

do just one communication whose effect is to reduces to left part, that

is E[νũ. l〈LQM〉 | l(Z) ⊲ Z l] → E[νũ. LQMl] and nf(E[νũ. LQMl]) = nf(T1),

as desired.

Ax.Adm. By simply noting that the right part of the axiom can only

perform a communication, reducing to the right part of the encoding.

�

Lemma A.3 For all names k and ρπ processes P , Q, if P ≡ Q then

nf(LP Mk) ≡Ex nf(LQMk)

Proof: By induction on the derivation of P ≡ Q. The only interesting case

is the base one. We have a case analysis on the applied axiom.

P | 0 ≡ P . We have that nf(LP | 0Mk) = nf(LP Mk) (by definition of LP | 0M

in Figure 5.3), and we can conclude.

P | Q ≡ Q | P . If one of P or Q is equivalent to 0, the thesis banally

follows. In the other case, we have that nf(LP | QMk) = νl, h. nf(LP Ml) |

nf(LQMh) | nf(KillP l h k) ≡Ex νl, h. nf(LP Ml) | nf(LP Mh) | nf(KillP

h l k) = nf(LQ | P Mk), as desired.

P | (Q | R) ≡ (P | Q) | R . If at least one of P , Q or R are equivalent

to 0 the thesis banally follows. In the other case we have that

nf(LP | (Q | R)Mk) = νh, l, h′, l′. nf(LP Mh) | nf(LQMh′) | nf(LRMl′) |

nf(KillP h l k) | nf(KillP h′ l′ l) and by using α-conversion we have

that νh, l, h′, l′. nf(LP Mh) | nf(LQMh′) | nf(LRMl′) | nf(KillP h l k) |

nf(KillP h′ l′ l) ≡Ex νh, l, h′, l′. nf(LP Mh′) | nf(LQMl′) | nf(LRMl) |

nf(KillP h′ h k) | nf(KillP l′ l h) ≡Ex νh, l, h′, l′. nf(LP Mh′) |

nf(LQMl′) | nf(LRMl) | nf(KillP h′ l′ h) | nf(KillP l h k) ≡Ex nf(L(P |

Q) | RMk), as desired.

νu. 0 ≡ 0. We have that nf(Lνu. 0Mk) = νu. k〈Nil〉 | nf(Rew k) ≡Ex k〈Nil〉 |

nf(Rew k) = nf(L0Mk), as desired.

(νu. P ) | Q ≡ νu. (P | Q). If P or Q are equivalent to 0 then the thesis ba-

nally follows. In the other case, nf(L(νu. P ) | QMk) = νl, h. nf(Lνu. P Mh) |

nf(LQMl) | nf(KillP h l k) = νl, h. (νu. LP Mh) | nf(LQMl) | nf(KillP h l k)

≡Ex νu. (LP Mh | nf(LQMl) | nf(KillP h l k)) = nf(Lνu. (P | Q)Mk), as

desired.
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νa. νb. P ≡ νb. νa. P . We have that nf(Lνa. νb. P Mk) = νa. νb. nf(LP Mk) ≡Ex

νb. νa. nf(LP Mk) = nf(Lνb. νa. P Mk), as desired.

α-conversion. The thesis banally follows.

�

Lemma 5.6. Let M , N be closed consistent configurations. Then M ≡ N

implies nf(LMM) ≡Ex nf(LNM).

Proof: By induction on the derivation of M ≡ N . The only interesting case

is the base one. We have a case analysis on the applied axiom.

M | 0 ≡M . By definition nf(LM | 0M) = nf(LMM) | nf(L0M) = nf(LMM) |

nf(0) ≡Ex nf(LMM).

M | N ≡ N |M . By definition nf(LM | NM) = nf(LMM) | nf(LNM) ≡Ex

nf(LNM) | nf(trM) = nf(LN |MM).

N1 | (N2 | N3) ≡ (N1 | N2) | N3. By definition nf(LN1 | (N2 | N3)M) = nf(LN1M) |

nf(LN2 | N3M) = nf(LN1M) | nf(LN2M) | nf(LN3M) = nf(LN1 | N2M) |

nf(LN3M) = nf(L(N1 | N2) | N3M).

νu. 0 ≡ 0. By definition nf(Lνu. 0M) = νu. nf(L0M) = νu. 0 ≡Ex 0 = nf(L0M).

νu. νv.M ≡ νv. νu.M . By definition nf(Lνu. νv.MM) = νu. nf(Lνv.MM) =

νu. νv. nf(LMM) ≡Ex νv. νu. nf(LMM) = νv. nf(Lνu.MM) = nf(Lνv. νu.MM).

(νu.M) | N ≡ νu. (M | N). By definition L(νu.M) | NM = L(νu.M)M | nf(LNM) =

(νu. LMM) | LNM ≡Ex νu. (LMM | LNM) = νu. (LM | NM)Lνu. (M | N)M.

κ : νa. P ≡ νa. κ : P . Here we have to distinguish two cases depending on the

form of κ. If κ = k then by definition nf(Lk : νa. P M) = nf(Lνa. P Mk) =

νa. nf(LP Mk) = νa. nf(Lk : P M) = nf(Lνa. k : P M). If κ = 〈hi, h̃〉 · k then

by definition nf(L〈hi, h̃〉·k : νa. P M) = nf(Lνa. P Mhi) | nf(Kill〈hi,h̃〉·k
) =

νa. nf(LP Mhi) | nf(Kill〈hi,h̃〉·k
) = (νa. nf(LP Mhi) | Kill〈hi,h̃〉·k

≡Ex

νa. nf(LP Mhi) | nf(Kill〈hi,h̃〉·k
) = νa. nf(L〈hi, h̃〉·k : P M) = nf(Lνa. 〈hi, h̃〉·

k : P M).

M =α N =⇒M ≡ N . Since L M and nf( ) do not change bound variables

we have that nf(LMM) =α nf(LNM) and then nf(LMM) ≡Ex nf(LMM).

176



k :
∏n

i=1 τi ≡ νh̃.
∏n

i=1(〈hi, h̃〉 · k : τi). By definition:

nf(Lk :
n
∏

i=1

τiM) = nf(L
n
∏

i=1

τiMk) =

νh1, l1. nf(Lτ1Mh1) | nf(L
n
∏

i=2

τiMl1) | nf(KillP h1 l1 k) =

νh1, h2, l1, l2. nf(Lτ1Mh1) | nf(Lτ2Mh2) | nf(L
n
∏

i=2

τiMl1) |

nf(KillP h1 l1 k) | nf(KillP h2 l2 l1) =

νh̃, l̃.
n−1
∏

i=1

nf(LτiMhi) | nf(LτnMln−1) | nf(KillP h1 l1 k) |

n−1
∏

i=2

nf(KillP hi li li−1)

Now by α−converting the key of the last τn from ln−1 into hn we obtain

a term of the form

νh̃, l̃.

n
∏

i=1

nf(LτiMhi) | nf(KillP h1 l1 k) |
n−2
∏

i=2

nf(KillP hi li li−1) |

nf(KillP hn−1 hn li−2) =

nf(Lνh̃.
n
∏

i=1

〈hi, h̃〉 · k : τiM)

Note that in this case we assumed that the | is right associative, in order

to unroll the parallel composition from
∏n

i=1LτiM to Lτ1M |
∏n

i=2LτiM.

�

A.2 Invariants

In this section we will prove some invariants of the encoding.

Lemma A.4 For each ρπ process P , fn(LP M) ∩ K = ∅.

Proof: By induction on the structure of P .

P = 0: by definition L0M = (l)Nil = (l)(l〈Nil〉 | Rew l) = P ′. We have that

fn(P ′) = ∅ so the property is banally verified.
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P = a〈Q〉: by definition La〈Q〉M = (l)(Msg a LQM l) = (l)((a X l)(a〈X, l〉 |

((a l)(a(X, \l) ⊲ l〈(h)Msg a X h〉) a l) | ((l)(l(Z) ⊲ Z l) l) a LQM l).

We have that fn(LP M) = ({a} ∪ fn(LQM)) \ {l} = {a} ∪ (fn(LQM) \

{l}). By inductive hypothesis we have that fn(LQM) ∩ K = ∅, so also

(fn(LQM) \ {l}) ∩ K = ∅. To correctly conclude we have to show that

({a} ∪ (fn(LQM)) \ {l}) ∩ K = ∅, but since by definition a ∈ N and

N ∩K = ∅ it follows that fn(LP M) ∩ K = ∅.

P = a(X) ⊲ Q: by definition La(X) ⊲ QM = (l)(Trig ((X)(LQM X)) a l) =

(l)(νt. t | (a(X, h)|t⊲νk. (((X)(LQM X))X)k | (Mem ((X)(LQM X)) a X h k l) |

(KillT((X)(LQM X)) t l a))) = (l)(νt. t | (a(X, h)|t⊲νk. (((X)(LQM X))X)k |

k(Z)⊲ (Msg a X h) | (Trig ((X)(LQM X)) a l) | (t⊲l〈(h)Trig ((X)(LQM X)) a h〉)) =

P ′. Now we have that fn(P ′) = ({a} ∪ fn(LQM)) \ {l, k, tt} = {a} ∪

(fn(LQM) \ {l, k, t}). By inductive hypothesis we have fn(LQM)∩K = ∅

so also (fn(LQM)\{l, k, t})∩K = ∅. By definition a ∈ N and N ∩K = ∅,

hence it follows that ({a} ∪ (fn(LQM) \ {l, k, t})) ∩ K = ∅ as desired.

