]. O. Références-personnelles-[-ait-aider02, P. Ait-aider, E. Hoppenot, . Colle, ]. O. Aait-aider02 et al., Conference on Itelligent Robots and Systems IROS Adaptation of Lowe's camera pose recovery algorithm to mobile robot self-localisation », Robotica « Localisation by camera of a rehabilitation robot », ICORR 7th Int. Conf. On Rehab Localisation caméra/objet par correspondances point 3D / pixel -application à la localisation d'un robot mobile, ProcRybarczyk02] Y. Rybarczyk, O. Ait Aider, P. Hoppenot, E. Colle, « Commande d'un système d'assistance robotique aux personnes handicapéesHoppenot01] P. Hoppenot, E. Colle, O. Ait Aider, Y. Rybarczyk, « ARPH -Assistant Robot for Handicapped People -A pluridisciplinary project, pp.460-465, 2000.

]. M. Autres-références-[-abidi95, T. Abidi, and . Chandra, « A New Efficient and Direct Solution for Pose Estimation using Quadrangular targets : Algorithm and Evaluation, IEEE Trans. On Pattern Analysis and Machine Intelligence, vol.17, pp.5-534, 1995.

]. H. Araujo96, R. Araujo, C. Carceroni, and . Brown, « A fully projective formulation for Lowe's tracking algorithm Ayache and O. Faugeras and O.D. Hyper, « A New Approach for the Recognition and Positioning of Two-Dimensional Objects, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.8, issue.1, pp.44-54, 1986.

]. B. Barshan95, H. F. Barshan, ]. P. Durrant-whitebesl92, N. A. Besl, and . Mackay, Inertial navigation system for a mobile robot «A method for registration of 3-D shapes, Iterative multistep camera calibration», pp.328-342, 1992.

M. Betke, L. C. Gurvitsbolles82-]-r, R. A. Bolles, ]. J. Cainborenstein97, H. R. Borenstein et al., Histogram in-motion mapping for mobile robot obstacle avoidance « Motion estimation by iterative 2-D features matching in range images Aldon, « Optimal mobile robot pose estimation using geometrical maps Bowyer, « Workshop panel report ? why aspect graphs are not (yet) parctical for computer vision93, Systems, Man and Cybernetics Geometric aspects of visual object recognition, « Fast recognition using adaptative subdivisions of transformation space , «Numerical methods for model-based pose recovery, Mobile robot localization using landmarks proc. IEEE international Conference on Robotics and Automation Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Techniques for autonomous navigation », Sandia Report SAND92-0457, Sandia National Laboratories Numerical Methods for Model-Based Pose Recovery Reliable Determination of Object Pose from Line Features by Hypothesis Testing Position referencing and consistent world modeling for mobile robots Proc of the IEEE International Conference on Robotics and Automation (ICRA85)Christy98] S. Christy, R. Horaud, « Iterative Pose Computation from Line Correspondences INRIA98. [Cox91] J. Cox : Blanche, « An experiment in guidance and navigation of autonomous robot vehicleDeSouza02] G. N. DeSouza and A. C. Kak, « Vison for mobile robot navigation : a survey, pp.251-263, 1982.

]. M. Dhome89, M. Dhome, J. T. Richetin, G. Lapresté, . Dombre88-]-e et al., Rives : « Determination of the attitude of 3-D objects from single perspective view « Self-calibration of the intrinsic parameters of cameras for active vision, Modélisation et commande des robots Proc. Of the IEEE Conf. Comput. Vision Pattern Recognition The calibration problem for stereo Proc. Second Proc. IEEE Conf. Computer Vision and Pattern RecognitionFaugeras93] O.D. Faugeras : « three dimensional computer vision : a geometric viewpoint, pp.1256-1278, 1986.

]. D. Fischer92, O. Fischer, R. Bachar, H. Nussinov, R. C. Wolfson-fischler et al., Bolles : « Random sample consensus : a paradigm for model fitting with applications to image analysis and automated cartography « Localizing Overlapping Parts by Searching the Interpretation Tree Grimson, « Object Recognition: The Role of geometric constraints, Grimson90] W.E.L. Grimson and D.P. Huttenlocher, « On the sensitivity of geometric hashing Proc. Third ICCV. Huttenlocher, « On the Verification of Hypothesized Matches in Model-Based RecognitionGrimson94] W.E.L. Grimson and D.P. Huttenlocher and D. W. Jacobs, « A staudy of affine matching with bounded sensor errorGuibas92] L. Guibas, R. Motwani and P. Raghavan The robot localization problem in two dimensions Proc. Third ACM-SIAM Symposium on Discrete Algorithms, pp.769-789, 1981.

