Local Search and Combinatorial Optimization: From the Structural Analysis of a Problem to the Design of Efficient Algorithms

Recherche locale et optimisation combinatoire : de l'analyse structurelle d'un problème à la conception d'algorithms efficaces

Marie-Éléonore Marmion

Advisors: Pr. Clarisse Dhaenens & Pr. Laetitia Jourdan

DOLPHIN Team

Friday, December 9th 2011
Background
Combinatorial Optimization Problem (COP)

\[\Omega \] is a **discrete set of solutions**

\[f : \Omega \rightarrow \mathbb{R} \] is the **objective function**

- Minimization problem

Goal: find \(s^* \in \Omega \) such as

\[s^* = \arg\min_{s \in \Omega} \{ f(s) \} \]

- \(s^* \in \Omega \) is defined as **global optimum** iff

\[\forall s \in \Omega, f(s^*) \leq f(s) \]
Background
Solving Methods

- Exact methods
 - Optimal solution
 - Exponential complexity for NP-hard problems
- Heuristic methods
 - Good-quality solution
 - Reasonable time

Metaheuristics: generic methods
- **Local Search** (Hill Climbing, Tabu Search, Simulated Annealing...)
- Population-based methods (Genetic Algorithm, Ant Colony...)

> Diagram showing categories of solving methods including exact methods, heuristics, metaheuristics, and specific methods.
Background
Designing Metaheuristics for NP-hard Optimization

Modelling the problem
- Solution representation
- Objective function(s)

Choosing the solving method
- Local search?
- Population-based method?

Setting the parameters
- Neighborhood relation
- Population size
- Tabu list size
- Mutation rate
- ...
Designing metaheuristics for NP-hard optimization

3 main issues:
- How to **model** the problem?
- How to **choose** an efficient algorithm?
- How to **set** all parameters?

Needs:

Link between the **dynamics of metaheuristics** and the underlying **structure of the problem**

→ Fitness Landscape Analysis
Background
Fitness Landscape

\((\Omega, \mathcal{N}, f) \) [Wright, 1932]

- \(\Omega \): search space
- \(\mathcal{N} \): the neighborhood function connects solutions
 \(\rightarrow \) 1 application of an operator
- \(f \): the objective function gives the solution quality (fitness value)

Background
Neighborhood Function

1 Problem
2 Neighborhood functions

\[\{ 2 \text{ Landscapes} \} \]
Fitness landscape analysis with neutrality consideration

Many solutions have the **same fitness** values:

- Numerous?
- Neighbors?
- Local optima?
Case study
Flowshop Scheduling Problem

- N jobs - M machines
- Processing time of each job can be different on each machine
- Each job can be processed on at most one machine
- Each machine can process at most one job at a time
- Job order is the same on every machine: Representation = Permutation

→ Makespan minimization

C_{max} (makespan)
Flowshop Scheduling Problem
Neighborhood Operators

- **Insertion** (IN) operator

 Neighborhood size: \((N-1)^2\)

- **Exchange** (EX) operator

 Neighborhood size: \(N (N-1) / 2\)
Flowshop Scheduling Problem
Instances

Taillard Instances [Taillard, 1993]
- Jobs = 20, 50, 100, 200, 500
- Machines = 5, 10, 20
- Processing times are uniformly distributed in [1;99]

Structured Instances [Watson et al., 2002]
- Jobs = 20, 50, 100, 200
- Machines = 20
- Processing times are:
 - Job-correlated (jc)
 - Machine-correlated (mc)
 - Job/Machine-correlated (mxc)

How do the instance characteristics act on:
- the landscape **structure**?
- the metaheuristics **performance**?
- the **easiness** to find the global optimum?
Flowshop Scheduling Problem
State of the Art

Highly studied in literature
- Exact methods: branch and bound [Ríos-Mercado et al., 1999]
- Building heuristics [Nawaz et al., 1983]
- Local search [Ruiz et al., 2007]
- Population-based method [Stützle, 1997; Ruiz et al., 2006]

Questions & Observations
- Many metaheuristics are used:
 - Why are they efficient? Is this efficiency predictable?
 - Can parameters be easily set?
- Many solutions with the same fitness value:
 - Is this property used to solve FSP?
Outline

How can a landscape analysis help the design of efficient algorithms?