P = νa.Q: by definition LP M = (l)νa. LQMl. So fn(LP M) = fn(LQM) \ {l, a}.

By inductive hypothesis we have that fn(LQM)∩K = ∅, thus (fn(LQM \

{l, a}) ∩ K = ∅, as desired.

P = X: by definition LXM = X. We have that fn(LXM) = ∅ and the thesis

banally follows.

P = Q | R: cases in which one of P or Q are equivalent to 0 banally holds.

In the other case f by definition LQ | RM = (l)(Par LQM LRM l) =

(l)(νh, k. LQMh | LRMk | (h(Z)|k(W ) ⊲ l〈(l)Par Z W l〉) | l(Z) ⊲ Zl)).

We have that (fn(LP M) = (fn(LQM) ∪ fn(LRM)) \ {l, h, k} = (fn(LQM) \

{l, h, k}) ∪ (fn(LRM) \ {l, h, k}). By inductive hypothesis we have that

fn(LQM) ∩ K = ∅ and fn(LRM) ∩ K = ∅, so it follows that (fn(LQM) \

{l, h, k})∩K = ∅ and (fn(LRM) \ {l, h, k})∩K = ∅, and also ((fn(LQM) \

{l, h, k}) ∪ (fn(LRM) \ {l, h, k})) ∩ K = ∅, as desired.

�

Lemma A.5 Be P an HOπ+process. If P → Q then fn(Q) ⊆ fn(P ).

Proof: By induction on P → Q and a case analysis on the last applied rule.

App: we have that (ψ)F V → Fθ with θ = match(V, ψ). By definition

fn((ψ)F V ) = (fn(F ) \ dom(θ)) ∪ fn(V ) and fn(Fθ) = (fn(F ) \

dom(θ))∪fn(cod(θ)), and we can conclude by noticing that fn(cod(θ)) ⊆

fn(V ).
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Red: we have that a〈F, v〉 | a(X, h) ⊲ P . By definition fn(a〈F, v〉 | a(X, h) ⊲

P ) = fn(a〈F, v〉)∪fn(a(X, h)⊲P ) = {a, v}∪fn(F )∪ (fn(P )\{h}). By

applying the reduction we have that a〈F, v〉 | a(X, h)⊲P → P{v,F /h,X}

and fn(P{v,F /h,X}) = (fn(P ) \ {h}) ∪ {v} ∪ fn(F ), as desired.

Equiv: We have that P → Q with P ≡ P1, P1 → Q1 and Q1 ≡ Q. By

inductive hypothesis we have that fn(Q1) ⊆ fn(P1) and the set of free

names does not change under ≡, we have that fn(Q) ⊆ fn(P ).

Ctx: If the context is the empty one we can directly conclude by applying

the inductive hypothesis. If the context is a parallel, we have that

P | P1 → Q | P1, with P → Q. By inductive hypothesis we have

that fn(Q) ⊆ fn(P ) and we can conclude by saying that fn(P1 | Q) ⊆

fn(P | Q), as desired. If the context is a restriction, we have that

νu. P → νu.Q, with P → Q. By inductive hypothesis we have that

fn(Q) ⊆ fn(P ) and hence fn(Q) \ {u} ⊆ fn(P ) \ {u} , as desired.

�

Lemma A.6 Be P an HOπ+process with fn(P ) ∩ K = ∅. If P → Q then

fn(Q) ∩ K = ∅

Proof: By using Lemma A.5 we have that P → Q then fn(Q) ⊆ fn(P ), and

we banally have that if fn(P ) ∩ K = ∅ then also fn(Q) ∩ K = ∅. �

The following Lemma shows that all the keys generated by the encoding

are restricted, that is all the messages carried on key channels will not be

considered as observables, since all the key channels are restricted.

Lemma 5.7. If Lνk. k : P M ⇒ P ′ then fn(P ′) ∩ K = ∅.

Proof: By induction on the number of reduction of ⇒. We distinguish the

base case and the inductive one. For the base case we have P ′ = Lνk. k :

P M = νk. LP Mk. We have that fn(P ′) = fnLP M \ {k} and by applying Lemma

A.4 we obtain fn(LP M) ∩ K = ∅ and hence fn(LP ′M) ∩ K = ∅ as desired. For

the inductive case we have that Lνk. k : P M ⇒ P ′′ → P ′ and we can use as

inductive hypothesis fn(P ′′) ∩ K = ∅. Now we can conclude by applying

Lemma A.6 and we are done. �

The following lemma states that all the messages on channels a ∈ N

carries a couple, and that the first member of the couple is a translation of a

process.
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Lemma A.7 For any ρπ process P , if LP Mk ⇒ E[a〈Q, h〉] with a ∈ N then

Q = LRM.

Proof: By induction on the number of steps. The base case holds by a

simple looking at the encoding of Figure 5.3. The inductive case banally

holds. �

Definition A.2 Let Y = (X c)c〈LQM〉. Then we denote Pl an HOπ+process

of one of the forms below:

LP Ml l〈LP M〉 | Rew l

Msg a LQM l TrigY a l

Par LP M LQM l KillPh k l

νc. (Y LP M c) | (c(Z) ⊲ Z l) | (MemY a LP M l1 l l2) νa. LP Ml

νc. c〈LP M〉 | (c(Z) ⊲ Z l) | (MemY a LP M l1 l l2) 0

MemY a LP Mh k l MemY a LP M l k h

or a form obtained from the ones above via applications.

Lemma A.8 For any ρπ process P and any l ∈ n(LP M) ∩ K, then LP M =

C[(l)Pl] with C generated by C ::= • | (l′)Msg a C l′ | (l′)Trig (X c)c〈C〉 a l′ |

(l′)νa. (C l′) | (l′)Par C LQM l′ | (l′)Par LP M C l′.

Proof: By structural induction on P .

P = 0 , we have that L0M = Nil = (l)(l〈Nil〉 | Rew l)), as desired.

P = a〈Q〉 , we have that La〈Q〉M = (l)(Msg a LQM l)) and the thesis holds for

the name l. By inductive hypothesis on LQM for any name l′ ∈ n(LQM∩K)

we have that LQM = C[(l′)Pl′ ], thus La〈Q〉M = (l)(Msg a C[(l′)Pl′ ] l) as

desired.

P = a(X) ⊲ Q , we have that La(X) ⊲QM = ((l)Trig ((X c)c〈LQM〉) a l)), and

the thesis holds for name l. For names in LQM we can conclude by

applying the inductive hypothesis.

P = νa. P1 , we have that Lνa. P1M = ((l)νa. LP1Ml), and the thesis holds for

name l. For names in LP1M we can conclude by applying the inductive

hypothesis.

P = P1 | P2 , we have that LP1 | P2M = ((l)Par LP1M LP2M l), and the thesis

holds for the name l. For those in P1 and P2 by applying the inductive

hypothesis we know that the thesis holds, as desired.
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�

The next lemma is an invariant of our encoding. Essentially it states that

each key l is freshly created and it is used only twice: by any evolution of

the process itself and by the killer of the process that has generated it, for

example the new key of a communication is only used by the continuation

itself and by the Mem process.

Lemma A.9 For any consistent configuration νk. k : P and any l ∈ n(Lk :

P M) ∩ K, if Lk : P M⇒ R, then one of the following sentences holds:

1. R ≡ E[addG(νl. Pl | S)], with S = (KillP l l′ h), S = (KillP l′ l h),

S = (Mem Y a LP M l1 l l2), S = 0 or S is obtained from the ones above

via applications.

2. R ≡ C[νh.C′[(l)Pl]h] where C
′ is a context as in Lemma A.8 or derived

by one or more applications (closed under applications).

3. R ≡ C[νl. ((h)Ph)l]

4. R ≡ C[νl. (((X c)c〈LP M〉) LQM c) | (c(Z)⊲Z l) | (Mem (X c)c〈LP M〉) a LQM h l k)].

Proof: By induction on the number of steps in Lk : P M⇒ S. For the base

case (n = 0) we have that Lνk. k : P M = νk. LP Mk. By Lemma A.8 we have

that for any l ∈ n(LP M) ∩ K we have LP M = C
′[(l)Pl], that is for any l we can

write νk. LP Mk ≡ νk.C′[(l)Pl]k, and condition (2) holds.

In the inductive case we have a case analysis according to which condition

holds before the step. Let us consider the condition (1). We now proceed

by case analysis on the structure of Pl. If Pl = LP Ml we have to proceed

by case analysis on the structure of P . If P = 0 then we have that the

process E[νl. Pl | S]⇁ E[νl. l〈Nil〉 | Rew l | S], as desired. If P = a〈Q〉 then

E[νl. La〈Q〉M | S]⇁ E[νl. Msg a LQM l], as desired. The other cases are similar.