G. Hager and M. Mintz, Self-Calibration from multiple views with a rotating camera Université d'Evry Val d'Essonne (EVE), 27 nov [Hoppenot98] P. Hoppenot, E. Colle, « Real-time localisation of a low-cost mobile robot with poor ultrasonic data », IFAC journal Localisation and control of a rehabilitation robot by close human-machine co-operation «A Analytic Solution for the Prespective 4-Point Problem », Computer Vision, Graphics and Processing, Sensor modeling and robust sensor data fusion », proc. Of the International Symposium on Robotics Research Proc. Third European Conf. Computer VisionHoppenot97] P. Hoppenot, « Contribution de la robotique mobile à l'assistance aux personnes handicapées Thèse de doctoratHoraud93] R. Horaud, O. Monga, « Vision par ordinateur, outils fondatmentaux Object pose : the link between weak perspective, para perspective and full perspectiveIkeuchi88] K. Ikeuchi and T. Kanade, « Automatic generation of object recognition programs Proceedings IEEE, pp.69-74925, 1988.

M. Ishii, S. Sakane, M. Kakikura, Y. Mikamijensfelt01-]-p, S. Jensfelt et al., Matching sets of 3D line segments with application to polygonal arc matching « fast vision-guided mobile robot navigation using model-based reasoning and prediction of uncertunties « Physically based simulation model for acoustic sensor robot navigation Geometric hashing: A General and Efficient Model-Based Recognition Scheme « On the error analysis of geometric hashing Wang « Model-based location of automated guided vehicles in the navigation session by 3D computer vision Lowe, « Perceptual organization and visual recognition Lowe , « Three-dimensional object recognition from single two dimensional images Dourille and F. Chavand, « Method of matching object 3D model and its image using geometric constraints, Proc. of Second ICCV IEEE Int. Conf. On Comput. Vision and Pattern Recognition Mobile robot localization by tracking geometric beacons Pose determination of a Threedomensional Object using Triangle Pairs Determination of camera location from 2D to 3D line and point correspondencesLowe91] D. G. Lowe, « Fitting parmetrized three-dimensional models to images Fast and globally convergent pose estimation from video images IEEE / IMACS Int. Conf. CESA'96, Robotics and CyberneticsMohan92] R. Mohan and R. Nevatia, « Perceptual organization for scene segmentation and descriptionMouaddib00] E. Mouaddib, B. Marhic, « Geometrical Matching For Mobile Robot LocalisationMoutarlier90] P. Moutarlier and R. Chatila, « Stochstic multisensory data fusion for mobile robot location and environmental modelling Proc. Of the International Symposium on Robotics Research, pp.45-59, 1985.

]. D. Murray88 and D. B. Murray, Using the orientation of fragmentary 3D edge segments for polyhedral object recognition, Murray, « Strategies In Object Recognition, pp.153-169, 1988.
DOI : 10.1007/BF00133698

R. M. Nealoberkampf96, ]. D. Oberkampf, D. F. Dementhon, and L. S. Davis, « Iterative Pose Estimation using coplanar feature Points », Computer Vision and Image Understanding, Probabilistic inference using Markov Chain Monte Carlo MethodsPampagnin90] L.H. Pampagnin, « Reconnaissance d'objets tridimensionnels en perception monoculaire et multisensorielle », Application à la robotique spatiale Thèse de DoctoratPennec98] X. Pennec, « Toward a Generic Framework for Recognition Based on Uncertain Geometric features », Videre: Journal of Computer Vision research, Quarterly Journal, pp.495-511, 1990.

T. Q. Phong, R. Horaud, and P. D. Tao, [Puget90] P. Puget, T. Skordas, « Calibrating a mobile camera, Qiang89] S. Qiang, « Stratégie de localisation et identification d'objets à partir de quelques mesures tridimensionnelles Thèse de Doctorat, Institut Polytechnique de Lorraine Affine structure from line correspondences with uncalibrated affine camera, pp.225-243, 1989.

]. M. Shaheen99, . Shaheen, ]. T. Reconnaissanceshakunaga89, H. Shakunaga, . Kaneko et al., Université d'Evry-Val d'Essonneangle Transform : Principle of Shape from Angles, Thèse de Doctorat View Ivariant Regions and Mobile Robot Self-Localization, pp.239-254, 1989.

]. R. Talluri93 and J. Talluri, « Position estimation techniques for autonomous mobile robot ? a review », in handbook of Pattern Recognition and computer vision, World Scientific, issue.4, pp.769-801, 1993.

]. R. Talluri96, J. K. Talluri, and . Aggarwal, Mobile robot self-location using model-image feature correspondence, IEEE Transactions on Robotics and Automation, vol.12, issue.1, pp.63-77, 1996.
DOI : 10.1109/70.481751

S. Thrun and A. Bucken, « Integrating grid-based and topological maps for mobile robot navigation, Proceedings of the Thirteenth National Conference on Artificial Intelligence, pp.944-950, 1996.

I. Ulrich and I. Nourbakhsh, Appearance-based place recognition for topological localization, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), pp.1023-1029, 2000.
DOI : 10.1109/ROBOT.2000.844734

]. Y. Faugeraswu94, S. S. Wu, R. Iyengar, . Jain, and . Bose, Vision (ECCV90), lecture Notes in Computer Science 427 « A new Generalized Computational Framework for Finding Object Orientation using Perspective Trihedral Angle Constraint, Proc. Of 1 st Europ. Conf. On ComputZhang00] Z. Zhang, « A flexible new technique for camera calibrationZhang94] Z. Zhang, « iterative point matching for registration of free-form curves and sufaces, pp.526-536, 1990.