- Influence of the landscape on the performance of metaheuristics
- Characterization of neutral landscapes
- Design efficient local search methods with neutrality consideration
Landscape and Performance Experimental Design

2 Landscapes:
- IN-FiL (*Insertion* operator)
- EX-FiL (*Exchange* operator)

Classical indicators:
- Width and depth
- LO Quality
- Ruggedness

Metaheuristics:
[den Besten et al., 2001; Murata et al., 1996]
- Iterative Hill Climbing (ILS)
- Simulated Annealing
- Tabu Search
- Genetic Algorithm

M.-É. Marmion, L. Jourdan, C. Dhaenens, *Fitness Landscape Analysis for the ACVRP: distance, operators and metaheuristic efficiency*, Journal of Mathematical Modelling and Algorithms (accepted)
Landscape and Performance Results

<table>
<thead>
<tr>
<th>Indicators</th>
<th>IN-FiL</th>
<th>EX-FiL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Width (Average Distance between solutions)</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Local Width (Average Distance between LO)</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Depth (Average Step Length to find a LO)</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Local Optima Quality (Average fitness values of LO)</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Local Ruggedness (Average Autocorrelation Length)</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>

Literature:
- \(L_{S_{\text{IN-FiL}}} \gg L_{S_{\text{EX-FiL}}} \)
- \(G_{A_{\text{IN-FiL}}} \gg G_{A_{\text{EX-FiL}}} \)
- \(L_{S_{\text{IN-FiL}}} \gg G_{A_{\text{IN-FiL}}} \)

INSERTION >> EXCHANGE

\[\text{IN-FiL favors more LS and GA, compared to EX-FiL} \]

\[\text{IN-FiL favors more LS than GA} \]
Outline

How can landscape analysis help the design of efficient algorithms?

- Influence of the landscape on performance of metaheuristics
- Characterization of neutral landscapes
- Design efficient local search methods with neutrality consideration
Neutrality in Landscapes

- **Local optimum** (s^*): iff no neighbor has a better fitness value

- **Neutral neighbor** of solution s: solution s' with the same fitness value

- **Neutral degree** of s: the number of its neutral neighbors

- **Neutral network (NN)**: connected sub-graph whose vertices are solutions with the same fitness value. Two vertices are connected if they are neutral neighbors.

- **Portal** in a NN: solution whose at least one neighbor has a better fitness value.
Neutrality in Landscapes
Questions

- Do solutions have a lot of **neutral neighbors**?
- Are the **neutral networks** (NN) large?
- Are there a lot of **portals** on a NN?
- Is it difficult to **reach a portal**?
Neutrality in Landscapes
Neutral Networks Analysis

Neutral Walk

\[W_{neut} = (s_0, s_1, \ldots, s_m) \]

\[s_{i+1} \in \mathcal{N}(s_i) \]

\[f(s_{i+1}) = f(s_i) \]

Sample NN

- Neutral degree
- Ratio of the neutral degree
- Number of visited neutral solutions before finding a portal
- Portal presence on NN
Neutrality in Landscapes
Neutral Networks Typology

Neutrality in Landscapes
Neutral Networks exploration vs. Restart

- Is it **easy** and **fast** to find a portal?
- Do portals lead to solutions with **better quality**?
Neutrality in Landscapes
Experimental Design

Neutral Walks

Parameters:
- Neighborhood: Insertion operator
- Length according to the instance size

Instances:
- Taillard (11)
- Structured (12)