If Pl = l〈LP M〉 | Rew l, we have that E[νl. l〈LP M〉 | Rew l | S], can perform

several reductions. If the context evolves by itself we can conclude. If Rew l

is executed, then we are done. If the Rew l is already in its applied form then

E[νl. l〈LP M〉 | l(Z) ⊲ Z l | S] →֒ E[νl. LP Ml | S], as desired. If the message on

l is read by S there are two cases: either l contains the continuation of a

trigger, or l contains a branch (left or right) of a Par process. In the first
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case we have that:

E[νl. l〈LP M〉 | Rew l | (l(Z) ⊲ Msg a LQM l1 | Trig(X c)c〈LRM〉 a l2) | S1] →֒

E[νl. Rew l | (Msg a LQM l1) | (Trig(X c)c〈LRM〉 a l2)] ≡

E
′[νl. 0 | Rew l] = E

′[νl. addG(0)]

as desired. If it is a part of a parallel process, we have that in the context

there is also a message on the channel h′ such that:

E[νl. l〈LP M〉 | Rew l] ≡

E1[νl. h〈LQM〉 | l〈LP M〉 | (l(Z)|h(W ) ⊲ k〈(h)Par Z W h〉 | Rew k)] →֒

E1[(νl. 0 | S1) | k〈(h)Par LQM LP M h〉 | Rew k] ≡ E1[addG(νl. 0 | S1)]

as desired. If Pl = νu. LP Ml, we have that E[νl. addG(νu. LP Ml | S)] ≡

E[νu. νl. addG(LP Ml | S), and the case is similar to Pl = LP Ml.

If Pl = Msg a LQM l or Pl = Trig Y a l we have that if the context evolves

by itself the thesis banally follows. If the reduction is due to the Pl then it

goes in its applied form that is still a Pl. Note that neither S nor the context

can interact with Pl. We will consider the applied form of this case later on.

If Pl = Par LP M LQM l we have that the context can evolve by itself

and then condition (1) still holds, or the hole can execute by itself. If so,

E[νl. (Par LP M LQM l) | S] →֒ E[νl, h, k. LP Mh | LQMk | (KillP h k l)], and we

have that condition (1) is still satisfied by name l and by the new names h

and k.

If Pl = KillP h k l then we have that if the context execute by itself the

condition (1) still holds. If Pl is not in its applied form, we have that after

its application condition (1) still holds. The only way for the hole to interact

with the context, is the presence of two messages on h and k and Pl is in its

applied form. If so we have that:

E[νl. h(W )|k(Z) ⊲ l〈(h)ParW Z h〉] ≡

E[νl. h(W )|k(Z) ⊲ l〈(h)ParW Z h〉 | h〈LP M〉 | 〈LQM〉] →֒

E[νl. l〈(h)Par LP M LQM h〉 | Rew l]

and condition (1) still holds.

Let us now consider its applied form. If Pl = a〈LQM, l〉 | KillM a l, we

have that E[νl. Pl | S] can perform several reductions. If the context evolves

by itself the thesis banally follows. If KillM is not in its applied form, then

the thesis banally follows. If the KillM is in its applied form, then it can
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interact with the message. If so, we have that

E[νl. a〈LQM, l〉 | a(X, ) ⊲ l〈(h)Msg a LQM h〉 | Rew l | S] →֒

E[νl. l〈(h)Msg a LQM h〉 | (Rew l) | S]

and condition (1) still holds. If the message is read by the context, then the

only cases are the presence of a Trig process or a KillM. In the first case

we have that

E[νl. a〈LQM, l〉 | (KillM a l)] ≡

E1[νl. a〈LQM, l〉 | t | (a(X,h)|t ⊲ νk, c. (((X c)c〈LP M〉) X c) | (c(Z) ⊲ Z k) |

(Mem Y a X h k l)) | (KillM a l)] →֒

E1[νl, k, t, c. (((X c)c〈LP M〉) LQM c) | c(Z) ⊲ Z k | (Mem Y a LP M l k l1) | S] ≡

E2[νk, l. (((X c)c〈LQM〉) LP M c) | c(Z) ⊲ Z k | (Mem Y a LP M l k l1) | S] ≡

E2[νl. (Mem Y a LP M l k l1) | S]

and the condition (1) still holds.

If Pl = νt. t | (t|a(X, h) ⊲ Q) | (KillT Y t l a), we have that E[νl. Pl | S],

can perform several reductions. If the context evolves by itself then the thesis

banally follows. If the KillT is applied then the thesis banally follows. If

the KillT is in its applied form then we have that

E[νl. νt. t | (t|a(X,h) ⊲ Q) | (t ⊲ l〈(h)Trig Y a h)〉 | Rew l) | S] →֒

E[νl. νt. (t|a(X,h) ⊲ Q) | l〈LP M〉 | Rew l | S] ≡

E[νl. addG(νl. Pl | S)]

as desired. If the process evolves via a communication →f this implies that

in the context there is a message on a of the form a〈LP M, l〉 (by Lemma A.7).

Therefore,

E[νt. t | (t|a(X,h) ⊲ Q) | KillT Y t l a] ≡

E1[νl, t. t | a〈LP M, l1〉 | (t|a(X,h) ⊲ R) | KillT Y t l a] →f

E1[νl, k, t, c. (((X c)c〈LQM〉) LP M c) | c(Z) ⊲ Z k | (Mem Y a LP M l1 k l) | S] ≡

E2[νk. (((X c)c〈LQM〉) LP M c) | c(Z) ⊲ Z k | νl. (Mem Y a LP M l1 k l)] ≡

E3[νl. (Mem Y a LP M l1 k l) | S]

and the condition (1) for name l, and condition (4) holds for the new name

k.

If Pl = νc. (Y LP M c) | (c(Z) ⊲ Z l) | (Mem Y a LP M l1 l l2)], we have that
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E[νl. (Pl | S)] can perform several reductions. If the Mem process is applied,

we have that condition (1) is still satisfied. If the context evolves by itself,

condition (1) still holds. If the reduction is the application of Y we have then

E[νl, c. (Y LP M c) | (c(Z) ⊲ Z l) | (Mem Y a LP M l1 l l2)]⇁

E[νl, c. c〈LP1M〉 | (c(Z) ⊲ Z l) | (Mem Y a LP M l1 l l2)]

and the condition (1) still holds. The symmetric case is equivalent.

If Pl = νc. c〈LP M〉 | (c(Z) ⊲ Z l) | (Mem Y a LP M l1 l l2), then if the Mem

process is applied then condition (1) holds. Since c is a restricted channel,

we have that the context cannot read from c. If the internal communication

is performed (since c is a restricted) we have that

E[νl, c. c〈LP M〉 | (c(Z) ⊲ Z l) | (Mem Y a LP M l1 l l2)] →֒

E[νl, c. LP Ml | (Mem Y a LP M l1 l l2)] ≡

E[νl. (Pl | S)]

and condition (1) still holds.

If Pl = Mem Y a LP M l k h, we have that if the context evolves by itself or

the application of the Mem is executed, then the thesis banally follows. If the

Mem process is already in its applied form we have that it can interact just

with the context via a message on k. Hence, we have

E[νl. k(Z) ⊲ (Msg a LP M l) | (Trig Y a h)] →֒

E[(νl. (Msg a LP M l)) | Trig Y a h] ≡

E1[νl. (Msg a LP M l))]

as desired. The other case of the memory (Mem Y a LP M h k l) is equivalent.

For conditions (2), (3) and (4), we have that if the context evolves by

itself they are still satisfied. If the context in condition (2) is an active

one, we have to do a case analysis on the form of C
′. If the C

′ = •,

then we have that C[νh. ((l)Pl)h] ⇁ C[νh. Ph], the name l disappears and

the lemma trivially holds. If C
′ = (l′)Msg a C

′′[•] l′ then we have that

C[νh. ((l′)Msg a C
′′[Pl] l

′)h]⇁ C[νh. Msg a C
′′[(l)Pl] h] and condition (2) still

holds for name h. The other cases are similar for non applied context.

If condition (2) holds, and the context is an active one of the forms

C[νh. Msg a C
′[(l)Pl] h], then we have that C[νh. Msg a C

′[(l)Pl] h] ⇁

C[νh. a〈C′[(l)Pl], h〉 | KillM a h] and we note that condition (2) still holds

for name l. The other cases are similar.

If condition (3) holds and the context is an active one, we have that
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C[νl. ((h)Ph)l]⇁ C[νl. Pl], and condition (1) holds for name l. If condition

(4) holds, and the context is an execution one, we have that

C[νl. (((X c)c〈LP M〉) LQM c) | (c(Z) ⊲ Z l) | (Mem (X c)c〈LP M〉) a LQM h l k)]⇁

C[νl. c〈LP M〉{LQM/X}] | (c(Z) ⊲ Z l) | (Mem (X c)c〈LP M〉) a LQM h l k)] =

C[νl. c〈LP M{Q/X}〉] | (c(Z) ⊲ Z l) | (Mem (X c)c〈LP M〉) a LQM h l k)]

By applying Lemma 5.8, and condition (1) holds for the name l. Naturally if

the reduction involves the application of the Mem process then condition (1)

for name l is still satisfied. �

The following Lemma is the equivalent of the Loop Lemma for the

encoding. Essentially, it states that if there exist an execution from a

translation of a consistent configurationM to a process P , then there exists a

process and an execution such that from P we can reach Q and Q is somehow

equivalent to the process P . Naturally we have to take into account all the

garbage processes (killers and Rew processes) that the execution of LMM may

generate.

Lemma 5.14. For any consistent configuration M , LMM ⇒ P , if P →֒∗ Q

then exists Q′ such that Q →֒∗ Q′ with nf(P ) ≡Ex nf(addG(Q′)).

Proof: By induction on the number of steps of P →֒∗ Q. In the base case

(n = 0) the thesis banally follows. We now consider one step, that is P →֒ Q.

There are two cases to distinguish whether →֒ is an application ⇁ or a non

labelled communication →. Let us consider the first case. We have that

P ⇁ Q1 and Q1 →֒∗ Q. By inductive hypothesis (on a shorter reduction) we

have that there exists Q′ such that Q →֒∗ Q′ and nf(Q1) ≡Ex nf(addG(Q′)).

By definition of normal form we have that Q1 ⇁
∗ nf(Q1) and P ⇁∗ nf(P ).

Moreover, we have that P ⇁ Q1, and by using Lemma 5.12 we have that

P ⇁∗ nf(Q1), that is nf(P ) = nf(Q1), and since nf(Q1) ≡Ex nf(addG(Q′))

we can conclude.

If the step is a non labelled communication → we have three cases corre-

sponding to three kinds of communications: the one involving a Rew process,

the one involving a killer process and the one internal to the continuation

of a trigger (→c). If the communication is via a Rew we have that P ≡

E[l〈LP M〉 | l(Z) ⊲ Z l] → E[LP Ml] and by using Lemma 5.13 and Lemma A.14

we have that LP Ml →֒∗ l〈LP M〉 | Rew l | S with S a parallel composition of

garbage processes. So, we have that E[LP Ml] →֒∗
E[l〈LP M〉 | Rew l | S] = Q

with nf(Q′) ≡ nf(addG(P )), as desired. If the communication is due to a kill
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process there are several cases to distinguish. If it is due to a KillM, then

E[a〈LP M, l〉 | (a(X, \l) ⊲ l〈(h)Msg a X h〉 | Rew l]) →

E[〈(h)Msg a LP M h)〉 | Rew l]⇁

E[l〈(h)Msg a LP M h)〉 | l(Z) ⊲ Z l] →

E[((h)Msg a LP M h)l]⇁∗
E[a〈LP M, l〉 | (KillM a l)] = Q′

and we have that nf(Q′) = nf(P ), as desired. If the communication is due

to a KillP we have that

P ≡ E[h〈LP M〉 | l〈LQM〉 | (h(W )|l(Z) ⊲ k〈(h)ParW Z h〉 | Rew k)] →

E[k〈(h)ParLP M LQM h〉 | Rew k]⇁

E[k〈(h)ParLP M LQM h〉 | k(Z) ⊲ Z k] →

E[((h)Par LP M LQM h)k]⇁ E[νh, l. LP Ml | LQMh | (KillP l h k)]

and by using Lemma 5.13 and Lemma A.14 we have

E[νh, l. LP Ml | LQMh | (KillP l h k)] →֒∗

E[νh, l. l〈LP M〉 | Rew l | S1 | h〈LQM〉 | Rew h | S2 | (KillP l h k)] = Q′

Now the only problem may be represented by the restriction on channels l

and h, but by using Lemma A.9 we have that P ≡ E1[νl, h. addG(h〈LP M〉 |

l〈LQM〉 | S)], and

nf(E1[νl, h. addG(h〈LP M〉 | l〈LQM〉 | S | Rew h | Rew l)]) ≡

nf(addG(Q′))

as desired. If the communication is →c, we then have that

P ≡ E[νc. c〈LP M〉] | c(Z) ⊲ Z k] →c

E[νc. LP Mk] ≡Ex E[νc. c〈LP M〉] | c(Z) ⊲ Z k]

as desired. �

The following lemma is an invariant of our encoding. Essentially it states

that the encoding never generates two messages on the same key channel,

never generates two KillP processes waiting for the same rollbacks or never

generates a KillP and a Mem waiting for the same rollback signal.

Lemma A.10 For any ρπ process R, if LRMl ⇒ P then the following condi-

tions hold:
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1. P 6≡ C[l1〈P 〉 | l1〈P2〉], with l1 ∈ K.

2. P 6≡ C[(KillP l1 l2 l) | (KillP l3 l4 l)], with l, l1, l2, l3, l4 ∈ K and

{l1, l2} ∩ {l3, l4} = ∅.

3. P 6≡ C[(KillP l1 l2 l) | (Mem P a Q h l3 k)], with l, l1, l2, l3, h, k ∈ K

and {l1, l2} ∩ {l3} = ∅.

Proof: By simply inspecting the encoding of Figure 5.3.

For condition (1), let us note that messages on channels l ∈ K are

generated by killer processes, by the continuation of a Trig processes or by

Nil processes. We then proceed by structural induction of R. If the process

R is a single process, that is a nil process, a message or a trigger, then there

will be just a message on the channel l. If R is a restriction, then the key

channel is passed to its sub term and no messages on l are generated by the

restriction. If R is a parallel we can note that two new channels are created

and given to the two sub processes and by inductive hypothesis the two sub

processes will generate just one message each on them, while just a KillP is

generated with the l channel. If the message is generate by a continuation

of a Trig process we can see that in the continuation a new key channel is

created and passed to the instantiated process, and by inductive hypothesis

this process will generate just one message on that channel.

For condition (2), we can note that KillP is generated only by a Par

process. We have that the process is instantiated with a fresh key, so there

is no risk of producing another KillP reading on the same channel.

For condition (3) we can apply the same reasoning of conditions (1) and

(2). �

Corollary 5.1. For any configuration M such that νk. k : P ⇒ M , if

nf(LMM) ↓a then M ↓a.

Proof: We know that fn(P ) ∩ K = ∅, and that also fn(M) ∩ K = ∅. Now

by using Lemma A.6 we have that fn(nf(LMM)) ∩ K = ∅. And now, we can

conclude by using Lemma 5.17. �

Next lemma states that if a process, derived by the encoding, contains a

message on a key channel l, then the process contains also the Rew l process.

Lemma A.11 (Rew Invariant) If Lνk. k : P M ⇒ P ′ with P ′ ≡ C[l〈R〉] then

P ′ ≡ C′[l〈R〉 | S] with S = Rew l or S = l(Z) ⊲ Z l , where C,C′ are n-ary

contexts.
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Proof: By induction on the number of steps in ⇒. The base case is when

Lνk. k : P M = P ′, and by definition we have that P ′ = νk. LP Mk, and we

proceed by structural induction on P .

P = 0 : we have that LP M = (l)(〈Nil〉 | Rew l), as desired.

P = a〈Q〉 : we have that La〈Q〉M = (l)(Msg a LQM l) = (l)((a X l)a〈X, l〉 |

((a, l)a(X, \l) ⊲ l〈R〉 | Rew l) a l) a LQM l), and we can conclude by

inductive hypothesis on Q, as desired.

P = a(X) ⊲ Q : be Y = (X c)c〈Q〉, we have that La(X)⊲QM = (l)(Trig Y a l)

= (l)((Y a l)νt. t | a(X, \h)|t ⊲ R1 | KillT Y t l a) Y a l) =

(l)((Y a l)νt. t | a(X, \h)|t⊲R1 | ((Y t l a)t⊲l〈R〉 | Rew l) Y t l a) Y a l),

as desired.

P = νa.Q : we have that Lνa.QM = (l)νa. LQM, and by inductive hypothesis

we have that LQM ≡ C[l〈R〉 | Rew l] and so LP M ≡ (l)C′[l〈R〉 | Rew l], and

we can conclude by inductive hypothesis on Q, as desired.

P = Q1 | Q2 : we have that LP M = (l)(ParLQ1M LQ2M l) and by using in-

ductive hypothesis we have that LQiM = Ci[li〈Ri〉 | Rew li], and so

LP M ≡ (l)(Par C1[l1〈R1〉 | Rew l1] C2[l2〈R2〉 | Rew l2] l), as desired.

In the inductive case we have that P ⇒ P ′′ → P ′ with P ′ ≡ C[l〈R〉]. We

proceed by case analysis on P ′′ → P ′. If →=⇁ then we have to distinguish

whether the abstraction is on a process or on a channel.

If the abstraction is on a process this implies that P ′ ≡ E[Q{V /X}] and

then P ′′ ≡ E[(X)Q V ]. Now we have to consider different cases on the

position of l〈R〉 in P ′, and for simplicity we will consider just one instance

of l〈R〉 at time. We have three cases: l〈R〉 is inside the context E, it is

inside in the process Q or inside the value V . In the first case we can write

P ′ ≡ E[C[l〈R〉] | Q{V /X}], but this implies that P ′′ ≡ E[C[l〈R〉] | (X)Q V ]

and by inductive hypothesis P ′′ ≡ E[C[l〈R〉 | S] | (X)Q V ]⇁ E[C[l〈R〉 | S] |

Q{V /X}] ≡ P ′ as desired. In the second case we have P ′′ ≡ E[C[l〈R〉]{V /

X}] = E[C′[l〈R{V /X}〉]], but this implies that P ′′ ≡ E[(X)C[l〈R〉] V ] ≡

E[(X)C[l〈R〉 | S] V ] ⇁ E[C[l〈R〉 | S]{V /X}] = E[C[l〈R{V /X}〉 | S{V /X}]].