Run:
- 30 x #instances
Neutrality in Landscapes

Results

→ Taillard Instances

Neutral degree (ratio):
- Increases with # jobs
- Decreases with # machines
- Between 1 and 30%

Neutral networks:
- Large
- Almost no T1, T2
- T3: Portals are reached by random neutral walks

Observations & Conclusion:
- The lower the neutral degree, the faster the portals are found
- Faster to reach a portal with neutral walk than to reach a LO with Hill Climbing
- Neutral solutions have to be considered
Neutral networks:
- Large
- Global Optimum NN (mc, mxc)
- T3: Portals are reached by random neutral walks (jc)

Neutral degree (ratio):
- Increases with correlation
- jc: medium neutrality
- mc, mxc: greater than 90%

Observations & Conclusion:
- Hill Climbing reaches Global Optimum NN easily
- Portals are reached with neutral walks quickly

Neutral solutions have to be considered
Outline

How can landscape analysis help the design of efficient algorithms?

- Influence of the landscape on metaheuristics performance
- Characterization of neutral landscapes
- Design efficient local search methods with neutrality consideration
Neutrality in Designing Local Search (1)

- Neutral degree of LO
- Number of NN of type T3
- Moving on NN vs Restart

Exploit LO Neutrality

Netcrawler [Barnett, 2001]: local search accepts the first neighbor with a better or equal fitness value

Local search that exploits neutrality from LO to continue the search
NILS
Algorithm

Neutrality-based Iterated Local Search

- Local search
 - First-Improvement Hill Climbing (FIHC)
 - Stops on a LO
- Perturbation
 - Escaping from local optimum
 - Neutral moves (exploitation of the neutral property)
 - Random moves (when portals are difficult to reach)

Trade-off exploitation / exploration

- Parameter MNS – Maximal Number of (neutral) Steps
NILS Dynamics

(NILS)

(NC)
NILS
Experimental Design

Stopping criterion:
- Number of evaluations (2.10^7)

Parameters:
- Neighborhood: Insertion operator
- Restart: 3 random Exchange-moves
- MNS values according to the instance size

Instances:
- Taillard (11)
- Structured (12)

Literature:
- Netcrawler (NC)
- Iterated Greedy (IG)
 [Ruiz and Stützle, 2007]

Run:
- $30 \times \#\text{instances} \times \#\text{MNS}$

Validation with statistical tests:
- Student t-test
- Wilcoxon signed rank test
NILS
Results
→ Taillard Instances

NILS Performance:

- Better performance with **large** MNS value (not too high)
- **Best-known is found**: 6 instances
- Deviation to the best-known **under 1.22%**: other instances

Landscape Analysis:

- Many T3
- Portals on T3 are visited easily by random neutral walks

NILS vs. Literature:

- **Comparable performance** with NC and IG
NILS Performance:

- Better performance with **large** MNS value (not too high)
- **Best-known always found:** 11 instances
- **New Best-known found:** 1 instance

NILS vs. ILS:

- **Higher performance:** best-known is always found

Landscape Analysis:

- Global Optimum NN is reached easily by HC
- Portals on T3 are visited easily by random neutral walks
NILS
Discussion

NILS is:

- **Easy** to implement
- **Efficient** on neutral problems
- **Comparable performance** against literature algorithms

For **neutral problems**, **NILS** seems to be **appropriate**

Question:

- Why only the last accepted solution of the NN is considered?
Neutrality in Designing Local Search (2)

- Neutral degree of LO
- Number of NN of type T3
- Moving on NN vs Restart

Exploit Neutral Networks of LO

Guide the search to select the solution in the NN that leads faster to a portal

Evolvability [Altenberg, 1994]: the ability of random variations to sometimes produce improvement

Local search:
- Considering several solutions
- Guided over NN with respect to evolvability
Evolvability Measure

Average fitness value in the neighborhood:

\[E(s) = \frac{1}{|\mathcal{N}(s)|} \sum_{s_i \in \mathcal{N}(s)} f(s_i) \]