We have now to show the effect of the substitution on S, if S = Rew l then

S{V /X} = S else if S = l(Z) ⊲ Z l then again S{V /X} = S. So, P ′′ ⇁

E[C[l〈R{V /X}〉 | S]] ≡ P ′ as desired. Note that in this case there is no way

that the application we are considering is of the form Rew l. If the considered

message appears in the value V then we have that P ′′ ≡ E[Q{C[l〈R〉]/X}],

and this implies that P ′′ ≡ E[(X)Q C[l〈R〉]] and by inductive hypothesis

P ′′ ≡ E[(X)Q C
′[l〈R〉 | S]]⇁ E[Q{C

′[l〈R〉|S]/X}] ≡ P ′, as desired.
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If the abstraction is on a channel this implies that P ′ ≡ E[Q{l
′

/h}] and

then P ′′ ≡ E[(h)Q l′]. As in the above case, there are three positions in

which l〈R〉 may appear in P ′. If we have that P ′ ≡ E[C[l〈R〉] | Q{l
′

/h}] this

implies that P ′′ ≡ E[C[l〈R〉] | (h)Q l′]. Now if ((h)Q l′) 6= (Rew l) we have

that by inductive hypothesis

P ′′ ≡ E[C′[l〈R〉 | S] | (h)Q l′]⇁

E[C′[l〈R〉 | S] | Q{l
′

/h}] ≡ P ′

as desired. If the process Q is the Rew of the message l〈R〉 we are considering,

then P ′′ ≡ E[C′[l〈R〉 | Rew l]⇁ E[C′[l〈R〉 | l(Z) ⊲Z l] ≡ P ′, as desired. If the

Rew l is a different one then by applying the inductive hypothesis

P ′′ ≡ E[C′[l〈R〉 | S] | (Rew l)]⇁

E[C′[l〈R〉 | S] | l(Z) ⊲ Z l] ≡ P ′

as desired. If the message we are considering is present in the abstraction

then we have that P ′ ≡ E[C[l〈R〉]{l
′

/h}] = E[C′′[l〈R{l
′

/h}〉]] where C
′′ is the

resulting context after the substitution. Hence P ′′ ≡ E[(h)C[l〈R〉] l′], but by

inductive hypothesis we have that

P ′′ ≡ E[(h)C′[l〈R〉 | S] l′]⇁ E[C′[l〈R〉 | S]]{l
′

/h} =

E[C′′′[l〈R{l
′

/h}〉 | S{
l′/h}]] ≡ P ′

as desired. Note that the substitution on S has effect only if the bound

variable of the abstraction is l, but this will implies that in the whole process

C[l〈R〉] all the free occurrences of l will be substituted by l′, against the

hypothesis that l〈R〉 occurs in the resulting process.

If the reduction is a communication, as in the case of abstraction, we

have to consider all the different places in which the considered message

can appear. We have to distinguish two cases: whether the subject of the

communication is the channel l or not. If not, as in the case of the abstraction,

we have to consider three cases depending on the position of the considered

l〈R〉. If it is in the context then we have that P ′ ≡ E[Q{P /X}] and then

P ′′ ≡ E[a〈P 〉 | a(X) ⊲ Q | C[l〈R〉]] and by inductive hypothesis we have

P ′′ ≡ E[a〈P 〉 | a(X) ⊲ Q | C′[l〈R〉 | S]] → E[Q{P /X} | C′[l〈R〉 | S]] ≡ P ′,

as desired. If it is present in the content of the message then we have

P ′ ≡ E[Q{C[l〈R〉]/X}] and then P ′′ ≡ E[a〈C[l〈R〉]〉 | a(X) ⊲ Q] and by

inductive hypothesis P ′′ ≡ E[a〈C′[l〈R〉 | S]〉 | a(X) ⊲Q] → E[Q{C
′[l〈R〉|S]/X}],

as desired. The other case is similar. �
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Next lemma states that if a process, derived by the encoding, contains a

message on a channel a ∈ N , then the process contains also its own KillM

process. That is, messages on normal channel are always generated along

with their own killers.

Lemma A.12 (KillM Invariant) If Lνk. k : P M⇒ P ′ with P ′ ≡ C[a〈LP M, l〉]

with a ∈ N then P ′ ≡ C′[a〈LP M, l〉 | S] with S = (KillM a l) or S =

(a(X, \l) ⊲ l〈(h)Msg a X h〉 | Rew l) , where C,C′ are n-ary contexts.

Proof: By simply inspecting the encoding of Figure 5.3 we note that the

sole place where a message of the form a〈LP M, l〉 is generated is in the Msg

process that generates also its corresponding KillM. �

Lemma A.13 (Input key invariant) For each ρπ process R we have:

1. LRMl 6⇒ E[l(X) ⊲ P ], unless the trigger has been generated by an appli-

cation of Rew l.

2. LRMl 6⇒ E[l(X)|l′(W ) ⊲ P ].

3. LRMl 6⇒ E[l′(X) ⊲ P | l′(X) ⊲ Q] for each l′ ∈ K and l′ 6= l.

Proof: (1) We now show that LRMl 6⇒ E[l(X) ⊲ P ] in a number of steps that

is less or equal than n, so we proceed by induction on n. The base case

(n = 0) is banally verified since LRMl it is an application and not a trigger on

l. Now we reason by contradiction. Let us suppose that LRMl ⇒ E[l(X) ⊲ P ]

in n steps. By looking at the encoding in Figure 5.3 we note that there is

just one place in which such a trigger can be generated: Mem. If the trigger is

generated by a Mem then it has the form of k(Z) ⊲P . Since a memory process

can be generated just by a Trig process, we can note that the Mem process is

invoked with a channel k that is fresh (generated in the continuation of a

trigger), hence we have that k 6= l, as desired.

(2) The base case is banally verified. As in (1) we reason by contradiction.

Let us suppose that LRMl ⇒ E[l(X)|l′(Z) ⊲ P ] in n steps. By looking at the

encoding there is just one place where such trigger can be generated: KillP.

Since this killer is generated by a Par process we can note that the KillP

process is invoked with two new fresh channels, and hence they are different

from l.

(3) We use the same proof strategy as (1) and (2), by noting that such

a triggers on channels l′ ∈ K with l 6= l are generated by KillP and Mem

process, but again these processes are invoked respectively in a Par process

or a Trig process with fresh new channels.

190



�

The following lemma states that messages on channels l ∈ K carry

translation of processes with no restrictions.

Lemma A.14 For each ρπ process R, LRMl ⇒ C[l〈Q〉], then Q = LQ′M with

Q′ not containing restrictions.

Proof: For the base case we proceed by structural induction on R.

R = 0 : by definition L0Mh = Nil = ((l)(l〈Nil〉 | (Rew l)))h, and the prop-

erty is banally verified.

R = a〈P 〉 : by definition

La〈P 〉Mh = (l)((a X l)Msg a X l)h =

(l)((a X l)(a〈X, \l〉 | (KillM a l)) a LP M l)h =

(l)(((a X l)(a〈X, \l〉 | (((a l)a(X, \l) ⊲ l〈(h)Msg a X h〉 |

(Rew l)) a l))a LP M l)h

as desired.

R = a(X) ⊲ Q : by definition

La(X) ⊲ QMh = (l)(Trig (X c)c〈LP M〉 a l)h =

(l)((Y a l)(νt. t | t|a(X,h)⊲ | νk, c. (Y X c) | c(Z) ⊲ Z k |

(Mem Y a X h k l)) | KillT Y t a c) (X c)c〈LP M〉 a l)h =

(l)((Y a l)(νt. t | t|a(X,h)⊲ | νk, c. (Y X c) | c(Z) ⊲ Z k |

(((Y a X h k l)k(Z) ⊲ (Msga X h) | (Trig Y a l)) Y a X h k l)) |

(((Y t l a)t ⊲ l〈(h)Trig Y l a〉) Y t a c) (X c)c〈LP M〉 a l)h

and by applying the inductive hypothesis on Z k we can conclude. Let

us note that the input process generated by the Mem process reads on a

fresh new channel k.

R = νa. P : by definition Lνa. P Mh = (l)(νa. LP M)h and we can conclude by

inductive hypothesis on P .
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R = P1 | P2 : by definition

LP1 | P2Mh = (l)(Par LP1M LP2M l)h =

(l)(((X Y l)νh, k.X h | Y k | (KillP h k l)) LP1M LP2M l)h =

(l)(((X Y l)νh, k.X h | Y k |

(((h k l)h(W )|k(Z) ⊲ l〈(l)(ParW Z l)〉) h k l)) LP1M LP2M l)h

Now by using inductive hypothesis on X h and Y k and since k and h

and since h and k are new channels we can conclude.

For the inductive case, we have that either the message we are considering

disappear, and then the thesis banally holds, or the message remains in the

context and we can conclude directly by applying the inductive hypothesis.

�

A.3 Congruence

In this section we will prove that both addG and ≡Ex are weak bf barbed

bisimulation. The proof strategy is similar, we will start proving one by

one that single applications of addG or ≡Ex are bisimulation. Then we will

compose the single results by transitivity.

The following Lemmas show how the processes added by addG function

does not add any unexpected behavior, that is they can be considered as the

zero process.

Lemma A.15 Let Tl be a process of the form Tl = Rew l or Tl = (l(Z)⊲Z l).

Let R = {(C[Tl],C[0])}. The the relation R is a back and forth barbed

bisimulation.

Proof: Let us start with barbs. Since Rew l does show any barbs, we have

that the only barbs shown by C[Rew l] are those of the context. So barbs are

banally matched by the process C[0], and vice versa.

Let us consider the reductions. We have that if C[Tl] reduces then it

is because the context reduces by itself, because the hole process reduces

by itself or because of an interaction between the context and the hole

process. In the first case the reduction is banally matched by the process

C[0]. The second case implies that Tl = Rew l and so C[Rew l]⇁ C[l(Z)⊲Z l],

and this step is matched by a null execution of C[0], and we remain in

the same relation. The third case implies that Tl = (l(Z) ⊲ Z l) and the

presence of a message in the context of the form l〈LP M〉. Hence, we have
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that C[(l(Z) ⊲ Z l)] ≡ C
′[l〈LP M〉 | (l(Z) ⊲ Z l)] and C[0] ≡ C

′[l〈LP M〉]. By

Lemma A.11 we know C
′[l〈LP M〉] ≡ C

′′[l〈LP M〉 | Tl] but also on the other side

we have that C
′[l〈LP M〉 | (l(Z) ⊲ Z l)] ≡ C

′′[l〈LP M〉 | (l(Z) ⊲ Z l) | Tl]. So,

C
′′[l〈LP M〉 | (l(Z) ⊲ Z l) | Tl] → C

′′[LP Ml | Tl] on the other side we have that

this step can be matched by C
′′[l〈LP M〉 | Tl] →֒

∗
C
′′[LP Ml], and we are still in

the same relation since C
′′[LP Ml | Tl] ≡ C

′′′[Tl] and C
′′[LP Ml] ≡ C

′′′[0], with

(C′′′[Tl],C
′′′[0]) ∈ R, as desired. �

Lemma A.16 Let T (l, a) be a process of the form T (l, a) = (KillM a l) or

T (l, a) = (a(X, \l) ⊲ l〈(h)Msg a X h〉 | Rew l). Let R = {(C[T (l, a)],C[0])}.

The relation R is a weak bf barbed bisimulation.

Proof: Let us consider the barbs. Since a process of the form (KillM a l) or

(a(X, \l) ⊲ l〈(h)Msg a X h〉 | Rew l) does not show any barbs, then the only

barbs shown by C[T (l, a)] are those of the context C. Hence, the barbs are

banally matched by the process C[0] (and vice versa).

Let us consider the reductions. If the context evolves by itself, this

reduction is banally matched. If T (l, a) = (KillM a l) then the only possible

reduction is the application, so

C[(KillM a l)]⇁

C[(a(X, \l) ⊲ l〈(h)Msg a X h〉 | Rew l)]

and this reduction is matched by a zero reduction by the process C[0]. If

C[(a(X, \l) ⊲ l〈(h)Msg a X h〉 | Rew l)] evolves by the interaction of the hole

process and the context, it is because of the presence of a message of the

form a〈LP M, \l〉 in the context. Hence

C[(a(X, \l) ⊲ l〈(h)Msg a X h〉 | Rew l)] ≡

C
′[a〈LP M, \l〉 | (a(X, \l) ⊲ l〈(h)Msg a X h〉 | Rew l)]

This implies that also C[0] ≡ C
′[a〈LP M, \l〉] and by Lemma A.12 we know that

C
′[a〈LP M, \l〉] ≡ C

′′[a〈LP M, \l〉 | S] with S = (KillM a l) or S = (a(X, \l) ⊲

l〈(h)Msg a X h〉 | Rew l). Then

C
′[a〈LP M, \l〉 | (a(X, \l) ⊲ l〈(h)Msg a X h〉 | Rew l)] ≡

C
′′[a〈LP M, \l〉 | (a(X, \l) ⊲ l〈(h)Msg a X h〉 | Rew l) | S] →

C
′′[l〈(h)Msg a LP M h〉 | Rew l) | S] ≡ C

′′′[S]
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and on the other side we have that

C
′′[a〈LP M, \l〉 | S] →֒∗

C
′′[l〈(h)Msg a LP M h〉 | Rew l] ≡ C

′′′[0]

and we remain in the same relation, as desired. �

Lemma A.17 Let R = {(C[νt. (a(X, k)|t ⊲ Q)],C[0])}. The relation R is a

weak bf barbed bisimulation.

Proof: Let us consider the barbs. Since the process νt. (a(X, k)|t ⊲ Q), the

only barbs shown by C[νt. (a(X, k)|t ⊲ Q)] are those of C[ ]. Hence, the

barbs are banally matched by the process C[0] and vice-versa.

Let us consider reductions. Since the name t is restricted, this implies that

the context cannot interact with the process (a(X, k)|t ⊲Q) even if there is a

message on a in the context. Hence, if C[νt. (a(X, k)|t⊲Q)] → it is because the

context evolved by itself, that is C[νt. (a(X, k)|t⊲Q)] → C
′[νt. (a(X, k)|t⊲Q)]

and this reduction banally is matched by C[0] → C
′[0] (and vice-versa), and

we are still in the same relation. �

Lemma A.18 Let T (LP M, a, l, c) be a process of one of the following form:

T (LP M, a, l, c) = νc, t. (KillT ((X)c〈LP M〉) t l a)

T (LP M, a, l, c) = νc, t. (t ⊲ l〈(h)Trig ((X)c〈LP M〉) a l〉 | Rew l)

Let R = {(C[T (LP M, a, l, c)],C[0])}. The relation R is a weak barbed bf

bisimulation.

Proof: By just noting that the two forms of T (LP M, a, l, c) do not add any

barb. For the reductions, let us note that if C[T (LP M, a, l, c)] reduces it is

because the hole reduced by itself (and this step can be exactly mimicked)

or because the hole process reduced by itself. Since the name t is restricted,

then hole and context cannot interact each other. If the hole process executes

by its own, then the sole reduction can be C[νc, t. (KillT ((X)c〈LP M〉) t l a)]

⇁ C[νc, t. (t ⊲ l〈(h)Trig ((X)c〈LP M〉) a l〉 | Rew l)], and this reduction can

be matched by a zero step execution of the process C[0], and we remain in

the same relation. If the reductions are due to the context then the same

reduction can be mimicked (and vice-versa), and we are in the same relation.

�

Now we are able to compose all the previous Lemmas on the various

production of addG to show that addG is a weak backward and forward barbed
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bisimulation.

Lemma 5.23. For any HOπ+ processes P,Q, the relationR = {(P,Q) | P ≡

Q} is a weak bf barbed bisimulation.

Proposition 5.1. For any HOπ+ process P ≡ νã. P ′, the relation R =

{(νã. P ′, νã. (P ′ | νb̃.Q)} with Q a parallel composition of processes as in

Definition 5.4 is a weak bf barbed bisimulation.

Proof: By induction on the number of processes contained in the parallel

composition Q. The base case, with Q = 0 banally reduces to the identity

since we can can garbage collect via structural equivalence names contained in

b̃ (and structural equivalence is a weak bf barbed bisimulation by Lemma 5.23).

In the inductive case, we do a case analysis on the last process Qn of the

parallel composition.

Qn = Rew l: by Lemma A.15 we know that C[Qn]
◦
≈c C[0] and so we have that

νã. (P ′ | νb̃.
∏

i=1..nQi)
◦
≈c νã. (P

′ | νb̃.
∏

i=1..n−1Qi). By inductive

hypothesis we have that νã. (P ′ | νb̃.
∏

i=1..n−1Qi)
◦
≈c νã. P

′ and by

transitivity we have νã. (P ′ | νb̃.
∏

i=1..nQi)
◦
≈c νã. P

′.

Qn = KillM a l: by using Lemma A.16 and by using the same reasoning of

the first case.

Qn = νt. (a(X, k)|t ⊲ Q): by using Lemma A.17 and by using the same

reasoning of the first case.

Qn = νc, t. (KillT ((X)cLP M)) t l a): by using Lemma A.18 and by using

the same reasoning of the first case.

�

The following Lemmas are meant to prove that the relation ≡Ex is a

weak bf barbed bisimulation. We will refer to C as a multi holes context.

Lemma A.19 Axiom Ex.C and its instantiation are correct with respect to

weak bf barbed bisimulation.

Proof: LetR′ = {((KillP l h k), (KillP h l k)) | h, l, k ∈ K}∪{((a(X)|b(Y )⊲

R), (b(Y )|a(X) ⊲ R)) | a, b ∈ N}. Let R = {(C[P1, .., Pn],C[Q1, .., Qn]) |

(Pi, Qi) ∈ R′ ∧ i = 1..n ∧ n ∈ N ∧X,Y ∈ V ∧ R ∈ P}. We now show that

the relation R is a weak bf barbed bisimulation.
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Let us consider the barbs. We can directly note that neither KillP l h k

nor KillP h l k show any barb. In the same way, neither (a(X)|b(Y ) ⊲ R)

nor (b(Y )|a(X) ⊲ R) show any barb. Since the context is the same, the two

processes show the same barbs (in both directions).

If the process C[P1, .., Pn] does a reduction it is because the context

evolved by itself or one of the hole process reduced by itself or because of

the interaction between the context and the hole.

If the context performs a reduction by itself, that is C[P1, .., Pn] →

C′[P1, .., Pm], with → being an internal communication or an application

or a backward communication or a forward communication, then also

C[Q1, .., Qn] → C′[Q1, .., Qm]. Let us note that the number of the holes

may change because of the reduction. The same reasoning can be applied if

the challenge is done by the right process.

If C[P1, .., (KillP l h k), .., Pn]⇁ C[P1, .., (h(W )|l(Z)⊲R), .., Pn] (for some

R) then also C[Q1, .., (KillP h l k), .., Qn]⇁ C[Q1, .., (l(Z)|h(W ) ⊲ R), .., Qn]

and we are still in the same relation. If C[P1, .., a(X)|b(Y ) ⊲ R, .., Pn] reduces

it is because of the presence in the context of two messages of the form, let

us say, a〈S1〉 and b〈S2〉. If so, we have that C[P1, .., a(X)|b(Y ) ⊲ R, .., Pn] →

C′[P1, .., R{
S1,S2/X,Y }, .., Pm] and on the other side C[Q1, .., b(Y )|a(X) ⊲

R, .., Qn] → C′[Q1, .., R{
S′

1
,S′

2/Y,X}, .., Qm]. Since identity is included in

R (it suffices to consider a 0-ary context), and since (Si, S
′
i) ∈ R (since

they are subterms) we have that (R{S1,S2/X,Y }, R{
S1,S2/Y,X}) ∈ R, and so

also (C′[P1, .., R{
S1,S2/X,Y }, .., Pm],C′[Q1, .., R{

S1,S2/Y,X}, .., Qm]) ∈ R, as

desired. �

Lemma A.20 Axiom Ex.P and its instantiation are correct with respect to

weak bf barbed bisimulation.