Goal: find a portal by visiting few solutions

Experimental Results:
(Taillard instances)

- Evolvability: **not random** between neighbors
- **Anti-correlation** between
 # solutions to visit on NN and evolvability value

Evolvability is better
when
Evolvability value is higher
Machine Learning
Multi-Armed Bandit

- Multi-Armed Bandit: Trade-off between exploration and exploitation

- Upper Confidence Bound (UCB)

\[
\arg \max_{i=1\ldots A} \left(\hat{r}_{i,t} + C \sqrt{\frac{\log \sum_{k} n_{k,t}}{n_{i,t}}} \right)
\]

\[A\] : Number of Arms

\[n_{i}\] : Number of Applications of the Arms \(i\)

\[\hat{r}_{i}\] : Credit Assignment

\[C\] : Trade-off parameter

VEGAS
Algorithm

Varying Evolvability-Guided Adaptive Search

\[
\text{arg max}_{i=1..A} \left(\hat{r}_{i,t} + C \sqrt{\frac{\log \sum_k n_{k,t}}{n_{i,t}}} \right) \quad \text{(UCB)}
\]

\(A \)	Arms	Known solutions of the current NN NN too large: How to limit the number of arms? \(\rightarrow \) size \(P \)
\(n_i \)	Applications of the arm \(i \)	1 neighbor evaluation
\(\hat{r}_i \)	Credit Assignment	Evolvability
VEGAS Algorithm

Varying Evolvability-Guided Adaptive Search

- Local search
 - First-Improvement Hill Climbing (FIHC)
 - Stops on a LO
- Perturbation:
 - Escaping from LO: set S of the whole NN
 - Selecting s in S to evaluate a neighbor with UCB
 - Updating Credit Assignment (evolvability)
 - Updating S

Trade-off exploitation / exploration

- Parameters: C, A, P
VEGAS Dynamics

(VEGAS)

(NC)
VEGAS
Experimental Design

Stopping criterion:
- Number of evaluations \(2 \times 10^7\)

Parameters:
- Neighborhood: Insertion operator
- Restart: 3 random Exchange-moves
- \(C\) : trade-off values (3)
- \(P\) : MNS values (5)
- \(A\) : arbitrary values (3)
 & values from landscape analysis (2)

Instances:
- Taillard (11)

Literature:
- Netcrawler (NC)

Run:
- 30 x #instances
 x #\(C\) x #\(P\) x #\(A\)

Validation with statistical tests:
- Student t-test
- Wilcoxon signed rank test
VEGAS
Results
→ Taillard Instances

VEGAS Performance:
- Better performance with C that encourages evolvability, with large P value and with A value from landscape analysis
- **Best-known is found**: 6 instances
- Deviation to the best-known **under 1.56%**: other instances

VEGAS vs. Local Search Methods:
- **Random selection** gives very **bad performance** against VEGAS
- On average, VEGAS performance is lower than NC
VEGAS
Discussion

VEGAS is:

- **Fair** on the NN
- **Quite efficient** on neutral problems
- More efficient than with a random selection

but...

- Defining evolvability measure is **difficult**
- UCB did not show its efficiency

For **neutral problems**, **VEGAS** seems to be an **appropriate** local search that has **to be improved**
Conclusion
General Contributions

How can landscape analysis help the design of efficient algorithms?

- **Fitness landscape analysis** impacts the **performance** of metaheuristics
- **Neutrality** has to be considered
- NILS: Neutrality can be **used easily** and **efficiently** in a local search
- VEGAS: the **whole Neutral Networks** can be considered in a local search with an advanced **guiding strategy**
Conclusion
Outlook

- What would be performance of NILS or VEGAS on other neutral problems?
- Can landscape analysis be done on-line?
 - Choice of the neighborhood operator
 - Estimation of the parameters value
 - ...
- How to define evolvability measure?
 - Landscape analysis?
- How to guide the search over neutral network?
Questions?