Proof: Let S(l1, l2, l3) be a process of one of the following forms:

S(l1, l2, l3) = (KillP l1 l2 l3)

S(l1, l2, l3) = (l1(Z)|l2(W ) ⊲ l3〈(h)Par Z W h〉 | Rew l)

Let Tl be a either a process of the form Tl = Rew l or process Tl = (l(Z)⊲Z l).

Let

R′ = {(νl1, l2. addG(l1〈LP M〉 | 2〈LQM〉 | S(l1, l2, l))),

(νl1, l2. addG(l〈(h)Par LP M LQM h〉 | Tl))}

R = {(C[P1, . . . , Pn],C[Q1, . . . , Qn]) | (Pi, Qi) ∈ R′∧

C[P1, . . . , Pn],C[Q1, . . . , Qn] well formed}
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We now prove that the relation R is a weak bf barbed bisimulation.

Let us consider barbs. Let us note that process νl1, l2. addG(l1〈LP M〉 |

2〈LQM〉 | S(l1, l2, l)) does not show any barb, since addG does not add any barb.

On the other side, we have that the process νl1, l2. addG(l〈(h)Par LP M LQM h〉 |

Tl) shows only a barb on l. If the name l is restricted by the outermost

context C′ we are done. Otherwise, we have that:

νl1, l2. addG(l1〈LP M〉 | 2〈LQM〉 | S(l1, l2, l)) →֒∗

νl1, l2. addG(l〈(h)Par LP M LQM h〉 | Rew l)

showing a weak barb on l. On both sides barbs shown by the outermost

contexts C are banally matched.

Let us consider the reductions. If C[P1, . . . , Pn] reduces it is because

the context reduced by itself or because of the hole processes. The first

case is banally matched by the process C[Q1, .., Qn] and vice versa. In the

second case we have that the process νl1, l2. addG(l1〈LP M〉 | 2〈LQM〉 | S(l1, l2, l))

reduces. We have three cases: the hole reduces by itself, the processes added

by addG reduce by itself or both reduce. In the first case, if the reduction

is the application of the process S(l1, l2, l) this step is mimicked by a zero

reduction of the left process. If it is an internal communication on the

channels l1, l2 then we have that:

νl1, l2. addG(l1〈LP M〉 | 2〈LQM〉 | (l1(W )|l2(Z) ⊲ l〈(h)Par LP M LQM h〉 | Rew l)) →

νl1, l2. addG(l〈(h)Par LP M LQM h〉 | Rew l))

and this step is matched by a zero execution of the left one, and we are

still in the same relation, since in both sides the process in the i-th hole

is the same, we can put it in the context (identity belongs to the relation).

The second case is banally matched. In the third case, since the process

νl1, l2. addG(l1〈LP M〉 | 2〈LQM〉 | S(l1, l2, l)) is well formed then in the context

addG( ) there can be just a Rew l1 or/and Rew l2 able to interact with the

hole. Both cases are similar, so we will consider just the first one. Assume

νl1, l2. addG((l1(Z) ⊲ Z l1) | l1〈LP M〉 | 2〈LQM〉 | S(l1, l2, l)) →֒

νl1, l2. addG((LP M l1 | 2〈LQM〉 | S(l1, l2, l))

We have

νl1, l2. addG(l〈(h)Par LP M LQM h〉 | Tl) →֒∗

νl1, l2. addG(νh, k. LP Mh | LQM k | (KillP h k l))
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Using Lemma 5.13

νl1, l2. addG(νh, k. LP Mh | LQM k | (KillP h k l)) →֒∗

νl1, l2. addG(νh, k. LP Mh | k〈LQM〉 | (KillP h k l))

since all the garbage can be moved to addG and since Q does not contain re-

strictions thanks to Lemma A.14. Now, using α-conversion and exploiting the

fact that addG is closed under α-conversion we get: νl1, l2. addG(νh, k. LP M l1 |

l2〈LQM〉 | (KillP l1 l2 l)). Since h, k are just used by the addG( ) context

we can rewrite the process as νl1, l2. addG(LP M l1 | l2〈LQM〉 | (KillP l1 l2 l)),

where the restriction on k, h has been moved to the context.

Let us consider now reductions of C[Q1, . . . , Qn]. We have three cases:

the contexts reduces by itself, the hole reduces by itself or hole and context

interacts. First case is banally matched by the process C[P1, . . . , Pn]. In

the second case, if the reduction is just the application of Tl this step is

matched by a zero step execution by C[P1, . . . , Pn], and we are still in the

same relation. If Tl is already in its trigger form then we have that

νl1, l2. addG(l〈(h)Par LP M LQM h〉 | l(Z) ⊲ Z l) →

νl1, l2. addG(Par LP M LQM l)

and on the other side we have that

νl1, l2. addG(l1〈LP M〉 | 2〈LQM〉 | S(l1, l2, l) →֒∗ νl1, l2. addG(Par LP M LQM l)

and since identity is contained in the relation, we are still in the same relation.

In the first case, by hypothesis we have that the considered processes are

well formed, implying that (in this particular case) there are no two KillP

processes waiting on the same channels. Said otherwise, it is not the case

that the context interacts with the hole, and we are done.

�

Lemma A.21 Axiom Ex.A and its instantiation are correct with respect to

weak bf barbed bisimulation.

Proof: Let S(l1, l2, l3) be either process of the form S(l1, l2, l3) = (KillP l1 l2 l3)

or of the form S(l1, l2, l3) = (l1(Z)|l2(W ) ⊲ l3〈(h)Par Z W h〉 | Rew l). Let Tl
be either a process of the form Tl = Rew l or of the form Tl = (l(Z) ⊲ Z l).

Let A(LP M, l) be either a process of the form A(LP M, l) = l〈LP M〉 or of the

form A(LP M, l) = LP Ml.
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Let

R1 = {(νl′. S(l1, l2, l
′) | S(l′, l3, l)), (νl

′. S(l1, l
′, l) | S(l2, l3, l

′)) | l1, l2, l, l
′ ∈ K}

R2 = {(νl′. l′〈(h)Par LP M LQM h〉 | Tl′ | S(l
′, l3, l)),

(νl1, l2. addG(A(LP M, l1) | A(LQM, l2) | νl
′. S(l1, l

′, l) | S(l2, l3, l
′))}

R3 = {(νl′. ((h)Par LP M LQM h)l′ | Tl′ | S(l
′, l3, l)),

(νl1, l2. addG(A(LP M, l1) | A(LQM, l2) | νl
′. S(l1, l

′, l) | S(l2, l3, l
′)))}

R4 = {(νl′. (Par LP M LQM l′) | Tl′ | S(l
′, l3, l)),

(νl1, l2. addG(A(LP M, l1) | A(LQM, l2) | νl
′. S(l1, l

′, l) | S(l2, l3, l
′)))}

R5 = {(νl′, h1, h2. LP Mh1 | LQMh2 | S(h1, h2, l
′) | Tl′ | S(l

′, l3, l)),

(νl1, l2. addG(A(LP M, l1) | A(LQM, l2) | νl
′. S(l1, l

′, l) | S(l2, l3, l
′))}

R6 = {(l〈(h)Par LP | QM LRM h〉 | Tl), (Tl | l〈(h)Par LP M LQ | RM l〉)}

R7 = {(((h)Par LP | QM LRM h)l), (((h)Par LP M LQ | RM h)l)}

R8 = {(Par LP | QM LRM l), (Par LP M LQ | RM l)}

R9 = {(νl1, l2. LP | QMl1 | LRMl2 | S(l1, l2, l)),

(νl1, l2. LP Ml1 | LQ | RMl2 | S(l1, l2, l))}

R10 = {(νl1. LP | QMl1 | S(l1, l2, l)),

(νl1, l3, l4. LP Ml1 | LQMl3 | S(l1, l4, l) | S(l3, l2, l4))}

R′ = ∪Ri

R = {(C[P1, . . . , Pn],C[Q1, . . . , Qn]) | (Pi, Qi) ∈ R′∧

C[P1, . . . , Pn],C[Q1, . . . , Qn] wellformed}

then the relation R is a weak bf barbed bisimulation.

For the sake of brevity we will not consider all the symmetric cases of

the various relations Ri (for example all the cases generated from R1 where

the right process reads two messages on l2 and l3 are omitted), and in the

bisimulation game we will just consider challenges of the left processes. Let

us consider the barbs. All the processes of the form Tl, S(l1, l2, l3), A(LP M, l)

and the addG( ) do not add any barbs (by Lemma 5.16). Moreover, all the

messages on channels l ∈ K are on restricted channels. So the only barbs

are those shown by the context C[ ] and by all the processes derived by the

application of a translation. In the second case it is easy to verify that these

barbs are matched.

Let us now consider reductions. Banally all the reductions performed

by the context are matched, and since all the relations are closed under
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the applications of auxiliary processes such as Tl or S(l1, l2, l3) we will not

consider them. Let us start from processes belonging to the relation R1.

If the reduction is an application we remain in the same relation, since

R1 is closed under application. If R1 reduces because of S(l1, l2, l
′) =

(l1(Z)|l2(W ) ⊲ l′〈(h)Par Z W h〉), this implies that in the context there are

two messages on l1, l2, let us say l1〈LP M〉, 2〈LQM〉, and with this reduction

we move to the relation R2. From R2 the (left) process can interact with

the context by reading a message on l3 of the form l3〈LRM〉 and the result

of this reduction is contained in R6, or the process can reduces by itself by

reverting the message on the channel l′ and this reduction is contained in

R3. In R3 the only reduction that the left process can do is the application

of the Par and with this reduction we move to relation R4. Also in R4 the

only possible reduction is an application and we move to the relation R5. In

R5 we have that either LP Mh1 or LQMh2 reduces by means of an application.

Let us note that the right process weakly reduces to the left one. In fact

since contexts are well formed there exist in the addG two Rew processes, on

l1 and l2. Hence we have that

νl1, l2. addG(l1〈LP M〉 | l2〈LQM〉 | (Rew l1) |

(Rew l2) | νl
′. S(l1, l

′, l) | S(l2, l3, l
′)) →֒∗

νl1, l2. addG(LP Ml1 | LQMl2 | νl
′. S(l1, l

′, l) | S(l2, l3, l
′))

and by α-converting l1, l2 into h1, h2 we have νh1, h2. addG(LP Mh1 | LQMh2 |

νl′. S(h1, l
′, l) | S(h2, l3, l

′)) that is equivalent to νh1, h2. addG(LP Mh1 | LQMh2) |

νl′. S(h1, l
′, l) | S(h2, l3, l

′). Since each process R is weakly barbed bf bisimilar

to addG(R) (by Proposition 5.1), we conclude by transitivity noting that

by ignoring the addG we get back to the relation R1. From R6 the only

possible reduction is to read from the channel l and this leads us to the

relation R7 (note that this step is banally matched by the right process).

Once again, from R7 the only possible reduction is an application that leads

us to the relation R8. From R8 we can just move to R9 by applications.

From R9 there are two possible execution, either the application of LP | QMl1
or the application LRMl2. If the application is the first one we get back to

the relation R1 (by using α-conversion), while if it is the second one we

move to the relation R10, by executing in the right process the application

LQ | RMl2 and then by α-convention we obtain that both the processes (left

and right) have a sub-term of the form LRMl2. From R10, the left process can

just perform the application on LP | QM and we get back to the relation R1

(the right process matches this challenge by a 0 steps computation). �
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Lemma A.22 Axiom Ex.Unfold and its instantiation are correct with re-

spect to weak bf barbed bisimulation.

Proof: Let S be a process of the form S = Rew l or S = (l(Z) ⊲ Z l). Let

R′ = {(LP Ml, νũ. l〈LQM〉 | S) | P ≡ νũ.Q}∪ {(LP Ml, νũ. LQMl) | P ≡ νũ.Q}.

Let R = {(C[P1, .., Pn] , C[Q1, .., Qn]) | (Pi, Qi) ∈ R′ ∧ i = 1..n ∧ n ∈ N}.

We now show that the relation R is a weak bf barbed bisimulation.

Let us consider barbs. Since LP Ml is an application then the only barbs

shown by a process of the form C[P1, .., Pn] are those shown by the context.

And these barbs are shown also by the process C[Q1, .., Qn]. On the other

hand, a process of the form l〈LQM〉 shows a barb on l. If this name is restricted

by the context we are done, otherwise by using Lemma 5.13 we have that

LP Ml →֒∗ νṽ. l〈LQM〉 | Rew l | S, with S a parallel composition of garbage

processes and l 6∈ ṽ. That is LP Ml has a weak barb on l.

Let us now consider the reductions. On both sides, reductions done by

the context itself are matched. If the reduction is done by a hole process

of the form LP Ml, then we have that the only reduction that can be done

is an application. If so, we have to do a case analysis on the form of P . If

P = νa. P ′, then C[P1, .., Lνa. P
′Ml, .., Pn]⇁

∗ C[P1, .., νa. LP
′Ml, .., Pn], and this

step is mimicked by a zero one of the process C[Q1, .., νũ. l〈LQM〉, .., Qn] ,since

we can extract name a from the set ũ, as desired. If P = P ′ | P ′′, we have

that P ′ | P ′′ ≡ νũ.Q implies νũ.Q ≡ νũ1. Q
′ | νũ2. Q

′′. Hence

C[P1, .., LP
′ | P ′′Ml, .., Pn]⇁

C[P1, .., νl1, l2. LP
′Ml1 | LP

′′Ml2 | (KillP l1 l2 l), .., Pn]

And this step can be matched by

C[Q1, .., νũ. l〈LQ
′ | Q′′M〉 | Rew l, .., Qn]⇁

C[Q1, .., νũ. l〈LQ
′ | Q′′M〉 | (l(Z) ⊲ Z l), .., Qn] →

C[Q1, .., νl1, l2. νũ1. LQ
′Ml1 | νũ2. LQ

′′Ml2 | (KillP l1 l2 l), .., Qn]

and we are still in the same relation since:

(LP ′M, νũ1. LQ
′M) ∈ R′

(LP ′′M, νũ2. LQ
′′M) ∈ R′

The other cases are similar.

If the step is performed by the process on the right, we have several cases.

If it is the application of a process Rew l then this step is matched by a

zero reductions of the left process. If the interaction involves the applied
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form of (l(Z) ⊲ Z l) and the message on l we have then C[Q1, .., νũ. l〈LQM〉 |

l(Z) ⊲ Z l, .., Qn] → C[Q1, .., νũ. LQMl, .., Qn] and we are still in the same

relation. If the reduction is due to LQMl then we proceed by case analysis as

before and we remain in the same relation, as desired. �

Lemma A.23 Axiom Ex.Adm and its instantiation are correct with respect

to weak bf barbed bisimulation.

Proof: Let

R′ = {(νc. (c〈P 〉 | c(Z) ⊲ Z k), LP Mk)}

R = {(C[P1, .., Pn],C[Q1, .., Qn]) | (Pi, Qi) ∈ R′ ∧ i = 1..n ∧ n ∈ N}

We now show that the relation R is a weak bf barbed bisimulation.

Let us consider barbs. We can notice that the name c is restricted so the

process νc. (c〈P 〉 | (c(Z) ⊲ Z k) does not show any barb. So if C[P1, .., Pn]

shows a barb it is because of the context. If so, the same barb is shown by

the process C[Q1, .., Qn] too. On the other side, we can notice that since the

process LP Mk is an application it does not show any barb. We can use the

same reasoning on context barbs as before.

Let us consider now the reductions. If C[P1, .., Pn] reduces, it is because

one process hole evolved by itself or because the context evolved. In the

first case, the only reduction a process hole can do is the communication

through the channel c, that is C[P1, .., (νc. (c〈P 〉 | c(Z) ⊲ Z k), .., Pn] →

C[P1, .., LP Mk, .., Pn] and this reduction is mimicked by the right process

with a zero step reduction. So we have that the left process reduces to the

right one, and since identity is included in R we are done. If the context

evolves we have that C[P1, .., Pn] → C′[P1, .., Pm], since the number of holes

may change because of the reduction. On the other side we have that,

C[Q1, .., Qn] → C′[Q1, .., Qm] and we are still in the same relation.

If C[Q1, .., Qn] reduces, it is because a hole processes evolved by itself

or because of the context. In the first case we have that the only reduction

a process hole can do is an application, that is C[Q1, .., LP Mk, .., Qn] ⇁

C[Q1, .., R, .., Qn], with (LP Mk) → R. If so, we have that the right process

C[P1, .., νc. (c〈LP M〉 | c(Z) ⊲ Z k, .., Pn)] →

C[P1, .., LP Mk, .., Pn)]⇁ C[P1, .., R, .., Pn)]

and we still are in the same relation, as desired. If the context evolves, then

we can apply the same reasoning of the left process and we are done. �
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Now we can use all the previous Lemmas on the single axioms of ≡Ex to

state that ≡Ex is a weak bf barbed bisimulation.

Proposition 5.2. For any HOπ+process P,Q the relationR = {(P,Q) | P ≡Ex

Q} is a weak bf bisimulation.

Proof: By definition P ≡Ex Q iff there are P1, . . . Pn such that P ≡Ex

P1 ≡Ex . . . ≡Ex Pn ≡Ex Q where each equivalence is obtained by applying

just one axiom per time. The proof is by induction on n. The base case is

banally verified. In the inductive case we proceed by case analysis on the

last applied axiom:

Ex.C : by inductive hypothesis we have that P ≡Ex Pn implies that P
◦
≈c Pn

and that Pn ≡Ex Q using the axiom Ex.C. By Lemma A.19 we know

that Pn ≡Ex Q implies Pn
◦
≈c Q, and by transitivity we have that also

P
◦
≈c Q

Ex.P: by using Lemma A.20 and the same reasoning of the above case.

Ex.A: by using Lemma A.21 and the same reasoning of the first case.

Ex.Unfold: by using Lemma A.22 and the same reasoning of the first case.

Ex.Adm: by using Lemma A.23 and the same reasoning of the first case.

≡π: by using Lemma 5.23 and the same reasoning of the first case.
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